WO2007052686A1 - 内燃機関の可変動弁装置 - Google Patents
内燃機関の可変動弁装置 Download PDFInfo
- Publication number
- WO2007052686A1 WO2007052686A1 PCT/JP2006/321823 JP2006321823W WO2007052686A1 WO 2007052686 A1 WO2007052686 A1 WO 2007052686A1 JP 2006321823 W JP2006321823 W JP 2006321823W WO 2007052686 A1 WO2007052686 A1 WO 2007052686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slider
- control shaft
- groove
- connecting member
- lift amount
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0063—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0021—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/03—Auxiliary actuators
- F01L2820/032—Electric motors
Definitions
- the present invention relates to a variable valve operating apparatus for an internal combustion engine.
- the variable valve mechanism includes an input arm and an output arm that swing around an axis, and a cylindrical slider that is disposed through both arms.
- the input arm swings when pressed by the rotating cam.
- the output arm swings with the input arm to raise and lower the engine valve.
- the slider has a gear that also has a tooth force inclined in different directions, and is connected to the input and output arms by this gear.
- the slider and the control shaft inserted into the slider are connected by a connecting member. According to this variable valve mechanism, the relative position between the tip of the input arm and the tip of the output arm is changed by moving the control shaft in the axial direction and moving the slider in the axial direction. The lift amount and the working angle are changed.
- the control shaft is driven by a hydraulic actuator.
- a hydraulic actuator When a hydraulic actuator is used, the controllability of the nozzle characteristic may be adversely affected by the viscosity of the hydraulic oil or the hydraulic pressure.
- the rotational movement of the motor is converted into linear movement through a linear motion mechanism (for example, a mechanism using a ball screw) and transmitted to the control shaft, whereby the control shaft is driven in the axial direction.
- Patent Document 1 Japanese Patent Laid-Open No. 2001-263015
- An object of the present invention is to provide a variable valve operating apparatus for an internal combustion engine that can change the valve characteristics of an engine noble using a motor without complicating the configuration of the apparatus.
- a slider used for changing the valve characteristic of an engine valve of an internal combustion engine and a slider inserted into the slider and connected via a connecting member
- a variable valve operating system for an internal combustion engine in which the valve characteristic of the engine valve is changed by driving the control shaft by a motor and moving the slider along the axis of the control shaft.
- the control shaft is rotated about the axis by the motor, a threaded portion having an external thread is formed on the outer peripheral surface of the control shaft, and a groove extending along the outer peripheral surface of the control shaft is formed on the inner peripheral surface of the slider.
- the connecting member is engaged with the male screw of the control shaft, and the groove in the slider It is fitted.
- the groove is formed over the entire circumference in the slider, and the circumferential length of the connecting member is the length of a part of the circumferential direction of the groove.
- the slider can be divided on the plane containing the axis of the control shaft.
- the control shaft and the slider are coupled as follows. That is, with the control shaft inserted into the slider, the slider is divided into two parts, and the connecting member is fitted into the groove of one part. Thereafter, the two divided parts are aligned and joined so that the connecting member in the groove coincides with the threaded portion of the control shaft, whereby the connecting member is engaged with the male screw of the control shaft. By performing the above operations, the connecting member is fitted into the groove of the slider and is engaged with the male screw of the control shaft.
- the groove is formed over the entire circumference of the slider, and the connecting member is engaged with the bush fitted into the groove, the bush, and the male screw.
- the length of the bushing in the circumferential direction is set according to the length of a part of the groove in the circumferential direction, and the slider has a hole for inserting the pin and the outer circumferential surface of the slider. It is formed to communicate with the groove.
- control shaft and the slider are coupled as follows.
- the bush is fitted at a position corresponding to the hole of the slider with the slider shaft removed.
- the control shaft is inserted into the slider, and the threaded portion of the control shaft is disposed at a position corresponding to the bush.
- the pin is inserted into the hole force of the slider, penetrates the bush, and is engaged with the male screw of the thread portion.
- the connecting member is engaged with the male screw of the control shaft while being fitted into the groove of the slider.
- the bush can be fitted into the groove in the slider through this operation.
- the length of the bush in the circumferential direction is set corresponding to the length of a part of the groove in the circumferential direction. Because of this. If the bush is formed in a ring shape and the length in the circumferential direction of the bush is equal to the total length in the circumferential direction of the groove, the bush cannot be fitted in the groove in the slider with the slider control shaft removed. . In this case, in order to fit the bush into the groove, for example, the slider must be divided at a position corresponding to the groove, and in that state, the bush must be attached to the groove in the slider. According to the above configuration, such a complicated mounting operation of the connecting member can be omitted, and the connecting member can be easily attached to the slider.
- the shaft is based on the engagement with the rotating intake cam.
- An input arm that swings around a line, and an output arm that swings around the axis along with the input arm to raise and lower the intake valve.
- the slider is connected to the input arm and the output arm, and the slider is The maximum lift amount of the intake valve and the operating angle of the intake cam are changed by changing the relative position between the tip of the input arm and the tip of the output arm.
- the lead angle of the male screw is set to be large, and the lead angle of the male screw is set to be small in the portion where the maximum lift and working angle are small.
- the intake valve In the engine operation region where the intake air amount is large, the intake valve is controlled so that the maximum lift amount and the operating angle of the intake cam are increased. In the engine operation region where the intake air amount is small, the maximum lift amount of the intake valve is controlled. And the operating angle is controlled to be small.
- the amount of intake air is large, even if the maximum lift amount and operating angle deviate from the desired value, the ratio of deviation of the actual value from the appropriate value of the intake air amount is small. The effect on the control is small. Therefore, when the maximum lift and operating angle are set large
- the connecting member moves along the axis of the control shaft by the connecting member force S being pushed by the male screw of the threaded portion.
- the cross section of the engaging portion between the male screw and the connecting member has a circular shape, the contact area between the connecting member and the male screw can be kept small. For this reason, even if the lead angle of the male screw with which the connecting member is engaged changes with the rotation of the control shaft, the hooking force between the connecting member and the male screw is suppressed. Therefore, the connecting member can be moved smoothly along the axis of the control shaft.
- FIG. 1 is a partial cross-sectional view showing an enlarged cylinder head of an engine to which the variable valve operating apparatus of the present embodiment is applied.
- FIG. 2 is a perspective view showing an internal structure of a variable valve lift mechanism.
- FIG. 3 is a perspective view showing an internal structure of an input arm and an output arm.
- FIG. 4 is a sectional view for explaining the connecting structure of the slider and the control shaft and the operation of the slider.
- FIG. 5 (a) is a schematic diagram for explaining the conventional control shaft-slider connection structure and the operation of the slider, and (b) is the control shaft-slider connection structure and slider of this embodiment. It is a schematic diagram for demonstrating operation
- FIG. 6 is a cross-sectional view taken along line 6-6 in FIG.
- FIG. 7 is a cross-sectional view for explaining a connecting operation between the control shaft and the slider of the present embodiment.
- FIG. 8 is a cross-sectional view for explaining a connecting operation between the control shaft and the slider of the present embodiment.
- FIG. 9 is a cross-sectional view taken along line 9-9 in FIG.
- FIG. 10 is a cross-sectional view for explaining the connecting operation between the control shaft and the slider of the present embodiment.
- FIG. 11 is a cross-sectional view for explaining a connecting operation between a control shaft and a slider in a modified example It is.
- FIG. 12 is a cross-sectional view for explaining a connecting operation between a control shaft and a slider according to a modification.
- the engine 1 includes a combustion chamber 6 defined by a cylinder head 2, a cylinder block 3, and a piston 5.
- the combustion chamber 6 is connected to two intake passages 7 and two exhaust passages 8 (only one is shown in FIG. 1).
- the intake valve 9 is driven to communicate or block the intake passage 7 and the combustion chamber 6, and the exhaust valve 10 is driven to communicate or block the exhaust passage 8 and the combustion chamber 6.
- Each cylinder is provided with two intake valves 9 and two exhaust valves 10.
- the cylinder head 2 is provided with an intake camshaft 11 for driving the intake valve 9 and an exhaust camshaft 12 for driving the exhaust valve 10.
- the intake and exhaust camshafts 11 and 12 rotate when the rotational movement of the crankshaft of the engine 1 is transmitted through the belt.
- the intake camshaft 11 is provided with an intake cam 11a.
- the exhaust camshaft 12 is provided with an exhaust cam 12a. Intake and exhaust force As the shafts 11 and 12 rotate, the intake cam 9a opens and closes the intake valve 9, and the exhaust cam 12a opens and closes the exhaust valve 10.
- variable valve lift mechanism 14 for changing the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 11a.
- the variable valve lift mechanism 14 controls the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 11a to be larger than usual. The larger the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 11a, the more efficiently air is introduced from the intake passage 7 into the combustion chamber 6.
- variable valve lift mechanism 14 Next, the detailed structure of the variable valve lift mechanism 14 will be described.
- the variable valve lift mechanism 14 includes an input arm 17 and an output arm 18. As the intake cam 11a rotates, the input arm 17 changes the rocker shaft 15 according to the cam shape. And swing around the axis of the control shaft 16. The rocker shaft 15 and the control shaft 16 are arranged in parallel with the intake camshaft 11. The output arm 18 swings around the axis of the control shaft 16 together with the input arm 17. A roller 19 is rotatably attached to the input arm 17. The roller 19 is pressed against the intake cam 11 a by the urging force of the coil spring 20. In addition, the intake valve 9 can be raised and lowered by swinging while the output arm 18 is pressed against the mouth cam 21.
- the rocker arm 21 is supported by a lash adjuster 22 at its base end.
- the tip of the stopper arm 21 is in contact with the intake valve 9.
- a roller 23 is rotatably supported at the center of the rocker arm 21.
- the rocker arm 21 is biased toward the output arm 18 by the valve spring 24 of the intake valve 9. The roller 23 is pressed against the output arm 18 by this urging force.
- variable valve lift mechanism 14 of the present embodiment the relative positions of the tip of the input arm 17 and the tip of the output arm 18 are changed, whereby the maximum lift amount of the intake valve 9 and the intake valve of the intake cam 11a are changed.
- the working angle for 9 is changed. In this case, if the tip of the input arm 17 and the tip of the output arm 18 are brought close to each other, the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 11a are both reduced. Conversely, if the tip of the input arm 17 and the tip of the output arm 18 are separated, the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 1 la both increase.
- variable valve lift mechanism 14 when the input arm 17 and the output arm 18 are rotated relative to each other will be described with reference to FIGS.
- the variable valve lift mechanism 14 includes a cylindrical slider 26. Hollow base portions 17a and 18a are provided at the base ends of the input arm 17 and the output arm 18, respectively. A slider 26 is accommodated in the hollow cylindrical portions 17a and 18a. The slider 26 is disposed inside the input arm 17 and the output arm 18. On the outer wall of the slider 26, an input gear 27 having a helical spline 27 is provided at the center in the longitudinal direction. a is provided. Further, on the outer wall of the slider 26, output gears 29a having helical splines 29 are provided at both ends in the longitudinal direction. Inside the slider 26, a rocker shaft 15 having a pipe shape is inserted.
- an internal gear 28 a having a helical spline 28 is formed on the inner wall of the cylindrical portion 17 a of the input arm 17.
- an internal gear 30a having a helical spline 30 is formed on the inner wall of the cylindrical portion 18a of the output arm 18.
- the internal gear 28a of the input arm 17 is engaged with the input gear 27a (FIG. 2) of the slider 26, and the internal gear 30a of the output arm 18 is engaged with the output gear 29a (FIG. 2) of the slider 26.
- the tooth inclination directions are opposite to each other.
- the slider 26 is moved in the axial direction of the rocker shaft 15 with the helical splines 27 and 29 engaged with the helical splines 28 and 30, the input arm 17 and the output arm 18 are reversed. By rotating, the relative positions of the tips of both arms 17 and 18 are changed. Specifically, when the slider 26 is moved in the direction of arrow L in FIG. 2, the tip of the input arm 17 and the tip of the output arm 18 are rotated relative to each other. On the other hand, when the control shaft 16 is moved in the direction of arrow H, the ends of the arms 17 and 18 are rotated relative to each other so as to be separated from each other.
- the cylinder head 2 is provided with a plurality of standing wall portions 45.
- Input and output arms 17 and 18 are arranged between the adjacent standing wall portions 45.
- the rocker shaft 15 passes through the standing wall 45 and both arms 17 and 18.
- the input arm 17 is disposed between the two output arms 18.
- Input arm 17 has intake cam 11 It is located at a position corresponding to a (see Fig. 1).
- the output arm 18 is disposed at a position corresponding to the intake valve 9 (see FIG. 1).
- a slider 26 is disposed inside the arms 17 and 18 while being mounted on the rocker shaft 15.
- a control shaft 16 is inserted inside the rocker shaft 15.
- the control shaft 16 is connected to the motor 61 via a gear (not shown). Therefore, when the motor 61 is driven, the rotation of the motor 61 is transmitted to the control shaft 16 via the gear, and the control shaft 16 rotates about the axis.
- a threaded portion 31 having a male thread 32 is formed on the outer peripheral surface of the control shaft 16.
- an elongated hole 33 extending in the axial direction of the shaft 15 is formed in a portion corresponding to the screw portion 31.
- a groove 34 is formed on the inner circumferential surface of the slider 26 so as to extend over the entire circumference. The groove 34 is provided at a position corresponding to the threaded portion 31 of the control shaft 16.
- a connecting member 48 that connects the control shaft 16 and the slider 26 is provided between the groove 34 and the threaded portion 31. The connecting member 48 is disposed so as to penetrate the elongated hole 33 of the rocker shaft 15. The connecting member 48 is engaged with the threaded portion 31 of the control shaft 16 and is fitted into the groove 34 of the slider 26.
- the connecting member 48 moves along the axis of the control shaft 16 in the long hole 33 while being engaged with the male screw 32 of the control shaft 16.
- the slider 26 moves in the axial direction integrally with the connecting member 48.
- the input arm 17 and the output arm 18 rotate relative to each other, and the relative positions of the tips of the arms 17 and 18 are changed.
- the slider 26 also rotates along the outer peripheral surface of the rocker shaft 15. The rotation of the slider 26 is allowed by the relative movement in the circumferential direction between the groove 34 and the connecting member 48 in the groove 34.
- the control shaft 16 and the slider 26 are connected by the connecting member 101 as shown in FIG. Further, a linear motion mechanism 102 is provided between the control shaft 16 and the motor 61.
- a linear motion mechanism 102 is provided between the control shaft 16 and the motor 61.
- a mechanism using a ball screw is used as the linear motion mechanism 102.
- the linear motion mechanism 102 when the motor 61 is driven, the rotational motion of the motor 61 is converted into a linear motion by the linear motion mechanism 102 and transmitted to the control shaft 16.
- the control shaft 16 moves in the axial direction, and the maximum lift amount and operating angle of the intake valve 9 are changed according to the movement amount.
- the linear motion mechanism 102 must be provided between the motor 61 and the control shaft 16, and the configuration of the apparatus is complicated accordingly.
- the connecting member 48 that connects the control shaft 16 and the slider 26 is fitted in the groove 34 of the slider 26 and the control is performed.
- the shaft 16 is engaged with a male screw 32 on the outer peripheral surface of the shaft 16.
- the rotational motion of the motor 61 is transmitted to the control shaft 16 through the gear.
- the control shaft 16 rotates around the axis, and the maximum lift amount and the operating angle are changed according to the rotation amount.
- the linear motion mechanism 102 can be omitted, and the configuration of the apparatus can be simplified correspondingly.
- the lead angle ⁇ of the male screw 32 gradually increases toward the position where the lift amount and working angle of the intake valve 9 are minimized (the left end in the figure) and the force is maximized (the right end in the figure). Is set to be larger.
- the lead angle / 3 of the male screw 32 is set small near the position where the lift amount and operating angle of the intake valve 9 are minimized, and is set large near the position where the lift amount and operating angle are maximized.
- the connecting member 48 When the intake air volume is large, that is, when the lift amount and operating angle are large, the connecting member 48 is moved in the axial direction in the part where the lead angle 13 of the male screw 32 is large (near the right end of the thread 31). Thus, the lift amount and the working angle are controlled. In addition, the operating region where the intake air amount is small, ie,
- the lift amount and the working angle are controlled by moving the connecting member 48 in the axial direction at a portion where the lead angle / 3 of the male screw 32 is small (near the left end of the screw portion 31).
- the lead angle ⁇ force of the male screw 32 is set in a portion where the maximum lift amount and the working angle are small, and the lead angle ⁇ of the male screw 32 is large in a portion where the maximum lift amount and the working angle are large. Is set. In other words, when the maximum lift amount and working angle are large, the maximum lift amount and working angle change amount with respect to the rotation amount of the control shaft 16 is large, so that the maximum lift amount and working angle can be quickly controlled to desired values. . In addition, when the maximum lift amount and operating angle are small, the maximum lift amount and operating angle change amount with respect to the rotation amount of the control shaft 16 is small. It becomes easy to control.
- the connecting member 48 includes a bush 35 and a pin 51.
- the bush 35 is formed in an arc shape, and its circumferential length is set to correspond to a part of the groove 34 in the circumferential direction.
- the bush 35 is formed with a insertion hole 36 for inserting the pin 51.
- the pin 51 is engaged with the male screw 32 of the control shaft 16 while passing through the insertion hole 36 of the bush 35 and the long hole 33 of the rocker shaft 15.
- the slider 26 A hole 37 that communicates the outer peripheral surface with the groove 34 is formed. The hole 37 is used when the pin 51 is attached to the bush 35.
- the insertion hole 36 of the bush 35 and the hole 37 of the slider 26 communicate with each other.
- the bush 35 is fitted into the groove 34 in the slider 26.
- the rocker shaft 15 is inserted into the slider 26, and the positions of the rocker shaft 15 and the slider 26 are adjusted so that the long hole 33 of the rocker shaft 15 and the insertion hole 36 of the bush 35 communicate with each other.
- the pin 51 is inserted into the insertion hole 36 of the bush 35 through the hole 37 and attached to the bush 35 in a state where the hole 37, the long hole 33 and the insertion hole 36 are in communication.
- the tip 51a of the pin 51 is formed so that its diameter decreases as it approaches the control shaft 16.
- the cross section of the tip 51a of the pin 51 has a circular shape. Therefore, when the slider 26 is moved in the axial direction, the contact area between the male screw 32 and the tip 51a of the pin 51 can be kept small. As a result, even if the lead angle 13 of the male screw 32 with which the tip end 51a of the pin 51 is engaged changes during the rotation of the control shaft 16, the pulling force between the pin 51 and the male screw 32 is suppressed. The Therefore, the connecting member 48 (bush 35 and pin 51) can be smoothly moved along the axis of the control shaft 16.
- the bush 35 is fitted into the groove 34 of the slider 26.
- the position of the bush 35 in the groove 34 is adjusted so that the insertion hole 36 of the bush 35 communicates with the hole 37 of the slider 26.
- the rocker shaft 15 is inserted into the slider 26.
- the positions of the rocker shaft 15 and the slider 26 are adjusted so that the long hole 33 of the rocker shaft 15, the insertion hole 36 of the bush 35 and the hole 37 of the slider 26 communicate with each other.
- control shaft 16 is inserted into the rocker shaft 15.
- the control shaft 16 is disposed so that the threaded portion 31 faces the elongated hole 33, the insertion hole 36 and the hole 37.
- the pin 51 is inserted into the insertion hole 36 of the bush 35 from the hole 37 of the slider 26.
- the tip 51a is engaged with the threaded portion 31 of the control shaft 16.
- the connecting member 48 including the bush 35 and the pin 51 is fitted into the groove 34 of the slider 26 and is engaged with the male screw 32 of the control shaft 16.
- the slider 26 and the control shaft 16 are connected via the connecting member 48.
- the slider 26 and the rocker shaft 15 are relatively rotated so that the hole 37 of the slider 26 is separated from the connecting member 48.
- the slider 26, the connecting member 48, and the rocker shaft 15 are arranged at the positions shown in FIG. 6 by relatively rotating the slider 26 by an angle indicated by an arrow C in FIG.
- the position of the hole 37 at this time is set so that the hole 37 and the connecting member 48 do not overlap when the arms 17 and 18 and the slider 26 are swung by being pressed by the intake cam 11a.
- the control shaft 16 is rotated about the axis by the motor 61.
- the connecting member 48 is fitted in the groove 34 of the slider 26 and is engaged with the male screw 32 on the outer peripheral surface of the control shaft 16.
- the control shaft 16 and the slider 26 are connected by the connecting member 48.
- the motor 61 is driven and the control shaft 16 rotates, the slider 26 is moved in the axial direction by being pushed by the connecting member 48 engaged with the male screw 32.
- the slider 26 moves, the relative position between the tip of the input arm 17 and the tip of the output arm 18 is changed, and the maximum lift amount of the intake valve 9 and the operating angle of the intake cam 1 la are changed.
- the bush 35 can be fitted into the groove 34 of the slider 26 because the bush 35 is formed in an arc shape and the length of the bush 35 is equal to the circumferential direction of the groove 34. This is because it is set to correspond to the part. If the bush 35 is formed in a ring shape and the circumferential length of the bush 35 is equal to the overall length of the groove 34, the groove in the slider 26 is removed with the control shaft 16 removed from the slider 26. 34 cannot be fitted with bush 35. In this case, for example, the bush 35 must be attached to the groove 34 in the slider 26 in a state where the slider 26 is divided at a position corresponding to the groove 34. That is, the attaching work of the connecting member 48 (bush 35) becomes complicated. However, if the shape of the bush 35 is designed as described above, the connecting member 48 can be easily attached.
- the lead angle ⁇ of the male screw 32 is set to be small at the portion where the maximum lift amount and working angle are reduced, and the maximum lift amount and working angle are increased.
- the lead angle ⁇ of the male screw 32 is set to be large. Therefore, when the operating range where the intake air volume is large, that is, when the maximum lift amount and working angle are large, the connecting member 48 is moved in the axial direction at the portion where the lead angle ⁇ of the male screw 32 is large, so that the maximum lift amount and working angle are increased. Is controlled.
- the connecting member 48 In the operating region where the intake air amount is small, that is, when the maximum lift amount and operating angle are large, the connecting member 48 is moved in the axial direction at the portion where the lead angle ⁇ of the male screw 32 is small, so that the maximum lift amount and operating angle are reduced. Be controlled.
- the cross section of the tip 51a of the pin 51 has a circular shape.
- the contact area between the male screw 32 and the tip 51a engaged with the male screw 32 can be kept small. Accordingly, even when the lead angle 13 of the male screw 32 with which the pin 51 is engaged changes as the control shaft 16 rotates, the catching catch between the pin 51 and the male screw 32 is suppressed. Therefore, the connecting member 48 (bush 35 and pin 51) can be smoothly moved along the axis of the control shaft 16.
- a connecting member 71 in which a bush and a pin are formed may be used.
- a slider 26 that can be divided along a plane including the axis of the control shaft 16 is used.
- the connecting member 71 is fitted into the groove 34 of one part.
- the positions of the rocker shaft 15 and the control shaft 16 are adjusted so that the elongated hole 33 of the rocker shaft 15 and the threaded portion 31 of the control shaft 16 coincide with each other. Then, as shown in FIG.
- the tip 51a of the pin 51 may be changed to a circular truncated cone force.
- the lead angle ⁇ of the male screw 32 is set so as to gradually increase in accordance with the directional force at the position where the lift amount and the working angle are minimized, and the position force is maximized.
- the lead angle ⁇ of the male screw 32 may be fixed at a portion where the lift amount and the working angle are small and a portion where the lift amount and the working angle are large.
- the lead angle 13 of the male screw 32 may be constant over the entire threaded portion 31.
- the present invention may be applied to a variable valve gear that changes the valve characteristics of the exhaust valve.
- the present invention may be applied to variable valve gears that change valve characteristics other than the maximum lift amount and operating angle, for example, valve timing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
コントロールシャフト16は、最大リフト量及び作用角を変更するために用いられる。モータ61により、コントロールシャフト16は軸線を中心に回転する。また、コントロールシャフト16とスライダ26とを連結する連結部材48は、スライダ26内の溝34に嵌め込まれるとともに、コントロールシャフト16の外周面に設けられたねじ部31に係合される。この場合、最大リフト量及び作用角を変更するには、ギヤを介して、モータ61の回転を直接的にコントロールシャフト16に伝達すればよい。つまり、モータ61の回転運動を直線運動に変換してコントロールシャフト16に伝達するための直動機構が不要になる。
Description
明 細 書
内燃機関の可変動弁装置
技術分野
[0001] 本発明は、内燃機関の可変動弁装置に関する。
背景技術
[0002] 自動車用エンジンの内燃機関として、吸気バルブ又は排気ノ レブの最大リフト量、 及びこれら機関バルブを駆動するカムの作用角を変更する可変動弁機構を備えたも のが提案されている。この可変動弁機構は、内燃機関の運転状態に応じて駆動され る (特許文献 1参照)。
[0003] 可変動弁機構は、軸を中心に揺動する入力アーム及び出力アームと、両アームを 貫通して配置される円筒状のスライダとを備えている。入力アームは、回転するカム に押圧されて揺動する。出力アームは、入力アームと共に揺動して機関バルブを昇 降させる。スライダは、異なる方向に傾斜する歯力もなるギヤを有し、このギヤにより、 入力及び出力アームに対してそれぞれ連結されている。また、スライダと、スライダ内 に挿入されたコントロールシャフトとは、連結部材によって連結されている。この可変 動弁機構によれば、コントロールシャフトを軸方向に移動させ、スライダを軸方向に移 動させることにより、入力アームの先端と出力アームの先端との相対位置が変更され 、機関バルブの最大リフト量及び作用角が変更される。
[0004] この文献によれば、コントロールシャフトは、油圧式のァクチユエータによって駆動さ れる。油圧式のァクチユエータを用いる場合、作動油の粘度や油圧の影響を受けて 、ノ レブ特性の制御性が悪ィ匕することがある。この理由から、油圧式のァクチユエ一 タに代えて、モータによりコントロールシャフトを駆動する方法が考えられる。この方法 によれば、モータの回転運動が直動機構 (例えばボールねじを用いた機構)を通じて 直線運動に変換されてコントロールシャフトに伝達されることにより、コントロールシャ フトが軸方向に駆動される。
特許文献 1:特開 2001— 263015公報
発明の開示
[0005] 上記のように、モータを用いてコントロールシャフトを駆動させることで、作動油によ りバルブ特性の制御性が悪ィ匕することは回避できる。し力しながら、この構成によれ ば、モータとコントロールシャフトとの間に直動機構を設ける必要があるため、その分 、装置の構成が複雑になるという問題がある。
[0006] 本発明の目的は、装置の構成が複雑にならず、モータを用いて機関ノ レブのバル ブ特性を変更することのできる内燃機関の可変動弁装置を提供することにある。 上記の課題を解決するため、本発明の第一の態様によれば、内燃機関の機関バ ルブのバルブ特性を変更するのに用いられるスライダと、スライダ内に挿入され、連 結部材を介してスライダに連結されるコントロールシャフトとを備え、モータによりコント ロールシャフトを駆動してスライダをコントロールシャフトの軸線に沿って移動させるこ とにより機関バルブのバルブ特性が変更される内燃機関の可変動弁装置において、 モータにより、コントロールシャフトは軸線を中心に回転され、コントロールシャフトの 外周面には、雄ねじを有するねじ部が形成され、スライダの内周面には、コントロール シャフトの外周面に沿って延びる溝が形成され、連結部材は、コントロールシャフトの 雄ねじに係合されるとともに、スライダ内の溝に嵌め込まれている。
[0007] 上記の構成によれば、モータによりコントロールシャフトが回転されると、連結部材 は、コントロールシャフトの雄ねじに係合されたままコントロールシャフトの軸線に沿つ て移動する。そして、連結部材によりスライダが押圧されて、スライダが軸方向に移動 することにより、機関バルブのバルブ特性が変更される。この場合、コントロールシャ フトを回転するには、モータの回転運動を直線運動に変換することなぐ回転運動の ままコントロールシャフトに伝達すればよい。よって、モータの回転運動を直線運動に 変換しコントロールシャフトに伝達する直動機構を省くことができ、その分、装置の構 成を簡素化することができる。従って、装置の構成が複雑にならず、モータを用いて 機関バルブのバルブ特性を変更することができる。
[0008] 上記の内燃機関の可変動弁装置において、溝は、スライダ内の全周に亘つて形成 され、連結部材の周方向の長さは、同溝の周方向の一部の長さに対応して設定され 、スライダは、コントロールシャフトの軸線を含む面で分割可能である。
[0009] 上記の構成によれば、コントロールシャフトとスライダとは次のようにして連結される。
すなわち、スライダにコントロールシャフトを挿入した状態で、スライダが 2つの部分に 分割され、一方の部分の溝に連結部材が嵌め込まれる。その後、溝内の連結部材が コントロールシャフトのねじ部と一致するように、分割された 2つの部分が位置合わせ されて結合されることにより、コントロールシャフトの雄ねじに連結部材が係合される。 以上の作業を行うことにより、連結部材は、スライダの溝に嵌め込まれるとともに、コン トロールシャフトの雄ねじに係合される。
[0010] 上記の内燃機関の可変動弁装置において、溝は、スライダ内の全周に亘つて形成 され、連結部材は、溝に嵌め込まれるブッシュと、ブッシュを貫通し、かつ雄ねじに係 合されるピンとからなり、ブッシュの周方向の長さは、溝の周方向の一部の長さに対 応して設定され、スライダには、ピンを挿通するための孔が、スライダの外周面と溝と を連通するように形成されて 、る。
[0011] 上記の構成によれば、コントロールシャフトとスライダとは次のようにして連結される。
まず、スライダカ コントロールシャフトが取り外された状態で、スライダの孔と対応す る位置にブッシュが嵌め込まれる。次に、スライダ内にコントロールシャフトが挿入され て、コントロールシャフトのねじ部がブッシュと対応する位置に配置される。そして、ピ ンがスライダの孔力 挿入されて、ブッシュを貫通するとともに、ねじ部の雄ねじに係 合される。以上の作業を行うことにより、連結部材は、スライダの溝に嵌め込まれるとと もに、コントロールシャフトの雄ねじに係合される。
[0012] また、この作業を通じてブッシュをスライダ内の溝に嵌め込むことができるのは、ブッ シュの周方向の長さが溝の周方向の一部の長さに対応して設定されているためであ る。仮に、ブッシュがリング状に形成され、ブッシュの周方向の長さが溝の周方向の 全長と等しい場合、スライダカ コントロールシャフトが取り外された状態で、スライダ 内の溝にブッシュを嵌め込むことはできない。この場合、ブッシュを溝に嵌め込むに は、例えば、スライダを溝と対応する位置で分割し、その状態で、スライダ内の溝にブ ッシュを取り付けなければならない。上記の構成によれば、こうした連結部材の煩雑 な取り付け作業を省くことができ、連結部材をスライダに容易に取り付けることができ る。
[0013] 上記の内燃機関の可変動弁装置において、回転する吸気カムとの係合に基づき軸
線の周りに揺動する入力アームと、入力アームと共に前記軸線を中心に揺動して吸 気バルブを昇降させる出力アームとを備え、スライダは、入力アーム及び出力アーム に連結され、スライダを軸方向に移動させて入力アームの先端と出力アームの先端と の相対位置を変更することにより吸気バルブの最大リフト量及び吸気カムの作用角が 変更され、最大リフト量及び作用角が大きい部分では、雄ねじのリード角が大きく設 定され、最大リフト量及び作用角が小さい部分では、雄ねじのリード角が小さく設定さ れている。
[0014] 吸入空気量の多い機関運転領域では、最大リフト量及び吸気カムの作用角が大き くなるように吸気バルブが制御され、吸入空気量の少ない機関運転領域では、吸気 バルブの最大リフト量及び作用角が小さくなるように制御される。ここで、吸入空気量 が多い場合、最大リフト量及び作用角が所望の値力 外れたとしても、吸入空気量の 適正値からの実際値のずれの割合は小さいため、最大リフト量及び作用角の制御に 及ぼす影響は小さい。従って、最大リフト量及び作用角が大きく設定されている場合
、最大リフト量及び作用角の制御精度を上げることよりも、むしろモータの消費電力を 少なく抑えるために最大リフト量及び作用角を素早く所望の値に制御することが求め られる。一方、内燃機関の吸入空気量が少ない場合、最大リフト量及び作用角が所 望の値力も外れたとき、吸入空気量の適正値からの実際値のずれの割合は大き 、た め、最大リフト量及び作用角の制御に及ぼす影響は大きい。従って、最大リフト量及 び作用角が小さく設定されている場合、最大リフト量及び作用角を素早く所望の値に 制御することよりも、むしろ吸入空気量を適正値に近づけるために最大リフト量及び 作用角の制御精度を上げることが求められる。
[0015] 上記の構成によれば、最大リフト量及び作用角に関するこうした要求に対応するこ とができる。すなわち、最大リフト量及び作用角が大きい場合、コントロールシャフトの 回転量に対する最大リフト量及び作用角の変化量が大きいため、最大リフト量及び 作用角を素早く所望の値に制御することができる。また、最大リフト量及び作用角が 小さい場合、コントロールシャフトの回転量に対する最大リフト量及び作用角の変化 量が小さいため、最大リフト量及び作用角を微調整することができ、最大リフト量及び 作用角を精度よく所望の値に制御することができる。
[0016] 上記の内燃機関の可変動弁装置において、連結部材の雄ねじとの係合部分につ V、てその横断面は円形状を有して!/、る。
上記構成によれば、コントロールシャフトが回転すると、ねじ部の雄ねじに連結部材 力 S押されることにより、連結部材はコントロールシャフトの軸線に沿って移動する。この 場合、雄ねじと連結部材との係合部分についてその横断面は円形状を有しているた め、連結部材と雄ねじとの接触面積が小さく抑えられる。このため、コントロールシャ フトの回転に伴い、連結部材が係合される雄ねじのリード角が変化しても、連結部材 と雄ねじとの引っ掛力りが抑制される。よって、連結部材をコントロールシャフトの軸線 に沿ってスムーズに移動させることができる。
図面の簡単な説明
[0017] [図 1]本実施形態の可変動弁装置が適用されるエンジンのシリンダヘッドを拡大して 示す部分断面図である。
[図 2]バルブリフト可変機構の内部構造を示す斜視図である。
[図 3]入力アーム及び出力アームの内部構造を示す斜視図である。
[図 4]スライダとコントロールシャフトとの連結構造及びスライダの動作を説明するため の断面図である。
[図 5] (a)は従来のコントロールシャフトとスライダとの連結構造、及びスライダの動作 を説明するための模式図であり、 (b)は本実施形態のコントロールシャフトとスライダと の連結構造及びスライダの動作を説明するための模式図である。
[図 6]図 4の 6— 6線に沿った断面図である。
[図 7]本実施形態のコントロールシャフトとスライダとの連結作業を説明するための断 面図である。
[図 8]本実施形態のコントロールシャフトとスライダとの連結作業を説明するための断 面図である。
[図 9]図 8の 9— 9線に沿った断面図である。
[図 10]本実施形態のコントロールシャフトとスライダとの連結作業を説明するための断 面図である。
[図 11]変形例のコントロールシャフトとスライダとの連結作業を説明するための断面図
である。
[図 12]変形例のコントロールシャフトとスライダとの連結作業を説明するための断面図 である。
発明を実施するための最良の形態
[0018] 以下、本発明を自動車用エンジンの可変動弁装置に具体化した一実施形態を図 1 〜図 10に従って説明する。
図 1に示すように、エンジン 1は、シリンダヘッド 2、シリンダブロック 3、及びピストン 5 によって区画された燃焼室 6を備えている。この燃焼室 6には、 2つの吸気通路 7と、 2 つの排気通路 8とがそれぞれ接続されている(図 1には一方のみ図示)。吸気バルブ 9は、吸気通路 7と燃焼室 6とを連通又は遮断するように駆動され、排気バルブ 10は 、排気通路 8と燃焼室 6とを連通又は遮断するように駆動される。各気筒には、 2つの 吸気バルブ 9と、 2つの排気バルブ 10とがそれぞれ設けられている。
[0019] シリンダヘッド 2には、吸気バルブ 9を駆動するための吸気カムシャフト 11と、排気 バルブ 10を駆動するための排気カムシャフト 12とが設けられている。吸気及び排気 カムシャフト 11, 12は、エンジン 1のクランクシャフトの回転運動がベルトを介して伝 達されることにより回転する。吸気カムシャフト 11には、吸気カム 11aが設けられてい る。また、排気カムシャフト 12には、排気カム 12aが設けられている。吸気及び排気力 ムシャフト 11, 12の回転に伴い、吸気カム 11aにより吸気ノ レブ 9が開閉され、排気 カム 12aにより排気バルブ 10が開閉される。
[0020] また、吸気カム 11aと吸気バルブ 9との間には、吸気バルブ 9の最大リフト量及び吸 気カム 11aの作用角を変更するバルブリフト可変機構 14が設けられている。吸入空 気の必要量が多い場合、バルブリフト可変機構 14によって、吸気バルブ 9の最大リフ ト量及び吸気カム 11aの作用角は、通常よりも大きくなるように制御される。吸気バル ブ 9の最大リフト量及び吸気カム 11aの作用角が大きくなるほど、吸気通路 7から燃焼 室 6へと空気が効率よく導入される。
次に、バルブリフト可変機構 14の詳細な構造について説明する。
[0021] バルブリフト可変機構 14は、入力アーム 17及び出力アーム 18を備えている。入力 アーム 17は、吸気カム 11aの回転に伴い、そのカム形状に応じて、ロッカシャフト 15
及びコントロールシャフト 16の軸線を中心に揺動する。ロッカシャフト 15及びコント口 ールシャフト 16は、吸気カムシャフト 11と平行に配置されている。出力アーム 18は、 入力アーム 17と共にコントロールシャフト 16の軸線を中心に揺動する。入力アーム 1 7には、ローラ 19が回転可能に取り付けられている。ローラ 19は、コイルスプリング 20 の付勢力により、吸気カム 11aに押しつけられている。また、出力アーム 18が口ッカァ ーム 21に押しつけられた状態で揺動することにより、吸気バルブ 9は昇降させられる
[0022] ロッカアーム 21は、その基端部にて、ラッシュアジヤスタ 22により支持されている。口 ッカアーム 21の先端部は、吸気バルブ 9と接触している。ロッカアーム 21の中央部に は、ローラ 23が回転可能に支持されている。ロッカアーム 21は、吸気バルブ 9のバル ブスプリング 24により出力アーム 18に向けて付勢されて 、る。この付勢力によって、 ローラ 23は、出力アーム 18に対して押しつけられている。
[0023] 従って、吸気カム 11aにより、入力アーム 17及び出力アーム 18が揺動されると、出 力アーム 18は、ロッカアーム 21を介して吸気バルブ 9を昇降させ、その吸気バルブ 9 により吸気通路 7を開閉させる。本実施形態のバルブリフト可変機構 14によれば、入 力アーム 17の先端及び出力アーム 18の先端の相対位置が変更され、それにより、 吸気バルブ 9の最大リフト量、及び吸気カム 11aの吸気バルブ 9に対する作用角が変 更される。この場合、入力アーム 17の先端と出力アーム 18の先端とを接近させれば 、吸気ノ レブ 9の最大リフト量及び吸気カム 11aの作用角はいずれも小さくなる。逆 に、入力アーム 17の先端と出力アーム 18の先端とを離間させれば、吸気バルブ 9の 最大リフト量及び吸気カム 1 laの作用角はいずれも大きくなる。
[0024] 次に、入力アーム 17と出力アーム 18との相対回動させるときのバルブリフト可変機 構 14の動作について、図 2及び図 3を参照して説明する。
図 2に示すように、バルブリフト可変機構 14は、円筒状のスライダ 26を備えている。 入力アーム 17及び出力アーム 18の基端にはそれぞれ中空円筒部 17a、 18aが設け られている。それらの中空円筒部 17a, 18a内にはスライダ 26が収納されている。スラ イダ 26は、入力アーム 17及び出力アーム 18の内側に配設されている。スライダ 26の 外壁において、長手方向の中央部には、ヘリカルスプライン 27を有する入力ギヤ 27
aが設けられている。また、スライダ 26の外壁において、長手方向の両端部には、ヘリ カルスプライン 29を有する出力ギヤ 29aが設けられている。スライダ 26の内部には、 パイプ状をなすロッカシャフト 15が挿入されている。
[0025] 図 3に示すように、入力アーム 17の円筒部 17aの内壁には、ヘリカルスプライン 28 を有する内歯ギヤ 28aが形成されている。出力アーム 18の円筒部 18aの内壁には、 ヘリカルスプライン 30を有する内歯ギヤ 30aが形成されている。入力アーム 17の内 歯ギヤ 28aは、スライダ 26の入力ギヤ 27a (図 2)に係合され、出力アーム 18の内歯 ギヤ 30aは、スライダ 26の出力ギヤ 29a (図 2)に係合される。ヘリカルスプライン 27, 28とへリカルスプライン 29, 30とでは、歯の傾斜方向が逆向きである。
[0026] ヘリカルスプライン 27, 29がへリカルスプライン 28, 30に係合された状態で、スライ ダ 26をロッカシャフト 15の軸線方向に移動させると、入力アーム 17と出力アーム 18 とが逆向きに回動して、両アーム 17, 18の先端の相対位置が変更される。具体的に は、スライダ 26を図 2の矢印 L方向に移動させると、入力アーム 17の先端と出力ァー ム 18の先端とが互いに接近するように相対回動される。一方、コントロールシャフト 1 6を矢印 H方向に移動させると、両アーム 17, 18の先端が互いに離間するように相 対回動される。
[0027] このようにして入力アーム 17及び出力アーム 18を相対回動させることで、出力ァー ム 18が揺動したときの吸気ノ レブ 9の最大リフト量、及び吸気カム 11aの作用角が変 更される。従って、吸入空気量の大きいエンジン 1の運転領域では、吸気バルブ 9の 最大リフト量及び作用角が大きくなるように制御される。一方、吸入空気量の小さい 運転領域では、吸気バルブ 9の最大リフト量及び作用角が小さくなるように制御され る。
[0028] 次に、コントロールシャフト 16とスライダ 26との連結構造、及び、スライダ 26を軸方 向に移動させるための構造にっ ヽて図 4を参照して説明する。
図 4に示すように、シリンダヘッド 2には、複数の立壁部 45が設けられている。隣接 する立壁部 45間には、入力及び出力アーム 17, 18が配置されている。ロッカシャフ ト 15は、立壁部 45及び両アーム 17, 18を貫通している。入力アーム 17は、 2つの出 力アーム 18によって挟まれた状態で配置されている。入力アーム 17は、吸気カム 11
a (図 1参照)と対応する位置に配置されている。出力アーム 18は、吸気バルブ 9 (図 1 参照)と対応する位置に配置されている。また、両アーム 17, 18の内側には、スライ ダ 26がロッカシャフト 15に装着された状態で配置されている。
[0029] ロッカシャフト 15の内部には、コントロールシャフト 16が挿入されている。コントロー ルシャフト 16は、図示しないギヤを介してモータ 61に連結されている。従って、モー タ 61が駆動されると、モータ 61の回転がギヤを介してコントロールシャフト 16に伝達 されて、コントロールシャフト 16は軸線を中心に回転する。
[0030] コントロールシャフト 16の外周面には、雄ねじ 32を有するねじ部 31が形成されてい る。ロッカシャフト 15において、ねじ部 31と対応する部分には、シャフト 15の軸線方 向に延びる長穴 33が形成されている。スライダ 26の内周面には、全周に亘つて延び る溝 34が形成されている。溝 34は、コントロールシャフト 16のねじ部 31と対応する位 置に設けられている。溝 34とねじ部 31との間には、コントロールシャフト 16とスライダ 26とを連結する連結部材 48が設けられている。連結部材 48は、ロッカシャフト 15の 長穴 33を貫通するように配置されている。連結部材 48は、コントロールシャフト 16の ねじ部 31に係合されるとともに、スライダ 26の溝 34に嵌め込まれて 、る。
[0031] モータ 61によりコントロールシャフト 16が回転されると、連結部材 48は、コントロー ルシャフト 16の雄ねじ 32に係合されたまま長穴 33内をコントロールシャフト 16の軸 線に沿って移動する。連結部材 48の移動に伴い、その連結部材 48と一体的にスラ イダ 26が軸方向に移動する。スライダ 26が移動すると、入力アーム 17と出力アーム 18とが相対回動し、両アーム 17, 18の先端の相対位置が変更される。また、入力ァ ーム 17及び出力アーム 18の揺動に伴い、スライダ 26もロッカシャフト 15の外周面に 沿って回動する。スライダ 26の回動は、溝 34と、溝 34内の連結部材 48との周方向 への相対移動によって許容される。
[0032] 本実施形態では、コントロールシャフト 16が正回転すると、連結部材 48及びスライ ダ 26は図中の矢印 H方向に移動する。このとき、入力アーム 17の先端と出力アーム 18の先端とが互いに離間して、吸気バルブ 9の最大リフト量、及び吸気カム 11aの作 用角は大きくなるように変更される。一方、コントロールシャフト 16が逆回転すると、連 結部材 48及びスライダ 26は図中の矢印 L方向に移動する。このとき、入力アーム 17
の先端と出力アーム 18の先端とが互いに接近して、吸気バルブ 9の最大リフト量、及 び吸気カム 1 laの作用角は小さくなるように変更される。
従来の装置によれば、図 5 (a)に示すように、コントロールシャフト 16とスライダ 26と が連結部材 101によって連結されている。また、コントロールシャフト 16とモータ 61と の間に直動機構 102が設けられている。直動機構 102として、例えば、ボールねじを 用いた機構が用いられる。この装置では、モータ 61が駆動されると、直動機構 102に よってモータ 61の回転運動が直線運動に変換されてコントロールシャフト 16へと伝 達される。これにより、コントロールシャフト 16が軸方向に移動し、その移動量に応じ て、吸気バルブ 9の最大リフト量及び作用角が変更される。しかし、従来の装置の場 合、モータ 61とコントロールシャフト 16との間に直動機構 102を設けなければならず 、その分、装置の構成が複雑になる。
[0033] これに対し、本実施形態によれば、図 5 (b)に示すように、コントロールシャフト 16と スライダ 26とを連結する連結部材 48がスライダ 26の溝 34に嵌め込まれるとともに、コ ントロールシャフト 16の外周面の雄ねじ 32に係合されている。この装置では、モータ 61が駆動されると、ギヤを介してモータ 61の回転運動がコントロールシャフト 16へと 伝達される。これにより、コントロールシャフト 16が軸線を中心に回転し、その回転量 に応じて最大リフト量及び作用角が変更される。この装置によれば、従来の装置とは 異なり、モータ 61の回転運動を直線運動に変換してコントロールシャフト 16に伝達す る必要はない。よって、直動機構 102を省くことができ、その分、装置の構成を簡素 ィ匕することがでさる。
[0034] 次に、コントロールシャフト 16のねじ部 31について説明する。
図 4に示すように、雄ねじ 32のリード角 βは、吸気バルブ 9のリフト量及び作用角を 最小にする位置(図中左端)力 最大にする位置(図中右端)に向うに従 ヽ徐々に大 きくなるように設定されている。つまり、雄ねじ 32のリード角 /3は、吸気ノ レブ 9のリフ ト量及び作用角を最小にする位置付近で小さく設定され、リフト量及び作用角を最大 にする位置付近で大きく設定されて ヽる。
吸入空気量の多い運転領域、即ち、リフト量及び作用角が大きい場合、雄ねじ 32 のリード角 13が大きい部分(ねじ部 31の右端付近)で、連結部材 48を軸方向に移動
させてリフト量及び作用角が制御される。また、吸入空気量の少ない運転領域、即ち
、リフト量及び作用角が小さい場合、雄ねじ 32のリード角 /3が小さい部分(ねじ部 31 の左端付近)で、連結部材 48を軸方向に移動させてリフト量及び作用角が制御され る。
[0035] 吸入空気量の多!、場合、最大リフト量及び作用角が所望の値力 外れたとしても、 吸入空気量の適正値力 の実際値のずれの割合は小さ 、ため、吸入空気量の制御 に及ぼす影響は小さい。従って、最大リフト量及び作用角の制御の精度を上げること よりも、むしろモータ 61の消費電力を少なく抑えるために最大リフト量及び作用角を 素早く所望の値に制御することが求められる。一方、吸入空気量の少ない場合、最 大リフト量及び作用角が所望の値力 外れたときに、吸入空気量の適正値からの実 際値のずれの割合は大きいため、吸入空気量の制御に及ぼす影響は大きい。従つ て、最大リフト量及び作用角を素早く所望の値に制御することよりも、むしろ吸入空気 量を適正値に近づけるために最大リフト量及び作用角の制御精度を上げることが求 められる。
[0036] 本実施形態では、最大リフト量及び作用角が小さい部分で、雄ねじ 32のリード角 β 力 、さく設定され、最大リフト量及び作用角が大きい部分で、雄ねじ 32のリード角 β が大きく設定されている。つまり、最大リフト量及び作用角が大きい場合、コントロー ルシャフト 16の回転量に対する最大リフト量及び作用角の変化量が大きいため、最 大リフト量及び作用角を素早く所望の値に制御することができる。また、最大リフト量 及び作用角が小さい場合、コントロールシャフト 16の回転量に対する最大リフト量及 び作用角の変化量が小さいため、最大リフト量及び作用角を微調整することができ、 所望の値に制御することが容易になる。
[0037] 次に、連結部材 48について図 6を参照して詳細に説明する。
図 6に示すように、連結部材 48は、ブッシュ 35及びピン 51からなる。ブッシュ 35は 、円弧状に形成されており、その周方向の長さは、溝 34の周方向の一部に対応する ように設定されている。ブッシュ 35には、ピン 51を挿入するための揷入孔 36が形成さ れている。ピン 51は、ブッシュ 35の揷入孔 36及びロッカシャフト 15の長穴 33を貫通 した状態で、コントロールシャフト 16の雄ねじ 32に係合されている。また、スライダ 26
には、その外周面と溝 34とを連通する孔 37が形成されている。孔 37は、ブッシュ 35 にピン 51を取り付ける際に用いられる。
[0038] ブッシュ 35にピン 51を取り付けるには、まず、スライダ 26からロッカシャフト 15及び コントロールシャフト 16が取り外された状態で、ブッシュ 35の揷入孔 36とスライダ 26 の孔 37とが連通するように、ブッシュ 35がスライダ 26内の溝 34に嵌め込まれる。その 後、スライダ 26内にロッカシャフト 15が挿入され、ロッカシャフト 15の長穴 33とブッシ ュ 35の揷入孔 36とが連通するように、ロッカシャフト 15とスライダ 26との位置が調整 される。そして、孔 37、長穴 33及び揷入孔 36が連通した状態で、ピン 51は、孔 37か らブッシュ 35の揷入孔 36に挿入されて、ブッシュ 35に取り付けられる。
[0039] ピン 51の先端部 51aは、コントロールシャフト 16に近づくほど縮径するように形成さ れている。この場合、ピン 51の先端部 51aの横断面は円形状を有している。このため 、スライダ 26を軸方向に移動させるとき、雄ねじ 32とピン 51の先端部 51aとの接触面 積は小さく抑えられる。これにより、コントロールシャフト 16の回転中に、ピン 51の先 端部 51aが係合される雄ねじ 32のリード角 13が変化しても、ピン 51と雄ねじ 32との引 っ掛力りが抑止される。このため、連結部材 48 (ブッシュ 35及びピン 51)をコントロー ルシャフト 16の軸線に沿ってスムーズに移動させることができる。
[0040] 次に、コントロールシャフト 16とスライダ 26とを連結部材 48により連結する作業手順 について、図 7〜図 10を参照して詳しく説明する。
まず、スライダ 26からロッカシャフト 15及びコントロールシャフト 16が抜き出された状 態で、スライダ 26の溝 34にブッシュ 35が嵌め込まれる。次に、ブッシュ 35の揷入孔 3 6とスライダ 26の孔 37とが連通するように、溝 34内でブッシュ 35の位置が調整される 。続いて、スライダ 26内にロッカシャフト 15が挿入される。そして、図 7に示すように、 ロッカシャフト 15の長穴 33、ブッシュ 35の揷入孔 36及びスライダ 26の孔 37が互い に連通するように、ロッカシャフト 15及びスライダ 26の位置が調整され
る。そして、ロッカシャフト 15にコントロールシャフト 16が挿入される。
[0041] 図 8及び図 9に示すように、コントロールシャフト 16は、そのねじ部 31を長穴 33、揷 入孔 36及び孔 37と対向させるようにして配置される。次に、ピン 51がスライダ 26の孔 37からブッシュ 35の揷入孔 36に挿入される。そして、図 10に示すように、ピン 51の
先端部 51aは、コントロールシャフト 16のねじ部 31に係合される。
[0042] 以上の作業を経て、ブッシュ 35とピン 51とからなる連結部材 48は、スライダ 26の溝 34に嵌め込まれるとともに、コントロールシャフト 16の雄ねじ 32に係合される。これに より、スライダ 26とコントロールシャフト 16とが連結部材 48を介して連結される。その 後、スライダ 26の孔 37が連結部材 48から離間するように、スライダ 26とロッカシャフト 15とが相対回動させられる。例えば、スライダ 26を図 9に矢印 Cで示す角度だけ相対 回動させることにより、スライダ 26、連結部材 48及びロッカシャフト 15はそれぞれ図 6 に示す位置に配置される。このときの孔 37の位置は、吸気カム 11aに押圧されて両 アーム 17, 18及びスライダ 26が揺動するときに、孔 37と連結部材 48とを重複させな いように設定されている。
[0043] 本実施形態によれば、以下に示す効果が得られる。
(1)モータ 61により、コントロールシャフト 16は軸線を中心に回転する。連結部材 4 8は、スライダ 26の溝 34に嵌め込まれるとともに、コントロールシャフト 16の外周面の 雄ねじ 32に係合される。そして、この連結部材 48により、コントロールシャフト 16とス ライダ 26とが連結される。この場合、モータ 61が駆動して、コントロールシャフト 16が 回転すると、雄ねじ 32に係合された連結部材 48に押されてスライダ 26が軸方向に 移動する。こうして、スライダ 26が移動することにより、入力アーム 17の先端と出力ァ ーム 18の先端との相対位置が変更され、吸気バルブ 9の最大リフト量及び吸気カム 1 laの作用角が変更される。この場合、最大リフト量及び作用角を変更するには、ギヤ を介して、モータ 61の回転を直線運動に変換することなぐ回転運動のままコント口 ールシャフト 16に伝達すればよい。このため、従来の装置とは異なり、モータ 61の回 転運動を直線運動に変換してコントロールシャフト 16に伝達する直動機構 102が不 要になる。よって、装置の構成が複雑にならず、かつモータ 61を用いて最大リフト量 及び作用角を変更することができる。
[0044] (2)コントロールシャフト 16とスライダ 26とを連結するには、まず、スライダ 26から口 ッカシャフト 15及びコントロールシャフト 16が抜き出された状態で、ブッシュ 35の挿入 孔 36とスライダ 26の孔 37とが連通するように、スライダ 26の溝 34にブッシュ 35が嵌 め込まれる。その後、ロッカシャフト 15の長穴 33、ブッシュ 35の揷入孔 36及びスライ
ダ 26の孔 37が連通するように、スライダ 26内にロッカシャフト 15が挿入される。この 状態でピン 51は、スライダ 26の孔 37からブッシュ 35の揷入孔 36に挿入される。そし て、ピン 51の先端部 51aが、コントロールシャフト 16のねじ部 31の雄ねじ 32に係合さ れる。以上の作業により、ブッシュ 35とピン 51とからなる連結部材 48は、スライダ 26 の溝 34に嵌め込まれるとともに、コントロールシャフト 16の雄ねじ 32に係合される。こ のようにして、スライダ 26とコントロールシャフト 16とが連結部材 48を介して連結され る。
[0045] 上記の連結作業において、ブッシュ 35をスライダ 26の溝 34に嵌め込むことができ るのは、ブッシュ 35が円弧形状に形成され、かつブッシュ 35の長さが溝 34の周方向 の一部に対応するように設定されているためである。仮に、ブッシュ 35がリング状に 形成され、ブッシュ 35の周方向の長さが溝 34の周方向の全長と等しい場合、スライ ダ 26からコントロールシャフト 16が取り外された状態で、スライダ 26内の溝 34にブッ シュ 35を嵌め込むことはできない。この場合、例えば、スライダ 26を溝 34と対応する 位置で分割した状態で、スライダ 26内の溝 34にブッシュ 35を装着しなければならな い。つまり、連結部材 48 (ブッシュ 35)の取り付け作業が繁雑になる。しかし、ブッシュ 35の形状を上述したように設計すれば、連結部材 48の取り付けを簡単に行うことが できる。
[0046] (3)コントロールシャフト 16のねじ部 31にあっては、最大リフト量及び作用角を小さ くする部分で、雄ねじ 32のリード角 βが小さく設定され、最大リフト量及び作用角を 大きくする部分で、雄ねじ 32のリード角 βが大きく設定されている。従って、吸入空 気量が多い運転領域、即ち、最大リフト量及び作用角が大きくなる場合、雄ねじ 32の リード角 βが大きい部分で連結部材 48を軸方向に移動させて最大リフト量及び作用 角が制御される。また、吸入空気量が少ない運転領域、即ち、最大リフト量及び作用 角が大きい場合、雄ねじ 32のリード角 βが小さい部分で連結部材 48を軸方向に移 動させて最大リフト量及び作用角が制御される。
[0047] ここで、吸入空気量が多ぐ最大リフト量及び作用角が大きい場合、最大リフト量及 び作用角の制御の精度を上げることよりも、むしろモータ 61の消費電力を少なく抑え るため最大リフト量及び作用角を素早く所望の値に制御することが求められる。一方
、吸入空気量が少なぐ最大リフト量及び作用角が小さい場合、最大リフト量及び作 用角を素早く所望の値に制御することよりも、むしろ吸入空気量を適正値に近づける ため最大リフト量及び作用角の制御精度を上げることが求められる。
[0048] この点、雄ねじ 32のリード角 /3を上述したように設定すれば、こうした要求に対応す ることができる。この場合、最大リフト量及び作用角が大きい場合、コントロールシャフ ト 16の回転量に対する最大リフト量及び作用角の変化量が大きいため、最大リフト量 及び作用角を素早く所望の値に制御することができる。また、最大リフト量及び作用 角が小さい場合、コントロールシャフト 16の回転量に対する最大リフト量及び作用角 の変化量が小さいため、最大リフト量及び作用角を微調整して所望の値に制御する ことが容易になる。
[0049] (4)ピン 51の先端部 51aの横断面は円形状を有している。この場合、スライダ 26を 軸方向に移動させるとき、雄ねじ 32と、雄ねじ 32に係合される先端部 51aとの接触 面積は小さく抑えられる。これにより、コントロールシャフト 16が回転するのに伴い、ピ ン 51が係合される雄ねじ 32のリード角 13が変化しても、ピン 51と雄ねじ 32との引つ 掛カりが抑制される。よって、連結部材 48 (ブッシュ 35及びピン 51)をコントロールシ ャフト 16の軸線に沿ってスムーズに移動させることができる。
[0050] 本実施形態は、以下のように変更することもできる。
ブッシュとピンとがー体形成された連結部材 71を用いてもよい。この場合、例えば、 図 11に示すように、コントロールシャフト 16の軸線を含む面で分割可能なスライダ 26 が用いられる。スライダ 26にロッカシャフト 15及びコントロールシャフト 16を挿入した 状態で、スライダ 26が 2つの部分に分割され、一方の部分の溝 34に連結部材 71が 嵌め込まれる。その後、ロッカシャフト 15の長穴 33とコントロールシャフト 16のねじ部 31とが一致するように、ロッカシャフト 15及びコントロールシャフト 16の位置が調節さ れる。そして、図 12に示すように、溝 34内の連結部材 71と長穴 33及びねじ部 31とを 一致させた後、分割された 2つの部分が互いに結合される。このとき、連結部材 71は 、コントロールシャフト 16のねじ部 31に係合される。そして、連結部材 71によって、ス ライダ 26とコントロールシャフト 16とが連結される。
[0051] ピン 51の先端部 51aを円錐台形状力も円柱状に変更してもよい。
本実施形態において、雄ねじ 32のリード角 βは、リフト量及び作用角を最小にする 位置力 最大にする位置に向力 に従 ヽ徐々に大きくなるように設定されて 、たが、 これに限定されない。例えば、リフト量及び作用角が小さい部分と、リフト量及び作用 角が大きい部分とで、雄ねじ 32のリード角 βをそれぞれ固定してもよい。
雄ねじ 32のリード角 13は、ねじ部 31の全体に亘つて一定であってもよい。
排気ノ レブのバルブ特性を変更する可変動弁装置に本発明を適用してもよい。 最大リフト量及び作用角以外のバルブ特性、例えば、バルブタイミングを変更する 可変動弁装置に本発明を適用してもよい。
Claims
[1] 内燃機関の機関バルブのバルブ特性を変更するのに用いられるスライダと、前記ス ライダ内に挿入され、連結部材を介して前記スライダに連結されるコントロールシャフ トとを備え、モータにより前記コントロールシャフトを駆動して前記スライダを前記コント ロールシャフトの軸線に沿って移動させることにより前記機関バルブのバルブ特性が 変更される内燃機関の可変動弁装置において、
前記モータにより、前記コントロールシャフトは軸線を中心に回転され、前記コント口 ールシャフトの外周面には、雄ねじを有するねじ部が形成され、前記スライダの内周 面には、前記コントロールシャフトの外周面に沿って延びる溝が形成され、前記連結 部材は、前記コントロールシャフトの雄ねじに係合されるとともに、前記スライダ内の 溝に嵌め込まれていることを特徴とする内燃機関の可変動弁装置。
[2] 前記溝は、前記スライダ内の全周に亘つて形成され、前記連結部材の周方向の長さ は、前記溝の周方向の一部の長さに対応して設定され、前記スライダは、前記コント ロールシャフトの軸線を含む面で分割可能であることを特徴とする請求項 1記載の内 燃機関の可変動弁装置。
[3] 前記溝は、前記スライダ内の全周に亘つて形成され、前記連結部材は、前記溝に嵌 め込まれるブッシュと、そのブッシュを貫通し、かつ前記雄ねじに係合されるピンとか らなり、前記ブッシュの周方向の長さは、前記溝の周方向の一部の長さに対応して設 定され、前記スライダには、前記ピンを挿通させるための孔カ 前記スライダの外周 面と前記溝とを連通するように形成されていることを特徴とする請求項 1記載の内燃 機関の可変動弁装置。
[4] 請求項 1〜3のいずれか一項に記載の内燃機関の可変動弁装置において、
回転する吸気カムとの係合に基づき軸線の周りに揺動する入力アームと、 前記入力アームと共に前記軸線を中心に揺動して吸気バルブを昇降させる出力ァ 一ムとを備え、
前記スライダは、前記入力アーム及び前記出力アームに連結され、
前記スライダを軸方向に移動させて前記入力アームの先端と前記出力アームの先 端との相対位置を変更することにより前記吸気バルブの最大リフト量及び吸気カムの
作用角が変更され、最大リフト量及び作用角が大きい部分では、前記雄ねじのリード 角が大きく設定され、最大リフト量及び作用角が小さい部分では、前記雄ねじのリー ド角が小さく設定されている
ことを特徴とする内燃機関の可変動弁装置。
前記連結部材の雄ねじとの係合部分にっ 、てその横断面が円形状を有して 、ること を特徴とする請求項 4記載の内燃機関の可変動弁装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-319501 | 2005-11-02 | ||
JP2005319501A JP2007127023A (ja) | 2005-11-02 | 2005-11-02 | 内燃機関の可変動弁装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007052686A1 true WO2007052686A1 (ja) | 2007-05-10 |
Family
ID=38005839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/321823 WO2007052686A1 (ja) | 2005-11-02 | 2006-11-01 | 内燃機関の可変動弁装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007127023A (ja) |
WO (1) | WO2007052686A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010115399A1 (de) * | 2009-04-09 | 2010-10-14 | Iav Gmbh | Ventiltrieb für brennkraftmaschinen zur betätigung von gaswechselventilen |
US8904977B2 (en) | 2011-07-27 | 2014-12-09 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Valve drive for internal combustion engines for actuating gas exchange valves |
CN107524490A (zh) * | 2016-06-20 | 2017-12-29 | 马勒国际有限公司 | 用于内燃机的气门机构 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131129U (ja) * | 1988-02-29 | 1989-09-06 | ||
JPH05109210A (ja) * | 1991-10-14 | 1993-04-30 | Matsushita Electric Ind Co Ltd | ヘツド移送装置 |
JPH07187504A (ja) * | 1993-12-27 | 1995-07-25 | Fujikura Ltd | 線条体の張力調整装置 |
JP2001263015A (ja) * | 2000-03-21 | 2001-09-26 | Toyota Motor Corp | 内燃機関の可変動弁機構および吸気量制御装置 |
JP2005069056A (ja) * | 2003-08-21 | 2005-03-17 | Toyota Motor Corp | 内燃機関の吸入空気量制御装置 |
JP2005226604A (ja) * | 2004-02-16 | 2005-08-25 | Toyota Motor Corp | 内燃機関の可変動弁機構 |
-
2005
- 2005-11-02 JP JP2005319501A patent/JP2007127023A/ja not_active Withdrawn
-
2006
- 2006-11-01 WO PCT/JP2006/321823 patent/WO2007052686A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131129U (ja) * | 1988-02-29 | 1989-09-06 | ||
JPH05109210A (ja) * | 1991-10-14 | 1993-04-30 | Matsushita Electric Ind Co Ltd | ヘツド移送装置 |
JPH07187504A (ja) * | 1993-12-27 | 1995-07-25 | Fujikura Ltd | 線条体の張力調整装置 |
JP2001263015A (ja) * | 2000-03-21 | 2001-09-26 | Toyota Motor Corp | 内燃機関の可変動弁機構および吸気量制御装置 |
JP2005069056A (ja) * | 2003-08-21 | 2005-03-17 | Toyota Motor Corp | 内燃機関の吸入空気量制御装置 |
JP2005226604A (ja) * | 2004-02-16 | 2005-08-25 | Toyota Motor Corp | 内燃機関の可変動弁機構 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010115399A1 (de) * | 2009-04-09 | 2010-10-14 | Iav Gmbh | Ventiltrieb für brennkraftmaschinen zur betätigung von gaswechselventilen |
US8230833B2 (en) | 2009-04-09 | 2012-07-31 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Valve train for internal combustion engines for actuating gas exchange valves |
US8904977B2 (en) | 2011-07-27 | 2014-12-09 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Valve drive for internal combustion engines for actuating gas exchange valves |
CN107524490A (zh) * | 2016-06-20 | 2017-12-29 | 马勒国际有限公司 | 用于内燃机的气门机构 |
CN107524490B (zh) * | 2016-06-20 | 2020-12-08 | 马勒国际有限公司 | 用于内燃机的气门机构 |
Also Published As
Publication number | Publication date |
---|---|
JP2007127023A (ja) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5924334A (en) | Device for moving cam relative to its driving shaft | |
JP3612379B2 (ja) | 可変動弁機構用駆動装置及び油圧アクチュエータ | |
US20110036318A1 (en) | Continuously variable valve lift device of engine | |
US7000579B2 (en) | Valve system for internal combustion engine | |
WO2007052686A1 (ja) | 内燃機関の可変動弁装置 | |
JP2009228555A (ja) | 内燃機関の可変動弁装置及び該可変動弁装置の制御軸 | |
JP2007218116A (ja) | エンジンの可変動弁装置 | |
JP2007231909A (ja) | 内燃機関の可変動弁装置 | |
JP2008025441A (ja) | 可変動弁機構 | |
JP2009138532A (ja) | 駆動カム部材の組付固定方法及び組付固定装置 | |
JP4312137B2 (ja) | バルブ特性可変装置付き動弁機構 | |
KR100521221B1 (ko) | 연속가변 밸브타이밍장치의 체결볼트의 구조 | |
JP2007132212A (ja) | 内燃機関の可変動弁機構 | |
JP4103630B2 (ja) | 内燃機関の可変動弁装置 | |
JP4410645B2 (ja) | 内燃機関の可変動弁機構 | |
JP4222275B2 (ja) | 内燃機関の可変動弁機構 | |
JPH0744725Y2 (ja) | 内燃機関のバルブタイミング制御装置 | |
JP4214979B2 (ja) | 内燃機関の可変動弁機構 | |
TWI285237B (en) | Stepless variable-lift valve structure | |
JP2006291711A (ja) | 可変動弁機構の調整方法 | |
JP3326281B2 (ja) | 内燃機関のバルブタイミング制御装置 | |
JP2007315259A (ja) | 内燃機関の可変動弁機構及びその組立方法 | |
JP2006336623A (ja) | 動弁装置の調整方法 | |
CN117307284A (zh) | 相位调节装置、发动机和车辆 | |
JP2010048097A (ja) | 内燃機関の可変動弁機構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06822752 Country of ref document: EP Kind code of ref document: A1 |