BESCHREBUNG
TITEL
Dentalimplantat und Verfahren 2x1 dessen Herstellung TECHNISCHES GEBIET
Die vorliegende Erfindung betrifft ein Dentalimplantat, welches wenigstens bereichsweise in im implantierten Zustand mit Hart- und/oder Weichgewebe in Kontakt befindlichen Oberflächenbereichen eine Beschichtung aufweist.
STAND DER TECHNIK Verletzte oder beschädigte Teile des Hart- und/oder Weichgewebes des menschlichen Körpers werden am Besten wiederhergestellt, indem körpereigenes Hart- und/oder Weichgewebe verwendet wird. Dies ist aus verschiedenen Gründen nicht immer möglich, und daher kommt in vielen Fällen synthetisches Material als temporäres (bioabbaubares respektive postoperativ entfernbares) oder permanentes Ersatzmaterial zum Einsatz.
Derzeit werden verschiedenste Implantate zum Einsetzen in Hart- und/oder Weichgewebe verwendet. Zu den kleineren Implantaten, die seit vielen Jahren im erfolgreichen klinischem Einsatz sind, zählen Dentalimplantate, die in den Kiefer eingebracht werden, um künstliche Zähne oder Prothesen aufzubauen oder zu befestigen.
Für die Implantatverankerung und die Implantatverträglichkeit an der Grenzfläche Implantätoberfläche / angrenzendes Gewebe hat die Dentalimplantatoberfläche eine grosse Bedeutung. Durch eine Veränderung der Dentalimplantatoberfläche kann der Heilungsprozess beschleunigt werden. Zur Oberflächenbehandlung und Oberflächenstrukturierung werden verschiedenste Methoden verwendet, siehe z.B. Titanium in Medicine, Material Science, Surface Science, Engineering, Biological Responses and Medical Applications Series: Engineering Materials, (Brünette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P.(Eds.));
und die darin genannten Referenzen.
Gut etabliert ist beispielsweise die Erhöhung der Rauhigkeit (für viele vgl. Titanium in Mediane, Material Science, Surface Science, Engineering, Biological Responses and Medical Applications Series: Engineering Materials, (Brünette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. (Eds.)).
Weiterhin gibt es Arbeiten, welche die chemische Modifikation von Dentalimplantatoberfiächen beschreiben, um eine bessere Anbindung des Knochens an die Dentalimplantatoberfläche zu erzielen (z.B. D. Buser, N. Broggini, M. Wieland, R. Schenk, A. Denzer, D. Cochran, B. Hoffmann, A. Lussi, S. Steinemann, J.Dent.Res. 83 (7): 529 - 533, 2004).
Neuere Ansätze sind pharmazeutische Modifikationen der Oberfläche, um die Osseointegration des Dentalimplantates zu beschleunigen und/oder die Regeneration des umliegenden Hart und/oder Weichgewebes zu fordern oder zu stimulieren, beispielsweise mit Wachstumsfaktoren. Andere für pharmazeutische Oberflächenmodifikation interessante Medikamentgruppen sind Pharmazeutika, die zur systemischen Behandlung von Osteoporose entwickelt wurden, wie beispielsweise Calcitonin, Strontiumranelat und verschiedene Bisphosphonate.
Bisphosphonate können als Strukturanaloga des Pyrophosphats aufgefasst werden, bei denen die P-O-P-Gruρρierung durch eine enzymatisch stabile P-C-P-Gruρρierung ersetzt ist. Durch Substitution der Wasserstoffatome am C-Atom der P-C-P- Gruppierung sind Bisphosphonate mit unterschiedlichen Strukturelementen und Eigenschaften zugänglich. Bekannte, zur klinischen Anwendung zugelassene Bisphosphonate sind beispielsweise Pamidronsäure, Alendronsäure, Ibandronsäure, Clodronsäure oder Etidronsäure. In der Medizin haben sich Bisphosphonate zur Behandlung von metabolischen Knochenerkrankungen, insbesondere Tumorassoziierten Hypercalcämien, osteolytischen Knochenmetastasen sowie postmenopausalen und glucocorticoinduzierten Osteoporosen etabliert. In Abhängigkeit von ihrer Struktur unterscheiden sich die bekannten Bisphosphonate zum Teil deutlich
in ihrer therapeutischen Wirksamkeit. Eine hohe therapeutische Wirkung besitzen insbesondere solche Bisphosphonate, die in der Struktureinheit zwischen den beiden Phosphoratomen eine Amino-Funktion besitzen. Im folgenden werden diese Verbindungen als Amino-Bisphosphonate bezeichnet. Die pharmakologische Wirkung der Bisphosphonate beruht auf einer hohen Affinität zu Calciumphosphat-Strukturen der Knochenoberfiäche, in deren Folge knochenabbauende Zellen (Osteoklasten) gehemmt werden, was zu einer Verminderung der Knochenresorption und gleichzeitig einer Reaktivierung knochenaufbauender Zellen (Osteoblasten) führt. Auf Grund der speziellen Pharmakokinetik der Bisphosphonate ist eine lokale Therapie der systemischen Gabe vorzuziehen.
Basierend auf diesem Kenntnisstand sind in den letzten Jahren zahlreiche Untersuchungen durchgeführt worden, in denen die Immobilisierung von ausgewählten Bisphosphonaten auf Hartgewebsimplantaten sowie deren Auswirkung auf das Einwachsverhalten des jeweiligen Implantats untersucht wurden. So wurde beispielsweise in der US 5,733,564 die Beschichtung von Materialien (Endoprothesen, Schrauben, Stifte, etc.) mit wässrigen Bisphosphonat-Lδsungen mit dem Ziel beschrieben, die Knochen-Neubildung um das Implantat zu beschleunigen. Die schlechte Haftung der Bisphosphonate auf Metalloberflächen und ihre Wasserlöslichkeit stellen jedoch einen Nachteil dieser Vorgehensweise dar. Yoshinari et al. (Biomaterials 23 (2002), 2879-2885) zeigten an Hand von in vivo- Studien, dass Calciumphosphat-beschichtete Dentalimplantate aus Rein-Titan, die mit einer wässrigen Pamidronat-Lösung imprägniert wurden, eine verbesserte Osteogenese an der Dentalimplantatoberfläche aufwiesen, als nicht mit Pamidronat imprägnierte Implantate. Auf Grund der hohen Affinität der Bisphosphonate zu Calciumionen- haltigen Substraten stellen Calciumphosphat-Oberflächen ein mögliches Substrat für die Immobilisierung von Bisphosphonaten dar, da auf diesen Oberflächen die Bioverfügbarkeit der Bisphosphonate und damit ihre therapeutische Wirksamkeit durch Wechselwirkung mit Calcium-Ionen in höherem Masse gegeben ist, als aufweitgehend Calciumionen-freien Oberflächen.
Eine weitere Variante der Immobilisierung von Bisphosphonaten in Hydroxyapatit- haltigen Beschichtungen von Knochenimplantaten beschreibt WO-A-02/04038. Da metallische Implantate im Hartgewebebereich eine dominierende Rolle spielen und andererseits eine Calciumphosphat-Beschichtung von Metalloberflächen erhöhte Fertigungsaufwendungen mit sich bringt, wurden in letzter Zeit zahlreiche Versuche unternommen, metallische Implantatmaterialien so zu modifizieren, dass auf ihnen eine wirksame Bisphosphonat-Immobilisierung ermöglicht wird.
So wurden Arbeiten bekannt, in denen Calciumionen mittels Elektronenstrahl- Implantation in die Oberfläche von Titanimplantaten eingebracht werden (JP 2000070288, H. Kajiwara et al. Biomaterials 26 (2005), 581-587), um eine verbesserte Anhaftung von Bisphosphonaten zu erzielen. Dieses Verfahren hat allerdings den Nachteil eines hohen apparativen Aufwandes.
Weitere Arbeiten beschäftigen sich mit der elektrolytischen Abscheidung von Calcium- Etidronat auf Reintitan (K. Duan et al. J. Biomed. Mater. Res.: Appl. Biomater. 72B (2005), 43-51), wobei zwar dünne Filme aus Bisphosphonat abgeschieden werden konnten, die jedoch Inhomogenitäten aufweisen und beim Trocknen Schrumpfungserscheinungen zeigten.
In WO-A-2005/018699 werden Bisphosphonat-beschichtete metallische Implantate beschrieben, die in der Weise hergestellt werden, dass zunächst eine Proteinschicht, beispielsweise aus Fibrinogen, auf die Metalloberfläche immobilisiert wird. An diese Proteinschicht werden anschliessend ein oder mehrere Bisphosphonate kovalent über reaktive funktionelle Gruppen gebunden. Ein wesentlicher Nachteil dieser Methode liegt in der Verwendung toxischer Reagenzien bei der Immobilisierung bzw. Vernetzung der Proteinschicht und der kovalenten Anbindung des Bisphosphonats. Weiter sei auf die WO 2005/094784 A hingewiesen, welche bioadhäsive medizinische Lösungen beschreibt, die Bisphosphonate bzw. deren Salze in Verbindung mit Polyoxyethylen-sorbitanrnonolaurat (Tween 20) oder ähnlichen Verbindungen enthalten, sowie deren Verwendung in der oralen Implantologie. In der Beschreibung dieses Dokumentes wird behauptet, dass durch die vorgeschlagene Lösung eine bessere Verfügbarkeit von Bisphosphonaten am Wirkort sowie eine verlängerte Wirksamkeit
erzielt wird. Diese Effekte werden von den Autoren insbesondere durch eine gute Haftung (Bioadhäsivität) der Lösung sowohl auf der Implantatoberfläche als auch auf dem umgebenden Gewebe begründet und als Unterscheidungsmerkmal zum Stand der Technik angeführt. Das dieser Offenbarung zu Grunde liegende Prinzip besteht also in einer Angleichung der Oberflächeneigenschaften von Implantat und Gewebe (vgl. die angegebenen tensiometrischen Profile) durch den Zusatz einer oberflächenaktiven Substanz in Form von Polyoxyethylen-sorbitanmonolaurat wie z.B. Tween 20. Unter anderem wird in diesem Dokument, neben der Befeuchtung der Körperstelle der Implantierung, vorgeschlagen, ein Implantat mit der angegebenen Lösung anzufeuchten und im befeuchteten Zustand zu implantieren.
DARSTELLUNG DER ERFINDUNG
Der Erfindung liegt demnach u.a. die Aufgabe zugrunde, ein verbessertes Dentalimplantat zur Verfügung zu stellen, welches z.B. eine gute sowie komplikationslose Osseointegration resp. Osteointegration zeigt, und welches dennoch in einem einfachen und kostengünstigen Verfahren hergestellt werden kann.
Eine Lösung dieser Aufgabe wird z.B. dadurch erreicht, dass das Dentalimplantat wenigstens bereichsweise in im implantierten Zustand mit Hart- und/oder Weichgewebe wenigstens mittelbar in Kontakt befindlichen Oberflächenbereichen eine Beschichtung aufweist. Wenigstens mittelbar in Kontakt bedeutet dabei, dass die Beschichtung direkt mit dem Hart- und/oder Weichgewebe in Kontakt sein kann, oder aber auch über Kanäle, Öffnungen und/oder eine weitere Schicht oder Schichten, welche aber die unten beschriebene Freisetzungscharakterisitk des Bisphosphonates nicht oder nur unwesentlich beeinflussen resp. ändern. Diese Beschichtung enthält sowohl wenigstens ein Bisphosphonat der allgemeinen Formel (H2OsP)-CXY-(PO3H2), wobei X ausgewählt ist aus H, OH, Cl, F oder einer Methylgruppe, Y ausgewählt ist aus H, Cl, F, NH2 oder einer linearen oder verzweigten Cl - C20 Alkylgruppe (bevorzugt Cl-ClO insbesondere Cl -C7), welche unsubstituiert ist oder vorzugsweise substituiert durch NH2, N(CH3)2, NH(CH3), N(CH3)3, Pyridinyl oder Imidazolyl, bei welcher ein oder mehrere Kohlenstoffatome ersetzt sein können durch Heteroatome ausgewählt aus der Gruppe -NR1-, -S- oder -O-, wobei R1 ausgewählt ist aus -H oder -CH3, mit der
Massgabe, dass keine zwei Heteroatome miteinander verbunden sind, oder pharmazeutisch verträgliche Salze oder Ester davon, als auch wenigstens eine amphiphile Komponente ausgewählt aus der Gruppe der verzweigten oder linearen, substituierten oder unsubstituierten, gesättigten oder teilweise ungesättigten C10-C30 Alkyl-, Alkenyl, Alkylaryl-, Aryl-, Cycloalkyl-, Alkylcycloalkyl-, Alkylcycloaryl - Carboxylate, -Phosphate oder -Sulfate oder Mischungen davon und/oder eine wasserlösliche ionische polymere Komponente.
Auch Mischungen von unterschiedlichen derartigen Bisphosphonaten sind möglich sowie Mischungen von unterschiedlichen amphiphüen Komponenten resp. wasserlöslichen ionischen polymeren Komponenten.
Als Substituenten für die Alkylgruppe von Y kommen auch kationische C2-C5 Ammoniumderivate in Frage wie z.B. N(CH2CHB)3.
Vorzugsweise ist Y eine lineare Cl - C7 Alkylgruppe substituiert durch NH2, N(CH3)2,
NH(CH3), N(CH3)3, Pyridinyl oder Imidazolyl. Weiterhin bevorzugt ist die amphiphile Komponente ein lineares unsubstituiertes Cl 0-C20 Alkyl-Carboxylat oder Alkyl-Sulfat.
Einer der Kerne der Erfindung besteht somit darin, das Bisphosphonat, welches ohne spezifische Massnahmen infolge der grossen Löslichkeit in wässrigen Lösungen zu mobil ist und nach dem Einbau des Implantates zu schnell von der Oberfläche weggetragen würde, in einem Mischsalz mit einer zweiten Komponente zu mischen resp. zu binden, was dazu führt, dass dieses Mischsalz, welches in Wasser, und damit auch in der physiologischen Umgebung nach dem Einbau des Implantates, eine wesentlich niedrigere Löslichkeit aufweist, somit die Wirksamkeit über eine wesentlich längere Zeitdauer an der entscheidenden Grenzfläche ausüben kann. Es wird festgestellt, dass bei Verwendung der Beschichtung nach der Erfindung überraschenderweise die Verfügbarkeit des in der Beschichtung enthaltenden Bisphosphonates an der Implantatoberfläche beziehungsweise in der direkten Umgebung des Implantates während mehrerer Tage bis Wochen gewährleistet ist. Überraschenderweise lässt sich dies durch eine spezifische Auswahl von Zusatzkomponenten erreichen. Die amphiphile Komponente respektive das Bisphosphonat und die wasserlösliche ionische polymere Komponente liegen als Mischung, insbesondere bevorzugt als Mischsalz (d.h. die
amphiphile Komponente ist ebenfalls ionisch) mit geringer Löslichkeit in Wasser, vor, und es zeigt sich, dass durch die Verwendung der spezifischen amphiphilen respektive wasserlöslichen ionischen polymeren Komponente eine erstaunlich gute Haftung des Bisphosphonates auf gängigen Dentalimplantat-Materialien erreichbar ist. Es handelt sich bevorzugtermassen bei der Beschichtung um eine trockene Beschichtung.
Im Gegensatz zum eingangs genannten Stand der Technik, welcher zum Beispiel wässrige Lösungen von Bisphosphonat zur Anwendung empfiehlt, beruht die vorliegende Erfindung somit auf der Überlegung, dass die Freisetzung eines niedermolekularen Wirkstoffs aus einer Implantatbeschichtung in das umgebende, im Falle eines Implantates wässrige Milieu, wesentlich durch seine Diffusion aus der trockenen Schicht in die Umgebung bestimmt wird, und dass diese Freisetzung wiederum von der Löslichkeit des Wirkstoffs im umgebenden wässrigen Medium bestimmt wird. Bisphosphonate, sind in der Regel gut wasserlösliche Verbindungen, so dass mit einer schnellen Diffusion aus einer Anfeuchrαng und gleichermassen aus einer trockenen Beschichtung und damit mit einer geringen Retardierung des Wirkstoffs am Wirkort zu rechnen ist. Es ist deshalb einer der Kerngedanken der vorliegenden Erfindung, den ursprünglich bereits schon als Lösung oder in einer leicht löslichen Salzform vorliegenden und auf diese Weise entsprechend dem Stand der Technik eingesetzten Wirkstoff in eine schwerlösliche Salzform in einer trockenen Schicht zu überfuhren. Die Verfügbarkeit des Wirkstoffs wird dann durch ein Löslichkeitsgieichgewicht zwischen ursprünglichem freien Wirkstoff und dem in Form eines unlöslichen Salzes vorliegenden Wirkstoff bestimmt. Wenn nun im wässrigen Medium der entsprechend des Löslichkeitsprodukts des schwerlöslichen Wirkstoffsalzes frei verfügbare Wirkstoffe aus der Beschichtung heraus diffundiert, verschiebt sich das Gleichgewicht zu Gunsten des freien Wirkstoffs und es erfolgt auf diese Weise eine allmähliche Freisetzung des Wirkstoffs aus dem schwerlöslichem Wirkstoffsalz. Es ist mit anderen Worten, dem Diffusionsgleichgewicht ein Löslichkeitsgieichgewicht vorgelagert und das Herauslösen des Wirkstoffs aus dem schwerlöslichem Wirkstoffsalz löst die Diffusion als geschwindigkeitsbestimmenden Schritt der Wirkstofffreisetzung ab. Voraussetzung für die Anwendung dieses Konzeptes ist die Fähigkeit der Bisphosphonate, in wässrigem Medium schwerlösliche
Salze mit entsprechenden anionischen oder kationischen Reaktionspartnern, der erfindungsgemäss vorgeschlagenen amphiphilen ionischen respektive wasserlöslichen ionischen polymeren Komponente zu bilden.
In den genannten Salzen aus Amino-Bisphosphonaten und der amphiphilen ionischen, d.h. anionischen Komponente, spezifisch den langkettigen Alkan-sulfaten resp. - carboxylaten, bildet das jeweilige Bisphosphonat die kationische Komponente und die amphiphile ionische respektive wasserlösliche ionische polymere Komponente, spezifisch das jeweilige langkettige Carboxylat bzw. Alkansulfat, die anionische Komponente. Es wurde weiterhin gefunden, dass durch den gleichzeitigen oder nachträglichen Zusatz eines wasserlöslichen Salzes wie z.B. eines Calcium- oder Strontiumsalzes die Wasserlöslichkeit des betreffenden Salzes aus Amino- Bisphosphonaten und langkettigen Carbonsäuresalzen oder langkettigen Alkan-sulfaten weiter verringert werden kann. Erfindungsgemäss ist auch die Verwendung langkettiger Carbonsäuren sowie langkettiger Alkyl-Schwefelsäuren anstelle der entsprechenden wasserlöslichen Salzformen.
Der Erfindung liegt, wie bereits weiter oben erwähnt, weiterhin der überraschende Befund zugrunde, dass Amino-Bisphosphonate mit wasserlöslichen ionischen Polymeren, die sich von an sich bekannten biologisch verträglichen (Bio-)Polymeren ableiten, in Wasser gering lösliche Bisphosphonat-Polymer-Salze bilden, die ebenfalls auf nichtmetallischen oder metallischen Oberflächen haften, ohne dass weitere Schichtbildner oder ein Träger (Carrier) erforderlich sind. Die genannten Salze aus Amino-Bisphosphonaten und langkettigen Carbonsäuren oder langkettigen Alkan- sulfaten sowie die genannten Bisphosphonat-Polymer-Salze eigen sich als Beschichtungen für nichtmetallische oder metallische Oberflächen und setzen im wässrigen Medium Bisphosphonat retardiert frei.
Es ist z.B. erfindungsgemäss, dass die genannten Salze aus Amino-Bisphosphonaten und langkettigen Carbonsäuren oder langkettigen Alkan-sulfaten sowie die genannten Bisphosphonat-Polymer-Salze als feinverteilte Suspensionen aus Wasser oder leichtflüchtigen, organischen Lösungsmitteln, wie z. B. aus Chloroform oder Chloroform-Mischungen durch ein Beschichtungsverfahren, also beispielsweise durch
Tauchen, Sprühen oder Tropfen auf nichtmetallischen oder metallischen Oberflächen aufgebracht werden können, wobei sie gut haftende Beschichtungen bilden.
Bevorzugtermassen handelt es sich bei der Beschichtung um eine Beschichtung, welche ohne zusätzlichen Träger respektive zusätzlichen Carrier vorliegt. Mit anderen Worten besteht die Beschichtung im wesentlichen oder gar vollständig nur aus den genannten Mischsalzen. Dies vereinfacht die Herstellung derartiger Implantate wesentlich. Es zeigt sich nämlich überraschenderweise, dass die vorgeschlagenen Mischsalze im Gegensatz zu anderen Wirkstoffen direkt als Beschichtung aufgebracht werden können, und ein zusätzlicher spezifischer Träger oder ein Carrier nicht erforderlich ist. Die Beschichtung kann in einem geeigneten Lösemittel durch Tauchen, Aufsprühen oder Auftropfen auf die zu beschichtende Oberfläche aufgebracht werden und nach Verdampfung oder Verdunstung des Lösemittels bildet sich durch in situ Salzbildung eine in Wasser gering lösliche bisphosphonat-haltige Beschichtung.
Die Beschichtung zeichnet sich also unter anderem bevorzugtermassen dadurch aus, dass sie nach Einsetzen in das menschliche oder tierische Gewebe respektive in den menschlichen oder tierischen Knochen das Bisphosphonat in verzögerter Weise über einen längeren Zeitraum an die unmittelbare Umgebung des Implantates abgibt respektive in der unmittelbaren Umgebung des Implantates Wirksamkeit entfaltet.
Gemäss einer ersten bevorzugten Ausführungsform verfügt die Mischung respektive das Mischsalz über eine Löslichkeit in reinem Wasser von weniger als 1 mg/ml bei Raumtemperatur, insbesondere bevorzugt im Bereich von 0.05 - 0.9 mg/ml bei Raumtemperatur.
Eine weitere bevorzugte Ausführungsform zeichnet sich dadurch aus, dass es sich beim Bisphosphonat um ein Amino-Bisphosphonat handelt. So beispielsweise um Pamidronsäure, Alendronsäure, Neridronsäure, Risedronsäure, Zoledronsäure, Olpadronsäure, Ibandronsäure, Minodronsäure oder Cimadronsäure oder eine Mischung und/oder Alkali- oder Erdalkali-Salze davon. Als besonders wirksam erweisen sich die bereits bekannten Komponenten Pamidronsäure und/oder Alendronsäure gegebenenfalls in Form des Alkali- oder Erdalkali-Salzes, so beispielsweise Natrium-Alendronat
respektive Natrium-Pamidronat. Generell ist es bevorzugt, wenn das Bisphosphonat in der freien Phosphonsäure-Form, der Natrium-, Kalium-, Ammonium-, Calcium-, Magnesium- und/oder Strontium-Salzform vorliegt.
Gemäss einer weiteren bevorzugten Ausfuhrungsform handelt es sich bei der amphiphilen Komponente, welche im Mischsalz mit dem Bisphosphonat zu einer reduzierten Löslichkeit des Bisphosphonates Anlass gibt, um wenigstens eine eine
Komponente ausgewählt aus der Gruppe der linearen unsubstituierten C10-C20 Alkyl-
Carboxylate oder Alkyl-Sulfate respektive deren Alkali- oder Erdalkali-Salze, insbesondere bevorzugt um Laurat, Stearat, Palmitat, Myristat, Oleat, Behenat, Dodecylsulfat, bevorzugt als Alkali- oder Erdalkali-Salze oder Mischungen davon.
Gemäss einer anderen bevorzugten Ausführungsform handelt es sich bei der wasserlöslichen ionischen polymeren Komponente, welche im Mischsalz mit dem Bisphosphonat zu einer reduzierten Löslichkeit des Bisphosphonates Anlass gibt, um eine polymere Komponente mit freien anionischen Gruppen, insbesondere bevorzugt um eine polymere Komponente, welche sich von biologisch verträglichen Biopolymeren ableitet. So kann es sich bevorzugtermassen bei der wasserlöslichen ionischen polymeren Komponente um carboxylierte, carboxymethylierte, sulfatierte oder phosphorylierte Derivate natürlicher Polysaccharide handeln, insbesondere bevorzugt von Polysacchariden ausgewählt aus Dextran, Pullulan, Chitosan, Stärke oder Cellulose oder Mischungen davon.
Vorzugsweise liegt das insbesondere bevorzugt als Amino-Bisphosphonat ausgewählte Bisphosphonat und die insbesondere bevorzugt als Alkylsulfat oder Alkylcarboxylat ausgewählte amphiphile Komponente in der Beschichtung in einem Molverhältnis zwischen 10 : 1 und 1 : 5 vor, insbesondere bevorzugt in einem Molverhältnis von 2:1 bis 1:2. Entsprechend liegt das als Amino-Bisphosphonat ausgewählte Bisphosphonat und die wasserlösliche ionische polymere Komponente in der Beschichtung bevorzugtermassen in einem Mol Verhältnis zwischen 10 : 1 und 1 : 5, insbesondere bevorzugt in einem Molverhältnis von 2:1 bis 1:2, jeweils bezogen auf die Aminogruppen des eingesetzten Aminogruppen-haltigen Bisphosphonats und die vorhandenen anionischen Gruppen der polymeren Komponente, vor.
Eine solche Beschichtung kann auf einer glatten, porösen und/oder aufgerauten Oberfläche aufgebracht sein. Die Oberflächenstruktur kann dabei über mechanische Verfahren (z.B. Sandstahlen) und/oder über chemische Verfahren (z.B. Säurebehandlung) hergestellt sein. Grundsätzlich lässt sich diese Beschichtung auf Dentalimplantate nach dem Stand der Technik auftragen, so beispielsweise auf ein Dentalimplantat auf metallischer und/oder keramischer Basis. Es zeigt sich dabei, dass die Beschichtung nicht auf eine spezifische darunter liegende Schicht oder einen zusätzlichen Träger/Carrier angewiesen ist, um das Bisphosphonat zu immobilisieren, was die Herstellung wesentlich vereinfacht und kostengünstiger macht. Entsprechend kann die Beschichtung unmittelbar und ohne Zwischenschicht auf ein derartiges Dentalimplantat aufgebracht sein. Beim Dentalimplantat handelt es sich zum Beispiel um ein Dentalimplantat auf Basis von Calciumphosphat-Keramiken, Bioglass, Glaskeramiken, Calciumcarbonat, Calciumsulfat, organischen Polymeren oder Kompositen der genannten Materialien, oder auf Basis von Reintitan, Titanlegierungen, Kobalt-Chrom-Legierungen oder Edelstahl, oder auf Basis von nativen Elementen wie Kollagen, Gelatine oder Materialien allogener Herkunft.
Vorzugsweise verfügt die Beschichtung über eine Dicke im Bereich von 0.1-10 μm, vorzugsweise von 0.5 - 5 μm. Des weiteren betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Dentalimplantates, insbesondere von der Art, wie es oben beschrieben wurde. Dabei wird eine Suspension oder Lösung, welche sowohl ein Bisphosphonat der allgemeinen Formel, wie oben angegeben, als auch wenigstens eine amphiphile Komponente, wie oben angegeben, und/oder eine wasserlösliche ionische polymere Komponente, wie oben angegeben, enthält, hergestellt, und die Beschichtung wird durch Tauchen, Aufsprühen oder Auftropfen dieser Suspension oder Lösung (resp. des Suspensionsoder Lösemittelgemisches) auf die zu beschichtende Oberfläche des Dentalimplantates aufgebracht und nach Verdampfung oder Verdunstung des Suspensions- oder Lösemittels (bzw. Suspensions- oder Lösemittelgemischs) eine in Wasser gering lösliche Beschichtung gebildet.
Die Beschichtung kann dabei entweder dadurch hergestellt werden, dass in einem ersten Beschichtungsschritt eine Lösung z. B. eines Amino-Bisphosphonats in einem geeigneten Lösemittel durch Tauchen, Aufsprühen oder Auftropfen auf die zu beschichtende Oberfläche aufgebracht wird und nach Verdampfung oder Verdunstung des Lösemittels in einem zweiten Beschichtungsschritt eine amphiphile und/oder polymere Komponente in einem geeigneten Lösemittel durch Tauchen, Aufsprühen oder Auftropfen auf die zu beschichtende Oberfläche aufgebracht wird und nach Verdampfung oder Verdunstung des zweiten Lösemittels durch in situ Salzbildung eine in Wasser gering lösliche bisphosphonat-haltige Beschichtung gebildet wird. Es ist aber auch möglich, die beiden Komponenten zunächst in einer wässrigen Lösung herzustellen, aus dieser auszufällen, und anschliessend gemeinsam mit einem geeigneten Lösemittel oder Suspensionsmittel mit den genannten Methoden aufzubringen. So kann beispielsweise das Bisphosphonat und die amphiphile Komponente und/oder die wasserlösliche ionische polymere Komponente hergestellt werden, indem in Wasser gelöstes Bisphosphonat mit in Wasser gelöster amphiphiler Komponente respektive wasserlöslicher ionischer polymerer Komponente vermischt werden und, gegebenenfalls nach Zugabe von weiteren Salzen, wie beispielsweise Kalziumchlorid, das Fällungsprodukt als Mischsalz isoliert wird, und anschliessend dieses Mischsalz in einem Suspensions- oder Lösemittel (z.B. org. Lösungsmittel wie Chloroform oder auch Wasser) oder Suspensions- oder Lösemittelgemisch aufgelöst respektive in diesem suspendiert werden. Das weitere Salz, welches zur Fällung verwendet wird, kann dabei z. B. in einem Verhältnis Bisphosphonat: weiteres Salz von im Bereich 1:2 bis 2:1 eingesetzt werden.
Die Trocknung der beschichteten Implantate kann durch ein bekanntes Trocknungsverfahren, also beispielsweise durch Trocknung im Gasstrom oder unter
Anwendung von Unterdruck und/oder erhöhter Temperatur erfolgen. Erfindungsgemäss ist, dass das Aufbringen der beiden Lösungen auch in umgekehrter Reihenfolge durchgeführt werden kann. Bevorzugtermassen ist es zudem möglich, das Mischsalz auf ein aufgewärmtes Implantat, z.B. bei einer Temperatur des Implantats von mehr als 70 Grad Celsius, aufzubringen.
Erfindungsgemäss lassen sich mit den beschriebenen bisphosphonat-haltigen Zusammensetzungen nichtmetallische und metallische Dentalimplantatoberflächen beschichten. Im ersten Fall sind Materialien aus Aluminiumoxid- Zirkonoxid oder Mischungen dieser Keramiken und Polymere, besonders bevorzugt. Im zweiten Fall bestehen sie aus, in der Dentalmedizin üblichen, Reinmetallen oder Metalllegierungen wie beispielsweise Reintitan, Titanlegierungen, Kobalt-Chrom-Legierungen oder Edelstahl. Die Verwendung von Implantaten mit strukturierter Oberfläche ist besonders bevorzugt.
Gemäss einer bevorzugten Ausfαhrungsform des erfmdungsgemässen Verfahrens werden die Konzentrationen der Beschichtungslösungen die das Amino-
Bisphosphosphonat und die amphiphile und/oder die polymere Komponente enthalten, so gewählt, dass in der durch in situ-Salzbildung entstehenden Beschichtung das
(Amino-) Bisphosphonat und die amphiphile Komponente respektive die polymere
Komponente in einem Molverhältnis zwischen 10 : 1 und 1 : 5, bevorzugt zwischen 2:1 und 1 :2, vorliegen.
Als Suspensions- oder Lösemittel oder Suspensions- oder Lösemittelgemisch können neben Wasser ein oder mehrere organische Suspensions- und/oder Lösungsmittel verwendet werden, so z.B. Chloroform als Suspensionsmittel oder eine Mischung aus Chloroform und Triethylenglykol im Verhältnis von 97.5 : 2.5 als Lösungsmittel. Weiterhin betrifft die vorliegende Erfindung eine Bisphosphonat-haltige Zusammensetzung mit geringer Löslichkeit in wässrigem Milieu, in Form eines Mischsalzes. Diese Zusammensetzung enthält sowohl ein Bisphosphonat der allgemeinen Formel (H2O3P)-C(X)(Y)-(PO3H2), wobei X ausgewählt ist aus H, OH, Cl, F oder einer Methylgruppe, Y ausgewählt ist aus H, Cl, F, NH2 oder einer linearen oder verzweigten C1-C20 Alkylgruppe (bevorzug Cl-ClO oder C1-C7), welche unsύbstituiert ist oder vorzugsweise substituiert durch NH2, N(CH3)2, NH(CH3), N(CH3)3, Pyridinyl oder Imidazolyl bei welcher ein oder mehrere Kohlenstoffatome ersetzt sein können durch Heteroatome ausgewählt aus der Gruppe NR1, S oder O5 wobei R1 ausgewählt ist aus H oder CH3, mit der Massgabe, dass keine zwei Heteroatome miteinander verbunden sind, oder pharmazeutisch verträgliche Salze oder
Ester davon, als auch wenigstens eine amphiphile Komponente ausgewählt aus der Gruppe der verzweigten oder linearen, substituierten oder unsubstituierten, gesättigten oder teilweise ungesättigten C10-C30 Alkyl-, Alkenyl, Alkylaryl-, Aryl-, Cycloalkyl-, Alkylcycloalkyl-, Alkylcycloaryl - Carboxylate, -Phosphate oder -Sulfate oder Mischungen davon und/oder eine wasserlösliche ionische polymere Komponente.
Vorzugsweise ist Y eine lineare Cl - C7 Alkyl gruppe substituiert durch NH2, N(CH3)2, NH(CH3), N(CH3)3, Pyridinyl oder Imidazolyl. Weiterhin bevorzugt ist die amphiphile Komponente ein lineares unsubstituiertes C10-C20 Alkyl-Carboxylat oder Alkyl-Sulfat.
Das Mischsalz verfugt dabei bevorzugtermassen über eine Löslichkeit in reinem Wasser von weniger als 1 mg/ml bei Raumtemperatur, insbesondere bevorzugt von im Bereich von weniger als 0.05 - 0.9 mg/ml bei Raumtemperatur. Bevorzugt handelt es sich beim Bisphosphonat um ein Amino-Bisphosphonat, bevorzugt um Pamidronsäure, Alendronsäure, Neridronsäure, Riesedronsäure, Zoledronsäure, Olpadronsäure, Ibandronsäure, Minodronsäure oder Cimadronsäure oder eine Mischung und/oder Alkali- oder Erdalkali-Salze davon, wobei insbesondere Pamidronsäure und/oder Alendronsäure gegebenenfalls in Form des Alkali- oder Erdalkali-Salzes, bevorzugt wird, und dass insbesondere bevorzugt das Bisphosphonat in der freien Phosphonsäure- Form, der Natrium-, Kalium-, Ammonium-, Calcium-, Magnesium- und/oder Strontium-Salzform vorliegt. Weiterhin bevorzugt handelt es sich bei der amphiphilen Komponente um wenigstens eine Komponente ausgewählt aus der Gruppe der linearen unsubstituierten C8-C20 Alkyl-Carboxylate oder Alkyl-Sulfate respektive deren Alkalioder Erdalkali-Salze, insbesondere bevorzugt um Laurat, Stearat, Palmitat, Myristat, Oleat, Behenat, Dodecylsulfat bevorzugt als Alkali- oder Erdalkali-Salze oder Mischungen davon, respektive es handelt sich bei der wasserlöslichen ionischen polymeren Komponente um eine polymere Komponente mit freien anionischen Gruppen, insbesondere bevorzugt um eine polymere Komponente, welche sich von biologisch verträglichen Biopolymeren ableiten, wobei es sich bevorzugtermassen bei der wasserlöslichen ionischen polymeren Komponente um carboxylierte, carboxymethylierte, sulfatierte oder phosphorylierte Derivate natürlicher Polysaccharide, insbesondere bevorzugt von Polysacchariden ausgewählt aus Dextran,
Pullulans, Chitosan, Stärke oder CelMose oder Mischungen davon.
Ausserdem trifft die vorliegende Erfindung eine Verwendung einer Zusammensetzung, wie sie oben beschrieben wurde, zur Beschichtung von nichtmetallischen (polymeren, keramischen o.a.), metallischen oder nativen Dentalimplantatoberflächen, wobei die Dentalimplantatoberflächen glatt, strukturiert und/oder porös sein können.
Weitere bevorzugte Ausfuhrungsformen der Erfindung ergeben sich aus den abhängigen Patentansprüchen.
KURZE ERLÄUTERUNG DER FIGUR
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Figur näher erläutert werden. Fig. 1 zeigt das Ausdrehmoment für Implantate mit unterschiedlichen Oberflächen.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Die nachstehenden Beispiele dienen der näheren Erläuterung der Erfindung, ohne sie eiαzxischränken. Variationen der vorgestellten Ausführungsbeispiele, wie sie durch die nachfolgenden Patentansprüche umfasst werden, sind dem Fachmann im Rahmen seiner technischen Fachkenntnisse zugänglich, und entsprechend sollen die anfolgend gezeigten Ausführungsbeispiele nicht zur Einschränkung des durch die Patentansprüche verliehenen Schutzbereichs sondern nur zur Stützung ausgelegt werden.
Herstellung eines Alendronsäure-Stearat-Salzes 100 mg (0,3076 mmol) Natrium-Alendronat werden in 10 ml Wasser bei 80°C gelöst und zu einer Lösung von 94,3 mg (0,3076 mmol) Natriumstearat in 5 ml Wasser (gelöst bei 80°C) gegeben. Die sich dabei bildende milchige Suspension wird über 18 Stunden bei 80°C unter inerten Bedingungen gerührt. Die Suspension wird anschliessend 10 min bei 14000 U/min zentrifugiert. Nach dem Abnehmen des Überstandes wird der Niederschlag mit destilliertem Wasser gewaschen und im Exsikkator unter Vakuum (10 mbar) bei Raumtemperatur mindestens 2 Tage getrocknet. Das Endprodukt wurde in einer Ausbeute von 30% erhalten.
Herstellung eines Calcium-Pamidronat-Stearats
Es werden 20 mg (0,0717 mmol) Dinatriumpamidronat in 5 ml Wasser und 21,97 mg (0,0717 mmol) Natriumstearat in 5 ml Wasser bei jeweils 800C gelöst. Die beiden klaren Lösungen werden gemischt und 30 min bei 80°C gerührt. Nach Zugabe von IM Calciumchloridlösung (Verhältnis Pamidronat : Stearat : CaCl2 = 1 : 1 : 1) bildet sich eine milchig weisse Suspension, die 18 Stunden bei 80°C unter inerten Bedingungen gerührt wird. Anschliessend wird der Niederschlag zentrifugiert (14000 U/min; 10 min) und der Überstand entfernt. Der verbleibende Niederschlag wird einmal mit destilliertem Wasser gewaschen. Das Endprodukt wird im Exsikkator unter Vakuum (10 mbar) mind. 2 Tage getrocknet. Das Calcium-Pamidronat-Stearat wird in einer Ausbeute von 69,3% erhalten.
Herstellung von Alendronsäure-Dodecylsulfat
100 mg (0,3076 mmol) Natrium- Alendronat werden in 10 ml Wasser bei Raumtemperatur gelöst und zu einer Lösung von 88,7 mg (0,3076 mmol) Natriumdodecylsulfat (SDS) in 5 ml Wasser (gelöst bei RT) gegeben und 30 min bei Raumtemperatur gerührt. Nach Zugabe von IM Calciumchlorid-Lösung im Verhältnis Alendronat : SDS : CaCl2 = 1 : 1 : 1 fällt ein weisser Niederschlag aus. Die Suspension wird weitere 18 Stunden bei Raumtemperatur gerührt. Nach Zentrifugation (14000 U/min; 10 min) wird der klare Überstand entfernt und der Niederschlag mit destilliertem Wasser gewaschen. Das Endprodukt wird im Exsikkator unter Vakuum (10 mbar) bei Raumtemperatur mind. 2 Tage getrocknet. Die erzielte Ausbeute an Alendronsäure-Dodecylsulfat beträgt 88,4%.
Herstellung eines Calcium-Alendronsäure-Carboxymethyldextran-Salzes
Es werden 50 mg (0,15378 mmol) Natrium- Alendronat (in 4 ml Wasser gelöst) mit 22,98 mg (0,1038 mmol) Carboxymethyldextran (CMD) mit einem Substitutionsgrad von 0,74, gelöst in 1 ml Wasser, gemischt und 30 min bei Raumtemperatur gerührt. Nach Zugabe von IM Calciumchloridlösung im Verhältnis Alendronat : CMD : CaCl2 = 2 : 1 : 2 bildete sich ein weisser, milchiger Niederschlag. Die Suspension wurde weitere 18 Stunden bei Raumtemperatur gerührt. Nach Zentrifugation (14000 U/min; 10 min) wird der klare Überstand abgenommen und der verbleibende Niederschlag mit destilliertem Wasser gewaschen. Das Endprodukt wird im Exsikkator unter Vakuum
(10 mbar) bei Raumtemperatur mind. 2 Tage getrocknet. Das Verhältnis Alendronat zu CMD wurde von 2 : 1 bis 1 : 2 variiert. Die Ausbeuten der jeweiligen Ansätze betrugen 54,2% für 2 : 1, 44,8% für 1 : 1 und 12,2% für 1 : 2.
Beschichtung von Dentalimplantaten Ein Dentalimplantat auf Basis von Titan wurde zunächst in einem Sandstrahl- und Säureätzverfahren an der dem Knochen ausgesetzten Partie aufgeraut. Anschliessend wurde eine Suspension des oben hergestellten Alendronsäure-Stearat-Salzes in Chloroform durch Zugabe von 0,025g des Alendronsäure-Stearat-Salzes zu 4,975g Chloroform (3,3 ml) unter Rühren innerhalb von 10 min hergestellt. Durch Behandlung mit einem Ultraschall-Homogenisator (20 Watt Gesamtleistung) wurde eine homogene Suspension erhalten.
Die Dentalimplantate wurden auf 80°C erwärmt und mit der beschriebenen Suspension mehrfach mit einer konventionellen Sprühpistole (3x) besprüht. Während des Sprühvorgangs rotierten die in eine geeignete Vorrichtung eingespannten Implantate gleichmässig um ihre Längsachse. Zwischen den Aufsprühzyklen wurden die Dentalimplantate bei 800C solange getrocknet, bis das Lösungsmittel vollständig verdampft war.
Tierversuche
Die so hergestellten Implantate zeigten ein komplikationsloses Einwachsverhalten und eine im Vergleich zu den Dentalimplantaten nach dem Stand der Technik verbesserte Osseointegration. Weiterhin zeigt sich auch eine gute Integration an Weichgewebe (z. B. Zahnfleisch).
Die Figur 1 zeigt entsprechende Resultate von mit drei verschiedenen Oberflächenimplantattypen durchgeführten Versuchen. Dabei wurde ein Titanimplantat mit einem Durchmesser von 4.2 mm und einer Länge von 8 mm verwendet. Die Oberflächen wurden bei Implantat (1) sandgestrahlt und säuregeätzt ohne weitere Beschichtung, bei Implantat (2) plasmachemisch anodisch oxidiert ohne weitere Beschichtung und bei Implantat (3) sandgestrahlt und säuregeätzt und mit einer Beschichtung im wesentlichen gemäss dem oben beschriebenen Beispiel zur
Beschichtung von Implantaten beschichtet (vgl. oben: Kapitel Beschichtung von Dentalimplantaten) und dann die Implantate (1), (2) und (3) im Tierversuch verglichen.
Die sandgestrahlt säuregeätzte und die plasmachemisch anodisch oxidierte Oberfläche entsprechen den Oberflächen von kommerziell verbreiteten und häufig verwendeten Dentalimplantaten.
Die Implantate wurden in die Beckenschaufel von Schafen implantiert. Nach einer Einheilzeit von 2 Wochen wurde das Ausdrehmoment in NIM bestimmt, welches erforderlich war, um die eingewachsenen Implantate vom Knochen zu lösen. Wie Figur 1 zeigt, findet man ein signifikant besseres Einwachsen des erfindungsgemäss beschichteten Implantates (3 ) .