WO2007046138A1 - キャパシタを用いた蓄電装置とその制御方法 - Google Patents

キャパシタを用いた蓄電装置とその制御方法 Download PDF

Info

Publication number
WO2007046138A1
WO2007046138A1 PCT/JP2005/019208 JP2005019208W WO2007046138A1 WO 2007046138 A1 WO2007046138 A1 WO 2007046138A1 JP 2005019208 W JP2005019208 W JP 2005019208W WO 2007046138 A1 WO2007046138 A1 WO 2007046138A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
block
storage means
series
capacitors
Prior art date
Application number
PCT/JP2005/019208
Other languages
English (en)
French (fr)
Inventor
Harumi Takeda
Kazuki Toyama
Original Assignee
Limited Company Tm
Takeda Technological Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limited Company Tm, Takeda Technological Research Co., Ltd. filed Critical Limited Company Tm
Priority to PCT/JP2005/019208 priority Critical patent/WO2007046138A1/ja
Priority to DK05795874.6T priority patent/DK1947752T3/da
Priority to US12/089,603 priority patent/US7898223B2/en
Priority to CN2005800518965A priority patent/CN101297458B/zh
Priority to EP05795874A priority patent/EP1947752B1/en
Priority to KR1020087011232A priority patent/KR100991317B1/ko
Priority to JP2007540858A priority patent/JP4368924B2/ja
Priority to ES05795874T priority patent/ES2394629T3/es
Priority to MYPI20064139A priority patent/MY146871A/en
Priority to TW095138150A priority patent/TWI395389B/zh
Publication of WO2007046138A1 publication Critical patent/WO2007046138A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit

Definitions

  • the present invention relates to a power storage device using a capacitor such as an electric double layer capacitor (EDLC) and a control method thereof.
  • a capacitor such as an electric double layer capacitor (EDLC)
  • EDLC electric double layer capacitors
  • the “bank switching” proposed so far is based on arranging multiple EDLCs and multiple switches as shown in Fig. 1 (a) and controlling the switches.
  • the EDLC connection state is switched sequentially as shown in Fig. 1 (b), Fig. 1 (c), and Fig. 1 (d).
  • a set of capacitors constituting one stage is referred to as a “block”. Further, a plurality of capacitors shown in the figure may be connected in series and parallel.
  • the output voltage of the power storage device increases in accordance with the voltage increase of each capacitor (EDLC) in the reverse order to the case of discharging described above, and the input upper limit of the inverter
  • the EDLCs in the EDLC in series are switched to the parallel connection one block at a time.
  • the EDLC of the block in which the EDLC is connected in parallel cannot be returned to the serial connection.
  • This conventional ⁇ bank switching '' is effective in improving charge / discharge characteristics and discharge depth, but has the following problems.
  • the EDLC terminal voltage varies from block to block. If the EDLC terminal voltage varies, the EDLC is connected in series until the EDLC of the block that has been switched to parallel connection reaches full charge! If not kept below the voltage, EDLCs are connected in series, and each EDLC in the block is overcharged.
  • the force that should be used to configure the device so that the number of EDLCs that make up a block is the same is unavoidable, and the number of EDLCs in each block may differ.
  • the output voltage V of the power storage device is extremely reduced
  • the EDLC that reaches full charge eventually exceeds the withstand voltage and may break down.
  • the semiconductor switch may be destroyed.
  • a control circuit is added to prevent the EDLC terminal voltage from exceeding the withstand voltage.
  • the voltage equalization circuit is a control circuit that suppresses variations in the voltage between terminals of each EDLC, and helps to improve the safety of power storage devices.
  • the factors that cause variations in the EDLC terminal voltage are as follows. Three differences can be mentioned. These multiple factors overlap to create the above three problems: (1) terminals between blocks Variations in inter-voltage, (2) differences in charging characteristics depending on the number of EDLCs constituting the block, and (3) a large amount of cross-flow current. In the following, we will describe the suppression of the EDLC terminal voltage by the “equalizing circuit”.
  • Preventing overcharge of EDLC by the voltage equalization circuit is realized by providing a resistor and a switch between the terminals of each EDLC as shown in Fig. 3. In other words, by monitoring the voltage between terminals of each EDLC and turning on the switch connected to the EDLC that is likely to exceed the withstand voltage, it is forcibly discharged and prevents overcharge.
  • this voltage equalization circuit By using this voltage equalization circuit, the terminal voltage of the EDLC that has reached full charge faster than other EDLCs can be maintained below the withstand voltage, allowing safe charging without falling into overcharge. . In this way, aligning the voltage across all EDLC terminals to the same voltage as much as possible is referred to as “equalization” below.
  • the loss caused by maintaining the ED LC terminal voltage below the withstand voltage with the voltage equalization circuit is called “equalization loss”.
  • the voltage equalization circuit is also used to suppress variations in the EDLC terminal voltage.
  • voltage equalization (referred to as “initialization” in the literature) is performed only in the vicinity of the voltage at which series-parallel switching is performed to reduce the variation in the voltage between terminals of each capacitor (referred to as “initialization” in the literature). For example, see Patent Document 2). In this way, by using the “equalizing circuit” and “bank switching” together, it is possible to safely operate “bank switching” and repeatedly charge and discharge the EDLC.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-215695
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-111286
  • One solution to the above problem is to use an EDLC with a small capacitance error.
  • it is quiet to build a device by collecting EDLCs with uniform capacitance. It is not realistic because it leads to waste of measurement time and cost increase. In particular, it takes a lot of time to accurately measure the capacitance of a large-capacity EDLC used when constructing a large-capacity energy storage device.
  • the present invention has been made in view of such circumstances, and has a high charge / discharge efficiency that is not easily affected by the capacitance error of the capacitor, and a method of controlling the power storage device using the capacitor.
  • the purpose is to provide.
  • the series-parallel switching force of each block is performed only when the output voltage force S of the storage device reaches the input upper limit voltage of the inverter during the charging process, and the input lower limit voltage of the output voltage force inverter of the storage device during the discharging process. It can only be done if
  • the inventor of the present application shows that the charge / discharge pattern of the voltage between the terminals of the EDLC varies from block to block, which increases the pressure equalization loss and greatly affects the charge / discharge characteristics. I found out.
  • the block voltage when the EDLCs in one circuit block are connected in series, the total voltage Vb between the terminals of each EDLC is connected in parallel, and the EDLCs in one circuit block are connected in parallel.
  • the block capacitors are connected in parallel in the descending order of the average voltage Vb between the terminals of each EDLC (referred to as “block voltage”).
  • the power storage device using the capacitor according to the invention of claim 1 is a circuit in which n circuit blocks each having a plurality of capacitors (where n is a natural number of 2 or more) are connected in series.
  • a storage means having a circuit configuration, a DC / AC conversion means for converting a DC output voltage from the storage means into an AC output voltage and applying it to a load, and a state in which a plurality of capacitors for each circuit block of the storage means are connected in parallel.
  • the series-parallel switching means for switching to a state in which they are connected in series, and the capacitor forcibly discharging when the terminal voltage of the capacitor of the power storage means reaches a withstand voltage value, each of which is connected in parallel to the capacitor of the power storage means
  • a plurality of overcharge prevention means, a terminal voltage detection means for detecting a voltage between terminals of a plurality of capacitors in each circuit block of the power storage means, and a terminal between each capacitor detected by the terminal voltage detection means Based on the voltage, a block voltage obtaining means for obtaining a block voltage, which is a voltage of the circuit block, for each circuit block, and an output voltage of the storage means are detected.
  • the block voltage obtained by the block voltage obtaining means even during the second process of controlling the series / parallel switching means and until the output voltage of the power storage means reaches the input upper limit voltage of the DC / AC conversion means again.
  • a third step of controlling the series-parallel switching means so that a plurality of capacitors of j circuit blocks are connected in parallel to each other, and the control means is configured to store the storage means when the storage means is discharged.
  • “at the start of charging of the power storage means” means that almost no charge is stored in each capacitor in the power storage means.
  • the accumulated time includes the time when the input lower limit voltage of the direct current to alternating current converting means is reached and the electric charge is not accumulated in each capacitor in the electric storage means.
  • “when the discharge of the electricity storage means starts” is when all the capacitors in the electricity storage means are almost fully charged, but when all the capacitors in the electricity storage means are fully charged, This includes the case where charge is accumulated in each capacitor in the storage means to the extent that the input lower limit voltage of the DC-AC conversion means is exceeded when the block capacitors are connected in parallel.
  • a plurality of capacitors in each circuit block of the power storage means are connected in series when charging of the power storage means is started (first process).
  • j blocks in the descending order of the block voltage obtained by the block voltage obtaining means (where j is the input upper limit for one charge)
  • a number of capacitors that are the number of times that the voltage has been reached and are a maximum of n) are connected in parallel (second process).
  • a plurality of capacitors of j circuit blocks are arranged in descending order of the block voltage obtained by the block voltage obtaining means. Are connected in parallel (third process).
  • a plurality of capacitors in each circuit block of the power storage means are connected in series to start charging the power storage means, and the output voltage of the power storage means is the input upper limit voltage of the DC / AC converter.
  • the capacitor of the circuit block having the largest block voltage is connected in parallel, that is, the capacitor of the circuit block having the smallest total capacitance is connected in parallel.
  • the voltage equalization loss can be reduced, and the capacitor of the circuit block having a large total capacitance can be maintained in series connection to give priority to charging the circuit block, and the charging efficiency can be improved.
  • the capacitor of the circuit block to which the capacitors are connected in series at that time is used.
  • Capacitors of j circuit blocks are connected in parallel in the order of the largest block voltage, including returning the capacitors in parallel, and until the next switching, that is, the output voltage of the storage means is converted to DC to AC again.
  • the capacitors of j circuit blocks are connected in parallel in the order of the largest block voltage in the same way as described above. The capacitor of a circuit block with a large capacitance can be maintained in series connection, giving priority to charging the circuit block, and charging efficiency can be improved.
  • a plurality of capacitors in each circuit block of the power storage means are connected in parallel at the start of discharge of the power storage means (fourth process).
  • k blocks in the descending order of the block voltage obtained by the block voltage obtaining means (where k is the DC / AC conversion during one discharge)
  • the number of times that the input lower limit voltage of the means has been reached, and a maximum of a natural number of n) are connected in series (5th process).
  • a plurality of capacitors of k circuit blocks are arranged in descending order of the block voltage obtained by the block voltage obtaining means until the output voltage of the power storage means reaches the input lower limit voltage of the DC / AC converting means again. Are connected in series (6th process).
  • a plurality of capacitors in each circuit block of the power storage means are connected in parallel to start discharging the power storage means, and the output voltage of the power storage means reaches the input lower limit voltage of the DC / AC conversion means.
  • the block voltage is the largest among the plurality of circuit blocks.
  • capacitors of the circuit block are connected in series, that is, capacitors of a circuit block having a large total capacitance are connected in series.
  • the capacitors are connected in series at that time, and the capacitors of the circuit block are returned in parallel.
  • the capacitors of k circuit blocks are connected in series in the order of the largest block voltage, and until the next switching, that is, the output voltage of the power storage means is again the input lower limit of the DC / AC conversion means.
  • the capacitors of k circuit blocks are connected in series in the order of the largest block voltage until the voltage is reached. Can be improved. That is, in the discharging process, a large number of capacitor series-parallel patterns for a plurality of circuit blocks can be realized, and the power and the number of the series-parallel patterns can be switched to the optimum series-parallel pattern.
  • the optimal series / parallel pattern is selected and switched, including the parallel return of the circuit block to which the capacitor is connected in series.
  • “at the start of charging the power storage means” means that almost no charge is stored in each capacitor in the power storage means.
  • the accumulated time includes the time when the input lower limit voltage of the DC-DC converting means is reached and the charge is not accumulated in each capacitor in the power storage means.
  • “when the discharge of the electricity storage means starts” is when all the capacitors in the electricity storage means are almost fully charged, but when all the capacitors in the electricity storage means are fully charged, This includes the case where charges are accumulated in each capacitor in the storage means to the extent that the input lower limit voltage of the DC-DC conversion means is exceeded when the block capacitors are connected in parallel.
  • control means performs the third process and the sixth process every elapse of a predetermined interval time. It is also good. In this case, since the optimum series-parallel pattern is selected and switched every time the interval time elapses, the charge / discharge efficiency until the next switching time can be improved.
  • control means switches control between charging and discharging of the power storage means based on a comparison between the input current to the power storage means and the output current from the power storage means, charging and discharging are random.
  • a power storage device using a capacitor with high charging / discharging efficiency that is not easily affected by the capacitance error of the capacitor can be provided.
  • a switch that switches between energization and non-energization is provided between each circuit block of the power storage means, and the control means does not switch a switch located between the circuit blocks to which the capacitors are connected in parallel. Since it is energized, the charging time can be shortened and the charging efficiency can be improved as compared with a configuration without the switch.
  • control means is configured to charge the power storage means during charging and discharging, and in order to make the voltage across the terminals of the capacitors of each block uniform as much as possible, the voltage detection means between terminals uses a voltage between the terminals of the capacitors of each block.
  • the seventh process of controlling the overcharge prevention means is performed to detect the voltage and forcibly discharge the capacitor exceeding the voltage value obtained by adding the allowable value to the minimum terminal voltage value for each block. The variation in the voltage between terminals can be corrected so that it is within the allowable range (within a certain range), and the destruction of the switch due to the transverse current due to the series-parallel switching can be prevented.
  • control means since the control means performs the seventh process every elapse of a predetermined interval time, it monitors the variation in the voltage between terminals of each capacitor at every predetermined interval time, and the overcharge prevention means The voltage between terminals can be corrected so that it is always within the allowable range (within a certain range), and the destruction of the switch due to the transverse current due to the series-parallel switching can be prevented. In addition, the constant voltage loss can be suppressed by always correcting the voltage before the terminal voltage varies greatly.
  • n circuit blocks having a plurality of capacitors (where n is a natural number of 2 or more). Number) The first process of connecting a plurality of capacitors in each circuit block of the power storage means in series at the start of charging of the power storage means having a circuit configuration connected in series, and the output voltage of the power storage means When the input upper limit voltage of the DC / AC conversion means to be applied to the load by converting the DC output voltage of the power storage means power to the AC output voltage is reached, j blocks (in this case, j The number of times that the input upper limit voltage was reached during charging, and the maximum number of n is a natural number, which is a maximum of n).
  • k blocks in the descending order of the calculated block voltage (where k is the number of times the input lower limit voltage was reached during one discharge and a natural number of up to n)
  • FIG. 1 is a circuit diagram showing conventional bank switching.
  • FIG. 2 is a circuit diagram for explaining a transverse current.
  • FIG. 3 is a configuration diagram of a conventional voltage equalizing circuit.
  • FIG. 4 is a diagram showing simulation results of changes over time in charge and discharge for each conventional capacitor.
  • FIG. 5 is a diagram showing simulation results of changes in charging / discharging over time for the output voltage of a conventional power storage device.
  • FIG. 6 is a block diagram showing an embodiment of a power storage device according to the present invention.
  • FIG. 7 is a circuit diagram showing configurations of a capacitor group and a series-parallel switching circuit in Example 1.
  • FIG. 8 is a circuit diagram of a voltage equalization circuit group.
  • FIG. 9 is a diagram illustrating an example of a power storage device including a capacitor group of three circuit blocks according to the first embodiment.
  • FIG. 10 is a diagram for explaining a connection pattern in which only EDLCs of two circuit blocks are connected in series.
  • FIG. 11 is a diagram illustrating a connection pattern in which only EDLCs of one circuit block are connected in parallel.
  • FIG. 12 is a diagram for explaining a connection pattern in which EDLCs of all circuit blocks are connected in series.
  • FIG. 13 (a) is a diagram for explaining the block voltage when EDLCs in the circuit block are connected in series. (B) is a diagram for explaining the block voltage when EDLCs in the circuit block are connected in parallel. It is.
  • FIG. 14 (a) to (c) are diagrams showing examples of connection patterns when n stages of circuit blocks are connected.
  • FIG. 15 is a flowchart of series-parallel switching during charging.
  • FIG. 16 is a flowchart of series-parallel switching during discharge.
  • FIG. 17 is a flowchart of series-parallel switching when charging and discharging are repeated randomly.
  • FIG. 18 is a characteristic diagram showing the temporal transition of the voltage across the terminals of each of the 12 capacitors in Example 1.
  • FIG. 19 is a characteristic diagram showing a temporal transition of the output voltage of the power storage device of Example 1.
  • FIG. 20 (a) and (b) are diagrams for explaining the difference between the case where no switch is provided between circuit blocks and the case where a switch is not provided.
  • the control means when charging the power storage means, series-parallel switching means so that a plurality of capacitors in each circuit block of the power storage means are connected in series when charging of the power storage means is started.
  • the output voltage of the power storage means reaches the input upper limit voltage of the DC / AC conversion means, j blocks (in this case, j once) in the descending order of the block voltage obtained by the block voltage obtaining means.
  • FIG. 6 is a block diagram showing an embodiment of a power storage device using a capacitor (for example, an electric double layer capacitor) according to the present invention.
  • the power storage device of this embodiment includes a power storage device body 10.
  • the power storage device body 10 stores the DC power supplied from the direct current source 11, converts this into AC power, and supplies the AC power to the load 12.
  • the DC current source 11 as an external device is constituted by, for example, a solar cell, a wind power generator, an engine generator, or the like.
  • the power storage device body 10 is broadly provided with a power storage unit 10A and a power conversion unit 10B that converts direct current power stored in the power storage unit 10A into AC power.
  • the power storage unit 10A has n circuit blocks (where n is a natural number of 2 or more) having a plurality of electric double layer capacitors (EDLCs) (two in this example, for example) as capacitors.
  • EDLCs electric double layer capacitors
  • a capacitor group 13 having a circuit configuration connected in series, a voltage equalizing circuit group (also called a parallel monitor circuit) 14 connected thereto, and two capacitors in each circuit block of the capacitor group 13 are connected in parallel.
  • a series-parallel switching circuit 15 that switches them to a state in which they are connected in series, a voltage detection circuit 16 between capacitor terminals that detects a voltage between terminals of each EDLC of the capacitor group 13, and an output voltage of the capacitor group 13 are detected.
  • Series-parallel switching circuit according to voltage value 15 And a control circuit 17 for controlling.
  • FIG. 7 is a circuit diagram showing the configuration of the capacitor group 13 and the series-parallel switching circuit 15.
  • Fig. 7 (a) shows the state where EDLCs of all circuit blocks are connected in parallel.
  • Figure 7 (b) shows the EDLC of the first stage circuit block connected in series and the EDLCs of the other circuit blocks connected in parallel.
  • Figure 7 (c) shows the EDLCs of the first and second stage circuit blocks connected in series, and the EDLCs of the other circuit blocks connected in parallel.
  • Figure 7 (d) shows the state in which the EDLCs of all circuit blocks are connected in series.
  • the capacitor group 13 includes, for example, n circuit blocks having two EDLCs having a capacitance of 3000 [F] and a withstand voltage of 2.3 [V] (where n is 2). (Natural number above)
  • the circuit configuration is connected in series.
  • the capacitor group 13 corresponds to the power storage means in the present invention.
  • the series-parallel switching circuit 15 includes a switch 24 that switches between a state in which two capacitors for each circuit block of the capacitor group 13 are connected in parallel and a state in which they are connected in series. Yes.
  • the series / parallel switching circuit 15 corresponds to the series / parallel switching means in the present invention.
  • the capacitor terminal voltage detection circuit 16 detects a voltage between terminals of each EDLC of the capacitor group 13 shown in FIG.
  • the capacitor terminal voltage detection circuit 16 corresponds to the terminal voltage detection means in the present invention.
  • the control circuit 17 uses the voltage of the circuit block of the capacitor group 13 based on the voltage between terminals of each EDLC of the capacitor group 13 detected by the voltage detection circuit 16 between capacitor terminals.
  • a block voltage obtaining unit 19 for obtaining a certain block voltage for each circuit block is provided.
  • the block voltage obtaining unit 19 corresponds to the block voltage obtaining means in the present invention.
  • the control circuit 17 connects the two EDLCs in each circuit block of the capacitor group 13 in series at the start of charging of the capacitor group 13.
  • the j voltage (however, j is the number of times the input maximum voltage has been reached for one charge.
  • the second process of controlling the series-parallel switching circuit 15 to connect two EDLCs in a circuit block of a maximum number (n is a natural number up to n) in parallel, and the output voltage of the capacitor group 13 is again a DC-AC inverter.
  • a series-parallel switching circuit is used so that two EDLCs of j circuit blocks are connected in parallel in descending order of the block voltage obtained by the block voltage obtaining unit 19 until the input upper limit voltage of 18 is reached. And a third process for controlling the process.
  • the time when charging of the capacitor group 13 is started is a time when almost all charges are accumulated in each EDLC in the capacitor group 13, but no charges are accumulated in each EDLC in the capacitor group 13. This includes the time when the input lower limit voltage of the DC-AC inverter 18 is reached and the electric charge is not accumulated in each EDLC in the capacitor group 13 to a certain extent.
  • the control circuit 17 is configured to connect the two EDLCs of each circuit block of the capacitor group 13 in parallel when the capacitor group 13 starts discharging.
  • k blocks (however, k Is the number of times the input lower limit voltage was reached during a single discharge, and is the fifth step of controlling the series-parallel switching circuit 15 so that two EDLCs of a circuit block of a maximum of n) are connected in series.
  • the start of discharging of the capacitor group 13 is when all the EDLCs in the capacitor group 13 are almost fully charged. However, when all the EDLCs in the capacitor group 13 are fully charged or all circuit blocks are discharged. This includes the case where charge is accumulated in each EDLC in the capacitor group 13 to the extent that it exceeds the input lower limit voltage of the DC-AC inverter 18 when the EDLC of the DC is connected in parallel.
  • the control circuit 17 is configured to perform the third process and the sixth process described above every elapse of a predetermined interval time (for example, 5 seconds).
  • the interval time may be a predetermined time other than 5 seconds.
  • this interval time considers the capacity of the capacitor (EDLC). It is preferable to set the predetermined time.
  • control circuit 17 sets the voltage of each circuit block detected by the capacitor terminal voltage detection circuit 16 during charging and discharging of the capacitor group 13 in order to make the voltage between the capacitor terminals of each circuit block uniform.
  • the minimum terminal voltage of the EDLC terminal voltage is used as a reference, and the voltage between other EDLC terminals in the circuit block is the minimum terminal voltage value plus the allowable value.
  • the seventh process of controlling the voltage equalizing circuit group 14 is performed so that the ED LC exceeding the value is forcibly discharged.
  • the control circuit 17 is configured to perform the aforementioned seventh process every elapse of a predetermined interval time (for example, 5 seconds).
  • the interval time may be a predetermined time other than 5 seconds.
  • the interval time is preferably set to a predetermined time in consideration of the capacitance of the capacitor (EDLC).
  • the control circuit 17 corresponds to the control means in the present invention.
  • a switch 23 for switching between energization and non-energization is provided between each circuit block of the capacitor group 13.
  • the control circuit 17 deenergizes the switch 23 located between the circuit blocks to which the EDLC is connected in parallel.
  • the voltage equalization circuit group (parallel monitor circuit) 14 is connected in parallel to each electric double layer capacitor (EDLC) Cl, C2,... Constituting the capacitor group 13 as shown in FIG.
  • the voltage equalizing circuit 14A includes a resistor 20 and a field effect transistor (FET) 21 connected in series, a discharge path that bypasses both terminals of the capacitor C1, and a discharge control circuit that controls opening and closing of the discharge path. It consists of 22 and.
  • the discharge control circuit 22 monitors the terminal voltage of the capacitor C1, and when this terminal voltage exceeds the specified voltage (withstand voltage of the electric double layer capacitor), it gives a control signal to the FET 21 to make it conductive. Then, the discharge path is closed and the capacitor C1 is forcibly discharged.
  • Each of the voltage equalizing circuits 14A, 14B,... Prevents the corresponding electric double layer capacitors Cl, C2,.
  • Each of the voltage equalizing circuits 14A, 14B,... Corresponds to the overcharge preventing means in the present invention.
  • control circuit 17 may serve as the discharge control circuit 22. Ie When the terminal voltage of the capacitor CI detected by the capacitor terminal voltage detection circuit 16 exceeds the specified voltage (withstand voltage of the electric double layer capacitor), the control circuit 17 applies a control signal to the FET 21 to make it conductive. Also, the capacitor C1 can be forcibly discharged with the discharge path closed.
  • the functions of the voltage equalizing circuits 14 ⁇ , 14 ⁇ , ... during the charging operation will be described. According to the standard, even if the EDLC has the same capacity, the charging time varies depending on the EDLC because the capacity actually varies. Therefore, even if one EDLC is fully charged, other EDLCs may not be fully charged. Therefore, as described above, by providing a voltage equalization circuit for all EDLCs, it is possible to fully charge all EDLCs without ending charging for all EDLCs when one EDLC reaches full charge. it can.
  • the power conversion unit 10B includes a direct current—alternating current (DC—AC) inverter 18.
  • the DC—AC inverter 18 converts the DC input voltage into an AC output voltage and applies it to the load 12.
  • the DC—AC inverter 18 corresponds to the DC / AC conversion means in the present invention.
  • FIG. 9 (a) an example of a power storage device including a capacitor group 13 having three circuit block (abbreviated as three blocks for short) forces as shown in FIG. 9 (a) will be described.
  • a description will be given by taking as an example a configuration in which each of the switches 24 of the capacitor group 13 and the series-parallel switching circuit 15 has a three-circuit blocking force.
  • FIG. 9 (a) is expressed as shown in FIG. 9 (b).
  • the total number of EDLC connection patterns is 2n , and the number of patterns increases as the number of circuit blocks increases.
  • the number of choices increases, and by selecting the optimal connection pattern from a large number of connection patterns, the EDLC in the block where EDLC has shifted to parallel connection is again connected in series. It is possible to switch EDLCs in other circuit blocks to parallel connection, and to minimize variations in the voltage across all capacitors (EDLC).
  • FIG. 14 shows an example of a connection pattern when n stages of circuit blocks are connected.
  • Figure 14 (a) shows all EDLCs connected in series
  • Figure 14 (b) shows only one circuit block EDLC connected in parallel
  • Figure 14 (c) shows only two circuit blocks EDLC connected in parallel. This is an example.
  • the block voltage immediately after the transition of the block in which the EDLC has shifted to the serial connection force parallel connection at the time of charging is extremely lower than that at the time of the serial connection.
  • the block voltage immediately after the transition of the block in which the EDLC has transitioned from the parallel connection to the series connection at the time of discharging may be extremely higher than that at the time of the parallel connection, and the output voltage fluctuation range of the power storage device Sometimes it grew.
  • the terminal voltage of each capacitor is monitored by the capacitor terminal voltage detection circuit 16 at regular intervals, and among the various connection patterns, the peak voltage is the highest during charging.
  • the high circuit block is shifted to parallel connection, and the circuit block with the highest block voltage is shifted to serial connection during discharge.
  • connection pattern (series-parallel pattern) is selected and switched.
  • circuit block force with the largest block voltage is connected in series at the time of discharge, and at the next switching, including the EDLC of the block to which the EDLC is connected in series at that time is returned in parallel,
  • the optimum connection pattern is selected and switched.
  • the voltage across all capacitors is measured at a certain interval (for example, 5 seconds) according to a command from the control circuit 17, and the optimal series-parallel operation is performed. Switching takes place. Keep measuring the voltage across all capacitors at all times without any interval.
  • the charge control is started from a pattern in which all the EDLCs are connected in series.
  • the output voltage of the power storage device approaches the upper limit of the input voltage range of the DC-AC inverter 18 (for example, 15 [v]), that is, when it reaches 14.9 [v]
  • the block voltage is the highest. Since the EDLC of one large circuit block is connected in parallel and continues to be charged, the voltage across all capacitors (EDLC) is measured every certain interval (for example, 5 seconds), and each circuit block is evenly distributed.
  • One optimal circuit block to which the ED LCs are connected in parallel is selected and the series-parallel switching is performed so that the electric charge is accumulated in the block and the variation in the block voltage is minimized.
  • connection pattern force discharge is started in which all EDLCs are connected in parallel.
  • the output voltage of the power storage device approaches the lower limit of the input voltage range of the DC-AC inverter 18 (eg, 10.5 [v]), that is, reaches 10.6 [v]
  • the block voltage EDLC of one circuit block with the largest is connected in series and discharging continues.
  • FIG. 15 shows the flow of series / parallel switching at the time of charging
  • FIG. 16 shows the flow of series / parallel switching at the time of discharging.
  • step S1 charging is started with the EDLCs of all the blocks of the capacitor group 13 being connected in series.
  • the number of parallel blocks j which is the number of circuit blocks in which EDLC is connected in parallel, is “0”.
  • step S 1 corresponds to the first process in the present invention.
  • step S2 the output voltage V of the power storage device is measured.
  • step S3 the output voltage V of the power storage device is measured.
  • step S3A the process waits for an interval (for example, 5 seconds) to return to step S2.
  • step S4 "1" is added to the number of parallel blocks j.
  • step S5 each capacitor
  • step S6 Measure the voltage between the terminals of (EDLC) to find the block voltage.
  • step S6 EDLCs of j circuit blocks are switched to parallel connection in descending order of block voltage.
  • step S7 the output voltage V of the power storage device is measured.
  • step S8 the output voltage V of the power storage device
  • step S10 the process waits for an interval (for example, 5 seconds) to return to step S5. If it reaches! /, The process proceeds to step S9.
  • an interval for example, 5 seconds
  • step S9 it is determined whether the number of parallel blocks j has reached the total number n of circuit blocks. If it has reached, the process proceeds to step S11, and if not, the process returns to step S4. Steps S3 to S9 correspond to the second process in the present invention, and steps S5 to S8 and S10 correspond to the third process in the present invention.
  • step S11 supplying current to the capacitor group 13, that is, charging to the capacitor group 13 is stopped, and the main charging process is terminated.
  • step S21 the discharge is started in a state where the EDLCs of all the blocks of the capacitor group 13 are connected in parallel.
  • the number of serial blocks k which is the number of circuit blocks in which EDL C is connected in series! /, Is “0”.
  • Step S21 corresponds to the fourth step in the present invention.
  • step S22 the output voltage V of the power storage device is measured.
  • step S23 the output voltage V of the power storage device is DC—AC input.
  • step S23A waits for the elapse of an interval (for example, 5 seconds) in step S23A, returns to step S22, and if reached, proceeds to step S24.
  • an interval for example, 5 seconds
  • Step S24 “1” is added to the number of serial blocks k.
  • step S25 the voltage between terminals of each capacitor (EDLC) is measured to obtain the block voltage.
  • step S26 EDLCs of k circuit blocks are switched to series connection in descending order of block voltage.
  • step S27 the output voltage V of the power storage device is measured.
  • step S28 the power storage device is
  • step S30 the process waits for an interval (for example, 5 seconds) to return to step S25. If it has reached, the process proceeds to step S29.
  • an interval for example, 5 seconds
  • step S29 it is determined whether or not the number k of serial blocks has reached the total number n of circuit blocks. If it has reached, the process proceeds to step S31, and if not, the process returns to step S24. Steps S23 to S29 correspond to the fifth process in the present invention, and steps S25 to S28 and S30 correspond to the sixth process in the present invention.
  • step S31 the output from the capacitor group 13, that is, the discharge of the capacitor group 13 is stopped, and the main discharge process is terminated.
  • step S41 charging is started in a state where the EDLCs of all the blocks of the capacitor group 13 are connected in series. That is, the number of parallel blocks j, which is the number of circuit blocks in which the output (discharge) of the power storage device is stopped and the EDLC is connected in parallel, is “0”.
  • Step S41 corresponds to the first process in the present invention.
  • step S42 the output voltage V of the power storage device is measured.
  • step S43 the output voltage V of the power storage device is DC—
  • step S44 the process proceeds to step S44. After the interval (for example, 5 seconds) elapses in step S44, the process returns to step S42.
  • step S45 output (discharge) of the power storage device is started.
  • step S46 “1” is added to the number j of parallel blocks.
  • step S47 the voltage between terminals of each capacitor (EDLC) is measured to obtain the block voltage.
  • step S48 the EDLCs of j circuit blocks are switched to parallel connection in descending order of block voltage.
  • step S49 the input current I 1S from the DC current source 11 to the power storage device is also output from the DC—AC inverter 18.
  • step S50 the output voltage V of the power storage device is measured.
  • the output voltage V of the power storage device is set to the DC—AC inverter 18 input upper limit voltage V.
  • step S53 Detect whether t tmax has been reached, and if not, proceed to step S53. In step S53, wait for an interval (for example, 5 seconds) to return to step S47. move on.
  • an interval for example, 5 seconds
  • step S52 it is determined whether or not the number of parallel blocks j has reached the total number n of circuit blocks. If it has reached, the process proceeds to step S54, and if not, the process returns to step S46.
  • step S54 supplying current to the capacitor group 13, that is, charging to the capacitor group 13 is stopped (input stop). Steps S43 to S48 and S50 to S52 correspond to the second process in the present invention, and steps S47, S48, S50, S51 and S53 correspond to the third process in the present invention. Step S54 corresponds to the fourth process in the present invention.
  • step S55 the output voltage V of the power storage device is measured.
  • step S56 the output voltage V of the power storage device is measured.
  • step S57 the process proceeds to step S57, waits for the elapse of an interval (for example, 5 seconds) in step S57, and returns to step S55.
  • an interval for example, 5 seconds
  • step S58 if charging to capacitor group 13 is stopped (input to the power storage device is stopped), charging to capacitor group 13 is resumed (input to the power storage device is resumed).
  • step S59 the voltage between terminals of each capacitor (EDLC) is measured to obtain the block voltage.
  • step S60 the EDLCs of the (n + 1-j) circuit blocks are switched in series in order of the block voltage!
  • step S61 input current I power from DC current source 11 to the power storage device I force
  • step S63 the output voltage V of the power storage device is measured.
  • step S62 “1” is subtracted from the number of parallel blocks j.
  • step S64 the output voltage V of the power storage device is DC—AC inverter 18 input lower limit.
  • step S65 “1” is subtracted from the number of parallel blocks j. Then, go to step S66.
  • step S66 it is determined whether or not the number of parallel blocks j is “0”. If it is “0”, the process proceeds to step S68, and if it is not “0”, the process returns to step S59. Steps S56, S59
  • S60, S63 to S66 are steps S59, S60, S63, S64,
  • S67 corresponds to the sixth step in the present invention.
  • step S68 discharging of the capacitor group 13 is stopped (output of the power storage device is stopped), and the process returns to step S42.
  • the control circuit 17 monitors the variation in the voltage between the terminals of each EDLC every constant interval (for example, 5 seconds) and controls the voltage equalization circuit group (parallel monitor circuit) 14. Therefore, the voltage between terminals of each EDLC is always corrected to be within a certain range. By doing so, it is possible to prevent the switch 24 from being broken by the cross current caused by the series-parallel switching. In addition, it is possible to suppress the pressure equalization loss by always correcting before the voltage between terminals varies greatly.
  • This constant correction is performed for each circuit block in an operation for suppressing variations in the voltage between the terminals of the capacitors of each circuit block. That is, the EDLC terminal voltage V, which has the lowest terminal voltage among the EDLCs of each circuit block, is used as a reference, and the circuit block
  • the EDLC is forcibly discharged.
  • one circuit block consists of two capacitors (EDLC)
  • the voltage across the terminals is high, the voltage across the terminals of the other capacitor is low, and the voltage across the terminals is low!
  • the allowable value X is exceeded, the capacitor with high terminal voltage is forcibly discharged, and the voltage between the terminals of the two capacitors is made uniform.
  • each capacitor (EDLC) displayed in Fig. 7 or the like has a plurality of capacitors connected in series and parallel, it is compulsorily released under the condition shown in the following equation (1).
  • N is the total number of capacitors in the circuit block and i is the capacitor in the block No.
  • V is the voltage across the EDLC of capacitor number i
  • X is the allowable value.
  • V min (V, V, ..., V)
  • FIG. 18 shows the simulation results of the time change of charging and discharging.
  • Figure 4 shows the simulation results of the time-dependent change in charge and discharge for each conventional capacitor under the same conditions as in the example device.
  • Figure 4 shows the simulation of the time-dependent change in charge and discharge for the output voltage of the conventional power storage device. The results are shown in FIG.
  • the input voltage range of the inverter was set to 10.5 to 15 [V].
  • the terminal voltage measurement of all capacitors in this method and the selection and switching of blocks in which EDLCs are connected in series and parallel so that the charge of each block is charged and discharged equally are every interval (for example, 5 seconds). It was supposed to be done.
  • Figs. 4 and 5 show the temporal transition of the voltage between the terminals of each of the 12 capacitors and the temporal transition of the output voltage of the power storage device in the conventional method, respectively.
  • Figures 18 and 19 show the time transition of the voltage between the terminals of each of the 12 capacitors and the time transition of the output voltage of the power storage device when this method is used.
  • the charging time is 16% or more shorter than in the conventional method (the charging time is 5015 seconds in the conventional method, and the charging time is 4210 seconds in this method).
  • the direct current source 11 is a solar cell
  • the area of the solar cell can be reduced by 16% or more, which has a great effect on the cost reduction of the entire photovoltaic power generation / storage system.
  • the voltage between the terminals of each of the twelve capacitors varies, and the charge of the capacitor that has reached the withstand voltage is wasted by the resistance of the voltage equalizing circuit. I understand that. That is, it can be seen that the pressure equalization loss is large.
  • the depth of discharge is one of the indexes representing the utilization efficiency of the stored energy stored in the EDLC, and is defined by the following equation (2).
  • U is the maximum amount of stored energy
  • U is the maximum amount of stored energy
  • Max rem This is the amount of remaining stored energy.
  • Discharge depth [%] (1—U / U) X 100 ⁇ ⁇ ⁇ (2)
  • Equation (2) and Equation (3) Force Equation (4) is obtained.
  • V is the maximum stored energy
  • V The corresponding EDLC terminal voltage (withstand voltage), V is the E
  • Discharge depth [%] (1— VV ⁇ ) X 100
  • a switch 23 is provided between the blocks of each circuit block connected in series in the capacitor group 13, and the control circuit 17 includes E 23
  • the switch 23 located between the circuit blocks to which the DLC is connected in parallel is de-energized, and the switch 23 is provided, which is superior to the following points in comparison with the case!
  • Figure 20 (a) shows the system without the circuit in Fig. 1, that is, the circuit block switch
  • Figure 20 (b) shows this system.
  • the first stage block is connected in series.
  • the capacitors in the second stage block are C and C
  • the capacitors in the third block are C and C
  • the switch between circuit blocks is used.
  • the combined capacity C of the wavy line shown in Fig. 17 (a) in the no-chest method is given by equation (5).
  • each circuit block of the capacitor group 13 includes two capacitors (E
  • EDLC is employed as a capacitor in each circuit block of the capacitor group 13, but other types of capacitors may be used.
  • the present invention does not depend on the capacitance error of each capacitor!
  • a power storage device can be constructed, and a cheaper system with high charge / discharge efficiency can be constructed. This is also useful when the scale of power handled is large.

Abstract

 この発明の蓄電装置は、充電の場合には、蓄電手段の各回路ブロックの複数個のキャパシタを直列接続して充電開始し、蓄電手段の出力電圧が直流-交流変換手段の入力上限電圧に達すると、ブロック電圧の高い順にj個の回路ブロックの各キャパシタを並列接続し、再び入力上限電圧に達するまでの間も、ブロック電圧の高い順にj個の回路ブロックの各キャパシタを並列接続し、放電の場合には、蓄電手段の各回路ブロックの複数個のキャパシタを並列接続して放電開始し、蓄電手段の出力電圧が直流-交流変換手段の入力下限電圧に達すると、ブロック電圧の高い順にk個の回路ブロックの複数個のキャパシタを直列接続し、再び入力下限電圧に達するまでの間も、ブロック電圧の高い順にk個の回路ブロックの複数個のキャパシタを直列接続するので、キャパシタの静電容量誤差の影響を受けにくく、充放電効率を向上できる。                                                                                 

Description

明 細 書
キャパシタを用いた蓄電装置とその制御方法
技術分野
[0001] 本発明は、電気二重層コンデンサ(Electric Double layer Capacitor: EDLC)など のキャパシタを用いた蓄電装置とその制御方法に関する。
背景技術
[0002] 近年、電気二重層コンデンサ (EDLC)は、サイクル寿命が長 ヽことや使用温度範 囲が広いなどの特徴から、二次電池に替わる新しい蓄電デバイスとして注目を集め ている。しかし、コンデンサは蓄えられた電荷量に比例して出力電圧が変化すること や、単体では出力電圧が低いことから、一般的には直列や直並列に接続して用いら れることが多い。
[0003] コンデンサを直列あるいは直並列接続した際に、負荷に安定した電圧を供給する には、複数の EDLCを複雑なスィッチを用いて直列や並列接続に切り替える方法が ある。
[0004] 複数の EDLCを直並列接続して構成される蓄電装置では、充放電効率を向上させ るために、一般的には「バンク切り換え」と「均圧回路」と呼ばれる 2つの制御手法が併 用される。以下にこれらの制御手法の概要と、これら制御手法を併用した場合の問題 点について述べる。
[0005] <バンク切り換え >
これまでに提案されている「バンク切り換え」(例えば、特許文献 1参照)は、複数の EDLCと複数のスィッチを図 1 (a)のように多段配置し、スィッチを制御することによつ て、 EDLCの接続状態を図 1 (b) ,図 1 (c) ,図 1 (d)のように順次切り換える方式であ る。なお以下の説明では、 1つの段を構成するキャパシタの組を、「ブロック」と呼ぶこ とにする。また、図中に表示されている各キャパシタカ 複数個のキャパシタを直並列 接続したものであっても良い。
[0006] 図 1のような従来の蓄電装置は、例えば放電過程においては、放電に伴う各キャパ シタ (EDLC)の電圧低下に伴って蓄電装置の出力電圧が低下し、インバータの入 力下限電圧に近づくたびに、図 1 (a)→図 1 (b)→図 1 (c)の順に、 EDLCが並列接 続されているブロックを順次 1ブロックずつそのブロック内の EDLCを直列接続に切り 換えることにより、蓄電装置の出力電圧力 Sインバータの入力範囲に収まるように制御 され、最終的に図 1 (d)のように全ての EDLCが直列接続されるまで蓄電装置力 電 力が出力される。ただし、ー且 EDLCが直列接続されたブロックのその EDLCを並列 接続に戻されることはない。
[0007] また、充電過程にぉ 、ては、前述した放電の場合とは逆の順序で、各キャパシタ (E DLC)の電圧上昇に伴って蓄電装置の出力電圧が上昇し、インバータの入力上限 電圧に近づくたびに、 EDLCが直列接続されているブロックを順次 1ブロックずつそ のブロック内の EDLCが並列接続に切り換えられる。ただし、ー且 EDLCが並列接続 されたブロックのその EDLCを直列接続に戻されることはない。
[0008] この従来の「バンク切り換え」は充放電特性や放電深度の向上に有効であるが、以 下のような問題点がある.
[0009] (1)ブロック間の端子間電圧のばらつき
例えば、充電過程において、 EDLCが直列接続されているブロックのその EDLCを 並列接続に切り換えると、 EDLCが並列接続されたブロックの各 EDLCに蓄積される 電荷量は、 EDLCが直列接続されて!、るブロックの各 EDLCに蓄積される電荷量の 半分となるので、ブロック毎に EDLCの端子間電圧にばらつきが発生する。 EDLCの 端子間電圧にばらつきが発生すると、 EDLCが並列接続に切り換わったブロックのそ の EDLCが満充電に達するまで、 EDLCが直列接続されて!、るブロックの各 EDLC の端子間電圧を耐電圧以下に保持し続けなければ、 EDLCが直列接続されて 、る ブロックの各 EDLCは過充電に陥る。
[0010] (2)ブロックを構成する EDLCの個数の違いによる充電特性の違い
通常、ブロックを構成する EDLCの個数が同一となるように装置を構成すべきであ る力 やむをえずブロックごとの EDLCの個数が異なる場合も起こり得る。そのような 場合には、充電過程において、 EDLCの個数の多いブロックのその EDLCの接続状 態を直列力 並列に切り換えた時、蓄電装置の出力電圧 Vが極端に低下し、その並
t
列に切り換えられた各 EDLCの充電が進んで次の切り換えが起こるまでに多大な時 間を有することがある。また最悪の場合には、蓄電装置の出力電圧 Vがインバータの t
入力電圧範囲を下回る可能性もある。
[0011] さらに、蓄電装置の出力電圧 V力 Sインバータの入力電圧範囲を下回らなくても、 E t
DLCの端子間電圧がブロックごとに大きくばらつくので、その後、充電が進むに伴つ て、やがて満充電に達した EDLCが耐電圧を越え、破壊に至る可能性が生じる。
[0012] (3)横流れ電流
図 2のように、充電過程で 1つのブロックの EDLCの接続状態が、図 2 (a)の直列接 続から図 2 (b)の並列状態に移行する時、もしキャパシタ (EDLC) Cの端子間電圧 V
1
とキャパシタ (EDLC) Cの端子間電圧 Vにばらつきがあると横流れ電流が発生する
1 2 2
。したがって、仮に図 2のスィッチに半導体スィッチを用いた場合には、半導体スイツ チの ON抵抗を R[Q]とすると、発生する横流れ電流は (V— V )ZR[A]となり、場合
2 1
によっては半導体スィッチを破壊する可能性がある。
[0013] この横流れ電流の発生を防止するためには、並列接続される EDLCの端子間電圧 のばらつきを抑制する必要がある。
[0014] 上記のような問題があるので、「バンク切り換え」だけで蓄電装置を構築することは 困難である。しかしこれらの問題は、以下のような対策をとることで回避することができ る。
[0015] [1]EDLCの端子間電圧が、耐電圧を越えないようにする制御回路を付加する。
[2]常に EDLCの端子間電圧のばらつきを抑制する制御回路を付加する。
[3]各ブロックを構成する EDLCの個数をできるだけ同数にする。
上記の [ 1] , [2]を実現するために「均圧回路」と呼ばれる回路が用いられる。
[0016] <均圧回路 >
均圧回路は、各 EDLCの端子間電圧のばらつきを抑制する制御回路で、蓄電装 置の安全性の向上に役立つ。
バンク切り換え方式による蓄電装置において、 EDLCの端子間電圧にばらつきが 生じる要因として、「各 EDLCの静電容量の違い」, 「各 EDLCの自己放電特性の違 い」, 「バンク切り換えによる各 EDLCに流れる電荷量の違い」の 3つが挙げられる。こ れらの複数要因が重なり合って、前述の 3つの問題、すなわち(1)ブロック間の端子 間電圧のばらつき、(2)ブロックを構成する EDLCの個数による充電特性の違い、 (3 )多大な横流れ電流、が生じる。以下では、「均圧回路」による EDLCの端子間電圧 の抑制について述べる。
[0017] (1)過充電防止
均圧回路による EDLCの過充電防止は、図 3のように各 EDLCの端子間に抵抗と スィッチを設けることにより、実現される。すなわち、各 EDLCの端子間電圧を監視し 、耐電圧を越えそうな EDLCに接続されたスィッチを ONにすることにより、強制的に 放電を行い、過充電を防止する。この均圧回路を用いることにより、他の EDLCより速 く満充電に達した EDLCの端子間電圧を耐電圧以下に維持し、過充電に陥ることな く安全に充電を行うことが可能となる。このように、すべての EDLCの端子間電圧をで きるだけ同電圧に揃えることを、以下では「均圧化」と呼ぶ。また均圧回路により、 ED LCの端子間電圧を耐電圧以下に維持することによって生じる損失のことを「均圧化 損失」と呼ぶ。
[0018] (2)キャパシタ(EDLC)の端子間電圧のばらつき防止
均圧回路は、 EDLCの端子間電圧のばらつきを抑えるためにも使用される。従来 方式では、直並列切り換えを行う電圧の近傍のみで、各キャパシタの端子間電圧の ばらつきを減少させるための均圧化 (文献中では「初期化」と記されている)が行われ る(例えば、特許文献 2参照)。このように「均圧回路」と「バンク切り換え」を併用する により、安全に「バンク切り換え」を動作させ、繰り返し EDLCの充放電を行うことが可 能となる。
特許文献 1:特開平 11— 215695号公報
特許文献 2:特開 2003 - 111286号公報
発明の開示
発明が解決しょうとする課題
[0019] し力しながら、前述した従来の蓄電装置での「バンク切り換え」と「均圧回路」との併 用時に起こる問題として以下の問題がある。
[0020] 実際の EDLCの静電容量には誤差がある。したがって、先にも述べた、定められた ブロック順序でし力接続状態を切り換えることができな ヽ「従来のバンク切り換え方式 」では、各ブロックの合計静電容量の誤差により、以下のような問題が発生する。
[0021] 例えば充電過程において、並列接続状態にある 2つのブロックを考える。一方のブ ロックの合計静電容量が他方の合計静電容量より大き!ヽ場合、合計静電容量の大き いブロックの方が満充電に達するまでの時間は長い。逆に、合計静電容量の小さな ブロックは、満充電に達するまでの時間が短い。したがって、合計静電容量の大きい ブロックが満充電に達するまでの間、静電容量の小さなブロック内の EDLCの端子間 電圧を耐電圧以下に保持しなければならないので、「均圧回路」による過充電防止 期間が長くなり、無駄に強制放電が行われ、均圧化損失が増大するという問題が生 じる。
[0022] また、各ブロック内に一つでも静電容量の小さな EDLCが存在すると、この EDLC の端子間電圧を基準にして、そのブロックに属する他の EDLCの端子間電圧のばら つきが抑制されるので、無駄に強制放電が行われ、充放電特性が低下するという問 題が生じる場合もある。
[0023] さらに従来方式では、 EDLCの端子間電圧のばらつき防止のために、直並列切り 換えを行う電圧の近傍でのみ均圧化 (文献中に「初期化」と記されて 、る)が行われ ているが、その時点での端子間電圧のばらつきが大き過ぎると、均圧化に時間がか かり、均圧化損失が大きくなるという問題もある。
[0024] 上記のような問題の解決法の一つとしては、静電容量誤差の少ない EDLCを用い ることであるが、静電容量の揃った EDLCを集めて装置を構築することは、静電容量 の測定時間の浪費とコストアップにつながるので現実的ではな 、。特に大容量の蓄 電装置を構築する場合に用いられる大容量の EDLCの静電容量を正確に測定する には多大な時間を必要とする。
[0025] 本発明は、このような事情に鑑みてなされたものであって、キャパシタの静電容量誤 差の影響を受けにくぐ充放電効率の高い、キャパシタを用いた蓄電装置とその制御 方法を提供することを目的とする。
課題を解決するための手段
[0026] 上記目的を達成するために、発明者が鋭意研究をした結果、次のような知見を得た 。すなわち、「従来のバンク切り換え方式」の大きな問題点の一つは、例えば充電過 程において、ー且、 EDLCが並列接続に切り換わったブロックのその EDLCを充電 完了まで直列接続に戻すことができず、すべての EDLCが満充電に達するまで並列 状態を維持し続けなければならな力つたことにある。また、放電過程においても、一 且、 EDLCが直列接続に切り換わったブロックの EDLCを放電完了まで並列接続に 戻すことができず、すべての EDLCが放電するまで直列状態を維持し続けなければ ならなかった。さらに、各ブロックの直並列切り換え力 充電過程においては蓄電装 置の出力電圧力 Sインバータの入力上限電圧になった場合にのみ行われ、放電過程 においては蓄電装置の出力電圧力インバータの入力下限電圧になった場合にのみ 行われることち挙げられる。
[0027] これらが原因で、ブロック毎に EDLCの端子間電圧の充放電パターンがばらつき、 それが均圧化損失を増大させ、充放電特性に大きな影響を与えていることを、本願 発明者は突き止めたのである。つまり、充電過程において、ブロック電圧(1つの回路 ブロック内の EDLCが直列接続されている場合には各 EDLCの端子間電圧の合計 電圧 Vbを、また 1つの回路ブロック内の EDLCが並列接続されている場合には、各 E DLCの端子間電圧の平均値電圧 Vbを「ブロック電圧」と呼ぶ)の大きい順にブロック のキャパシタを並列接続とし、ー且 EDLCが並列接続に移行したブロック電圧の低 ヽ ブロックのその EDLCを直列状態に戻せれば、より速く充電することができ、均圧化 損失も低下させることができる。また、放電過程においても、ブロック電圧の大きい順 にブロックのキャパシタを直列接続とし、ー且 EDLCが直列接続に移行したブロック 電圧の低いブロックのその EDLCを並列状態に戻せれば、より長時間放電すること ができ、放電深度を向上させることができる。そこで、より多様な接続パターンを用意 し、最適な接続パターンに切り換えることにより、蓄電装置を構成する全てのキャパシ タの端子間電圧のばらつきを少なくした「新しいバンク切り換え方式」を以下に提案 するに至ったのである。以降、「従来のバンク切り換え方式」を「従来方式」、「本発明 である新しいバンク切り換え方式」を「本方式」と適宜に記述することにする。
[0028] このような知見に基づくこの発明は次のような構成をとる。
すなわち、請求項 1に記載の発明に係るキャパシタを用いた蓄電装置は、複数個の キャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列接続した回 路構成を備える蓄電手段と、蓄電手段からの直流出力電圧を交流出力電圧に変換 して負荷に与える直流 交流変換手段と、蓄電手段の回路ブロック毎の複数個のキ ャパシタを並列接続した状態とそれらを直列接続した状態とに切り換える直並列切り 換え手段と、蓄電手段のキャパシタの端子電圧が耐電圧値になるとそのキャパシタを 強制放電させるものであって、蓄電手段のキャパシタにそれぞれ並列接続された複 数個の過充電防止手段と、蓄電手段の各回路ブロックの複数個のキャパシタの端子 間電圧を検出する端子間電圧検出手段と、端子間電圧検出手段で検出された各キ ャパシタの端子間電圧に基づ 、て、回路ブロックの電圧であるブロック電圧を回路ブ ロック毎に求めるブロック電圧求出手段と、蓄電手段の出力電圧を検出し、その電圧 値に応じて直並列切り換え手段を制御する制御手段と、を備え、制御手段は、蓄電 手段の充電時の場合には、蓄電手段への充電開始時に蓄電手段の各回路ブロック の複数個のキャパシタを直列接続するように直並列切り換え手段を制御する第 1過 程と、蓄電手段の出力電圧が直流 交流変換手段の入力上限電圧に達すると、ブ ロック電圧求出手段で求出したブロック電圧の高い順に j個(ただし、 jは 1回の充電に 際しての入力上限電圧に達した回数であり、最大で nとする自然数)の回路ブロック の複数個のキャパシタを並列接続するように直並列切り換え手段を制御する第 2過 程と、蓄電手段の出力電圧が再び直流 交流変換手段の入力上限電圧に達するま での間においても、ブロック電圧求出手段で求出したブロック電圧の高い順に j個の 回路ブロックの複数個のキャパシタを並列接続するように直並列切り換え手段を制御 する第 3過程と、を行い、さらに、制御手段は、蓄電手段の放電時の場合には、蓄電 手段の放電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを並列接続 するように直並列切り換え手段を制御する第 4過程と、蓄電手段の出力電圧が直流 交流変換手段の入力下限電圧に達すると、ブロック電圧求出手段で求出したプロ ック電圧の高い順に k個(ただし、 kは 1回の放電に際しての入力下限電圧に達した 回数であり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを直列接続 するように直並列切り換え手段を制御する第 5過程と、蓄電手段の出力電圧が再び 直流 交流変換手段の入力下限電圧に達するまでの間にお 、ても、ブロック電圧求 出手段で求出したブロック電圧の高い順に k個の回路ブロックの複数個のキャパシタ を直列接続するように直並列切り換え手段を制御する第 6過程と、を行うものである。
[0029] なお、本明細書中の「蓄電手段への充電開始時」とは、蓄電手段内の各キャパシタ に殆ど電荷が蓄積されていない時である力 蓄電手段内の各キャパシタに全く電荷 が蓄積されて 、な 、時や、直流―交流変換手段の入力下限電圧に達して 、な 、程 度にしか蓄電手段内の各キャパシタに電荷が蓄積されていない時も含まれる。また、 本明細書中の「蓄電手段の放電開始時」とは、蓄電手段内の全キャパシタがほぼ満 充電の時であるが、蓄電手段内の全キャパシタが満充電の時や、全ての回路ブロッ クのキャパシタが並列接続時に直流 交流変換手段の入力下限電圧を越えた程度 に蓄電手段内の各キャパシタに電荷が蓄積されている時も含まれる。
[0030] 本発明の蓄電装置の作用 ·効果は次のとおりである。
蓄電手段への充電の場合には、まず、蓄電手段への充電開始時に蓄電手段の各 回路ブロックの複数個のキャパシタを直列接続する (第 1過程)。その後、蓄電手段の 出力電圧が直流 交流変換手段の入力上限電圧に達すると、ブロック電圧求出手 段で求出したブロック電圧の高い順に j個(ただし、 jは 1回の充電に際しての入力上 限電圧に達した回数であり、最大で nとする自然数)の回路ブロックの複数個のキヤ パシタを並列接続する (第 2過程)。また、蓄電手段の出力電圧が再び直流 交流変 換手段の入力上限電圧に達するまでの間においても、ブロック電圧求出手段で求出 したブロック電圧の高い順に j個の回路ブロックの複数個のキャパシタを並列接続す る(第 3過程)。
[0031] したがって、充電過程では、蓄電手段の各回路ブロックの複数個のキャパシタを直 列接続して蓄電手段への充電を開始し、蓄電手段の出力電圧が直流 交流変換手 段の入力上限電圧に達すると、複数個の回路ブロックのうちブロック電圧が最も大き い回路ブロックのキャパシタを並列接続し、つまり、合計静電容量の小さい回路プロ ックのキャパシタを並列接続し、当該回路ブロックでの均圧化損失を低減できるととも に、合計静電容量の大きい回路ブロックのキャパシタを直列接続のまま維持して当該 回路ブロックへの充電を優先でき、充電効率を向上させることができる。また、次の切 り換え時、つまり、蓄電手段の出力電圧が再び直流 交流変換手段の入力上限電 圧に達した時には、その時点でキャパシタが直列接続されている回路ブロックのキヤ パシタを並列に戻すことも含めて、ブロック電圧が最も大きい順に j個の回路ブロック のキャパシタを並列接続するし、次の切り換え時に至るまでの間、つまり、蓄電手段 の出力電圧が再び直流 交流変換手段の入力上限電圧に達するまでの間にお ヽ ても、前述と同様に、ブロック電圧が最も大きい順に j個の回路ブロックのキャパシタを 並列接続するので、均圧化損失を低減できるとともに、合計静電容量の大きい回路 ブロックのキャパシタを直列接続のまま維持して当該回路ブロックへの充電を優先で き、充電効率を向上させることができる。
[0032] すなわち、充電過程において、複数個の回路ブロックについてのキャパシタの直並 列パターンを多数実現でき、し力もその多数の直並列パターンの中力 最適な直並 列パターンに切り換えを行うことができる。また、次の切り換え時には、その時点でキ ャパシタが直列接続されている回路ブロックのキャパシタを並列に戻すことも含めて、 最適な直並列パターンの選定が行われて切り換わる。さらに、次の切り換え時に至る までの間、つまり、蓄電手段の出力電圧が再び直流 交流変換手段の入力上限電 圧に達するまでの間においても、その時点でキャパシタが直列接続されている回路 ブロックのキャパシタを並列に戻すことも含めて、最適な直並列パターンの選定が行 われて切り換わる。
[0033] さらに、蓄電手段の放電の場合には、まず、蓄電手段の放電開始時に蓄電手段の 各回路ブロックの複数個のキャパシタを並列接続する (第 4過程)。その後、蓄電手段 の出力電圧が直流 交流変換手段の入力下限電圧に達すると、ブロック電圧求出 手段で求出したブロック電圧の高い順に k個(ただし、 kは 1回の放電に際しての直流 交流変換手段の入力下限電圧に達した回数であり、最大で nとする自然数)の回 路ブロックの複数個のキャパシタを直列接続する (第 5過程)。また、蓄電手段の出力 電圧が再び直流 交流変換手段の入力下限電圧に達するまでの間においても、ブ ロック電圧求出手段で求出したブロック電圧の高い順に k個の回路ブロックの複数個 のキャパシタを直列接続する (第 6過程)。
[0034] したがって、放電過程では、蓄電手段の各回路ブロックの複数個のキャパシタを並 列接続して蓄電手段の放電を開始し、蓄電手段の出力電圧が直流 交流変換手段 の入力下限電圧に達すると、複数個の回路ブロックのうちブロック電圧が最も大きい 回路ブロック力も順にその回路ブロックのキャパシタを直列接続し、つまり、合計静電 容量の大きい回路ブロックのキャパシタを直列接続する。また、次の切り換え時、つま り、蓄電手段の出力電圧が再び直流 交流変換手段の入力下限電圧に達した時に は、その時点でキャパシタが直列接続されて 、る回路ブロックのキャパシタを並列に 戻すことも含めて、ブロック電圧が最も大きい順に k個の回路ブロックのキャパシタを 直列接続するし、次の切り換え時に至るまでの間、つまり、蓄電手段の出力電圧が再 び直流 交流変換手段の入力下限電圧に達するまでの間においても、前述と同様 に、ブロック電圧が最も大きい順に k個の回路ブロックのキャパシタを直列接続するの で、均等に各回路ブロックの電荷を放電させることができ、放電深度を向上させること ができる。すなわち、放電過程において、複数個の回路ブロックについてのキャパシ タの直並列パターンを多数実現でき、し力もその多数の直並列パターンの中カも最 適な直並列パターンに切り換えを行うことができる。また、次の切り換え時には、その 時点でキャパシタが直列接続されている回路ブロックを並列に戻すことも含めて、最 適な直並列パターンの選定が行われて切り換わる。
[0035] その結果、キャパシタの静電容量誤差の影響を受けにくぐ充放電効率の高い、キ ャパシタを用いた蓄電装置を提供することができる。
[0036] また、前述の蓄電装置の直流 交流変換手段に替えて、蓄電手段からの直流出 力電圧を所定の直流出力電圧に変換して負荷に与える直流一直流変換手段を採用 した場合であっても、前述と同様の作用効果を有する。
[0037] なお、本明細書中の「蓄電手段への充電開始時」とは、蓄電手段内の各キャパシタ に殆ど電荷が蓄積されていない時である力 蓄電手段内の各キャパシタに全く電荷 が蓄積されて 、な 、時や、直流―直流変換手段の入力下限電圧に達して 、な 、程 度にしか蓄電手段内の各キャパシタに電荷が蓄積されていない時も含まれる。また、 本明細書中の「蓄電手段の放電開始時」とは、蓄電手段内の全キャパシタがほぼ満 充電の時であるが、蓄電手段内の全キャパシタが満充電の時や、全ての回路ブロッ クのキャパシタが並列接続時に直流一直流変換手段の入力下限電圧を越えた程度 に蓄電手段内の各キャパシタに電荷が蓄積されている時も含まれる。
[0038] また、制御手段は、第 3過程と第 6過程とを所定のインターバル時間経過毎に行うも のとしてもよい。この場合には、インターバル時間経過毎に、最適な直並列パターン の選定が行われて切り換わるので、次の切り換え時に至るまでの間における充放電 効率を向上させることができる。
[0039] また、制御手段は、蓄電手段への入力電流と、蓄電手段からの出力電流との比較 に基づいて、蓄電手段の充電と放電との制御を切り換えるので、充電と放電とがラン ダムに繰り返される場合にも、キャパシタの静電容量誤差の影響を受けにくぐ充放 電効率の高い、キャパシタを用いた蓄電装置を提供することができる。
[0040] また、蓄電手段の各回路ブロック間に、通電 Z非通電を切り替えるスィッチを備え、 制御手段は、それらのスィッチのうちで、キャパシタが並列接続された回路ブロック間 に位置するスィッチを非通電とするので、当該スィッチを備えない構成と比べて、充 電時間が短くて済み、充電効率を向上させることができる。
[0041] また、制御手段は、蓄電手段の充電時および放電時にお!、て、各ブロックのキャパ シタの端子間電圧をできるだけ揃えるために、端子間電圧検出手段で各ブロックの キャパシタの端子間電圧を検出し、ブロック毎にその最小端子間電圧値に許容値を 加えた電圧値を越えたキャパシタを強制放電させるように、過充電防止手段を制御 する第 7過程を行うので、各キャパシタの端子間電圧のばらつきを許容範囲内(一定 範囲内)に収まるように補正でき、直並列切り換えによる横流れ電流によるスィッチの 破壊を防ぐことができる。
[0042] また、制御手段は、第 7過程を所定のインターバル時間経過毎に行うので、各キヤ パシタの端子間電圧のばらつきを一定のインターバル時間毎に監視し、過充電防止 手段によって、各キャパシタの端子間電圧が常時に許容範囲内(一定範囲内)に収 まるように補正でき、直並列切り換えによる横流れ電流によるスィッチの破壊を防止 することができる。また、端子間電圧が大きくばらつく前に常時補正をしておくことによ り、均圧化損失を抑えることができる。
[0043] また、キャパシタを用いた蓄電装置の制御方法にぉ 、て、蓄電手段の充電時の場 合には、複数個のキャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然 数)直列接続した回路構成を備える蓄電手段への充電開始時に、蓄電手段の各回 路ブロックの複数個のキャパシタを直列接続する第 1過程と、蓄電手段の出力電圧 力 蓄電手段力 の直流出力電圧を交流出力電圧に変換して負荷に与える直流 交流変換手段の入力上限電圧に達すると、求出したブロック電圧の高い順に j個(た だし、 jは 1回の充電に際しての入力上限電圧に達した回数であり、最大で nとする自 然数)の回路ブロックの複数個のキャパシタを並列接続する第 2過程と、蓄電手段の 出力電圧が再び直流 交流変換手段の入力上限電圧に達するまでの間においても 、求出したブロック電圧の高い順に j個の回路ブロックの複数個のキャパシタを並列接 続するように直並列切り換え手段を制御する第 3過程と、を行い、さらに、蓄電手段の 放電時の場合には、蓄電手段の放電開始時に蓄電手段の各回路ブロックの複数個 のキャパシタを並列接続する第 4過程と、蓄電手段の出力電圧が直流 交流変換手 段の入力下限電圧に達すると、求出したブロック電圧の高い順に k個(ただし、 kは 1 回の放電に際しての入力下限電圧に達した回数であり、最大で nとする自然数)の回 路ブロックの複数個のキャパシタを直列接続する第 5過程と、蓄電手段の出力電圧 が再び直流 交流変換手段の入力下限電圧に達するまでの間においても、求出し たブロック電圧の高い順に k個の回路ブロックの複数個のキャパシタを直列接続する 第 6過程と、を行う場合は、前述の請求項 1と同様の作用効果を有する。
[0044] また、前記制御方法において、直流 交流変換手段を直流一直流変換手段に替 えた場合も同様である。
図面の簡単な説明
[0045] [図 1]従来のバンク切り換えを示した回路図である。
[図 2]横流れ電流を説明する回路図である。
[図 3]従来の均圧回路の構成図である。
[図 4]従来の各キャパシタについての充放電の時間的変化のシミュレーション結果を 示す図である。
[図 5]従来の蓄電装置の出力電圧についての充放電の時間的変化のシミュレーショ ン結果を示す図である。
[図 6]本発明に係る蓄電装置の実施態様を示したブロック図である。
[図 7]実施例 1のキャパシタ群および直並列切り換え回路の構成を示す回路図である [図 8]均圧回路群の回路図である。
[図 9]実施例 1の 3つの回路ブロックのキャパシタ群を備えた蓄電装置の例を示す図 である。
[図 10]—つの回路ブロックの EDLCのみを直列接続する接続パターンを説明する図 である。
[図 11]一つの回路ブロックの EDLCのみを並列接続する接続パターンを説明する図 である。
[図 12]すべての回路ブロックの EDLCを直列接続する接続パターンを説明する図で ある。
[図 13] (a)は回路ブロック内の EDLCを直列接続したときのブロック電圧を説明する 図であり、 (b)は回路ブロック内の EDLCを並列接続したときのブロック電圧を説明す る図である。
[図 14] (a)〜(c)は回路ブロックを n段接続した場合の接続パターンの一例を示す図 である。
[図 15]充電時の直並列切り換えのフローチャートである。
[図 16]放電時の直並列切り換えのフローチャートである。
[図 17]充電と放電とがランダムに繰り返される場合の直並列切り換えのフローチャート である。
[図 18]実施例 1の場合の 12個の各キャパシタの端子間電圧の時間的推移を示す特 '性図である。
[図 19]実施例 1の蓄電装置の出力電圧の時間的推移を示す特性図である。
[図 20] (a) , (b)は回路ブロック間にスィッチを設けない場合と設けた場合との違いを 説明する図である。
符号の説明
10 … 蓄電装置本体
10A … 蓄電部
10B … 電力変換部
11 … 直流電流源 12 … 負荷
13 … キャパシタ群
14 … 均圧回路群
14A … 均圧回路
15 … 直並列切り換え回路
16 … キャパシタ端子間電圧検出回路
17 … 制御回路
18 … DC— ACインバータ
19 … ブロック電圧求出部
20 … 抵抗
21 … 電界効果トランジスタ
22 … 放電制御回路
23 … スィッチ
24 … スィッチ
発明を実施するための最良の形態
キャパシタを用いた蓄電装置において、制御手段は、蓄電手段の充電時の場合に は、蓄電手段への充電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを 直列接続するように直並列切り換え手段を制御する第 1過程と、蓄電手段の出力電 圧が直流 交流変換手段の入力上限電圧に達すると、ブロック電圧求出手段で求 出したブロック電圧の高い順に j個(ただし、 jは 1回の充電に際しての入力上限電圧 に達した回数であり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを 並列接続するように直並列切り換え手段を制御する第 2過程と、蓄電手段の出力電 圧が再び直流 交流変換手段の入力上限電圧に達するまでの間においても、プロ ック電圧求出手段で求出したブロック電圧の高い順に j個の回路ブロックの複数個の キャパシタを並列接続するように直並列切り換え手段を制御する第 3過程と、を行 ヽ 、さらに、制御手段は、蓄電手段の放電時の場合には、蓄電手段の放電開始時に蓄 電手段の各回路ブロックの複数個のキャパシタを並列接続するように直並列切り換え 手段を制御する第 4過程と、蓄電手段の出力電圧が直流 交流変換手段の入力下 限電圧に達すると、ブロック電圧求出手段で求出したブロック電圧の高い順に k個 ( ただし、 kは 1回の放電に際しての入力下限電圧に達した回数であり、最大で nとする 自然数)の回路ブロックの複数個のキャパシタを直列接続するように直並列切り換え 手段を制御する第 5過程と、蓄電手段の出力電圧が再び直流 交流変換手段の入 力下限電圧に達するまでの間においても、ブロック電圧求出手段で求出したブロック 電圧の高い順に k個の回路ブロックの複数個のキャパシタを直列接続するように直並 列切り換え手段を制御する第 6過程と、を行うことで、キャパシタの静電容量誤差の影 響を受けにくぐ充放電効率の高い、キャパシタを用いた蓄電装置を提供するという 目的を実現した。
実施例 1
[0048] 以下、図面を参照して本発明の実施例を説明する。図 6は、本発明に係るキャパシ タ(例えば、電気二重層コンデンサ)を用いた蓄電装置の一実施例を示すブロック図 である。
[0049] 本実施例の蓄電装置は、蓄電装置本体 10を備えて 、る。蓄電装置本体 10は、直 流電流源 11から供給された直流電力を蓄電し、これを交流電力に変換して負荷 12 に供給する。
[0050] 外部装置としての直流電流源 11は、例えば太陽電池、風力発電機、エンジン発電 機などで構成される。
[0051] 蓄電装置本体 10は、大きく分けて、蓄電部 10Aと、この蓄電部 10Aに蓄えられた直 流電力を交流電力に変換する電力変換部 10Bとを備える。
[0052] まず、蓄電部 10Aについて説明する。蓄電部 10Aは、キャパシタとしての電気二重 層コンデンサ(Electric Double layer Capacitor: EDLC)を複数個(本実施例では例 えば 2個)有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列接続した回路 構成を備えるキャパシタ群 13と、これに接続された均圧回路群 (並列モニタ回路とも 呼ばれる) 14と、キャパシタ群 13の回路ブロック毎の 2個のキャパシタを並列接続し た状態とそれらを直列接続した状態とに切り換える直並列切り換え回路 15と、キャパ シタ群 13の各 EDLCの端子間電圧を検出するキャパシタ端子間電圧検出回路 16と 、キャパシタ群 13の出力電圧を検出し、その電圧値に応じて直並列切り換え回路 15 を制御する制御回路 17とを含む。
[0053] キャパシタ群 13について図 7を用いて説明する。図 7は、キャパシタ群 13と直並列 切り換え回路 15との構成を示す回路図である。特に、図 7 (a)は全回路ブロックの E DLCが並列接続されている状態を示す。図 7 (b)は第 1段の回路ブロックの EDLCが 直列接続され、それ以外の回路ブロックの EDLCが並列接続されている状態を示す 。図 7 (c)は第 1段および第 2段の回路ブロックの EDLCが直列接続され、それ以外 の回路ブロックの EDLCが並列接続されている状態を示す。図 7 (d)は全回路ブロッ クの EDLCが直列接続されて 、る状態を示す。
[0054] 図 7に示すように、キャパシタ群 13は、例えば静電容量 3000[F]、耐電圧 2. 3[V]の EDLCを 2個有する回路ブロックを、 n個(ただし、 nは 2以上の自然数)直列接続した 回路構成としている。キャパシタ群 13は、本発明における蓄電手段に相当する。
[0055] 直並列切り換え回路 15は、図 7に示すように、キャパシタ群 13の回路ブロック毎の 2個のキャパシタを並列接続した状態とそれらを直列接続した状態とに切り換えるスィ ツチ 24を備えている。直並列切り換え回路 15は本発明における直並列切り換え手段 に相当する。
[0056] キャパシタ端子間電圧検出回路 16は、図 7に示すキャパシタ群 13の各 EDLCの端 子間電圧を検出するものである。キャパシタ端子間電圧検出回路 16は本発明にお ける端子間電圧検出手段に相当する。
[0057] 制御回路 17は、図 6に示すように、キャパシタ端子間電圧検出回路 16で検出され たキャパシタ群 13の各 EDLCの端子間電圧に基づいて、キャパシタ群 13の回路ブ ロックの電圧であるブロック電圧を回路ブロック毎に求めるブロック電圧求出部 19を 備えている。ブロック電圧求出部 19は本発明におけるブロック電圧求出手段に相当 する。
[0058] 制御回路 17は、キャパシタ群 13の充電時の場合には、キャパシタ群 13への充電 開始時にキャパシタ群 13の各回路ブロックの 2個の EDLCを直列接続するように直 並列切り換え回路 15を制御する第 1過程と、キャパシタ群 13の出力電圧が DC— A Cインバータ 18の入力上限電圧に達すると、ブロック電圧求出部 19で求出したプロ ック電圧の高い順に j個(ただし、 jは 1回の充電に際しての入力上限電圧に達した回 数であり、最大で nとする自然数)の回路ブロックの 2個の EDLCを並列接続するよう に直並列切り換え回路 15を制御する第 2過程と、キャパシタ群 13の出力電圧が再び DC - ACインバータ 18の入力上限電圧に達するまでの間においても、ブロック電圧 求出部 19で求出したブロック電圧の高い順に j個の回路ブロックの 2個の EDLCを並 列接続するように直並列切り換え回路 15を制御する第 3過程と、を行うようになって いる。
[0059] なお、キャパシタ群 13への充電開始時とは、キャパシタ群 13内の各 EDLCに殆ど 電荷が蓄積されて ヽな 、時であるが、キャパシタ群 13内の各 EDLCに全く電荷が蓄 積されて 、な 、時や、 DC— ACインバータ 18の入力下限電圧に達して 、な 、程度 にしかキャパシタ群 13内の各 EDLCに電荷が蓄積されていない時も含まれる。
[0060] さらに、制御回路 17は、キャパシタ群 13の放電時の場合には、キャパシタ群 13の 放電開始時にキャパシタ群 13の各回路ブロックの 2個の EDLCを並列接続するよう に直並列切り換え回路 15を制御する第 4過程と、キャパシタ群 13の出力電圧が DC - ACインバータ 18の入力下限電圧に達すると、ブロック電圧求出部 19で求出した ブロック電圧の高い順に k個(ただし、 kは 1回の放電に際しての入力下限電圧に達し た回数であり、最大で nとする自然数)の回路ブロックの 2個の EDLCを直列接続する ように直並列切り換え回路 15を制御する第 5過程と、キャパシタ群 13の出力電圧が 再び DC— ACインバータ 18の入力下限電圧に達するまでの間においても、ブロック 電圧求出部 19で求出したブロック電圧の高い順に k個の回路ブロックの 2個の EDL Cを直列接続するように直並列切り換え回路 15を制御する第 6過程と、を行うようにな つている。
[0061] なお、キャパシタ群 13の放電開始時とは、キャパシタ群 13内の全 EDLCがほぼ満 充電の時であるが、キャパシタ群 13内の全 EDLCが満充電の時や、全ての回路ブロ ックの EDLCが並列接続時に DC— ACインバータ 18の入力下限電圧を越えた程度 にキャパシタ群 13内の各 EDLCに電荷が蓄積されている時も含まれる。
[0062] 制御回路 17は、前述の第 3過程と第 6過程とを所定のインターバル時間(例えば、 5秒)経過毎に行うようになっている。なお、インターバル時間を 5秒以外の所定の時 間としてもよい。また、このインターバル時間はコンデンサ(EDLC)の容量を考慮して 所定の時間に定めることが好ましい。
[0063] さらに、制御回路 17は、各回路ブロックのキャパシタ端子間電圧を揃えるために、 キャパシタ群 13の充電時および放電時において、キャパシタ端子間電圧検出回路 1 6で検出された各回路ブロックの EDLCの端子間電圧のうちで、最小の端子間電圧 の EDLCの端子間電圧を基準とし、その回路ブロック中の他の EDLCの端子間電圧 力 その最小端子間電圧値に許容値を加えた電圧値を越えた場合にその越えた ED LCを強制放電させるように、均圧回路群 14を制御する第 7過程を行うようになって 、 る。
[0064] 制御回路 17は、前述の第 7過程を所定のインターバル時間(例えば、 5秒)経過毎 に行うようになっている。なお、インターバル時間を 5秒以外の所定の時間としてもよ い。また、このインターバル時間はコンデンサ (EDLC)の容量を考慮して所定の時間 に定めることが好ましい。制御回路 17は本発明における制御手段に相当する。
[0065] 図 7に示すように、キャパシタ群 13の各回路ブロック間には、通電 Z非通電を切り 替えるスィッチ 23が備えられている。制御回路 17は、それらのスィッチ 23のうちで、 E DLCが並列接続された回路ブロック間に位置するスィッチ 23を非通電とする。
[0066] 均圧回路群(並列モニタ回路) 14は、図 8に示すように、キャパシタ群 13を構成す る各電気二重層コンデンサ (EDLC) Cl、 C2、 · · ·にそれぞれ並列接続される複数 個の均圧回路 14A、 14B、 · · ·力 構成されている。各均圧回路 14A、 14B、 · · ·は 同じ構成であるので、以下では均圧回路 14Aを例に採って説明する。
[0067] 均圧回路 14Aは、抵抗 20および電解効果トランジスタ (FET) 21を直列接続してな り、コンデンサ C1の両端子をバイパスする放電経路と、この放電経路を開閉制御す る放電制御回路 22とから構成されている。放電制御回路 22は、コンデンサ C1の端 子電圧を監視しており、この端子電圧が所定電圧 (電気二重層コンデンサの耐電圧) を越えると、 FET21に制御信号を与えて導通状態にすることにより、放電経路を閉状 態にしてコンデンサ C1を強制放電させる。各均圧回路 14A、 14B、 · · ·は、それぞれ に対応した電気二重層コンデンサ Cl、 C2、 · · ·が過充電に陥るのを阻止する。各均 圧回路 14A、 14B、 · · ·は、本発明における過充電防止手段に相当する。
[0068] なお放電制御回路 22の役割を制御回路 17が果たす構成としても良い。すなわち キャパシタ端子間電圧検出回路 16で検出されたコンデンサ CIの端子電圧が所定電 圧 (電気二重層コンデンサの耐電圧)を越えると、制御回路 17が FET21に制御信号 を与えて導通状態にすることにより、放電経路を閉状態にしてコンデンサ C1を強制 放電させる構成としても良 ヽ。
[0069] 更に、充電動作時における均圧回路 14Α、 14Β、 · · ·の機能を説明する。規格上 は同容量の EDLCであっても、実際には、その容量にバラツキがあるので、充電時間 は EDLCごとに異なることがわかる。したがって、 1つの EDLCが満充電になったとし ても、他の EDLCは満充電に至っていない場合もある。そこで、上述したように、全て の EDLCに均圧回路を設けることにより、 1つの EDLCが満充電に達した時点で全 E DLCの充電を終了することなぐ全ての EDLCを満充電にすることができる。
[0070] 次に電力変換部 10Bの構成を説明する。図 6に示すように、電力変換部 10Bは、 直流—交流(DC— AC)インバータ 18を含む。 DC— ACインバータ 18は、直流入力電 圧を交流出力電圧に変換して負荷 12に与える。 DC— ACインバータ 18は本発明に おける直流 交流変換手段に相当する。
[0071] ここで、以後の説明を簡単化するために、図 9 (a)のような 3つの回路ブロック(略し て 3ブロックとも言う)力もなるキャパシタ群 13を備えた蓄電装置を例にとって説明す る。つまり、前述したキャパシタ群 13および直並列切り換え回路 15の各スィッチ 24が 3回路ブロック力もなる構成を例にとって説明する。また以下では、閉じているスイツ チ 23およびスィッチ 24のみを表示し、図 9 (a)を図 9 (b)のように表現する。
[0072] 図 9 (a)の回路構成の場合、 1つの回路ブロックの EDLCのみを直列接続し、 2つの 回路ブロックの EDLCを並列接続するパターンには図 10のように 3種の接続パター ンが存在する。
[0073] また 2つの回路ブロックの EDLCを直列接続し、 1つの回路ブロックの EDLCのみを 並列接続するパターンには図 11のように 3種が存在し、さらにすベての EDLCを直 列接続する図 12の接続パターン、およびすベての回路ブロックの EDLCを並列接続 する前述した図 9のパターンを合わせると合計 8種(= 23)の接続パターンが存在する ことになり、本実施例装置ではこれら 8種の接続パターンの中から最適な接続パター ンに適宜に切り換えることができる。 [0074] なお,以下の説明では図 13 (a)のように、 1つの回路ブロック内の EDLCが直列接 続されている場合には各 EDLCの端子間電圧の合計電圧 Vbを、また図 13 (b)のよう に、 1つの回路ブロック内の EDLCが並列接続されている場合には、各 EDLCの端 子間電圧の平均値電圧 Vbを「ブロック電圧」と呼ぶことにする。
[0075] さて,上記のような回路ブロックを n段接続した場合、 EDLCの接続のパターン総数 は 2nとなり、回路ブロック数が増加するほどそのパターン数も増加することになる。接 続パターン数が増加することによって選択肢が増え、多数の接続パターンの中から 最適な接続パターンが選択されることによって、 EDLCが並列接続へと移行したプロ ック内のその EDLCを再び直列接続に戻し、他の回路ブロック内の EDLCを並列接 続へと切り換えることが可能となり、すべてのキャパシタ (EDLC)の端子間電圧のば らっきを極力抑えることができる。
[0076] 図 14に回路ブロックを n段接続した場合の接続パターンの一例を示す。図 14 (a) はすべての EDLCを直列接続した場合、図 14 (b)は 1回路ブロックの EDLCのみを 並列接続した場合、図 14 (c)は 2回路ブロックの EDLCのみを並列接続した場合の 例である。
[0077] 図 1に示した従来の回路方式では、例えば充電時に EDLCが直列接続力 並列接 続へと移行したブロックの、移行直後のブロック電圧は、直列接続の時よりも極端に 低くなることがある。また逆に放電時には EDLCが並列接続カゝら直列接続へと移行し たブロックの、移行直後のブロック電圧は、並列接続時よりも極端に高くなることがあり 、蓄電装置の出力電圧変動幅が大きくなることがあった。
[0078] しかし,本方式では一定期間毎に各キャパシタ (EDLC)の端子間電圧をキャパシ タ端子間電圧検出回路 16でモニタし、多様な接続パターンの中で、充電時にはプロ ック電圧が最も高い回路ブロックを並列接続に移行させ、放電時にはブロック電圧が 最も高い回路ブロックを直列接続に移行させる。これを繰り返すことにより、各ブロック 電圧のばらつきを抑制することができ、さらには全てのキャパシタ (EDLC)の端子間 電圧のばらつきを極力抑えることができ、均圧回路群(並列モニタ回路) 14による均 圧化損失を抑えることができる。
[0079] ここで、制御回路 17による回路ブロックの直並列切り替え制御についてもう少し詳 細に説明する。
[0080] <回路ブロックの直並列切り替え制御 >
従来方式では、蓄電装置の出力電圧力インバータの入力電圧範囲の下限あるい は上限に近づいた場合に、直並列の切り換えが行われ、例えば充電過程において はー且並列接続されたブロックは直列接続に戻ることはな力つた。一方、本方式では 、制御回路 17を備えているので、多数の直並列の接続パターンを実現でき、最適な 回路ブロックの EDLCの直並列切り換えを行うことができる。すなわち、充電過程に おいては、ブロック電圧が最も大きい回路ブロック力 EDLCが並列に接続され、次 の切り換え時には、その時点で EDLCが直列接続されている回路ブロックのその ED LCを並列に戻すことも含めて、最適な接続パターン (直並列パターン)の選定が行 われて切り換わる。また放電時においても同様で、ブロック電圧が最も大きい回路ブ ロック力 直列に接続され、次の切り換え時には、その時点で EDLCが直列接続され ているブロックのその EDLCを並列に戻すことも含めて、最適な接続パターンの選定 が行われて切り換わる。
[0081] もう少し詳細に記すと、本蓄電装置では、制御回路 17の指令により、一定のインタ 一バル (例えば 5秒)毎に全キャパシタ (EDLC)の端子間電圧が計測され、最適な直 並列切り換えが行われる。なお、インターバルを置かず、常時、全キャパシタの端子 間電圧を計測し続けてもょ ヽ。
[0082] 充電過程における切り換え制御は、例えば全ての EDLCの電荷が「0」の時、全て の EDLCが直列接続されたパターンから充電が開始される。ある程度充電が行われ て、蓄電装置の出力電圧が DC— ACインバータ 18の入力電圧範囲の上限 (例えば 15[v])〖こ近づく、つまり 14. 9[v]に達すると、ブロック電圧が最も大きい 1つの回路ブ ロックの EDLCが並列接続され、引き続き充電が行われる力 以後、一定のインター バル (例えば 5秒)毎に全キャパシタ (EDLC)の端子間電圧が計測され、均等に各 回路ブロックに電荷が蓄積され、ブロック電圧のばらつきが最も少なくなるように、 ED LCが並列接続される 1つの最適な回路ブロックが選定され、直並列の切り換えが行 われる。
[0083] 全ての回路ブロックに均等に電荷が蓄積され、さらに充電が継続されて、蓄電装置 の出力電圧が再び DC— ACインバータ 18の入力電圧範囲の上限(例えば 15[v])に 近づぐつまり 14. 9[v]に達すると、 1つの回路ブロックの EDLCを並列接続するだけ では対応できなくなるので、次には 2つの回路ブロックの EDLCが並列に接続され、 充電が «続される。その際には、ブロック電圧の大きい 2つの回路ブロックの EDLC が並列接続に移行する。以後、同様に EDLCが並列接続するブロックを増やしなが ら、全てのブロックの EDLCが並列接続に移行するまで充電が続けられる。
[0084] また放電過程では、例えば全ての EDLCが満充電の時、全ての EDLCが並列接 続された接続パターン力 放電が開始される。ある程度放電が行われて、蓄電装置 の出力電圧が DC— ACインバータ 18の入力電圧範囲の下限(例えば 10. 5[v])に 近づぐつまり 10. 6[v]に達すると、ブロック電圧が最も大きい 1つの回路ブロックの E DLCが直列に接続され、放電が継続される。
[0085] 引き続き放電が行われるが、一定のインターバル (例えば 5秒)毎に全キャパシタ(E DLC)の端子間電圧が計測され、均等に各ブロックの電荷が放電されるように、 EDL Cが直列接続される 1つの回路ブロックの選定と切り換えが行われる。
[0086] 全ての回路ブロックの電荷が均等に放電され、さらに放電が継続されて、蓄電装置 の出力電圧が再び DC— ACインバータ 18の入力電圧範囲の下限(例えば 10. 5[v] )に近づぐつまり 10. 6[v]に達すると、 1つの回路ブロックの EDLCを直列接続する だけでは対応できなくなるので、次には 2つの回路ブロックの EDLCが直列に接続さ れ、放電が継続される。その際には、ブロック電圧が大きい 2つの回路ブロックの ED LCが直列接続に移行する。以後、同様に EDLCが直列接続する回路ブロックを増 やしながら、全ての回路ブロックが直列接続に移行するまで放電が続けられる。
[0087] 上記のような充電時の直並列切り換えの流れを図 15に、放電時の直並列の切り換 えの流れを図 16に示す。
[0088] 図 15に示すように、ステップ S1では、キャパシタ群 13の全ブロックの EDLCを直列 接続とした状態で充電を開始する。つまり、 EDLCが並列接続となっている回路プロ ックの数である並列ブロック数 jは「0」である。ステップ S 1は本発明における第 1過程 に相当する。ステップ S2では、蓄電装置の出力電圧 Vを測定する。ステップ S3では
t
、蓄電装置の出力電圧 Vが DC— ACインバータ 18の入力上限電圧 V に達したか
t tmax どうかを検出し、達していなければステップ S3Aに進み、このステップ S3Aでインター バル(例えば 5秒)の経過を待ってステップ S2に戻り、達して!/ヽればステップ S4に進 む。
[0089] ステップ S4では、並列ブロック数 jに「1」を加算する。ステップ S5では、各キャパシタ
(EDLC)の端子間電圧を計測し、ブロック電圧を求める。ステップ S6では、ブロック 電圧の大きい順に j個の回路ブロックの EDLCを並列接続に切り換える。ステップ S7 では、蓄電装置の出力電圧 Vを測定する。ステップ S8では、蓄電装置の出力電圧 V
t
力 ¾C— ACインバータ 18の入力上限電圧 V に達したかどうかを検出し、達してい t tmax
なければステップ S10に進み、このステップ S10でインターバル(例えば 5秒)の経過 を待ってステップ S 5に戻り、達して!/、ればステップ S 9に進む。
[0090] ステップ S9では、並列ブロック数 jが回路ブロックの総数 nに達したかどうかを判定 する。達していればステップ S 11に進み、達していなければステップ S4に戻る。なお 、ステップ S3〜S9は本発明における第 2過程に、ステップ S5〜S8, S10は本発明 における第 3過程に相当する。
[0091] ステップ S11では、キャパシタ群 13に電流供給すること、つまり、キャパシタ群 13へ の充電を停止し、本充電過程を終了する。
[0092] 次に放電過程について説明する。図 16に示すように、ステップ S21では、キャパシ タ群 13の全ブロックの EDLCを並列接続とした状態で放電を開始する。つまり、 EDL Cが直列接続となって!/、る回路ブロックの数である直列ブロック数 kは「0」である。ス テツプ S21は本発明における第 4過程に相当する。ステップ S22では、蓄電装置の 出力電圧 Vを測定する。ステップ S23では、蓄電装置の出力電圧 Vが DC— ACイン
t t
バータ 18の入力下限電圧 V に達した力どうかを検出し、達していなければステップ
tmin
S23Aに進み、このステップ S23Aでインターバル(例えば 5秒)の経過を待ってステ ップ S22に戻り、達していればステップ S24に進む。
[0093] ステップ S24では、直列ブロック数 kに「1」を加算する。ステップ S25では、各キャパ シタ(EDLC)の端子間電圧を計測し、ブロック電圧を求める。ステップ S26では、ブ ロック電圧の大きい順に k個の回路ブロックの EDLCを直列接続に切り換える。ステツ プ S27では、蓄電装置の出力電圧 Vを測定する。ステップ S28では、蓄電装置の出
t 力電圧 Vが DC— ACインバータ 18の入力下限電圧 V に達したかどうかを検出し、 t tmin
達して 、なければステップ S30に進み、このステップ S30でインターバル(例えば 5秒 )の経過を待ってステップ S25に戻り、達していればステップ S29に進む。
[0094] ステップ S29では、直列ブロック数 kが回路ブロックの総数 nに達したかどうかを判定 する。達していればステップ S31に進み、達していなければステップ S24に戻る。な お、ステップ S23〜S29は本発明における第 5過程に、ステップ S25〜S28, S30は 本発明における第 6過程に相当する。
[0095] ステップ S31では、キャパシタ群 13からの出力、つまり、キャパシタ群 13の放電を 停止し、本放電過程を終了する。
[0096] なお、充電と放電がランダムに繰り返される場合には、直流電流源 11から蓄電装置 への入力電流と蓄電装置から DC— ACインバータ 18への出力電流を絶えず検知し 、充電モードと放電モードの切り換えを判断することで、充電と放電がランダムに繰り 返される構成にぉ ヽても好適に充電と放電を行うことができる。この充電と放電力ラン ダムに繰り返される場合の直並列切り換えの流れについて図 17を用いて説明する。
[0097] 図 17に示すように、ステップ S41では、キャパシタ群 13の全ブロックの EDLCを直 列接続とした状態で充電を開始する。つまり、蓄電装置の出力 (放電)停止状態であ り、 EDLCが並列接続となっている回路ブロックの数である並列ブロック数 jは「0」で ある。ステップ S41は本発明における第 1過程に相当する。ステップ S42では、蓄電 装置の出力電圧 Vを測定する。ステップ S43では、蓄電装置の出力電圧 Vが DC—
t t
ACインバータ 18の入力上限電圧 V に達したかどうかを検出し、達していなければ
tmax
ステップ S44〖こ進み、このステップ S44でインターバル(例えば 5秒)の経過を待って ステップ S42に戻り、達していればステップ S44に進む。
[0098] ステップ S45では、蓄電装置の出力(放電)を開始する。ステップ S46では、並列ブ ロック数 jに「1」を加算する。ステップ S47では、各キャパシタ (EDLC)の端子間電圧 を計測し、ブロック電圧を求める。ステップ S48では、ブロック電圧の大きい順に j個の 回路ブロックの EDLCを並列接続に切り換える。ステップ S49では、直流電流源 11 から蓄電装置への入力電流 I 1S 蓄電装置力も DC— ACインバータ 18への出力電
in
流 I よりも大きいあるいは等しい場合にはステップ S50に進み、そうでなければステ ップ S55に進む。ステップ S50では、蓄電装置の出力電圧 Vを測定する。ステップ S
t
51では、蓄電装置の出力電圧 Vが DC— ACインバータ 18の入力上限電圧 V に
t tmax 達したかどうかを検出し、達していなければステップ S53に進み、このステップ S53で インターバル(例えば 5秒)の経過を待ってステップ S47に戻り、達して!/ヽればステツ プ S52に進む。
[0099] ステップ S52では、並列ブロック数 jが回路ブロックの総数 nに達したかどうかを判定 する。達していればステップ S 54に進み、達していなければステップ S46に戻る。ステ ップ S54では、キャパシタ群 13に電流供給すること、つまり、キャパシタ群 13への充 電を停止(入力停止)する。なお、ステップ S43〜S48, S50〜S52は本発明におけ る第 2過程に、ステップ S47, S48, S50, S51, S53は本発明における第 3過程にネ目 当する。ステップ S54は本発明における第 4過程に相当する。
[0100] ステップ S55では、蓄電装置の出力電圧 Vを測定する。ステップ S56では、蓄電装
t
置の出力電圧 Vが DC— ACインバータ 18の入力下限電圧 V に達していなければ
t tmin
ステップ S57〖こ進み、このステップ S57でインターバル(例えば 5秒)の経過を待って ステップ S55に戻り、達していればステップ S58に進む。
[0101] ステップ S58では、キャパシタ群 13への充電を停止(蓄電装置への入力停止)中な らば、キャパシタ群 13への充電を再開(蓄電装置への入力再開)する。ステップ S59 では、各キャパシタ (EDLC)の端子間電圧を計測し、ブロック電圧を求める。このス テツプ S60では、ブロック電圧の大き!/、順に(n+ 1 -j)個の回路ブロックの EDLCを 直列接続に切り換える。
[0102] ステップ S61では、直流電流源 11から蓄電装置への入力電流 I力 蓄電装置から
in
DC— ACインバータ 18への出力電流 I よりも大きいあるいは等しい場合にはステツ
out
プ S62に進み、そうでなければステップ S63に進む。ステップ S63では、蓄電装置の 出力電圧 Vを測定する。なお、ステップ S62では、並列ブロック数 jから「1」を減算す
t
る。その後、ステップ S 50に進む。
[0103] ステップ S64では、蓄電装置の出力電圧 Vが DC— ACインバータ 18の入力下限
t
電圧 V に達したかどうかを検出し、達していなければステップ S67に進み、このステ tmin
ップ S67でインターバル(例えば 5秒)の経過を待ってステップ S59に戻り、達して!/ヽ ればステップ S65に進む。ステップ S65では、並列ブロック数 jから「1」を減算する。そ の後、ステップ S66に進む。
[0104] ステップ S66では、並列ブロック数 jが「0」であるかどうかを判定する。「0」であれば ステップ S68に進み、「0」でなければステップ S59に戻る。なお、ステップ S56, S59
, S60, S63〜S66は本発明における第 5過程に、ステップ S59, S60, S63, S64,
S67は本発明における第 6過程に相当する。
[0105] ステップ S68では、キャパシタ群 13の放電を停止(蓄電装置の出力停止)し、ステツ プ S42に戻る。
[0106] 次に、本実施例の蓄電装置におけるキャパシタ (EDLC)の端子間電圧の常時補 正について以下に説明する。
[0107] また本方式では、制御回路 17は、各 EDLCの端子間電圧のばらつきを一定のイン ターバル (例えば 5秒)毎に監視し、均圧回路群(並列モニタ回路) 14を制御すること によって、各 EDLCの端子間電圧が常時、一定範囲内に収まるように補正している。 こうすることにより、直並列切り換えによる横流れ電流によるスィッチ 24の破壊を防止 することができる。また端子間電圧が大きくばらつく前に常時補正をしておくことにより 、均圧化損失を抑えることができる。
[0108] この常時補正は、各回路ブロックのキャパシタの端子間電圧のばらつきを抑えるた めの操作で、回路ブロック毎に行われる。すなわち、各回路ブロックの EDLCの中で 端子間電圧が最も低い EDLCの端子間電圧 V を基準とし、その回路ブロックにお
Cmin
ける他の EDLCの端子間電圧がこの V より予め設定された補正値以上に高い場
Cmin
合にその EDLCに対して強制的に放電を行う。すなわち、 1つの回路ブロックが 2個 のキャパシタ (EDLC)で構成されて 、る場合には、端子間電圧が高 、方のキャパシ タの端子間電圧力 端子間電圧の低!ヽキャパシタの電圧値に許容値 Xを加えた電圧 値以上の場合に、端子間電圧が高いキャパシタの強制放電を行い、 2つのキャパシ タの端子間電圧を揃える。
[0109] また図 7などに表示されている各キャパシタ (EDLC)のそれぞれ力 複数個のキヤ パシタを直並列接続したものである場合には、以下の式(1)に示した条件で強制放 電を行う。ただし、 Nは回路ブロック内のキャパシタ総数、 iはブロック内のキャパシタ 番号、 V はキャパシタ番号 iの EDLCの端子間電圧、 Xは許容値である。この条件を
Ci
満たすキャパシタ iの強制放電を行う。
V >V +X · · · (1)
Ci Cmin
V =min (V , V ,…, V )
Cmin CI C2 CN
[0110] ここで従来方式と本方式の比較を行う。従来方式と本方式を比較するために、 12 個のキャパシタ (EDLC)を用いた蓄電装置にっ 、て検討した。各キャパシタ (EDLC )の耐電圧を 2. 3[V]とし、 12個のキャパシタのうち、第 1ブロックの 1個の EDLCだけ が 10%の容量誤差を持って 、る場合、すなわち 11個のキャパシタ (EDLC)の静電 容量が 3000[F]、 1個のキャパシタ(EDLC)の静電容量が 2700[F]の場合の蓄電装 置の充放電過程にっ 、てシミュレーションした。
[0111] 2[A]の定電流源を用いて充電し、満充電後に定電流源を切り離し、インバータを 含めた負荷を 36Wとして、インバータの入力下限電圧まで放電した場合の実施例装 置での充放電の時間的変化のシミュレーション結果を図 18,図 19に示す。また、実 施例装置と同条件での従来方式の各キャパシタについての充放電の時間的変化の シミュレーション結果を図 4に、従来方式の蓄電装置の出力電圧についての充放電 の時間的変化のシミュレーション結果を図 5に示す。なお、インバータの入力電圧範 囲は 10. 5〜15[V]とした。また本方式における全キャパシタの端子電圧計測と、均 等に各ブロックの電荷が充放電されるように EDLCが直並列接続されるブロックの選 定および切り換えとは、インターバル (例えば 5秒)毎に行われるものとした。
[0112] 図 4,図 5はそれぞれ従来方式の場合の 12個の各キャパシタの端子間電圧の時間 的推移と蓄電装置の出力電圧の時間的推移を示している。また図 18,図 19はそれ ぞれ本方式を用いた場合の 12個の各キャパシタの端子間電圧の時間的推移と蓄電 装置の出力電圧の時間的推移を示している。
[0113] 以上の結果をみると、本方式の場合には従来方式より充電時間が 16%以上 (従来 方式では充電時間が 5015秒、本方式では充電時間が 4210秒である)短縮されて いることがわかる。このことは、例えば直流電流源 11が太陽電池の場合、太陽電池の 面積が 16%以上少なくて済むことを意味しており、太陽光発電 ·蓄電システム全体の コスト低減に大きな効果がある。 [0114] また図 4に示すように、従来方式では 12個の各キャパシタの端子間電圧がばらつ いており、耐電圧に達したキャパシタの電荷が均圧回路の抵抗によって無駄に消費 されていることがわかる。すなわち均圧化損失の大きいことがわかる。これに対して、 図 18に示す本方式では 12個の各キャパシタの端子間電圧が常時、ほぼ同電圧で 推移しながら充放電が行われていることがわかる。この差が充電時間の差となって顕 著に表れているのである。これらの結果から、本方式における均圧化損失は従来の バンク切り換え方式に比べて極めて小さいことが明らかになった。また、従来方式の 平均放電深度は 81. 8%であり、本方式の平均放電深度は 85. 7%であり、放電深 度も明らかに本方式の方が向上して 、る。
[0115] なお、放電深度とは EDLCに蓄積された蓄電エネルギーの利用効率を表す指標の 一つであり、次の式(2)で定義される。ここで U は最大蓄電エネルギー量、 U は
Max rem 残存蓄電エネルギー量である。
放電深度 [%] = (1— U /U ) X 100 · · · (2)
rem Max
[0116] ここで EDLCの蓄電エネルギー量は式(3)で定義される。ただし Vは EDLCの端 c
子間電圧である。
U = CV
cソ 2 · · · (3)
[0117] 式(2)と式(3)力 式 (4)が得られる。ただし、 V は最大蓄電エネルギー量に対
Cmax
応する EDLCの端子間電圧 (耐電圧)、 V は残存蓄電エネルギー量に対応する E
Crem
DLCの端子間電圧である。
放電深度 [%] = (1— V V λ) X 100
Crem Cmax
[0118] 本実施例では、図 7に示すように、キャパシタ群 13の直列接続された各回路ブロッ クのブロック間にスィッチ 23を設け、制御回路 17は、それらのスィッチ 23のうちで、 E DLCが並列接続された回路ブロック間に位置するスィッチ 23を非通電としており、当 該スィッチ 23を設けて 、な 、場合と比べて以下の点で優れて!/、る。
[0119] 例えば、図 20のような 3ブロック力も構成される場合について説明する。図 20 (a)は 図 1の回路つまり回路ブロック間スィッチ無しの方式であり、図 20 (b)は本方式である 。どちらも第 1段ブロックが直列接続されている。ここでそれぞれの第 2段ブロックのキ ャパシタを C , C ,第 3のブロックのキャパシタを C , Cとすると、回路ブロック間スイツ チ無しの方式で図 17(a)に示す波線部の合成容量 Cは式(5)となる。
a
C =(CC +CC +CC +CC)/(C +C +C +C)
a 1 3 1 4 2 3 2 4 1 2 3 4
•••(5)
[0120] また本方式である図 20(b)の波線部の合成容量 Cは式 (6)となる。
b
C = (C C C +C C C +C C C +C C C )
b 1 2 3 1 3 4 1 2 4 2 3 4
/(CC +CC +CC +CC) · · · (6)
1 3 1 4 2 3 2 4
[0121] 通常、蓄電装置を構成する場合には同一規格のキャパシタを用いるので、ここでキ ャパシタの規格容量を Cとし、それぞれのキャパシタの容量誤差を Δ i (i = 1 ,2,… Ai《C)とすると, C1 = C+A1, C2 = C+ Δ2, C3 = C+ Δ3, C4=C+A4となる。
[0122] これらを(5)式, (6)式に代入し、 AiAj(i=l,2,---4, j=l,2,---4, i≠j), AiAjAkO
= 1,2,···4, j=l,2,---4, k=l,2,---4, i≠j, j≠k, k≠i)の項を微少項として無視し、 Δ1 Δ2Δ3Δ4=厶ぉ<と、
Ca = 2C(2C+ A)/4C+ Δ
Cb = C2(4C + 3A)/2C(2C+ Δ)
となる。
[0123] したがって、 Ca— C =C2A2/2C(2C + Δ) (4C + Δ)≥0となり、回路ブロック間 b
スィッチ無しの方式である図 20 (a)に示す波線部の合成容量 Cの方が、本方式であ a
る図 20(b)の波線部の合成容量 Cより常に大きいことがわかる。
b
[0124] 一般的に充電過程においては、 EDLCが並列接続されている回路ブロックの各 E DLCに蓄積される電荷量は、 EDLCが直列接続されている回路ブロックの各 EDLC に蓄積される電荷量の半分となるので、 EDLCが並列接続された回路ブロックの充 電速度は急激に低下する。しかし本方式である図 20(b)の波線部の合成容量 Cは、 b 回路ブロック間スィッチ無しの方式である図 20 (a)の波線部の合成容量 Cより小さい a ので、回路ブロック間スィッチ無しの方式より本方式の方力 EDLCが並列接続され た回路ブロックの EDLCの充電に要する時間が短くて済む。
[0125] なお、図 1の回路で本方式の制御方法を適用しても、充電時間が 11%短縮され( 図 1の回路で本方式の制御方法を適用した場合の充電時間は 4465秒に短縮され) 、放電深度も明らかに向上し (図 1の回路で本方式の制御方法を適用した場合は放 電深度 85. 9%であった)、図 1の回路においても本方式の制御方法の有用性が確 f*i¾ れ 。
[0126] 本発明は、上記実施形態に限られることはなぐ下記のように変形実施することがで きる。
[0127] (1)上述した実施例では、 DC— ACインバータ 18を採用している力 DC— DCコ ンバータを採用しても良い。
[0128] (2)上述した実施例では、キャパシタ群 13の各回路ブロックは 2個のキャパシタ (E
DLC)を備えたものとしている力 3個以上としてもよいし、一部の回路ブロックのキヤ パシタ(EDLC)の数が他の回路ブロックのキャパシタ(EDLC)の数と違う場合にも適 用可能である。
[0129] (3)上述した実施例では、キャパシタ群 13の各回路ブロックでのキャパシタとして E DLCを採用して 、るが、他の種類のコンデンサなどとしてもよ 、。
産業上の利用可能性
[0130] 以上のように、本発明は、各キャパシタの静電容量誤差に依存しな!、蓄電装置を 構築でき、充放電効率が高ぐより安価なシステムを構築できる。なお、扱う電力の規 模が大きくなる場合においても有用である。

Claims

請求の範囲
複数個のキャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列 接続した回路構成を備える蓄電手段と、
蓄電手段力 の直流出力電圧を交流出力電圧に変換して負荷に与える直流 交 流変換手段と、
蓄電手段の回路ブロック毎の複数個のキャパシタを並列接続した状態とそれらを直 列接続した状態とに切り換える直並列切り換え手段と、
蓄電手段のキャパシタの端子電圧が耐電圧値になるとそのキャパシタを強制放電 させるものであって、蓄電手段のキャパシタにそれぞれ並列接続された複数個の過 充電防止手段と、
蓄電手段の各回路ブロックの複数個のキャパシタの端子間電圧を検出する端子間 電圧検出手段と、
端子間電圧検出手段で検出された各キャパシタの端子間電圧に基づいて、回路ブ ロックの電圧であるブロック電圧を回路ブロック毎に求めるブロック電圧求出手段と、 蓄電手段の出力電圧を検出し、その電圧値に応じて直並列切り換え手段を制御す る制御手段と、
を備え、
制御手段は、蓄電手段の充電時の場合には、
蓄電手段への充電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを直 列接続するように直並列切り換え手段を制御する第 1過程と、
蓄電手段の出力電圧が直流 交流変換手段の入力上限電圧に達すると、ブロック 電圧求出手段で求出したブロック電圧の高い順に j個(ただし、 jは 1回の充電に際し ての入力上限電圧に達した回数であり、最大で nとする自然数)の回路ブロックの複 数個のキャパシタを並列接続するように直並列切り換え手段を制御する第 2過程と、 蓄電手段の出力電圧が再び直流 交流変換手段の入力上限電圧に達するまで の間においても、ブロック電圧求出手段で求出したブロック電圧の高い順に j個の回 路ブロックの複数個のキャパシタを並列接続するように直並列切り換え手段を制御す る第 3過程と、 を行い、
さらに、制御手段は、蓄電手段の放電時の場合には、
蓄電手段の放電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを並列 接続するように直並列切り換え手段を制御する第 4過程と、
蓄電手段の出力電圧が直流 交流変換手段の入力下限電圧に達すると、ブロック 電圧求出手段で求出したブロック電圧の高い順に k個(ただし、 kは 1回の放電に際し ての入力下限電圧に達した回数であり、最大で nとする自然数)の回路ブロックの複 数個のキャパシタを直列接続するように直並列切り換え手段を制御する第 5過程と、 蓄電手段の出力電圧が再び直流 交流変換手段の入力下限電圧に達するまで の間においても、ブロック電圧求出手段で求出したブロック電圧の高い順に k個の回 路ブロックの複数個のキャパシタを直列接続するように直並列切り換え手段を制御す る第 6過程と、
を行うことを特徴とするキャパシタを用いた蓄電装置。
複数個のキャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列 接続した回路構成を備える蓄電手段と、
蓄電手段からの直流出力電圧を所定の直流出力電圧に変換して負荷に与える直 流一直流変換手段と、
蓄電手段の回路ブロック毎の複数個のキャパシタを並列接続した状態とそれらを直 列接続した状態とに切り換える直並列切り換え手段と、
蓄電手段のキャパシタの端子電圧が耐電圧値になるとそのキャパシタを強制放電 させるものであって、蓄電手段のキャパシタにそれぞれ並列接続された複数個の過 充電防止手段と、
蓄電手段の各回路ブロックの複数個のキャパシタの端子間電圧を検出する端子間 電圧検出手段と、
端子間電圧検出手段で検出された各キャパシタの端子間電圧に基づいて、回路ブ ロックの電圧であるブロック電圧を回路ブロック毎に求めるブロック電圧求出手段と、 蓄電手段の出力電圧を検出し、その電圧値に応じて直並列切り換え手段を制御す る制御手段と、 を備え、
制御手段は、蓄電手段の充電時の場合には、
蓄電手段への充電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを直 列接続するように直並列切り換え手段を制御する第 1過程と、
蓄電手段の出力電圧が直流一直流変換手段の入力上限電圧に達すると、ブロック 電圧求出手段で求出したブロック電圧の高い順に j個(ただし、 jは 1回の充電に際し ての入力上限電圧に達した回数であり、最大で nとする自然数)の回路ブロックの複 数個のキャパシタを並列接続するように直並列切り換え手段を制御する第 2過程と、 蓄電手段の出力電圧が再び直流一直流変換手段の入力上限電圧に達するまで の間においても、ブロック電圧求出手段で求出したブロック電圧の高い順に j個の回 路ブロックの複数個のキャパシタを並列接続するように直並列切り換え手段を制御す る第 3過程と、
を行い、
さらに、制御手段は、蓄電手段の放電時の場合には、
蓄電手段の放電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを並列 接続するように直並列切り換え手段を制御する第 4過程と、
蓄電手段の出力電圧が直流一直流変換手段の入力下限電圧に達すると、ブロック 電圧求出手段で求出したブロック電圧の高い順に k個(ただし、 kは 1回の放電に際し ての入力下限電圧に達した回数であり、最大で nとする自然数)の回路ブロックの複 数個のキャパシタを直列接続するように直並列切り換え手段を制御する第 5過程と、 蓄電手段の出力電圧が再び直流一直流変換手段の入力下限電圧に達するまで の間においても、ブロック電圧求出手段で求出したブロック電圧の高い順に k個の回 路ブロックの複数個のキャパシタを直列接続するように直並列切り換え手段を制御す る第 6過程と、
を行うことを特徴とするキャパシタを用いた蓄電装置。
[3] 請求項 1または 2に記載の装置において、制御手段は、第 3過程と第 6過程とを所 定のインターバル時間経過毎に行うことを特徴とするキャパシタを用いた蓄電装置。
[4] 請求項 1から 3のいずれか一つに記載の装置において、制御手段は、蓄電手段へ の入力電流と、蓄電手段からの出力電流との比較に基づいて、蓄電手段の充電と放 電との制御を切り換えることを特徴とするキャパシタを用いた蓄電装置。
[5] 請求項 1から 4の 、ずれか一つに記載の装置にぉ 、て、
蓄電手段の各回路ブロック間に、通電 Z非通電を切り替えるスィッチを備え、 制御手段は、それらのスィッチのうちで、キャパシタが並列接続された回路ブロック 間に位置するスィッチを非通電とすることを特徴とするキャパシタを用いた蓄電装置。
[6] 請求項 1から 5の!、ずれか一つに記載の装置にぉ 、て、
制御手段は、蓄電手段の充電時および放電時において、端子間電圧検出手段で 検出された各回路ブロックのキャパシタの端子間電圧のうちで、最小の端子間電圧 のキャパシタの端子間電圧を基準とし、その回路ブロック中の他のキャパシタの端子 間電圧が、その最小端子間電圧値に許容値を加えた電圧値を越えた場合にその越 えたキャパシタを強制放電させるように、過充電防止手段を制御する第 7過程を行う ことを特徴とするキャパシタを用いた蓄電装置。
[7] 請求項 6に記載の装置において、制御手段は、第 7過程を所定のインターバル時 間経過毎に行うことを特徴とするキャパシタを用いた蓄電装置。
[8] キャパシタを用いた蓄電装置の制御方法にぉ 、て、
蓄電手段の充電時の場合には、
複数個のキャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列 接続した回路構成を備える蓄電手段への充電開始時に、蓄電手段の各回路ブロック の複数個のキャパシタを直列接続する第 1過程と、
蓄電手段の出力電圧が、蓄電手段からの直流出力電圧を交流出力電圧に変換し て負荷に与える直流 交流変換手段の入力上限電圧に達すると、求出したブロック 電圧の高い順に j個(ただし、 jは 1回の充電に際しての入力上限電圧に達した回数で あり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを並列接続する第 2過程と、
蓄電手段の出力電圧が再び直流 交流変換手段の入力上限電圧に達するまで の間においても、求出したブロック電圧の高い順に j個の回路ブロックの複数個のキヤ パシタを並列接続するように直並列切り換え手段を制御する第 3過程と、 を行い、
さらに、蓄電手段の放電時の場合には、
蓄電手段の放電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを並列 接続する第 4過程と、
蓄電手段の出力電圧が直流 交流変換手段の入力下限電圧に達すると、求出し たブロック電圧の高い順に k個(ただし、 kは 1回の放電に際しての入力下限電圧に 達した回数であり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを直 列接続する第 5過程と、
蓄電手段の出力電圧が再び直流 交流変換手段の入力下限電圧に達するまで の間においても、求出したブロック電圧の高い順に k個の回路ブロックの複数個のキ ャパシタを直列接続する第 6過程と、
を行うことを特徴とするキャパシタを用いた蓄電装置の制御方法。
[9] キャパシタを用いた蓄電装置の制御方法にぉ 、て、
蓄電手段の充電時の場合には、
複数個のキャパシタを有する回路ブロックを n個(ただし、 nは 2以上の自然数)直列 接続した回路構成を備える蓄電手段への充電開始時に、蓄電手段の各回路ブロック の複数個のキャパシタを直列接続する第 1過程と、
蓄電手段の出力電圧が、蓄電手段からの直流出力電圧を所定の直流出力電圧に 変換して負荷に与える直流一直流変換手段の入力上限電圧に達すると、求出した ブロック電圧の高い順に j個(ただし、 jは 1回の充電に際しての入力上限電圧に達し た回数であり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを並列接 続する第 2過程と、
蓄電手段の出力電圧が再び直流一直流変換手段の入力上限電圧に達するまで の間においても、求出したブロック電圧の高い順に j個の回路ブロックの複数個のキヤ パシタを並列接続する第 3過程と、
を行い、
さらに、蓄電手段の放電時の場合には、
蓄電手段の放電開始時に蓄電手段の各回路ブロックの複数個のキャパシタを並列 接続する第 4過程と、
蓄電手段の出力電圧が直流一直流変換手段の入力下限電圧に達すると、求出し たブロック電圧の高い順に k個(ただし、 kは 1回の放電に際しての入力下限電圧に 達した回数であり、最大で nとする自然数)の回路ブロックの複数個のキャパシタを直 列接続する第 5過程と、
蓄電手段の出力電圧が再び直流一直流変換手段の入力下限電圧に達するまで の間においても、求出したブロック電圧の高い順に k個の回路ブロックの複数個のキ ャパシタを直列接続する第 6過程と、
を行うことを特徴とするキャパシタを用いた蓄電装置の制御方法。
PCT/JP2005/019208 2005-10-19 2005-10-19 キャパシタを用いた蓄電装置とその制御方法 WO2007046138A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2005/019208 WO2007046138A1 (ja) 2005-10-19 2005-10-19 キャパシタを用いた蓄電装置とその制御方法
DK05795874.6T DK1947752T3 (da) 2005-10-19 2005-10-19 Ladningslagerindretning med brug af kondensatorer og dens styringsfremgangsmåde
US12/089,603 US7898223B2 (en) 2005-10-19 2005-10-19 Electric power storage system using capacitors and control method thereof including serial-parallel switching means for each circuit block of batteries based on descending order of block voltages
CN2005800518965A CN101297458B (zh) 2005-10-19 2005-10-19 使用电容器的蓄电装置及其控制方法
EP05795874A EP1947752B1 (en) 2005-10-19 2005-10-19 Charge storing device using capacitors and its control method
KR1020087011232A KR100991317B1 (ko) 2005-10-19 2005-10-19 캐패시터를 이용한 축전장치와 그 제어방법
JP2007540858A JP4368924B2 (ja) 2005-10-19 2005-10-19 キャパシタを用いた蓄電装置とその制御方法
ES05795874T ES2394629T3 (es) 2005-10-19 2005-10-19 Dispositivo de almacenamiento de carga que usa condensadores y su método de control
MYPI20064139A MY146871A (en) 2005-10-19 2006-09-12 Electric power storage system using capacitors and control method thereof
TW095138150A TWI395389B (zh) 2005-10-19 2006-10-17 使用電容器的蓄電裝置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019208 WO2007046138A1 (ja) 2005-10-19 2005-10-19 キャパシタを用いた蓄電装置とその制御方法

Publications (1)

Publication Number Publication Date
WO2007046138A1 true WO2007046138A1 (ja) 2007-04-26

Family

ID=37962240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019208 WO2007046138A1 (ja) 2005-10-19 2005-10-19 キャパシタを用いた蓄電装置とその制御方法

Country Status (10)

Country Link
US (1) US7898223B2 (ja)
EP (1) EP1947752B1 (ja)
JP (1) JP4368924B2 (ja)
KR (1) KR100991317B1 (ja)
CN (1) CN101297458B (ja)
DK (1) DK1947752T3 (ja)
ES (1) ES2394629T3 (ja)
MY (1) MY146871A (ja)
TW (1) TWI395389B (ja)
WO (1) WO2007046138A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077040A2 (de) * 2007-12-14 2009-06-25 Forschungszentrum Karlsruhe Gmbh Kondensatorenblock aus miteinander verschaltbaren kondensatoren und verfahren zum be- und entladen desselben
WO2009127377A1 (de) * 2008-04-18 2009-10-22 Forschungszentrum Karlsruhe Gmbh Verfahren zum laden und entladen eines kondensatorenblocks sowie ladestation zum laden und verbraucher zum entladen desselben
JP2011030397A (ja) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd 蓄電装置を用いた電動システム
WO2011052294A1 (ja) * 2009-10-30 2011-05-05 株式会社マキタ 電力供給装置
WO2011132302A1 (ja) * 2010-04-23 2011-10-27 株式会社ジェイピーパワーモジュール 蓄電装置の充電制御方法および放電制御方法
WO2012014281A1 (ja) 2010-07-27 2012-02-02 Takeda Harumi 蓄電装置の充電制御方法および放電制御方法
JP2014524722A (ja) * 2011-08-11 2014-09-22 シズベル テクノロジー エス.アール.エル. モジュール式直流電気エネルギー源によって生成された電気エネルギーを、貯蔵および供給するために生成および使用するシステム、および、システムの管理方法
WO2015189907A1 (ja) * 2014-06-10 2015-12-17 株式会社Kagra 蓄電素子の充電方法および蓄電装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411413B2 (en) 2008-08-28 2013-04-02 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
KR20100023430A (ko) * 2008-08-22 2010-03-04 삼성전자주식회사 탈이온화 장치 및 그 제어방법
JP5440918B2 (ja) * 2009-09-02 2014-03-12 独立行政法人 宇宙航空研究開発機構 バランス回路を備えた蓄電装置
JP4590520B1 (ja) 2009-09-02 2010-12-01 日本蓄電器工業株式会社 交流出力可能な蓄電装置
FR2947112A1 (fr) * 2009-10-29 2010-12-24 Commissariat Energie Atomique Dispositif de recharge d'une batterie d'accumulateurs
US20110279096A1 (en) * 2010-05-17 2011-11-17 Sonntag Jeffrey L Method and apparatus for powering a high current system from a resistive electrical storage device
TWI416841B (zh) * 2010-06-10 2013-11-21 Wistron Corp 儲電裝置及電子裝置
JP5302945B2 (ja) * 2010-11-15 2013-10-02 三菱電機株式会社 車両用電源装置
JP5638926B2 (ja) * 2010-11-30 2014-12-10 ラピスセミコンダクタ株式会社 半導体チップ
CN103518300B (zh) 2010-12-22 2016-07-06 通用电气能源能量变换技术有限公司 例如多电平功率逆变器的电子装置的控制方法和电容器平衡电路
EP2656496B1 (en) 2010-12-22 2019-09-11 GE Energy Power Conversion Technology Limited Mechanical arrangement of a multilevel power converter circuit
KR101295094B1 (ko) * 2011-01-17 2013-08-09 비손에너지 주식회사 하이브리드 풍력 발전 시스템 및 이의 인버터 회로
EP2498368B1 (en) 2011-03-09 2014-08-06 NIM Energy Electrical energy buffering system
DE102011102587A1 (de) * 2011-05-27 2012-11-29 Austriamicrosystems Ag Schaltungsanordnung und Verfahren zum Betreiben einer Anordnung von Energiespeichern,insbesondere von Batterien
US8742729B2 (en) * 2011-06-07 2014-06-03 Flashsilicon Incorporation Rechargeable battery
EP2541728A2 (en) * 2011-06-30 2013-01-02 Kabushiki Kaisha Toyota Jidoshokki Cell balancing device
DE102011089312A1 (de) 2011-12-20 2013-06-20 Robert Bosch Gmbh System und Verfahren zum Laden der Energiespeicherzellen einer Energiespeichereinrichtung
US20140327426A1 (en) * 2012-01-05 2014-11-06 Lightsquare Ltd. Pulse forming network (pfn) having multiple capacitor units for forming a pulse having a multi-level voltage and a method of forming such a pulse
FR2986382B1 (fr) * 2012-02-01 2015-01-16 Intesens Circuit electronique de recuperation, de stockage et de restitution d'energie electrique et le procede associe
US8994331B2 (en) 2012-05-31 2015-03-31 Motorola Solutions, Inc. Method and apparatus for adapting a battery voltage
JP5502938B2 (ja) * 2012-06-19 2014-05-28 株式会社アドバンテスト 試験装置
CN102801191A (zh) * 2012-06-30 2012-11-28 珠海市鹏辉电池有限公司 锂离子电池组均衡方法及系统
JP5867345B2 (ja) * 2012-09-03 2016-02-24 カシオ計算機株式会社 充電装置および充電方法
FR2996965B1 (fr) * 2012-10-11 2017-04-07 Renault Sas Structure pour la modulation de tension d'une batterie et son equilibrage actif
US10381691B1 (en) * 2012-11-15 2019-08-13 Nova Greentech, Inc. Modular battery network systems and methods for managing modular battery network systems
JP6223171B2 (ja) * 2012-12-28 2017-11-01 株式会社半導体エネルギー研究所 蓄電装置の制御システム、蓄電システム、及び電気機器
JP6549569B2 (ja) * 2013-07-12 2019-07-24 イオクサス, インコーポレイテッド 電気化学デバイスのための安定性強化添加剤
FR3013527B1 (fr) * 2013-11-21 2015-11-13 Renault Sas Equilibrage d'une batterie a deux branches avec mise en parallele de nombres differentiels d'elements de stockage
CN103904766B (zh) * 2014-04-04 2016-01-27 哈尔滨工程大学 一种超级电容器和蓄电池混合储能的控制装置及方法
WO2016029202A1 (en) * 2014-08-22 2016-02-25 Pathion Inc. Method and apparatus for performing string-level dynamic reconfiguration in an energy system
KR20160028885A (ko) 2014-09-04 2016-03-14 김주형 발전량에 추종되는 전기 저장장치의 운용 방법
EP3026750A1 (de) * 2014-11-28 2016-06-01 Siemens Aktiengesellschaft Verfahren zum Symmetrieren eines Energiespeichersystems
US9496710B2 (en) * 2014-12-29 2016-11-15 Solarcity Corporation Rapid shutdown solid state circuit for photovoltaic energy generation systems
US10784680B2 (en) 2015-01-23 2020-09-22 Elevate Technologies Corporation Adaptable recharging and lighting station and methods of using the same
US9818552B2 (en) 2015-01-26 2017-11-14 Ioxus, Inc. Additives for reducing ESR gain in electrochemical double layer capacitors
US9887425B2 (en) * 2015-01-28 2018-02-06 Printed Energy Pty. Ltd. Printed battery array outputting selectable voltage and current
JP6631174B2 (ja) * 2015-11-06 2020-01-15 株式会社Ihi 充電制御装置
US10897145B2 (en) * 2015-12-29 2021-01-19 Vito Nv Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
US20170213951A1 (en) * 2016-01-27 2017-07-27 Korea Research Institute Of Standards And Science Flexible thin multi-layered thermoelectric energy generating module, voltage boosting module using super capacitor, and portable thermoelectric charging apparatus using the same
WO2017180478A1 (en) * 2016-04-15 2017-10-19 Maxwell Technologies, Inc. Parallel string voltage support
CN106374560B (zh) * 2016-09-14 2020-01-10 华为技术有限公司 并联电池组的快速充电方法及相关设备
FI20165891A (fi) * 2016-11-24 2018-05-25 Normet Oy Menetelmä ja järjestely voimayksikön ajamiseksi
CN106787712B (zh) * 2016-12-30 2019-04-16 中国科学院上海高等研究院 一种基于电容阵列变换的预调制电容型直流转换器
CN106696748B (zh) * 2017-01-25 2019-06-28 华为技术有限公司 一种充电桩系统
KR102085730B1 (ko) * 2017-12-29 2020-03-06 건국대학교 글로컬산학협력단 커패시터 용량 가변 회로 및 장치
CN111033938A (zh) * 2018-01-30 2020-04-17 松下知识产权经营株式会社 车辆用电源系统、管理装置
KR101957724B1 (ko) * 2018-03-15 2019-03-18 주식회사 커널로그 전압 슈퍼바이저를 이용한 잔존 전하의 재사용이 가능한 에너지 수집 장치
DE102019209236A1 (de) * 2019-06-26 2020-12-31 Airbus Operations Gmbh Netzteil und elektrisches Bordnetz eines Luft- oder Raumfahrzeugs
CH716530A2 (de) * 2019-08-26 2021-02-26 Rippert Charles Schnell-Ladeeinheit.
JP2022019201A (ja) * 2020-07-17 2022-01-27 本田技研工業株式会社 昇温装置
US20220231516A1 (en) * 2021-01-19 2022-07-21 The Boeing Company Reconfigurable battery system for efficient charging and discharging
CN112787501B (zh) * 2021-01-28 2022-05-24 维沃移动通信有限公司 充电装置及电子设备
CN114301271B (zh) * 2021-07-05 2024-03-01 华为数字能源技术有限公司 功率变换系统及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275251A (ja) * 2000-03-27 2001-10-05 Ngk Insulators Ltd 直列段数切換電源装置
JP3418951B2 (ja) * 1998-01-28 2003-06-23 株式会社岡村研究所 直並列切換型電源装置
JP2005287110A (ja) * 2004-03-29 2005-10-13 Toko Electric Corp キャパシタ蓄電装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW209922B (en) * 1992-08-20 1993-07-21 Tay-Her Yang Control circuit for battery set or D.C power source
AU680210B2 (en) * 1993-01-29 1997-07-24 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
US5656915A (en) * 1995-08-28 1997-08-12 Eaves; Stephen S. Multicell battery pack bilateral power distribution unit with individual cell monitoring and control
JPH1094182A (ja) * 1996-09-13 1998-04-10 Honda Motor Co Ltd 電源装置および電気自動車
US6198645B1 (en) * 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
US6323623B1 (en) 1999-08-23 2001-11-27 Casio Computer Co., Ltd. Charging device and charging method thereof
US6927441B2 (en) * 2001-03-20 2005-08-09 Stmicroelectronics S.R.L. Variable stage charge pump
JP2003111286A (ja) 2001-10-02 2003-04-11 Okumura Laboratory Inc 並列モニタつきバンク切り換えキャパシタ蓄電装置
US7075194B2 (en) 2003-07-31 2006-07-11 The Titan Corporation Electronically reconfigurable battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418951B2 (ja) * 1998-01-28 2003-06-23 株式会社岡村研究所 直並列切換型電源装置
JP2001275251A (ja) * 2000-03-27 2001-10-05 Ngk Insulators Ltd 直列段数切換電源装置
JP2005287110A (ja) * 2004-03-29 2005-10-13 Toko Electric Corp キャパシタ蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947752A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060329A1 (de) * 2007-12-14 2009-07-02 Forschungszentrum Karlsruhe Gmbh Kondensatorenblock aus miteinander verschaltbaren Kondensatoren und Verfahren zum Be- und Entladen desselben
WO2009077040A3 (de) * 2007-12-14 2009-08-20 Karlsruhe Forschzent Kondensatorenblock aus miteinander verschaltbaren kondensatoren und verfahren zum be- und entladen desselben
WO2009077040A2 (de) * 2007-12-14 2009-06-25 Forschungszentrum Karlsruhe Gmbh Kondensatorenblock aus miteinander verschaltbaren kondensatoren und verfahren zum be- und entladen desselben
WO2009127377A1 (de) * 2008-04-18 2009-10-22 Forschungszentrum Karlsruhe Gmbh Verfahren zum laden und entladen eines kondensatorenblocks sowie ladestation zum laden und verbraucher zum entladen desselben
JP2011030397A (ja) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd 蓄電装置を用いた電動システム
US9112360B2 (en) 2009-10-30 2015-08-18 Makita Corporation Power supply device
WO2011052294A1 (ja) * 2009-10-30 2011-05-05 株式会社マキタ 電力供給装置
JP2011097766A (ja) * 2009-10-30 2011-05-12 Makita Corp 電力供給装置
WO2011132302A1 (ja) * 2010-04-23 2011-10-27 株式会社ジェイピーパワーモジュール 蓄電装置の充電制御方法および放電制御方法
WO2012014281A1 (ja) 2010-07-27 2012-02-02 Takeda Harumi 蓄電装置の充電制御方法および放電制御方法
CN103190056A (zh) * 2010-07-27 2013-07-03 竹田佳史 蓄电装置的充电控制方法以及放电控制方法
KR101452778B1 (ko) 2010-07-27 2014-10-22 요시후미 다케다 축전장치의 충전제어방법 및 방전제어방법
JP4977804B2 (ja) * 2010-07-27 2012-07-18 佳史 竹田 蓄電装置の充電制御方法および放電制御方法
US9312703B2 (en) 2010-07-27 2016-04-12 Yoshifumi Takeda Charge control method and discharge control method for electric storage apparatus
JP2014524722A (ja) * 2011-08-11 2014-09-22 シズベル テクノロジー エス.アール.エル. モジュール式直流電気エネルギー源によって生成された電気エネルギーを、貯蔵および供給するために生成および使用するシステム、および、システムの管理方法
WO2015189907A1 (ja) * 2014-06-10 2015-12-17 株式会社Kagra 蓄電素子の充電方法および蓄電装置
KR20160124233A (ko) 2014-06-10 2016-10-26 가부시키가이샤 카그라 축전 소자의 충전 방법 및 축전 장치
JP6032516B2 (ja) * 2014-06-10 2016-11-30 株式会社Kagra 蓄電素子の充電方法および蓄電装置
US10833523B2 (en) 2014-06-10 2020-11-10 Kagra Inc. Electricity storage element charging method and electricity storage device

Also Published As

Publication number Publication date
EP1947752B1 (en) 2012-07-25
JP4368924B2 (ja) 2009-11-18
US7898223B2 (en) 2011-03-01
EP1947752A4 (en) 2009-12-16
KR100991317B1 (ko) 2010-11-01
EP1947752A1 (en) 2008-07-23
TWI395389B (zh) 2013-05-01
TW200733514A (en) 2007-09-01
ES2394629T3 (es) 2013-02-04
MY146871A (en) 2012-10-15
DK1947752T3 (da) 2012-10-29
KR20080067342A (ko) 2008-07-18
US20090134851A1 (en) 2009-05-28
JPWO2007046138A1 (ja) 2009-04-23
CN101297458B (zh) 2012-05-16
CN101297458A (zh) 2008-10-29

Similar Documents

Publication Publication Date Title
WO2007046138A1 (ja) キャパシタを用いた蓄電装置とその制御方法
KR101452778B1 (ko) 축전장치의 충전제어방법 및 방전제어방법
JP6813614B2 (ja) インテリジェント電池の直流充電
JP5279147B2 (ja) 系統連系型電力保存システム及び電力保存システムの制御方法
KR101360667B1 (ko) 전압 변환 회로, 및 전자 기기
KR20110139244A (ko) 지능형 에너지 스토리지 팩의 스케일러블한 구성을 위한 시스템 및 방법
US9257859B2 (en) Dynamic battery control based on demand
WO2011132302A1 (ja) 蓄電装置の充電制御方法および放電制御方法
JP2012034446A (ja) 蓄電装置及びエネルギバランス調整方法
KR102208016B1 (ko) 배터리 분산 배치에 의한 에너지 저장 시스템
EP1466381A1 (en) Load follower using batteries exhibiting memory
EP3780376B1 (en) Energy storage and semiconductor related selection of cells in modular multilevel power converters and computer program
JP4758788B2 (ja) 電源装置
KR101423703B1 (ko) 배터리 셀 전하 균등 시스템 및 방법
JP2010178500A (ja) 放電器、放電方法および直流電源システム
JP5312998B2 (ja) 太陽電池システムおよび充電制御方法
JP2022154788A (ja) 太陽光発電システム
KR20230072019A (ko) 무정전 충방전기
JP2021191041A (ja) バックアップ電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580051896.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007540858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3294/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087011232

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005795874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12089603

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005795874

Country of ref document: EP