US9818552B2 - Additives for reducing ESR gain in electrochemical double layer capacitors - Google Patents

Additives for reducing ESR gain in electrochemical double layer capacitors Download PDF

Info

Publication number
US9818552B2
US9818552B2 US14/605,114 US201514605114A US9818552B2 US 9818552 B2 US9818552 B2 US 9818552B2 US 201514605114 A US201514605114 A US 201514605114A US 9818552 B2 US9818552 B2 US 9818552B2
Authority
US
United States
Prior art keywords
formula
compound
layer capacitor
electrochemical double
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/605,114
Other versions
US20160217937A1 (en
Inventor
George Hamilton Lane
Ken Rudisuela
Susan Carol Donadio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ioxus Inc
Systematic Power Manufacturing LLC
Original Assignee
Ioxus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ioxus Inc filed Critical Ioxus Inc
Priority to US14/605,114 priority Critical patent/US9818552B2/en
Assigned to IOXUS, INC. reassignment IOXUS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONADIO, SUSAN CAROL, LANE, GEORGE HAMILTON, RUDISUELA, Ken
Priority to JP2017533405A priority patent/JP6743019B2/en
Priority to HK18106232.5A priority patent/HK1246967A1/en
Priority to CN201680007053.3A priority patent/CN107210144B/en
Priority to PCT/US2016/014221 priority patent/WO2016122952A1/en
Priority to EP16743872.0A priority patent/EP3251137B1/en
Priority to CA2974090A priority patent/CA2974090C/en
Priority to KR1020177023480A priority patent/KR20170108064A/en
Priority to ES16743872T priority patent/ES2879723T3/en
Publication of US20160217937A1 publication Critical patent/US20160217937A1/en
Assigned to MANCHESTER SECURITIES CORP. reassignment MANCHESTER SECURITIES CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IOXUS, INC.
Assigned to ARES CAPITAL CORPORATION reassignment ARES CAPITAL CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IOXUS, INC.
Publication of US9818552B2 publication Critical patent/US9818552B2/en
Application granted granted Critical
Assigned to IOXUS, INC. reassignment IOXUS, INC. RELEASE OF PATENT SECURITY AGREEMENT RECORDED ON AUGUST 29, 2016 AT REEL/FRAME 039568/0221 Assignors: MANCHESTER SECURITIES CORP.
Assigned to SYSTEMATIC POWER MANUFACTURING, LLC reassignment SYSTEMATIC POWER MANUFACTURING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARES CAPITAL CORPORATION, AS UCC ARTICLE 9 CREDITOR FOR IOXUS, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present disclosure relates to electric double layer capacitors (EDLCs) that include an alkylating or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC.
  • Capacitors are typically used as components of electric circuits that are capable of holding an electric charge electrostatically, and discharging it rapidly.
  • EDLCs also known as supercapacitors or ultracapacitors, are a type of capacitor that have two electrodes separated by an ion permeable membrane (separator), and an electrolyte solution electrically connecting both electrodes.
  • EDLCs typically have lower energy densities than traditional batteries, they often can have much higher power densities. For instance, some EDLCs can have power densities up to 100 times higher than traditional batteries. This allows them to be used for many commercial applications such as, electric and hybrid automobiles.
  • nucleophilic species can be generated in the electrolyte solution as a consequence of the normal functioning of the cell. For instance, trace hydroxide ion derived from adventitious water within an EDLC electrolyte solution may react with tetraethylammonium chloride to produce triethylamine via a Hoffman elimination type-mechanism. The triethylamine, or other nucleophilic species thus generated, can then further react within the cell and impede the EDLC's normal function.
  • an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, and an additive comprising a compound of formula I: R—X (I)
  • R can be saturated alkyl, unsaturated alkyl, saturated branched alkyl, unsaturated branched alkyl, aryl, heteroaryl, substituted aryl or substituted alkyl
  • X can be I, Br, Cl, —SO 2 F, —SO 2 CF 3 , —OCH 3 , —N(SO 2 F) 2 , —N(SO 2 CF 3 ) 2 , —N(CN) 2 , —Si(CH 3 ) 3 , —O—S(O) 2 —
  • FIG. 1 shows charge and discharge curves for 4.4F pouch cells with 0% and 1% (v:v) triethylamine added to the electrolyte.
  • FIG. 2 shows charge and discharge curves for 4.4F pouch cells with 0% and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
  • FIG. 3 shows the ESR gain for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) triethylamine added to the electrolyte.
  • FIG. 4 shows the ESR gain for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
  • FIG. 5 shows the capacitance retention for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) triethylamine added to the electrolyte.
  • FIG. 6 shows the capacitance retention for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
  • FIG. 7 shows voltage vs. time profiles for unconditioned pouch cells with 0% aryl halide, 1% Ph-I, 1% Ph-Br, 1% Ph-Cl, and 1% Ph-F (v:v).
  • FIG. 8 shows voltage vs. time profiles for pre-conditioned pouch cells with 0% aryl halide, 1% Ph-I, 1% Ph-Br, 1% Ph-Cl, and 1% Ph-F (v:v).
  • FIG. 9 shows the ESR gain of pouch cells with added Ph-Cl at 0% and 1% (v:v).
  • FIG. 10 shows the capacitance retention of a pouch cell treated with 0% and 1% Ph-Cl (v:v).
  • FIG. 11 shows the capacitance retention of pouch cells treated with 0% aryl halide, 1% Ph-Cl and 1% Ph-F (v:v).
  • FIG. 12 shows the ESR gain of pouch cells treated with 0% Bu-Cl and 1% Bu-Cl (v:v).
  • FIG. 13 shows the capacitance retention of pouch cells treated with 0% Bu-Cl and 1% Bu-Cl (v:v).
  • FIG. 14 shows the ESR gain of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture.
  • FIG. 15 Shows the capacitance retention of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture incells measured between 80 and 40% of rated voltage.
  • FIG. 16 Shows the capacitance retention of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture incells measured over the full voltage range.
  • FIG. 17 is a representation of an EDLC according to an embodiment.
  • the present disclosure relates to systems, devices, and methods that include EDLCs having an alkylating agent or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC.
  • the alkylating or arylating agent may be particularly active at high temperatures and can have the effect of lowering the equivalent series resistance (ESR) gain and lowering the capacitance loss in the EDCLs in comparison to cells that do not have the alkylating or arylating agents.
  • ESR equivalent series resistance
  • an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, and an additive comprising a compound of formula I: R—X (I) wherein R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, unsaturated branched alkyl, aryl, substituted aryl or substituted alkyl, and X is I, Br, Cl, —SO 2 F, —SO 2 CF 3 , —OCH 3 , —N(SO 2 F) 2 , —N(SO 2 CF 3 ) 2 , —N(CN) 2 , —Si(CH 3 ) 3 , —O—S(O) 2 —OCH 3 , —S(O) 2 —O—CF 3 , or tosylate.
  • the concentration of the compound of formula I in the electrochemical double-layer capacitor is less than about 10% by volume.
  • FIG. 17 shows a representation of an EDLC 100 .
  • the EDLC 100 includes a positive current collector 110 , a negative current collector 120 , a cathode 130 , an anode 140 and a separator 150 disposed between the cathode 130 and the anode 140 .
  • an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, a stabilizer, and an additive comprising a compound of formula I: R—X (I) wherein R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, aryl, substituted aryl or substituted alkyl, and X is I, Br, Cl, —SO 2 F, —SO 2 CF 3 , —OCH 3 , —N(SO 2 F) 2 , —N(SO 2 CF 3 ) 2 , —N(CN) 2 , —Si(CH 3 ) 3 , —O—S(O) 2 —OCH 3 , —S(O) 2 —O—CF 3 , or tosylate.
  • the total concentration of the compound of formula I and the stabilizer in the electrochemical double-layer capacitor is less than or equal to about 10% by volume.
  • a method of manufacturing an EDLC cell includes disposing a cathode on a positive current collector, disposing an anode on a negative current collector, disposing a separator between the positive current collector and the negative current collector to form the EDLC cell, disposing the EDLC cell in a container, and infiltrating the EDLC cell with an electrolyte formulation comprising: an ionic species, a solvent, and an additive comprising a compound of formula I: R—X (I) wherein R is saturated alkyl, unsaturated alkyl, unsaturated branched alkyl, aryl, substituted aryl, or substituted alkyl, and X is I, Br, Cl, —SO 2 F, —SO 2 CF 3 , —OCH 3 , —N(SO 2 F) 2 , —N(SO 2 CF 3 ) 2 , —N(CN) 2 , —Si(CH 3 ) 3 , —O—S(
  • the present disclosure features an alkylating or arylating agent that can be capable of scavenging nucleophilic species that are produced as a byproduct of the normal operation of an EDLC.
  • the nucleophilic species can, for instance, be tertiary amines, carboxylic acids, cellulose type material (e.g., carboxymethyl cellulose (CMC)) used, for example, as a binder or adhesive in the electrode coating, or any other nucleophilic species that can be generated in the cell due to electrochemical, chemical, or thermal side-reactions. These species can be reactive and can interfere with the normal functioning of the EDLC.
  • embodiments of the present disclosure can reduce the ability of the nucleophilic species to negatively impact the functioning of the EDLC, and thus result in longer life and improved performance of the cell.
  • the addition of an alkylating or arylating reagent disclosed herein can result in greater capacitance retention and lower ESR gain.
  • ESR equivalent series resistance
  • Capacitance stability refers to the retention of capacitance of a capacitor over time. In some embodiments, it is desirable to have high capacitance stability.
  • Tertiary amine as used herein is understood to mean an organic compound comprising a nitrogen atom bound to three different carbon atoms.
  • Carboxylic acid is understood to mean a functional group of the formula —C(O)OH.
  • a carboxylate is understood to mean a deprotonated carboxylic acid of the formula —C(O)O ⁇ , wherein it is understood that the negative charge of the carboxylate is balanced by a corresponding counter cation.
  • Nucleophilic species is understood to mean a chemical moiety (e.g., a tertiary amine or a carboxylate) that can act as a nucleophile, for instance in the presence of an alkylating agent.
  • a nucleophile is capable of donating an electron pair to an electrophile to form a bond.
  • substituted or “substitution” of an atom means that one or more hydrogen on the designated atom is replaced with a different atom, including but not limited to a carbon, nitrogen, oxygen, sulfur or halogen atom, provided that the designated atom's normal valency is not exceeded. “Unsubstituted” atoms bear all of the hydrogen atoms dictated by their valency.
  • saturated is understood to mean an aliphatic group containing no double or triple bonds.
  • a saturated group is understood to be at maximum normal valency.
  • alkenyl groups have 2 to about 4 carbon atoms in the chain.
  • Branched means that one or more lower alkyl groups such as methyl, ethyl, or propyl are attached to a linear alkenyl chain.
  • alkenyl groups include ethenyl, propenyl, n-butenyl, and i-butenyl.
  • alkyl means an aliphatic hydrocarbon group which may be straight or branched having about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. Exemplary alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, and 3-pentyl.
  • aryl refers to aromatic monocyclic or polycyclic ring system containing from 6 to 19 carbon atoms, where the ring system may be optionally substituted.
  • Aryl groups of the present disclosure include, but are not limited to, groups such as phenyl, naphthyl, azulenyl, phenanthrenyl, anthracenyl, fluorenyl, pyrenyl, triphenylenyl, chrysenyl, and naphthacenyl.
  • Ph-X is understood to represent an aryl halide.
  • the aryl halide is phenyl halide.
  • Ph is an abbreviation for the phenyl group.
  • X is an abbreviation for a halogen atom, e.g., iodine, bromine, chlorine or fluorine.
  • Ph-Br is understood to represent phenyl bromide.
  • the compound of formula I is an alkyl chloride or is an aryl chloride.
  • the compound of formula I can be selected from chlorobenzene, 1-chloro-n-butane, bromobenzene, 1-bromo-n-butane, 1-chloropropane, and 1-bromopropane.
  • the compound of formula I is chlorobenzene or 1-chloro-n-butane.
  • the electrochemical stability of the compounds of formula I can be improved by adding functional groups to the “R” component of formula I.
  • Representative functional groups can be, for example, —CN or —F.
  • a compound of formula I can be represented by:
  • Ph-Cl and Ph-F are the most electrochemically stable additives. However, in some embodiments, Ph-F is not as reactive towards nucleophilic species as Ph-I, Ph-Br, and Ph-Cl.
  • the compound of formula I is included in the electrolyte, and the electrolyte comprising an ionic species and a solvent.
  • the concentration of the compound of formula I in the electrolyte can be about 0.1% by volume to about 10% by volume.
  • the concentration of the compound of formula I in the electrolyte can be about 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%.
  • the solvent is at least one of acetonitrile, propionitrile, and butyronitrile.
  • the solvent can be selected from gamma-butyrolactone, propylene carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
  • the ionic species is a quaternary ammonium salt.
  • the quaternary ammonium salt can be one of spiro-bipyrrolidinium tetrafluoroborate (SBP BF 4 ), tetraethyl ammonium tetrafluoroborate (TEA TFB), and triethyl(methyl)ammonium tetrafluoroborate.
  • the electrolyte further comprises a stabilizer.
  • the stabilizer can be, for instance, benzonitrile.
  • the compound of formula I can be included in the separator.
  • the compound of formula I can also be included in at least one of the anode and the cathode, or the compound of formula I can be included in a binder of at least one of the cathode and the anode.
  • the binder can include carboxymethyl cellulose.
  • the EDLC of the disclosure has an operating voltage of greater than about 2.7 V.
  • the EDLC of the disclosure can also have a rated maximum temperature of greater than about 50° C.
  • the EDLC can also include a stabilizer.
  • the stabilizer can be benzonitrile.
  • the total concentrations of the stabilizer and the additive can be about the same.
  • the total concentrations of the stabilizer and the additive can be about 5%, e.g., the concentration of stabilizer can be about 1% and the concentration of additive can be about 4%; the concentration of stabilizer can be about 2% and the concentration of additive can be about 3%; the concentration of stabilizer can be about 2.5% and the concentration of additive can be about 2.5%; the concentration of stabilizer can be about 3% and the concentration of additive can be about 2%; or the concentration of stabilizer can be about 4% and the concentration of additive can be about 1%.
  • the compound of formula I can be formulated to alkylate or arylate tertiary amines present within the EDLC cell.
  • the EDLC cell has an operating voltage of greater than about 2.7 volts and can have an operating temperature of greater than about 50° C.
  • the compounds of formula I are capable of alkylating certain reactive species that are produced throughout the course of functioning of an electric double-layer capacitor (EDLC).
  • EDLCs function at high voltages (e.g., above 2.7 volts) and/or at high temperatures (e.g., above 50° C.). These conditions can facilitate certain chemical reactions to produce certain reactive species (e.g., nucleophilic species) that then can interfere with the normal functioning of the EDLC.
  • nucleophilic species can be formed such as tertiary amines, carboxylic acids, cellulose-type material such as CMC and other nucleophilic compounds.
  • nucleophilic tertiary amines may arise from a Hoffmann Elimination mechanism. For example, it can be practically impossible to remove all trace water from cell components in an EDLC, especially the activated carbon and cellulose separator, even with temperatures above 100° C. and vacuum.
  • the reduction of water within the electrochemical cell can form a hydroxide anion, and the hydroxide anion can then chemically react with a quaternary ammonium cation to form a tertiary amine, via a Hoffman elimination route.
  • nucleophilic species can be formed, for instance, due to electrochemical, chemical or thermal side reactions within the electrochemical cell.
  • tertiary amines are capable of being formed in an EDLC where the electrolyte contains a quaternary ammonium cation via electrochemical reduction.
  • the electrochemical reduction of a quaternary ammonium cation yields a tertiary amine and an alkyl radical via cleavage of the N—C bond, and also additional tertiary amine can be formed from a fresh cation via a Hoffman elimination mechanism in the case where the alkyl radical is further electrochemically reduced to the carbanion, which serves as the base in the Hoffman elimination.
  • a slow rate of tertiary amine production can exist.
  • some EDLCs require a constant trickle-current to stay fully charged, and this current can in some embodiments fuel redox reactions in the cell even though the cell theoretically is a redox-free system.
  • nucleophiles such as carboxylic acids or carboxylates can be formed.
  • a carboxylic acid group can be formed by the hydrolysis of an ester group found within the cell.
  • a hydroxide ion (e.g., produced by the reductive mechanism described above) can hydrolyze an ester group within carboxymethyl cellulose to give a carboxylate group.
  • a cellulose-type material such as CMC.
  • CMC can be used as a binder for EDLC electrodes. In some cases either the sodium salt or the ammonium salt of CMC is employed.
  • the CMC can play an important role in ensuring a low resistance contact between the current collector and the coating. It also can help to bind individual carbon particles together within the electrode matrix, and to thicken the slurry used to coat the electrode where a wet coating procedure is used.
  • the CMC can be water soluble, and in some embodiments is part of an aqueous slurry which is used to either coat the current collector with the active material or with a pre-layer of CMC rich material.
  • the CMC rich material can contain carbon black, on top of which is later coated the active material.
  • the solubilized CMC can effectively penetrate interstitial space between particles as well as the coating-current collector interface, and thus bind them effectively once the water is removed by evaporation.
  • water soluble cellulose materials can suffer from a decreased chemical stability compared to non-water soluble cellulose types.
  • certain cellulose types can have a very tight crystal structure that does not allow substantial water to penetrate, and therefore these cellulose types are not water soluble and are also less prone to acid catalyzed hydrolysis.
  • Acid catalyzed hydrolysis can result in the depolymerisation of the cellulose chain, and can result in, for example, the slow degradation of paper (cellulose based) used in books and other printed media.
  • an EDLC In the case of an EDLC, it is proposed, without wishing to be bound by theory, that the operation of the cell, particularly under harsh conditions (for example 3 V and 65° C.), produces an acidic environment at the positive electrode. In some embodiments, the CMC within this environment can be degraded, and this adversely affects the ESR of the cell. It is known that acidic species can be formed at the positive electrode in an EDLC due to side reactions that take place inside the cell.
  • the present disclosure provides a strategy that counters the degradation of CMC in the cell in order to prevent a high ESR gain in the cell under harsh conditions. It is considered that other mechanisms of ESR gain, aside from CMC degradation, are also active.
  • these nucleophilic species can interfere with the normal functioning of the EDLC cell, and result in higher ESR gain and greater capacitance loss in the cells.
  • the initial reduction of trace water to hydroxide ion at the negative electrode of an EDLC can cause a loss of performance in the cell.
  • nucleophilic species such as tertiary amines can react at the positive electrode of an EDLC to form insoluble products. Not only can the electrochemical oxidation of the tertiary amine result in a loss of performance within a cell, but the products thus produced can further interfere with the normal cell functioning by way of causing further unknown and/or unwanted side reactions. Without wishing to be bound by theory, the reaction of triethylamineis likely an irreversible electrochemical oxidation at the positive electrode, since tertiary amines are known to undergo such reactions, and are also known to be generally stable at negative potentials.
  • EDLCs containing compounds of formula I that can be useful at alkylating or arylating reactive species (e.g., tertiary amines or carboxylic acids) in order to scavenge these species and thus prevent them from interfering with the normal operation of the cell.
  • alkylating or arylating reactive species e.g., tertiary amines or carboxylic acids
  • the alkylating e.g., alkyl halides such as chlorobutane
  • arylating agents e.g., aryl halides such as phenyl chloride
  • nucleophilic species e.g., chlorobutane can react with a tertiary amine such as triethylamine in an alkylation reaction to generate butyltriethylammonium chloride.
  • a compound of formula I e.g., chlorobutane
  • the hydroxide ion e.g., a hydroxide ion generated by the presence of trace water
  • an alcohol e.g., butanol
  • the corresponding halide e.g., chloride
  • the alkylating or arylating agents of the present disclosure can be capable of alkylating, for example, the carboxy group of a cellulose binder and thus can affect the stability of the cellulose material.
  • an increase in stability of the cellulose material e.g., CMC
  • an increase in stability of the cellulose material can occur due to an increase in the hydrophobicity of the cellulose due to the alkylation (esterification, in the case of the alkylation of a carboxy/carboxyl/carboxylate group) of the material.
  • Such an alkylation can also affect the crystal structure, and/or the electronic structure, of the cellulose material, which can serve to further improve stability.
  • Alkylation of the hydroxyl groups of the cellulose binder can also occur.
  • the alkylation can take place through known organic chemical mechanisms.
  • the alkylation process can also be applied to other types of cellulose, as well as other polymers, biopolymers, polysaccharides and carbohydrates, in addition to CMC.
  • Such other polymers can include, but are not limited to, alcohol and carboxy functionalized polymers, for example polyvinylalcohol, sodium polyacrylate, ammonium polyacrylate.
  • the carboxyl functional group (COO—) that is present in cellulose can undergo electrochemical oxidation, yielding carbon dioxide gas (CO 2 ), leaving a radical site on the polymer chain. Any CO 2 released by such a reaction can be trapped in the cell and can undergo electrochemical (or chemical) reactions, in some embodiments at the negative electrode. Such reactions can cause a performance loss for the cell. Accordingly, in some embodiments alkylation of the carboxyl group to form an ester can result in an increase in the electrochemical stability of the cellulose. Such an alkylation can be achieved by the use of an alkylating agent of the present disclosure, such as an alkyl halide or an aryl halide.
  • an alkylating agent of the present disclosure such as an alkyl halide or an aryl halide.
  • the alkylating agent can also react with (e.g., esterify) carboxyl moieties within the electrolyte (for example carboxylic acids) or on the carbon surface (which contains, for instance, functional groups), and such reactions can in some embodiments increase the electrochemical stability of the system.
  • carboxyl moieties within the electrolyte for example carboxylic acids
  • carbon surface which contains, for instance, functional groups
  • alkyl or aryl halides of the present disclosure can alkylate or arylate the carbon surface where reactive functional groups (e.g., carboxylic acid groups) are present. Such alkylation can also enhance cell stability.
  • the product of the reaction of the compound of formula I with a tertiary amine is a quaternary ammonium salt and a corresponding counter anion derived from the compound of formula I (e.g., a chloride ion).
  • the quaternary ammonium product is relatively stable at positive potentials compared to the tertiary amine, and thus the stability of the cell is improved by eliminating the unstable tertiary amine or other nucleophilic species that would otherwise undergo further reaction.
  • adsorption of the aryl or alkyl halide to the carbon surface can reduce side reactions by reducing access of acetonitrile or other electrolyte species to the carbon surface, thereby reducing the reaction rate of acetonitrile of other electrolyte species and extending cell life.
  • ESR refers to a parameter that approximates the internal resistance of an EDLC.
  • a tertiary amine e.g., as a representative nucleophile
  • ESR gain increases, thereby reducing the performance of the cell.
  • tertiary amines and other nucleophilic species can be formed within a cell as described above, and these can have a deleterious effect on the performance of the cell.
  • capacitance stability refers to the retention of capacitance of a capacitor over time.
  • addition of a tertiary amine to an EDLC can improve capacitance stability, as shown in FIG. 5 and FIG. 6 .
  • addition of triethylamine and N-methylpyrrolidine resulted in greater capacitance stability.
  • Pouch cells consisted of an activated carbon based positive electrode and an activated carbon based negative electrode, each utilizing an etched aluminum current collector. A cellulose separator was used to separate the electrodes, and the electrode assembly was contained in an aluminum-polymer type pouch cell material. Each electrode had a coated area of 16 cm 2 (i.e. 4 cm ⁇ 4 cm in size). Each cell contained a total of 1 mL of electrolyte.
  • Pouch cells ( ⁇ 4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA.
  • FIG. 1 shows a voltage curve of a pouch cell containing triethylamine (1% v:v) (dashed line) compared with a pouch cell containing no added triethylamine (solid line).
  • the cell with added triethylamine shows a charge curve of lower steepness than the cell with 0% triethylamine.
  • FIG. 2 shows a voltage curve of a pouch cell containing N-methylpyrrolidine (1% v:v) (dashed line) compared with a pouch cell containing no added triethylamine (solid line).
  • the cell with added triethylamine showed a charge curve of lower steepness than the cell with 0% triethylamine.
  • FIGS. 1 and 2 show a charge curve of lower steepness for a cell containing amine (1% v:v) (i.e., triethylamine or N-methylpyrrolidine) added to the electrolyte compared to a cell without added amine.
  • amine 1% v:v
  • the results suggest that the amine is being consumed electrochemically during the charging of the cell.
  • Pouch cells ( ⁇ 4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA.
  • Pouch cells ( ⁇ 4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA. As shown in FIG. 5 , the addition of triethylamine to the electrolyte resulted in an improved capacitance retention. The same results were observed with the addition of N-methylpyrrolidine (see FIG. 6 ).
  • Unconditioned pouch cells were treated with Ph-I (1% v:v), Ph-Br (1% v:v), Ph-Cl (1% v:v), and Ph-F (1% v:v).
  • An unconditioned pouch cell without added aryl halide was used as a control. The cells were charged at 50 mA, held for 10 minutes at 3.0 V, discharged at 5 A, rested for 5 seconds, charged at 50 mA, held at 3 V for 10 minutes, and finally discharged at 50 mA.
  • FIG. 7 shows voltage vs. time profiles for the pouch cells after the two charge-discharge cycles described above. As shown in FIG. 7 , the cell containing Ph-I was unable to reach the full 3 V charge. The results suggest that Ph-I was not electrochemically stable and was being directly reduced at the negative electrode under the conditions of the 3 V pouch cell.
  • Ph-Br and Ph-Cl did not display any noticeable electrochemical reactivity within the 3 V cell.
  • the Ph-I is being reacted electrochemically within the cell.
  • the resulting I ⁇ (iodide) ion can then serve as a redox shuttle involving I ⁇ , I 2 and I 3 ⁇ , and thus interrupting the normal functioning of the cell.
  • Pouch cells treated with Ph-Br (1% v:v), Ph-Cl (1% v:v), and Ph-F (1% v:v) were conditioned at 3 V and 65° C. for 18 hours.
  • a conditioned pouch cell without added aryl halide was used as a control.
  • the cells were charged at 50 mA, held for 10 minutes at 3.0 V, discharged at 5 A, rested for 5 seconds, charged at 50 mA, held at 3 V for 10 minutes, and finally discharged at 50 mA.
  • FIG. 8 shows voltage vs. time profiles for the pouch cells after the two charge-discharge cycles described above.
  • cells containing Ph-Br developed an instability which retarded the charging process.
  • the results suggest that Ph-Br was not electrochemically stable and was being reduced at the negative electrode of the conditioned pouch cell.
  • a bromide redox process is potentially active within the electrochemical cell, but it was delayed in being established.
  • the Ph-Cl, Ph-F and control cells did not experience any difficulties. Therefore, without wishing to be bound by theory, it is proposed that the Ph-Cl and Ph-F cells were considered to have adequate electrochemical stability.
  • the Ph-F is not expected to have a high reactivity towards tertiary amines or many other nucleophiles, due to the high stability of the Ph-F bond.
  • Pouch cells were made to test the effect of using an electrolyte that included phenyl chloride (Ph-Cl) (1% v:v). As a control, an electrolyte with 0% (v:v) of phenyl chloride was used.
  • Ph-Cl phenyl chloride
  • the electrolyte consisted of 1 M SBP BF4 in acetonitrile+5% (v:v) benzonitrile.
  • the electrolyte consisted of of 1 M SBP BF 4 +5% benzonitrile+1% Ph-Cl (v:v).
  • the electrolyte with the Ph-Cl present could be made by taking 1.0 L of 1 M SBP BF4 in acetonitrile, adding 50 mL of benzonitrile, and adding 10 mL of Ph-Cl.
  • Cells were conditioned by holding them at 3.0 V and 65° C. for 18 h prior to beginning the endurance test, which in essence is a constant voltage, elevated temperature test designed to gauge the electrochemical stability of the system.
  • the capacitance and ESR of the device are measured at room temperature before the endurance test begins, as well as at certain time intervals throughout the test. For measurements made during the test the cells are discharged and allowed to cool to room temperature before the capacitance and ESR are measured. Once the measurements are made the cells are returned to the accelerated degradation condition (3.0 V and 65° C.).
  • FIG. 9 shows that the cell with Ph-Cl (1% v:v) present as an additive experience less ESR gain during the endurance test.
  • FIG. 10 shows that the cell with the Ph-Cl present as an additive have equal or better capacitance retention than cell that does not have this additive. The sudden capacitance drop observed in the control cell during the first 100 h of the test is avoided by using the Ph-Cl additive.
  • FIG. 11 shows that Ph-F does not cause this unusual affect to manifest.
  • this difference may be due to the chemical reactivity of Ph-Cl, (Ph-F is not as chemically active as Ph-Cl due to the high stability of the C—F bond) or perhaps due to the more polarizable nature of the C—Cl bond—which could plausibly affect capacitance if Ph-Cl is adsorbed to the carbon surface.
  • Pouch cells similar to those in Example 6 were made to test the effect of using an electrolyte that included butyl chloride (Bu-Cl) (1% v:v), also known as 1-chloro-n-butane. As a control, cells were also made using 0% of butyl chloride.
  • Bu-Cl butyl chloride
  • 1-chloro-n-butane 1-chloro-n-butane
  • the electrolyte consisted of 1 M SBP BF 4 in acetonitrile+5% benzonitrile.
  • the electrolyte consisted of 1 M SBP BF4+5% benzonitrile+1% Bu-Cl (v:v).
  • the electrolyte with the Bu-Cl present could be made by taking 1.0 L of 1 M SBP BF4 in acetonitrile, adding 50 mL of benzonitrile, and adding 10 mL of Bu-Cl.
  • FIG. 12 shows that the presence of Bu-Cl results in a reduced ESR gain for the cells operating at 3.0 V and 65° C., with the effect being most obvious after about the 500 h point.
  • FIG. 13 shows that the capacitance is the same or better than the cells without Bu-Cl, with the cells being slightly but noticeably better during most of the 1000 h period.
  • Ph-Cl there presence of Bu-Cl significantly affects the capacitance within the first 100 h of the test period observed in the control cell, preventing much of the sudden drop in capacitance.
  • the dual additive electrolyte can be made by taking 1 L of 1 M SBP BF4 in acetonitrile and adding 20 mL of Ph-Cl and 30 mL of BZN. Cells were conditioned before starting the test by holding them at 2.92 V at 55° C. for 44 h. The cells were subjected to the endurance test at 3.0 V and 65° C., as described in example 4, for 1024 h.
  • the ESR behavior of the cells is shown if FIG. 14 , the dual additive system exhibits significantly lower ESR gain, about 290% of the initial ESR after the 1024 h period, compared with about 415% for the single additive system.
  • the ESR gain can result primarily from a corruption of the carbon coating—current collector interface, and changes to the binder system can significantly reduce the ESR gain even further.
  • the results of this direct comparison suggest that the Ph-Cl additive is advantageous for ESR stability under this standard test condition.
  • FIG. 15 shows that the cells containing 2% Ph-Cl and 3% BZN (v:v) exhibit significantly less capacitance loss compared to cells with 5% BZN (v:v), where capacitance is measured between 80 and 40% of rated voltage, i.e. between 2.4 and 1.2 V.
  • the dual additive cells experience a slight capacitance gain over the first approximately 100 h of the endurance test, in contrast to a capacitance loss for the single additive system.
  • the cells with the dual additive system have between 96 and 97% of their original capacitance after the 1024 h period, which is an exceptional level of stability, compared to about 91 to 92% for the single additive system.
  • EDLC electrodes were soaked in EDLC electrolytes spiked with 1% (v:v) acetic acid, 1% (v:v) triethylamine or both 1% (v:v) acetic acid and 1% (v:v) triethylamine.
  • a non-spiked control sample was also tested The results are shown in Table 1, below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)

Abstract

The present disclosure relates to electric double layer capacitors (EDLCs) that include an alkylating or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC. The additives for the electric double layer capacitors (EDLCs) including an alkylating or arylating agent are described herein. The alkylating or arylating reagent comprises a compound of the formula I:
R—X  (I)
wherein R and X are described herein.

Description

BACKGROUND
The present disclosure relates to electric double layer capacitors (EDLCs) that include an alkylating or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC. Capacitors are typically used as components of electric circuits that are capable of holding an electric charge electrostatically, and discharging it rapidly. EDLCs, also known as supercapacitors or ultracapacitors, are a type of capacitor that have two electrodes separated by an ion permeable membrane (separator), and an electrolyte solution electrically connecting both electrodes.
Although EDLCs typically have lower energy densities than traditional batteries, they often can have much higher power densities. For instance, some EDLCs can have power densities up to 100 times higher than traditional batteries. This allows them to be used for many commercial applications such as, electric and hybrid automobiles.
One drawback of current EDLCs is that nucleophilic species can be generated in the electrolyte solution as a consequence of the normal functioning of the cell. For instance, trace hydroxide ion derived from adventitious water within an EDLC electrolyte solution may react with tetraethylammonium chloride to produce triethylamine via a Hoffman elimination type-mechanism. The triethylamine, or other nucleophilic species thus generated, can then further react within the cell and impede the EDLC's normal function.
SUMMARY
The present disclosure relates to systems, devices, and methods that include EDLCs having an alkylating agent or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC. In some embodiments, an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, and an additive comprising a compound of formula I:
R—X  (I)
In some embodiments, R can be saturated alkyl, unsaturated alkyl, saturated branched alkyl, unsaturated branched alkyl, aryl, heteroaryl, substituted aryl or substituted alkyl, and X can be I, Br, Cl, —SO2F, —SO2CF3, —OCH3, —N(SO2F)2, —N(SO2CF3)2, —N(CN)2, —Si(CH3)3, —O—S(O)2—OCH3, —S(O)2—O—CF3, or tosylate. The concentration of the compound of formula I in the electrochemical double-layer capacitor is less than about 10% by volume.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows charge and discharge curves for 4.4F pouch cells with 0% and 1% (v:v) triethylamine added to the electrolyte.
FIG. 2 shows charge and discharge curves for 4.4F pouch cells with 0% and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
FIG. 3 shows the ESR gain for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) triethylamine added to the electrolyte.
FIG. 4 shows the ESR gain for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
FIG. 5 shows the capacitance retention for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) triethylamine added to the electrolyte.
FIG. 6 shows the capacitance retention for 4.4F pouch cells with 0%, 0.5%, and 1% (v:v) N-methylpyrrolidine added to the electrolyte.
FIG. 7 shows voltage vs. time profiles for unconditioned pouch cells with 0% aryl halide, 1% Ph-I, 1% Ph-Br, 1% Ph-Cl, and 1% Ph-F (v:v).
FIG. 8 shows voltage vs. time profiles for pre-conditioned pouch cells with 0% aryl halide, 1% Ph-I, 1% Ph-Br, 1% Ph-Cl, and 1% Ph-F (v:v).
FIG. 9 shows the ESR gain of pouch cells with added Ph-Cl at 0% and 1% (v:v).
FIG. 10 shows the capacitance retention of a pouch cell treated with 0% and 1% Ph-Cl (v:v).
FIG. 11 shows the capacitance retention of pouch cells treated with 0% aryl halide, 1% Ph-Cl and 1% Ph-F (v:v).
FIG. 12 shows the ESR gain of pouch cells treated with 0% Bu-Cl and 1% Bu-Cl (v:v).
FIG. 13 shows the capacitance retention of pouch cells treated with 0% Bu-Cl and 1% Bu-Cl (v:v).
FIG. 14 shows the ESR gain of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture.
FIG. 15. Shows the capacitance retention of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture incells measured between 80 and 40% of rated voltage.
FIG. 16. Shows the capacitance retention of cylindrical cells treated with 5% benzonitrile (v:v) and with a 3% benzonitrile/2% Ph-Cl (v:v) mixture incells measured over the full voltage range.
FIG. 17 is a representation of an EDLC according to an embodiment.
DETAILED DESCRIPTION
The present disclosure relates to systems, devices, and methods that include EDLCs having an alkylating agent or arylating agent additive capable of scavenging nucleophilic species generated during operation of the EDLC. The alkylating or arylating agent may be particularly active at high temperatures and can have the effect of lowering the equivalent series resistance (ESR) gain and lowering the capacitance loss in the EDCLs in comparison to cells that do not have the alkylating or arylating agents. In some embodiments, an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, and an additive comprising a compound of formula I:
R—X  (I)
wherein R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, unsaturated branched alkyl, aryl, substituted aryl or substituted alkyl, and X is I, Br, Cl, —SO2F, —SO2CF3, —OCH3, —N(SO2F)2, —N(SO2CF3)2, —N(CN)2, —Si(CH3)3, —O—S(O)2—OCH3, —S(O)2—O—CF3, or tosylate. The concentration of the compound of formula I in the electrochemical double-layer capacitor is less than about 10% by volume.
FIG. 17 shows a representation of an EDLC 100. The EDLC 100 includes a positive current collector 110, a negative current collector 120, a cathode 130, an anode 140 and a separator 150 disposed between the cathode 130 and the anode 140. In some embodiments, an electrochemical double-layer capacitor includes a cathode, an anode, a separator, an electrolyte, a stabilizer, and an additive comprising a compound of formula I:
R—X  (I)
wherein R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, aryl, substituted aryl or substituted alkyl, and X is I, Br, Cl, —SO2F, —SO2CF3, —OCH3, —N(SO2F)2, —N(SO2CF3)2, —N(CN)2, —Si(CH3)3, —O—S(O)2—OCH3, —S(O)2—O—CF3, or tosylate. The total concentration of the compound of formula I and the stabilizer in the electrochemical double-layer capacitor is less than or equal to about 10% by volume.
In some embodiments, a method of manufacturing an EDLC cell includes disposing a cathode on a positive current collector, disposing an anode on a negative current collector, disposing a separator between the positive current collector and the negative current collector to form the EDLC cell, disposing the EDLC cell in a container, and infiltrating the EDLC cell with an electrolyte formulation comprising: an ionic species, a solvent, and an additive comprising a compound of formula I:
R—X  (I)
wherein R is saturated alkyl, unsaturated alkyl, unsaturated branched alkyl, aryl, substituted aryl, or substituted alkyl, and X is I, Br, Cl, —SO2F, —SO2CF3, —OCH3, —N(SO2F)2, —N(SO2CF3)2, —N(CN)2, —Si(CH3)3, —O—S(O)2—OCH3, —S(O)2—O—CF3, or tosylate. A concentration of the compound of formula I in the electrolyte is less than about 10% by volume.
The present disclosure features an alkylating or arylating agent that can be capable of scavenging nucleophilic species that are produced as a byproduct of the normal operation of an EDLC. The nucleophilic species can, for instance, be tertiary amines, carboxylic acids, cellulose type material (e.g., carboxymethyl cellulose (CMC)) used, for example, as a binder or adhesive in the electrode coating, or any other nucleophilic species that can be generated in the cell due to electrochemical, chemical, or thermal side-reactions. These species can be reactive and can interfere with the normal functioning of the EDLC. By scavenging the reactive species, embodiments of the present disclosure can reduce the ability of the nucleophilic species to negatively impact the functioning of the EDLC, and thus result in longer life and improved performance of the cell. For example, in some embodiments, the addition of an alkylating or arylating reagent disclosed herein can result in greater capacitance retention and lower ESR gain.
The term “equivalent series resistance (ESR)” as used herein is understood as a parameter that approximates the internal resistance of an EDLC. In some embodiments, it is more desirable to have lower ESR than higher ESR.
“Capacitance stability” refers to the retention of capacitance of a capacitor over time. In some embodiments, it is desirable to have high capacitance stability.
“Tertiary amine” as used herein is understood to mean an organic compound comprising a nitrogen atom bound to three different carbon atoms.
“Carboxylic acid” is understood to mean a functional group of the formula —C(O)OH. A carboxylate” is understood to mean a deprotonated carboxylic acid of the formula —C(O)O, wherein it is understood that the negative charge of the carboxylate is balanced by a corresponding counter cation.
“Nucleophilic species” is understood to mean a chemical moiety (e.g., a tertiary amine or a carboxylate) that can act as a nucleophile, for instance in the presence of an alkylating agent. One of skill in the art will understand that a nucleophile is capable of donating an electron pair to an electrophile to form a bond.
The term “substituted” or “substitution” of an atom means that one or more hydrogen on the designated atom is replaced with a different atom, including but not limited to a carbon, nitrogen, oxygen, sulfur or halogen atom, provided that the designated atom's normal valency is not exceeded. “Unsubstituted” atoms bear all of the hydrogen atoms dictated by their valency.
The term “saturated” is understood to mean an aliphatic group containing no double or triple bonds. A saturated group is understood to be at maximum normal valency.
The term “unsaturated” means an aliphatic hydrocarbon group containing a carbon-carbon double bond (e.g., an alkene) or a carbon-carbon triple bond (e.g., an alkyne) and which may be straight or branched having about 2 to about 6 carbon atoms in the chain. In some embodiments, alkenyl groups have 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl, or propyl are attached to a linear alkenyl chain. Exemplary alkenyl groups include ethenyl, propenyl, n-butenyl, and i-butenyl.
The term “alkyl” means an aliphatic hydrocarbon group which may be straight or branched having about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. Exemplary alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, and 3-pentyl.
As used herein, “aryl” refers to aromatic monocyclic or polycyclic ring system containing from 6 to 19 carbon atoms, where the ring system may be optionally substituted. Aryl groups of the present disclosure include, but are not limited to, groups such as phenyl, naphthyl, azulenyl, phenanthrenyl, anthracenyl, fluorenyl, pyrenyl, triphenylenyl, chrysenyl, and naphthacenyl.
As used herein, the abbreviation “Ph-X” is understood to represent an aryl halide. In some embodiments, the aryl halide is phenyl halide. It is understood that “Ph” is an abbreviation for the phenyl group. It is also understood that “X” is an abbreviation for a halogen atom, e.g., iodine, bromine, chlorine or fluorine. Thus, for instance, Ph-Br is understood to represent phenyl bromide.
In some embodiments, the compound of formula I is an alkyl chloride or is an aryl chloride. For example, the compound of formula I can be selected from chlorobenzene, 1-chloro-n-butane, bromobenzene, 1-bromo-n-butane, 1-chloropropane, and 1-bromopropane. In some embodiments, the compound of formula I is chlorobenzene or 1-chloro-n-butane.
In some embodiments, the electrochemical stability of the compounds of formula I can be improved by adding functional groups to the “R” component of formula I. Representative functional groups can be, for example, —CN or —F. For instance, a compound of formula I can be represented by:
Figure US09818552-20171114-C00001

wherein n+m≦5. In some embodiments, Ph-Cl and Ph-F are the most electrochemically stable additives. However, in some embodiments, Ph-F is not as reactive towards nucleophilic species as Ph-I, Ph-Br, and Ph-Cl.
In some embodiments, the compound of formula I is included in the electrolyte, and the electrolyte comprising an ionic species and a solvent. The concentration of the compound of formula I in the electrolyte can be about 0.1% by volume to about 10% by volume. For instance, the concentration of the compound of formula I in the electrolyte can be about 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%.
In one or more embodiments, the solvent is at least one of acetonitrile, propionitrile, and butyronitrile. Alternatively, the solvent can be selected from gamma-butyrolactone, propylene carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
In some embodiments, the ionic species is a quaternary ammonium salt. The quaternary ammonium salt can be one of spiro-bipyrrolidinium tetrafluoroborate (SBP BF4), tetraethyl ammonium tetrafluoroborate (TEA TFB), and triethyl(methyl)ammonium tetrafluoroborate.
In one or more embodiments, the electrolyte further comprises a stabilizer. The stabilizer can be, for instance, benzonitrile.
In some embodiments, the compound of formula I can be included in the separator. The compound of formula I can also be included in at least one of the anode and the cathode, or the compound of formula I can be included in a binder of at least one of the cathode and the anode.
In some embodiments, the binder can include carboxymethyl cellulose.
In one or more embodiments, the EDLC of the disclosure has an operating voltage of greater than about 2.7 V. The EDLC of the disclosure can also have a rated maximum temperature of greater than about 50° C.
In some embodiments, the EDLC can also include a stabilizer. The stabilizer can be benzonitrile. The total concentrations of the stabilizer and the additive can be about the same.
For example, the total concentrations of the stabilizer and the additive can be about 5%, e.g., the concentration of stabilizer can be about 1% and the concentration of additive can be about 4%; the concentration of stabilizer can be about 2% and the concentration of additive can be about 3%; the concentration of stabilizer can be about 2.5% and the concentration of additive can be about 2.5%; the concentration of stabilizer can be about 3% and the concentration of additive can be about 2%; or the concentration of stabilizer can be about 4% and the concentration of additive can be about 1%.
In some embodiments, the compound of formula I can be formulated to alkylate or arylate tertiary amines present within the EDLC cell. In some embodiments, the EDLC cell has an operating voltage of greater than about 2.7 volts and can have an operating temperature of greater than about 50° C.
Without wishing to be bound by any particular theory, it is proposed that the compounds of formula I are capable of alkylating certain reactive species that are produced throughout the course of functioning of an electric double-layer capacitor (EDLC). For example, in some embodiments, EDLCs function at high voltages (e.g., above 2.7 volts) and/or at high temperatures (e.g., above 50° C.). These conditions can facilitate certain chemical reactions to produce certain reactive species (e.g., nucleophilic species) that then can interfere with the normal functioning of the EDLC.
In some embodiments, under the conditions described above, nucleophilic species can be formed such as tertiary amines, carboxylic acids, cellulose-type material such as CMC and other nucleophilic compounds. Without wishing to be bound by theory, the generation of nucleophilic tertiary amines may arise from a Hoffmann Elimination mechanism. For example, it can be practically impossible to remove all trace water from cell components in an EDLC, especially the activated carbon and cellulose separator, even with temperatures above 100° C. and vacuum. The reduction of water within the electrochemical cell (e.g., at high voltage and temperature) can form a hydroxide anion, and the hydroxide anion can then chemically react with a quaternary ammonium cation to form a tertiary amine, via a Hoffman elimination route.
Additionally, nucleophilic species can be formed, for instance, due to electrochemical, chemical or thermal side reactions within the electrochemical cell. For instance, without wishing to be bound by theory, tertiary amines are capable of being formed in an EDLC where the electrolyte contains a quaternary ammonium cation via electrochemical reduction. The electrochemical reduction of a quaternary ammonium cation yields a tertiary amine and an alkyl radical via cleavage of the N—C bond, and also additional tertiary amine can be formed from a fresh cation via a Hoffman elimination mechanism in the case where the alkyl radical is further electrochemically reduced to the carbanion, which serves as the base in the Hoffman elimination. Although the potential of the negative electrode in an EDLC generally operates at levels that are not negative enough to cause gross reduction of the quaternary ammonium cation, in some embodiments, a slow rate of tertiary amine production can exist. For instance, some EDLCs require a constant trickle-current to stay fully charged, and this current can in some embodiments fuel redox reactions in the cell even though the cell theoretically is a redox-free system.
In some embodiments, the higher the operating voltage of the EDLC, the higher the rate of side reactions, and the more likely it will be that tertiary amines are produced in problematic quantities. Also, elevated temperatures improve reaction kinetics which also can accelerate the production of tertiary amines and other degradation products.
In addition to tertiary amines, other nucleophiles such as carboxylic acids or carboxylates can be formed. For instance, a carboxylic acid group can be formed by the hydrolysis of an ester group found within the cell. Also, a hydroxide ion, (e.g., produced by the reductive mechanism described above) can hydrolyze an ester group within carboxymethyl cellulose to give a carboxylate group. Yet another source of nucleophilic species within an EDLC is a cellulose-type material such as CMC. CMC can be used as a binder for EDLC electrodes. In some cases either the sodium salt or the ammonium salt of CMC is employed. The CMC can play an important role in ensuring a low resistance contact between the current collector and the coating. It also can help to bind individual carbon particles together within the electrode matrix, and to thicken the slurry used to coat the electrode where a wet coating procedure is used.
The CMC can be water soluble, and in some embodiments is part of an aqueous slurry which is used to either coat the current collector with the active material or with a pre-layer of CMC rich material. For instance, the CMC rich material can contain carbon black, on top of which is later coated the active material. In some preferred embodiments, the solubilized CMC can effectively penetrate interstitial space between particles as well as the coating-current collector interface, and thus bind them effectively once the water is removed by evaporation.
In some embodiments, water soluble cellulose materials can suffer from a decreased chemical stability compared to non-water soluble cellulose types. For example, certain cellulose types can have a very tight crystal structure that does not allow substantial water to penetrate, and therefore these cellulose types are not water soluble and are also less prone to acid catalyzed hydrolysis. Acid catalyzed hydrolysis can result in the depolymerisation of the cellulose chain, and can result in, for example, the slow degradation of paper (cellulose based) used in books and other printed media.
In the case of an EDLC, it is proposed, without wishing to be bound by theory, that the operation of the cell, particularly under harsh conditions (for example 3 V and 65° C.), produces an acidic environment at the positive electrode. In some embodiments, the CMC within this environment can be degraded, and this adversely affects the ESR of the cell. It is known that acidic species can be formed at the positive electrode in an EDLC due to side reactions that take place inside the cell. Additionally, it can sometimes be observed that cells that have undergone accelerated ageing tests have positive electrodes that can be delaminated upon disassembling the cell, suggesting that a reaction took place in the cell that caused the bond between the current collector and the electrode coating to lose most of its strength, and this delamination effect can be replicated in an acid exposure experiment as demonstrated in Example 9. Moreover, such cells suffered from a high gain in ESR during the course of the accelerated ageing test, even though the same cells did not suffer from any significant capacitance loss.
Accordingly, without wishing to be bound by theory, the present disclosure provides a strategy that counters the degradation of CMC in the cell in order to prevent a high ESR gain in the cell under harsh conditions. It is considered that other mechanisms of ESR gain, aside from CMC degradation, are also active.
Without wishing to be bound by theory, these nucleophilic species, as well as the side reactions that produce them themselves, can interfere with the normal functioning of the EDLC cell, and result in higher ESR gain and greater capacitance loss in the cells. In some embodiments, the initial reduction of trace water to hydroxide ion at the negative electrode of an EDLC can cause a loss of performance in the cell.
Moreover, nucleophilic species such as tertiary amines can react at the positive electrode of an EDLC to form insoluble products. Not only can the electrochemical oxidation of the tertiary amine result in a loss of performance within a cell, but the products thus produced can further interfere with the normal cell functioning by way of causing further unknown and/or unwanted side reactions. Without wishing to be bound by theory, the reaction of triethylamineis likely an irreversible electrochemical oxidation at the positive electrode, since tertiary amines are known to undergo such reactions, and are also known to be generally stable at negative potentials.
Accordingly, it is an object of the present disclosure to provide EDLCs containing compounds of formula I that can be useful at alkylating or arylating reactive species (e.g., tertiary amines or carboxylic acids) in order to scavenge these species and thus prevent them from interfering with the normal operation of the cell.
In some embodiments, the alkylating (e.g., alkyl halides such as chlorobutane) or arylating agents (e.g., aryl halides such as phenyl chloride) can react with nucleophilic species. For instance, chlorobutane can react with a tertiary amine such as triethylamine in an alkylation reaction to generate butyltriethylammonium chloride. Alternatively, in some embodiments, a compound of formula I (e.g., chlorobutane) can react with the hydroxide ion (e.g., a hydroxide ion generated by the presence of trace water) to give an alcohol (e.g., butanol) and the corresponding halide (e.g., chloride).
Furthermore, the alkylating or arylating agents of the present disclosure can be capable of alkylating, for example, the carboxy group of a cellulose binder and thus can affect the stability of the cellulose material. Without wishing to be bound by theory, an increase in stability of the cellulose material (e.g., CMC) can occur due to an increase in the hydrophobicity of the cellulose due to the alkylation (esterification, in the case of the alkylation of a carboxy/carboxyl/carboxylate group) of the material. Such an alkylation can also affect the crystal structure, and/or the electronic structure, of the cellulose material, which can serve to further improve stability. Alkylation of the hydroxyl groups of the cellulose binder (e.g., CMC) can also occur. Without wishing to be bound by theory, the alkylation can take place through known organic chemical mechanisms. The alkylation process can also be applied to other types of cellulose, as well as other polymers, biopolymers, polysaccharides and carbohydrates, in addition to CMC. Such other polymers can include, but are not limited to, alcohol and carboxy functionalized polymers, for example polyvinylalcohol, sodium polyacrylate, ammonium polyacrylate.
Additionally, in some instances the carboxyl functional group (COO—) that is present in cellulose (e.g., CMC) can undergo electrochemical oxidation, yielding carbon dioxide gas (CO2), leaving a radical site on the polymer chain. Any CO2 released by such a reaction can be trapped in the cell and can undergo electrochemical (or chemical) reactions, in some embodiments at the negative electrode. Such reactions can cause a performance loss for the cell. Accordingly, in some embodiments alkylation of the carboxyl group to form an ester can result in an increase in the electrochemical stability of the cellulose. Such an alkylation can be achieved by the use of an alkylating agent of the present disclosure, such as an alkyl halide or an aryl halide. The alkylating agent can also react with (e.g., esterify) carboxyl moieties within the electrolyte (for example carboxylic acids) or on the carbon surface (which contains, for instance, functional groups), and such reactions can in some embodiments increase the electrochemical stability of the system.
Additionally, the alkyl or aryl halides of the present disclosure can alkylate or arylate the carbon surface where reactive functional groups (e.g., carboxylic acid groups) are present. Such alkylation can also enhance cell stability.
Although both alkyl and aryl halides can be used, differences in carbon-halogen bond strengths as well as affinities to a carbon surface can result in differences in EDLC cell performance between the alkyl and aryl systems.
In some embodiments, the product of the reaction of the compound of formula I with a tertiary amine is a quaternary ammonium salt and a corresponding counter anion derived from the compound of formula I (e.g., a chloride ion). In some embodiments the quaternary ammonium product is relatively stable at positive potentials compared to the tertiary amine, and thus the stability of the cell is improved by eliminating the unstable tertiary amine or other nucleophilic species that would otherwise undergo further reaction.
Additionally, in some embodiments, adsorption of the aryl or alkyl halide to the carbon surface, e.g., as a monolayer, can reduce side reactions by reducing access of acetonitrile or other electrolyte species to the carbon surface, thereby reducing the reaction rate of acetonitrile of other electrolyte species and extending cell life.
As defined above, ESR refers to a parameter that approximates the internal resistance of an EDLC. As shown in the Examples below, the addition of a tertiary amine (e.g., as a representative nucleophile) causes the ESR gain to increase, thereby reducing the performance of the cell. Although most EDLCs do not have added tertiary amine, it is understood that tertiary amines and other nucleophilic species can be formed within a cell as described above, and these can have a deleterious effect on the performance of the cell.
As defined above, capacitance stability refers to the retention of capacitance of a capacitor over time. In some embodiments, addition of a tertiary amine to an EDLC can improve capacitance stability, as shown in FIG. 5 and FIG. 6. In these examples, addition of triethylamine and N-methylpyrrolidine resulted in greater capacitance stability.
EXAMPLES
The following examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure.
General Methods
Pouch cells consisted of an activated carbon based positive electrode and an activated carbon based negative electrode, each utilizing an etched aluminum current collector. A cellulose separator was used to separate the electrodes, and the electrode assembly was contained in an aluminum-polymer type pouch cell material. Each electrode had a coated area of 16 cm2 (i.e. 4 cm×4 cm in size). Each cell contained a total of 1 mL of electrolyte.
Example 1 Effect of Added Triethylamine on EDLC Cell Performance
Pouch cells (˜4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA.
FIG. 1 shows a voltage curve of a pouch cell containing triethylamine (1% v:v) (dashed line) compared with a pouch cell containing no added triethylamine (solid line). The cell with added triethylamine shows a charge curve of lower steepness than the cell with 0% triethylamine. FIG. 2 shows a voltage curve of a pouch cell containing N-methylpyrrolidine (1% v:v) (dashed line) compared with a pouch cell containing no added triethylamine (solid line). The cell with added triethylamine showed a charge curve of lower steepness than the cell with 0% triethylamine.
FIGS. 1 and 2 show a charge curve of lower steepness for a cell containing amine (1% v:v) (i.e., triethylamine or N-methylpyrrolidine) added to the electrolyte compared to a cell without added amine. The results suggest that the amine is being consumed electrochemically during the charging of the cell.
Example 2 Effect of Added Triethylamine on ESR Gain
Pouch cells (˜4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA.
As shown in FIG. 3, addition of triethylamine (Et3N) to an EDLC had a deleterious effect on ESR gain during the endurance test when used (0.5% v:v) or more in the electrolyte. In some embodiments, the effects became more exaggerated at extended time periods.
As shown in FIG. 4, addition of N-methylpyrrolidine to an EDLC had a deleterious effect on ESR gain during the endurance test when used (0.5% v:v) or more in the electrolyte. In some embodiments, the effects became more exaggerated at extended time periods.
At levels below 0.5% (v:v) triethylamine and 0.5% (v:v) N-methylpyrrolidine (not shown in) there did not appear to be an obvious major penalty.
Example 3 Effect of Added Triethylamine on Capacitance Stability
Pouch cells (˜4.4F) were prepared with added triethylamine (1% v:v) and N-methylpyrrolidine (1% v:v) and in the absence of added tertiary amine (control). The cells were charged at a constant current of 50 mA. As shown in FIG. 5, the addition of triethylamine to the electrolyte resulted in an improved capacitance retention. The same results were observed with the addition of N-methylpyrrolidine (see FIG. 6).
Example 4 Effect of Aryl Halides on Electrochemical Stability in Unconditioned Cells
Unconditioned pouch cells were treated with Ph-I (1% v:v), Ph-Br (1% v:v), Ph-Cl (1% v:v), and Ph-F (1% v:v). An unconditioned pouch cell without added aryl halide was used as a control. The cells were charged at 50 mA, held for 10 minutes at 3.0 V, discharged at 5 A, rested for 5 seconds, charged at 50 mA, held at 3 V for 10 minutes, and finally discharged at 50 mA.
FIG. 7 shows voltage vs. time profiles for the pouch cells after the two charge-discharge cycles described above. As shown in FIG. 7, the cell containing Ph-I was unable to reach the full 3 V charge. The results suggest that Ph-I was not electrochemically stable and was being directly reduced at the negative electrode under the conditions of the 3 V pouch cell.
In contrast, Ph-Br and Ph-Cl did not display any noticeable electrochemical reactivity within the 3 V cell. Without wishing to be bound by any theory, it is proposed that the Ph-I is being reacted electrochemically within the cell. The resulting I (iodide) ion can then serve as a redox shuttle involving I, I2 and I3 , and thus interrupting the normal functioning of the cell.
Example 5 Effect of Aryl Halides on Electrochemical Stability in Conditioned Cells
Pouch cells treated with Ph-Br (1% v:v), Ph-Cl (1% v:v), and Ph-F (1% v:v) were conditioned at 3 V and 65° C. for 18 hours. A conditioned pouch cell without added aryl halide was used as a control. The cells were charged at 50 mA, held for 10 minutes at 3.0 V, discharged at 5 A, rested for 5 seconds, charged at 50 mA, held at 3 V for 10 minutes, and finally discharged at 50 mA.
FIG. 8 shows voltage vs. time profiles for the pouch cells after the two charge-discharge cycles described above. As shown in FIG. 8, cells containing Ph-Br developed an instability which retarded the charging process. The results suggest that Ph-Br was not electrochemically stable and was being reduced at the negative electrode of the conditioned pouch cell. Without wishing to be bound by any theory, a bromide redox process is potentially active within the electrochemical cell, but it was delayed in being established. The Ph-Cl, Ph-F and control cells did not experience any difficulties. Therefore, without wishing to be bound by theory, it is proposed that the Ph-Cl and Ph-F cells were considered to have adequate electrochemical stability. However, also without wishing to be bound by any theory, the Ph-F is not expected to have a high reactivity towards tertiary amines or many other nucleophiles, due to the high stability of the Ph-F bond.
Example 6 Effect of Using Chlorobenzene (pH-Cl) on Electrochemical Cells
Pouch cells were made to test the effect of using an electrolyte that included phenyl chloride (Ph-Cl) (1% v:v). As a control, an electrolyte with 0% (v:v) of phenyl chloride was used.
For the control cell, the electrolyte consisted of 1 M SBP BF4 in acetonitrile+5% (v:v) benzonitrile. For the cell with Ph-Cl as additive, the electrolyte consisted of of 1 M SBP BF4+5% benzonitrile+1% Ph-Cl (v:v). For instance, the electrolyte with the Ph-Cl present could be made by taking 1.0 L of 1 M SBP BF4 in acetonitrile, adding 50 mL of benzonitrile, and adding 10 mL of Ph-Cl.
Cells were conditioned by holding them at 3.0 V and 65° C. for 18 h prior to beginning the endurance test, which in essence is a constant voltage, elevated temperature test designed to gauge the electrochemical stability of the system. The capacitance and ESR of the device are measured at room temperature before the endurance test begins, as well as at certain time intervals throughout the test. For measurements made during the test the cells are discharged and allowed to cool to room temperature before the capacitance and ESR are measured. Once the measurements are made the cells are returned to the accelerated degradation condition (3.0 V and 65° C.).
FIG. 9 shows that the cell with Ph-Cl (1% v:v) present as an additive experience less ESR gain during the endurance test. FIG. 10 shows that the cell with the Ph-Cl present as an additive have equal or better capacitance retention than cell that does not have this additive. The sudden capacitance drop observed in the control cell during the first 100 h of the test is avoided by using the Ph-Cl additive. FIG. 11 shows that Ph-F does not cause this unusual affect to manifest. Without wishing to be bound by any theory, this difference may be due to the chemical reactivity of Ph-Cl, (Ph-F is not as chemically active as Ph-Cl due to the high stability of the C—F bond) or perhaps due to the more polarizable nature of the C—Cl bond—which could plausibly affect capacitance if Ph-Cl is adsorbed to the carbon surface.
Inspection of cells after the endurance test did not show any noticeable corrosion of the aluminum current collectors. Without wishing to be bound by theory, the presence of chlorine, especially as Cl— (chloride), could arguably promote corrosion of the current collector on the positive electrode.
Example 7 Effect of Using 1-Chloro-n-Butane on Electrochemical Cells
Pouch cells similar to those in Example 6 were made to test the effect of using an electrolyte that included butyl chloride (Bu-Cl) (1% v:v), also known as 1-chloro-n-butane. As a control, cells were also made using 0% of butyl chloride.
For the control cells, the electrolyte consisted of 1 M SBP BF4 in acetonitrile+5% benzonitrile. For the cells with Bu-Cl as additive, the electrolyte consisted of 1 M SBP BF4+5% benzonitrile+1% Bu-Cl (v:v). For instance, the electrolyte with the Bu-Cl present could be made by taking 1.0 L of 1 M SBP BF4 in acetonitrile, adding 50 mL of benzonitrile, and adding 10 mL of Bu-Cl.
Cells were conditioned, and subjected to the endurance test at 3.0 V and 65° C. as in Example 6.
FIG. 12 shows that the presence of Bu-Cl results in a reduced ESR gain for the cells operating at 3.0 V and 65° C., with the effect being most obvious after about the 500 h point. FIG. 13 shows that the capacitance is the same or better than the cells without Bu-Cl, with the cells being slightly but noticeably better during most of the 1000 h period. As for Ph-Cl, there presence of Bu-Cl significantly affects the capacitance within the first 100 h of the test period observed in the control cell, preventing much of the sudden drop in capacitance.
Example 8 Effect of Stabilizer on Performance of Electrochemical Cells
Commercial style, spirally wound cylindrical cells with activated carbon based electrodes were made, being of approximately 1300 F capacitance and 0.45 mOhm ESR each, to test the effect of using an electrolyte based on 1 M SBP BF4 in acetonitrile containing 2% Ph-Cl in addition to 3% benzonitrile (v:v) as a stabilizer (BZN) (dual additive system). As a control, cells containing 5% benzonitrile (v:v) were also tested (single additive system). As indicated, the percentages for the additives are on an added volumetric basis. For instance, the dual additive electrolyte can be made by taking 1 L of 1 M SBP BF4 in acetonitrile and adding 20 mL of Ph-Cl and 30 mL of BZN. Cells were conditioned before starting the test by holding them at 2.92 V at 55° C. for 44 h. The cells were subjected to the endurance test at 3.0 V and 65° C., as described in example 4, for 1024 h.
ESR Gain
The ESR behavior of the cells is shown if FIG. 14, the dual additive system exhibits significantly lower ESR gain, about 290% of the initial ESR after the 1024 h period, compared with about 415% for the single additive system. Without wishing to be bound by theory, the ESR gain can result primarily from a corruption of the carbon coating—current collector interface, and changes to the binder system can significantly reduce the ESR gain even further. The results of this direct comparison suggest that the Ph-Cl additive is advantageous for ESR stability under this standard test condition.
Capacitance Loss: 80-40% of Rated Voltage
FIG. 15 shows that the cells containing 2% Ph-Cl and 3% BZN (v:v) exhibit significantly less capacitance loss compared to cells with 5% BZN (v:v), where capacitance is measured between 80 and 40% of rated voltage, i.e. between 2.4 and 1.2 V. The dual additive cells experience a slight capacitance gain over the first approximately 100 h of the endurance test, in contrast to a capacitance loss for the single additive system. The cells with the dual additive system have between 96 and 97% of their original capacitance after the 1024 h period, which is an exceptional level of stability, compared to about 91 to 92% for the single additive system.
Capacitance Loss: Full Voltage
For the same cells, when voltage was measured over the full voltage range, i.e., 3 to 0 V. The capacitance rise of the dual additive cells early in the test is more pronounced, as shown in FIG. 16, and the cells maintain between 98 and 99.5% of their original capacitance after the 1024 h period. Cells with the single additive system have between 94 and 96% of the original capacitance remaining after the 1024 h period.
The results show that a level of capacitance stability far greater than anything previously demonstrated for a 3 V EDLC can be achieved with the aid of the dual additive system, and that surface area blocking reactions in the activated carbon electrodes have virtually been stopped.
Example 9 Effect of Acidic Conditions on Cellulose Stability
EDLC electrodes were soaked in EDLC electrolytes spiked with 1% (v:v) acetic acid, 1% (v:v) triethylamine or both 1% (v:v) acetic acid and 1% (v:v) triethylamine. A non-spiked control sample was also tested The results are shown in Table 1, below.
TABLE 1
Effect of Acid on stability of Cellulose
Immersion
time Temperature
Electrolyte Electrode (days) (° C.) Observations
1M SBP BF4 in Activated carbon based 55 65 No change.
acetonitrile + 5% v:v coating on Al current
benzonitrile collector, with 1 wt %
CMC binder.
1M SBP BF4 in Activated carbon based 55 65 Delamination of
acetonitrile + 5% v:v coating on Al current electrode coating from
benzonitrile + 1% v:v collector, with 1 wt % aluminum current
acetic acid CMC binder. collector.
1M SBP BF4 in Activated carbon based 55 65 No change.
acetonitrile + 5% v:v coating on Al current
benzonitrile + 1% v:v collector, with 1 wt %
triethylamine CMC binder.
1M SBP BF4 in Activated carbon based 55 65 Delamination of
acetonitrile + 5% v:v coating on Al current electrode coating from
benzonitrile + 1% v:v collector, with 1 wt % aluminum current
acetic acid + 1% v:v CMC binder. collector, thin white
triethylamine deposit on aluminum
current collector.
The presence of acid resulted in severe de-lamination of the electrode coating from the current collector after several weeks of immersion at 65° C. To add context to this result, it is worth noting that cells which suffered from a high gain in ESR during the course of the accelerated ageing test, although they did not suffer from any significant capacitance loss, often showed a delamination of the carbon coating from the current collector at the positive electrode similar to that observed in the acid-spiked immersion test.
While various embodiments of the system, methods and devices have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps may be modified and such modification are in accordance with the variations of the present disclosure. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. The embodiments have been particularly shown and described, but it will be understood that various changes in form and details may be made.

Claims (35)

The invention claimed is:
1. An electrochemical double-layer capacitor, comprising:
a cathode;
an anode;
a separator;
an electrolyte; and
an additive comprising a compound of formula I:

R—X
wherein:
R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, aryl, substituted aryl or substituted alkyl;
X is I, Br, Cl, —SO2F, —SO2CF3, —OCH3, —N(SO2F)2, —N(SO2CF3)2, —N(CN)2, —Si(CH3)3, —O—S(O)2—OCH3, —S(O)2—O—CF3, or tosylate, wherein
a concentration of the compound of formula I in the electrolyte of the electrochemical double-layer capacitor is selected from the group consisting of about 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, and 9% vol %.
2. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is an alkyl chloride.
3. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is an aryl chloride.
4. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is at least one of chlorobenzene, 1-chloro-n-butane, bromobenzene, 1-bromo-n-butane, 1-chloropropane, and 1-bromopropane.
5. The electrochemical double-layer capacitor of claim 4, wherein the compound of formula I is chlorobenzene.
6. The electrochemical double-layer capacitor of claim 4, wherein the compound of formula I is 1-chloro-n-butane.
7. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is included in the electrolyte, the electrolyte comprising an ionic species and a solvent.
8. The electrochemical double-layer capacitor of claim 7, wherein the solvent is at least one of acetonitrile, propionitrile, and butyronitrile.
9. The electrochemical double-layer capacitor of claim 7, wherein the solvent is at least one of gamma-butyrolactone, propylene carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
10. The electrochemical double-layer capacitor of claim 7, wherein the ionic species is a quaternary ammonium salt.
11. The electrochemical double-layer capacitor of claim 10, wherein the quaternary ammonium salt is at least one of spiro-bipyrrolidinium tetrafluoroborate (SBP BF4), tetraethyl ammonium tetrafluoroborate (TEA TFB), and triethyl(methyl)ammonium tetrafluoroborate.
12. The electrochemical double-layer capacitor of claim 7, wherein the electrolyte further comprises a stabilizer.
13. The electrochemical double-layer capacitor of claim 12, wherein the stabilizer is benzonitrile.
14. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is included in the separator.
15. The electrochemical double-layer capacitor of claim 1, wherein the compound of formula I is included in at least one of the anode and the cathode.
16. The electrochemical double-layer capacitor of claim 15, wherein the compound of formula I is included in a binder of at least one of the cathode, and the anode.
17. The electrochemical double-layer capacitor of claim 1, having an operating voltage of greater than about 2.7 V.
18. The electrochemical double-layer capacitor of claim 1, having a rated maximum temperature of greater than about 50° C.
19. An electrochemical double-layer capacitor, comprising:
a cathode;
an anode;
a separator;
an electrolyte;
a stabilizer; wherein the stabilizer is benzonitrile; and
an additive comprising a compound of formula I:

R—X  (I)
wherein:
R is saturated alkyl, unsaturated alkyl, saturated branched alkyl, aryl, substituted aryl or substituted alkyl;
X is I, Br, Cl, FSO2, CF3SO2, OCH3, N(SO2F)2, N(SO2CF3)2, N(CN)2, Si(CH3)3, SO4CH3, CF3SO3, or tosylate, wherein
a total concentration of the compound of formula I and the stabilizer in the electrolyte of the electrochemical double-layer capacitor is less than or equal to about 10% by volume.
20. The electrochemical double-layer capacitor of claim 19, wherein the total concentrations of the compound of formula I and the stabilizer is about the same.
21. The electrochemical double-layer capacitor of claim 19 wherein the total concentrations of the compound of formula I and the stabilizer is about 5%.
22. The electrochemical double-layer capacitor of claim 19, wherein the compound of formula I is chlorobenzene.
23. The electrochemical double-layer capacitor of claim 19, wherein the compound of formula I is 1-chloro-n-butane.
24. A method of manufacturing an EDLC cell, the method comprising:
disposing a cathode on a positive current collector;
disposing an anode on a negative current collector;
disposing a separator between the positive current collector and the negative current collector to form the EDLC cell;
disposing the EDLC cell in a container; and
infiltrating the EDLC cell with an electrolyte formulation comprising: an ionic species, a solvent, and an additive comprising a compound of formula I:

R—X
wherein:
R is saturated alkyl, unsaturated alkyl, unsaturated branched alkyl, aryl, substituted aryl, or substituted alkyl;
X is I, Br, Cl, FSO2, CF3SO2, OCH3, N(SO2F)2, N(SO2CF3)2, N(CN)2, Si(CH3)3, SO4CH3, CF3SO3, or tosylate, and
a concentration of the compound of formula I in the electrolyte selected from the group consisting of about 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, and 9% vol %.
25. The method of claim 24, wherein the electrolyte further comprises a stabilizer.
26. The method of claim 25, wherein the stabilizer is benzonitrile.
27. The method of claim 24, wherein the compound of formula I is formulated to alkylate or arylate tertiary amines present within the EDLC cell.
28. The method of claim 24, wherein the compound of formula I is an alkyl chloride.
29. The method of claim 24, wherein the compound of formula I is an aryl chloride.
30. The method of claim 24, wherein the compound of formula I includes at least one of chlorobenzene, 1-chloro-n-butane, bromobenzene, 1-bromo-n-butane, 1-chloropropane, and 1-bromopropane.
31. The method of claim 30, wherein the compound of formula I is chlorobenzene.
32. The method of claim 24, wherein the solvent includes at least one of acetonitrile, propionitrile, and butyronitrile.
33. The method of claim 24, wherein the ionic species is at least one of spiro-bipyrrolidinium tetrafluoroborate (SBP BF4), tetraethylammonium tetrafluoroborate (TEA TFB), and triethyl(methyl)ammonium tetrafluoroborate.
34. The method of claim 24, wherein the EDLC cell has an operating voltage of greater than about 2.7 volts.
35. The method of claim 24, wherein the EDLC cell has an operating temperature of greater than about 50 degrees Celsius.
US14/605,114 2015-01-26 2015-01-26 Additives for reducing ESR gain in electrochemical double layer capacitors Active 2035-05-09 US9818552B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/605,114 US9818552B2 (en) 2015-01-26 2015-01-26 Additives for reducing ESR gain in electrochemical double layer capacitors
ES16743872T ES2879723T3 (en) 2015-01-26 2016-01-21 Additives to Reduce ESR Gain in Double Layer Electrochemical Capacitors
HK18106232.5A HK1246967A1 (en) 2015-01-26 2016-01-21 Additives for reducing esr gain in electrochemical double layer capacitors
CN201680007053.3A CN107210144B (en) 2015-01-26 2016-01-21 Additive for reducing ESR gain in electrochemical double layer capacitors
PCT/US2016/014221 WO2016122952A1 (en) 2015-01-26 2016-01-21 Additives for reducing esr gain in electrochemical double layer capacitors
EP16743872.0A EP3251137B1 (en) 2015-01-26 2016-01-21 Additives for reducing esr gain in electrochemical double layer capacitors
CA2974090A CA2974090C (en) 2015-01-26 2016-01-21 Additives for reducing esr gain in electrochemical double layer capacitors
KR1020177023480A KR20170108064A (en) 2015-01-26 2016-01-21 Additive to reduce ESR rise in electrochemical double layer capacitors
JP2017533405A JP6743019B2 (en) 2015-01-26 2016-01-21 Additive for reducing ESR gain in electrochemical double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/605,114 US9818552B2 (en) 2015-01-26 2015-01-26 Additives for reducing ESR gain in electrochemical double layer capacitors

Publications (2)

Publication Number Publication Date
US20160217937A1 US20160217937A1 (en) 2016-07-28
US9818552B2 true US9818552B2 (en) 2017-11-14

Family

ID=56433481

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/605,114 Active 2035-05-09 US9818552B2 (en) 2015-01-26 2015-01-26 Additives for reducing ESR gain in electrochemical double layer capacitors

Country Status (9)

Country Link
US (1) US9818552B2 (en)
EP (1) EP3251137B1 (en)
JP (1) JP6743019B2 (en)
KR (1) KR20170108064A (en)
CN (1) CN107210144B (en)
CA (1) CA2974090C (en)
ES (1) ES2879723T3 (en)
HK (1) HK1246967A1 (en)
WO (1) WO2016122952A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
US10446328B2 (en) 2016-05-20 2019-10-15 Avx Corporation Multi-cell ultracapacitor
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261426B (en) * 2018-12-03 2022-08-09 深圳新宙邦科技股份有限公司 Super capacitor electrolyte and super capacitor

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489663A (en) 1965-10-19 1970-01-13 Owens Illinois Inc Electrolytic polymerization
US4528254A (en) 1983-11-30 1985-07-09 Allied Corporation Conjugated polymer battery containing organosulfur solvent
US4725927A (en) 1986-04-08 1988-02-16 Asahi Glass Company Ltd. Electric double layer capacitor
EP0609101A1 (en) 1993-01-29 1994-08-03 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
US20030202316A1 (en) 2002-04-22 2003-10-30 Asahi Glass Company Limited Electric double layer capacitor
US20060147808A1 (en) 2004-12-31 2006-07-06 Byd Company Limited Electrolytes for lithium ion secondary batteries
US20060274475A1 (en) 2003-08-29 2006-12-07 Kazumi Chiba Electrolytic solution for electric double layer capacitor and electric double layer capacitor
WO2007072815A1 (en) 2005-12-20 2007-06-28 Zeon Corporation Electric double layer capacitor
US20090134851A1 (en) 2005-10-19 2009-05-28 Harumi Takeda Electric power storage system using capacitors and control method thereof
US20100028783A1 (en) * 2008-08-01 2010-02-04 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US7755879B2 (en) 2006-08-11 2010-07-13 Asahi Glass Company, Limited Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
US7967874B2 (en) 2005-02-22 2011-06-28 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof
KR20110136085A (en) 2010-06-14 2011-12-21 주식회사 엘지화학 Lithium secondary battery
WO2012017998A1 (en) 2010-08-05 2012-02-09 和光純薬工業株式会社 Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
US20120088160A1 (en) 2010-10-07 2012-04-12 Lu Zhang Non-aqueous electrolyte for lithium-ion battery
US20120156528A1 (en) 2010-12-21 2012-06-21 John Cooley Battery-capacitor hybrid energy storage system for high temperature applications
WO2012151618A1 (en) * 2011-05-10 2012-11-15 Cap-Xx Limited Electrolyte
US20130133923A1 (en) 2010-04-29 2013-05-30 Oû Skeleton Technologies A carbon composite electrode for the electric double-layer capacitor
WO2013126915A1 (en) * 2012-02-24 2013-08-29 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US20140042988A1 (en) * 2011-07-08 2014-02-13 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US8760851B2 (en) * 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
WO2015006072A1 (en) 2013-07-12 2015-01-15 Ioxus, Inc. Stability enhancing additive for electrochemical devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058397A (en) * 1998-08-04 2000-02-25 Mitsubishi Chemicals Corp Purification method of non-aqueous electrolyte for electric double layer capacitor
JP2000252171A (en) * 1999-03-03 2000-09-14 Asahi Glass Co Ltd Method for manufacturing electric double layer capacitor
JP2000311839A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
AUPQ253099A0 (en) * 1999-08-30 1999-09-23 Energy Storage Systems Pty Ltd A charge storage device
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP4036832B2 (en) * 2002-01-24 2008-01-23 日立マクセル株式会社 Non-aqueous secondary battery
JP2003217983A (en) * 2002-01-28 2003-07-31 Mitsubishi Paper Mills Ltd Electric double layer capacitor
DE60302654T2 (en) * 2002-02-19 2006-09-14 Cellergy Ltd. ELECTROCHEMICAL CONDENSER AND ITS MANUFACTURE
JP2004047969A (en) * 2002-05-15 2004-02-12 Sanyo Chem Ind Ltd Electrolyte for electrochemical capacitor and electrochemical capacitor using the same
JP3974508B2 (en) * 2002-11-29 2007-09-12 本田技研工業株式会社 Electric double layer capacitor
JP2006210817A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Non-aqueous electrolyte for electrochemical capacitors
US8475676B2 (en) * 2006-03-08 2013-07-02 Cap-Xx Limited Electrolyte
KR20140018907A (en) * 2011-03-31 2014-02-13 바스프 에스이 Particulate porous carbon material and use thereof in lithium cells
AU2012282799A1 (en) * 2011-07-08 2014-02-27 Fastcap Systems Corporation High temperature energy storage device

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489663A (en) 1965-10-19 1970-01-13 Owens Illinois Inc Electrolytic polymerization
US4528254A (en) 1983-11-30 1985-07-09 Allied Corporation Conjugated polymer battery containing organosulfur solvent
US4725927A (en) 1986-04-08 1988-02-16 Asahi Glass Company Ltd. Electric double layer capacitor
EP0609101A1 (en) 1993-01-29 1994-08-03 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
US20030202316A1 (en) 2002-04-22 2003-10-30 Asahi Glass Company Limited Electric double layer capacitor
US20060274475A1 (en) 2003-08-29 2006-12-07 Kazumi Chiba Electrolytic solution for electric double layer capacitor and electric double layer capacitor
US20060147808A1 (en) 2004-12-31 2006-07-06 Byd Company Limited Electrolytes for lithium ion secondary batteries
US7967874B2 (en) 2005-02-22 2011-06-28 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof
US20090134851A1 (en) 2005-10-19 2009-05-28 Harumi Takeda Electric power storage system using capacitors and control method thereof
WO2007072815A1 (en) 2005-12-20 2007-06-28 Zeon Corporation Electric double layer capacitor
US7755879B2 (en) 2006-08-11 2010-07-13 Asahi Glass Company, Limited Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
US20100028783A1 (en) * 2008-08-01 2010-02-04 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US20130133923A1 (en) 2010-04-29 2013-05-30 Oû Skeleton Technologies A carbon composite electrode for the electric double-layer capacitor
KR20110136085A (en) 2010-06-14 2011-12-21 주식회사 엘지화학 Lithium secondary battery
WO2012017998A1 (en) 2010-08-05 2012-02-09 和光純薬工業株式会社 Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
US9190695B2 (en) 2010-08-05 2015-11-17 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
US20120088160A1 (en) 2010-10-07 2012-04-12 Lu Zhang Non-aqueous electrolyte for lithium-ion battery
US20120156528A1 (en) 2010-12-21 2012-06-21 John Cooley Battery-capacitor hybrid energy storage system for high temperature applications
US8760851B2 (en) * 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
WO2012151618A1 (en) * 2011-05-10 2012-11-15 Cap-Xx Limited Electrolyte
US20140098466A1 (en) 2011-05-10 2014-04-10 Cap-Xx Limited Electrolyte
US20140042988A1 (en) * 2011-07-08 2014-02-13 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2013126915A1 (en) * 2012-02-24 2013-08-29 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2015006072A1 (en) 2013-07-12 2015-01-15 Ioxus, Inc. Stability enhancing additive for electrochemical devices
US20150016021A1 (en) 2013-07-12 2015-01-15 Ioxus, Inc. Stability enhancing additive for electrochemical devices
US9536678B2 (en) 2013-07-12 2017-01-03 Ioxus, Inc. Stability enhancing additive for electrochemical devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3M Novec Fluorosurfactant FC-4430, Project Information, Dec. 2010, 4 pages.
International Search Report and Written Opinion for International Application No. PCT/US16/14221, dated Jan. 21, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2014/044585, dated Oct. 14, 2014, 9 pages.
Supplementary European Search Report for European Application No. 14823818.1, dated Jul. 20, 2017, 7 pages.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
US10446328B2 (en) 2016-05-20 2019-10-15 Avx Corporation Multi-cell ultracapacitor
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container
US10840031B2 (en) 2016-05-20 2020-11-17 Avx Corporation Ultracapacitor for use at high temperatures

Also Published As

Publication number Publication date
CN107210144B (en) 2020-05-19
EP3251137A1 (en) 2017-12-06
CA2974090A1 (en) 2016-08-04
HK1246967A1 (en) 2018-09-14
WO2016122952A1 (en) 2016-08-04
JP6743019B2 (en) 2020-08-19
CA2974090C (en) 2022-09-20
KR20170108064A (en) 2017-09-26
JP2018506845A (en) 2018-03-08
CN107210144A (en) 2017-09-26
US20160217937A1 (en) 2016-07-28
EP3251137B1 (en) 2021-04-21
EP3251137A4 (en) 2018-09-26
ES2879723T3 (en) 2021-11-22

Similar Documents

Publication Publication Date Title
US9818552B2 (en) Additives for reducing ESR gain in electrochemical double layer capacitors
US7858242B2 (en) Electrolytic solution for an electrochemical capacitor and an electrochemical capacitor using the same
JP4802243B2 (en) Electrolytic solution additive and electrolytic solution
EP3336093B1 (en) Phosphoric acid diester salt, production method therefor, non-aqueous electrolyte for power storage element, and power storage element
US9947484B2 (en) Electrolyte solution and electrochemical device
EP2141712A1 (en) Electrolyte, and electrolyte solution or electrochemical element comprising the same
JP2012074528A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using the same
US6185089B1 (en) Electrolytic solution for capacitor and capacitor
US8920669B2 (en) Electrolyte system
US11114695B2 (en) Electrolyte for electrochemical device, electrolytic solution, and electrochemical device
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2005197666A (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
CN111418037B (en) Aqueous electrolyte and pseudo capacitor comprising same
JP2012109539A (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2007088359A (en) Electrolytic solution for electrochemical device and electrochemical device using the electrolytic solution
JP2012069931A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it
JP2003324039A (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2011155093A (en) Electrolyte and electrochemical element using the same
JP2010021508A (en) Electrolytic salt, electrolyte containing electrolytic salt, and electrochemical capacitor and electric double layer capacitor using electrolyte
JP2013222866A (en) Electric double-layer capacitor electrolyte and electric double-layer capacitor using the same
JP2002343679A (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: IOXUS, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANE, GEORGE HAMILTON;RUDISUELA, KEN;DONADIO, SUSAN CAROL;REEL/FRAME:035075/0983

Effective date: 20150128

AS Assignment

Owner name: MANCHESTER SECURITIES CORP., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:IOXUS, INC.;REEL/FRAME:039568/0221

Effective date: 20160824

AS Assignment

Owner name: ARES CAPITAL CORPORATION, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:IOXUS, INC.;REEL/FRAME:040559/0810

Effective date: 20161026

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: IOXUS, INC., NEW YORK

Free format text: RELEASE OF PATENT SECURITY AGREEMENT RECORDED ON AUGUST 29, 2016 AT REEL/FRAME 039568/0221;ASSIGNOR:MANCHESTER SECURITIES CORP.;REEL/FRAME:052121/0099

Effective date: 20200304

AS Assignment

Owner name: SYSTEMATIC POWER MANUFACTURING, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARES CAPITAL CORPORATION, AS UCC ARTICLE 9 CREDITOR FOR IOXUS, INC.;REEL/FRAME:055386/0191

Effective date: 20200330

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8