JP2012069931A - Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it - Google Patents

Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it Download PDF

Info

Publication number
JP2012069931A
JP2012069931A JP2011181170A JP2011181170A JP2012069931A JP 2012069931 A JP2012069931 A JP 2012069931A JP 2011181170 A JP2011181170 A JP 2011181170A JP 2011181170 A JP2011181170 A JP 2011181170A JP 2012069931 A JP2012069931 A JP 2012069931A
Authority
JP
Japan
Prior art keywords
parts
double layer
electric double
layer capacitor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011181170A
Other languages
Japanese (ja)
Inventor
Yoshimi Aoyama
淑未 青山
Shinichi Murata
晋一 村田
Hideo Seike
英雄 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2011181170A priority Critical patent/JP2012069931A/en
Publication of JP2012069931A publication Critical patent/JP2012069931A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric double layer capacitor in which the rate of change in equivalent series resistance is low, low resistance is developed even under low temperatures, the ability of dissipating strong alkaline components generated on the surface of a cathode side polarizable electrode or the surface of a lead connected therewith can be enhanced, and degradation in the sealing performance of a sealing body can be prevented.SOLUTION: The electrolytic solution for an electric double layer capacitor is produced by dissolving a quaternary ammonium salt (A) represented by a specific chemical formula into an organic solvent (S), and contains tetramethyl ammonium tetrafluoroborate in the range of 0.3-10 wt% for the quaternary ammonium salt (A).

Description

本発明は、電気二重層キャパシタ用電解液およびそれを用いた電気二重層キャパシタに関するものである。   The present invention relates to an electrolytic solution for an electric double layer capacitor and an electric double layer capacitor using the same.

従来、電気二重層キャパシタの電解質にはテトラエチルアンモニウムテトラフルオロボレート(以下、TEA・BFと記載)塩(例えば、特許文献1)が電解質として主に用いられており、エチルトリメチルアンモニウムテトラフルオロボレート(以下、ETMA・BFと記載)塩(例えば、特許文献2)も検討されている。近年、長期間、低温から高温の範囲において、しかも大電流で使用されるハイブリッド電気自動車等の新しい用途が広がっており、このような分野においては、長期の耐久性、信頼性、かつ低温にて、低抵抗を発現する電気二重層キャパシタが要望されている。このためそれを構成する部材である電解液においても、化学的に安定で、長期使用が可能であり、低温にて、大電流放電する場合に、低抵抗が発現する電解液の開発が急務となっている。 Conventionally, an electric double layer in the electrolyte of the capacitor tetraethylammonium tetrafluoroborate (hereinafter, described as TEA · BF 4) salts (e.g., Patent Document 1) is mainly used as an electrolyte, ethyl trimethylammonium tetrafluoroborate ( Hereinafter, ETMA · BF 4 ) salts (for example, Patent Document 2) have also been studied. In recent years, new applications such as hybrid electric vehicles, which are used for a long period of time from low temperature to high temperature and at high current, are spreading. In such fields, long-term durability, reliability and low temperature There is a need for an electric double layer capacitor that exhibits low resistance. For this reason, it is urgent to develop an electrolytic solution that is a member constituting the same, which is chemically stable, can be used for a long time, and develops a low resistance when discharging a large current at a low temperature. It has become.

特開昭50-44463JP-A-50-44463 特開2008-508736JP2008-508736

特許文献1に記載されたテトラエチルアンモニウム塩を使用した場合、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分により、封口体の封口性能の低下が引き起こされる。また低温での抵抗は高かった。特許文献2に記載されたエチルトリメチルアンモニウム塩はイオン径が小さいため、低温での抵抗を改善できるが、十分ではなく、実用化には至っていない。 When the tetraethylammonium salt described in Patent Document 1 is used, the sealing performance of the sealing body is improved by a strong alkali component generated on the surface of the cathode side polarizable electrode or the surface of the lead lead connected to the cathode side polarizable electrode. A decline is caused. The resistance at low temperature was high. Since the ethyltrimethylammonium salt described in Patent Document 2 has a small ionic diameter, it can improve resistance at low temperatures, but is not sufficient and has not yet been put into practical use.

本発明は上記問題点を解決するもので、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分を消失させる能力を高めることができ、封口体の封口性能の低下を防ぐことができ、等価直列抵抗の変化率が小さく、かつ低温でも低抵抗を発現する電気二重層キャパシタを提供することを目的とするものである。 The present invention solves the above-mentioned problems, can improve the ability to eliminate strong alkali components generated on the surface of the cathode-side polarizable electrode or on the surface of the lead lead connected to the cathode-side polarizable electrode, An object of the present invention is to provide an electric double layer capacitor that can prevent deterioration in body sealing performance, has a small rate of change in equivalent series resistance, and exhibits low resistance even at low temperatures.

本発明者等は上記課題を解決するべく鋭意検討した結果、本発明に至った。すなわち、本発明は、下記の一般式(1)で表される4級アンモニウム塩(A)が有機溶媒(S)に溶解してなる電気二重層キャパシタ用電解液であって、4級アンモニウム塩(A)に対し0.3〜10重量%の範囲でテトラメチルアンモニウムテトラフルオロボレートを含む電気二重層キャパシタ用電解液、および該電気二重層キャパシタ用電解液を用いる電気二重キャパシタである。

Figure 2012069931
[R〜Rはメチル基またはエチル基であって、少なくとも1つは他と異なる。] As a result of intensive studies to solve the above problems, the present inventors have arrived at the present invention. That is, the present invention is an electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt (A) represented by the following general formula (1) is dissolved in an organic solvent (S). An electrolytic solution for an electric double layer capacitor containing tetramethylammonium tetrafluoroborate in a range of 0.3 to 10% by weight relative to (A), and an electric double capacitor using the electrolytic solution for an electric double layer capacitor.
Figure 2012069931
[R 1 to R 4 is a methyl group or an ethyl group, at least one is different from others. ]

本発明の電解液を使用することにより、電気二重層キャパシタの低温における等価直列抵抗が低く、等価直列抵抗の変化率が小さく、封口体の封口性能に優れる高信頼性の電気二重層キャパシタを構成できる。 By using the electrolytic solution of the present invention, the electric double layer capacitor has a low equivalent series resistance at a low temperature, a small change rate of the equivalent series resistance, and a highly reliable electric double layer capacitor excellent in sealing performance of the sealing body. it can.

以下に本発明を詳細に説明する。
本発明の電気二重層キャパシタ用電解液は、電解質として上記の一般式(1)で表される4級アンモニウム塩(A)、すなわち、ジエチルジメチルアンモニウムテトラフルオロボレート(以下DEDMA・BFと記載することがある。)、エチルトリメチルアンモニウムテトラフルオロボレート(以下ETMA・BFと記載することがある。)、トリエチルメチルアンモニウムテトラフルオロボレート(以下TEMA・BFと記載することがある。)からなる群より選択される少なくとも1種を含有する。
4級アンモニウム塩(A)のアニオン成分としてBF (テトラフルオロボレート)を採用することにより、等価直列抵抗変化率(−30℃)、等価直列抵抗(−30℃)を低くすることができる。
4級アンモニウム塩(A)はテトラエチルアンモニウムテトラフルオロボレートと比較してアルカリと反応しやすいため、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分を消失させる能力はあるが、不十分であった。
The present invention is described in detail below.
The electrolytic solution for an electric double layer capacitor of the present invention is described as a quaternary ammonium salt (A) represented by the above general formula (1) as an electrolyte, that is, diethyldimethylammonium tetrafluoroborate (hereinafter referred to as DEDMA · BF 4 ). ), Ethyltrimethylammonium tetrafluoroborate (hereinafter sometimes referred to as ETMA · BF 4 ), and triethylmethylammonium tetrafluoroborate (hereinafter sometimes referred to as TEMA · BF 4 ). It contains at least one selected from more.
By adopting BF 4 (tetrafluoroborate) as the anion component of the quaternary ammonium salt (A), the equivalent series resistance change rate (−30 ° C.) and the equivalent series resistance (−30 ° C.) can be lowered. .
Since the quaternary ammonium salt (A) is more reactive with alkali than tetraethylammonium tetrafluoroborate, strong alkali is generated on the surface of the cathode-side polarizable electrode or on the surface of the lead lead connected to the cathode-side polarizable electrode. Although it has the ability to dissipate components, it was insufficient.

4級アンモニウム塩(A)の分子軌道計算AM1法で算出したアニオン半径は0.23nm、カチオン半径は0.30〜0.33nmであった。特に、ETMA・BF塩のカチオン半径は0.30nmであった。ETMAは、電解液として有効に性能を発揮することができる程度に有機溶媒に溶解するすべての4級アンモニウムの中で最もカチオン半径が小さいが、アニオン半径よりカチオン半径の方が大きい。
4級アンモニウム塩(A)は、他のイオン径が大きいテトラエチルアンモニウム・BF塩等と比較し、程度は小さいが、電圧印加時にはアニオンの方が活性炭電極に多く吸着され、電圧はアニオンが吸着されている正極に多く、印加されている(例えば2.8V印加時は正極に1.5V、陰極に1.3V)。そのため、正極側でアニオンの分解が起こり、劣化が多くなっていた。活性炭電極は25nm以上のマクロ孔、1〜25nmのメソ孔、0.2〜1nmのミクロ孔からなり、マクロ孔はイオンの拡散に寄与し、メソ孔、ミクロ孔は電解質の吸着による静電容量発現に寄与している。カチオンサイズが大きいとカチオンのミクロ孔への吸着が制限される。
Molecular orbital calculation of quaternary ammonium salt (A) The anion radius calculated by the AM1 method was 0.23 nm, and the cation radius was 0.30 to 0.33 nm. In particular, the cation radius of the ETMA · BF 4 salt was 0.30 nm. ETMA has the smallest cation radius among all the quaternary ammoniums dissolved in the organic solvent to such an extent that it can effectively exhibit performance as an electrolytic solution, but the cation radius is larger than the anion radius.
Quaternary ammonium salt (A) is smaller in size than other tetraethylammonium / BF 4 salts, etc., which have a larger ionic diameter, but anion is more adsorbed on the activated carbon electrode when voltage is applied, and the anion absorbs the voltage. Many of the positive electrodes are applied (for example, when 2.8 V is applied, 1.5 V is applied to the positive electrode and 1.3 V is applied to the cathode). Therefore, the decomposition of anions occurred on the positive electrode side, and the deterioration was increased. The activated carbon electrode is composed of macropores of 25 nm or more, mesopores of 1 to 25 nm, and micropores of 0.2 to 1 nm. The macropores contribute to the diffusion of ions. Contributes to expression. If the cation size is large, the adsorption of cations to the micropores is limited.

4級アンモニウム塩(A)に対し0.3〜10重量%の範囲でテトラメチルアンモニウムテトラフルオロボレートを加えることにより、上記問題を解決できる。テトラメチルアンモニウムはイオン半径が0.28nmであり、活性炭電極のミクロ孔へ吸着されやすくなるため、電圧印加時には正極、陰極にほぼ均等に電圧がかかる(例えば2.8V印加時は正極に1.4V、陰極に1.4V)。
テトラメチルアンモニウムテトラフルオロボレートの添加量は、4級アンモニウム塩(A)に対し、低温における等価直列抵抗及び等価直列抵抗の変化率の両立の観点から、好ましくは0.6〜5重量%、さらに好ましくは1〜3重量%である。
そのため、正極側でのアニオンの分解が抑制される。また陰極側にも電圧が均等にかかるため、電気分解で発生するアルカリと4級アンモニウム塩(A)のカチオンとの反応が十分に進行し、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分を消失させる能力を十分に発現する。
4級アンモニウム塩(A)に対してテトラメチルアンモニウムテトラフルオロボレートの含有量が0.3重量%未満の場合は少量のため、効果が発現せず、10重量%を超える場合はテトラメチルアンモニウムテトラフルオロボレートの有機溶媒に対する溶解性が低いため、析出し、性能を悪化させる。
The above problem can be solved by adding tetramethylammonium tetrafluoroborate in the range of 0.3 to 10% by weight with respect to the quaternary ammonium salt (A). Tetramethylammonium has an ionic radius of 0.28 nm and is easily adsorbed to the micropores of the activated carbon electrode, so that a voltage is applied almost evenly to the positive electrode and the cathode when a voltage is applied (for example, 1. 4V, 1.4V for the cathode).
The addition amount of tetramethylammonium tetrafluoroborate is preferably 0.6 to 5% by weight with respect to the quaternary ammonium salt (A), from the viewpoint of achieving both the equivalent series resistance at a low temperature and the change rate of the equivalent series resistance. Preferably it is 1-3 weight%.
Therefore, decomposition of the anion on the positive electrode side is suppressed. In addition, since the voltage is evenly applied to the cathode side, the reaction between the alkali generated by electrolysis and the cation of the quaternary ammonium salt (A) proceeds sufficiently, and the surface of the cathode side polarizable electrode or the cathode side polarizable electrode The ability to eliminate the strong alkali component generated on the surface of the lead lead connected to is sufficiently developed.
When the content of tetramethylammonium tetrafluoroborate is less than 0.3% by weight with respect to the quaternary ammonium salt (A), the effect is not manifested, and when the content exceeds 10% by weight, tetramethylammonium tetra Since the solubility of fluoroborate in an organic solvent is low, it precipitates and deteriorates the performance.

有機溶媒(S)の具体例としては、以下のものが挙げられる。これらのうち2種類以上を併用することも可能である。
・エーテル類:鎖状エーテル[炭素数2〜6(ジエチルエーテル、メチルイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなど);炭素数7〜12(ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテルなど)]、環状エーテル[炭素数2〜4(テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサンなど);炭素数5〜18(4−ブチルジオキソラン、クラウンエーテルなど)]。
・アミド類:N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド、N−メチルピロリドンなど。
・鎖状エステル類:酢酸メチル、プロピオン酸メチルなど。
・ラクトン類:γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなど。
・ニトリル類:アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、アクリロニトリル、ベンゾニトリルなど。
・環状炭酸エステル類:プロピレンカーボネート、エチレンカーボネート、1,2−ブチレンカーボネート、2、3−ブチレンカーボネートなど
・鎖状炭酸エステル類:ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなど。
・スルホン類:エチルプロピルスルホン、エチルイソプロピルスルホン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホランなど。
・ニトロ類:ニトロメタン、ニトロエタンなど。
・ベンゼン類:トルエン、キシレン、クロロベンゼン、フルオロベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,4−ジクロロベンゼンなど。
・複素環式類:N−メチル−2−オキサゾリジノン、3,5−ジメチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルピロリジノンなど。
・ケトン類:アセトン、2,5ヘキサンジオン、シクロヘキサンなど。
・リン酸エステル類:トリメチルリン酸、トリエチルリン酸、トリプロピルリン酸など。
Specific examples of the organic solvent (S) include the following. Two or more of these can be used in combination.
Ethers: chain ether [carbon number 2-6 (diethyl ether, methyl isopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc.); carbon number 7-12 (diethylene glycol diethyl ether, triethylene glycol dimethyl ether, etc.)], cyclic ether [C2-C4 (tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc.); C5-C18 (4-butyldioxolane, crown ether, etc.)].
Amides: N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide, N-methylpyrrolidone and the like.
-Chain esters: methyl acetate, methyl propionate, etc.
Lactones: γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, δ-valerolactone, and the like.
Nitriles: acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, acrylonitrile, benzonitrile and the like.
-Cyclic carbonates: propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, etc.-Chain carbonate esters: dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc.
Sulfones: ethylpropylsulfone, ethylisopropylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like.
・ Nitro: Nitromethane, nitroethane, etc.
Benzenes: toluene, xylene, chlorobenzene, fluorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene and the like.
Heterocyclic class: N-methyl-2-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone and the like.
Ketones: acetone, 2,5 hexanedione, cyclohexane, etc.
-Phosphate esters: trimethyl phosphoric acid, triethyl phosphoric acid, tripropyl phosphoric acid and the like.

これらのうち好ましくは、環状炭酸エステル類、鎖状炭酸エステル類、ラクトン類、鎖状エステル類、ニトリル類、及びスルホン類であり、特に好ましくはプロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、スルホラン、アセトニトリル、及びγ−ブチロラクトンである。 Of these, cyclic carbonates, chain carbonates, lactones, chain esters, nitriles, and sulfones are preferable, and propylene carbonate, dimethyl carbonate, ethylene carbonate, sulfolane, acetonitrile, And γ-butyrolactone.

本発明の電解液中の含水量は、電気化学的安定性の観点から、電解液の重量に基づいて300ppm以下が好ましく、さらに好ましくは100ppm以下、特に好ましくは50ppm以下である。この範囲であると、電気化学キャパシタの経時的な性能低下を抑制できる。
電解液中の含水量はカールフィッシャー法(JIS K0113−1997、電量滴定方
法)で測定することができる。
電解液中の水分を上記の範囲にする方法としては、あらかじめ十分に乾燥した電解質(A)と、あらかじめ十分に脱水した非水溶媒とを使用する方法等が挙げられる。
乾燥方法としては、減圧下加熱乾燥(例えば20Torr減圧下、150℃で加熱)して、含有されている微量の水を蒸発させて除去する方法、再結晶等が挙げられる。
脱水方法としては、減圧下加熱脱水(例えば100Torrで加熱)して、含有されている微量の水を蒸発させて除去する方法、モレキュラーシーブ(ナカライテスク製、3A
1/16等)、活性アルミナ粉末などの脱水剤を使用する方法等が挙げられる。
The water content in the electrolytic solution of the present invention is preferably 300 ppm or less, more preferably 100 ppm or less, particularly preferably 50 ppm or less based on the weight of the electrolytic solution from the viewpoint of electrochemical stability. Within this range, it is possible to suppress the deterioration in performance of the electrochemical capacitor over time.
The water content in the electrolytic solution can be measured by the Karl Fischer method (JIS K0113-1997, coulometric titration method).
Examples of the method for setting the water content in the electrolytic solution in the above range include a method using a sufficiently dried electrolyte (A) and a non-aqueous solvent sufficiently dehydrated in advance.
Examples of the drying method include heating and drying under reduced pressure (for example, heating at 150 ° C. under reduced pressure of 20 Torr), evaporating and removing a trace amount of water contained therein, recrystallization, and the like.
As a dehydration method, heat dehydration under reduced pressure (for example, heating at 100 Torr) to evaporate and remove a trace amount of water, molecular sieve (manufactured by Nacalai Tesque, 3A
1/16, etc.) and a method using a dehydrating agent such as activated alumina powder.

また、これらの他に、電解液を減圧下加熱脱水(例えば100Torr減圧下、100℃で加熱)して、含有されている微量の水を蒸発させて除去する方法、モレキュラーシーブ、活性アルミナ粉末などの除水剤を使用する方法等が挙げられる。これらの方法は、それぞれ単独で行ってもよいし、組み合わせて行ってもよい。 In addition to these, the electrolytic solution is heated and dehydrated under reduced pressure (for example, heated at 100 ° C. under reduced pressure of 100 Torr) to evaporate and remove a trace amount of water, molecular sieve, activated alumina powder, etc. And a method of using a dehydrating agent. These methods may be performed alone or in combination.

電気二重層キャパシタの基本構造としては、2つの分極性電極の間にセパレーターを挟み、電解液を含浸させたものである。分極性電極の主成分は、電解液に対して電気化学的に不活性で、かつ、適度な電気伝導度を有することから活性炭、グラファイト、ポリアセン系有機半導体などの炭素質物質が好ましく、上記のように、正極と負極の少なくとも一方は炭素質物質である。電荷が蓄積する電極界面が大きい点から、窒素吸着法によるBET法により求めた比表面積が10m2/g以上の多孔性炭素物質(例えば活性炭)がさらに好ましい。多孔性炭素物質の比表面積は、目的とする単位面積あたりの静電容量(F/m2)と、高比表面積化に伴う嵩密度の低下を勘案して選択されるが、窒素吸着法によるBET法により求めた比表面積が30〜2,500m2/gのものが好ましく、体積あたりの静電容量が大きいことから、比表面積が300〜2,300m2/gの活性炭が特に好ましい。 As a basic structure of the electric double layer capacitor, a separator is sandwiched between two polarizable electrodes and impregnated with an electrolytic solution. The main component of the polarizable electrode is preferably a carbonaceous material such as activated carbon, graphite, or polyacene organic semiconductor because it is electrochemically inert to the electrolyte and has an appropriate electrical conductivity. Thus, at least one of the positive electrode and the negative electrode is a carbonaceous material. A porous carbon material (for example, activated carbon) having a specific surface area of 10 m 2 / g or more determined by the BET method by the nitrogen adsorption method is more preferable because of the large electrode interface where charges are accumulated. The specific surface area of the porous carbon material is selected in consideration of the target capacitance per unit area (F / m 2 ) and the decrease in bulk density associated with the increase in the specific surface area. preferably it has a specific surface area determined is 30~2,500m 2 / g by the BET method, since the electrostatic capacity per volume is large, the specific surface area is particularly preferably activated carbon 300~2,300m 2 / g.

本発明の電気二重層キャパシタの態様としては、コイン型、捲回型、角形のものがあげられる。本発明の電気二重層キャパシタ用電解液は、いずれの電気二重層キャパシタにも適用できる。 Examples of the electric double layer capacitor of the present invention include a coin type, a wound type, and a rectangular type. The electrolytic solution for an electric double layer capacitor of the present invention can be applied to any electric double layer capacitor.

本発明の電解液は、公知の方法で調製することができ、電解液中の電解質(A)の濃度は、0.5〜2.0mol/Lが好ましく、0.7〜1.7mol/Lがより好ましく、0.8〜1.5mol/Lが最も好ましい。(A)の濃度が0.5mol/L以上では、電解液の電導度が十分であり、また、2.0mol/L以下では、低温特性が良好であるとともに、経済性に優れる。 The electrolytic solution of the present invention can be prepared by a known method, and the concentration of the electrolyte (A) in the electrolytic solution is preferably 0.5 to 2.0 mol / L, and preferably 0.7 to 1.7 mol / L. Is more preferable, and 0.8 to 1.5 mol / L is most preferable. When the concentration of (A) is 0.5 mol / L or more, the conductivity of the electrolytic solution is sufficient, and when it is 2.0 mol / L or less, the low temperature characteristics are good and the economy is excellent.

次に本発明の具体的な実施例について説明するが、本発明はこれに限定されるものではない。以下、特に記載のないかぎり、「部」は「重量部」を意味する。
以下の実施例において、H−NMR、19F−NMR、及び13C−NMRの測定は、下記の方法で行った。
1H−NMRの測定条件 機器:AVANCE300(日本ブルカー株式会社製)、溶媒:重水素化ジメチルスルホキシド、周波数:300MHz。
19F−NMRの測定条件 機器:AL−300(日本電子製)、溶媒:重水素化ジメチル
スルホキシド、周波数:300MHz
13C−NMRの測定条件 機器:AL−300(日本電子製)、溶媒:重水素化ジメチル
スルホキシド、周波数:300MHz
また、銀イオン含量は、原子吸光分光光度計(株式会社島津製作所AA−6200)で、ヨウ素イオン含量は比濁法により定量した。
Next, specific examples of the present invention will be described, but the present invention is not limited thereto. Hereinafter, “parts” means “parts by weight” unless otherwise specified.
In the following examples, 1 H-NMR, 19 F-NMR, and 13 C-NMR were measured by the following methods.
Measurement conditions for 1 H-NMR Instrument: AVANCE 300 (manufactured by Nippon Bruker Co., Ltd.), solvent: deuterated dimethyl sulfoxide, frequency: 300 MHz.
19 F-NMR measurement conditions Instrument: AL-300 (manufactured by JEOL Ltd.), solvent: deuterated dimethyl sulfoxide, frequency: 300 MHz
Measurement conditions for 13 C-NMR Instrument: AL-300 (manufactured by JEOL Ltd.), solvent: deuterated dimethyl sulfoxide, frequency: 300 MHz
Moreover, the silver ion content was quantified by the turbidimetric method with an atomic absorption spectrophotometer (Shimadzu Corporation AA-6200).

また4級アンモニウム塩(A)中のテトラメチルアンモニウムテトラフルオロボレートの含有量は、高速液体クロマトグラフイー(HPLC)により、定量できる。
HPLCの測定条件は、カラム:ポリマーコート型充填剤を充填したもの、移動相:リン酸緩衝液(pH2〜3)、流速:0.5ml/min、検出器:UV、温度:40℃である(例えば、機器:型名(LC−10A)、メーカー(島津製作所)、カラム:Develosil C30−UG(4.6mmφ×25cm)メーカー(野村化学)、移動相:リン酸の濃度10mmol/l、過塩素酸ナトリウムの濃度100mmol/lの水溶液、流速:0.8ml/min、検出器:UV(210nm)、注入量:20μl、カラム温度:40℃。検量線は、4級アンモニウム塩(A)と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレートを用いて作成できる。
In addition, the content of tetramethylammonium tetrafluoroborate in the quaternary ammonium salt (A) can be quantified by high performance liquid chromatography (HPLC).
HPLC measurement conditions are: column: packed with polymer-coated filler, mobile phase: phosphate buffer (pH 2-3), flow rate: 0.5 ml / min, detector: UV, temperature: 40 ° C. (For example, apparatus: model name (LC-10A), manufacturer (Shimadzu Corporation), column: Develosil C30-UG (4.6 mmφ × 25 cm) manufacturer (Nomura Chemical), mobile phase: phosphoric acid concentration 10 mmol / l, excess Sodium chlorate aqueous solution with a concentration of 100 mmol / l, flow rate: 0.8 ml / min, detector: UV (210 nm), injection volume: 20 μl, column temperature: 40 ° C. The calibration curve is quaternary ammonium salt (A) and It can be created using tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries.

<製造例1> <<ETMA塩の製造>>
・ヨウ化物塩の合成
N,N−ジメチルエチルアミン(東京化成工業(株)製)110部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくりと滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し、80℃減圧にて乾燥を行い、エチルトリメチルアンモニウムのヨウ化物塩322部を得た。
<Production Example 1><Production of ETMA salt>
Synthesis of iodide salt 110 parts of N, N-dimethylethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 322 parts of ethyltrimethylammonium iodide salt.

・AgBF溶液の作成
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous solution of borohydrofluoric acid was dehydrated at 100 ° C. under reduced pressure, and 825 parts of methanol was added to dissolve it. AgBF 4 methanol A solution was obtained.

・BF塩の作成
AgBFメタノール溶液1117部を上記のエチルトリメチルアンモニウムのヨウ化物塩322部及びメタノール353部の混合溶液に対してゆっくりと滴下しながら、混合した後、濾過し濾液を回収した。回収した濾液中にAgBF溶液あるいは混合溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。
80℃減圧で濾液の脱溶媒を行い、白色結晶262部を得た。結晶中の銀イオンは10ppm以下、ヨウ化物イオン含量は5ppm以下であった。結晶にメタノール3000部を加えて60℃で溶解させた後、−10℃に冷却し12時間静置し再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を124部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はETMA・BF塩であった。H−NMRの積分値から、純度は99モル%であった。
-Preparation of BF 4 salt 1117 parts of AgBF 4 methanol solution was slowly added dropwise to the above mixed solution of 322 parts of ethyltrimethylammonium iodide salt and 353 parts of methanol, and then filtered to collect the filtrate. . The AgBF 4 solution or mixed solution was added little by little to the collected filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate.
The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 262 parts of white crystals. Silver ions in the crystal were 10 ppm or less, and iodide ion content was 5 ppm or less. After adding 3000 parts of methanol to the crystal and dissolving at 60 ° C., the solution was cooled to −10 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 124 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, this white crystal was an ETMA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99 mol%.

<製造例2> <<DEDMA塩の製造>>
・ヨウ化物塩の合成
N,N−ジエチルメチルアミン(東京化成工業(株)製)131部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくりと滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し、80℃減圧にて乾燥を行い、ジエチルジメチルアンモニウムのヨウ化物塩330部を得た。
<Production Example 2><< Production of DEDMA salt >>
Synthesis of iodide salt 131 parts of N, N-diethylmethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 330 parts of diethyldimethylammonium iodide salt.

・AgBF溶液の作成
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous solution of borohydrofluoric acid was dehydrated at 100 ° C. under reduced pressure, and 825 parts of methanol was added to dissolve it. AgBF 4 methanol A solution was obtained.

・BF塩の作成
AgBFメタノール溶液1117部を上記のジエチルジメチルアンモニウムのヨウ化物塩343部及びメタノール353部の混合溶液に対してゆっくりと滴下しながら、混合した後、濾過し濾液を回収した。回収した濾液中にAgBF溶液あるいは混合溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。
80℃減圧で濾液の脱溶媒を行い、白色結晶262部を得た。結晶中の銀イオンは10ppm以下、ヨウ化物イオン含量は5ppm以下であった。結晶にメタノール3000部を加えて60℃で溶解させた後、−10℃に冷却し12時間静置し再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を117部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はDEDMA・BF塩であった。H−NMRの積分値から、純度は99モル%であった。
-Preparation of BF 4 salt 1117 parts of AgBF 4 methanol solution were slowly added dropwise to the above mixed solution of 343 parts of diethyldimethylammonium iodide and 353 parts of methanol, and then filtered to collect the filtrate. . The AgBF 4 solution or mixed solution was added little by little to the collected filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate.
The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 262 parts of white crystals. Silver ions in the crystal were 10 ppm or less, and iodide ion content was 5 ppm or less. After adding 3000 parts of methanol to the crystal and dissolving at 60 ° C., the solution was cooled to −10 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 117 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were DEDMA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99 mol%.

<製造例3> <<TEMA塩の製造>>
・ヨウ化物塩の合成
トリエチルアミン(東京化成工業(株)製)152部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくりと滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し、80℃減圧にて乾燥を行い、トリエチルメチルアンモニウムのヨウ化物塩317部を得た。
<Production Example 3><< Production of TEMA Salt >>
Synthesis of iodide salt 152 parts of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 317 parts of triethylmethylammonium iodide salt.

・AgBF溶液の作成
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous solution of borohydrofluoric acid was dehydrated at 100 ° C. under reduced pressure, and 825 parts of methanol was added to dissolve it. AgBF 4 methanol A solution was obtained.

・BF塩の作成
AgBFメタノール溶液1117部を上記のトリエチルメチルアンモニウムのヨウ化物塩364部及びメタノール382部の混合溶液に対してゆっくりと滴下しながら、混合した後、濾過し濾液を回収した。回収した濾液中にAgBF溶液あるいは混合溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。
80℃減圧で濾液の脱溶媒を行い、白色結晶262部を得た。結晶中の銀イオンは10ppm以下、ヨウ化物イオン含量は5ppm以下であった。結晶にメタノール3000部を加えて60℃で溶解させた後、−10℃に冷却し12時間静置し再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を127部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はTEMA・BF塩であった。H−NMRの積分値から、純度は99モル%であった。
-Preparation of BF 4 salt 1117 parts of AgBF 4 methanol solution was slowly added dropwise to the above mixed solution of 364 parts of triethylmethylammonium iodide salt and 382 parts of methanol, and then filtered to collect the filtrate. . The AgBF 4 solution or mixed solution was added little by little to the collected filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate.
The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 262 parts of white crystals. Silver ions in the crystal were 10 ppm or less, and iodide ion content was 5 ppm or less. After adding 3000 parts of methanol to the crystal and dissolving at 60 ° C., the solution was cooled to −10 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 127 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were TEMA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99 mol%.

<製造例4> <<TEA塩の製造>>
・ヨウ化物塩の合成
トリエチルアミン(東京化成工業(株)製)102部、アセトン300部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化エチル171部をゆっくり滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し80℃減圧にて乾燥を行い、テトラエチルアンモニウムのヨウ化物塩を257部得た。
<Production Example 4><< Production of TEA salt >>
Synthesis of iodide salt 102 parts of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 parts of acetone were charged into a glass beaker and dissolved uniformly. While stirring the solution, 171 parts of ethyl iodide was slowly added dropwise, and stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 257 parts of tetraethylammonium iodide salt.

・AgBF溶液の作成
酸化銀116部、42重量%のホウフッ化水素酸水溶液209部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール550部を加えて溶解しAgBFメタノール溶液を得た。
-Preparation of AgBF 4 solution A solution obtained by mixing 116 parts of silver oxide and 209 parts of 42 wt% aqueous borofluoric acid solution at 100 ° C under reduced pressure was dissolved in 550 parts of methanol, and dissolved in AgBF 4 methanol. A solution was obtained.

・BF塩の作成
上記のAgBF溶液745部をテトラエチルメチルアンモニウムのヨウ化物塩257部とメタノール232部の混合溶液に対して、ゆっくりと滴下、混合した後、濾過し濾液を回収した。濾液中にAgBF溶液あるいはヨウ化物塩溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。80℃減圧で濾液の脱溶媒を行い、白色結晶を186部得た。結晶にメタノール300部を加えて30℃で溶解させた後、−5℃に冷却し12時間静置して再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を162部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はTEA・BF塩であった。H−NMRの積分値から、純度は99%であった。
-Preparation of BF 4 salt 745 parts of the above AgBF 4 solution was slowly added dropwise to a mixed solution of 257 parts of tetraethylmethylammonium iodide salt and 232 parts of methanol, and then filtered to collect the filtrate. An AgBF 4 solution or an iodide salt solution was added little by little to the filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate. The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 186 parts of white crystals. 300 parts of methanol was added to the crystal and dissolved at 30 ° C., then cooled to −5 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 162 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were TEA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99%.

実施例1
製造例1のETMA・BF塩172.06部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート0.52部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液1を得た。
Example 1
172.06 parts of ETMA · BF 4 salt of Production Example 1 and 0.52 part of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte The electrolyte solution 1 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例2
製造例1のETMA・BF塩171.69部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.03部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液2を得た。
Example 2
171.69 parts of ETMA · BF 4 salt of Production Example 1 and 1.03 part of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte The electrolyte solution 2 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例3
製造例1のETMA・BF塩170.96部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.71部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液3を得た。
Example 3
170.96 parts of ETMA · BF 4 salt of Production Example 1 and 1.71 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte The electrolyte solution 3 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例4
製造例1のETMA・BF塩167.40部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート5.02部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液4を得た。
Example 4
167.40 parts of ETMA · BF 4 salt of Production Example 1 and 5.02 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte The electrolyte solution 4 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例5
製造例1のETMA・BF塩163.99部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート8.20部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液5を得た。
Example 5
163.99 parts of ETMA · BF 4 salt of Production Example 1 and 8.20 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte) The electrolyte solution 5 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例6
製造例1のETMA・BF塩156.03部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート15.60部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液6を得た。
Example 6
156.03 parts of ETMA · BF 4 salt of Production Example 1 and 15.60 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte) The electrolyte solution 6 of the present invention was obtained at a concentration of 1.0 mol / L).

実施例7
製造例1のETMA・BF塩136.77部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.37部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度0.8mol/L)、本発明の電解液7を得た。
Example 7
136.77 parts of ETMA · BF 4 salt of Production Example 1 and 1.37 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte Concentration 0.8 mol / L), electrolyte solution 7 of the present invention was obtained.

実施例8
製造例1のETMA・BF塩170.96部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.71部を脱水したプロピレンカーボネートに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液8を得た。
Example 8
170.96 parts of ETMA · BF 4 salt of Production Example 1 and 1.71 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated propylene carbonate to prepare a total of 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution 8 of the present invention was obtained.

実施例9
製造例1のETMA・BF塩170.96部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.71部を脱水したスルホランに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液9を得た。
Example 9
170.96 parts of ETMA · BF 4 salt of Production Example 1 and 1.71 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated sulfolane to prepare a total of 1 liter (electrolyte concentration 1 0.0 mol / L), an electrolytic solution 9 of the present invention was obtained.

実施例10
製造例2のDEDMA・BF4塩189.0部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート0.57部を脱水したγ―ブチロラクトンに均一溶解して全体を1リットルに調整して(電解質濃度1.0mol/L)、本発明の電解液10を得た。
Example 10
189.0 parts of DEDMA · BF4 salt of Production Example 2 and 0.57 part of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to adjust the whole to 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution 10 of the present invention was obtained.

実施例11
製造例2のDEDMA・BF4塩189.00部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート1.89部を脱水したγ―ブチロラクトンに均一溶解して全体を1リットルに調整して(電解質濃度1.0mol/L)、本発明の電解液11を得た。
Example 11
189.00 parts of DEDMA · BF4 salt of Production Example 2 and 1.89 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to adjust the whole to 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution 11 of the present invention was obtained.

実施例12
製造例3のTEMA・BF4塩203.00部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート0.61部を脱水したγ―ブチロラクトンに均一溶解して全体を1リットルに調整して(電解質濃度1.0mol/L)、本発明の電解液12を得た。
Example 12
203.000 parts of TEMA · BF4 salt of Production Example 3 and 0.61 part of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to adjust the whole to 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution 12 of the present invention was obtained.

実施例13
製造例3のTEMA・BF4塩203.00部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート2.03部を脱水したγ―ブチロラクトンに均一溶解して全体を1リットルに調整して(電解質濃度1.0mol/L)、本発明の電解液13を得た。
Example 13
Dissolve 203.000 parts of TEMA · BF4 salt of Production Example 3 and 2.03 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. uniformly in dehydrated γ-butyrolactone and adjust the whole to 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution 13 of the present invention was obtained.

比較例1
製造例1のETMA・BF塩172.8部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比1を得た。
Comparative Example 1
172.8 parts of ETMA · BF 4 salt of Production Example 1 was uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte concentration: 1.0 mol / L). Obtained.

比較例2
製造例1のETMA・BF塩172.43部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート0.35部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比2を得た。
Comparative Example 2
172.43 parts of ETMA · BF 4 salt of Production Example 1 and 0.35 part of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte A concentration of 1.0 mol / L) and an electrolyte ratio of 2 of the present invention were obtained.

比較例3
製造例1のETMA・BF塩148.81部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート22.32部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比3を得た。
Comparative Example 3
148.81 parts of ETMA · BF 4 salt of Production Example 1 and 22.32 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte A concentration of 1.0 mol / L) and an electrolyte ratio of 3 of the present invention were obtained.

比較例4
製造例1のETMA・BF塩148.81部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート22.32部を脱水したプロピレンカーボネートに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比4を得た。
Comparative Example 4
148.81 parts of ETMA · BF 4 salt of Production Example 1 and 22.32 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated propylene carbonate to prepare a total of 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution ratio 4 of the present invention was obtained.

比較例5
製造例1のETMA・BF塩148.81部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート22.32部を脱水したスルホランに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比5を得た。
Comparative Example 5
148.81 parts of ETMA · BF 4 salt of Production Example 1 and 22.32 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated sulfolane to prepare a total of 1 liter (electrolyte concentration 1 0.0 mol / L), an electrolytic solution ratio 5 of the present invention was obtained.

比較例6
製造例1のETMA・BF塩175.00部と和光純薬工業製テトラメチルアンモニウムテトラフルオロボレート21.00部を脱水したスルホランに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比6を得た。
Comparative Example 6
175.00 parts of ETMA · BF 4 salt of Production Example 1 and 21.00 parts of tetramethylammonium tetrafluoroborate manufactured by Wako Pure Chemical Industries, Ltd. were uniformly dissolved in dehydrated sulfolane to prepare a total of 1 liter (electrolyte concentration 1 0.0 mol / L), an electrolyte ratio 6 of the present invention was obtained.

比較例7
製造例2のDEDMA・BF4塩189.0部と和光純薬工業性テトラメチルアンモニウムテトラフルオロボレート28.4部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比7を得た。
Comparative Example 7
189.0 parts of DEDMA · BF4 salt of Production Example 2 and 28.4 parts of Wako Pure Chemical Industries Tetramethylammonium Tetrafluoroborate were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte concentration) 1.0 mol / L), an electrolytic solution ratio 7 of the present invention was obtained.

比較例8
製造例3のTEMA・BF4塩203.0部と和光純薬工業性テトラメチルアンモニウムテトラフルオロボレート30.5部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比8を得た。
Comparative Example 8
203.0 parts of TEMA · BF4 salt of Production Example 3 and 30.5 parts of Wako Pure Chemical Industries Tetramethylammonium Tetrafluoroborate were uniformly dissolved in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte concentration) 1.0 mol / L), an electrolyte ratio 8 of the present invention was obtained.

比較例9
製造例2のTEA・BF塩208.8部を脱水したγ−ブチロラクトンに均一溶解して全体を1リットルに調製して(電解質濃度1.0mol/L)、本発明の電解液比9を得た。
Comparative Example 9
Uniformly dissolve 208.8 parts of TEA · BF 4 salt of Production Example 2 in dehydrated γ-butyrolactone to prepare a total of 1 liter (electrolyte concentration: 1.0 mol / L). Obtained.

本発明の電解液1〜13、及び比較用の電解液比1〜9を使用して、捲回形の電気二重層キャパシタ(直径17mm、高さ40mm)を作製し、以下の方法で等価直列抵抗、等価直列抵抗の変化率、封口体の封口ゴム面を観察した。これらの結果を表1に示した。 Using the electrolytic solutions 1 to 13 of the present invention and the comparative electrolytic solution ratios 1 to 9, a wound-type electric double layer capacitor (diameter 17 mm, height 40 mm) was produced, and an equivalent series was formed by the following method. The resistance, the rate of change of the equivalent series resistance, and the sealing rubber surface of the sealing body were observed. These results are shown in Table 1.

Figure 2012069931
Figure 2012069931

(1)等価直列抵抗
1kHzでの等価直列抵抗をインピーダンスアナライザ(ソーラトロン製SI1253、SI1286)を用いて−30℃で測定した。
(2)等価直列抵抗の変化率
電気二重層キャパシタに85℃で2.8Vの電圧を3000時間印加した後の電気二重層キャパシタの1kHzでの等価直列抵抗(RE3000)と電圧印加前の1kHzでの等価直列抵抗(RE)との比を以下の式で算出し、これを等価直列抵抗の変化率とした。なお、等価直列抵抗はインピーダンスアナライザ(ソーラトロン製SI1253、SI1286)を用いて−30℃で測定した。この変化率の値が小さいほど、耐電圧が高い。つまり経時的な性能劣化が小さく、良好な充放電特性を維持できることを意味する。
(等価直列抵抗変化率)(%)=[(RE3000)/(RE)]×100
(1) Equivalent series resistance at 1 kHz equivalent series resistance was measured at −30 ° C. using an impedance analyzer (Solaron SI1253, SI1286).
(2) Rate of change of equivalent series resistance Equivalent series resistance (RE 3000 ) at 1 kHz of the electric double layer capacitor after applying a voltage of 2.8 V to the electric double layer capacitor at 85 ° C. for 3000 hours and 1 kHz before voltage application The ratio with respect to the equivalent series resistance (RE 0 ) was calculated by the following formula, and this was taken as the rate of change of the equivalent series resistance. The equivalent series resistance was measured at −30 ° C. using an impedance analyzer (Solartron SI1253, SI1286). The withstand voltage is higher as the value of the change rate is smaller. That is, it means that performance deterioration with time is small, and good charge / discharge characteristics can be maintained.
(Equivalent Series Resistance Change Rate) (%) = [(RE 3000 ) / (RE 0 )] × 100

(3)封口体の封口ゴム面
電気二重層キャパシタに85℃で2.8Vの電圧を3000時間印加した後の電気二重層キャパシタの封口体を構成する封口ゴム面の状態を確認した。
封口体の封口ゴム面の試験個数は8個である。
(3) Sealing rubber surface of the sealing body The state of the sealing rubber surface constituting the sealing body of the electric double layer capacitor after applying a voltage of 2.8 V to the electric double layer capacitor at 85 ° C. for 3000 hours was confirmed.
The number of test of the sealing rubber surface of the sealing body is eight.

(4)電解液の析出
電解液をガラス容器に密閉し、−30℃において24時間静置し、析出の有無を目視で確認した。
(4) Precipitation of electrolytic solution The electrolytic solution was sealed in a glass container and allowed to stand at −30 ° C. for 24 hours, and the presence or absence of precipitation was visually confirmed.

表1において、同じ溶媒、同じ種類の電解質を使用した実施例1〜7と比較例1〜3、6、実施例8と比較例4、実施例9と比較例5、実施例10〜11と比較例7、実施例12〜13と比較例8を比較すると、実施例の電気二重層キャパシタの方が等価直列抵抗が低く、かつ等価直列抵抗の変化率が小さいことがわかった。
実施例1〜13は、テトラエチルアンモニウムテトラフルオロボレート塩を用いた比較例9より等価直列抵抗が低く、かつ等価直列抵抗の変化率が小さいことがわかった。
また、実施例1〜13は、電解液の析出も見られず、封口ゴムの劣化による液漏れ等の異常も観測されなかった。
In Table 1, Examples 1 to 7 and Comparative Examples 1 to 3 and 6, Example 8 and Comparative Example 4, Example 9 and Comparative Example 5, and Examples 10 to 11 using the same solvent and the same kind of electrolyte Comparing Comparative Example 7 and Examples 12 to 13 with Comparative Example 8, it was found that the electric double layer capacitor of the example had a lower equivalent series resistance and a smaller change rate of the equivalent series resistance.
In Examples 1 to 13, it was found that the equivalent series resistance was lower than that of Comparative Example 9 using a tetraethylammonium tetrafluoroborate salt, and the change rate of the equivalent series resistance was small.
In Examples 1 to 13, no electrolyte solution was observed, and no abnormality such as liquid leakage due to deterioration of the sealing rubber was observed.

すなわち、本発明の電解液を使用することにより、電気二重層キャパシタの等価直列抵抗が低く、等価直列抵抗の変化率が小さく、封口体の封口性能に優れる高信頼性の電気二重層キャパシタを構成できることが明らかである。 That is, by using the electrolytic solution of the present invention, a highly reliable electric double layer capacitor having a low equivalent series resistance of the electric double layer capacitor, a small change rate of the equivalent series resistance, and excellent sealing performance of the sealing body is constituted. Obviously you can.

本発明の電解液を用いて作製した電気二重層キャパシタは、各種電子機器のメモリーバックアップ用、各種電源バックアップ電源、太陽電池との組み合わせで使用される蓄電素子等の2次電池を代替する蓄電装置としてやモーター駆動用電源、電動工具等のパワーツール用電源、特に長期の耐久性、信頼性、かつ低温にて、低抵抗を必要とするハイブリッド自動車、電気自動車用電源等に適用できる。 The electric double layer capacitor produced using the electrolytic solution of the present invention is a power storage device that replaces secondary batteries such as power storage elements used in combination with memory backup for various electronic devices, various power backup power sources, and solar cells. As such, it can be applied to a power source for a power tool such as a motor driving power source and a power tool, in particular, a long-term durability, reliability, and a low-resistance hybrid vehicle and an electric vehicle power source that require low resistance.

Claims (4)

下記の一般式(1)で表される4級アンモニウム塩(A)が有機溶媒(S)に溶解してなる電気二重層キャパシタ用電解液であって、4級アンモニウム塩(A)に対し0.3〜10重量%の範囲でテトラメチルアンモニウムテトラフルオロボレートを含む電気二重層キャパシタ用電解液。
Figure 2012069931
[R〜Rはメチル基またはエチル基であって、少なくとも1つは他と異なる。]
An electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt (A) represented by the following general formula (1) is dissolved in an organic solvent (S), and 0 for the quaternary ammonium salt (A) Electrolytic solution for electric double layer capacitor containing tetramethylammonium tetrafluoroborate in the range of 3 to 10% by weight.
Figure 2012069931
[R 1 to R 4 is a methyl group or an ethyl group, at least one is different from others. ]
有機溶媒(S)が、環状炭酸エステル類、鎖状炭酸エステル類、ラクトン類、鎖状エステル類、ニトリル類、及びスルホン類からなる群より選択される少なくとも1種である請求項1に記載の電気二重層キャパシタ用電解液。 The organic solvent (S) is at least one selected from the group consisting of cyclic carbonates, chain carbonates, lactones, chain esters, nitriles, and sulfones. Electrolytic solution for electric double layer capacitors. 有機溶媒(S)が、プロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、スルホラン、アセトニトリル、及びγ−ブチロラクトンからなる群より選択される少なくとも1種である請求項1又は2に記載の電気二重層キャパシタ用電解液。 The electrolysis for electric double layer capacitor according to claim 1 or 2, wherein the organic solvent (S) is at least one selected from the group consisting of propylene carbonate, dimethyl carbonate, ethylene carbonate, sulfolane, acetonitrile, and γ-butyrolactone. liquid. 請求項1〜3の何れか1項に記載の電気二重層キャパシタ用電解液を用いる電気二重層キャパシタ。

The electric double layer capacitor using the electrolyte solution for electric double layer capacitors of any one of Claims 1-3.

JP2011181170A 2010-08-26 2011-08-23 Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it Withdrawn JP2012069931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181170A JP2012069931A (en) 2010-08-26 2011-08-23 Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010189229 2010-08-26
JP2010189229 2010-08-26
JP2011181170A JP2012069931A (en) 2010-08-26 2011-08-23 Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it

Publications (1)

Publication Number Publication Date
JP2012069931A true JP2012069931A (en) 2012-04-05

Family

ID=46166762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181170A Withdrawn JP2012069931A (en) 2010-08-26 2011-08-23 Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it

Country Status (1)

Country Link
JP (1) JP2012069931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114695B2 (en) 2016-07-29 2021-09-07 Otsuka Chemical Co., Ltd. Electrolyte for electrochemical device, electrolytic solution, and electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114695B2 (en) 2016-07-29 2021-09-07 Otsuka Chemical Co., Ltd. Electrolyte for electrochemical device, electrolytic solution, and electrochemical device

Similar Documents

Publication Publication Date Title
KR100861331B1 (en) An electrolytic solution for an electrochemical capacitor and an electrochemical capacitor using the same
JPWO2007037337A1 (en) Electrolytic solution for electrochemical element and electrochemical element using the same
EP2171734A2 (en) High voltage electrolytes
JP2007043105A (en) Electrolyte for electric double layer capacitor, and electric double layer capacitor
JP4913864B2 (en) Electrolyte, electrolytic solution using the same, and electrochemical element
JP2012074528A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using the same
JP2005197665A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using the same
JP5096906B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JP5116655B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2012069931A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it
JP2003173936A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
JP5086903B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JP2005197666A (en) Electrochemical capacitor and electrolyte therefor
JP2006156728A (en) Electrochemical capacitor and electrolyte therefor
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP5116654B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2013179204A (en) Electrolyte for electric double layer capacitor
JP2012109539A (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2013222866A (en) Electric double-layer capacitor electrolyte and electric double-layer capacitor using the same
KR20110060253A (en) Electrolyte solution and super capacitor including the same
JP4997151B2 (en) Electrolytic solution for electrochemical element and electrochemical element using the same
JP2003324038A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using it
JP4022717B2 (en) Electrolyte for electric double layer capacitor
JP2003173935A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
JP2011100777A (en) Electrolyte and electrochemical element using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104