JP2013179204A - Electrolyte for electric double layer capacitor - Google Patents

Electrolyte for electric double layer capacitor Download PDF

Info

Publication number
JP2013179204A
JP2013179204A JP2012042867A JP2012042867A JP2013179204A JP 2013179204 A JP2013179204 A JP 2013179204A JP 2012042867 A JP2012042867 A JP 2012042867A JP 2012042867 A JP2012042867 A JP 2012042867A JP 2013179204 A JP2013179204 A JP 2013179204A
Authority
JP
Japan
Prior art keywords
parts
solution
electrolyte
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012042867A
Other languages
Japanese (ja)
Inventor
Toshimi Sato
淑未 佐藤
Koshiro Kondo
孝四郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2012042867A priority Critical patent/JP2013179204A/en
Publication of JP2013179204A publication Critical patent/JP2013179204A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte for electric double layer capacitor exhibiting high heat resistance and durability while having leakage resistance, and not causing solidification over a wide temperature range.SOLUTION: The electrolyte for electric double layer capacitor is produced by dissolving ethyl trimethyl ammonium tetrafluoroborate and/or diethyl dimethyl ammonium tetrafluoroborate into a solvent mixture (S) containing sulfolane (SL) and chain sulfone (S1) of 2-6C. Weight mixture ratio of the sulfolane (SL) and chain sulfone (S1) is preferably 60:40-95:5, and the chain sulfone (S1) is preferably dimethyl sulfone or ethyl methyl sulfone.

Description

本発明は、電気二重層キャパシタ用電解液に関する。 The present invention relates to an electrolytic solution for an electric double layer capacitor.

従来、電気二重層キャパシタ用電解液としては、テトラエチルアンモニウムテトラフルオロボレート(以下、TEA・BFと略す。)に代表される4級アンモニウム塩をプロピレンカーボネート(以下、PCと略す。)に溶解させたものが一般的に用いられている(特許文献1)。 Conventionally, as an electrolytic solution for an electric double layer capacitor, a quaternary ammonium salt typified by tetraethylammonium tetrafluoroborate (hereinafter abbreviated as TEA · BF 4 ) is dissolved in propylene carbonate (hereinafter abbreviated as PC). Is generally used (Patent Document 1).

しかし、このような非水電解液は、耐電圧が十分でない場合があるため、この電解液を用いる電気化学キャパシタには経時的な性能劣化が著しい場合があった。
この問題を解決するため、溶媒としてスルホラン(以下、SLと略す。)を用いることが提案されている(特許文献2)。SLを用いることで耐電圧が改善されるが、SLの凝固点が28℃であるため、電解液が低温領域で凝固するという欠点があった。
さらにSLに粘度の低いカーボネートを混合した混合溶媒を使用することが提案されているが、カーボネートはSLに比べて耐電圧が劣るため、電解液の耐電圧および耐熱性が不十分であった(特許文献3)。
However, since such a non-aqueous electrolyte may not have a sufficient withstand voltage, the electrochemical capacitor using this electrolyte may have a significant performance deterioration over time.
In order to solve this problem, it has been proposed to use sulfolane (hereinafter abbreviated as SL) as a solvent (Patent Document 2). Although the withstand voltage is improved by using SL, since the freezing point of SL is 28 ° C., there is a drawback that the electrolyte is solidified in a low temperature region.
Further, it has been proposed to use a mixed solvent in which a carbonate having a low viscosity is mixed with SL. However, since the withstand voltage of carbonate is inferior to that of SL, the withstand voltage and heat resistance of the electrolytic solution are insufficient ( Patent Document 3).

また、低温領域における凝固の問題を改善するために、スピロ型4級アンモニウム塩を電解質とし、SL及び鎖状スルホンを含有する混合溶媒を用いることが提案されているが、不十分な場合があった(特許文献4)。
さらに、スピロ型4級アンモニウム塩を含む電解液を使用したキャパシタは、電圧印加により発生する強アルカリを捕捉する能力が無いため、封口体がアルカリにより劣化するという欠点があった。
In order to improve the problem of coagulation in the low temperature region, it has been proposed to use a mixed solvent containing SL and chain sulfone with spiro quaternary ammonium salt as an electrolyte. (Patent Document 4).
Furthermore, a capacitor using an electrolytic solution containing a spiro-type quaternary ammonium salt has a drawback that the sealing body is deteriorated by alkali because it does not have the ability to capture strong alkali generated by voltage application.

特開2000−114105JP 2000-114105 A 特開平06−275468JP-A-06-275468 特開平08−306591JP 08-306591 A 特開2008−171902JP2008-171902

本発明が解決しようとする課題は、高い耐熱性および耐久性を示し、かつ耐漏液性を有し、かつ広い温度範囲で凝固を起こさない電気二重層キャパシタ用電解液を提供することである。 The problem to be solved by the present invention is to provide an electrolytic solution for an electric double layer capacitor that exhibits high heat resistance and durability, has liquid leakage resistance, and does not cause solidification in a wide temperature range.

本発明者等は上記課題を解決するべく鋭意検討した結果、本発明に至った。すなわち、本発明は、エチルトリメチルアンモニウムテトラフルオロボレート(以下、ETMA・BFと略す)および/またはジエチルジメチルアンモニウムテトラフルオロボレート(以下、DEDMA・BFと略す)が、スルホラン(SL)及び炭素数2〜6である鎖状スルホン(S1)を含有する混合溶媒(S)中に溶解されてなることを特徴とする電気二重層キャパシタ用電解液である。 As a result of intensive studies to solve the above problems, the present inventors have arrived at the present invention. That is, according to the present invention, ethyl trimethylammonium tetrafluoroborate (hereinafter abbreviated as ETMA · BF 4 ) and / or diethyldimethylammonium tetrafluoroborate (hereinafter abbreviated as DEDMA · BF 4 ) is synthesized with sulfolane (SL) and carbon number. An electrolytic solution for an electric double layer capacitor, which is dissolved in a mixed solvent (S) containing 2 to 6 chain sulfone (S1).

本発明の電気二重層キャパシタ用電解液は、高い耐熱性および耐久性を示し、かつ耐漏液性を有し、かつ広い温度範囲で凝固を起こさない。   The electrolytic solution for electric double layer capacitor of the present invention exhibits high heat resistance and durability, has leakage resistance, and does not solidify in a wide temperature range.

本発明は、SLおよび鎖状スルホン(S1)を含有する混合溶媒(S)中に、DEDMA・BFおよび/またはETMA・BFを溶解させてなる電解液である。 The present invention is an electrolytic solution obtained by dissolving DEDMA · BF 4 and / or ETMA · BF 4 in a mixed solvent (S) containing SL and a chain sulfone (S1).

鎖状スルホン(S1)の種類としては、炭素数2〜6の鎖状スルホンが凝固点の観点から好ましく、炭素数2〜3の鎖状スルホンがさらに好ましい。
S1の好ましい例としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−プロピルエチルスルホン、イソプロピルエチルスルホン、ジn−プロピルスルホン、ジイソプロピルスルホン、およびこれらの混合物などが挙げられる。これらの中でより好ましいのは、ジメチルスルホン(以下、DMSと記す。)、エチルメチルスルホン(以下、EMSと記す。)である。
As the type of the chain sulfone (S1), a chain sulfone having 2 to 6 carbon atoms is preferable from the viewpoint of the freezing point, and a chain sulfone having 2 to 3 carbon atoms is more preferable.
Preferred examples of S1 include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, isopropyl methyl sulfone, n-propyl ethyl sulfone, isopropyl ethyl sulfone, di n-propyl sulfone, diisopropyl sulfone, and mixtures thereof. Etc. Among these, dimethyl sulfone (hereinafter referred to as DMS) and ethyl methyl sulfone (hereinafter referred to as EMS) are more preferable.

混合溶媒(S)中のスルホラン(SL)および鎖状スルホン(S1)の重量混合比率は凝固点の観点から、好ましくは60:40〜95:5であり、より好ましくは70:30〜90:10であり、さらに好ましくは80:20〜90:10である。 The weight mixing ratio of sulfolane (SL) and chain sulfone (S1) in the mixed solvent (S) is preferably 60:40 to 95: 5, more preferably 70:30 to 90:10, from the viewpoint of the freezing point. More preferably, it is 80: 20-90: 10.

混合溶媒(S)は(SL)および(S1)以外の溶媒(T)を含有していてもよい。
溶媒(T)の具体例としては、以下のものが挙げられる。
・エーテル類:鎖状エーテル[炭素数2〜6(ジエチルエーテル、メチルイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなど);炭素数7〜12(ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテルなど)]、環状エーテル[炭素数2〜4(テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサンなど);炭素数5〜18(4−ブチルジオキソラン、クラウンエーテルなど)]。
・アミド類:N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド、N−メチルピロリドンなど。
・鎖状エステル類:酢酸メチル、プロピオン酸メチルなど。
・ラクトン類:γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなど。
・ニトリル類:アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、アクリロニトリル、ベンゾニトリルなど。
・環状炭酸エステル類:プロピレンカーボネート、エチレンカーボネート、1,2−ブチレンカーボネート、2、3−ブチレンカーボネートなど
・鎖状炭酸エステル類:ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなど。
・ニトロ化合物:ニトロメタン、ニトロエタンなど。
・芳香族化合物:トルエン、キシレン、クロロベンゼン、フルオロベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,4−ジクロロベンゼンなど。
・複素環式化合物:N−メチル−2−オキサゾリジノン、3,5−ジメチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルピロリジノンなど。
・ケトン類:アセトン、2,5−ヘキサンジオン、シクロヘキサノンなど。
・リン酸エステル類:トリメチルリン酸、トリエチルリン酸、トリプロピルリン酸など。
The mixed solvent (S) may contain a solvent (T) other than (SL) and (S1).
Specific examples of the solvent (T) include the following.
Ethers: chain ether [carbon number 2-6 (diethyl ether, methyl isopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc.); carbon number 7-12 (diethylene glycol diethyl ether, triethylene glycol dimethyl ether, etc.)], cyclic ether [C2-C4 (tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc.); C5-C18 (4-butyldioxolane, crown ether, etc.)].
Amides: N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide, N-methylpyrrolidone and the like.
-Chain esters: methyl acetate, methyl propionate, etc.
Lactones: γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, δ-valerolactone, and the like.
Nitriles: acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, acrylonitrile, benzonitrile and the like.
-Cyclic carbonates: propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, etc.-Chain carbonate esters: dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc.
・ Nitro compounds: Nitromethane, nitroethane, etc.
Aromatic compounds: toluene, xylene, chlorobenzene, fluorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene and the like.
Heterocyclic compounds: N-methyl-2-oxazolidinone, 3,5-dimethyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone and the like.
Ketones: acetone, 2,5-hexanedione, cyclohexanone, etc.
-Phosphate esters: trimethyl phosphoric acid, triethyl phosphoric acid, tripropyl phosphoric acid and the like.

溶媒(T)の含量としては、溶媒の総重量に対して50%以下が好ましく、より好ましくは20%以下である。 The content of the solvent (T) is preferably 50% or less, more preferably 20% or less, based on the total weight of the solvent.

上記電解液に含有されるDEDMA・BFまたはETMA・BFの濃度は、0.5〜2.5mol/Lであり、好ましくは0.8mol/L〜2.0mol/Lである。DEDMA・BFおよびETMA・BFの混合物の濃度も同様である。
0.5mol/L以上では電導度が十分であり、2.5mol/L以下では低温特性が低下しない。
The concentration of DEDMA · BF 4 or ETMA · BF 4 contained in the electrolytic solution is 0.5 to 2.5 mol / L, preferably 0.8 mol / L to 2.0 mol / L. The concentration of the mixture of DEDMA · BF 4 and ETMA · BF 4 is similar.
If it is 0.5 mol / L or more, the conductivity is sufficient, and if it is 2.5 mol / L or less, the low-temperature characteristics do not deteriorate.

DEDMA・BFまたはETMA・BFと混合溶媒(S)の組合せの例としては、DEDMA・BF/SL/EMS、DEDMA・BF/SL/DMS、DEDMA・BF/SL/EMS/DMS、ETMA・BF/SL/EMS、ETMA・BF/SL/DMS、ETMA・BF/SL/EMS/DMS、DEDMA・BF/ETMA・BF/SL/EMS、DEDMA・BF/ETMA・BF/SL/DMS、DEDMA・BF/ETMA・BF/SL/EMS/DMSなどが挙げられる。
なかでも、DEDMA・BFが、SLとDMSあるいはEMSの重量混合比率が80:20〜90:10である混合溶媒中に溶解されてなる電解液が特に好ましい。
Examples of combinations of DEDMA • BF 4 or ETMA • BF 4 and mixed solvent (S) include DEDMA • BF 4 / SL / EMS, DEDMA • BF 4 / SL / DMS, DEDMA • BF 4 / SL / EMS / DMS , ETMA / BF 4 / SL / EMS, ETMA / BF 4 / SL / DMS, ETMA / BF 4 / SL / EMS / DMS, DEDMA / BF 4 / ETMA / BF 4 / SL / EMS, DEDMA / BF 4 / ETMA · BF 4 / SL / DMS, such as DEDMA · BF 4 / ETMA · BF 4 / SL / EMS / DMS , and the like.
Among them, an electrolytic solution in which DEDMA · BF 4 is dissolved in a mixed solvent in which the weight mixing ratio of SL and DMS or EMS is 80:20 to 90:10 is particularly preferable.

電解液中に占める非水溶媒の含水量(ppm)は、電気化学的安定性の観点から、電解液の重量に基づいて300以下が好ましく、さらに好ましくは100以下、特に好ましくは50以下である。この範囲であると、電気二重層キャパシタの経時的な性能低下を抑制できる。
電解液中の含水量はカールフィッシャー法(JIS K0113−1997,電量滴定方法)で測定することができる。
電解液中の水分を上記の範囲にする方法としては、あらかじめ十分に乾燥した電解質塩(A)と、あらかじめ十分に脱水した非水溶媒とを使用する方法などが挙げられる。
乾燥方法としては、減圧下加熱乾燥(例えば2.7kPa減圧下で150℃で加熱)して、含有されている微量の水を蒸発されて除去する方法等が挙げられる。
脱水方法としては、減圧下加熱脱水(例えば13.5kPaで加熱)して、含有されている微量の水を蒸発させて除去する方法、モレキュラーシーブ、活性アルミナ粉末などの除水剤を使用する方法等が挙げられる。これらのうち、(A)を減圧下加熱乾燥する方法、電解液にモレキュラーシーブを加える方法が好ましい。
The water content (ppm) of the non-aqueous solvent in the electrolytic solution is preferably 300 or less, more preferably 100 or less, particularly preferably 50 or less, based on the weight of the electrolytic solution, from the viewpoint of electrochemical stability. . Within this range, it is possible to suppress the deterioration in performance of the electric double layer capacitor over time.
The water content in the electrolytic solution can be measured by the Karl Fischer method (JIS K0113-1997, coulometric titration method).
Examples of the method for setting the water content in the electrolytic solution in the above range include a method of using a sufficiently dried electrolyte salt (A) and a non-aqueous solvent sufficiently dehydrated in advance.
Examples of the drying method include a method of heating and drying under reduced pressure (for example, heating at 150 ° C. under a reduced pressure of 2.7 kPa) to evaporate and remove a trace amount of water contained therein.
As a dehydration method, heat dehydration under reduced pressure (for example, heating at 13.5 kPa) to evaporate and remove a trace amount of water contained therein, a method using a dehydrating agent such as molecular sieve or activated alumina powder Etc. Of these, the method of drying (A) by heating under reduced pressure and the method of adding molecular sieve to the electrolyte are preferred.

本発明の電解液は電気二重層キャパシタに用いることができる。電気二重層キャパシタは、基本構成物品として電極、集電体、セパレーターを備えるとともに、キャパシタに通常用いられるケース、ケースの開口部を封口する封口体、ガスケットなどを任意に備えるものである。   The electrolytic solution of the present invention can be used for an electric double layer capacitor. The electric double layer capacitor includes an electrode, a current collector, and a separator as basic components, and optionally includes a case that is usually used for a capacitor, a sealing body that seals an opening of the case, a gasket, and the like.

電気二重層キャパシタの封口体としては、イソプレンとイソブチレンを含むブチルゴムが一般的に用いられているが、なかでも加硫剤としてアルキルフェノールフォルマリン樹脂を添加したブチルゴムや、加硫剤として過酸化物を添加したブチルゴムが好ましい。   As sealing bodies for electric double layer capacitors, butyl rubber containing isoprene and isobutylene is generally used. Among them, butyl rubber to which alkylphenol formalin resin is added as a vulcanizing agent and peroxide as a vulcanizing agent are used. Added butyl rubber is preferred.

本発明の電気二重層キャパシタ用電解液は、コイン型、捲回型、角型のものに適用できるが、特に、携帯電話などのバックアップ用途である小型の表面実装型電気二重層キャパシタに適している。
本発明の電気二重層キャパシタ用電解液は、リフローはんだ付け工程のピーク温度が260℃である表面実装型電気二重層キャパシタにも適用できる。
The electrolytic solution for electric double layer capacitor of the present invention can be applied to coin type, wound type and square type, and is particularly suitable for small surface mount type electric double layer capacitor for backup use such as cellular phone. Yes.
The electrolytic solution for an electric double layer capacitor of the present invention can also be applied to a surface mount type electric double layer capacitor having a peak temperature of 260 ° C. in the reflow soldering process.

次に本発明の具体的な実施例について説明するが、本発明はこれに限定されるものではない。以下、特に記載のないかぎり、「部」は「重量部」を意味する。 Next, specific examples of the present invention will be described, but the present invention is not limited thereto. Hereinafter, “parts” means “parts by weight” unless otherwise specified.

<製造例1> <<DEDMA・BFの製造>>
・ヨウ化物塩の合成
ジエチルメチルアミン(東京化成工業(株)製)131部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくりと滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し、80℃減圧にて乾燥を行い、ジエチルジメチルアンモニウムのヨウ化物塩344部を得た。
<Production Example 1><< Production of DEDMA · BF 4 >>
Synthesis of iodide salt 131 parts of diethyl methylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 344 parts of diethyldimethylammonium iodide salt.

・AgBF溶液の作成
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous solution of borohydrofluoric acid was dehydrated at 100 ° C. under reduced pressure, and 825 parts of methanol was added to dissolve it. AgBF 4 methanol A solution was obtained.

・BF塩の作成
AgBFメタノール溶液945部を上記のジエチルジメチルアンモニウムのヨウ化物塩344部及びメタノール294部の混合溶液に対してゆっくりと滴下しながら、混合した後、濾過し濾液を回収した。回収した濾液中にAgBF溶液あるいは混合溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。
80℃減圧で濾液の脱溶媒を行い、白色結晶289部を得た。結晶中の銀イオンは10ppm以下、ヨウ化物イオン含量は5ppm以下であった。結晶にメタノール3000部を加えて60℃で溶解させた後、−10℃に冷却し12時間静置し再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を255部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はDEDMA・BF塩であった。H−NMRの積分値から、純度は99モル%であった。
-Preparation of BF 4 salt 945 parts of AgBF 4 methanol solution was slowly added dropwise to the above mixed solution of 344 parts of diethyldimethylammonium iodide and 294 parts of methanol, and then filtered to collect the filtrate. . The AgBF 4 solution or mixed solution was added little by little to the collected filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate.
The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 289 parts of white crystals. Silver ions in the crystal were 10 ppm or less, and iodide ion content was 5 ppm or less. After adding 3000 parts of methanol to the crystal and dissolving at 60 ° C., the solution was cooled to −10 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 255 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were DEDMA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99 mol%.

<製造例2> <<ETMA・BFの製造>>
・ヨウ化物塩の合成
ジメチルエチルアミン(東京化成工業(株)製)110部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくりと滴下した後、30℃で3時間攪拌を続けた。析出した白色固体を濾過し、80℃減圧にて乾燥を行い、エチルトリメチルアンモニウムのヨウ化物塩322部を得た。
<Production Example 2><< Manufacture of ETMA · BF 4 >>
Synthesis of iodide salt 110 parts of dimethylethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 322 parts of ethyltrimethylammonium iodide salt.

・AgBF溶液の作成
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous solution of borohydrofluoric acid was dehydrated at 100 ° C. under reduced pressure, and 825 parts of methanol was added to dissolve it. AgBF 4 methanol A solution was obtained.

・BF塩の作成
AgBFメタノール溶液1117部を上記のエチルトリメチルアンモニウムのヨウ化物塩322部及びメタノール353部の混合溶液に対してゆっくりと滴下しながら、混合した後、濾過し濾液を回収した。回収した濾液中にAgBF溶液あるいは混合溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、濾過し濾液を回収した。
80℃減圧で濾液の脱溶媒を行い、白色結晶262部を得た。結晶中の銀イオンは10ppm以下、ヨウ化物イオン含量は5ppm以下であった。結晶にメタノール3000部を加えて60℃で溶解させた後、−10℃に冷却し12時間静置し再結晶を行った。析出した結晶を濾過し、80℃減圧乾燥を行い、白色結晶を124部得た。H−NMR、19F−NMR及び13C−NMRで分析した結果、この白色結晶はETMA・BF塩であった。H−NMRの積分値から、純度は99モル%であった。
-Preparation of BF 4 salt 1117 parts of AgBF 4 methanol solution was slowly added dropwise to the above mixed solution of 322 parts of ethyltrimethylammonium iodide salt and 353 parts of methanol, and then filtered to collect the filtrate. . The AgBF 4 solution or mixed solution was added little by little to the collected filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate.
The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 262 parts of white crystals. Silver ions in the crystal were 10 ppm or less, and iodide ion content was 5 ppm or less. After adding 3000 parts of methanol to the crystal and dissolving at 60 ° C., the solution was cooled to −10 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 124 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, this white crystal was an ETMA · BF 4 salt. From the integral value of 1 H-NMR, the purity was 99 mol%.

<比較製造例3> <<スピロ−(1,1’)−ビピロリジニウムテトラフルオロボレート(以下、SBP・BFと略す)の製造>>
ピロリジン100部、炭酸カリウム97部をテフロン(登録商標)コーティングしたオートクレーブに仕込み、1,5−ジクロロペンタン198部を加え、90℃で8時間反応を行った。この反応溶液に42重量%のホウフッ化水素酸水溶液294部を25℃で約30分かけて滴下した。滴下が終了して、泡の発生が収まったあと、20Torr、100℃で溶媒を全量留去して、固体200部を得た。この固体をエタノール、2−プロパノールを用いて晶析を2回行い、白色結晶を155部得た。H−NMR、19F−NMRおよび13C−NMRで分析した結果、白色結晶はSBP・BFであった。
<Comparative Production Example 3><Production of Spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate (hereinafter abbreviated as SBP · BF 4 ) >>
100 parts of pyrrolidine and 97 parts of potassium carbonate were charged into an autoclave coated with Teflon (registered trademark), 198 parts of 1,5-dichloropentane was added, and the reaction was performed at 90 ° C. for 8 hours. To this reaction solution, 294 parts of a 42% by weight aqueous borohydrofluoric acid solution was added dropwise at 25 ° C. over about 30 minutes. After the completion of the dropping and the generation of bubbles was stopped, the entire solvent was distilled off at 20 Torr and 100 ° C. to obtain 200 parts of a solid. This solid was crystallized twice using ethanol and 2-propanol to obtain 155 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were SBP · BF 4 .

<比較製造例4> <<1−エチル−2,3−ジメチルイミダゾリウムテトラフルオロボレート(EDMI・BF)の製造>>
攪拌装置、温度計、滴下ロート、還流冷却管、および窒素ガス導入剤を取り付けた反応フラスコにエチルアミン(70%水溶液)31部とアンモニア(28%水溶液)32部の混合液を仕込み、攪拌しながら均一に溶解した。温度を45℃以下に保ちながら滴下ロートからグリオキザール(40%水溶液)69部、アセトアルデヒド(30%水溶液)71部の混合液を滴下した。グリオキザールとアセトアルデヒドの混合液の敵かは5時間かけて行い、滴下終了後40℃で1時間反応させた。次に、温度80℃で、常圧から徐々に5.0kPaまで減圧し脱水を行い、続いて、温度105℃、圧力1.0kPaの条件で単蒸留により粗精製し1−エチル2−メチルイミダゾールを得た。還流コンデンサ付きステンレス製のオートクレーブに1−エチル−2−メチルイミダゾール100部、ジメチル炭酸135部、およびメタノール192部を仕込み均一に溶解させた。次いで、130℃まで昇温した。圧力0.8kPaで80時間反応を行った。反応物の1H−NMR分析を行ったところ、1−エチル−2,3−ジメチルイミダゾリウムモノメチル炭酸塩が生成していた。得られた反応混合物427部をフラスコに取り、攪拌下においてホウフッ化水素酸水溶液207部(純度42重量%)を室温下約30分かけて徐々に滴下した。滴下において炭酸ガスが発生した。泡の発生が収まった後、反応液をロータリーエバポレーターに移し溶剤を全量除去した。フラスコ内には、黄褐色透明の液体82部が残った。得られた黄褐色透明の液体をメタノール、イソプロパノールを用いて晶析し、白色の固体を得た。この固体を1H−NMRで分析したところ、1−エチル−2,3−ジメチルイミダゾリウムテトラフルオロボレートであった。H−NMRの積分値から、純度は99モル%であった。
<Comparative Production Example 4><< Production of 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate (EDMI · BF 4 ) >>
A reaction flask equipped with a stirrer, thermometer, dropping funnel, reflux condenser, and nitrogen gas introducing agent was charged with a mixture of 31 parts ethylamine (70% aqueous solution) and 32 parts ammonia (28% aqueous solution) while stirring. Dissolved uniformly. While maintaining the temperature at 45 ° C. or lower, a mixed solution of 69 parts of glyoxal (40% aqueous solution) and 71 parts of acetaldehyde (30% aqueous solution) was dropped from the dropping funnel. Whether or not the mixture of glioxal and acetaldehyde was an enemy was carried out over 5 hours, and the reaction was carried out at 40 ° C. for 1 hour after completion of the dropwise addition. Next, dehydration was performed by gradually reducing the pressure from normal pressure to 5.0 kPa at a temperature of 80 ° C., followed by rough purification by simple distillation under the conditions of a temperature of 105 ° C. and a pressure of 1.0 kPa. Got. In a stainless steel autoclave with a reflux condenser, 100 parts of 1-ethyl-2-methylimidazole, 135 parts of dimethyl carbonate and 192 parts of methanol were charged and uniformly dissolved. Next, the temperature was raised to 130 ° C. The reaction was performed at a pressure of 0.8 kPa for 80 hours. 1H-NMR analysis of the reaction product revealed that 1-ethyl-2,3-dimethylimidazolium monomethyl carbonate was produced. 427 parts of the resulting reaction mixture was placed in a flask, and 207 parts of a borohydrofluoric acid aqueous solution (purity 42% by weight) was gradually added dropwise over about 30 minutes at room temperature with stirring. Carbon dioxide gas was generated during the dropping. After generation | occurrence | production of foam | bubble settled, the reaction liquid was moved to the rotary evaporator and the whole quantity of solvent was removed. In the flask, 82 parts of a tan transparent liquid remained. The obtained yellowish brown transparent liquid was crystallized using methanol and isopropanol to obtain a white solid. When this solid was analyzed by 1H-NMR, it was 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate. From the integral value of 1 H-NMR, the purity was 99 mol%.

<比較製造例5> <<テトラエチルアンモニウムテトラフルオロボレート(TEA・BF)の製造>>
・ヨウ化物塩の合成
トリエチルアミン(東京化成工業(株)製)102部、アセトン300部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化エチル171部をゆっくり滴下した後、30℃で3時間攪拌を続けた。析出した白色固体をろ過し80℃減圧にて乾燥を行い、テトラエチルアンモニウムのヨウ化物塩を257部得た。
<< Comparative Production Example 5 >><< Production of Tetraethylammonium Tetrafluoroborate (TEA · BF 4 ) >>
Synthesis of iodide salt 102 parts of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 parts of acetone were charged into a glass beaker and dissolved uniformly. While stirring the solution, 171 parts of ethyl iodide was slowly added dropwise, and stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 257 parts of tetraethylammonium iodide salt.

・AgBF溶液の作製
酸化銀116部、42重量%のホウフッ化水素酸水溶液209部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール550部を加えて溶解しAgBFメタノール溶液を得た。
-Preparation of AgBF 4 solution A solution obtained by mixing 116 parts of silver oxide and 209 parts of 42 wt% aqueous borofluoric acid solution at 100 ° C under reduced pressure was dissolved in 550 parts of methanol, and dissolved in AgBF 4 methanol. A solution was obtained.

・BF塩の作製
上記のAgBF溶液745部をテトラエチルアンモニウムのヨウ化物塩257部とメタノール232部の混合溶液に対して、ゆっくりと滴下、混合した後ろ過し、ろ液を回収した。ろ液中にAgBF溶液あるいはヨウ化物塩溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、ろ過しろ液を回収した。80℃減圧でろ液の脱溶媒を行い、白色結晶を186部得た。結晶にメタノール300部を加えて30℃で溶解させた後、−5℃に冷却し12時間静置しして再結晶を行った。析出した結晶をろ過し、80℃減圧乾燥を行い、白色結晶を162部得た。H−NMR、19F−NMRおよび13C−NMRで分析した結果、この白色結晶はTEA・BFであった。H−NMRの積分値から、純度は99%であった。
-Preparation of BF 4 salt 745 parts of the above AgBF 4 solution was slowly added dropwise to a mixed solution of 257 parts of tetraethylammonium iodide salt and 232 parts of methanol, followed by filtration, and the filtrate was collected. An AgBF 4 solution or an iodide salt solution was added little by little to the filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate. The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 186 parts of white crystals. 300 parts of methanol was added to the crystal and dissolved at 30 ° C., then cooled to −5 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 162 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, this white crystal was TEA · BF 4 . From the integral value of 1 H-NMR, the purity was 99%.

<比較製造例6> <<トリエチルメチルアンモニウムテトラフルオロボレート(TEMA・BF)の製造>>
・ヨウ化物塩の合成
トリエチルアミン(東京化成工業(株)製)152部、アセトン339部をガラスビーカーに仕込み均一に溶解させた。溶液を攪拌しながらヨウ化メチル234部をゆっくり滴下した後、30℃で3時間攪拌を続けた。析出した白色固体をろ過し80℃減圧にて乾燥を行い、トリエチルメチルアンモニウムのヨウ化物塩を364部得た。
<Comparative Production Example 6><< Manufacture of triethylmethylammonium tetrafluoroborate (TEMA.BF 4 ) >>
Synthesis of iodide salt 152 parts of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 339 parts of acetone were charged into a glass beaker and uniformly dissolved. 234 parts of methyl iodide was slowly added dropwise while stirring the solution, and then stirring was continued at 30 ° C. for 3 hours. The precipitated white solid was filtered and dried at 80 ° C. under reduced pressure to obtain 364 parts of triethylmethylammonium iodide salt.

・AgBF溶液の作製
酸化銀174部、42重量%のホウフッ化水素酸水溶液314部を混合した溶液を100℃減圧脱水して得られた固体に、メタノール825部を加えて溶解しAgBFメタノール溶液を得た。
Preparation of AgBF 4 solution A solution obtained by mixing 174 parts of silver oxide and 314 parts of a 42% by weight aqueous borofluoric acid solution was dehydrated at 100 ° C. under reduced pressure to add 825 parts of methanol to dissolve, and dissolve AgBF 4 methanol. A solution was obtained.

・BF塩の作製
上記のAgBF溶液1129部をトリエチルメチルアンモニウムのヨウ化物塩364部とメタノール351部の混合溶液に対して、ゆっくりと滴下、混合した後ろ過し、ろ液を回収した。ろ液中にAgBF溶液あるいはヨウ化物塩溶液を少しずつ添加することで、溶液中の銀イオン含量を10ppm以下に、ヨウ素イオン含量を5ppm以下に微調整した後、ろ過しろ液を回収した。80℃減圧でろ液の脱溶媒を行い、白色結晶を295部得た。結晶にメタノール300部を加えて30℃で溶解させた後、−5℃に冷却し12時間静置しして再結晶を行った。析出した結晶をろ過し、80℃減圧乾燥を行い、白色結晶を152部得た。H−NMR、19F−NMRおよび13C−NMRで分析した結果、この白色結晶はTEMA・BFであった。H−NMRの積分値から、純度は99%であった。
-Preparation of BF 4 salt 1129 parts of the above AgBF 4 solution was slowly added dropwise to a mixed solution of 364 parts of triethylmethylammonium iodide salt and 351 parts of methanol, followed by filtration, and the filtrate was collected. An AgBF 4 solution or an iodide salt solution was added little by little to the filtrate to finely adjust the silver ion content in the solution to 10 ppm or less and the iodine ion content to 5 ppm or less, and then filtered to collect the filtrate. The filtrate was desolvated at 80 ° C. under reduced pressure to obtain 295 parts of white crystals. 300 parts of methanol was added to the crystal and dissolved at 30 ° C., then cooled to −5 ° C. and allowed to stand for 12 hours for recrystallization. The precipitated crystals were filtered and dried under reduced pressure at 80 ° C. to obtain 152 parts of white crystals. As a result of analysis by 1 H-NMR, 19 F-NMR and 13 C-NMR, the white crystals were TEMA · BF 4 . From the integral value of 1 H-NMR, the purity was 99%.

実施例1 電解液(A−1)の調製
製造例1のDEDMA・BF塩22.3部を、脱水した住友精化(株)製SL54.4部と住友精化(株)製EMS23.3部からなる混合物に均一に溶解し、本発明の電解液A−1を得た。
Example 1 Preparation of Electrolyte Solution (A-1) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were dehydrated and 54.4 parts SL Sumitomo Seika Co., Ltd. and EMS 23. Sumitomo Seika Co., Ltd. It melt | dissolved uniformly in the mixture which consists of 3 parts, and obtained the electrolyte solution A-1 of this invention.

実施例2 電解液(A−2)の調製
製造例1のDEDMA・BF塩22.3部を、脱水した住友精化(株)製SL54.4部、住友精化(株)製EMS15.5部および住友精化(株)製DMS7.8部からなる混合物に均一に溶解し、本発明の電解液A−2を得た。
Example 2 Preparation of Electrolyte (A-2) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were dehydrated, 54.4 parts of SL manufactured by Sumitomo Seika Co., Ltd., and EMS 15. of EMS manufactured by Sumitomo Seika Co., Ltd. It was uniformly dissolved in a mixture consisting of 5 parts and 7.8 parts of DMS manufactured by Sumitomo Seika Co., Ltd. to obtain an electrolytic solution A-2 of the present invention.

実施例3 電解液(A−3)の調製
製造例1のDEDMA・BF塩22.3部を、脱水した住友精化(株)製SL66.0部と住友精化(株)製DMS11.7部からなる混合物に均一に溶解し、本発明の電解液A−3を得た。
Example 3 Preparation of Electrolyte Solution (A-3) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were dehydrated and 66.0 parts of SL manufactured by Sumitomo Seika Co., Ltd. and DMS 11 of Sumitomo Seika Co., Ltd. produced. It melt | dissolved uniformly in the mixture which consists of 7 parts, and obtained the electrolyte solution A-3 of this invention.

実施例4 電解液(A−4)の調製
製造例1のDEDMA・BF塩22.3部を、脱水した住友精化(株)製SL69.9部と住友精化(株)製DMS7.8部からなる混合物に均一に溶解し、本発明の電解液A−4を得た。
Example 4 Preparation of Electrolyte Solution (A-4) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were dehydrated and 69.9 parts of SLMS manufactured by Sumitomo Seika Co., Ltd. and DMS7. It melt | dissolved uniformly in the mixture which consists of 8 parts, and obtained the electrolyte solution A-4 of this invention.

実施例5 電解液(A−5)の調製
製造例1のDEDMA・BF塩22.3部を、脱水した住友精化(株)製SL73.8部と住友精化(株)製DMS3.88部からなる混合物に均一に溶解し、本発明の電解液A−5を得た。
Example 5 Preparation of Electrolyte Solution (A-5) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were dehydrated and 73.8 parts of SL made by Sumitomo Seika Co., Ltd. and DMS 3. produced by Sumitomo Seika Co., Ltd. It melt | dissolved uniformly in the mixture which consists of 88 parts, and obtained the electrolyte solution A-5 of this invention.

実施例6 電解液(A−6)の調製
製造例2のETMA・BF塩20.7部を、脱水した住友精化(株)製SL55.5部と住友精化(株)製EMS23.8部からなる混合物に均一に溶解し、本発明の電解液A−6を得た。
Example 6 Preparation of Electrolytic Solution (A-6) 20.7 parts of ETMA · BF 4 salt of Production Example 2 were dehydrated and 55.5 parts of SL Sumitomo Seika Co., Ltd. and EMS 23. Sumitomo Seika Co., Ltd. It uniformly melt | dissolved in the mixture which consists of 8 parts, and obtained the electrolyte solution A-6 of this invention.

実施例7 電解液(A−7)の調製
製造例2のETMA・BF塩20.7部を、脱水した住友精化(株)製SL63.5部と住友精化(株)製EMS15.9部からなる混合物に均一に溶解し、本発明の電解液A−7を得た。
Example 7 Preparation of Electrolyte Solution (A-7) 20.7 parts of ETMA · BF 4 salt of Production Example 2 were dehydrated and 63.5 parts of SL made by Sumitomo Seika Co., Ltd. and EMS15. It uniformly melt | dissolved in the mixture which consists of 9 parts, and obtained the electrolyte solution A-7 of this invention.

実施例8 電解液(A−8)の調製
製造例2のETMA・BF塩120.7部を、脱水した住友精化(株)製SL71.4部と住友精化(株)製DMS7.9部からなる混合物に均一に溶解し、本発明の電解液A−8を得た。
Example 8 Preparation of Electrolyte Solution (A-8) 120.7 parts of ETMA · BF 4 salt of Production Example 2 were dehydrated and SL71.4 parts made by Sumitomo Seika Co., Ltd. and DMS7 made by Sumitomo Seika Co., Ltd. were used. It uniformly melt | dissolved in the mixture which consists of 9 parts, and obtained the electrolyte solution A-8 of this invention.

比較例1 比較電解液(B−1)の調製
製造例1のDEDMA・BF塩22.3部を脱水した住友精化(株)製SL77.7部に均一に溶解し、比較電解液B−1を得た。
Comparative Example 1 Preparation of Comparative Electrolyte (B-1) 22.3 parts of DEDMA · BF 4 salt of Production Example 1 were uniformly dissolved in 77.7 parts of SL made by Sumitomo Seika Co., Ltd., and Comparative Electrolyte B -1 was obtained.

比較例2 比較電解液(B−2)の調製
製造例2のETMA・BF塩20.7部を脱水した住友精化(株)製SL79.3部に均一に溶解し、比較電解液B−2を得た。
Comparative Example 2 Preparation of Comparative Electrolytic Solution (B-2) 20.7 parts of ETMA · BF 4 salt from Production Example 2 were uniformly dissolved in 79.3 parts of Sumitomo Seika Co., Ltd. SL and Comparative Electrolytic Solution B -2 was obtained.

比較例3 比較電解液(B−3)の調製
比較製造例4のEDMI・BF塩25.0部を脱水した住友精化(株)製SL63.7部と住友精化(株)製DMS11.3部に均一に溶解し、比較電解液B−3を得た。
Comparative Example 3 Preparation of Comparative Electrolyte (B-3) Sumitomo Seika Co., Ltd. SL63.7 parts and Sumitomo Seika Co., Ltd. DMS11 which dehydrated 25.0 parts of EDMI · BF 4 salt of Comparative Production Example 4 .. 3 parts uniformly dissolved to obtain a comparative electrolytic solution B-3.

比較例4 比較電解液(B−4)の調製
比較製造例5のTEA・BF塩25.6部を脱水した住友精化(株)製SL63.2部と住友精化(株)製DMS11.2部に均一に溶解し、比較電解液B−4を得た。
Comparative Example 4 Preparation of Comparative Electrolyte (B-4) Sumitomo Seika Co., Ltd. SL63.2 parts obtained by dehydrating 25.6 parts of TEA · BF 4 salt of Comparative Production Example 5 and Sumitomo Seika Co., Ltd. DMS11 Dissolve uniformly in 2 parts to obtain a comparative electrolytic solution B-4.

比較例5 比較電解液(B−5)の調製
比較製造例6のTEMA・BF塩24.0部を脱水した住友精化(株)製SL64.6部と住友精化(株)製DMS11.4部に均一に溶解し、比較電解液B−5を得た。
Comparative Example 5 Preparation of Comparative Electrolytic Solution (B-5) Sumitomo Seika Co., Ltd. SL64.6 parts dehydrated TEMA · BF 4 salt 24.0 parts of Comparative Production Example 6 and Sumitomo Seika Co., Ltd. DMS11 .4 parts was uniformly dissolved to obtain a comparative electrolytic solution B-5.

比較例6 比較電解液(B−6)の調製
比較製造例3のSBP・BF塩23.4部を脱水した住友精化(株)製SL61.3部と住友精化(株)製DMS15.3部に均一に溶解し、本発明の電解液B−6を得た。
Comparative Example 6 Preparation of Comparative Electrolyte (B-6) Sumitomo Seika Co., Ltd. SL61.3 parts and Sumitomo Seika Co., Ltd. DMS15 dehydrated 23.4 parts of SBP · BF 4 salt of Comparative Production Example 3 Dissolve uniformly in 3 parts to obtain an electrolytic solution B-6 of the present invention.

比較例7 比較電解液(B−7)の調製
比較製造例3のSBP・BF塩23.4部を脱水した住友精化(株)製SL61.3部と住友精化(株)製EMS15.3部に均一に溶解し、本発明の電解液B−7を得た。
Comparative Example 7 Preparation of Comparative Electrolyte (B-7) Sumitomo Seika Co., Ltd. SL61.3 parts and Sumitomo Seika Co., Ltd. EMS15 which dehydrated 23.4 parts of SBP · BF 4 salt of Comparative Production Example 3 Dissolve uniformly in 3 parts to obtain an electrolytic solution B-7 of the present invention.

比較例8 比較電解液(B−8)の調製
比較製造例3のSBP・BF塩23.4部を脱水した住友精化(株)製SL65.1部と住友精化(株)製DMS11.5部に均一に溶解し、本発明の電解液B−8を得た。
Comparative Example 8 Preparation of Comparative Electrolyte (B-8) Sumitomo Seika Co., Ltd. SL65.1 parts and Sumitomo Seika Co., Ltd. DMS11 from which 23.4 parts of SBP · BF 4 salt of Comparative Production Example 3 were dehydrated Dissolve uniformly in 5 parts to obtain an electrolytic solution B-8 of the present invention.

本発明の電解液(A―1)〜(A−8)、及び比較用の電解液(B−1)〜(B−8)の組成を表1に示した。また、以下の方法で電解液の凝固点を測定し結果を表1に示した。 The compositions of the electrolytic solutions (A-1) to (A-8) of the present invention and comparative electrolytic solutions (B-1) to (B-8) are shown in Table 1. Further, the freezing point of the electrolytic solution was measured by the following method, and the results are shown in Table 1.

Figure 2013179204
Figure 2013179204

また、同電解液を使用して、捲回形の電気二重層キャパシタ(直径17mm、高さ40mm)および表面実装形の電気二重層キャパシタ(直径3.8mm、高さ1.5mm)を作製し、以下の方法で等価直列抵抗、等価直列抵抗の変化率を測定した。
また、上記で作成した電気二重層キャパシタの封口体ゴムには、加硫剤としてアルキルフェノールフォルマリン樹脂と過酸化物を使用した2種類のブチルゴムを用い、各々について封口体の封口ゴム面を観察した。これらの結果を表2および表3に示した。
Using the same electrolyte, a wound type electric double layer capacitor (diameter 17 mm, height 40 mm) and a surface mount type electric double layer capacitor (diameter 3.8 mm, height 1.5 mm) were prepared. The equivalent series resistance and the rate of change of the equivalent series resistance were measured by the following method.
In addition, the sealing rubber of the electric double layer capacitor created above was used as two kinds of butyl rubber using alkylphenol formalin resin and peroxide as vulcanizing agents, and the sealing rubber surface of the sealing body was observed for each. . These results are shown in Tables 2 and 3.

Figure 2013179204
Figure 2013179204

Figure 2013179204
Figure 2013179204

・等価直列抵抗変化率
電気二重層キャパシタに85℃で2.8Vの電圧を3000時間印加したあとの電気二重層キャパシタの1kHzでの等価直列抵抗(RE3000)と電圧印加前の1kHzでの等価直列抵抗(RE)との比を以下の式で算出し、これを等価直列抵抗の変化率とした。なお、等価直列抵抗はインピーダンスアナライザ(ソーラトロン製SI1253,SI1286)を用いて0℃で測定した。この変化率の値が小さいほど、耐熱性が良好であり、耐電圧が高い。つまり経時的な性能劣化が小さく、良好な充放電特性を維持できることを意味する。
(等価直列抵抗変化率)(%)=[(RE3000)/(RE)]×100
また、等価直列抵抗は小さいほうがキャパシタ特性に優れる。
Equivalent series resistance change rate Equivalent series resistance (RE 3000 ) at 1 kHz of the electric double layer capacitor after applying a voltage of 2.8 V at 85 ° C. for 3000 hours to the electric double layer capacitor and equivalent at 1 kHz before applying the voltage The ratio with the series resistance (RE 0 ) was calculated by the following formula, and this was used as the rate of change of the equivalent series resistance. The equivalent series resistance was measured at 0 ° C. using an impedance analyzer (Solaron SI1253, SI1286). The smaller the value of the rate of change, the better the heat resistance and the higher the withstand voltage. That is, it means that performance deterioration with time is small, and good charge / discharge characteristics can be maintained.
(Equivalent Series Resistance Change Rate) (%) = [(RE 3000 ) / (RE 0 )] × 100
Also, the smaller the equivalent series resistance, the better the capacitor characteristics.

・封口体の封口ゴム面の様子
電気二重層キャパシタに85℃で2.8Vの電圧を1000時間印加した後の電気二重層キャパシタの封口体を構成する封口ゴム面の液漏れ状態を観察した。
封口体の封口ゴム面の試験個数は8個である。
-State of the sealing rubber surface of the sealing body The liquid leakage state of the sealing rubber surface constituting the sealing body of the electric double layer capacitor after applying a voltage of 2.8 V to the electric double layer capacitor at 85 ° C for 1000 hours was observed.
The number of test of the sealing rubber surface of the sealing body is eight.

・凝固点
電解液を温調のできるガラス容器に入れ、室温から1℃/分の速度で温度を降下させ、析出が起こった温度を凝固点とした。
-The freezing point electrolyte was placed in a temperature-controllable glass container, the temperature was lowered from room temperature at a rate of 1 ° C / min, and the temperature at which precipitation occurred was defined as the freezing point.

表1,表2の測定結果から、本発明の電気二重層キャパシタ用電解液は、等価直列抵抗の変化率が小さいことから高い耐熱性および耐久性を示し、かつ封口ゴム面の様子に異常がないことから耐漏液性を有し、かつ凝固点が低いことから広い温度範囲で凝固を起こさないことがわかった。
いっぽう、比較例1〜3の電解液を使用した比較例9〜11、17〜19の電気二重層キャパシタの等価直列抵抗の変化率は大きく耐熱性および耐久性が低い。また比較例4〜8の電解液を使用した比較例12〜16、20〜24の電気二重層キャパシタは液漏れが発生し耐漏液性を有さない。
すなわち、本発明の電解液を使用することにより、耐久性が高く、封口体の封口性能に優れ、広い温度範囲で凝固を起こさない高信頼性の電気二重層キャパシタを構成できることが明らかである。
From the measurement results of Tables 1 and 2, the electrolytic solution for electric double layer capacitors of the present invention exhibits high heat resistance and durability because of the small change rate of the equivalent series resistance, and the appearance of the sealing rubber surface is abnormal. From this, it was found that it has liquid leakage resistance and has a low freezing point, so that solidification does not occur in a wide temperature range.
On the other hand, the change rate of the equivalent series resistance of the electric double layer capacitors of Comparative Examples 9 to 11 and 17 to 19 using the electrolytic solutions of Comparative Examples 1 to 3 is large, and the heat resistance and durability are low. Moreover, the electric double layer capacitors of Comparative Examples 12 to 16 and 20 to 24 using the electrolytic solutions of Comparative Examples 4 to 8 have liquid leakage and have no leakage resistance.
That is, by using the electrolytic solution of the present invention, it is clear that a highly reliable electric double layer capacitor having high durability, excellent sealing performance of the sealing body, and not solidifying in a wide temperature range can be configured.

本発明の電解液を用いて作製した電気二重層キャパシタは、各種電子機器のメモリーバックアップ用、各種電源バックアップ電源、太陽電池との組み合わせで使用される蓄電素子等の2次電池を代替する蓄電装置としてやモーター駆動用電源、電動工具等のパワーツール用電源、特に長期の耐久性、信頼性を必要とするハイブリッド自動車、電気自動車用電源等に適用できる。 The electric double layer capacitor produced using the electrolytic solution of the present invention is a power storage device that replaces secondary batteries such as power storage elements used in combination with memory backup for various electronic devices, various power backup power sources, and solar cells. As such, it can be applied to a power source for a power tool such as a motor driving power source and a power tool, particularly a hybrid vehicle and a power source for an electric vehicle that require long-term durability and reliability.

Claims (3)

エチルトリメチルアンモニウムテトラフルオロボレートおよび/またはジエチルジメチルアンモニウムテトラフルオロボレートが、スルホラン(SL)及び炭素数2〜6である鎖状スルホン(S1)を含有する混合溶媒(S)中に溶解されてなることを特徴とする電気二重層キャパシタ用電解液。 Ethyltrimethylammonium tetrafluoroborate and / or diethyldimethylammonium tetrafluoroborate is dissolved in a mixed solvent (S) containing sulfolane (SL) and a chain sulfone (S1) having 2 to 6 carbon atoms. An electrolytic solution for electric double layer capacitors. 前記スルホラン(SL)および鎖状スルホン(S1)の重量混合比率が、60:40〜95:5である請求項1に記載の電解液。 2. The electrolytic solution according to claim 1, wherein a weight mixing ratio of the sulfolane (SL) and the chain sulfone (S1) is 60:40 to 95: 5. 前記鎖状スルホン(S1)が、ジメチルスルホンおよび/またはエチルメチルスルホンである請求項1または2に記載の電解液。 The electrolytic solution according to claim 1 or 2, wherein the chain sulfone (S1) is dimethyl sulfone and / or ethyl methyl sulfone.
JP2012042867A 2012-02-29 2012-02-29 Electrolyte for electric double layer capacitor Pending JP2013179204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042867A JP2013179204A (en) 2012-02-29 2012-02-29 Electrolyte for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042867A JP2013179204A (en) 2012-02-29 2012-02-29 Electrolyte for electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2013179204A true JP2013179204A (en) 2013-09-09

Family

ID=49270580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042867A Pending JP2013179204A (en) 2012-02-29 2012-02-29 Electrolyte for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2013179204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029640A1 (en) * 2012-02-27 2015-01-29 Panasonic Corporation Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
JP2017028274A (en) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 Electrochemical cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029640A1 (en) * 2012-02-27 2015-01-29 Panasonic Corporation Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
US10199179B2 (en) * 2012-02-27 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
JP2017028274A (en) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 Electrochemical cell

Similar Documents

Publication Publication Date Title
JP4804488B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
US8007680B2 (en) Electrolyte solution for electrochemical device and electrochemical device using same
JP4913864B2 (en) Electrolyte, electrolytic solution using the same, and electrochemical element
KR101076513B1 (en) Electrolyte solution for electric double layer capacitor
JP2012074528A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using the same
JP2012074541A (en) Electrolytic solution for electric double layer capacitor and electrochemical device
US20150125760A1 (en) Capacitors having conditioned carbon for electrodes
JP2013179204A (en) Electrolyte for electric double layer capacitor
JP2005197665A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using the same
JP5116655B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2005197666A (en) Electrochemical capacitor and electrolyte therefor
JP2006156728A (en) Electrochemical capacitor and electrolyte therefor
JP5116654B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP5101260B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
WO2015069853A1 (en) Improvements for capacitors having conditioned carbon for electrodes
JP2012109539A (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2013222866A (en) Electric double-layer capacitor electrolyte and electric double-layer capacitor using the same
JP4997151B2 (en) Electrolytic solution for electrochemical element and electrochemical element using the same
JP2012069931A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it
JP5063172B2 (en) Electrolyte for electric double layer capacitor
JP3788486B2 (en) Electrolytic solution for electrolytic capacitors
JP2010235526A (en) Imidazolium salt, electrolyte, and electrochemical device
JP4902998B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JP4022717B2 (en) Electrolyte for electric double layer capacitor
JP2011100777A (en) Electrolyte and electrochemical element using the same