WO2007037304A1 - 微量晶析装置及び微量晶析システム - Google Patents

微量晶析装置及び微量晶析システム Download PDF

Info

Publication number
WO2007037304A1
WO2007037304A1 PCT/JP2006/319258 JP2006319258W WO2007037304A1 WO 2007037304 A1 WO2007037304 A1 WO 2007037304A1 JP 2006319258 W JP2006319258 W JP 2006319258W WO 2007037304 A1 WO2007037304 A1 WO 2007037304A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
compound
microcrystallization
solvent
elongated
Prior art date
Application number
PCT/JP2006/319258
Other languages
English (en)
French (fr)
Inventor
Noriyuki Imayoshi
Original Assignee
Dainippon Sumitomo Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Sumitomo Pharma Co., Ltd. filed Critical Dainippon Sumitomo Pharma Co., Ltd.
Priority to JP2007537661A priority Critical patent/JP4813495B2/ja
Publication of WO2007037304A1 publication Critical patent/WO2007037304A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements

Definitions

  • the present invention relates to a crystallization apparatus and a crystallization system.
  • the present invention enables high-accuracy and high-efficiency crystallization of a compound even if the amount of a sample containing a compound and a solvent is very small.
  • the present invention relates to a micro crystallization apparatus and a micro crystallization system that enable multi-sample processing.
  • Compounds such as pharmaceuticals generally have a plurality of crystal forms (crystal polymorphs). And, depending on each crystal form, its stability and the like may be different, and particularly in the case of a pharmaceutical, its therapeutic efficacy may be different. Therefore, when evaluating a newly developed compound, the compound is crystallized under various conditions, and the stability of each crystal form produced thereby is measured by an X-ray diffractometer or thermal analyzer. It is necessary to select and determine a useful crystal form and crystallization conditions for obtaining this crystal form after evaluation using a measuring device. In addition, in order for the developer to monopolize the crystal polymorph of the new compound, it is necessary to search for all crystal forms possessed by the new compound by testing various crystallization conditions.
  • Crystallization of the above compound is generally carried out by dissolving the compound in a solvent by heating and then cooling the solution.
  • the crystal forms produced are different. Since the number of combinations of these parameters is extremely large, it was very troublesome to perform separate tests according to various conditions, and the amount of compounds that could be used was limited. For this reason, various proposals regarding so-called multi-sample processing in which a plurality of samples are simultaneously used for testing under a large number of conditions have been made (for example, Japanese Special Table No. 200 3-519698, Japanese Special Specification). (See Table 2004-504596, Japan Special 2005-50 2861).
  • a plurality of (for example, 96) concave portions (wells) arranged in a matrix called a so-called well plate are provided on the upper surface.
  • a crystallizer equipped with a plate-like member.
  • a sample containing a compound and a solvent is accommodated in each well of the well plate, and the compound is dissolved in the solvent by heating with a heating device arranged at the bottom of the well plate. Then, the solution is cooled (heating is stopped or the heating temperature is reduced) to crystallize the compound, and crystallization is performed.
  • an object of the present invention is to provide a microcrystallization apparatus and a microcrystallization system that enable highly efficient multi-sample processing.
  • the present invention that solves the above-mentioned problems is a heating device for heating the lower wall surface of one or more elongated containers that are detachably installed to accommodate a sample containing a compound and a solvent. And a cooling device for cooling a predetermined wall surface of the elongated container positioned above the lower wall surface to be heated of the elongated container. .
  • the microcrystallization apparatus includes a heating device for heating the lower wall surface of one or a plurality of elongated containers that are detachably provided.
  • each elongate container accommodates a trace amount of compound and solvent by varying conditions such as the type of solvent and the amount of solvent relative to the amount of compound for each elongate container.
  • the microcrystallization apparatus includes a cooling device for cooling a predetermined wall surface of the elongate container located above the lower wall surface to be heated of the elongate container. Yes.
  • the solvent that volatilizes and rises in the elongated container is cooled by heat transfer from the wall surface of the elongated container cooled by the cooling device, and as a result, returns to the liquid and passes through the elongated container ( In particular, it will descend (along the inner wall of the elongated container) and be used for dissolution of the compound.
  • the compound and the solvent are stored in the elongated container, even if the compound adheres to the inner wall surface of the container located above the liquid level of the solvent, it returns to the liquid and descends along the inner wall surface of the elongated container. Since the adhering compound can be dissolved by the solvent to be dissolved, there is no possibility that the compound itself adhering to the inner wall surface of the container becomes a seed to form crystals.
  • the position of the cooling device (the position of the wall surface of the elongated container cooled by the cooling device) is such that the sample contained in the elongated container is not cooled by the cooling device (the elongated container cooled by the cooling device).
  • the microcrystallizer according to the present invention has a configuration in which the volatilized solvent is refluxed in the elongated container by the cooling device, so that the solvent amount and the composition ratio of the mixed solvent as expected while keeping the pressure constant. Tests can be performed according to the conditions, and even if the amount of the sample containing the compound and the solvent is very small, the accuracy is high, the crystallization of the rich compound is possible, and the efficiency is high. Body treatment is possible.
  • the phrase “standing” in the present invention means that the lower part of the elongated container is attached to a predetermined supporting means (for example, the elongated container is suspended as long as it is attached to the microcrystallizer so that the longitudinal direction of the elongated container extends vertically. It is used as a concept including various aspects such as.
  • the heating device includes a pedestal member provided with a concave portion for fitting a lower portion of the elongated container, A heater for heating at least the vicinity of the concave portion of the pedestal member, and the cooling device is disposed above the pedestal member and includes a cooling member configured to allow refrigerant to flow therethrough. Can be adopted.
  • a capillary used as a container for containing a compound when analyzing the crystal form of the compound with an X-ray diffractometer or the like can be detachably installed as the elongated container.
  • a capillary that is disposed above the cooling member and used as a container for containing the compound when the crystal form of the compound is analyzed by an X-ray diffractometer or the like is detachable as the elongated container.
  • a support member that is suspended from the support member, and the length of the lower region of the first member that fits into the recess of the base member can be adjusted by changing the vertical position of the support member and the capillary. Configured.
  • the outer diameter of the capillary is extremely small, so that the liquid level of the solvent varies greatly depending on the volume of the solvent accommodated in the capillary. Therefore, in the configuration in which the bottom surface of the capillary is fitted until it contacts the bottom surface of the recess of the pedestal member, the lower wall surface of the region that approximately matches the liquid level of the solvent contained in the capillary. If it is going to heat, it will be necessary to prepare the base member which has a recessed part of various depths according to the volume of the solvent accommodated in a pillar, and to replace
  • the heating device is configured to heat the lower wall surfaces of the plurality of elongate containers and to control the temperature of the heated lower wall surface independently for each of the elongate containers.
  • a conventional crystallizer equipped with a well plate has a configuration in which all the wells are controlled with the same temperature pattern by means of a calorie heating device arranged at the lower part of the well plate. Therefore, it is necessary to select a solvent having a boiling point close to each tool of one tool plate, and there is a problem that the efficiency of multi-sample processing is poor.
  • the temperature of the lower wall surface can be controlled independently for each elongated container. In other words, it is possible to control the temperature of the sample stored in each elongated container with different temperature patterns. For this reason, for example, it has an advantage that a crystallization test can be simultaneously performed using different types of solvents having different boiling points.
  • the appropriate heating process and cooling process can be performed. It is easy to find out the crystallization conditions including it.
  • the present invention for solving the above problems is provided not only as the microcrystallizer but also as a microcrystallizer system including the elongated container attached to the microcrystallizer.
  • the present invention comprises the microcrystallizer and one or more elongated containers that are detachably installed on the microcrystallizer to accommodate a sample containing a compound and a solvent. It is also provided as a microcrystallization system.
  • the elongated container is formed using a glass material.
  • the type of the solvent that can be accommodated is not limited as compared with the case of using a metal or plastic container, and the acid or alcohol that is added as necessary is used. Therefore, there is an advantage that the crystallization conditions can be studied from various aspects.
  • the elongate container is formed of a transparent material force and has a flat bottom surface.
  • the elongate container is formed of a transparent material (a material having a permeability that allows the inside of the container to be visually recognized), the inside of the container can be observed. is there. Thus, for example, if the compound is not dissolved, a solvent can be added during the test. In addition, since the crystallization state can be observed, for example, it is possible to detect the crystal precipitation start temperature. Furthermore, even if the crystal form of the crystallized compound is not transferred to another container or the like, the elongated container after the completion of the crystallization test is removed from the apparatus according to the present invention, and the bottom side force crystal form of the elongated container is left as it is with a microscope. It is possible to observe. That is, since the elongate container is transparent, the crystal form in the container can be observed with a microscope and is observed from the flat bottom side, so that the image is not deformed by the lens effect.
  • a transparent material a material having a permeability that allows the inside of the container to be visually recognized
  • the elongate container may be a single used as a container for containing the compound when the crystal form of the compound is analyzed by an X-ray diffractometer or the like.
  • the elongated container includes a lid member for closing the top opening after the sample is accommodated.
  • volatilized solvent does not leak out of the elongated container, the volatilized solvent is surely cooled by the cooling device and refluxed, so that the crystallization of the compound can be performed.
  • the accuracy can be further increased.
  • FIG. 1 is a perspective view showing a schematic configuration of a microcrystallization system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration around the elongated container constituting the microcrystallization system shown in FIG.
  • FIG. 3 is a diagram schematically showing a schematic configuration inside the heating apparatus shown in FIG. 1.
  • FIG. 4 is an enlarged cross-sectional view showing another configuration example around the elongated vessel constituting the microcrystallization system shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing still another example of the structure around the elongated container constituting the microcrystallization system shown in FIG.
  • FIG. 6 is a perspective view showing a schematic configuration of a microcrystallization system according to another embodiment of the present invention.
  • FIG. 7 is a perspective view showing a schematic configuration of a microcrystallization system according to still another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a schematic configuration of a microcrystallization system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration around the elongated container constituting the microcrystallization system shown in FIG.
  • FIG. 3 is a diagram schematically showing a schematic configuration inside the heating apparatus shown in FIG.
  • a microcrystallization system 100 according to this embodiment includes a plurality of elongated containers 1 for storing a sample containing a compound and a solvent, and a microcrystallization apparatus 10.
  • the microcrystallizer 10 includes a heating device 2 for heating the lower wall surface of each elongate container 1 detachably installed on the microcrystallizer 10, and the heated lower part of each elongate container 1. And a cooling device 3 for cooling a predetermined wall surface of each elongate container 1 positioned above the wall surface.
  • the lower part of the elongated container 1 is fitted into the heating device 2 (specifically, a recess 21a of the heating device 2 described later), while the cooling device 3 (specifically, described later).
  • the cooling device 3 specifically, described later.
  • each elongated container 1 is erected in a vertically detachable manner.
  • the present invention is not limited to this.
  • a predetermined support member is provided above the cooling device 3, and the elongated container 1 is suspended by the support member. It is also possible to adopt a configuration in which the microcrystallizer 10 is erected by hanging.
  • the elongate container 1 can contain a small amount (for example, about several mg) of Compound C and a small amount (for example, about several tens of z / L) of solvent L to perform a crystallization test.
  • the outer diameter is about several mm ⁇ (for example, 9 mm ⁇ ) and the length is about several tens of mm (for example, 50 mm) for efficient temperature control by reducing the heat capacity.
  • the elongated container 1 is formed using a transparent glass material (for example, borosilicate glass), and has a flat bottom surface as shown in FIG.
  • a lid member in addition to a lid body (for example, a silicon stopper) fitted into the top opening of the elongated container 1, a sealing member (for example, Parafilm (registered trademark)) for sealing the top opening is used. It is also possible to apply.
  • the microcrystallization system 100 includes the cooling device 3, even if a configuration including a lid member is employed, unlike the conventional case where the well opening is closed with a plate-shaped lid, It is possible to obtain accurate crystallization conditions without causing the inside of the elongated container 1 to be excessively pressurized. This is because, when a configuration including a lid member is adopted, a serious pressure increase may occur inside the elongate container 1, but the volatilized solvent is cooled by the cooling device 3 and returned to the liquid. This is because the pressure rise can be suppressed.
  • the heating device 2 heats at least the vicinity of the recess 21a of the pedestal member 21 and a pedestal member (aluminum) 21 provided with a plurality of recesses 21a for fitting the lower portions of the respective elongated containers 1 respectively. And a heater 22 for carrying out the operation.
  • the vicinity of the recess 21a of the pedestal member 21 is heated by the heater 22, and the lower wall surface of each elongated container 1 is heated by the heat conduction in the region near the recess 21a of the heated pedestal member 21.
  • the sample stored in the elongated container 1 is heated by heat transfer from the lower wall surface of the elongated container 1.
  • the heating device 2 has a lower wall surface in a region that substantially matches the liquid level height of the solvent L accommodated in the elongated container 1 (the liquid level height after accommodating the compound C). It is comprised so that it can heat.
  • the elongated container 1 is fitted to the pedestal member 21 until its bottom surface abuts against the bottom surface of the recess 21a of the pedestal member 21. Entered. Then, the depth D of the recess 21a of the base member 21 substantially matches the liquid level of the solvent L accommodated in the elongated container 1 (for example, slightly shallower than the liquid L of the solvent L). It is set.
  • the combinations shown in Table 1 below are preferably used as the volume of the solvent L and the depth D of the recess 21a. It is done. With such a configuration, the lower wall surface of the elongated container 1 fitted in the recess 21a is heated substantially uniformly by heat conduction from the base member 21, and as a result, heat from the lower wall surface of the elongated container 1 heated uniformly.
  • the sample contained in the elongated container 1 can be brought to a substantially uniform temperature by transmission.
  • the heating device 2 is preferably configured such that the temperature of the heated lower wall surface can be controlled independently for each elongated container 1.
  • a conductor 221 that generates heat by energization is disposed in the vicinity of the lower part of each elongated container 1 in the heater 22 (in the vicinity of the recess 21a of the base member 21).
  • a temperature sensor 211 such as a thermocouple is disposed in the vicinity of the lower part of each elongated container 1 in the base member 21 (in the vicinity of the recess 21a of the base member 21).
  • a conductor 221 and a temperature sensor 211 disposed for each lower portion of each elongate container 1 are electrically connected to the control means 222 provided in the heater 22, respectively.
  • the pedestal member 21 is divided for each elongated container 1 (in FIG. 1, for convenience of illustration, the pedestal member 21 is illustrated as a single plate-like member, but actually, as shown in FIG. And an appropriate cooling plate or heat insulating plate 4 is disposed between the divided portions of the base member 21.
  • the control means 222 stores a voltage corresponding to a target temperature at a predetermined time in a portion near the lower portion of each elongated container 1 set in advance.
  • the control means 222 is The voltage corresponding to the target temperature and the voltage corresponding to the temperature detected by the temperature sensor 211 are compared every predetermined time, and the current flowing through the conductor 221 is turned on / off according to the magnitude relationship (or The current value is increased or decreased).
  • the configuration in which the conductor 221 is arranged in the heater 22 and the temperature sensor 211 is arranged in the pedestal member 21 has been described.
  • the present invention is not limited to this. It is also possible to employ a configuration in which the heater 22 is disposed. Also, a structure in which the base member 21 and the heater 22 are integrated (that is, a plurality of recesses for fitting the lower portions of the respective elongated containers 1 are provided on the upper surface of the heater 22, and the conductor 221 and the temperature sensor 211 are provided. It is also possible to employ a configuration in which the heater 22 is disposed.
  • the heating device 2 preferably also has a function as a so-called stirrer that incorporates a rotatable magnet. Therefore, in order to obtain a uniform crystal form, the stirrer M, which is a magnetic material housed in each elongated container 1, is powered by the magnetic force provided from the magnet of the heating device 2 as necessary. Thus, it is possible to agitate the solution in each elongated container 1.
  • the cooling device 3 is disposed above the pedestal member 21, provided with a plurality of openings 31a through which the respective elongated containers 1 are respectively inserted, and is configured so that a refrigerant flows therethrough.
  • Rejection member 31 (made of aluminum) is provided.
  • the cooling device 3 according to the present embodiment includes a tubular member 32, and the refrigerant flows through the tubular member 32 into the cooling member 31 (circulates in the direction of the white arrow in FIG. 1). It is configured to More specifically, one side force of the cooling member 31 is directed toward the other side, and a through hole that is straight or appropriately routed around the opening 31a is provided, and the tubular member 32 is inserted into the through hole. Can be adopted.
  • a configuration in which the entire cooling member 31 is hollow and a tubular member 32 communicating with the inside of the cooling member 31 is attached to one side surface and the other side surface of the cooling member 31 may be adopted.
  • the refrigerant flows through the cooling member 31, and the amount of heat on the wall surface of the elongated container 1 at the portion inserted through the opening 31 a.
  • the heat is radiated to the refrigerant through the 1S cooling member 31.
  • various media can be used according to the cooling temperature, and examples thereof include water, ethanol, methanol, and the like.
  • the cooling device 3 has a configuration in which the elongated container 1 is fitted into the opening 31a provided in the cooling member 31, so that the elongated container 1 is prevented from shaking as described above. It also has a function as a support member to maintain a stable standing state.
  • the cooling device 3 is exemplified by the configuration including the cooling member 31 configured to allow the refrigerant to flow therein.
  • the present invention is not limited to this and is used for normal use.
  • the tubular member 32 for circulating the refrigerant is not necessary.
  • the position of the cooling member 31 is such that the sample housed in the elongated container 1 is not cooled by the cooling member 31 (the temperature of the wall surface of the elongated container 1 cooled by the cooling member 31 is lower than the elongated container 1). It is preferable that the temperature of the wall surface is separated from the upper surface of the heating device 2 (from the upper surface of the pedestal member 21) to a degree that does not substantially affect the temperature of the sample. In the present embodiment, when the elongated container 1 having a length of 50 mm is used, the distance between the cooling member 31 and the pedestal member 21 is set to 27 mm, which is about half the length of the elongated container 1.
  • the cooling member 31 since the cooling member 31 and the base member 21 are arranged apart from each other and the elongated container 1 is formed using a transparent material, it is possible to observe the inside of the container 1 during the crystallization test. Is possible. Furthermore, bases such as acids (inorganic acids, organic acids), alkali metals, alkaline earth metals, and amines are added to each elongated container 1 so that crystallization occurs in the form of a salt during the crystallization test. It is also possible to add solvent L.
  • acids inorganic acids, organic acids
  • alkali metals alkali metals
  • alkaline earth metals alkaline earth metals
  • amines are added to each elongated container 1 so that crystallization occurs in the form of a salt during the crystallization test. It is also possible to add solvent L.
  • the solvent L that has volatilized and rises in the elongated container 1 is cooled by the cooling device 3 (cooling member 31).
  • the cooling device 3 cooling member 31
  • the liquid returns to the liquid and descends along the inner wall surface of the elongated container 1 to be used for dissolving Compound C.
  • compound C and solvent L are stored in the elongated container 1, even if the compound C adheres to the inner wall surface of the container 1 positioned above the liquid level of the solvent L, it returns to the liquid and is elongated.
  • the volatile solvent L is refluxed in the elongate container 1 by the cooling device 3, so that the constant pressure can be maintained. And the test according to the solvent amount as expected and the composition ratio of the mixed solvent, and even if the sample containing Compound C and Solvent L is a trace amount (for example, about 25-50 / z L), Even if the crystallization temperature is controlled for several hours, it is possible to crystallize Compound C with high accuracy. It is very efficient and can handle many samples.
  • the container as shown in FIG. 2 is used as the elongated container 1, but the present invention is not limited to this.
  • a capillary 1A as shown in FIG. 4 is used.
  • the sample contained in Capillary 1A is, for example, about -20 ⁇ L, preferably about 10 to 20 L.
  • the amount of compound C is about several g to several mg, preferably several 10; zg to several hundred; about zg).
  • the outer diameter of the capillary 1A is extremely small as described above. Therefore, depending on the volume of the solvent L accommodated in the cavity 1A, The liquid level of solvent L varies greatly. Therefore, as shown in FIG. 4, in the configuration in which the bottom surface of the capillary 1A is fitted until it comes into contact with the bottom surface of the recess 21a of the base member 21, the liquid level of the solvent L contained in the capillary 1A is approximately equal to the liquid level.
  • the length of the lower region of the capillary 1A to be fitted into the recess 21a (which may be a through hole) is adjustable as shown in FIG. Good. More specifically, a support member 6 for detachably suspending the capillary 1A is disposed above the cooling member 31, and the relative position in the vertical direction between the support member 6 and the capillary 1A is changed so that the concave portion What is necessary is just to comprise so that the length of the lower area
  • the support member 6 including the female screw portion 6a into which the male screw portion 5b of the jig 5 can be screwed is installed above the cooling member 31.
  • the support member 6 is attached to a predetermined member (for example, the heating device 2) constituting the microcrystallization apparatus 10, and the position thereof is fixed.
  • the male screw portion 5b of the jig 5 is screwed into the female screw portion 6a of the support member 6, and the screw amount is adjusted. It is possible to adjust the length of the lower region of the capillary 1A to be inserted into the recess 21a.
  • the length of the lower region of the capillary 1A to be fitted into the recess 21a can be adjusted, so that various types can be selected depending on the volume of the solvent L accommodated in the capillary 1A. There is no need to prepare the pedestal member 21 having the recesses 21a of the depth. In the case where a plurality of capillary 1A are erected and a crystallization test is simultaneously performed, the volume of the solvent L accommodated for each of the respective capillaries 1A can be easily changed.
  • the preferred configuration shown in FIG. 5 is particularly effective when a capillary 1A having a small outer diameter is used as the elongated container 1, but is not limited to this. For a general elongated container 1 as shown in FIG. Of course, it can be applied.
  • FIG. 6 shows a schematic configuration example of a microcrystallization system in which a capillary 1A is used as the elongated container 1, and each of the plurality of capillaries 1A is erected using the configuration shown in FIG. 5 described above. It is a perspective view.
  • the base member 21 is divided into each block (six blocks in the example shown in FIG. 6) on which a certain number of capillaries 1A are erected (and further divided into base members 21).
  • the cooling member 31 and the support member 6 are also divided), and the temperature of the lower wall surface heated by the capillary 1A can be controlled independently for each block.
  • the present invention is not limited to this.
  • the base member 21 is divided for each capillary 1A so that the temperature of the lower wall surface can be controlled for each capillary 1A.
  • a configuration is also possible.
  • the present invention is not limited to this.
  • the micro crystallization system 100A shown in FIG. 7 has a point that the base member 21 has only one recess 21a, the cooling member 31 has only one opening 31a, a conductor and a temperature sensor. Except for the fact that only one (not shown in FIG. 5) is provided, it has the same configuration as the microcrystallization system 100 shown in FIG. Even with a configuration in which one elongated container 1 is erected as in the microcrystallization system 100A shown in FIG.
  • the compound can be crystallized with high accuracy even if the amount of the sample containing the compound and the solvent is very small. Therefore, it has an excellent effect that it is highly efficient and can process multiple samples.

Abstract

 本発明に係る微量晶析システム100は、化合物C及び溶媒Lを含む試料を収容するための一つ又は複数の細長容器1と微量晶析装置10とを備える。微量晶析装置は、脱着自在に立設される容器の下部壁面を加熱するための加熱装置2と、前記下部壁面に対して上方に位置する容器の所定の壁面を冷却するための冷却装置3とを備える。加熱装置は、容器の下部を嵌入するための凹部21aが上面に設けられた台座部材21と、台座部材の少なくとも凹部近傍を加熱するためのヒーター22とを具備し、冷却装置は、台座部材の上方に配置され容器を嵌通させるための開口部31aが設けられた冷却部材31と、冷却部材の内部に冷却水を流通させるための管状部材32とを具備する。

Description

明 細 書
微量晶析装置及び微量晶析システム
技術分野
[0001] 本発明は、晶析装置及び晶析システムに関し、特に化合物及び溶媒を含む試料が 微量であっても精度の高!、ィ匕合物の晶析を可能とし、ひ 、ては効率の良 、多検体処 理を可能とする微量晶析装置及び微量晶析システムに関する。
背景技術
[0002] 医薬等の化合物は、複数の結晶形 (結晶多形)を有するのが一般的である。そして 、各結晶形に応じて、その安定性等が異なったり、特に医薬の場合には治療上の有 効性等が異なる場合がある。従って、新規に開発したィ匕合物を評価するにあたって は、各種条件下で該化合物を晶析させ、これにより生成された各結晶形の安定性等 を X線回折装置や熱分析装置等の計測装置を用いて評価した上で、有用な結晶形 及びこの結晶形を得るための晶析条件を選択、決定する必要がある。また、新規ィ匕 合物の結晶多形を開発者が独占するには、晶析の条件を種々変更して試験すること により、新規化合物が有する全ての結晶形を探し出す必要がある。
[0003] 上記化合物の晶析は、一般に化合物を溶媒に加熱溶解させた後、この溶液を冷却 することにより実施される。そして、溶媒の種類や化合物の量に対する溶媒の量、混 合溶媒の場合にはその組成比、溶解後の冷却過程 (温度の時間的変化)、圧力とい つた晶析の各種条件パラメータに応じて、生成される結晶形が異なるものとなる。これ らパラメータの組合せは極めて多数となるため、各種の条件に応じた試験を別個に 実施していたのでは非常に手間を要する他、用いることのできる化合物の量にも限り がある。このため、従来より、複数の試料を用いて多数の条件での試験を同時に行う いわゆる多検体処理に関する種々の提案がなされている(例えば、 日本国特表 200 3— 519698号公報、日本国特表 2004— 504596号公報、日本国特表 2005— 50 2861号公報参照)。
[0004] 従来提案されている晶析に関する多検体処理には、いわゆるゥエルプレートと称さ れるマトリックス状に配置された複数 (例えば、 96個)の凹部(ゥエル)が上面に設けら れたプレート状の部材を備えた晶析装置を用いるのが一般的である。そして、斯かる ゥエルプレートを用いる場合、ゥエルプレートの各ゥエル内に化合物及び溶媒を含む 試料を収容し、ゥエルプレートの下部に配置された加熱装置で加熱して化合物を溶 媒に溶解させた後、この溶液を冷却 (加熱を停止、或いは加熱温度を低減)して化合 物を結晶化させることで晶析が実行される。斯カるゥエルプレートを備えた晶析装置 によれば、各ゥエル内に収容する試料を少量とすることにより、少量の検体量 (ー検 体に使用する試料の量)で多くの検体数を同時に試験することが可能である。なお、 上記従来文献の中には、ゥエルプレートの他にノ ィアルを用いることができる旨が開 示されている。
発明の開示
[0005] し力しながら、上記ゥエルプレートを備えた晶析装置には、以下のような問題点が存 在する。すなわち、沸点の低い溶媒を用いる場合、加熱により溶媒が揮発してしまう ため、想定して 、た溶媒量や混合溶媒の組成比に応じた試験が行われな 、ことにな る結果、晶析の精度が悪ィ匕するという問題がある。換言すれば、想定通りの溶媒量や 混合溶媒の組成比を用いることができたとすれば本来生成されて 、たはずの結晶形 が得られないというような問題がある。或いは、揮発量が多すぎるために、沸点の低 V、特定の溶媒につ!、ては晶析試験そのものを実施できず、選択できる溶媒の種類が 限定されるというような問題がある。また、たとえ有用な結晶形が得られたとしても、実 際に化合物を溶解するのに供された溶媒量や混合溶媒の組成比を正確に把握でき な 、ため、晶析条件の再現性が悪 、と 、つた問題がある。
[0006] 上記晶析の精度悪ィ匕の問題は、検体量が少量になればなるほど顕在化することに なる。なぜならば、試験に供する溶媒量が少なくなればなるほど、揮発した溶媒量の 占める割合が大きくなり、その影響を無視できなくなるからである。このため、従来の 晶析装置では、少量の検体量で多くの検体数を同時に試験すること自体は可能であ つたとしても、晶析の精度が悪いために、実際には試験を何度も繰り返すような事態 が生じる結果、多検体処理の効率が悪!、と!/、う問題もある。
[0007] なお、ゥエルプレートに設けられたゥエルに化合物及び溶媒を収容した後、ゥエル の開口をプレート状の蓋体で閉塞するように構成された晶析装置も知られている。斯 力る晶析装置によれば、揮発した溶媒がゥエルの外部に漏れ出さないため、蓋体を 設けない場合に比べれば、上記晶析の精度悪ィ匕を改善することができるといえる。し 力しながら、揮発した溶媒の多くは、化合物の溶解に供されることなぐゥエル内の溶 液の液面と蓋体との間に気体として存在するため、上記晶析の精度悪ィ匕の問題を十 分に解決することはできない。また、ゥエルの開口をプレート状の蓋体で閉塞した場 合、内部が加圧状態になるため、蓋体で閉塞しない場合とは、得られる結晶形が異 なる可能性が考えられる。さらに、加圧されることにより溶媒の沸点が上昇する。これ によりィ匕合物の溶解度が変化してしまい、正確な晶析条件を得ることができなくなると いう問題もある。
[0008] 容器内の内部圧力を低減させるため、蒸気を外部に放出させる装置も提案されて いるが、試料の量が少量になるほど溶媒量の変化が激しくなる。このため、通常、溶 媒の沸点よりも低い温度で晶析が行われているが、核形成温度が沸点に近い場合 には、その結晶を析出させることはできない。
[0009] 本発明は、斯カる従来技術の問題を解決するべくなされたものであり、化合物及び 溶媒を含む試料が微量であっても精度の高 、ィ匕合物の晶析を可能とし、ひ 、ては効 率の良い多検体処理を可能とする微量晶析装置及び微量晶析システムを提供する ことを課題とする。
[0010] 前記課題を解決するべぐ本発明は、化合物及び溶媒を含む試料を収容するため に脱着自在に立設される一つ又は複数の細長容器の下部壁面を加熱するための加 熱装置と、前記細長容器の加熱される下部壁面に対して上方に位置する前記細長 容器の所定の壁面を冷却するための冷却装置とを備えることを特徴とする微量晶析 装置を提供するものである。
[0011] 本発明に係る微量晶析装置は、脱着自在に立設される一つ又は複数の細長容器 の下部壁面を加熱するための加熱装置を備える。複数の細長容器を立設する構成 を採用する場合、各細長容器毎に溶媒の種類や化合物の量に対する溶媒の量等の 条件を異ならせて、微量の化合物及び溶媒を収容し、各細長容器を装置に取り付け て、下部壁面を所定の温度パターンで加熱'冷却 (加熱の停止、或いは、加熱温度 の低減)することができる。これにより、少量の検体量で且つ細長容器の個数に応じ た多くの検体数について、同時に晶析試験を実施することが可能である。また、一つ の細長容器を立設する構成を採用する場合であっても、後述するように精度の高い 化合物の晶析が可能である。このため、従来のように同じ条件での試験を何度も繰り 返す必要が無い。また、細長容器の脱着を繰り返して条件の異なる晶析試験を順次 実施することにより、結果的に多検体処理を行つているのと同程度の効率で晶析試 験を実施することが可能である。或いは、一つの細長容器を立設する構成を採用す る場合であっても、微量晶析装置を複数用意することにより、微量晶析装置の台数に 応じた検体数について、同時に晶析試験を実施することが可能である。
[0012] そして、本発明に係る微量晶析装置は、細長容器の加熱される下部壁面に対して 上方に位置する細長容器の所定の壁面を冷却するための冷却装置を備えることを特 徴としている。斯カる構成によれば、揮発して細長容器内を上昇した溶媒が、冷却装 置によって冷却された細長容器の壁面からの熱伝達により冷却される結果、液体に 戻って細長容器内を (特に細長容器の内壁面に沿って)下降し、化合物の溶解に供 されることになる。また、細長容器に化合物及び溶媒を収容した際に、たとえ溶媒の 液面よりも上方に位置する容器内壁面に化合物が付着したとしても、上記液体に戻 つて細長容器の内壁面に沿って下降する溶媒によって、前記付着した化合物を溶解 させることが可能となるため、容器内壁面に付着したィ匕合物自体が種となって結晶を 形成するというおそれもなくなる。なお、冷却装置の位置 (冷却装置によって冷却され る細長容器の壁面の位置)は、当該冷却装置によって細長容器内に収容された試料 が冷却されな 、程度に (冷却装置によって冷却された細長容器の壁面の温度が細 長容器の下部壁面の温度ひ 、ては試料の温度に実質的な影響を及ぼさな 、程度に )、細長容器の下部壁面から (加熱装置の上面から)上方に離間させることが好ま 、 。以上のように、本発明に係る微量晶析装置は、冷却装置によって、揮発した溶媒を 細長容器内で還流させる構成であるため、圧力を一定にしながら想定通りの溶媒量 や混合溶媒の組成比に応じた試験を行うことができ、化合物及び溶媒を含む試料が 微量であっても精度の高!、ィヒ合物の晶析が可能であり、ひ 、ては効率の良!、多検 体処理が可能である。
[0013] なお、本発明における「立設」の語句は、細長容器の下部を所定の支持手段 (例え ば、本発明における加熱装置)で支持する態様に限るものではなぐ細長容器の長 手方向が上下方向に延びるように微量晶析装置に取り付けられる限りにお 、て、細 長容器を懸吊するなどの種々の態様を含む概念として用いて 、る。
[0014] 本発明に係る微量晶析装置のより具体的な構成としては、例えば、前記加熱装置 は、前記細長容器の下部を嵌入するための凹部が上面に設けられた台座部材と、前 記台座部材の少なくとも前記凹部近傍を加熱するためのヒーターとを具備し、前記冷 却装置は、前記台座部材の上方に配置され、内部に冷媒が流通するように構成され た冷却部材を具備する構成を採用することが可能である。
[0015] 好ましくは、 X線回折装置等でィ匕合物の結晶形を解析する際に化合物を収容する ための容器として用いられるキヤピラリーを前記細長容器として脱着自在に立設可能 とされる。
[0016] 従来、晶析したィ匕合物の結晶形を X線回折装置等で解析する際には、晶析装置が 備えるゥエルプレートのゥエル内の溶媒を濾過して乾燥させた後、残存する結晶形を 取り出して X線回折装置等に装着できる専用容器等に移し替える作業が必要であり 、これら一連の解析作業に非常に手間を要するという問題があった。上記好ましい構 成によれば、細長容器としていわゆるキヤピラリーを用いることができるため、晶析試 験終了後のキヤピラリーを本発明に係る装置力も取り外して、そのまま X線回折装置 等に装着することができるため、極めて効率の良い解析作業が可能になるという利点 が得られる。
[0017] 好ましくは、前記冷却部材の上方に配置され、 X線回折装置等で化合物の結晶形 を解析する際に化合物を収容するための容器として用 ヽられるキヤピラリーを前記細 長容器として脱着自在に懸吊する支持部材を更に備え、前記支持部材と前記キヤピ ラリーとの上下方向の相対位置を変更することにより、前記台座部材の凹部に嵌入 する前記キヤビラリ一の下部領域の長さを調整可能に構成される。
[0018] 細長容器としてキヤピラリーを用いる場合、キヤビラリ一の外径は極めて小さいため 、キヤピラリー内に収容する溶媒の体積に応じて、溶媒の液面高さは大きく変動する 。従って、キヤビラリ一の底面が台座部材の凹部の底面に当接するまで嵌入する構 成では、キヤピラリー内に収容される溶媒の液面高さに略一致する領域の下部壁面 を加熱しょうとすると、キヤビラリ一に収容する溶媒の体積に応じて各種深さの凹部を 有する台座部材を用意し、適宜交換する必要が生じる。また、複数のキヤピラリーを 立設して同時に晶析試験を行う場合、各キヤビラリ一毎に収容する溶媒の体積を異 ならせることは困難である。上記好ましい構成によれば、凹部 aに嵌入させるキヤビラ リーの下部領域の長さを調整することができるため、キヤビラリ一に収容する溶媒の体 積に応じて各種深さの凹部を有する台座部材を用意する必要がない。また、複数の キヤピラリーを立設して同時に晶析試験を行う場合において、各キヤビラリ一毎に収 容する溶媒の体積を容易に異ならせることが可能である。
[0019] 好ましくは、前記加熱装置は、複数の細長容器の下部壁面を加熱すると共に、前 記各細長容器毎に独立して前記加熱される下部壁面の温度を制御可能に構成され る。
[0020] 従来のゥエルプレートを備えた晶析装置は、ゥエルプレートの下部に配置されたカロ 熱装置によって、全てのゥエルを同一の温度パターンで制御する構成であった。従つ て、 1枚のゥヱルプレートの各ゥヱル内に収容する溶媒としては、その沸点が近いもの を選択する必要が生じ、多検体処理の効率が悪いという問題があった。上記の好ま しい構成によれば、各細長容器毎に独立して下部壁面の温度を制御可能である。換 言すれば、各細長容器に収容された試料の温度をそれぞれ異なる温度パターンで 制御することが可能である。このため、例えば、沸点の異なる種類の溶媒を用いて同 時に晶析試験を実施することが可能となる利点を有する。また、収容する溶媒の種類 や量を全ての細長容器で一定の値にして、加熱過程や溶解後の冷却過程を各細長 容器毎に変更して試験すれば、適切な加熱過程、冷却過程を含む晶析条件を見出 し易 、と 、つた利点が得られる。
[0021] また、前記課題を解決するべぐ本発明は、前記微量晶析装置のみならず、前記微 量晶析装置に取り付けられる前記細長容器をも備えた微量晶析システムとしても提 供される。すなわち、本発明は、前記微量晶析装置と、化合物及び溶媒を含む試料 を収容するために前記微量晶析装置に脱着自在に立設される一つ又は複数の細長 容器とを備えることを特徴とする微量晶析システムとしても提供される。
[0022] 好ましくは、前記細長容器は、ガラス材料を用いて形成される。 [0023] 斯カる好ましい構成によれば、金属製やプラスチック製の容器を用いる場合に比べ て、収容できる溶媒の種類が限定されず、また、必要に応じて添加される酸やアル力 リの影響を受けないので、晶析条件を多面的に検討できるという利点が得られる。
[0024] 好ましくは、前記細長容器は、透明材料力 形成され、底面が平坦に成形される。
[0025] 斯カる好ま 、構成によれば、細長容器が透明材料 (容器内部を視認できる程度 の透過性を有する材料)から形成されているため、容器内部の様子を観察することが 可能である。従って、例えば、化合物が溶解されていない場合には、試験中に溶媒 を追加することができる。また、晶析状態を観察することもできるため、例えば、結晶 の析出開始温度を検知することが可能である。さらに、晶析した化合物の結晶形を別 の容器等に移し替えなくても、晶析試験終了後の細長容器を本発明に係る装置から 取り外し、細長容器の底面側力 結晶形を顕微鏡でそのまま観察することが可能で ある。すなわち、細長容器が透明であるため、容器内の結晶形を顕微鏡で観察でき ると共に、平坦な底面側から観察するので、レンズ効果によって像が変形することも ない。
[0026] 或いは、前記細長容器は、 X線回折装置等でィ匕合物の結晶形を解析する際に、化 合物を収容するための容器として用いられるキヤビラリ一としても良 、。
[0027] 上記好ましい構成によれば、細長容器としていわゆるキヤピラリーを用いることにより
、前述のように、晶析試験終了後のキヤピラリーを本発明に係る装置力 取り外して、 そのまま X線回折装置等に装着することができるため、極めて効率の良い解析作業 が可能になるという利点が得られる。
[0028] さらに、好ましくは、前記細長容器は、試料を収容した後の頂部開口を閉塞するた めの蓋部材を具備する。
[0029] 斯カる好ましい構成によれば、揮発した溶媒が細長容器の外部に漏れ出さないた め、揮発した溶媒が冷却装置によって確実に冷却されて還流することになり、化合物 の晶析の精度をより一層高めることが可能である。
図面の簡単な説明
[0030] [図 1]図 1は、本発明の一実施形態に係る微量晶析システムの概略構成を示す斜視 図である。 [図 2]図 2は、図 1に示す微量晶析システムを構成する細長容器周辺の構成を拡大し て示す断面図である。
[図 3]図 3は、図 1に示す加熱装置内部の概略構成を模式的に示す図である。
[図 4]図 4は、図 1に示す微量晶析システムを構成する細長容器周辺の他の構成例を 拡大して示す断面図である。
[図 5]図 5は、図 1に示す微量晶析システムを構成する細長容器周辺の更に他の構 成例を拡大して示す断面図である。
[図 6]図 6は、本発明の他の実施形態に係る微量晶析システムの概略構成を示す斜 視図である。
[図 7]図 7は、本発明の更に他の実施形態に係る微量晶析システムの概略構成を示 す斜視図である。
発明を実施するための最良の形態
[0031] 以下、添付図面を参照しつつ、本発明の一実施形態に係る微量晶析システムにつ いて説明する。
[0032] 図 1は、本発明の一実施形態に係る微量晶析システムの概略構成を示す斜視図で ある。また、図 2は、図 1に示す微量晶析システムを構成する細長容器周辺の構成を 拡大して示す断面図である。さらに、図 3は、図 1に示す加熱装置内部の概略構成を 模式的に示す図である。図 1に示すように、本実施形態に係る微量晶析システム 100 は、化合物及び溶媒を含む試料を収容するための複数の細長容器 1と、微量晶析装 置 10とを備えている。微量晶析装置 10は、該微量晶析装置 10に対して脱着自在に 立設された各細長容器 1の下部壁面を加熱するための加熱装置 2と、各細長容器 1 の前記加熱される下部壁面に対して上方に位置する各細長容器 1の所定の壁面を 冷却するための冷却装置 3とを備えている。
[0033] なお、本実施形態では、加熱装置 2 (具体的には、後述する加熱装置 2の凹部 21a )に細長容器 1の下部を嵌入する一方、冷却装置 3 (具体的には、後述する冷却部材 31)に細長容器 1を嵌通させることによって、各細長容器 1を上下方向に脱着自在に 立設する構成としている。し力しながら、本発明はこれに限るものではなぐ例えば、 冷却装置 3の上方に所定の支持部材を設け、この支持部材によって細長容器 1を懸 吊することにより、微量晶析装置 10に対して立設するような構成を採用することも可 能である。
[0034] 細長容器 1は、少量 (例えば、数 mg程度)の化合物 Cと、少量 (例えば、数十/ z L程 度)の溶媒 Lとを収容して晶析試験を行うことが可能であると共に、熱容量を小さくし て効率的な温度制御を行うベぐ外径数 mm φ程度 (例えば、 9mm φ )、長さ数十 m m程度 (例えば、 50mm)の寸法とされている。また、細長容器 1は、好ましい構成とし て、透明なガラス材料 (例えば、ホウケィ酸ガラス)を用いて形成されており、図 2に示 すように、底面が平坦に成形されている。さらに、必要に応じて、化合物 C及び溶媒 L を収容した後の頂部開口を閉塞するための蓋部材 (図示せず)を備える構成としても 良い。なお、前記蓋部材としては、細長容器 1の頂部開口に嵌め込む蓋体 (例えば、 シリコン栓)の他、頂部開口を封止するためのシール部材 (例えば、パラフィルム(登 録商標))を適用することも可能である。本実施形態に係る微量晶析システム 100は 冷却装置 3を備えるため、たとえ蓋部材を備える構成を採用したとしても、従来のゥェ ルの開口をプレート状の蓋体で閉塞する場合と異なり、細長容器 1の内部が過度に 加圧状態になることなぐ正確な晶析条件を得ることが可能である。なぜならば、蓋部 材を備える構成を採用した場合、細長容器 1の内部にわずカゝな圧力上昇が生じる可 能性があるものの、揮発した溶媒が冷却装置 3により冷却されて液体に戻るため、圧 力上昇を抑制できるからである。
[0035] 加熱装置 2は、各細長容器 1の下部をそれぞれ嵌入するための複数の凹部 21aが 上面に設けられた台座部材 (アルミニウム製) 21と、台座部材 21の少なくとも凹部 21 a近傍を加熱するためのヒーター 22とを具備している。斯かる構成により、ヒーター 22 によって台座部材 21の凹部 21a近傍が加熱され、さらに加熱された台座部材 21の 凹部 21a近傍領域力 の熱伝導によって各細長容器 1の下部壁面が加熱される。そ して、細長容器 1の下部壁面からの熱伝達によって細長容器 1に収容された試料が 加熱されることになる。なお、本実施形態に係る加熱装置 2は、細長容器 1内に収容 される溶媒 Lの液面高さ (化合物 Cも収容した後の液面高さ)に略一致する領域の下 部壁面を加熱し得るように構成されている。具体的には、図 2に示すように、細長容 器 1は、その底面が台座部材 21の凹部 21aの底面に当接するまで台座部材 21に嵌 入される。そして、台座部材 21の凹部 21aの深さ Dが、細長容器 1内に収容される溶 媒 Lの液面高さに略一致する (例えば、溶媒 Lの液面高さよりも若干浅い)ように設定 されている。より具体的には、例えば、細長容器 1の寸法が外径 9mm φ、長さ 50mm の場合、溶媒 Lの体積と凹部 21aの深さ Dとしては、下記の表 1に示す組合せが好適 に用いられる。斯カる構成により、凹部 21aに嵌入された細長容器 1の下部壁面が台 座部材 21からの熱伝導によって略均一に加熱され、ひいては均一に加熱された細 長容器 1の下部壁面からの熱伝達によって細長容器 1に収容された試料が略均一な 温度となり得る。
[表 1]
Figure imgf000012_0001
[0036] また、加熱装置 2は、好ま 、構成として、各細長容器 1毎に独立して前記加熱され る下部壁面の温度を制御可能に構成されている。具体的には、図 3に示すように、ヒ 一ター 22内の各細長容器 1の下部近傍 (台座部材 21の凹部 21a近傍)部位毎に、 通電によって発熱する導電体 221が配置されると共に、台座部材 21内の各細長容 器 1の下部近傍 (台座部材 21の凹部 21a近傍)部位毎に、熱電対等の温度センサ 2 11が配置されている。そして、各細長容器 1の下部近傍部位毎に配置された導電体 221及び温度センサ 211が、ヒーター 22内に設けられた制御手段 222にそれぞれ電 気的に接続されている。なお、本実施形態では、各細長容器 1の下部近傍部位毎に 配置された各導電体 221による発熱が、隣接する細長容器 1の下部壁面温度に及ぼ す影響を少なくするために、好ましい構成として、各細長容器 1毎に台座部材 21が 分割されており(図 1では図示の便宜上、台座部材 21を一枚のプレート状の部材とし て図示しているが、実際には図 3に示すように各細長容器 1毎に分割されている)、台 座部材 21の各分割部分の間に適宜の冷却板又は断熱板 4が配置されている。
[0037] 制御手段 222には、予め設定した各細長容器 1の下部近傍部位の所定の時間に おける目標温度に対応する電圧が記憶されている。そして、制御手段 222は、前記 目標温度に対応する電圧と、温度センサ 211で検出した温度に対応する電圧とを所 定時間毎に比較し、その大小関係に応じて導電体 221に通電する電流をオン'オフ する(或いは、電流値を増減する)ように構成されている。以上の構成により、前述の ように、各細長容器 1毎に独立して下部壁面の温度が制御可能(実際には、台座部 材 21における各細長容器 1下部近傍部位の温度を制御することになる)である。なお 、本実施形態では、ヒーター 22内に導電体 221を配置し、台座部材 21内に温度セ ンサ 211を配置した構成について説明したが、本発明はこれに限るものではなぐ温 度センサ 211もヒーター 22内に配置する構成を採用することも可能である。また、台 座部材 21とヒーター 22とを一体ィ匕した構成 (すなわち、ヒーター 22の上面に各細長 容器 1の下部をそれぞれ嵌入するための複数の凹部を設け、導電体 221及び温度 センサ 211をヒーター 22内に配置する構成)を採用することも可能である。
[0038] また、本実施形態に係る加熱装置 2は、好ま 、構成として、回転可能な磁石を内 蔵したいわゆるスターラーとしての機能も備えている。従って、均一な結晶形が得ら れるように、必要に応じて各細長容器 1内に収容された磁性体カゝらなる攪拌子 Mを加 熱装置 2の磁石から供される磁力によって動力ゝせば、各細長容器 1内の溶液を攪拌 することが可能である。
[0039] 冷却装置 3は、台座部材 21の上方に配置され、各細長容器 1をそれぞれ嵌通させ るための複数の開口部 31aが設けられ、内部に冷媒が流通するように構成された冷 却部材 31 (アルミニウム製)を具備している。具体的には、本実施形態に係る冷却装 置 3は、管状部材 32を具備し、この管状部材 32を通じて冷却部材 31の内部に冷媒 が流通(図 1の白抜矢符の方向に流通)するように構成されて 、る。より具体的には、 冷却部材 31の一の側面力も他の側面に向けて、真直な又は開口部 31aの周囲を適 宜経由する揷通孔を設け、該揷通孔に管状部材 32を挿通させる構成を採用すること ができる。或いは、冷却部材 31全体を中空とし、その内部に連通する管状部材 32を 冷却部材 31の一の側面と他の側面にそれぞれ取り付ける構成を採用してもよ 、。何 れの構成を採用しても、管状部材 32内に冷媒を流通させることにより、冷却部材 31 の内部に冷媒が流通し、開口部 31aに嵌通された部位の細長容器 1の壁面の熱量 1S 冷却部材 31を介して冷媒に放熱されることになる。管状部材 32内に流通させる 冷媒としては、冷却温度に応じて種々の媒体を使用可能であり、例えば、水、ェタノ ール、メタノール等を例示することができる。なお、本実施形態に係る冷却装置 3は、 冷却部材 31に設けられた開口部 31aに細長容器 1を嵌通させる構成であるため、前 述のように、細長容器 1のぶれを防止し、安定した立設状態を維持するための支持部 材としての機能も奏して 、る。
[0040] なお、本実施形態では、冷却装置 3として、内部に冷媒が流通するように構成され た冷却部材 31を具備する構成を例示したが、本発明はこれに限るものではなぐ通 常使用される冷却部材、例えば、ペルチェ素子を備えた冷却部材を具備する構成を 採用してもよい。この場合、冷媒を流通させるための管状部材 32は不要である。
[0041] 冷却部材 31の位置は、冷却部材 31によって細長容器 1内に収容された試料が冷 却されない程度に(冷却部材 31によって冷却された細長容器 1の壁面の温度が細長 容器 1の下部壁面の温度ひ!、ては試料の温度に実質的な影響を及ぼさな 、程度に )、加熱装置 2の上面から(台座部材 21の上面から)上方に離間させることが好ま 、 。本実施形態では、長さ 50mmの細長容器 1を用いる場合において、冷却部材 31と 台座部材 21との離間距離を、細長容器 1の長さの約半分である 27mmとしている。こ れにより、冷却部材 31によって細長容器 1内に収容された試料の温度に影響が及ぶ ことなぐ精度の良い温度制御を行うことが可能である。また、冷却部材 31と台座部 材 21とが離間して配置され、なお且つ細長容器 1が透明材料を用いて形成されてい るため、晶析試験中に容器 1内部の様子を観察することが可能である。さらには、各 細長容器 1毎に、晶析試験の途中で塩の形で晶析するように、酸 (無機酸、有機酸) やアルカリ金属、アルカリ土類金属、アミン類等の塩基を追加したり、溶媒 Lを追加し たりすることも可能である。
[0042] 斯カる冷却装置 3を備えることにより、図 2の矢符で示すように、揮発して細長容器 1 内を上昇した溶媒 Lが、冷却装置 3 (冷却部材 31)によって冷却された細長容器 1の 壁面からの熱伝達により冷却される結果、液体に戻って細長容器 1の内壁面に沿つ て下降し、化合物 Cの溶解に供されることになる。また、細長容器 1に化合物 C及び 溶媒 Lを収容した際に、たとえ溶媒 Lの液面よりも上方に位置する容器 1内壁面に化 合物 Cが付着したとしても、上記液体に戻って細長容器 1の内壁面に沿って下降す る溶媒 Lによって、前記付着したィ匕合物 Cを溶解することが可能となるため、容器 1内 壁面に付着したィ匕合物 C自体が種となって結晶を形成するというおそれもなくなる。こ のように、細長容器 1の加熱される下部壁面に対して上方に冷却装置 3を備えること により、加熱装置 2の台座部材 21、ひいては細長容器 1の下部壁面の温度が一時溶 媒 Lの沸点近くに上昇したとしても、溶媒 Lが気化することも加圧状態になることもな い。
[0043] 以上のように、本実施形態に係る微量晶析システム 100によれば、冷却装置 3によ つて、揮発した溶媒 Lを細長容器 1内で還流させる構成であるため、一定圧力のもと、 想定通りの溶媒量や混合溶媒の組成比に応じた試験を行うことができ、化合物 C及 び溶媒 Lを含む試料が微量 (例えば、 25〜50 /z L程度)であっても、又は数時間に 及ぶ晶析温度の制御を行ったとしても、精度の高い化合物 Cの晶析が可能であり、 ひ!ヽては効率の良 、多検体処理が可能である。
[0044] なお、本実施形態では、細長容器 1として、図 2に示すような容器を用いたが、本発 明はこれに限るものではなぐ例えば、図 4に示すようなキヤピラリー 1Aを用いても良 い。キヤピラリー 1Aには、例えば、 0. l〜3mmなど種々の外径を有するものが存在 するが、本実施形態に係るキヤピラリー 1Aとしては、 0. 5〜: Lmmの外径を有するも のが好適に用いられる(キヤピラリー 1Aに収容する試料は、例えば、 ί μ -20 μ L· 程度で、好ましくは 10〜20 L程度。化合物 Cの量は、数 g〜数 mg程度で、好ま しくは数十; z g〜数百; z g程度)。斯カる構成によれば、より少量の化合物 Cで晶析試 験を行うことができ、また、晶析試験終了後のキヤピラリー 1Aを微量晶析装置 10から 取り外して、そのまま X線回折装置等に装着することができるため、濾過作業が不要 となるば力りでなぐ濾過による結晶試料の損失もなぐ極めて効率の良い解析作業 が可能になる。
[0045] ここで、細長容器 1として特にキヤピラリー 1Aを用いる場合、上記のようにキヤビラリ 一 1 Aの外径は極めて小さ 、ため、キヤビラリ一 1 A内に収容する溶媒 Lの体積に応じ て、溶媒 Lの液面高さは大きく変動する。従って、図 4に示すように、キヤピラリー 1A の底面が台座部材 21の凹部 21 aの底面に当接するまで嵌入する構成では、キヤピ ラリー 1 A内に収容される溶媒 Lの液面高さに略一致する領域の下部壁面を加熱しよ うとすると、キヤピラリー 1Aに収容する溶媒 Lの体積に応じて各種深さの凹部 21aを 有する台座部材 21を用意し、適宜交換する必要が生じる。また、複数のキヤビラリ一 1Aを立設して同時に晶析試験を行う場合、各キヤピラリー 1A毎に収容する溶媒しの 体積を異ならせることは困難である。
[0046] 上記のような問題を解決するには、図 5に示すように、凹部 21a (貫通孔としてもよい )に嵌入させるキヤピラリー 1Aの下部領域の長さを調整可能に構成することが好まし い。具体的に説明すれば、冷却部材 31の上方にキヤピラリー 1Aを脱着自在に懸吊 する支持部材 6を配置し、支持部材 6とキヤピラリー 1Aとの上下方向の相対位置を変 更することにより、凹部 21aに嵌入させるキヤピラリー 1Aの下部領域の長さを調整可 能に構成すればよい。より具体的に説明すれば、図 5に示す例では、キヤピラリー 1A を挿通し得ると共に下方に抜け落ちないように形状が設定された揷通孔 5aと下部に 雄ねじ部 5bとを具備する治具 5を用意する。一方、冷却部材 31の上方に、治具 5の 雄ねじ部 5bを螺挿し得る雌ねじ部 6aを具備する支持部材 6を設置する。支持部材 6 は、微量晶析装置 10を構成する所定の部材 (例えば、加熱装置 2)に対して取り付け られ、その位置が固定される。そして、治具 5の揷通孔 5aにキヤピラリー 1Aを挿通し た状態で、この治具 5の雄ねじ部 5bを支持部材 6の雌ねじ部 6aに螺挿し、その螺揷 量を調節することにより、凹部 21aに嵌入させるキヤピラリー 1Aの下部領域の長さを 調整することが可能である。
[0047] 図 5に示すような好ましい構成によれば、凹部 21aに嵌入させるキヤピラリー 1Aの 下部領域の長さを調整することができるため、キヤピラリー 1Aに収容する溶媒 Lの体 積に応じて各種深さの凹部 21aを有する台座部材 21を用意する必要がない。また、 複数のキヤピラリー 1Aを立設して同時に晶析試験を行う場合において、各キヤビラリ 一 1A毎に収容する溶媒 Lの体積を容易に異ならせることが可能である。なお、図 5に 示す好ましい構成は、細長容器 1として外径の小さなキヤピラリー 1Aを用いる場合に 特に有効であるが、これに限るものではなぐ図 2に示すような一般的な細長容器 1に 対して適用することも無論可能である。
[0048] 図 6は、細長容器 1としてキヤピラリー 1Aを用い、複数のキヤピラリー 1 Aのそれぞれ を前述した図 5に示す構成を用いて立設する微量晶析システムの概略構成例を示す 斜視図である。図 5に示す微量晶析システムは、一定数のキヤピラリー 1Aが立設され る各ブロック(図 6に示す例では 6つのブロック)毎に台座部材 21が分割(さらには、 分割された台座部材 21の各ブロックに対応して、冷却部材 31及び支持部材 6も分割 )されており、各ブロック毎に独立してキヤピラリー 1Aの加熱される下部壁面の温度を 制御可能とされている。ただし、本発明はこれに限るものではなぐ前述した図 3に示 す構成と同様に、各キヤピラリー 1A毎に下部壁面の温度を制御可能とするため、各 キヤピラリー 1A毎に台座部材 21を分割する構成とすることも可能である。
[0049] なお、本実施形態では、複数の細長容器 1を立設する構成について説明したが、 本発明はこれに限るものではなぐ例えば、図 7に示すように、一つの細長容器 1を立 設する構成を採用することも可能である。図 7に示す微量晶析システム 100Aは、台 座部材 21に凹部 21aがーつだけ設けられている点、冷却部材 31に開口部 31aがー つだけ設けられている点、導電体や温度センサ(図 5では図示せず)がーつだけ設け られている点を除き、図 1に示す微量晶析システム 100と同様の構成を有する。図 7 に示す微量晶析システム 100Aのように、一つの細長容器 1を立設する構成であって も、精度の高い化合物の晶析が可能である。このため、従来のように同じ条件での試 験を何度も繰り返す必要が無い。また、細長容器 1の脱着を繰り返して条件の異なる 晶析試験を順次実施することにより、結果的に多検体処理を行っているのと同程度 の効率で晶析試験を実施することが可能である。或いは、図 7に示す微量晶析シス テム 100Aを複数用意することにより、微量晶析システム 100Aの台数に応じた検体 数について、同時に晶析試験を実施することが可能である。
[0050] 以上に説明した本発明に係る微量晶析装置によれば、化合物及び溶媒を含む試 料が微量であっても精度の高 、ィ匕合物の晶析が可能であり、ひ 、ては効率の良 、多 検体処理が可能であるという優れた効果を奏するものである。

Claims

請求の範囲
[1] 化合物及び溶媒を含む試料を収容するために脱着自在に立設される一つ又は複 数の細長容器の下部壁面を加熱するための加熱装置と、
前記細長容器の加熱される下部壁面に対して上方に位置する前記細長容器の所 定の壁面を冷却するための冷却装置とを備えることを特徴とする微量晶析装置。
[2] 前記加熱装置は、前記細長容器の下部を嵌入するための凹部が上面に設けられ た台座部材と、前記台座部材の少なくとも前記凹部近傍を加熱するためのヒーターと を具備し、
前記冷却装置は、前記台座部材の上方に配置され、前記細長容器を嵌通させるた めの開口部が設けられ、内部に冷媒が流通するように構成された冷却部材を具備す ることを特徴とする請求項 1に記載の微量晶析装置。
[3] X線回折装置等でィ匕合物の結晶形を解析する際に化合物を収容するための容器 として用いられるキヤピラリーを前記細長容器として脱着自在に立設可能とされて ヽ ることを特徴とする請求項 1又は 2に記載の微量晶析装置。
[4] 前記冷却部材の上方に配置され、 X線回折装置等で化合物の結晶形を解析する 際に化合物を収容するための容器として用いられるキヤピラリーを前記細長容器とし て脱着自在に懸吊する支持部材を更に備え、
前記支持部材と前記キヤビラリ一との上下方向の相対位置を変更することにより、 前記台座部材の凹部に嵌入する前記キヤビラリ一の下部領域の長さを調整可能に 構成されていることを特徴とする請求項 2に記載の微量晶析装置。
[5] 前記加熱装置は、複数の細長容器の下部壁面を加熱すると共に、前記各細長容 器毎に独立して前記加熱される下部壁面の温度を制御可能に構成されていることを 特徴とする請求項 1から 4の何れかに記載の微量晶析装置。
[6] 請求項 1から 5の何れかに記載の微量晶析装置と、
化合物及び溶媒を含む試料を収容するために前記微量晶析装置に脱着自在に立 設される一つ又は複数の細長容器とを備えることを特徴とする微量晶析システム。
[7] 前記細長容器は、ガラス材料を用いて形成されて ヽることを特徴とする請求項 6に 記載の微量晶析システム。
[8] 前記細長容器は、透明材料から形成され、底面が平坦に成形されて!ヽることを特 徴とする請求項 6又は 7に記載の微量晶析システム。
[9] 前記細長容器は、 X線回折装置等で化合物の結晶形を解析する際に、化合物を 収容するための容器として用いられるキヤビラリ一であることを特徴とする請求項 6又 は 7に記載の微量晶析システム。
[10] 前記細長容器は、試料を収容した後の頂部開口を閉塞するための蓋部材を具備 することを特徴とする請求項 6から 9の何れかに記載の微量晶析システム。
PCT/JP2006/319258 2005-09-28 2006-09-28 微量晶析装置及び微量晶析システム WO2007037304A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537661A JP4813495B2 (ja) 2005-09-28 2006-09-28 微量晶析装置及び微量晶析システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-281592 2005-09-28
JP2005281592 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037304A1 true WO2007037304A1 (ja) 2007-04-05

Family

ID=37899728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319258 WO2007037304A1 (ja) 2005-09-28 2006-09-28 微量晶析装置及び微量晶析システム

Country Status (2)

Country Link
JP (1) JP4813495B2 (ja)
WO (1) WO2007037304A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213340A (zh) * 2020-10-16 2021-01-12 郑州大学 在线测定晶体结构的样品台及其测定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135582B2 (ja) * 2018-02-19 2022-09-13 住友金属鉱山株式会社 キャピラリホルダおよびx線回折測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113184A (ja) * 1999-10-19 2001-04-24 Ichiro Kojima 試験管加熱用金属ブロック
JP2002543955A (ja) * 1999-05-10 2002-12-24 グラクソ グループ リミテッド 高いスループットを有する結晶形スクリーニングワークステーションおよびその使用方法
JP2004504596A (ja) * 2000-07-13 2004-02-12 ユニフェルシタイト ライデン 有機化合物の結晶化条件のスクリーニング
JP2004536306A (ja) * 2001-07-17 2004-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 昇華スクリーニングテストおよびその装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039804A (en) * 1998-09-09 2000-03-21 Emerald Biostructures, Inc. Crystallization tray

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543955A (ja) * 1999-05-10 2002-12-24 グラクソ グループ リミテッド 高いスループットを有する結晶形スクリーニングワークステーションおよびその使用方法
JP2001113184A (ja) * 1999-10-19 2001-04-24 Ichiro Kojima 試験管加熱用金属ブロック
JP2004504596A (ja) * 2000-07-13 2004-02-12 ユニフェルシタイト ライデン 有機化合物の結晶化条件のスクリーニング
JP2004536306A (ja) * 2001-07-17 2004-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 昇華スクリーニングテストおよびその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213340A (zh) * 2020-10-16 2021-01-12 郑州大学 在线测定晶体结构的样品台及其测定方法
CN112213340B (zh) * 2020-10-16 2023-07-21 郑州大学 在线测定晶体结构的样品台及其测定方法

Also Published As

Publication number Publication date
JPWO2007037304A1 (ja) 2009-04-09
JP4813495B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
JP2011007804A (ja) 高いスループットを有する結晶形スクリーニングワークステーションおよびその使用方法
Wunderlich et al. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes
Walter et al. A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation
JP2004163408A (ja) 生体サンプルを処理するためのシステムおよびカートリッジ
US8293191B2 (en) Method for transferring droplet
JP2007529015A5 (ja)
US20210101154A1 (en) Methods and apparatus for rapid heating of biological specimens
WO2007037304A1 (ja) 微量晶析装置及び微量晶析システム
US11971377B2 (en) Method and apparatus for temperature gradient microfluidics
US7137734B2 (en) Device for measuring quantities of heat while simultaneously measuring the evaporation kinetics and/or condensation kinetics of the most minute amounts of liquid in order to determine thermodynamic parameters
EP3933375B1 (en) Automatic sample concentrating unit
Arrondo et al. Advanced techniques in biophysics
US3263487A (en) Pivotally mounted operating head
ES2345319T3 (es) Screening de las condiciones de cristalizacion de polimorfos.
WO2005097325A1 (en) Autonomous device with active temperature regulation
US8357340B2 (en) Materials analysis
KR102518245B1 (ko) 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
US20040138827A1 (en) Integrated, intelligent micro-instrumentation platform for protein crystallization
US20230321649A1 (en) Linear microfluidic array device and casette for temperature gradient microfluidics
JPWO2019123746A1 (ja) 温調システム
JPH08272457A (ja) 恒温器
JP3308209B2 (ja) マルチウエルプレート用密閉装置
CN103289892A (zh) 生物材料检测装置
CN213456549U (zh) 一种血栓弹力图仪
CN210115083U (zh) 一种低温水浴装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537661

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798398

Country of ref document: EP

Kind code of ref document: A1