WO2007034659A1 - 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法 - Google Patents

電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法 Download PDF

Info

Publication number
WO2007034659A1
WO2007034659A1 PCT/JP2006/316951 JP2006316951W WO2007034659A1 WO 2007034659 A1 WO2007034659 A1 WO 2007034659A1 JP 2006316951 W JP2006316951 W JP 2006316951W WO 2007034659 A1 WO2007034659 A1 WO 2007034659A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
gas
column
beam exposure
reducing gas
Prior art date
Application number
PCT/JP2006/316951
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yasuda
Yoshihisa Ooae
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2007536432A priority Critical patent/JP4758431B2/ja
Publication of WO2007034659A1 publication Critical patent/WO2007034659A1/ja
Priority to US12/077,153 priority patent/US7737421B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography

Definitions

  • the present invention relates to an electron beam exposure apparatus, and more particularly to contamination in the apparatus (contamination).
  • the present invention relates to an electron beam exposure apparatus and a cleaning method for the electron beam exposure apparatus.
  • An electron beam exposure apparatus capable of exposing a fine pattern is used in a manufacturing process of a semiconductor device.
  • masks having slits and various aperture pattern groups for forming various cross-sectional shapes of the beam are used, and the electron beam that has passed through these masks is used as a sample. Irradiated to the surface.
  • the beam drift is considered to occur as follows.
  • Patent Document 1 discloses a method of cleaning the inside of a chamber with ozone in an electron beam exposure apparatus.
  • ozone is injected into the apparatus while the apparatus is operating to prevent the occurrence of contamination.
  • ozone in the device collides with an electron beam to separate ozone into oxygen and active oxygen.
  • the separated active oxygen reacts with the contamination to be attached to the surface of each component in the sample or in the apparatus, and is evaporated as a carbon monoxide gas.
  • the beam drift is caused by the accumulation of electric charges in the contamination and the generation of an electric field.
  • the beam drift occurs even if the contamination is removed, because the insulator different from the contamination is generated by injecting ozone gas into the chamber.
  • an insulator for example, there is SiO formed by oxidizing silicon constituting a mask for shaping an electron beam with ozone gas.
  • Patent Document 1 Japanese Patent Laid-Open No. 09-259811
  • the present invention has been made in view of the problems of the prior art, and an electron beam capable of suppressing the occurrence of contamination inside the electron beam exposure apparatus and the occurrence of beam drift. It is an object of the present invention to provide a cleaning method for an exposure apparatus and an electron beam exposure apparatus.
  • An electron beam exposure apparatus comprising: means for injecting a reducing gas into a column accommodated therein; and control means for continuously injecting the reducing gas into the column for a predetermined time.
  • the electron beam exposure apparatus according to the above aspect further includes means for injecting ozone gas into the column, and the control means performs predetermined injection of ozone gas in addition to injection of the reducing gas into the column. You can make it continue for a certain period of time.
  • the reducing gas may be any of ammonia gas, hydrogen, or hydrazine (N H).
  • the above-described problem includes a step of injecting a reducing gas into a column in which an electron gun and a wafer stage of an electron beam exposure apparatus are housed, and cleaning an electron beam exposure apparatus, Solve by the method.
  • the cleaning method for an electron beam exposure apparatus may include a step of injecting ozone gas in addition to the step of injecting the reducing gas.
  • ozone gas and reducing gas are injected into the electron beam exposure apparatus.
  • reducing gas for example, ammonia gas
  • active oxygen decomposed from ozone reacts with the causative substance of contamination, and contamination such as carbon can be removed.
  • contamination such as carbon
  • FIG. 1 is a block diagram of an electron beam exposure apparatus used in an embodiment of the present invention.
  • FIG. 2 (a) and FIG. 2 (b) are configuration diagrams showing an example of a mask.
  • FIG. 3 (a) and FIG. 3 (b) are diagrams for explaining that an oxide film is formed in an opening of a mask.
  • FIG. 4 (a) and FIG. 4 (b) are diagrams for explaining the principle by which contamination is suppressed.
  • FIG. 5 is a flowchart (No. 1) showing a cleaning method of an electron beam exposure apparatus.
  • FIG. 6 is a flowchart (No. 2) showing the cleaning method of the electron beam exposure apparatus.
  • FIG. 1 shows a block diagram of an electron beam exposure apparatus according to this embodiment.
  • the electron beam exposure apparatus is broadly divided into an electron optical system column 100 and a control unit 200 that controls each part of the electron optical system column 100.
  • the electron optical system column 100 includes an electron beam generation unit 130, a mask deflection unit 140, and a substrate deflection unit 150, and the inside thereof is decompressed.
  • an ozone supply device 128 and a reducing gas supply device 129 are connected to an electron optical system column 100 (hereinafter also simply referred to as a column) via a switching device SW.
  • the electron beam EB generated from the electron gun 101 is converged by the first electromagnetic lens 102, and then passes through the rectangular aperture 103a of the beam shaping mask 103, so that the electron beam EB The cross section is shaped into a rectangle.
  • the electron beam EB is imaged on the exposure mask 110 by the second electromagnetic lens 105 of the mask deflection unit 140. Then, the electron beam EB is deflected to a specific pattern S formed on the exposure mask 110 by the first and second electrostatic deflectors 104 and 106, and the cross-sectional shape thereof is shaped to the shape of the pattern S.
  • the exposure mask 110 has a force that is fixed to the mask stage 123. 3 is movable in the horizontal plane, and when using the pattern S that exceeds the deflection range (beam deflection area) of the first and second electrostatic deflectors 104 and 106, the mask stage 123 is moved. As a result, the pattern S is moved into the beam deflection region.
  • the third and fourth electromagnetic lenses 108 and 111 arranged above and below the exposure mask 110 play a role of forming an image of the electron beam EB on the substrate W by adjusting their current amounts.
  • the electron beam EB that has passed through the exposure mask 110 is returned to the optical axis C by the deflecting action of the third and fourth electrostatic deflectors 112 and 113, and then reduced in size by the fifth electromagnetic lens 114. Small.
  • the mask deflector 140 is provided with first and second correction coils 107 and 109, and the beams generated by the first to fourth electrostatic deflectors 104, 106, 112, and 113 by them. Deflection aberration is corrected.
  • the electron beam EB is an aperture 1 of the shielding plate 115 constituting the substrate deflection unit 150.
  • the image power of the pattern of the exposure mask 110 is transferred to the substrate W at a predetermined reduction ratio, for example, a reduction ratio of 1Z60.
  • the substrate deflecting unit 150 is provided with a fifth electrostatic deflector 119 and an electromagnetic deflector 120, and the deflector 119, 120 deflects the electron beam EB so that the substrate W has a predetermined position. An image of the pattern of the exposure mask is projected onto the screen.
  • the substrate deflection unit 150 is provided with third and fourth correction coils 117 and 118 for correcting the deflection aberration of the electron beam EB on the substrate W.
  • the substrate W is a wafer stage 12 that can be moved in the horizontal direction by a driving unit 125 such as a motor.
  • the control unit 200 includes an electron gun control unit 202, an electron optical system control unit 203, a mask deflection control unit 204, a mask stage control unit 205, a blanking control unit 206, a substrate deflection control unit 206, and a wafer.
  • a stage control unit 208 and a cleaning control unit 209 are included.
  • the electron gun control unit 202 controls the electron gun 101 to control the acceleration voltage of the electron beam EB, beam emission conditions, and the like.
  • the electron optical system control unit 203 includes electromagnetic lenses 102, 105, 108. , 111, 114, 116 and 121 are controlled to adjust the magnification, focus position, etc. of the electron optical system in which these electromagnetic lenses are configured.
  • the blanking control unit 206 controls the voltage applied to the blanking electrode 127 to deflect the electron beam EB, which is also generating the pre-exposure start force, onto the shielding plate 115, and to the electron beam EB on the substrate before the exposure. Is prevented from being irradiated.
  • the substrate deflection control unit 207 controls the voltage applied to the fifth electrostatic deflector 119 and the amount of current to the electromagnetic deflector 120, thereby deflecting the electron beam EB onto a predetermined position on the substrate W. To be.
  • the wafer / stage control unit 208 adjusts the driving amount of the driving unit 125 to move the substrate W in the horizontal direction so that a desired position on the substrate W is irradiated with the electron beam EB.
  • the cleaning control unit 209 controls the ozone supply device 128 and the reducing gas supply device 129 to control the supply amount and time of ozone gas and the reducing gas into the column.
  • the above-described units 202 to 209 are controlled in an integrated manner by an integrated control system 201 such as a workstation.
  • the inside of the column 100 is cleaned simultaneously with the exposure process. Cleaning of the column 100 is performed by injecting reducing gas or reducing gas and ozone gas into the column 100.
  • the cleaning control unit 209 controls the switching switch SW so that ozone gas is generated by an ozone supply device, for example, an ozonizer, and injected into the column 100. Further, the tallying control unit 209 controls the switch SW so that a reducing gas, for example, ammonia gas is generated by the reducing gas supply device and is injected into the column 100. Ammonia gas may be generated from ammonia water.
  • the time and amount for injecting the reducing gas or ozone gas into the column 100 are set in advance and managed by the cleaning control unit 209.
  • FIG. 2 (a) is a plan view showing an example of a mask for shaping an electron beam
  • FIG. 2 (b) is a cross-sectional view taken along line I I of FIG. 2 (a).
  • the mask has two mask patterns 21 as shown in FIG. 2 (a).
  • the mask 20 is made using silicon.
  • the thickness of the mask substrate near the opening 22 is 20 ⁇ m.
  • FIG. 3A shows an enlarged cross-sectional view of the vicinity of the opening 22.
  • a metal film such as Pt is formed to prevent charge-up. Silicon forming the mask 20 is exposed on the side surface of the opening 22.
  • a metal film is formed on the side surface of the opening 22.
  • silicon reacts with ozone 24 to oxidize silicon.
  • a silicon oxide film 25 is formed on the side surface of the opening 22 where silicon is exposed.
  • a reducing gas for example, ammonia gas is used.
  • the contamination is also desorbed on the sample and the inside of the column is cleaned.
  • the silicon since the reducing gas is used, the silicon is not oxidized.
  • the oxide film is not formed on the mask formed of silicon. Therefore, no charge up occurs on the silicon mask.
  • organic contamination such as carbon is reduced and evaporated.
  • the contamination in the column 100 can be removed by in-situ cleaning with the mask and components attached even by injecting the reducing gas into the column 100.
  • the contamination can be efficiently removed by introducing ozone gas in addition to the reducing gas. be able to.
  • Fig. 4 (a) is a diagram schematically showing the presence of such organic substances on the sample.
  • the organic substances C and H combine with the active oxygen and evaporate.
  • C which is considered a contamination substance, also loses the surface force of the sample. And even if the sample is irradiated with an electron beam, it is possible to suppress the adhesion of C to the sample.
  • ozone gas is injected into the column 100. Since ozone is an unstable substance, it decomposes over time into oxygen and active oxygen. As a result, active oxygen is generated, and the causative substance of contamination can also remove C. [0054] As the case where both the ozone gas and the reducing gas are injected into the column 100, the ozone gas and the reducing gas are injected at the same time, and the ozone gas and the reducing gas are alternately injected. There is.
  • both gases may be injected during exposure, or the cleaning control unit 209 injects the gas according to a preset time. You may make it stop. In addition, gas injection may be stopped when it is determined that the contamination in the column 100 has been exhausted. In addition, if the amount of organic material in the column 100 is low, only inject reducing gas.
  • contamination can be removed by injecting reducing gas or ozone gas into the column 100, and the acid resistance in the column 100 such as a mask made of silicon can be removed. It is possible to suppress the acidification of each part that does not have the.
  • step S 11 ozone gas is injected into the column 100.
  • the active oxygen produced by decomposing ozone reacts with the causative substance of contamination, and evaporates as carbon monoxide gas.
  • step S12 reducing gas is injected into the column 100.
  • ammonia gas is used as the reducing gas.
  • ammonia gas is injected at several cc to 1 minute to the degree of vacuum in the column 100 below 10- 4 pascal.
  • Step S12 ammonia gas and ozone gas are mixed in the column 100. For this reason, if ozone gas that does not contribute to the removal of contamination is present, the ammonia gas power is also reduced by the decomposed hydrogen, so that it does not have acid resistance in the column 100. Can be suppressed.
  • step S13 it is determined whether or not a predetermined time has elapsed since the ozone gas was injected.
  • This predetermined time is set according to the exposure time when ammonia gas and ozone gas are continuously injected into the column 100 during exposure. It is also possible to determine whether or not the contamination in the column 100 is sufficiently removed and determine whether or not to continue the gas injection!
  • step S 14 When the predetermined time has elapsed, the process proceeds to step S 14, and when the predetermined time has not elapsed, the process returns to step S 11 and the cleaning in the column 100 is continued.
  • step S 14 the injection of ozone gas is stopped, and in the step S 15, the injection of reducing gas is stopped and the cleaning process is terminated.
  • FIG. 6 is a flowchart showing an example of a process for alternately injecting reducing gas and ozone gas into the column 100.
  • step S21 ozone gas is injected into the column 100.
  • Cleaning system The control unit 209 controls the switching switch SW so that the gas generated by the ozone gas supply device is injected into the column 100.
  • step S22 it is determined whether or not a predetermined time has elapsed since the ozone gas was injected into the column 100. If the predetermined time has elapsed, the injection of ozone gas into the column 100 is stopped in the next step S23. This time may be longer than the time for injecting ammonia gas when there is a large amount of organic substances in the column 100 (for example, when a new part is housed in the column 100).
  • step S24 reducing gas is injected into the column 100.
  • ammonia gas is used as the reducing gas. Contamination is removed by injecting ammonia gas into the column 100 as in step S12 in FIG.
  • step S25 it is determined whether or not a predetermined time has passed since the ammonia gas was injected into the column 100. If the predetermined time has elapsed, the injection of ammonia gas into the column 100 is stopped in the next step S26.
  • step S27 it is determined whether a predetermined time has passed since the start of gas injection.
  • ammonia gas and ozone gas are continuously injected into the column 100 during exposure, set the exposure time. Further, it may be determined whether or not the gas injection is continued by determining whether or not the contamination in the column 100 has been sufficiently removed.
  • step S27 If it is determined in step S27 that the predetermined time has elapsed, the cleaning process ends. If it is determined that the predetermined time has not elapsed, the process returns to step S21, ozone gas is injected again, and the cleaning process is continued.
  • the cleaning control unit 209 controls the switching switch SW so that the gas generated by the ozone gas supply device is injected into the column 100.
  • both ozone gas and ammonia gas are used! After the organic material in the column 100 is low, the ozone gas injection may be stopped and only the ammonia gas may be injected. Also, after injecting ozone gas for the first time and operating the exposure device, it may be possible to operate only with reducing gas until the device stops.
  • Contamination removal with ozone gas is effective when organic substances are present in large quantities. Effective force When the amount of organic substances is low, ammonia gas alone can sufficiently suppress the generation of contamination.
  • ammonia gas is used as the reducing gas.
  • other reducing gases such as hydrogen and hydrazine may be used.
  • ozone gas and reducing gas are injected into the column. Therefore, if ozone gas and reducing gas are injected so that the degree of contamination deposition and the degree of cleaning are balanced, it is possible to suppress the adhesion of contamination such as carbon on the sample. It becomes.
  • the injection of the reducing gas does not generate an electric field due to charge-up that does not cause each part in the column that does not have acid resistance to be oxidized, thereby preventing beam drift. Therefore, it is possible to accurately perform exposure with an electron beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法 技術分野
[0001] 本発明は、電子ビーム露光装置に関し、特に、装置内での汚れ (コンタミネーシヨン
)の発生を抑制できる電子ビーム露光装置及び電子ビーム露光装置のクリーニング 方法に関する。
背景技術
[0002] 半導体装置の製造工程において、微細なパターンの露光が可能な電子ビーム露 光装置が使用されている。近年の電子ビーム露光装置では、スループットの向上を 図るために、ビームの断面形状を種々に成形するためのスリットや各種開口パターン 群を有するマスクが用いられ、これらのマスクを通過した電子ビームが試料表面に照 射される。
[0003] このような電子ビーム露光装置において露光を行うと、時間の経過に従って電子ビ ームの照射位置が変化し、露光パターンを劣化させるという現象が発生する。このよ うな電子ビーム照射位置のずれはビームドリフトと呼ばれて 、る。ビームドリフトは次 のようにして発生すると考えられて 、る。
[0004] 電子ビームが試料の表面に塗布されたレジスト膜に照射されると、レジスト膜を構成 する有機材料力 ガスが発生する。発生したガス中の炭素成分が露光装置内の部品 の表面に付着し、コンタミネーシヨンが形成される。また、真空にした露光装置内には ハイド口カーボン(C H )が含まれており、このハイド口カーボンからもコンタミネーショ ンが形成される。このコンタミネーシヨンに電荷が蓄積すると、蓄積される電荷量の差 によって電界が発生し、照射される電子ビームはこの電界によって偏向される。その 結果、電子ビームの照射位置が変動することになる。
[0005] このような問題に対し、電子ビーム露光装置内でのコンタミネーシヨンの発生を低減 させる方法が種々提案されて 、る。
[0006] これに関する技術として、特許文献 1には、電子ビーム露光装置においてオゾンに よりチャンバ一内をクリーニングする方法が開示されている。 [0007] 上記した、チャンバ一内のコンタミネーシヨンの発生を防止する方法では、装置を稼 動させながら装置内にオゾンを注入してコンタミネーシヨンの発生を防止している。す なわち、装置内のオゾンと電子ビームとを衝突させてオゾンを酸素と活性酸素とに分 離させる。そして、分離した活性酸素によって試料上や装置内の各部品の表面に付 着しょうとするコンタミネーシヨンと反応させて、一酸ィ匕炭素ガスとして蒸発させている
[0008] し力しながら、上記の方法で露光装置内部のクリーニングをしてもビームドリフトが 発生することが確認された。
[0009] 上述したように、ビームドリフトはコンタミネーシヨンに電荷が蓄積され、電界が発生 することが原因である。これに対し、コンタミネーシヨンが除去されてもビームドリフトが 発生するのは、チャンバ一内にオゾンガスを注入したことにより、コンタミネーシヨンと は異なる絶縁物が生成されたためである。
[0010] このような絶縁物として、例えば、電子ビームを成形するためのマスクを構成するシ リコンがオゾンガスによって酸化されて形成される SiOがある。
2
[0011] これに対して、マスクに、酸ィ匕しても絶縁物にならない金属、例えばチタンを表面に 付着させることが考えられる。しかし、この場合には、付着させた金属の酸化物が形 成され、マスク自体が変形し、正確に露光を行うことが困難になる。
特許文献 1:特開平 09— 259811号公報
発明の開示
[0012] 本発明は、力かる従来技術の課題に鑑みなされたものであり、電子ビーム露光装 置内部のコンタミネーシヨンの発生を抑制するとともにビームドリフトの発生を抑制す ることのできる電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法を 提供することを目的とする。
[0013] 上記した課題は、電子銃力 発生させた電子ビームでウェハステージに載置した 試料上に所望のパターンを露光する電子ビーム露光装置にお!、て、前記電子銃及 びウェハステージが収納されているコラム内に還元性ガスを注入する手段と、前記コ ラム内に前記還元性ガスの注入を所定の時間継続して行わせる制御手段とを有する ことを特徴とする電子ビーム露光装置により解決する。 [0014] 上記形態に係る電子ビーム露光装置において、更に前記コラム内にオゾンガスを 注入する手段を有し、前記制御手段は、前記コラム内に前記還元性ガスの注入に加 えてオゾンガスの注入を所定の時間継続して行わせるようにしても良 、。
[0015] また、上記形態に係る電子ビーム露光装置において、前記還元性ガスは、アンモ ユアガス、水素、又はヒドラジン (N H )のいずれかであっても良い。
2 4
[0016] また、上記した課題は、電子ビーム露光装置の電子銃及びウェハステージが収納 されているコラム内に、還元性ガスを注入する工程を含むことを特徴とする電子ビー ム露光装置のクリーニング方法により解決する。
[0017] 上記形態に係る電子ビーム露光装置のクリーニング方法において、前記還元性ガ スを注入する工程にカ卩えて、オゾンガスを注入する工程を含むようにしても良!、。
[0018] 本発明では、電子ビーム露光装置内に、オゾンガス及び還元性ガス (例えば、アン モ-ァガス)を注入している。オゾンガスの注入により、オゾンから分解する活性酸素 とコンタミネーシヨンの原因物質とが反応し、カーボン等のコンタミネーシヨンを除去す ることができる。これにより、試料上にカーボン等のコンタミネーシヨンが付着すること を抑制することが可能となる。
[0019] また、還元性ガスを注入することにより、還元性ガス力 分解する水素とコンタミネー シヨンの原因物質とが反応し、カーボン等のコンタミネーシヨンを除去することができる
[0020] さらに、還元性ガスとオゾンガスとを共にコラム内に注入した場合には、還元性ガス から分解した水素と、オゾン力 分解した酸素とが反応して水蒸気になるため、酸素 がシリコンと反応してシリコン酸ィ匕物を形成することを抑制することができる。これによ り、シリコン酸ィ匕物のチャージアップを原因とするビームドリフトを防止することが可能 となり、安定した露光処理を行うことが可能となる。
図面の簡単な説明
[0021] [図 1]図 1は、本発明の実施形態で使用される電子ビーム露光装置の構成図である。
[図 2]図 2 (a)及び図 2 (b)は、マスクの一例を示す構成図である。
[図 3]図 3 (a)及び図 3 (b)は、マスクの開口部に酸化膜が形成されることを説明する 図である。 [図 4]図 4 (a)及び図 4 (b)は、コンタミネーシヨンが抑制される原理を説明する図であ る。
[図 5]図 5は、電子ビーム露光装置のクリーニング方法を示すフローチャート(その 1) である。
[図 6]図 6は、電子ビーム露光装置のクリーニング方法を示すフローチャート(その 2) である。
発明を実施するための最良の形態
[0022] 以下、本発明の実施の形態について、図面を参照して説明する。
[0023] はじめに、電子ビーム露光装置の構成について説明する。次に、本発明の特徴で あるコンタミネーシヨンの発生を除去するとともにチャージアップの発生を抑制する処 理について説明する。次に、電子ビーム露光装置のクリーニング方法について説明 する。
(電子ビーム露光装置の構成)
図 1に、本実施形態に係る電子ビーム露光装置の構成図を示す。
[0024] この電子ビーム露光装置は、電子光学系コラム 100と、電子光学系コラム 100の各 部を制御する制御部 200とに大別される。このうち、電子光学系コラム 100は、電子 ビーム生成部 130、マスク偏向部 140及び基板偏向部 150によって構成され、その 内部が減圧される。また、電子光学系コラム 100 (以下、単にコラムともいう。 )には、 切り替え装置 SWを経由してオゾン供給装置 128及び還元ガス供給装置 129が接続 されている。
[0025] 電子ビーム生成部 130では、電子銃 101から生成した電子ビーム EBが第 1電磁レ ンズ 102で収束作用を受けた後、ビーム整形用マスク 103の矩形アパーチャ 103aを 透過し、電子ビーム EBの断面が矩形に整形される。
[0026] その後、電子ビーム EBは、マスク偏向部 140の第 2電磁レンズ 105によって露光マ スク 110上に結像される。そして、電子ビーム EBは、第 1、第 2静電偏向器 104、 106 により、露光マスク 110に形成された特定のパターン Sに偏向され、その断面形状が パターン Sの形状に整形される。
[0027] なお、露光マスク 110はマスクステージ 123に固定される力 そのマスクステージ 12 3は水平面内において移動可能であって、第 1、第 2静電偏向器 104、 106の偏向範 囲(ビーム偏向領域)を超える部分にあるパターン Sを使用する場合、マスクステージ 123を移動することにより、そのパターン Sをビーム偏向領域内に移動させる。
[0028] 露光マスク 110の上下に配された第 3、第 4電磁レンズ 108、 111は、それらの電流 量を調節することにより、電子ビーム EBを基板 W上で結像させる役割を担う。
[0029] 露光マスク 110を通った電子ビーム EBは、第 3、第 4静電偏向器 112、 113の偏向 作用によって光軸 Cに振り戻された後、第 5電磁レンズ 114によってそのサイズが縮 小される。
[0030] マスク偏向部 140には、第 1、第 2補正コイル 107、 109が設けられており、それらに より、第 1〜第 4静電偏向器 104、 106、 112、 113で発生するビーム偏向収差が補 正される。
[0031] その後、電子ビーム EBは、基板偏向部 150を構成する遮蔽板 115のアパーチャ 1
15aを通過し、第 1、第 2投影用電磁レンズ 116、 121によって基板 W上に投影される
。これにより、露光マスク 110のパターンの像力 所定の縮小率、例えば 1Z60の縮 小率で基板 Wに転写されることになる。
[0032] 基板偏向部 150には、第 5静電偏向器 119と電磁偏向器 120とが設けられており、 これらの偏向器 119、 120によって電子ビーム EBが偏向され、基板 Wの所定の位置 に露光マスクのパターンの像が投影される。
[0033] 更に、基板偏向部 150には、基板 W上における電子ビーム EBの偏向収差を補正 するための第 3、第 4補正コイル 117、 118が設けられる。
[0034] 基板 Wは、モータ等の駆動部 125により水平方向に移動可能なウェハステージ 12
4に固定されており、ウェハステージ 124を移動させることで、基板 Wの全面に露光を 行うことが可能となる。
[0035] 一方、制御部 200は、電子銃制御部 202、電子光学系制御部 203、マスク偏向制 御部 204、マスクステージ制御部 205、ブランキング制御部 206、基板偏向制御部 2 07、ウェハステージ制御部 208及びクリーニング制御部 209を有する。これらのうち、 電子銃制御部 202は電子銃 101を制御して、電子ビーム EBの加速電圧やビーム放 射条件等を制御する。また、電子光学系制御部 203は、電磁レンズ 102、 105、 108 、 111、 114、 116及び 121への電流量等を制御して、これらの電磁レンズが構成さ れる電子光学系の倍率や焦点位置等を調節する。ブランキング制御部 206は、ブラ ンキング電極 127への印加電圧を制御することにより、露光開始前力も発生している 電子ビーム EBを遮蔽板 115上に偏向し、露光前に基板上に電子ビーム EBが照射 されるのを防ぐ。
[0036] 基板偏向制御部 207は、第 5静電偏向器 119への印加電圧と、電磁偏向器 120へ の電流量を制御することにより、基板 Wの所定の位置上に電子ビーム EBが偏向され るようにする。ウエノ、ステージ制御部 208は、駆動部 125の駆動量を調節して、基板 Wを水平方向に移動させ、基板 Wの所望の位置に電子ビーム EBが照射されるよう にする。
[0037] クリーニング制御部 209は、オゾン供給装置 128及び還元ガス供給装置 129を制 御し、オゾンガス及び還元ガスのコラム内への供給量及び時間を制御する。上記の 各部 202〜209は、ワークステーション等の統合制御系 201によって統合的に制御 される。
[0038] 以上のように構成した電子ビーム露光装置において、露光処理と同時にコラム 100 内のクリーニングを行う。コラム 100内のクリーニングは、コラム 100内に還元性のガス 又は還元性のガスとオゾンガスを注入することにより行う。
[0039] クリーニング制御部 209は、オゾンガスをオゾン供給装置、例えばォゾナイザで発 生させてコラム 100内に注入するように切り換えスィッチ SWを制御する。また、タリー ユング制御部 209は、還元性ガス、例えばアンモニアガスを還元ガス供給装置で発 生させ、コラム 100内に注入するように切り換えスィッチ SWを制御する。なお、アンモ ユアガスはアンモニア水から生成するようにしてもょ 、。還元性ガス又はオゾンガスを コラム 100内へ注入する時間や量は、予め設定しておき、クリーニング制御部 209に よって管理される。
(コンタミネーシヨンの発生及びチャージアップの発生を抑制する処理の説明) 上記したように、コラム 100内にオゾンガス及び還元性のアンモニアガスを注入する ことによって、コラム 100内をクリーニングすることができる。これらのガスの注入によつ て、コンタミネーシヨンの発生及びチャージアップの発生を抑制できる理由を以下に 説明する。
[0040] ここでは、(1)還元性ガスのみをコラム 100内に注入する場合、及び(2)還元性ガ スとオゾンガスをコラム 100内に注入する場合について説明する。
(1)還元性ガスのみをコラム内に注入する場合
従来のクリーニング方法では、コラム 100内にオゾンガスを注入することにより、コン タミネーシヨンの原因物質を排除して ヽた。
[0041] し力し、オゾンガスの注入によりコンタミネーシヨンを排除した場合であっても、ォゾ ンガスによる酸ィ匕作用によって、次のような不都合が生じることが明ら力となった。
[0042] 図 2 (a)は、電子ビームを成形するマスクの一例を示す平面図であり、図 2 (b)は、 図 2 (a)の I I線から見た断面図である。
[0043] ここでは、説明のため、図 2 (a)に示すように、マスクには 2つのマスクパターン 21を 有するものとする。通常、マスク 20はシリコンを用いて作成される。開口部 22付近の マスク基体の厚さは 20 μ mである。
[0044] 図 3 (a)は、開口部 22の近傍を拡大した断面図を示している。マスク 20の電子ビー ムが入射する側には、チャージアップを防止するために、例えば、 Pt等の金属膜が 形成されている。開口部 22の側面はマスク 20を構成するシリコンが露出している。
[0045] このように形成されたマスクが配置されているコラム 100内に、コンタミネーシヨンの 除去のためにオゾンガスを用いてクリーニングを行うと、開口部 22の側面には金属膜 が形成されていないため、シリコンとオゾン 24とが反応して、シリコンが酸ィ匕される。そ の結果、図 3 (b)に示すように、シリコンが露出している開口部 22の側面にシリコン酸 化膜 25が形成される。
[0046] このような状態で電子ビームを照射すると、このシリコン酸ィ匕膜 25に電荷が蓄積さ れ、チャージアップすることになる。このチャージアップが原因となって、ビームドリフト が発生する。
[0047] これを防ぐために、本実施形態では、還元性のガス、例えば、アンモニアガスを使 用する。
[0048] コラム 100内にアンモニアガスを少量注入すると、アンモニアガスの分子がコラム 10 0内の各部に付着する。この状態で電子ビームを照射すると、付着したアンモニアガ スの分子に電子があたり、アンモニアガスは、 NHと Hとに分解する。有機物コンタミ
2
ネーシヨンはアンモニアガスから分解した Hと結合して CHまたは CH (メタン)となつ
2 4
て蒸発する。
[0049] これにより、コンタミネーシヨンが試料上など力も脱離し、コラム内部のクリーニングが 行われる。このように、還元性ガスを使用するため、シリコンが酸ィ匕されることがなぐ シリコンで形成されるマスク上に酸ィ匕膜が形成されることはない。よって、シリコンマス ク上にチャージアップが発生することはない。また、カーボン等の有機物コンタミネー シヨンは還元されて蒸発する。さらに、シリコンマスクだけでなくコラム内の各部品上に 酸化膜が形成されることなぐチャージアップが発生することもない。このため、ビーム ドリフトが発生することなぐ精度良く露光をすることができる。
(2)還元性ガスとオゾンガスをコラムに注入する場合
上記したように、還元性ガスをコラム 100内に注入するだけでもマスクや部品を装着 したままインサイチュー(その場)クリーニングして、コラム 100内のコンタミネーシヨン を除去することが可能である。
[0050] し力し、コラム 100内にコンタミネーシヨンの原因物質となる有機物が多量に存在す る場合には、還元性ガスだけでなぐオゾンガスも導入することにより効率的にコンタミ ネーシヨンを除去することができる。
[0051] まず、オゾンガスがコンタミネーシヨンを除去する理由について説明する。
[0052] 電子ビームの照射によって発生するコンタミネーシヨンの原因となる物質は、 Cや H で構成される有機系物質であると考えられている。図 4 (a)は、このような有機系物質 が試料上に存在していることを模式的に示した図である。このコンタミネーシヨンの原 因物質に活性酸素を反応させることによって、有機系物質の Cや Hが活性酸素と結 合して蒸発する。これにより、図 4 (b)に示すように、コンタミネーシヨン物質と考えられ ている Cが試料の表面力もなくなる。そして、試料上に電子ビームを照射しても試料 に Cが付着することが抑制されること〖こなる。
[0053] 活性酸素を発生させるために、オゾンガスをコラム 100内に注入する。オゾンは不 安定な物質であるため、経時的に酸素と活性酸素とに分解される。これにより、活性 酸素が発生して、コンタミネーシヨンの原因物質力も Cを除去することが可能となる。 [0054] 上記のオゾンガスと還元性ガスの両方をコラム 100内に注入する場合として、ォゾ ンガスと還元性ガスとを同時に注入する場合と、オゾンガスと還元性ガスとを交互に 注入する場合とがある。
[0055] オゾンガスと還元性ガスとを同時に注入する場合、オゾンガスから分解した酸素は 還元性ガス力も分解した水素と結合して水蒸気となる。従って、オゾンガスによってシ リコンが酸ィ匕されることを抑制できるという利点を有する。
[0056] 一方、還元性ガスとオゾンガスとを交互に注入する場合、オゾンガスによるコンタミ ネーシヨンの除去と還元性ガスによるコンタミネーシヨンの除去の両方を行うことがで き、コンタミネーシヨンの発生を効率良く防止することができる。また、コラム 100内に 注入するガスを切り替えたときには、コラム 100内に残留しているガスと注入したガス とが反応し、オゾンガスによるコンタミネーシヨンの除去の効果は減少する。しかし、コ ラム 100内の部品がオゾンによって酸ィ匕されることを抑制できる。
[0057] オゾンガスと還元性ガスをコラム 100内に注入する場合は、露光中、両方のガスを 注入するようにしてもよいし、クリーニング制御部 209によって、予め設定された時間 に従ってガスの注入を停止するようにしても良い。また、コラム 100内のコンタミネーシ ヨンがなくなつたと判定したときにガスの注入を停止するようにしても良い。さらに、コラ ム 100内の有機物質が少なくなつた場合には、還元性ガスのみを注入するようにして ちょい。
[0058] オゾンガスと還元性ガスを交互にコラム 100内に注入する場合は、コラム 100内の 有機物質の量に応じて、オゾンガスを注入する時間及び還元性ガスを注入する時間 を設定するようにしてもよ 、。
[0059] 以上説明したように、還元性ガス又はオゾンガスをコラム 100内に注入することによ り、コンタミネーシヨンを除去できると共に、シリコンで形成されるマスク等、コラム 100 内の耐酸ィ匕性を有しない各部品の酸ィ匕を抑制できる。
[0060] また、シリコンの酸ィ匕が抑制されるため、シリコンで形成されるマスク上に酸ィ匕膜が 形成されることも抑制される。従って、ビームドリフトを防止することができ、精度良く露 光処理を行うことが出来る。
(電子ビーム露光装置のクリーニング方法) 次に、本実施形態の電子ビーム露光装置のクリーニング方法について図 5のフロー チャートを用いて説明する。ここでは、コラム 100内に有機物によるコンタミネーシヨン が発生しているものとする。また、還元性ガスの注入量及びオゾンガスの注入量は予 め決められているものとする。
[0061] まず、ステップ S 11において、コラム 100内にオゾンガスを注入する。オゾンガスを 注入することによって、オゾンが分解してできる活性酸素とコンタミネーシヨンの原因 物質とが反応し、一酸化炭素ガスとなって蒸発する。
[0062] 次に、ステップ S12において、コラム 100内に還元性ガスを注入する。ここでは、還 元性ガスとしてアンモニアガスを使用する。例えば、アンモニアガスは、コラム 100内 の真空度を 10—4pascal以下にするように 1分間に数 cc程度で注入する。アンモニアガ スをコラム 100内に注入することによって、アンモニアガスが分解してできる水素とコ ンタミネーシヨンの原因物質とが反応し、 CH又は CHとなって蒸発する。
2 4
[0063] このステップ S12の後、コラム 100内には、アンモニアガスとオゾンガスとが混在す る。このため、コンタミネーシヨンの除去に寄与しないオゾンガスが存在した場合には 、アンモニアガス力も分解した水素によって還元されるため、コラム 100内の耐酸ィ匕 性を有しな ヽ各部品の酸ィ匕を抑制できる。
[0064] 次に、ステップ S13において、オゾンガスを注入してから所定の時間が経過したか 否かを判定する。この所定の時間は、露光中継続してコラム 100内へアンモニアガス 及びオゾンガスを注入する場合には、露光時間にあわせて設定する。また、コラム 10 0内のコンタミネーシヨンが十分に除去できた力否かを判定してガスの注入を継続す る力否かを決定するようにしてもよ!、。
[0065] 所定の時間が経過したときは、ステップ S 14に移行し、所定の時間が経過していな いときは、ステップ S11に戻り、コラム 100内のクリーニングを継続する。
[0066] 次のステップ S 14において、オゾンガスの注入を停止し、ステップ S15において、還 元性ガスの注入を停止して、本クリーニング処理は終了する。
[0067] 図 6は、還元性ガスとオゾンガスを交互にコラム 100内に注入する処理の一例を示 すフローチャートである。
[0068] まず、ステップ S21において、オゾンガスをコラム 100内に注入する。クリーニング制 御部 209が切り換えスィッチ SWを制御してオゾンガス供給装置で発生させたガスを コラム 100内に注入するようにする。
[0069] 次に、ステップ S22において、オゾンガスをコラム 100内に注入してから所定の時間 経過したか否かを判定する。所定の時間経過していれば、次のステップ S23におい てオゾンガスのコラム 100内への注入を停止する。この時間は、コラム 100内の有機 物質が多量存在する場合 (例えばコラム 100内に新たに部品を収納した場合等)に はアンモニアガスを注入する時間よりも長くするようにしても良 、。
[0070] 次に、ステップ S24において、還元性ガスをコラム 100内に注入する。ここでは、還 元性ガスとしてアンモニアガスを使用する。図 5のステップ S12と同様に、アンモニア ガスをコラム 100内に注入することによって、コンタミネーシヨンの除去を行う。
[0071] 次に、ステップ S25において、アンモニアガスをコラム 100内に注入してから所定の 時間経過した力否かを判定する。所定の時間経過していれば、次のステップ S26に おいてアンモニアガスのコラム 100内への注入を停止する。
[0072] 次に、ステップ S27において、ガスの注入を始めて力も所定の時間経過したか否か を判定する。露光中継続してコラム 100内へアンモニアガス及びオゾンガスを注入す る場合には、露光時間にあわせて設定する。また、コラム 100内のコンタミネーシヨン が十分に除去できたか否かを判定してガスの注入を継続するカゝ否かを決定するよう にしてもよい。
[0073] ステップ S27において、所定の時間が経過したと判定したときは、本クリーニング処 理は終了する。所定の時間が経過していないと判定したときは、ステップ S21に戻り、 再びオゾンガスを注入して、クリーニング処理を継続する。クリーニング制御部 209が 切り換えスィッチ SWを制御してオゾンガス供給装置で発生させたガスをコラム 100内 に注入するようにする。
[0074] なお、上記処理の説明では、オゾンガス及びアンモニアガスの両方を使用して!/ヽた 力 コラム 100内の有機物質が少なくなつた後は、オゾンガスの注入を停止して、アン モ-ァガスだけを注入するようにしてもよい。また、最初だけオゾンガスを注入して露 光装置を運転したのち、装置停止まで還元性ガスだけで運転するようにしてもょ 、。
[0075] オゾンガスによるコンタミネーシヨンの除去は、有機物質が多量に存在する場合に 有効である力 有機物質が少なくなつた場合にはアンモニアガスだけでも十分にコン タミネーシヨンの発生を抑制できる力 である。
[0076] また、本実施形態では還元性ガスとしてアンモニアガスを使用して 、るが、他の還 元'性のガス、例えば、水素やヒドラジンを使用してもよい。
[0077] 以上説明したように、本実施形態の電子ビーム露光装置のクリーニング方法では、 コラム内に、オゾンガス及び還元性ガスを注入している。従って、コンタミネーシヨンの 堆積の程度とクリーニングの程度とが均衡するように、オゾンガス及び還元性ガスが 注入されれば、試料上に例えばカーボン等のコンタミネーシヨンの付着を抑制するこ とが可能となる。また、還元性ガスの注入により、コラム内の耐酸ィ匕性を有しない各部 品が酸ィ匕されることがなぐチャージアップによる電界が発生せず、ビームドリフトを防 止することができる。よって、電子ビームによる露光を正確に行うことが可能となる。

Claims

請求の範囲
[1] 電子銃力 発生させた電子ビームでウェハステージに載置した試料上に所望のパ ターンを露光する電子ビーム露光装置にお!、て、
前記電子銃及びウェハステージが収納されているコラム内に還元性ガスを注入す る手段と、
前記コラム内に前記還元性ガスの注入を所定の時間継続して行わせる制御手段と を有することを特徴とする電子ビーム露光装置。
[2] 前記還元性ガスは、アンモニアガス、水素、又はヒドラジンの!/、ずれかであることを 特徴とする請求項 1に記載の電子ビーム露光装置。
[3] 更に前記コラム内にオゾンガスを注入する手段を有し、
前記制御手段は、前記コラム内に前記還元性ガスの注入に加えてオゾンガスの注 入を所定の時間継続して行わせることを特徴とする請求項 1又は 2に記載の電子ビ ーム露光装置。
[4] 前記制御手段は、前記還元性ガスの注入と前記オゾンガスの注入を同時に所定の 時間行わせることを特徴とする請求項 3に記載の電子ビーム露光装置。
[5] 前記制御手段は、前記還元性ガスの注入と前記オゾンガスの注入を所定の時間毎 交互に行わせることを特徴とする請求項 3に記載の電子ビーム露光装置。
[6] 電子ビーム露光装置の電子銃及びウェハステージが収納されているコラム内に、 還元性ガスを注入する工程を含むことを特徴とする電子ビーム露光装置のタリーニン グ方法。
[7] 前記還元性ガスは、アンモニアガス、水素、又はヒドラジンの!/、ずれかであることを 特徴とする請求項 6に記載の電子ビーム露光装置のクリーニング方法。
[8] 前記還元性ガスを注入する工程に加えて、オゾンガスを注入する工程を含むことを 特徴とする請求項 6又は 7に記載の電子ビーム露光装置のクリーニング方法。
[9] 前記還元性ガスの注入とオゾンガスの注入は同時に所定の時間行うことを特徴とす る請求項 8に記載の電子ビーム露光装置のクリーニング方法。
[10] 前記還元性ガスの注入とオゾンガスの注入は、所定の時間毎交互に行うことを特徴 とする請求項 8に記載の電子ビーム露光装置のクリーニング方法。
PCT/JP2006/316951 2005-09-26 2006-08-29 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法 WO2007034659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007536432A JP4758431B2 (ja) 2006-08-29 2006-08-29 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法
US12/077,153 US7737421B2 (en) 2005-09-26 2008-03-17 Electron beam exposure apparatus and method for cleaning the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-278464 2005-09-26
JP2005278464A JP2007088386A (ja) 2005-09-26 2005-09-26 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/077,153 Continuation US7737421B2 (en) 2005-09-26 2008-03-17 Electron beam exposure apparatus and method for cleaning the same

Publications (1)

Publication Number Publication Date
WO2007034659A1 true WO2007034659A1 (ja) 2007-03-29

Family

ID=37888712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316951 WO2007034659A1 (ja) 2005-09-26 2006-08-29 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法

Country Status (4)

Country Link
US (1) US7737421B2 (ja)
JP (1) JP2007088386A (ja)
KR (1) KR20080045728A (ja)
WO (1) WO2007034659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455121A (en) * 2007-11-29 2009-06-03 Univ Sheffield Hallam Particle beam apparatus with means for reducing contamination in the particle beam column
JP2016066786A (ja) * 2014-09-19 2016-04-28 株式会社ニューフレアテクノロジー オゾン供給装置、オゾン供給方法、荷電粒子ビーム描画システム、および荷電粒子ビーム描画方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9460887B2 (en) * 2009-05-18 2016-10-04 Hermes Microvision, Inc. Discharging method for charged particle beam imaging
JP5709535B2 (ja) * 2011-01-07 2015-04-30 キヤノン株式会社 電子ビーム描画装置、およびそれを用いた物品の製造方法
JP6251648B2 (ja) * 2014-07-16 2017-12-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
DE102015211090A1 (de) * 2015-06-17 2016-12-22 Vistec Electron Beam Gmbh Korpuskularstrahlgerät und Verfahren zum Betreiben eines Korpuskularstrahlgeräts
US9981293B2 (en) * 2016-04-21 2018-05-29 Mapper Lithography Ip B.V. Method and system for the removal and/or avoidance of contamination in charged particle beam systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159826A (ja) * 1984-08-31 1986-03-27 Fujitsu Ltd 電子ビ−ム露光装置
JPH09259811A (ja) * 1996-03-19 1997-10-03 Fujitsu Ltd 荷電粒子ビーム露光方法及びその装置
JP2000090868A (ja) * 1998-09-17 2000-03-31 Nikon Corp 光学鏡筒及びそのクリーニング方法
JP2000231897A (ja) * 1999-02-09 2000-08-22 Nikon Corp 光学鏡筒及びそのクリーニング方法
JP2004014960A (ja) * 2002-06-11 2004-01-15 Sony Corp 露光装置および露光方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253675B2 (ja) * 1991-07-04 2002-02-04 株式会社東芝 荷電ビーム照射装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159826A (ja) * 1984-08-31 1986-03-27 Fujitsu Ltd 電子ビ−ム露光装置
JPH09259811A (ja) * 1996-03-19 1997-10-03 Fujitsu Ltd 荷電粒子ビーム露光方法及びその装置
JP2000090868A (ja) * 1998-09-17 2000-03-31 Nikon Corp 光学鏡筒及びそのクリーニング方法
JP2000231897A (ja) * 1999-02-09 2000-08-22 Nikon Corp 光学鏡筒及びそのクリーニング方法
JP2004014960A (ja) * 2002-06-11 2004-01-15 Sony Corp 露光装置および露光方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455121A (en) * 2007-11-29 2009-06-03 Univ Sheffield Hallam Particle beam apparatus with means for reducing contamination in the particle beam column
JP2016066786A (ja) * 2014-09-19 2016-04-28 株式会社ニューフレアテクノロジー オゾン供給装置、オゾン供給方法、荷電粒子ビーム描画システム、および荷電粒子ビーム描画方法

Also Published As

Publication number Publication date
US7737421B2 (en) 2010-06-15
US20080169433A1 (en) 2008-07-17
JP2007088386A (ja) 2007-04-05
KR20080045728A (ko) 2008-05-23

Similar Documents

Publication Publication Date Title
JP3827359B2 (ja) 荷電粒子ビーム露光方法及びその装置
WO2007034659A1 (ja) 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法
US10840054B2 (en) Charged-particle source and method for cleaning a charged-particle source using back-sputtering
JP5318406B2 (ja) 改良ウィーン型フィルタを有する粒子ビーム装置
KR20180132884A (ko) 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
JP3993334B2 (ja) 荷電ビーム描画装置
JP2010245043A (ja) 予め位置合わせされたノズル/スキマー
JP5759186B2 (ja) 荷電粒子線描画装置及びデバイス製造方法
EP3518268B1 (en) Charged-particle source and method for cleaning a charged-particle source using back-sputtering
JP2001148340A (ja) 荷電粒子ビーム露光方法及び装置
JPH09245716A (ja) 電子ビーム描画方法および描画装置およびこれを用いた半導体集積回路
JP4758431B2 (ja) 電子ビーム露光装置及び電子ビーム露光装置のクリーニング方法
JPH08222175A (ja) 荷電粒子を用いた微細加工方法及び装置
JP3908294B2 (ja) 電子ビームの電流量を削減する電子ビーム露光装置及び電子ビーム露光方法
JP2960413B1 (ja) 電子ビーム描画装置
JP2004014960A (ja) 露光装置および露光方法
JP2006228776A (ja) 荷電粒子ビーム露光装置及び荷電粒子ビーム露光方法
JPH09306803A (ja) 荷電粒子ビーム装置およびその洗浄方法
JP2004128284A (ja) 偏向器、偏向器の製造方法、及び荷電粒子線露光装置
JP2001196296A (ja) 荷電粒子ビーム露光装置
WO1995029505A1 (fr) Procede et dispositif d'implantation ionique
JP2008016324A (ja) 電子ビーム装置
JP4477433B2 (ja) 電子ビーム露光装置及びマルチビーム電子光学系
JP2007019195A (ja) 電子ビーム装置及び電子ビーム露光装置
JPH11204400A (ja) 電子線描画装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087007855

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06796931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007536432

Country of ref document: JP