WO2007033514A1 - Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines - Google Patents

Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines Download PDF

Info

Publication number
WO2007033514A1
WO2007033514A1 PCT/CN2005/001488 CN2005001488W WO2007033514A1 WO 2007033514 A1 WO2007033514 A1 WO 2007033514A1 CN 2005001488 W CN2005001488 W CN 2005001488W WO 2007033514 A1 WO2007033514 A1 WO 2007033514A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fluorescent
antigen
variable region
substance
Prior art date
Application number
PCT/CN2005/001488
Other languages
English (en)
French (fr)
Inventor
Jun Zhang
Baoquan Guan
Wenxin Luo
Shengxiang Ge
Ningshao Xia
Original Assignee
Xiamen University
Yang Sheng Tang Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Yang Sheng Tang Company Limited filed Critical Xiamen University
Priority to PCT/CN2005/001488 priority Critical patent/WO2007033514A1/zh
Publication of WO2007033514A1 publication Critical patent/WO2007033514A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/6857Antibody fragments

Definitions

  • the present invention relates to a protein combination having fluorescence resonance energy transfer characteristics consisting of a heavy chain variable region protein and a light chain variable region protein from the same antibody, and, optionally, a specific antigen recognized by the antibody, Wherein the heavy chain variable region protein and the light chain variable region protein, or optionally the specific antigen recognized by the antibody, respectively, have a fluorescent substance (or a chemiluminescent substance) as an energy donor, or It has a fluorescent quenching substance as an energy acceptor.
  • the present invention also relates to a method for detecting a target antigen in a sample using the protein combination, and a kit for detecting a target antigen in the sample containing the protein combination. Background technique
  • Immunoassay is an ultra-micro bioassay that utilizes the high affinity of the antigen-antibody immune response and the high detectability of the probe as a probe, enabling the micro- and ultra-micro substances in the organism. Accurate quantitative measurement has the advantages of simple operation, good specificity and high sensitivity, and is an important method for disease diagnosis and medical research. Immunoassays can be divided into radioimmunoassay (RIA), enzyme immunoassay (EIA), luminescent immunoassay (LIA), and fluorescent immunoassay (FIA) depending on the marker.
  • RIA radioimmunoassay
  • EIA enzyme immunoassay
  • LIA luminescent immunoassay
  • FIA fluorescent immunoassay
  • the automation and simplification of immunoassays are the most important directions for the development of immunoassays, and it is necessary to improve the automation and rapid accuracy of detection. Recombinant antigens, monoclonal antibodies and enzyme technologies developed by genetic engineering, cell engineering and
  • Immunoassay can perform reaction analysis in different phase states. According to the physical state of the reaction system, it can be divided into homogeneous immunoassay and heterogeneous immunoassay.
  • heterogeneous phase immunoassay is most widely used in RIA and EIA, but heterogeneous immunoassay requires a separation step that combines with unbound free label, ie, before qualitative or quantitative analysis. It is possible to remove an excess of unbound labeling reagent, thereby increasing the signal to noise ratio and the sensitivity of the analysis, and thus the operation is relatively complicated. Analysis of the free phase and the binding phase is the key and the most prone to errors. And because of the inclusion of coating (antigen or antibody), blocking, multiple incubations and washings, and detection, the fastest time is more than 2 hours.
  • the homogeneous immunoassay has the characteristics of not requiring the separation of bound and unbound molecules to be directly determined, and the homogeneous reaction is more rapid than the solid phase and semi-solid phase reaction, and has become an important direction in the current research of immunoassay technology.
  • homogeneous fluorescence immunoassay 7 hFIA can be directly measured after the antigen-antibody reaction is completed without separating the bound and free markers. The operation is simple and quick, and it is easy to automate. application.
  • Fluorescence Resonance Energy Transfer (Fluorescence Resonance Energy Transfer,
  • FRET refers to two different fluorophores, if the emission spectrum of one donor group overlaps with the excitation spectrum of another acceptor group, when the distance between two fluorophores is close enough. The phenomenon of the transfer of fluorescent energy from the donor to the receptor.
  • Fdrster first proposed the process of FRET. It is believed that a pair of suitable fluorescent substances can form an energy donor (Donor) and an energy acceptor (Acternator) pair, which are excited by the dipole-dipole interaction. The photon energy of the bulk molecule may be transmitted to the acceptor molecule, after which the acceptor molecule relaxes by emitting a photon with reduced energy.
  • Donor an energy donor
  • Acternator an energy acceptor
  • the fluorescence intensity produced by the donor is much lower than when it is present alone, and the fluorescence emitted by the acceptor is greatly enhanced, accompanied by a corresponding shortening or prolongation of the fluorescence lifetime of the acceptor.
  • hFIA Homogeneous Fluorescence Resonance Immunoassay
  • the antibody Fv is bound by a non-covalent bond between the heavy chain variable region VH and the light chain variable region VL, and is the smallest functional fragment having an intact antigen binding site in the antibody.
  • the interaction between the variable regions can be applied to fluorescence resonance immunoassays.
  • Arai et al [Arai R, Ueda H, Tsumoto K, et al. Protein Engineering, 2000, 13(5): 369-376.] improved the homogeneous immunoassay technique and proposed an open sandwich fluoroimmunoassay.
  • the heavy chain variable region and the light chain variable region obtained by genetic engineering are respectively labeled with the spectral isomers of green fluorescent protein to form a detection system, a specific antigen is added, and the immune complex is combined, and VH and VL are recombined in Together, the labeled donor pairs are also brought together to detect the occurrence of FRET.
  • Specific binding between the variable regions of egg lysozyme (HEL) and its antibody HyHEL-10 was detected by this method. This has been improved since then.
  • the energy donor uses the bioluminescent material Renilla luciferase to increase the sensitivity of detection [Arai R, Nakagawa H, Tsumoto K, et al. Analytical Biochemistry, 2001, 289: 77-81].
  • the former is to be excited by EBFP 360nm, and the EBFP fluorescence intensity at 444nm and the EGFP fluorescence intensity at 506nm are measured separately.
  • the latter should simultaneously detect 475nm and The fluorescence intensity of 525 nm, and the index of detection of the antigen must be established according to the intensity of the emitted light at two different wavelengths, so that it is necessary to be able to simultaneously detect expensive instruments of two wavelengths.
  • both of the above are limited to the detection method of the non-competitive mode.
  • the immunoassay is convenient, rapid, and the detection cost is reduced.
  • the present invention aims to establish a novel type of homogeneous fluorescence resonance immunoassay using energy supply/acceptor fluorophores conforming to the FRET characteristic. Reagents and detection methods to quickly and accurately detect antigens in specimens. Summary of the invention
  • One aspect of the invention relates to a protein combination having fluorescence resonance energy transfer characteristics consisting of a heavy chain variable region protein and a light chain variable region protein from the same antibody, wherein the heavy chain variable region protein and the light chain
  • One of the variable region proteins carries a fluorescent substance or a chemiluminescent substance as an energy donor, and the other carries a fluorescent quenching substance as an energy acceptor, wherein the fluorescent substance as an energy donor/acceptor
  • the fluorescence quenching material is a reagent that conforms to the characteristics of fluorescence resonance energy transfer (FRET).
  • Fluorescent quenching substances are a special kind of substance that emits only light without emitting light.
  • the energy generated by photoexcitation is emitted in the form of thermal energy rather than light energy.
  • a fluorescence quenching substance is used as an energy acceptor of the entire FRET system, and when FRET occurs, after the excitation wavelength of the energy donor is excited, the energy of the donor is transferred to the acceptor, the energy is lowered, the fluorescence intensity is lowered, and the energy is decreased.
  • the acceptor is a fluorescence quenching substance, and no new emission light is generated.
  • GFP green fluorescent protein
  • BIT blue fluorescent protein
  • yellow fluorescent protein
  • CFP cyan fluorescent protein
  • RFP red fluorescent protein
  • the advantage is that GFP can be expressed in fusion with the target protein, so the labeling ratio is constant, the disadvantages of over-labeling or labeling of chemical labels are avoided, and the spectral isomers include a longer wavelength range from ultraviolet to red, and A variety of options on the application.
  • the fluorescence characteristics have been well understood.
  • groups such as amino, carboxyl or thiol groups of various proteins can be labeled. It has the advantages of high fluorescence quantum yield, significant change in fluorescence spectrum after reaction, and easy detection. It can be used as FRET energy. Amount of receptor.
  • the fluorescent substance suitable as the energy donor is preferably selected from the group consisting of fluorescent substances such as fluorescent proteins, fluorescein, and rare earth elements, and more preferably selected from the group consisting of green fluorescent protein (GFP) and blue fluorescent protein.
  • BFP green fluorescent protein
  • YFP yellow fluorescent protein
  • FFP red fluorescent protein
  • the fluorescent substance as an energy donor is green fluorescent protein.
  • a chemiluminescent material suitable as an energy donor is selected from the group consisting of a photoprotein and luminol, peroxyoxalate.
  • the fluorescent quenching substance suitable as an energy acceptor in the present invention is QSY-35 (Molecular Labeling Company).
  • a pair of heavy chain variable regions and light chain variable region proteins from the same antibody are selected, respectively, and the fluorescent properties are labeled to satisfy the FRET energy supply receptor pair (where the energy receptor is defined as a fluorescence quenching substance)
  • a fluorescent heavy chain variable region (VH) and a fluorescent light chain variable region (VL) were obtained.
  • the specific fluorescent VH and VL combine to form an IV structure, and the distance between the two fluorescent substances is brought closer to reach the effective range of FRET of 1 ⁇ 10 nm and FRET occurs. phenomenon.
  • the antigen binds to the antigen binding site between VH and VL, correspondingly lengthens the distance between the two fluorescent substances, so that the FRET phenomenon is weakened and the fluorescence quenching is weakened. Thereby the emission of the energy receptor is enhanced.
  • the change in the fluorescence intensity of the energy donor emitted light is measured by a corresponding fluorescence detecting instrument, and it can be judged whether or not there is a specific antigen against the selected antibody in the sample to be tested.
  • the combinatorial protein of the invention effectively avoids the cumbersome dual-wavelength detection and the interference of the energy-receiving light by utilizing the energy supply/receptor reagent having the FRET characteristic, and satisfies the requirements of convenient, fast and accurate application.
  • a protein composition having a fluorescence resonance energy transfer characteristic wherein the fusion protein with a fluorescent substance as an energy donor is derived from an anti-HBV pre-S1 monoclonal antibody MA18 / 7 heavy chain can GaH consisting of a variable region and an enhanced green fluorescent protein EGFP, the fusion protein with a fluorescent quencher as an energy receptor is a light chain variable region derived from the anti-HBV pre-S1 monoclonal antibody MA18 / 7 QL consisting of a fluorescent quencher QSY-35.
  • the inventors have found that a protein combination having FRET characteristics can be applied to detect the presence of an antigen in a specimen, and the detection is convenient, rapid, rapid, easy to implement, and highly specific, and can be used for disease detection.
  • Another aspect of the invention relates to a protein combination having fluorescence resonance energy transfer characteristics consisting of a heavy chain variable region protein and a light chain variable region protein from the same antibody and a specific antigen recognized by the antibody, wherein When one of the heavy chain variable region protein and the light chain variable region protein is selected to carry a fluorescent substance or a chemiluminescent substance as an energy donor, the specific antigen recognized by the antibody carries an energy receptor a fluorescent quenching substance; and when one of the heavy chain variable region protein and the light chain variable region protein is selected from a fluorescent quenching substance as an energy receptor, the specific antigen recognized by the antibody is carried A fluorescent substance or a chemiluminescent substance of an energy donor, and the fluorescent substance and the fluorescent quenching substance as energy donor/acceptor are reagent pairs conforming to fluorescence resonance energy transfer (FRET) characteristics.
  • FRET fluorescence resonance energy transfer
  • an antigenic protein having the same epitope as the antigen to be tested, and a heavy chain variable region or a light chain variable region protein of an antibody that specifically recognizes the antigen are selected, and the fluorescent properties are respectively labeled to satisfy the energy supply of FRET.
  • the energy receptor is defined as a fluorescence quencher
  • the Fv fragment consisting of the variable region protein of the heavy chain and the variable region of the light chain specifically binds, the distance between the two fluorescent substances is close, and the distance to FRET is required to be within 1 to 10 nm, and the FRET phenomenon occurs.
  • the antigen to be tested competes with the fluorescently labeled antigen protein to attenuate the FRET phenomenon, the fluorescence quenching effect is weakened, and the emission of the corresponding energy donor is enhanced. Determination of the change in fluorescence intensity of the energy donor emitted light It can be judged whether there is a specific antigen in the sample to be tested.
  • the fluorescent protein quenching substance is involved in the group of proteins of the present invention, which effectively avoids the interference of the dual-wavelength detection and the interference of the energy-receiving light, and satisfies the requirements of convenient, fast and accurate application.
  • a further aspect of the invention relates to a method for detecting the presence of a target antigen in a sample, comprising: 1) under conditions suitable for binding of the antigen to be tested to the antibody of claim 1
  • the sample to be tested is in contact with the protein combination; and 2) detecting a change in the relative fluorescence intensity of the energy donor before and after the test sample and the protein combination are in contact with each other, and determining that the heavy chain of the antibody in the sample to be tested is variable
  • the present inventors selected the heavy chain variable region and the light chain variable region of the anti-HBV pre-S1 monoclonal antibody MA18/7 in order to detect the presence or absence of the HBV pre-S1 antigen in the specimen.
  • Protein the heavy chain variable region is linked to enhanced green fluorescent protein (EGFP) via a flexible linker of 3 Ala to form a fusion protein GaH as an energy donor, and the light chain variable region protein and fluorescent quencher QSY35 (Molecular Probes product, succinimide acetate) chemically coupled to form the protein QL as an energy receptor, which together constitute a detection reagent.
  • EGFP enhanced green fluorescent protein
  • QSY35 Molecular Probes product, succinimide acetate
  • Excitation at 485 nm was used to detect the fluorescence intensity of the energy donor EGFP with a maximum emission of 510 nm.
  • the fluorescence intensity was increased before the addition of the sample, and the fluorescence intensity was slightly decreased when the sample containing the HBV pre-Sl antigen was added. Therefore, a combination of proteins consisting of the above GaH and QL can be applied to HBV detection.
  • the inventors selected the heavy chain variable region and the light chain of the anti-HBV pre-S1 monoclonal antibody MA18/7.
  • the variable region protein, and the HBV pre-Sl antigen C06, the heavy chain variable region is linked to the enhanced green fluorescent protein (EGFP) through a flexible linker of 3 Ala to form a fusion protein GaH as an energy donor.
  • EGFP enhanced green fluorescent protein
  • the HBV pre-Sl antigen C06 was chemically coupled with the fluorescence quencher QSY35 to form the protein QC as an energy receptor, and GaH, QC and the light chain variable region protein ML were combined to construct a new protein combination as a detection reagent. Excitation at 485 nm was used to detect the fluorescence intensity of the energy donor EGFP with a maximum emission of 510 nm. When a sample containing the HBV pre-Sl antigen was added, the fluorescence intensity was increased before the addition of the sample, and the fluorescence intensity was slightly decreased when the sample containing no HBV pre-Sl antigen was added. Therefore, a combination of proteins consisting of the above GaH, QC and ML can be applied to HBV detection.
  • the invention also relates to a kit for disease detection, characterized by comprising any of the protein combinations provided by the invention and corresponding buffers. Since the heavy chain variable region and the light chain variable region protein of the same antibody used in the present invention are non-covalently bound, buffers of different pH values may affect the two or between the two and the antigen to some extent.
  • the present invention uses a neutral or pH-lowly alkaline PBS as a buffer to make the detection system more stable.
  • the antigen selected in the protein combination of the present invention is derived from a virus, a bacterium, a fungus, a mycoplasma, a chlamydia, a tumor-associated antigen or other substance having an antigenic determinant.
  • the fluorescently labeled antigen in the protein combination has the same antigenic epitope as the antigen to be tested, so that when the antigen to be tested is added to the protein combination, competition occurs due to the binding of the same antibody binding site, so that the protein combination Originally produced
  • the FRET phenomenon is weakened by the enlargement of the distance of the fluorescent substance, and the emitted light of the detected fluorescent substance as the energy donor is enhanced compared with that before the addition, so that the pattern of competition of the antigen can be used for detecting the antigen in the specimen, such as type B.
  • the heavy chain variable region and the light chain variable region protein of the monoclonal antibody can be obtained by a genetic engineering method.
  • the variable region protein is a single domain antibody, and the size of a single molecule is only 1/12 of that of an intact IgG antibody. It is difficult to chimeric with a fluorescent protein or a photoprotein gene by genetic engineering to express a fusion protein that retains the activity of the original variable region antibody. Larger. Arai (Arai R, Ueda H, Tsumoto K, et al. Protein Engineering, 2000, 13(5): 369) -376; Arai R, Nakaga a H, Tsumoto, et al. Analytical Biochemistry, 2001, 289:77- 81.
  • the method of first fusion of the variable region with the Trx (thioredoxin) gene and then fusion with the GFP gene was used to maintain activity.
  • the present inventors conducted various exploratory studies on fusion expression of fluorescent proteins and variable region proteins, such as fusion of N-terminal or C-terminal fluorescent proteins of a variable region gene, direct fusion or fusion by flexible linker, and selection of various flexible linkers.
  • the fusion protein GaH described in the specific embodiment is finally determined, which not only maintains the antigen-binding activity of the heavy-chain variable region, but also maintains the fluorescent property of the fluorescent protein, and is easily purified by the His column, which is very suitable as Detection reagents.
  • variable region protein and the fusion protein of the variable region and the fluorescent protein gene of the present invention can be highly expressed by the already mature E. coli expression system, and the expression of the target protein in the form of inclusion bodies is reduced.
  • the degradation of cytoplasmic proteolytic enzymes to foreign proteins, the high expression yield is much higher than the soluble expression or secretion expression in the periplasmic cavity, and is conducive to further purification operations.
  • the optimized renaturation method can easily obtain the parent antibody and fluorescent protein.
  • the active high-yield purified protein ensures the production of detection reagents is simple, efficient and fast.
  • Figure 1 shows the results of competitive inhibition ELISA of MA18/7 variable region antibody and GFP fusion protein GaH
  • 8C11 is anti-HEV monoclonal antibody
  • 4D11 is anti-HBV pre-Sl monoclonal antibody
  • EGFPa-Fv is GaH and ML equivalent Mixed mixture.
  • Figure 2 shows the results of indirect ELISA of the MA18/7 variable region antibody fragment.
  • Figure 3 shows the indirect ELISA results of the fusion protein GaH, where ML2 is A light chain variable region antibody fragment of MA18/7, without 6 x ffis.
  • Figure 4 shows the quenching rate of the GaH and QL systems when different volumes of QL were added.
  • Figure 5 shows the results of detecting HBV pre-Sl antigen 21 ⁇ 47 in GaH and QL systems, of which 2147 is HBV pre-Sl 21 ⁇ 47 synthetic peptide.
  • Figure 6 shows the results of detecting HBV pre-Sl antigen C06 by GaH and QL systems, wherein C06 is HBV pre-Sl recombinant antigen.
  • Figure 7 shows the quenching rate of GaH, QC, and ML systems when QCs of different volumes are added.
  • Figure 8 shows the results of detecting HBV pre-Sl antigen 21 ⁇ 47 in GaH and QC ML systems.
  • Figure 9 shows the results of detecting HBV pre-Sl antigen C06 in GaH, QC, and ML systems.
  • variable region whole genes were synthesized.
  • VH Design a pair of specific primers for VH, VHF: 5,-GAA TTC GAT GTG CAG CTT CAG GAG-3' (SEQ ID NO: 2), VHR: 5,- AAG CTT TGC AGA GAC AGT GAC CAG-3' (SEQ ID NO: 3), design a pair of specific primers for VL, VLF: 5,- GAA TTC GAC ATT GAG ATG ACC CAG-3' (SEQ ID NO: 4), VLR: 5,- AAG CTT TTT CAG CTC CAG CTT G-3' (SEQ ID NO: 5), wherein the underlined portions are EcoR I and Hind III restriction sites, respectively.
  • the heavy chain VH and light chain VL genes were amplified by PCR using synthetic gene fragments as templates.
  • the amplification conditions were pre-denaturation at 94 °C for 5 min, followed by 94 °C 35s, 55 °C 35s, 72 °C 40s. 28 cycles, the last 72 ° C extension for 10 min.
  • the PCR product was recovered from the gel recovery kit, and the pMD-18T vector was ligated to obtain the cloning plasmid pT-MA18/7-VH and the plasmid pT-MA18/7-VL.
  • the VH fragment and the VL fragment were recovered by double-digesting the plasmid pT-MA18/7-VH and the plasmid pT-MA18/7-VL, respectively, using EcoR I/Hind III.
  • the prokaryotic expression plasmid pTO-T7 constructed in our laboratory for fusion or non-fusion expression of the gene of interest was selected, and the plasmid p ⁇ - ⁇ 7 was digested with EcoR I and Hind III, and the linear vector was recovered by ethanol precipitation, T4 DNA.
  • the ligase ligation vector and the fragment of interest gave recombinant expression vectors pTO-T7-MA18/7-VH and pTO-T7-MA18/7-VL.
  • Gene sequencing was performed to show that the sequence was consistent with that contained in GenBank.
  • the expression plasmids pTO-T7-MA18/7-VH and pTO-T7-MA18/7-VL were transformed into E. coli ER2566 strain, respectively, and single colonies were picked in 3 ml LB (containing Kan 100 ⁇ g/ml) medium. Incubate at 37 °C overnight, transfer the culture solution to 500 ml LB (containing Kan 100 /ml) medium, shake culture at 37 °C overnight, and add 0.2 mmol/L IPTG to induce the OD600 value of the bacterial solution to about 0.8.
  • the induction conditions were 37 ° C, 4H.
  • the cells were collected by centrifugation, suspended in 20 mmol/L Tris-Cl (pH 7.6), and sonicated under ice-water bath conditions.
  • the ultrasonic conditions were: output control -7, duty cycle -70%, working time _35 sec, repeated 10 times , every 5 minutes.
  • the inclusion body pellet and supernatant were separated by centrifugation at 12,000 rpm for 15 min.
  • the pellet was suspended in an equal volume of 20 mmol/L Tris-Cl (pH 7.6) with the supernatant, and an equal amount of the supernatant and the precipitate solution were subjected to SDS-PAGE electrophoresis.
  • the SDS-PAGE electrophoresis conditions are as follows: The concentration of the deposited glue is 5%, and the separation gel is concentrated. The degree was 15%. The results showed that the whole bacterial lysate of the engineered strain transformed with the plasmid pTO-T7-MA18/7-VH contained a specific induction expression band, and the expressed protein accounted for more than 60% of the total bacterial protein. The molecular weight is about 14 kD, which is similar to the theoretical expected value.
  • the whole bacterial lysate of the engineered strain transformed with plasmid pTO-T7-MA18/7-VH also contained a specific induction expression band, which accounted for more than 60% of the expressed protein, and the actual molecular weight of 13 kD was similar to the theoretical expected value. Both recombinant proteins are mainly present in the form of insoluble inclusion bodies.
  • the sample add 2 ml of washing buffer (PBS, 5 mM imidazole, pH 7.0), mix, let stand for 10 min at room temperature, collect the washing solution, add three times and add the elution buffer (PBS, 150 mM imidazole, pH 7.0). 2 ml, mix, rest at room temperature for 10 min, collect the eluate and repeat three times.
  • the eluate is the purified antibody MA18/7 variable region recombinant protein with a purity of more than 90%.
  • variable region fragment of the recombinant antibody was detected by competitive inhibition ELISA and indirect ELISA, respectively.
  • the method of competitive inhibition of ELISA is as follows: HBV pre-Sl 21 ⁇ 47 synthetic peptide is dissolved in 0.05 mol / L CB buffer ( 20.02g Na2C03, 2.52 g of NaHC03 plus deionized water to 1 L, pH 9.5), at a concentration of 1 ⁇ g/mL, adsorbed 2H on the surface of each well of a 96-well polyethylene plate under 37 conditions, and placed at 4 ° C overnight.
  • PBST wash (8.0g NaCl, 0.2g KH2P04, 2.9g Na2HP04 12H20, 0.2g C1, 0.5ml Tween 20, add deionized water to 1 liter, pH 7.4) to remove unbound antigenic protein .
  • the cells were then blocked with 200 ⁇ l/well blocking solution (2% gelatin, 0.2% casein and 2% sucrose in 1X PBS) for 2 hours at 37 °C. Clean and dry after vacuuming. The resulting 21 to 47 plates were stored at 4 ° C.
  • Monoclonal antibody 4D11 after mixing, incubate at 37 ° C for 1 h, wash 5 times with PBST, pat dry, then add substrate solution, B 50 L each (the composition of substrate A: 13.42g Na2HP04 12H20, 4.2g lemon Acid ⁇ 20 and 0.3g H2O2, add deionized water to 700ml;
  • the composition of substrate B is: 0.2g tetramethylbenzidine, 20ml dimethylformamide, plus deionized water to 700ml), 37°C After 15 min, the reaction was stopped by adding 50 ⁇ L of stop solution (2M H2S04), and the OD450/620 of each well was detected by a microplate reader.
  • the competitive binding of the HBV pre-Sl antigen i.e., the single heavy chain variable region and the light chain variable region fragment, did not have significant antigen binding activity.
  • the Fv segment formed by the equal mixing of the two has a competitive inhibition rate of more than 70% (Fig. 1), showing good antigen binding activity.
  • the indirect ELISA method was as follows: After the mixture of MH and ML was mixed in equal proportion, lOOul was added to the above coated 21-47 plates, incubated at 37 °C for 1 hour, washed with PBST for 5 times, and then dried. Then, add lOOul 1:2500 diluted HRP-labeled anti-6His antibody to each well, incubate at 37 °C for 30 min, add chromogenic substrate, B color for 15 min, and then terminate. The OD450/620 of each well was determined by microplate reader.
  • the plasmid pEGFP (purchased from Clontech) template was used to amplify the EGFPa gene by PCR (increase 3 x Ala), and the amplified fraction was: pre-denaturation at 94 °C for 5 min, then according to 94 °C 40s, 55 °C 35s, 72 °C 50s for 28 cycles, and finally 72 °C for 10 min, the gel recovery kit recovers the PCR product and clones into the pMD-18T vector, using BamH I/EcoR I double enzyme The target fragment was recovered after cutting.
  • the plasmid ph--7 was digested with BamH I/EcoR I, and the vector was recovered and ligated with the EGFPa fragment to obtain plasmid pTO-T7-EGFPa.
  • the plasmid pTO-T7-MA18/7-VH was digested with EcoR®/HindIII, the fragment was recovered, the plasmid pTO-T7-EGFPa was digested with EcoR®/HindIII, the vector was recovered, and the vector and fragment were ligated to obtain a recombinant fusion expression vector pTO. -T7-EGFPa-MA18/7-VH.
  • the plasmid pTO-T7-EGFPa-MA18/7-VH was transformed into E. coli ER2566 strain, and a single colony was picked from 3 ml LB (containing Kan 100 g/ml) medium. Incubate at 37 °C overnight, and transfer the bacterial solution to 500 ml LB (containing Kan 100 ⁇ g / ml) medium, 37. C shaking culture until the OD600 value of the bacterial solution reached 0.7 or so was induced by adding 0.1 mmol/L IPTG, and the induction condition was 20 ° C, 20H. The cells were collected by centrifugation, and the cells were observed to be visible in the green.
  • the cells were suspended with 20 mmol/L Tris-Cl (pH 7,6), sonicated under ice bath, sonicated and centrifuged to separate the precipitate and ultrasonic supernatant.
  • the 12% SDS-PAGE electrophoresis analysis showed that there was a cracking of the engineered bacteria.
  • the apparent expression of the protein band, its molecular weight is about 40 kD, which is equivalent to the theoretical expected value, and its expression amount accounts for about 20% of the total protein content of the bacteria, and mainly exists in the form of insoluble inclusion bodies.
  • Ultrasonic precipitation was washed twice with Buffer I (20 mM Tris-Cl, pH 8.5, 100 mM NaCl, 5 mM EDTA) and 2% Triton, and then dissolved with 2M, 4M and 8M urea respectively.
  • the urea sample was diluted with the same concentration of urea to the protein. The concentration was about 100 u g / ml, dialyzed with a slightly lower concentration of urea and continuously reduced the urea content until the protein was dialyzed into PBS, and the dialyzed sample was concentrated with PEG 20 000 to obtain the fusion protein GaH (SEQ ID NO: 1).
  • the primary purified material was subjected to metal ion affinity purification using a His column. Each solution was analyzed by 12% SDS-PAGE electrophoresis. The results showed that the fusion protein was mainly dissolved in 8M urea, and gradually refracted to PBS by dialysis at 4 °C. After renaturation and column purification, purified protein with a purity of more than 90% was obtained.
  • the purified product of GaH was observed directly by the naked eye, and its relative fluorescence intensity was up to 200 RFU.
  • the fusion protein was better able to maintain the fluorescence characteristics of green fluorescent protein, but compared with the equivalent concentration of E GFP protein. The fluorescence intensity is slightly reduced.
  • the antigen-binding activity of the purified product of the fusion protein alone and the mixture of the purified product and the VL fragment was determined by competitive inhibition ELISA and indirect ELISA, respectively.
  • the competitive inhibition ELISA sample is the fusion protein GaH, ML purified product and a mixture of the two.
  • the results show that the purified product alone has no competitiveness for HBV pre-Sl monoclonal antibody, no antigen binding activity, and the mixture can anti-pre-Sl single Anti-competitive, the competition inhibition rate reached more than 50% (Figure 1), with strong antigen binding activity.
  • the indirect ELISA procedure is the same as in Example 1.
  • the sample to be tested is the fusion protein purification product GaH, MA18/7 light chain variable region VL purified product ML2 (without 6 X His) and a mixture of the two, and the results are shown separately.
  • the OD value of the purified product of the fusion protein GaH and ML2 was only about 0.1, and the OD value of the mixture was 3.284, and the gradient showed a good gradient after dilution (Fig. 3), indicating that it can be well combined.
  • HB V pre-Sl antigen Example 3 Antibody Light Chain Variable Region Fragment Coupled Fluorescence Quencher
  • Recombinant protein ML purified by antibody MA18/7 light chain variable region VL was concentrated with PEG 20 000 at 4 ° C and then dialyzed into 0.1 M sodium bicarbonate buffer (pH 8.3 ) at 4 ° C. The concentration is 5.25 mg/ml, and 2 ml of the mixture is taken out and stirred slowly at room temperature, so as not to generate bubbles as much as possible.
  • the fluorescent quencher is QSY-35 produced by Molecular Probes, which is a succinimide ester with a molecular weight of 411.33. Carefully weigh 5.95 mg of the quencher in the dark, add 0.525 ml of DMF, and gently mix by inversion to a final concentration of 10 mg/ml.
  • the quenching agent was slowly added to the protein solution under electromagnetic stirring with a micropipette at room temperature in the dark, until all the 0.525 ml was added to make the protein and quencher in the final reaction system.
  • the ratio is 1:15.
  • the mixture was slowly stirred at room temperature for 1 h, then the reaction solution was moved to 4 ° C for 5 h, then transferred to a dialysis bag with an exclusion molecular weight of 3.5 kD, and dialyzed against PBS at 4 ° C every 2 h. Change the solution once, continuously change the solution more than 6 times, and collect the solution in the dialysis bag to protect it from light.
  • the GaH prepared as described in Example 2 was an energy donor (EGFPa-VH), and the QL prepared as described in Example 3 was a receptor (QSY35-VL).
  • EGFPa-VH energy donor
  • QSY35-VL receptor
  • a black 96-well empty plate was used as the detection plate, and the instruments used were fluorescent and chemical luminaires.
  • the purified fusion protein GaH concentration was 0.5 mg/mL as described above, GaH 80 L was added to each sample well, and the fluorescent quencher labeled protein QL solution was added, and the volumes were 0.5, 1, 1.5, 2, 2.5, 3, respectively. , 3.5, 4, 4.5, 5 L, mix and determine the relative fluorescence intensity of each well when the system is stable to calculate the corresponding quenching rate.
  • the 96-well assay plate was filled with 86 GaH solution per well, and then 4 QL was added to each well. The fluorescence value of each well was measured, and 10 ⁇ of the sample to be tested was added after stabilization.
  • the samples contained HBV pre-Sl antigens with different concentrations, and the 21 ⁇ 47 synthetic peptide and HBV pre-Sl antigen C06 dissolved in PBS were used as the detection object, and the fluorescence intensity of the detection wells after the sample to be tested was measured by using PBS as a control. The relative fluorescence intensity of the single well itself before and after the addition of the antigen was compared.
  • VH interacts with VL to form variable region fragment Fv
  • the two fluorophores EGFP and QSY35 are close to each other, reaching the FRET range and generating FRET phenomenon, excitation at 485 nm.
  • the energy donor EGFP emits green fluorescence at 510 nm, but most of the energy is transferred to the close energy receptor QSY35 for fluorescence quenching.
  • the antigen specifically binds to Fv, and its binding site is located at the antigen binding site of Fv, which is between VH and VL, thus widening the distance between EGFP and QSY35, and the energy transfer is weakened or even no longer occurs. Therefore, the fluorescence value of EGFP emission increases accordingly.
  • the test results also validated the process.
  • the fluorescence value before adding the sample to be tested is C, and the fluorescence value after the addition is set to D.
  • the fluorescence growth ratio of the single hole itself is M-D/C
  • the fluorescence growth ratio of the detection hole is the Fluorescence Increasing Ratio (FIR). Detection index, FIR - M/MPBS.
  • FIR Fluorescence Increasing Ratio
  • reaction system could detect the HBV preSl antigen present in the sample when the antigen concentration was above 3 g/ml, and the detection time was within 30 min.
  • HBV pre-Sl antigen coupled fluorescence quencher HBV pre-Sl antigen coupled fluorescence quencher
  • HBV pre-Sl recombinant antigen C06 purified protein (Yang Haijie. Exploratory study of therapeutic genetic engineering hepatitis B vaccine [D]. PhD thesis of Xiamen University, 2002, 8.) Concentrated with PEG 20, 000 at 4. The solution was dialyzed into 0.1 M sodium bicarbonate buffer (pH 8.3) at C, and the concentration was determined to be 7.08 mg/ml. 2 ml of the mixture was taken out and stirred slowly at room temperature, and air bubbles were not generated as much as possible.
  • the fluorescent quencher is QSY-35 produced by Molecular Probes, which is a succinimide ester with a molecular weight of 411.33. Carefully weigh 8.00mg of quenching agent in the dark, add 0.8ml of DMF, mix gently and invert to a final concentration of 10 mg/ml. 0. Use a micropipette to remove the quencher at room temperature and avoid light. The dropwise addition was slowly added to the protein solution under electromagnetic stirring until all of 0.8 ml was added, so that the ratio of the amount of the protein to the quencher in the final reaction system was 1:15. After the addition was completed, the mixture was slowly stirred at room temperature for 1H, and then the reaction solution was moved to 4 ° C to continue the reaction for 5H.
  • the pre- and post-labeled antigen C06 was subjected to 12% SDS-PAGE analysis, and Western blot analysis was carried out by using HRP-labeled HBV pre-Sl monoclonal antibody 4D11 diluted 1:2000 as the enzyme-labeled antibody.
  • the protein QC after labeling QSY35 was slightly larger than the molecular weight of C06, and the activity of antigen C06 before and after labeling was comparable, indicating that C06 labeled QS Y35 did not affect its reactivity with the corresponding antibody.
  • Example 6 GaH, ML and QC as a group of proteins to detect the presence and concentration of antigen in a sample
  • the fusion protein GaH prepared in Example 2 was mixed with an ML equimolar concentration, and the QSY35-labeled antigen QC prepared as in Example 5 was used to constitute the competitive detection reagent of the present invention, wherein the energy donor was EGFP.
  • the energy acceptor is the fluorescence quencher QSY35.
  • a black 96-well plate was used as the test plate, and the instrument used was a fluorescence and chemiluminescence instrument (Labsystem Fluoroskan Ascent FL).
  • the purified fusion protein GaH concentration was 0.5 mg/mL, and the ML concentration was 1 mg/mL.
  • the volume of the solution was mixed with GaH and MH1 in each sample well.
  • the volume of the solution was 80 L, and the fluorescent quencher was added.
  • the antigen QC solution the volume was 1 ⁇ 10 L, mixed and the relative fluorescence intensity of each well was determined after the system was stabilized to calculate the corresponding quenching rate.
  • the quenching rate of EGFP fluorescence increased with the increase of the amount of added system.
  • the quenching rate was basically stable after adding 8 L (Fig. 7). , showing that the solution is combined and dissociated at this time To reach balance. Because the optimal volume of the sample well is 100 L, for further convenience of detection, it is determined that 8 QC is added to the mixed solution of GaH and ML1 at 82 ⁇ , which is the optimum addition amount, thereby establishing the competitive detection system of the present invention.
  • GaH and light chain variable region protein ML were added to the wells of a 96-well assay plate, and then the antigen coupling solution QC was added to measure the fluorescence value of each well. After stabilization, 10 samples to be tested were added. The sample contained HBV preSl antigen with different concentrations. The 21 ⁇ 47 synthetic peptide and HBV pre-Sl antigen C06 dissolved in PBS were used as the test object. The fluorescence intensity of the test well was measured after adding the sample to be tested. The relative fluorescence intensity of the single well itself before and after the antigen.
  • the EGFP on VH and the QSY35 on the labeled antigen are close to each other, reaching the range in which FRET occurs, so the emission fluorescence of EGI generated by excitation at 485 nm is quenched. If the sample to be tested contains HBV pre-Sl antigen, it will compete with the labeled antigen in the test reagent, the distance between free QC and EGFP will be enlarged, and the quenching effect will be reduced or disappeared, so that enhanced green fluorescence can be detected. .
  • test results show (Fig. 8, 9) that the sample containing the antigen of interest can increase the fluorescence intensity of the whole reaction system, and the degree of increase of fluorescence intensity is positively correlated with the antigen concentration, while adding an equal volume of buffer control system.
  • the fluorescence intensity decreased slightly. This indicates that the system can be used to detect the presence of HBV pre-Sl antigen in specimens, and the detection time is within 30 min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Description

具有荧光共振能量转移特点的
蛋白组合及其用途 发明领域
本发明涉及一种具有荧光共振能量转移特点的蛋白组合, 其由 来自同一抗体的重链可变区蛋白和轻链可变区蛋白, 和任选的, 由该抗体识别的特异性抗原组成, 其中, 重链可变区蛋白和轻链 可变区蛋白中的任一个, 或者任选的该抗体识别的特异性抗原, 分别带有作为能量供体的荧光物质(或化学发光物质),或者带有 作为能量受体的荧光淬灭物质。 本发明还涉及利用该蛋白组合检 测样本中目标抗原的方法, 以及含有该蛋白组合的检测样本中目 标抗原的试剂盒。 背景技术
免疫检测技术是一种超微量的生物分析技术, 它利用了抗原 -抗体间免疫反应的高度亲和性以及作为探针的标记物的高度可 测性, 能够对生物体内微量、超微量的物质进行准确的定量测量, 具有操作简单、 特异性好、 灵敏度高等优点, 是疾病诊断和医学 研究的重要方法。 按照标记物的不同, 免疫分析主要可以分为放 射性免疫分析( RIA )、 酶免疫分析( EIA )、发光免疫分析 ( LIA ) 和荧光免疫分析( FIA )。 免疫检测的自动化和简便化是免疫检测 发展的最主要方向, 需要更好的提高检测的自动化程度和快速准 确性。 目前基因工程、 细胞工程和酶工程技术开发的重组抗原、 单克隆抗体及酶技术已逐步取代原有免疫诊断试剂, 为各种疾病 的诊断增加了新型的有效试剂盒。
免疫分析可在不同的相态下进行反应分析, 根据反应系统的 物理状态的不同, 可以分为均相免疫分析和非均相免疫分析。 在 现有的免疫检测中, 非均相相免疫法以 RIA和 EIA应用最为广 泛, 但非均相免疫分析需要一个将结合与未结合游离标记物的分 离步骤, 即在定性或定量分析之前必须尽可能的去除过量的未结 合的标记试剂, 从而提高信噪比和分析的灵敏度, 因而操作相对 复杂。 分析游离相与结合相是关键, 也最容易产生误差。 而且由 于包括了包被(抗原或抗体)、 封闭、 多次孵育和洗涤以及检测等 过程, 最快的也需 2小时以上。
均相免疫测定因其具有不需要分离结合与未结合分子即可直 接测定以及均相反应较固相、 半固相反应更为迅速的特点, 成为 目前免疫检测技术研究中的重要方向。 其中均相荧光免疫分析 ( homogeneous fluorescence immunoassay 7 hFIA ) 在抗原抗体 反应完成后, 无需将已结合的和游离的标记物加以分离, 可以直 接进行测定, 操作简单快捷, 易于实现自动化, 得到了广泛的应 用。
荧光共振能量转移 (Fluorescence Resonance Energy Transfer,
FRET )是指两个不同的荧光基团中, 如果一个供体基团的发射光 谱与另一个受体基团的激发光谱有一定的重叠, 当两个荧光基团 的距离足够近时就会发生的荧光能量从供体向受体转移的现象。
1948年 Fdrster首次提出 FRET的发生过程, 认为一对合适的荧 光物质可以构成一个能量供体(Donor ) 和能量受体( Acceptor ) 对, 它们之间由于偶极-偶极的相互作用, 激发供体分子的光子 能量可能被传递至受体分子, 之后受体分子通过发射出能量降低 的光子而松弛, 其直观的表现就是供体和受体之间达到合适的距 离内 (l-10nm ) 以供体的激发光激发, 供体产生的荧光强度比它 单独存在时要低得多而受体发射的荧光却大大增强, 同时伴随着 供受体荧光寿命的相应缩短或延长。
1976 年 Ullman 等人首先提出了基于荧光共振能量传递的 hFIA , 即均相荧光共振免疫测定 (Homogeneous Fluorescence resonance immunoassay, hFRIA ), 实现了抗原 -抗体反应的均相 测定 (Ullman E F,Schwarzberg M, Rubenstein K E. J Biol chem, 1976, 251(14): 4172-4178)。
目前均相荧光共振免疫测定已应用于检测抗原。 Ueda 等 [Ueda H, Kubota K, Wang Y, et al. Biotechniques, 27( 4 ): 738-742 ( 1999 ) 1用琥珀酰亚胺脂和荧光黄 -X 分别标记抗体的重链和轻 链, 两者在比色杯中混合后再加入抗原, 抗原抗体的特异结合, 使琥珀酰亚胺脂与荧光黄 -X靠近, 用 490nm波长激发琥珀酰亚 胺脂, 检测到 520nm发射光减弱, 605nm的发射光增强, 随着抗 原量的增加, 605nm的荧光亦增强。 在检测中需要同时监测两个 不同波长的发射光强度。
在专利文献 CN1136450C 中提出了通过一对荧光标记的蛋白 检测标本中抗体存在的方法, 但由于其需要进行全波长扫描才能 看出 FRET信号的变化, 因此必须具备荧光全旙仪等相对较为昂 贵、 要求较高的全波长扫描仪器, 使其应用受到了一定的限制。
抗体 Fv由重链可变区 VH和轻链可变区 VL通过非共价键结 合在一起, 是抗体中具有完整抗原结合位点的最小功能片段。 可 变区之间的相互作用可以应用于荧光共振免疫检测。 Arai等 [Arai R,Ueda H,Tsumoto K,et al. Protein Engineering, 2000, 13(5):369-376.]改进了均相免疫测定技术,提出开放三明治荧光免 疫测定 ( open sandwich fluoroimmunoassay )。通过对基因工程萩 得的重链可变区和轻链可变区分别标记绿色荧光蛋白的光谱异构 体, 形成一个检测体系, 加入特异抗原, 组合出免疫复合物, VH 和 VL被重组在一起,标记的供受体对也聚到一起,检测到 FRET 的发生。 通过这种方法检测到鸡蛋溶菌酶 (HEL ) 及其抗体 HyHEL-10的可变区之间的特异性结合。之后又对此进行了改进, 能量供体选用了生物发光物质 Renilla 荧光素酶, 提高了检测的 灵敏度 [Arai R,Nakagawa H,Tsumoto K,et al. Analytical Biochemistry, 2001,289:77-81】。 但是, 他们在研究中需要考虑能 量供体和能量受体两个方面的因素, 如前者要以 EBFP 360nm激 发, 分别测量 444nm的 EBFP荧光强度和 506nm的 EGFP荧光 强度, 后者要同时检测 475nm和 525nm的荧光强度, 并且必须 根据两个不同波长发射光强度建立检测抗原的指标, 因而能够同 时检测双波长的昂贵仪器成为必要。 另外, 上述两者又都局限在 非竟争模式的检测方法。
因此, 为了能够克服上述不足之处, 使免疫检测方便、 快捷, 检测成本降低, 本发明致力于利用符合 FRET特征的能量供 /受 体荧光基团, 建立一类新型的均相荧光共振免疫检测试剂及检测 方法, 以快速、 准确的检测标本中的抗原。 发明内容
本发明的一个方面涉及一种具有荧光共振能量转移特点的蛋 白组合, 其由来自同一抗体的重链可变区蛋白和轻链可变区蛋白 组成, 其中, 重链可变区蛋白和轻链可变区蛋白中的一个带有作 为能量供体的荧光物质或者化学发光物质, 另一个则带有作为能 量受体的荧光淬灭物质, 其中, 所述作为能量供 /受体的荧光物 质和荧光淬灭物质为符合荧光共振能量转移 (FRET ) 特征的试 剂。
已知符合 FRET特征的能量供 /受体荧光基团之间发生有效 的能量转移的条件是相当苛刻的, 必须满足以下几个条件: (1 ) 供体的发射光谱与受体的激发光谱必须重叠; (2 )供体与受体的 荧光生色团必须以适当的方式排列; (3 )供 /受体的激发光谱、 发射光谱都要分得足够开; (4 )供 /受体之间必须距离足够近, 达到 FRET发生的距离范围。 因此特定能量供 /受体的选择对于 FRET的发生至关重要, 也是基于 FRET的方法和应用需要重点 解决的难点之一。
荧光淬灭物质是一类特殊的物质, 其只有激发光而没有发射 光, 由于光激发而产生的能量以热能等方式而非以光能的形式散 发出去。本发明以荧光淬灭物质作为整个 FRET体系的能量受体, 则当发生 FRET时, 以能量供体的激发波长激发后, 供体的能量 转移给受体而能量降低, 荧光强度降低, 而能量受体为荧光淬灭 物质, 没有新的发射光产生, 因而只需检测能量供体在其发射波 长处的荧光强度变化就可以知道整个体系 FRET变化情况, 成为 监测体系 FRET变化的最为有效、 最为方便的指标, 同时由于最 大限度的排除了能量受体发射光的干扰, 使检测背景更为清晰, 实现起来更为容易。
荧光蛋白和发光蛋白尤其是绿色荧光蛋白 (GFP ) 是近年来 出现的革命性的标记分子。 GFP是一类存在于水母、 水螅和珊瑚 等腔肠动物体内的生物发光蛋白。 在对其关键残基进行一系列修 饰和突变后, 获得了多种性能更加优良的光谱异构体。 目前报道 的主要有绿色荧光蛋白 (GFP )、 蓝色荧光蛋白 (BIT )、 黄色荧 光蛋白 (ΥΓΤ )、 青色荧光蛋白 (CFP ) 和红色荧光蛋白 (RFP ) 等。 GFP的各种突变型很适合作为 FRET的特异荧光团。 其优点 在于 GFP能够与目的蛋白融合表达, 因而标记比恒定, 避免了化 学标记的过标记或标记不足的缺点, 而且其光谱异构体包括了从 紫外到红色等较长的波长范围, 提供了应用上的多种选择。 对于 化学合成荧光物质和稀土元素, 由于研究历史较久, 因而其荧光 特性已有相当的了解, 经双功能交联剂修饰后可以对多种蛋白的 氨基、 羧基或者巯基等基团进行标记, 具有荧光量子产率高、 反 应后荧光光谱变化显著、 易于检测的优点, 可以作为 FRET的能 量供受体。
在本发明中, 适于所述作为能量供体的荧光物质优选的, 选 自荧光蛋白、 荧光素、 稀土元素等荧光物质, 更优选的, 选自绿 色荧光蛋白(GFP ),蓝色荧光蛋白(BFP ),黄色荧光蛋白(YFP ), 青色荧光蛋白 (CFP ) 和红色荧光蛋白 (RFP ) 的荧光蛋白, 最 优选的, 作为能量供体的荧光物质为绿色荧光蛋白。 在本发明, 适于作为能量供体的化学发光物质选自发光蛋白和鲁米诺、 过氧 草酸盐。在本发明中适于作为能量受体的荧光淬灭物质为 QSY-35 (分子标记公司)。
具体的, 选择一对来自同一抗体的重链可变区和轻链可变区 蛋白,分别标记荧光特性能够满足发生 FRET的能量供受体对(其 中能量受体限定为荧光淬灭物质) 而得到荧光重链可变区 (VH ) 和荧光轻链可变区 (VL )。 根据免疫球蛋白的分子结构和抗原抗 体特异性反应的原理, 特定的荧光 VH与 VL互相结合形成 IV 结构, 将两种荧光物质的距离拉近, 达到 FRET的有效发生范围 l ~ 10nm而发生 FRET现象。 一旦加入相应抗原后, 由于抗原与 Fv的特异结合, 抗原结合到 VH与 VL之间的抗原结合位点, 相 应的拉长了两种荧光物质的距离, 使 FRET现象减弱, 荧光淬灭 減弱, 从而能量受体的发射光增强。
通过相应的荧光检测仪器测定能量供体发射光荧光强度的变 化, 可以判断待测样品中是否有针对所选抗体的特异性抗原的存 在。 本发明所述组合蛋白通过利用具有 FRET特征的能量供 /受 体试剂, 有效的避免了双波长检测的繁杂和能量受体发射光的干 扰, 满足方便、 快捷、 准确的应用要求。
在本发明的一个具体实施方案中, 涉及一种具有荧光共振能 量转移特点蛋白组合, 其中所述带有作为能量供体的荧光物质的 融合蛋白为由来自抗 HBV pre-Sl单克隆抗体 MA18 / 7的重链可 变区与增强型绿色荧光蛋白 EGFP组成的 GaH,所述带有作为能 量受体的荧光淬灭物质的融合蛋白为由来自抗 HBV pre-Sl单克 隆抗体 MA18 / 7的轻链链可变区与荧光淬灭剂 QSY一 35组成的 QL。
本发明人经研究发现具有 FRET特征的蛋白组合, 可以应用 于检测标本中抗原的存在, 且该检测具有方便、 快捷、 迅速, 易 于实现和高特异性的特点, 可以用于疾病检测中。
本发明另一方面涉及一种具有荧光共振能量转移特点的蛋白 组合, 其由来自同一抗体的重链可变区蛋白和轻链可变区蛋白以 及由所述抗体识别的特异性抗原组成, 其中当选自所述重链可变 区蛋白和轻链可变区蛋白中的一个带有作为能量供体的荧光物质 或者化学发光物质时, 所述抗体识别的特异性抗原带有作为能量 受体的荧光淬灭物质; 而当选自所述重链可变区蛋白和轻链可变 区蛋白中的一个带有作为能量受体的荧光淬灭物质时, 所述抗体 识别的特异性抗原带有作为能量供体的荧光物质或者化学发光物 质, 且所述作为能量供 /受体的荧光物质和荧光淬灭物质为符合 荧光共振能量转移 (FRET )特征的试剂对。
具体的, 选择一种与待测抗原具有相同表位的抗原蛋白, 和 特异识别此抗原的抗体的重链可变区或轻链可变区蛋白, 分别标 记荧光特性能够满足发生 FRET的能量供受体对(其中能量受体 限定为荧光淬灭剂),再加上无荧光标记的相应的抗体轻链可变区 或重链可变区蛋白, 根据抗原抗体特异反应的原理, 抗原与抗体 重链可变区蛋白和轻链可变区蛋白构成的 Fv 片段特异结合, 则 两种荧光物质距离拉近,达到发生 FRET的距离要求以内,即 1 ~ 10nm, 而发生 FRET现象。 加入待测抗原后, 待测抗原与荧光标 记的抗原蛋白竟争而减弱了 FRET现象, 荧光淬灭作用减弱, 相 应的能量供体的发射光增强。 测定能量供体发射光荧光强度的变 化, 可以判断待测样品中是否有特异抗原的存在。
本发明的这一组蛋白中涉及荧光淬灭物质, 有效的避免了双 波长检测的繁杂和能量受体发射光的干扰, 满足方便、 快捷、 准 确的应用要求。
本发明又一方面涉及一种用于检测样本中目标抗原存在的方 法, 其包括 1 )在适于所述待测抗原与权利要求 1所述的蛋白组 合中所述抗体结合的条件下,将待测样本与所述蛋白组合相接触; 和 2 )检测待测样本与所述蛋白组合相互接触前后能量供体的相 对荧光强度的变化, 判断待测样本中与所述抗体之重链可变区蛋 白和 /或轻链可变区蛋白特异结合的抗原的存在。
根据本发明的一个具体实施方案,为检测标本中 HBV pre-Sl 抗原的存在与否, 本发明人选择抗 HBV pre-Sl 单克隆抗体 MA18/7 的重链可变区和轻链可变区蛋白, 将重链可变区通过一 段 3个 Ala的柔性 linker与增强型绿色荧光蛋白 (EGFP )相连 接构成作为能量供体的融合蛋白 GaH,将轻链可变区蛋白与荧光 淬灭剂 QSY35 ( Molecular Probes公司产品, 属乙酸琥珀酰亚胺 酯类)化学偶联构成作为能量受体的蛋白 QL, 二者共同构成检 测试剂。以 485nm激发,检测能量供体 EGFP最大发射光 510nm 的荧光强度。 当加入存在 HBV pre-Sl抗原的样品时, 荧光强度 较加入样品前升高, 而加入不含 HBV pre-Sl抗原的样品时荧光 强度略有降低。因此由上述 GaH和 QL组成的蛋白组合可以应用 于 HBV检测。
根据本发明的又一具体实施方案, 为检测标本中 HBV pre-Sl 抗原的存在与否, 本发明人选择了抗 HBV pre-Sl 单克隆抗体 MA18/7的重链可变区和轻链可变区蛋白, 以及 HBV pre-Sl抗原 C06, 将重链可变区通过一段 3个 Ala的柔性 linker与增强型绿 色荧光蛋白(EGFP )相连接构成作为能量供体的融合蛋白 GaH, 将 HBV pre-Sl抗原 C06与荧光淬灭剂 QSY35化学偶联构成作为 能量受体的蛋白 QC, 将 GaH、 QC和轻链可变区蛋白 ML共同 构建一套新的蛋白组合作为检测试剂。 以 485nm激发, 检测能量 供体 EGFP 最大发射光 510nm 的荧光强度。 当加入存在 HBV pre-Sl抗原的样品时, 荧光强度较加入样品前升高, 而加入不含 HBV pre-Sl抗原的样品时荧光强度略有降低。 因此由上述 GaH、 QC和 ML组成的蛋白组合可以应用于 HBV检测。
本发明还涉及用于疾病检测的试剂盒, 其特征在于包括本发 明所提供的任一蛋白组合及相应的緩冲液。 由于本发明采用的同 一抗体的重链可变区和轻链可变区蛋白之间为非共价结合, 不同 pH值的緩沖液会在一定程度上影响到二者之间或二者与抗原之 间的结合, 因此本发明釆用中性或 pH值为弱碱性的 PBS作为緩 沖液, 以使这个检测体系更趋于稳定。
根据本发明, 本发明的蛋白组合中所选择的抗原来自病毒、 细菌、 真菌、 支原体、 衣原体、 肿瘤相关抗原或其他具有抗原决 定簇的物质。 蛋白组合中的荧光标记抗原与待测抗原要求具有相 同的抗原表位, 这样当待测抗原加入蛋白组合时会因为二者之间 对同一抗体结合位点的结合而发生竟争, 使蛋白组合原来产生的
FRET现象因为荧光物质距离的拉大而减弱, 检测到的作为能量 供体的荧光物质的发射光较加入前增强, 因此可以将此抗原竟争 的模式用于检测标本中的抗原, 如乙型肝炎病毒抗原、 丙型肝炎 病毒抗原、 戊型肝炎病毒抗原等。
通过基因工程的方法可以获得单克隆抗体的重链可变区和轻 链可变区蛋白。 可变区蛋白作为单域抗体, 单个分子大小仅相当 于完整 IgG抗体的 1/12, 通过基因工程的方法与荧光蛋白或发光 蛋白基因嵌合并表达保持原有可变区抗体活性的融合蛋白难度较 大。 Arai ( Arai R,Ueda H,Tsumoto K,et al. Protein Engineering, 2000,13(5):369 ) -376; Arai R,Nakaga a H,Tsumoto ,et al. Analytical Biochemistry, 2001,289:77-81. )在上迷两项研究中均采 用了首先将可变区与 Trx (硫氧还蛋白)基因融合表达后再与 GFP 基因融合的方法来保持活性。 本发明人对荧光蛋白与可变区蛋白 融合表达进行了多种探索性研究,如可变区基因 N末端或 C末端 融合荧光蛋白, 直接融合或者通过柔性 linker融合以及多种柔性 linker 的选择等, 最终确定了具体实施方式中所述的融合蛋白 GaH, 其既保持了重链可变区的抗原结合活性, 又保持了荧光蛋 白的荧光特性, 而且通过 His柱很容易进行纯化, 非常适宜作为 检测试剂。
而且, 本发明所涉及的可变区蛋白和可变区与荧光蛋白基因 融合表达的融合蛋白, 均可以利用已经十分成熟的大肠杆菌表达 系统进行高效表达, 以包含体的形式表达目的蛋白减少了细胞质 内蛋白水解酶对外源蛋白的降解, 表达产量高远远高于可溶性表 达或周质腔分泌表达, 且有利于进一步的纯化操作, 优化的复性 方法能够比较容易的得到保持亲本抗体和荧光蛋白活性的高产量 的純化蛋白, 保证了检测试剂生产的简单、 高效、 快速。 以下结合附图和实施例详细说明本发明。 附图说明
图 1显示 MA18/7可变区抗体及 GFP融合蛋白 GaH的竟争 抑制 ELISA结果, 8C11为抗 HEV单克隆抗体, 4D11为抗 HBV pre-Sl单克隆抗体, EGFPa-Fv为 GaH与 ML等量混合的混合物。
图 2显示 MA18/7可变区抗体片段间接 ELISA结果。
图 3显示融合蛋白 GaH的间接 ELISA结果, 其中 ML2为 MA18/7的轻链可变区抗体片段, 不带有 6 x ffis。
图 4显示加入不同体积的 QL时 GaH、 QL体系的淬灭率。 图 5显示以 GaH、 QL体系检测 HBV pre-Sl抗原 21 ~ 47的结 果, 其中 2147为 HBV pre-Sl 21 ~ 47合成肽。
图 6显示以 GaH、QL体系检测 HBV pre-Sl抗原 C06的结果, 其中 C06为 HBV pre-Sl重组抗原。
图 7显示加入不同体积的 QC时 GaH、 QC, ML体系的淬灭 率。
图 8显示以 GaH、 QC ML体系检测 HBV pre-Sl抗原 21 ~ 47的结果。
图 9显示以 GaH、 QC, ML体系检测 HBV pre-Sl抗原 C06 的结果。 实施例
下面结合具体实施例与附图,对本发明进一步加以描述。所述 实施例旨在以举例方式具体阐明本发明。 载体和宿主的选择以及 试剂的浓度、 温度和其他变量的值只是举例说明本发明的应用, 而不构成对本发明的限制。 实施例 1 MA18/7可变区抗体片段重组蛋白的制备与性质分析
根据单克隆抗体 MA18/7的重链可变区 VH序列 (GenBank 登录号: AJ002098 )和轻链可变区 VL序列 (GenBank登录号: AJ002099 ), 分别合成两段可变区全基因。 针对 VH设计一对特 异引物, VHF: 5,-GAA TTC GAT GTG CAG CTT CAG GAG-3'(SEQ ID NO:2), VHR: 5,- AAG CTT TGC AGA GAC AGT GAC CAG-3'(SEQ ID NO:3), 针对 VL设计一对特异引物, VLF: 5,- GAA TTC GAC ATT GAG ATG ACC CAG-3'(SEQ ID NO:4), VLR: 5,- AAG CTT TTT CAG CTC CAG CTT G-3'(SEQ ID NO:5), 其中划线部分分别为 EcoR I和 Hind III酶切位点。 以人工合成基因片段为模板分别通过 PCR扩增重链 VH和轻链 VL基因, 扩增条件是 94°C预变性 5 min, 然后按照 94 °C 35s, 55 °C 35s, 72 °C 40s进行 28个循环, 最后 72°C延伸 10min。 胶 回收试剂盒回收 PCR产物, 连接 pMD-18T载体得到克隆质粒 pT-MA18/7-VH和质粒 pT-MA18/7-VL。 用 EcoR I/Hind III分别 双酶切质粒 pT-MA18/7-VH和质粒 pT-MA18/7-VL, 胶回收试剂 盒回收 VH片段和 VL片段。
表达质粒选择本实验室构建的可用于目的基因的融合或非 融合表达的原核表达质粒 pTO-T7, 将质粒 ρΤΟ-Τ7用 EcoR I和 Hind III双酶切, 乙醇沉淀法回收线性载体, T4 DNA连接酶连 接载体和目的片段, 得到重组表达载体 pTO-T7-MA18/7-VH 和 pTO-T7-MA18/7-VL。 对其分别进行基因测序可知其序列与 GenBank所载一致。
表达质粒 pTO-T7-MA18/7-VH和 pTO-T7-MA18/7-VL分别 转化 E.coli ER2566菌株,挑取单菌落于 3 ml LB (含 Kan 100 μ g/ml )培养基中, 37°C振荡培养过夜, 转接菌液于 500 ml LB (含 Kan 100 /ml )培养基中, 37°C振荡培养过夜, 菌液 OD600值 达 0.8左右时加入 0.2 mmol/L的 IPTG诱导, 诱导条件为 37°C, 4H。 离心收集菌体, 用 20mmol/L Tris-Cl ( pH7.6 ) 悬浮, 冰水 浴条件下超声破碎, 超声条件为: 输出控制 -7, 占空因数 -70 % , 工作时间 _35sec,重复 10次,每次间隔 5min。12000rpm离心 15min 以分离包含体沉淀和上清, 沉淀用与上清等体积的的 20mmol/L Tris-Cl ( pH7.6 ) 悬浮, 取等量上清和沉淀溶液进行 SDS-PAGE 电泳。
SDS - PAGE电泳条件具体为: 堆积胶浓度为 5 %, 分离胶浓 度为 15 %, 结果显示转化了质粒 pTO-T7-MA18/7-VH的工程菌 的全菌裂解物含有一条特异的诱导表达带, 表达蛋白约占菌体总 蛋白的 60 %以上, 其实际分子量约 14 kD, 与理论预期值近似。
而转化了质粒 pTO-T7-MA18/7-VH 的工程菌的全菌裂解物 也含有一条特异的诱导表达带, 表达蛋白约占 60 %以上, 实际分 子量 13 kD也与理论预期值相近。 两种重组蛋白均主要以不溶性 的包涵体的形式存在。
超声沉淀先后用 Buffer I ( 20 mM Tris-Cl, pH8.5,100 mM NaCl, 5 mM EDTA ) 和 2%Triton洗涤两次后分别用 2M、 4M 和 8M尿素溶解, 各溶解液用 15 % SDS"PAGE 电泳分析。 结果 MH主要溶于 8M尿素中, ML主要溶于 4M尿素中。 将溶解在 尿素中的抗体可变区片段用同浓度的尿素稀释至蛋白浓度约 100 ug/ml, 10°C条件下用浓度相对较低的尿素透析并不断減少尿素含 量直至将蛋白透析到 PBS中, 以 PEG20 000在 4°C下浓缩透析后 样品, 得抗体片段初步纯化产物。
轻摇 His纯化 Talon试剂瓶, 使 Talon树脂混匀, 吸取 2ml 上柱, 用 20ml 4°C预冷的 PBS平衡两次, 堵住出样口, 加入抗体 片段初步纯化样品, 混匀, 4°C放置 2H, 期间每隔 lOmin轻摇柱 子, 打开出样口, 收集穿透峰, 用 PBS洗柱 3次, 每次静置 3min 后将 PBS放干。堵住出样口,加入洗涤 buffer ( PBS, 5mM咪唑, pH7.0 ) 2ml, 混匀, 室温静置 lOmin, 收集洗涤液, 重复三次后 加入洗脱 buffer ( PBS, 150mM咪唑, pH7.0 ) 2ml, 混匀, 室温 静置 10min, 收集洗脱液, 重复三次。 洗脱液即为纯化后的抗体 MA18/7可变区重组蛋白, 其纯度在 90 %以上。
分别采用竟争抑制 ELISA法和间接 ELISA检测重组抗体可 变区片段的活性。 竟争抑制 ELISA法的方法如下: HBV pre-Sl 21 ~ 47合成肽溶解于 0.05 mol/L CB buffer ( 20.02g Na2C03, 2.52g NaHC03加去离子水至 1 L, pH9.5 ), 浓度为 1 μ g/mL, 37 条件下在 96孔聚乙烯板的各孔表面吸附 2H, 再置 4°C过夜。 用 PBST 洗 涤液 ( 8.0g NaCl , 0.2g KH2P04 , 2.9g Na2HP04 12H20, 0.2g C1, 0.5ml吐温 20,加去离子水至 1升, pH为 7.4 ) 洗涤滴定板以除去未结合的抗原蛋白。 然后用 200 μ 1/孔的封闭液( 1 X PBS溶液中加入 2%明胶、 0.2%酪蛋白和 2% 蔗糖) 37°C封闭 2小时。甩净、拍干后真空封闭。最终得到的 21 ~ 47板放于 4°C保存。
检测时每孔中加入 50 μ L不同待测样本, 样本包括纯化后的 MH、 ML以及 MH和 ML混合物, 以 PBS为对照, 再加入 50 μ L按 1/1000稀释 HRP标记的 HBV pre-Sl单抗 4D11 , 混匀后 37°C温育 lh, 用 PBST洗涤 5次, 拍干后先后加入底物液 、 B 各 50 L (底物液 A的成分为: 13.42g Na2HP04 12H20, 4.2g 柠檬酸 ·Η20和 0.3g H2O2, 加去离子水至 700ml; 底物液 B的成 分为: 0.2g 四甲基联苯胺, 20ml 二甲基甲酰胺, 加去离子水至 700ml ), 37°C显色 15min, 加入 50 μ L终止液( 2M H2S04 ) 终 止反应, 用酶标仪检测各孔的 OD450/620。
一般以竟争抑制达到 50 %以上者视为阳性。 结果显示, MA18/7 的重链和轻链可变区两个抗体片段都不能单独参与对
HBV pre-Sl抗原的竟争结合,即单独的重链可变区和轻链可变区 片段都不具有明显的抗原结合活性。而二者等量混合后形成的 Fv 段,竟争抑制率达 70 %以上(图 1 ),显示了良好的抗原结合活性。
间接 ELISA法如下: 将 MH和 ML等量混合后的混合物进 行倍比稀释后, 分别加 lOOul到上述包被好的 21 ~ 47板中, 37 °C孵育 1小时, PBST洗涤 5次后扣干,然后每孔加入 lOOul 1:2500 稀释的 HRP标记 anti-6His抗体, 37°C孵育 30min, 加入显色底 物 、 B显色 15min后终止, 用酶标仪测定每孔的 OD450/620。 结果显示单独的重链可变区或轻链可变区片段 OD值仅 0.1左右, 而二者等量混合后形成的 Fv段原液 OD值为 3.685, 稀释 8倍后 为 0.627 (图 2 ) ,显示 Fv有较好的特异性结合抗原的活性。 实施例 2 MA18/7重链可变区与 EGFP融合蛋白 GaH的制备与 性质分析
根据 EGFP基因 (GenBank登录号: U76561 ) 的序列合成 两条引物, 分别为上游引物 SHGF: GGA TCC ATG GTG AGC AAG GGC GAG(SEQ ID NO:6);下游引物 EGR: GAA TTC TGC AGC GGC CTT GTA CAG CTC GTC CAT G(SEQ ID NO:7), 划 线部分分别为 8&11111 1和£(:01^ 1酶切位点。 另外在 EGR引入的 酶切位点之后加入一段短的 DNA序列, 使其能够表达成 3个丙 氨酸作为 GFP与 VH之间的柔性连接,同时为了进一步克隆需要 而去除了 EGFP的 TAA终止子。
以 SHGF和 EGR为引物, 以质粒 pEGFP为(购自 Clontech 公司)模板通过 PCR方法扩增 EGFPa基因 (增加了 3 x Ala ), 扩 增奈件为: 94 °C预变性 5 min, 然后按照 94 °C 40s, 55 °C 35s, 72 °C 50s进行 28个循环, 最后 72 °C延伸 10 min, 胶回收试剂盒 回收 PCR产物, 并克隆至 pMD-18T载体, 用 BamH I/EcoR I双 酶切后回收目的片段。 用 BamH I/EcoR I 双酶切表达质粒 ρΤΟ-Τ7 , 回收载体后与 EGFPa 片段连接, 得到质粒 pTO-T7-EGFPa 。 用 EcoR Ι/HindIII 酶 切 质 粒 pTO-T7-MA18/7-VH, 回收片段, 用 EcoR Ι/HindIII 酶切质粒 pTO-T7-EGFPa, 回收载体, 连接上述载体与片段后得到重组融 合表达载体 pTO-T7-EGFPa-MA18/7-VH。
将质粒 pTO-T7-EGFPa-MA18/7-VH转化大肠杆菌 ER2566 菌林, 挑取单菌落于 3 ml LB (含 Kan 100 g/ml )培养基中, 37°C振荡培养过夜, 转接菌液于 500 ml LB (含 Kan 100 μ g /ml ) 培养基中, 37。C振荡培养至菌液 OD600值达 0.7左右时加入 0.1 mmol/L的 IPTG诱导, 诱导条件为 20°C , 20H。 离心收集菌体, 可见菌体呈肉眼可见的明显的绿色。
用 20mmol/L Tris-Cl ( pH7,6 )悬浮菌体, 冰水浴奈件下超声 破碎, 超声破碎后离心分离沉淀和超声上清, 用 12 % SDS-PAGE 电泳分析可见工程菌裂解产物有一条明显的表达蛋白带, 其分子 量约 40 kD, 与理论预期值相当, 其表达量占菌体总蛋白量的 20 %左右, 且主要以不溶性的包涵体的形式存在。 超声沉淀先后用 Buffer I ( 20 mM Tris-Cl, pH8.5,100 mM NaCl, 5 mM EDTA ) 和 2%Triton洗涤两次后分别用 2M、 4M和 8M尿素溶解, 以同 浓度尿素稀释尿素样品至蛋白浓度约为 100 ug/ml,用浓度稍低的 尿素透析并不断减少尿素含量直至将蛋白透析到 PBS 中, 以 PEG20 000浓缩透析后样品,得融合蛋白 GaH ( SEQ ID NO: 1 )。
用 His 柱对初纯物进行金属离子亲和纯化。 各溶液用 12 % SDS-PAGE电泳分析。结果表明融合蛋白主要溶解在 8M尿素中, 4°C下逐步对 PBS透析复性, 对其进行复性及柱纯化后能获得纯 度达 90 %以上的純化蛋白。 GaH纯化产物直接用肉眼观察呈明显 的绿色, 用荧光仪测定其相对荧光强度可达 200 RFU, 显示融合 蛋白较好的保持了绿色荧光蛋白的荧光特性, 但与浓度相当的 E GFP蛋白相比荧光强度略有降低。
分别以竟争抑制 ELISA法和间接 ELISA法测定单独的融合 蛋白纯化产物以及纯化产物与 VL 片段的混合物的抗原结合活 性。
竟争抑制 ELISA法待测样本为融合蛋白 GaH、 ML纯化产 物及二者的混合物, 结果显示单独的纯化产物对 HBV pre-Sl单 抗无竟争能力, 没有抗原结合活性, 而混合物则能与抗 pre-Sl单 抗竟争, 竟争抑制率达到 50 %以上(图 1 ), 具有较强的抗原结合 活性。
间接 ELISA法操作步骤同实施例 1 , 待测样本为融合蛋白纯 化产物 GaH、 MA18/7轻链可变区 VL纯化产物 ML2 (不带有 6 X His ) 及二者的混合物, 结果显示单独的融合蛋白纯化产物 GaH、 ML2纯化产物测定的 OD值仅 0.1左右, 而二者混合物原 液的 OD值达 3.284, 且倍比梯度稀释后呈现良好的梯度(图 3 ), 表明其能够较好的结合 HB V pre-Sl抗原。 实施例 3 抗体轻链可变区片段偶联荧光淬灭剂
抗体 MA18/7轻链可变区 VL纯化后的重组蛋白 ML在 4°C 下用 PEG20 000浓缩后继续在 4°C下透析到 0.1M碳酸氢钠緩冲 液(pH8.3 ) 中, 测定其浓度为 5.25 mg/ml, 取出 2ml室温下电 磁緩慢搅拌,尽量不能产生气泡。荧光淬灭剂为 Molecular Probes 公司生产的 QSY-35, 为琥珀酰亚胺酯类, 分子量为 411.33。 避光 条件下小心称取淬灭剂 5.95mg, 加入 DMF 0.525ml, 轻柔颠倒 混匀, 使其终浓度为 10 mg/ml。 在室温避光的条件下用微量加样 器将淬灭剂逐滴慢慢加到电磁搅拌下的蛋白溶液中, 直至将 0.525ml全部加完, 使最终反应体系中蛋白与淬灭剂的物质的量 比为 1: 15。 加完后室温避光继续緩慢搅拌 lh, 然后将反应溶液 移到 4°C下继续反应 5h, 再转移到排阻分子量为 3.5kD的透析袋 中, 4°C下对 PBS透析, 每隔 2h换液一次, 连续换液 6次以上, 收集透析袋中的溶液避光保存。 称 Sephadex-G25 4g, PBS平衡 两天后装柱 (10 x 300mm ), 加入透析后的溶液, 收取最先流出 的带有蓝紫色的溶液, 即为结合好淬灭剂的抗体轻链可变区蛋白 QL, 避光保存于 -20°C。 实施例 4 GaH和 QL作为一组蛋白检测样品中抗原的存在与 浓度
以如实施例 2中所述制备的 GaH为能量供体(EGFPa-VH ), 以如实施例 3所述制备的 QL为受体(QSY35-VL )。 为防止孔间 荧光干扰, 采用黑色 96孔空板作为检测板, 所用仪器为荧光和化 学发光仪。
测定如上述纯化后的融合蛋白 GaH浓度为 0.5 mg/mL,每个 样品孔加入 GaH 80 L, 再加入荧光淬灭剂标记蛋白 QL溶液, 体积分别为 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 L, 混匀并 当体系稳定后测定各孔的相对荧光强度, 以计算相应的淬灭率。
结果显示偶联了 QSY35的 QL溶液浓度约为 4 mg/mL,随着 其加入体系量的增加对 EGIT荧光的淬灭率也逐渐增加, 在加入 4 后淬灭率基本稳定(图 4 ),显示在此时溶液中结合与解离大 致到达平衡。
因为荧光与化学发光仪 96 孔板最适检测样品孔的体积为 100 L, 为进一步检测方便, 确定在 86 GaH溶液中加入 4 QL为最适加入量, 以此建立本发明的优选检测体系。
96孔检测板每孔加入 86 GaH溶液,然后每孔再加入 4 QL, 测定各孔荧光值, 待稳定后加入 10 μ∑待测样品。 样品中含 有浓度不同的 HBV pre-Sl抗原,以溶于 PBS的 21 ~ 47合成肽和 HBV pre-Sl抗原 C06为检测对象, 以 PBS为对照, 测量加入待 测样品后检测孔的荧光强度, 比较加入抗原前后单孔本身相对荧 光强度的变化。 当 GaH与 QL混合后, VH与 VL相互作用而结 合形成可变区片段 Fv, 则两种荧光基团 EGFP和 QSY35距离拉 近, 达到 FRET发生的范围而产生了 FRET现象, 在 485 nm的 激发下, 能量供体 EGFP发射 510 nm的绿色荧光, 但大部分能 量转移给近距离的能量受体 QSY35而发生荧光淬灭。而加入 HBV preSl抗原后, 抗原会与 Fv发生特异结合, 其结合位点恰好位于 Fv的抗原结合位点, 也就是 VH与 VL之间, 因此拉大了 EGFP 与 QSY35的距离, 能量转移减弱甚至不再发生, 因此 EGFP发 射的荧光值相应增加。
检测结果也验证了这一过程。 我们把加入待测样品前的荧光 值定为 C,加入后的荧光值定为 D,单孔本身荧光增长比 M - D/C, 以检测孔的体系荧光增长比 FIR ( Fluorescence Increasing Ratio ) 为检测指标, FIR - M/MPBS。 结果显示含有目的抗原的样品能 够使各孔的荧光强度升高, 荧光强度的升高程度与抗原浓度在大 约 3 g/ml以上时呈正相关,而不含有 HBV pre-Sl抗原的等体积 緩冲液则使体系中的荧光强度略有下降(图 5, 图 6 )。
表明抗原浓度在 3 g/ml以上时反应体系能够较好的检测出 标本中存在的 HBV preSl抗原, 检测时间在 30min以内。 实施例 5 HBV pre-Sl抗原偶联荧光淬灭剂
HBV pre-Sl重组抗原 C06纯化蛋白 (杨海杰. 治疗性基因 工程乙肝疫苗的探索性研究 [D】. 厦门大学博士论文, 2002,8. ) 用 PEG20, 000浓缩后在 4。C下透析到 0.1M碳酸氢钠緩沖液( pH8.3 ) 中, 测定其浓度为 7.08 mg/ml, 取出 2ml室温下电磁緩慢搅拌, 尽量不能产生气泡。
荧光淬灭剂为 Molecular Probes公司生产的 QSY-35, 为琥 珀酰亚胺酯类, 分子量为 411.33。 避光条件下小心称取淬灭剂 8.00mg, 加入 DMF 0.8ml, 轻柔颠倒混匀, 使其终浓度为 10 mg/ml0 在室温避光的条件下用微量加样器将淬灭剂逐滴慢慢加 到电磁搅拌下的蛋白溶液中, 直至将 0.8ml全部加完, 使最终反 应体系中蛋白与淬灭剂的物质的量比为 1: 15。 加完后室温避光 继续緩慢搅拌 1H, 然后将反应溶液移到 4°C下继续反应 5H, 再 转移到排阻分子量为 3.5kD的透析袋中, 4°C下对 PBS透析, 每 隔 2H换液一次, 连续换液 6次以上, 收集透析袋中的溶液避光 保存。称 SepHadex-G25 4g, PBS平衡两天后装柱( 10 x 300mm ), 加入透析后的溶液, 收取最先流出的带有蓝紫色的溶液, 即为结 合好淬灭剂的 HBV pre-Sl抗原蛋白 QC, 避光保存于 -20 °C备用。
取标记前和标记后的抗原 C06, 进行 12 %的 SDS-PAGE分 析, 并以 1: 2000稀释的 HRP标记的 HBV pre-Sl单抗 4D11为 酶标抗体进行 Western Blot分析。 标记 QSY35后的蛋白 QC比 C06分子量略大, 标记前后抗原 C06的活性相当, 表明 C06标记 QS Y35后并没有影响其与相应抗体反应的活性。 实施例 6 GaH、 ML和 QC作为一组蛋白检测样品中抗原的存 在与浓度
选择如实施例 2所制备的融合蛋白 GaH与 ML等摩尔浓度混 合后,和如实施例 5所制备的 QSY35标记的抗原 QC—起构成本 发明的竟争检测试剂, 其中能量供体为 EGFP, 能量受体为荧光 淬灭剂 QSY35。
为防止孔间荧光干扰, 采用黑色 96孔板作为检测板, 所用仪 器为荧光和化学发光仪 ( Labsystem Fluoroskan Ascent FL )。 测 定纯化后的融合蛋白 GaH浓度为 0.5 mg/mL, ML 的浓度为 1 mg/mL,每个样品孔加入 GaH与 MH1等摩尔浓度混合后的溶液 体积为 80 L, 再加入荧光淬灭剂标记抗原 QC溶液, 体积分别 为 l ~ 10 L, 混勾并当体系稳定后测定各孔的相对荧光强度, 以 计算相应的淬灭率。
结果显示偶联了 QSY35的 QC溶液浓度约为 6 mg/mL, 随着 其加入体系量的增加对 EGFP荧光的淬灭率也逐渐增加, 在加入 8 L后淬灭率基本稳定(图 7 ), 显示在此时溶液中结合与解离大 致到达平衡。 因为仪器最适检测样品孔的体积为 lOO L, 为进一 步检测方便 ,确定在 82 μΐ, GaH与 ML1混合溶液中加入 8 QC 为最适加入量, 以此建立本发明的竟争检测体系。
取 GaH和轻链可变区蛋白 ML加到 96孔检测板孔中, 然后 再加入抗原偶联溶液 QC, 测定各孔荧光值, 待稳定后加入 10 待测样品。 样品中含有浓度不同的 HBV preSl抗原, 以溶于 PBS 的 21 ~ 47合成肽和 HBV pre-Sl抗原 C06为检测对象, 以 PBS 为对照, 测量加入待测样品后检测孔的荧光强度, 比较加入抗原 前后单孔本身相对荧光强度的变化。 我们把加入待测样品前检测 体系的荧光值定为 C, 加入后的荧光值定为 D, 则单孔本身荧光 增长比 M - D/C, 以各检测孔相对于整个检测体系的荧光增长比 FIR ( Fluorescence Increasing Ratio ) 为检测指标 , FIR = M/MPBSo
因为 GaH、 ML与 QC在抗原结合位点相互结合, VH上的 EGFP与标记抗原上的 QSY35距离拉近,达到 FRET发生的范围, 因此 485 nm激发产生的 EGI 的发射荧光被淬灭。 若待测样品 中含有 HBV pre-Sl抗原, 则会与检验试剂中的标记抗原发生竟 争, 游离的 QC与 EGFP的距离拉大, 淬灭作用降低或消失, 因 而能测到增强的绿色荧光。
检测结果显示(图 8、 9 ), 含有目的抗原的样本能够使整个反 应体系的荧光强度升高, 荧光强度的升高程度与抗原浓度呈正相 关, 而加入等体积的緩冲液对照后体系中的荧光强度略有下降。 表明该体系可用于检测标本中 HBV pre-Sl抗原的存在, 检测时 间在 30min以内。

Claims

权利要求
1. 一种具有荧光共振能量转移特点的蛋白組合, 其由来自同 一抗体的重链可变区蛋白和轻链可变区蛋白组成, 其中, 重链可 变区蛋白和轻链可变区蛋白中的一个带有作为能量供体的荧光物 质或者化学发光物质, 另一个则带有作为能量受体的荧光淬灭物 质, 且所述作为能量供 /受体的荧光物质和荧光淬灭物质为符合 荧光共振能量转移 (FRET )特征的试剂对。
2. 权利要求 1 的蛋白组合, 其中所述作为能量供体的荧光物 质优选的, 选自荧光蛋白、 荧光素、 稀土元素等荧光物质, 更优 选的, 选自绿色荧光蛋白 (GFP ), 蓝色荧光蛋白 (BFP ), 黄色 荧光蛋白 (YFP ), 青色荧光蛋白(CFP )和红色荧光蛋白 (RFP ) 的荧光蛋白, 最优选的, 作为能量供体的荧光物质为绿色荧光蛋 白; 作为能量供体的化学发光物质选自发光蛋白和鲁米诺、 过氧 草酸盐; 而作为能量受体的荧光淬灭物质为 QSY-35。
3. 权利要求 1 的蛋白组合, 其中所述带有作为能量供体的荧 光物质的融合蛋白为由来自抗 HBV pre-Sl单克隆抗体 MA18 / 7 的重链可变区与增强型绿色荧光蛋白 EGIT組成的 GaH,所述带 有作为能量受体的荧光淬灭物质的融合蛋白为由来自抗 HBV pre-Sl单克隆抗体 MA18 / 7的轻链链可变区与荧光淬灭剂 QSY - 35组成的 QL。
4. 一种具有荧光共振能量转移特点的蛋白组合, 其由来自同 一抗体的重链可变区蛋白和轻链可变区蛋白以及由所述抗体识别 的特异性抗原组成, 其中当选自所述重链可变区蛋白和轻链可变 区蛋白中的一个带有作为能量供体的荧光物质或者化学发光物质 时, 所述抗体识别的特异性抗原带有作为能量受体的荧光淬灭物 质; 而当选自所述重链可变区蛋白和轻链可变区蛋白中的一个带 有作为能量受体的荧光淬灭物质时, 所述抗体识别的特异性抗原 带有作为能量供体的荧光物质或者化学发光物质, 且所述作为能 量供 /受体的荧光物质和荧光淬灭物质为符合荧光共振能量转移
( FRET )特征的试剂对。
5. 权利要求 4的蛋白组合, 其中所述作为能量供体的荧光物 质优选的, 选自荧光蛋白、 荧光素、 稀土元素等荧光物质, 更优 选的, 选自绿色荧光蛋白 (GFP ), 蓝色荧光蛋白 (BIT ), 黄色 荧光蛋白 (YFP ), 青色荧光蛋白 (CFP )和红色荧光蛋白 (RFP ) 的荧光蛋白, 最优选的, 作为能量供体的荧光物质为绿色荧光蛋 白; 作为能量供体的化学发光物质选自发光蛋白和鲁米诺、 过氧 草酸盐; 而作为能量受体的荧光淬灭物质为 QSY-35。
6. 权利要求 5的蛋白组合, 其中所述带有作为能量供体的荧 光物质的融合蛋白为由来自抗 HBV pre-Sl单克隆抗体 MA18 / 7 的重链可变区与增强型绿色荧光蛋白 EGFP组成的 GaH,所述带 有作为能量受体的荧光淬灭物质的融合蛋白为由来自 HBV pre-Sl重組抗原 C。6与荧光淬灭剂 QSY一 35组成的 QC。
7. 权利要求 1或 4的蛋白组合, 其中所述特异性抗原来自病 毒、 细菌、 真菌、 支原体、 衣原体、 肿瘤相关抗原或其他具有抗 原决定簇的物质。
8. 一种用于检测样本中目标抗原存在的方法, 其包括 1 )在适于所述待测抗原与权利要求 1所述的蛋白组合中所述 抗体结合的条件下, 将待测样本与所述蛋白组合相接触; 和 2 )检测待测样本与所述蛋白组合相互接触前后能量供体的相 对荧光强度的变化, 判断待测样本中与所迷抗体之重链可变 区蛋白和 /或轻链可变区蛋白特异结合的抗原的存在。
9. 一种用于检测样本中与经标记的抗原竟争性结合抗体的目 标抗原存在的方法, 其包括
1 )在适于所述待测抗原与权利要求 4所述的蛋白组合中所述 抗体结合的条件下, 将待测样本与所述蛋白组合相接触; 和 2 )检测待测样本与所述蛋白组合相互接触前后能量供体的相 对荧光强度的变化, 判断待测样本中与经标记的抗原竟争性 结合抗体的目标抗原的存在。
10. 根据权利要求 8或 9的方法,其中目标抗原为乙型肝炎病 毒抗原、 丙型肝炎病毒抗原、 戊型肝炎病毒抗原。
11. 一种用于检测待测样本中目标抗原的试剂盒, 其特征在于 包含权利要求 1或 4所述的蛋白组合, 及相应的緩冲液。
12. 权利要求 11 的试剂盒, 其中目标抗原为乙型肝炎病毒抗 原、 丙型肝炎病毒抗原、 戊型肝炎病毒抗原。
PCT/CN2005/001488 2005-09-19 2005-09-19 Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines WO2007033514A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/001488 WO2007033514A1 (fr) 2005-09-19 2005-09-19 Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/001488 WO2007033514A1 (fr) 2005-09-19 2005-09-19 Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines

Publications (1)

Publication Number Publication Date
WO2007033514A1 true WO2007033514A1 (fr) 2007-03-29

Family

ID=37888510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001488 WO2007033514A1 (fr) 2005-09-19 2005-09-19 Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines

Country Status (1)

Country Link
WO (1) WO2007033514A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798718A (zh) * 2012-08-31 2012-11-28 福建省洪诚生物药业有限公司 乙肝病毒前s1抗原检测试剂盒及其制备方法
KR20140084266A (ko) * 2011-11-02 2014-07-04 우시오덴키 가부시키가이샤 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
CN113640269A (zh) * 2021-09-01 2021-11-12 中国科学院宁波材料技术与工程研究所 一种稀土上转换能量转移纳米传感平台、构建方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399392B1 (en) * 1999-04-23 2002-06-04 Molecular Probes, Inc. Xanthene dyes and their application as luminescence quenching compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399392B1 (en) * 1999-04-23 2002-06-04 Molecular Probes, Inc. Xanthene dyes and their application as luminescence quenching compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARAI R. ET AL.: "Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer", ANALYTICAL BIOCHEMISTRY, vol. 289, no. 1, February 2001 (2001-02-01), pages 77 - 81, XP003010586 *
ARAI R. ET AL.: "Fluorolabeling of antibody variable domains with green fluorescent protein variants: application to an energy transfer-based homogeneous immunoassay", PROTEIN ENGINEERING, vol. 13, no. 5, 2000, pages 369 - 376, XP001035160 *
UEDA H. ET AL.: "Homogeneous noncompetitive immunoassay based on the energy transfer between fluorolabeled antibody variable domains (open sandwich fluoroimmunoassay)", BIOTECHNIQUES, vol. 27, no. 4, October 1999 (1999-10-01), pages 738 - 742, XP001121704 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140084266A (ko) * 2011-11-02 2014-07-04 우시오덴키 가부시키가이샤 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
EP2775305A4 (en) * 2011-11-02 2015-06-24 Ushio Electric Inc FLUORO-IMMUNOLOGY ASSAY METHOD USING A POLYPEPTIDE COMPLEX CONTAINING A VARIABLE FLUOROMARCATED ANTIBODY REGION
KR101603456B1 (ko) * 2011-11-02 2016-03-14 우시오덴키 가부시키가이샤 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
CN102798718A (zh) * 2012-08-31 2012-11-28 福建省洪诚生物药业有限公司 乙肝病毒前s1抗原检测试剂盒及其制备方法
CN113640269A (zh) * 2021-09-01 2021-11-12 中国科学院宁波材料技术与工程研究所 一种稀土上转换能量转移纳米传感平台、构建方法及应用

Similar Documents

Publication Publication Date Title
US20050282225A1 (en) Quantitative binding assays using green fluorescent protein as a label
US7741128B2 (en) Cooperative reporter systems, components, and methods for analyte detection
US9995679B2 (en) Targeted probes of cellular physiology
US10125177B2 (en) Treponema pallidum triplet antigen
US20090029348A1 (en) Kit for Detecting the Antibody of HCV and Its Preparing Method
JP2007529747A (ja) センサ構造物及び検出方法
WO2008053973A1 (en) Method of immunoassay of component to be measured
JP2009543084A (ja) 免疫抑制薬に関する均一系二重受容体凝集アッセイ
CA2627545A1 (en) Multimeric biosensors and methods of using the same
WO2006033413A1 (ja) ペプチドの定量方法
WO2011135040A1 (en) Fluorescent antibody fusion protein, its production and use
KR20220144822A (ko) 재조합 칼프로텍틴
JP4133344B2 (ja) レポーター(標識)分子間相互作用を利用した分析方法
US20060275822A1 (en) Fluorescent indicator using fret
Yun et al. Development of a spacer-optimized quenchbody against tumor necrosis factor alpha
WO2007033514A1 (fr) Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines
CN100473988C (zh) 具有荧光共振能量转移特点的蛋白组合及其用途
EP2685260A1 (en) Direct and quantitative detection of targets in living cells
WO2007015509A1 (ja) 免疫測定用試薬
JP2007511226A (ja) 複数の成分検出のための共振エネルギ転移アッセイ・システム
US9409968B2 (en) Toll-like receptor-based biosensors
CN112739719B (zh) 结合G蛋白α的单域抗体
Inouye et al. Recombinant aequorin with a reactive cysteine residue for conjugation with maleimide-activated antibody
US7241864B2 (en) Recombinant photoproteins and their conjugates
WO2021093787A1 (zh) 一种基于荧光素酶互补的生物传感器及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785131

Country of ref document: EP

Kind code of ref document: A1