WO2007032296A1 - ポリベンザゾールポリマーの製造方法およびそのポリマー - Google Patents

ポリベンザゾールポリマーの製造方法およびそのポリマー Download PDF

Info

Publication number
WO2007032296A1
WO2007032296A1 PCT/JP2006/317952 JP2006317952W WO2007032296A1 WO 2007032296 A1 WO2007032296 A1 WO 2007032296A1 JP 2006317952 W JP2006317952 W JP 2006317952W WO 2007032296 A1 WO2007032296 A1 WO 2007032296A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
polymer
rings
organic group
temperature
Prior art date
Application number
PCT/JP2006/317952
Other languages
English (en)
French (fr)
Inventor
Naoki Watanabe
Go Matsuoka
Fuyuhiko Kubota
Yukihiro Abe
Yasuko Mitooka
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006056189A external-priority patent/JP2007106980A/ja
Priority claimed from JP2006056190A external-priority patent/JP2007106981A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to US12/066,819 priority Critical patent/US20080269455A1/en
Publication of WO2007032296A1 publication Critical patent/WO2007032296A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/32Polythiazoles; Polythiadiazoles

Definitions

  • the present invention relates to a method for producing a polybenzazole polymer. More specifically, the present invention relates to a production method capable of producing a polybenzazole polymer by a short reaction.
  • Patent Document 1 US Pat. No. 4,533,692
  • Patent Document 2 US Patent No. 4,847,350
  • Patent Document 3 US Patent No. 5, 089, 591
  • Patent Document 4 US Patent No. 5, 075, 392
  • Non-patent literature l Wolf et al, Macromolecules, 14, 909 (1981)
  • a polyphosphonic acid solution of polybenzoxazole is extruded from a spinneret, is formed into a fiber shape through a phosphoric acid aqueous solution coagulation bath through an air gap, and is sufficiently washed with water to be phosphoric acid After extraction, it can be dried to form polybenzoxazole fibers.
  • X represents a ⁇ atom, S atom or NH group
  • Ar represents a benzene ring or a naphthalene ring
  • Patent Documents 5 and 6 and Non-Patent Document 2 are listed.
  • Patent Document 5 shows an example of polybenzoxazole.
  • An oligomer having a low polymerization degree is synthesized in the first stage, and an additional monomer is added as a chain extender so that the target polymerization degree is obtained in the second stage. I'm ashamed. In this way, it is possible to adjust the degree of polymerization with good accuracy in the second stage even if the control accuracy of the stoichiometric ratio in the first stage is roughened.
  • this method has a problem that the reaction process becomes long and the equipment becomes large.
  • Patent Document 6 discloses a method in which a salt of diaminoresonoresinol and an aromatic dicarboxylic acid is synthesized and polymerized in polyphosphoric acid. According to this method, since the diaminophenol and the dicarboxylic acid are previously bound at a ratio of 1: 1, the stoichiometric ratio can be controlled very easily. However, the stability of the monomer salt is not always sufficient. Also, there is a problem that the polymerization requires a long time to suppress deterioration.
  • Non-Patent Document 2 discloses a polymerization method using a compound in a form in which diaminoresorcinol and terephthalic acid are reacted 1: 1. This method is an excellent method in which the instability of the raw material is also eliminated, but this method also has a problem of requiring a long polymerization of 24 hours or more.
  • Patent Document 5 US Patent No. 5,194,568
  • Patent Document 6 US Patent No. 5,276,128
  • Non-Patent Document 2 Dotrong et al, J. polym. Sci part: A., 35, 3451 (1997)
  • the present invention has been made against the background of the problems of the prior art, and relates to a method for producing a polybenzazole polymer, which is to provide a production method that can be stably produced in a short time of reaction. Means for solving the problem As a result of intensive investigations to solve the above problems, the present inventors have finally completed the present invention. That is, the first invention uses a compound represented by the following general formula (1) as a raw material, and in the production of a polybenzazole polymer in a non-oxidizing dehydration solvent, the pre-polymerization stage at a temperature of 150 ° C. or lower. And a late polymerization stage for polymerizing at a temperature of 200 ° C or higher, and at least the late polymerization stage is carried out in a kneading reactor to complete the polymerization reaction. .
  • X represents an O atom, S atom or NH group
  • Ar represents a benzene ring, naphthalene ring or
  • Ar is a benzene ring, naphthalene ring or
  • Ar and Ar are both methyl groups and hydroxyl.
  • R represents H or a monovalent organic group having 1 to 6 carbon atoms.
  • Ar in the above general formula (1) has 2 or less benzene rings or naphthalene rings
  • a polybenzoxazole polymer When a polybenzoxazole polymer is produced in a non-oxidative dehydrating solvent using R as H or a compound represented by a monovalent organic group having 1 to 6 carbon atoms, the temperature is 150 ° C or lower. And a late polymerization stage for polymerizing at a temperature of 200 ° C. or higher, and at least the late polymerization stage is carried out in a kneading reactor to complete the polymerization reaction. It is a manufacturing method of a sol polymer.
  • a third invention is a method for producing a polybenzazole polymer according to the first or second invention, wherein the total polymerization reaction time is 6 hours or less.
  • the non-oxidizing dehydrating solvent is a polymerization solvent selected from polyphosphoric acid, phosphorus pentoxide, methanesulfonic acid and mixtures thereof, and contains a reducing agent. 3.
  • a fifth invention is a polymer obtained by the method according to any one of the first to fourth inventions.
  • the polybenzazole polymer is characterized by having an intrinsic viscosity of 5 dl / g or more measured in methanesulfonic acid at 25 ° C. and 0.05 dl / g.
  • the sixth invention is a polymer obtained by the method according to any one of the first to fourth inventions, and has an intrinsic viscosity of 20 dl / g or more measured at 25 ° C. and 0.05 dl / g. It is a polybenzazole polymer characterized by the following.
  • a polybenzazole polymer having a high degree of polymerization can be efficiently and stably produced even in a short time within 6 hours.
  • the method for producing a polybenzazole polymer in the present invention is characterized by using a compound represented by the following general formula (1) as a raw material.
  • X represents an O atom, S atom or NH group
  • Ar represents a benzene ring, naphthalene ring or
  • Ar is a benzene ring, naphthalene ring or
  • Ar and Ar are both methyl groups and hydroxyl.
  • R represents H or a monovalent organic group having 1 to 6 carbon atoms.
  • preferable compounds include the following compounds.
  • the carboxylic acid of these compounds forms an ester with an alcohol having 1 to 6 carbon atoms.
  • These compounds may form a salt with a strong acid, and it may be preferable to form a salt with phosphoric acid or polyphosphoric acid.
  • these can be used alone or in combination.
  • Preferable examples of the compound represented by the general formula (2) that can be used in combination include 4,6-diaminoresorenonole, 2_methyl_4,6-diaminoresorcinol, 3,3'-dihydroxybenzidine, 4, 4 Examples include '-dihydroxybenzidine, 1,4-diamino-1,2,5-dithiolenolebenzene, 1,2,4,5-benzenetetramine, and 2,3,5,6-tetraaminopyridine.
  • the aromatic dicarboxylic acid that can be used in combination is preferably terephthalic acid, isophthalic acid, 4,4'_bisbenzoic acid, 3,4'_bisbenzoic acid, 4,4, _oxybisbenzoic acid.
  • the compound represented by the general formula (1) used in the present invention is preferably in the form of fine particles from the viewpoint of solubility, but the shape and size thereof are not particularly limited.
  • the median diameter measured with a light scattering particle size distribution meter is 5 microns to 1 mm, more preferably 10 microns to 500 microns.
  • the solvent used in the present invention is required to be a non-oxidizing solvent having a dehydrating action. Conventionally known polyphosphoric acid and methanesulfonic acid can be used, and phosphorus pentoxide can be appropriately adjusted to adjust the dehydrating ability and the solubility of the polymer.
  • the solvent is a mixed solvent of polyphosphoric acid and phosphorus pentoxide and a mixed solvent of methanesulfonic acid and phosphorus pentoxide.
  • a mixed solvent of polyphosphoric acid and phosphorus pentoxide is preferable.
  • the concentration of polyphosphoric acid is preferably 110% or more, more preferably 115% or more.
  • the concentration of the polymer is not particularly limited as long as the polymer does not precipitate, but it is preferably a concentration that exhibits liquid crystallinity. Further, from the viewpoint of productivity, a high concentration is preferable, and 10% or more is preferable. However, if the concentration is too high, the viscosity of the solution becomes too high, so 20% or less is appropriate.
  • the solvent preferably contains a reducing agent.
  • Preferred reducing agents include stannous chloride, zinc chloride and the like, and stannous chloride is particularly preferred because it is not colored.
  • the amount of the reducing agent is not particularly limited, but is preferably 500 to 10,000 ppm force S based on the polymer.
  • the compound represented by the general formula (1) can be used in the reaction solvent either once or dividedly.
  • the degree of polymerization can be adjusted by adding the aromatic dicarboxylic acids or diaminophenols mentioned above, but a terminal terminator may be used.
  • a terminal terminator benzoic acid, 0-aminophenol and the like can be used.
  • Such a compound for adjusting the degree of polymerization may be added from the beginning of polymerization, or may be added after the reaction has progressed to some extent and oligomers have been formed.
  • the reaction temperature it is important to appropriately set the reaction temperature.
  • the effect of temperature on the reaction is so great that the reaction becomes faster at higher temperatures.
  • the polymerization reaction is accelerated, but at the same time, side reactions, particularly the amino group decomposition reaction, are accelerated, resulting in a relatively large number of decomposition reactions. Since this decomposition reaction tends to be suppressed as the molecular weight increases, that is, as the degree of polymerization increases, it is important to set the temperature profile appropriately.
  • the pre-polymerization stage in the present invention refers to the process until the polymerization reaction solution becomes a viscous slurry.
  • the polymerization temperature is a temperature at which the polymerization reaction proceeds at 150 ° C. or less
  • the polymerization conditions are preferably 70 to 150 ° C. and a polymerization time of about 5 minutes to 3 hours.
  • the late polymerization stage refers to a stage for converting the low polymerization degree product obtained in the previous polymerization stage to the desired high polymerization degree, and the polymerization temperature is 200 ° C or higher.
  • the polymerization condition is preferably about 15 minutes to 4 hours at a temperature of about 200 to 250 ° C., because the polymerization reaction is fast and the decomposition reaction can be suppressed.
  • the total polymerization reaction time including the early polymerization stage and the late polymerization stage is preferably within 6 hours.
  • the reactor may be a reactor equipped with a general stirring device such as an anchor wing stirrer and a double helical ribbon wing stirrer because the polymerization degree is low and the viscosity is not high in the previous polymerization stage.
  • a general stirring device such as an anchor wing stirrer and a double helical ribbon wing stirrer because the polymerization degree is low and the viscosity is not high in the previous polymerization stage.
  • a general stirring device such as an anchor wing stirrer and a double helical ribbon wing stirrer because the polymerization degree is low and the viscosity is not high in the previous polymerization stage.
  • a general stirring device such as an anchor wing stirrer and a double helical ribbon wing stirrer because the polymerization degree is low and the viscosity is not high in the previous polymerization stage.
  • a kneading type stirring that can be stirred even at high viscosity is necessary. For this reason
  • Examples of such a kneading type reaction apparatus include a planetary stirring apparatus equipped with a double-armed stirrer, a reaction apparatus equipped with a ribbon-type stirring blade capable of stirring even with high viscosity, a twin-screw extruder having self-cleaning properties, and a discharge mechanism. Horizontal type feed reactor with In addition, these reaction apparatuses can be used in appropriate combinations according to the viscosity at each stage of the reaction. In particular, in the late polymerization stage, it is preferable to use a twin screw extruder because stirring is easy even at high viscosity and the polymerization reaction time can be shortened. The twin-screw extruder is also excellent in the effect of speeding up the polymerization reaction and suppressing the decomposition reaction.
  • the polymer obtained in the present invention was dissolved and diluted with distilled methanesulfonic acid so that the polymer concentration was 0.05 g / dl, and measured at 25 ° C using an Ubbelohde viscometer.
  • the degree of polymerization must have an intrinsic viscosity of 5 dl / g or more. Depending on the application, the degree of polymerization must be 20 dl / g or more, preferably 24 dl / g or more. On the other hand, if the degree of polymerization is too high, the viscosity at the time of molding becomes too high and the moldability may be impaired, so the upper limit is preferably about 40 dl / g or less.
  • an additive may be added to the polymer dope in order to impart functions such as improving the durability of the polymer or improving adhesion.
  • Addition time is particularly limited It is not determined and may be in the early stage or later stage of polymerization.
  • the additive used include inorganic compounds such as copper iodide and organic compounds such as phthalocyanine.
  • the polybenzazole polymer thus obtained can be processed into a fiber film using a conventionally known method.
  • a method such as US Pat. No. 4,533,683 may be applied.
  • a polybenzazole polymer or a polyphosphorus solution thereof was dissolved and diluted with distilled methanesulfonic acid so that the polymer concentration was 0.05 g / dl, and measured at 25 ° C. using an Ubbelohde viscometer.
  • Liquid feed pump L6200, Detector: L4200, Column hot bath: L5020
  • a 20% polyphosphoric acid solution of benzoic acid as a terminal stopper was supplied to the twin screw extruder using a gear pump so that the concentration was 0.8 mol% with respect to ABA.
  • the polymerization reaction was carried out by adjusting the discharge rate so that the average residence time in the twin screw extruder was 1 hour.
  • the polymer dope sampled from the extruder outlet was diluted with methanesulfonic acid and the intrinsic viscosity was determined to be 34 dl / g. The color of this polymer dope was yellow. 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-shaped wing, and further heated and stirred at 200 ° C for 3 hours. The intrinsic viscosity did not change, and it was confirmed that the reaction was complete.
  • a 20% polyphosphoric acid solution of benzoic acid as a terminal stopper was fed to a twin screw extruder using a gear pump so as to be 1.3 mol% based on ATBA.
  • the polymerization reaction was carried out by adjusting the discharge rate so that the average residence time in the twin screw extruder was 1 hour.
  • the polymer dope sampled from the extruder exit force was diluted with methanesulfonic acid and the intrinsic viscosity was determined to be 22 dl / g. The color of this polymer dope was orange. 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-shaped wing and further heated and stirred at 200 ° C. for 3 hours, but the intrinsic viscosity did not change and it was confirmed that the reaction was complete.
  • the reaction was conducted in the same manner as in Example 1 except that C was the average residence time in the twin-screw extruder was 30 minutes.
  • the resulting polymer dope had a yellow color and an intrinsic viscosity of 24 dl / g. 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-shaped wing and further stirred with heating at 200 ° C for 3 hours, but the intrinsic viscosity did not change and it was confirmed that the reaction was complete.
  • the temperature setting for 30mm ⁇ twin screw extrusion with 5 heating zones is 130 ° C, 150 ° C, 220 ° C, 220 ° C, 180 ° C from the upstream side, and the residence time is 1.5 hours
  • the rotation speed of the extruder and the paddle configuration were set.
  • ABA is also supplied to the first zone at a rate of 6 g / min using a screw-type powder feeder. did.
  • a 20% aminophenol / polyphosphoric acid solution was added to the fourth zone at a rate of 0.5 cc / min.
  • the obtained polymer had an intrinsic viscosity of 22 dl / g and a polymer color of yellow.
  • 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-type wing and further heated and stirred at 200 ° C. for 3 hours, but the intrinsic viscosity did not change and it was confirmed that the reaction was complete.
  • the reaction was carried out in the same manner as in Example 1 except that a 20% polyphosphoric acid solution of benzoic acid was supplied to a twin-screw extruder at 2 mol% with respect to ABA using a gear pump.
  • the color of the resulting polymer dope was yellow and the intrinsic viscosity was 15 dl / g. 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-shaped wing and further heated and stirred at 200 ° C. for 3 hours. The intrinsic viscosity did not change, and it was confirmed that the reaction was completed.
  • the reaction was performed in the same manner as in Example 1 except that the temperature of the 501 stainless steel reactor was 180 ° C.
  • the color of the polymer dope was dark green and the intrinsic viscosity was 17 dl / g.
  • 100 g of this dope was placed in a 300 ml separable flask equipped with a ribbon-shaped wing, and further heated and stirred at 200 ° C for 3 hours. The intrinsic viscosity did not change, and it was confirmed that the reaction was complete.
  • the method for producing a polybenzazole polymer of the present invention can be produced in a short time and with a stable force, compared to the conventional method, and thus has a large industrial contribution such as a reduction in production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

明 細 書
ポリベンザゾールポリマーの製造方法およびそのポリマー
技術分野
[0001] 本発明はポリベンザゾールポリマーの製造方法に関する。さらに詳しくは、ポリベン ザゾールポリマーを短時間の反応で生産できる製造方法に関する。
背景技術
[0002] ポリベンズォキサゾールポリマーは非常に優れた耐熱性と強度、弾性率を持つポリ マーとして注目されており、その重合方法、フィルム、繊維への成形が開示されてい る (特許文献:!〜 4および非特許文献 1等参照)。
特許文献 1 :米国特許 第 4, 533, 692号明細書
特許文献 2 :米国特許 第 4, 847, 350号明細書
特許文献 3 :米国特許 第 5, 089, 591号明細書
特許文献 4 :米国特許 第 5, 075, 392号明細書
非特許文献 l : Wolf et al, Macromolecules, 14, 909 (1981)
[0003] 繊維に成形する場合には、例えば、ポリべンゾォキサゾールのポリリン酸溶液を紡 糸口金から押出し、エアギャップを経てリン酸水溶液凝固浴を通して繊維状とし、水 で十分に洗浄してリン酸を抽出した後、乾燥してポリべンゾォキサゾール繊維とする ことが出来る。
[0004] 上記公知技術では、出発物質として、下記の一般式(2)の化合物およびそれらの 誘導体または鉱酸塩と、芳香族ジカルボン酸またはその誘導体を用いている。所望 の成型品物性を得るためには重合度を精度良く制御して、高重合度のポリマーを得 る必要がある力 S、そのためには一般式(2)の化合物とカルボン酸の量論比を厳密に コントロールしなくてはならなレ、。工業的に生産する際には、この量論比のコントロー ルは非常に重要で、また難易度の高レ、技術である。
[化 2]
HX. ノ XH
Π2Ν NH2 ( 2 ) 式中 Xは〇原子、 S原子または NH基を表し、 Arはベンゼン環またはナフタレン環
1
を 2個以下含む 4価の有機基を表す。
[0005] こうした困難を解消する方法として、以下の特許文献 5、 6および非特許文献 2の技 術が挙げられる。
すなわち、特許文献 5では、ポリべンゾォキサゾールの例が示されており、 1段目で 低重合度のオリゴマーを合成し、 2段階目で目的重合度となるように鎖延長剤として モノマーの追カ卩している。こうすることで 1段目での量論比のコントロールの精度を粗 くしても 2段目で精度良ぐ重合度を調整することを可能としている。しかし、この方法 では反応工程が長くなり、設備も大きなものになってしまう問題がある。
また、特許文献 6ではジアミノレゾノレシノールと芳香族ジカルボン酸の塩を合成し、 それをポリリン酸中で重合する方法が開示されている。この方法によれば、ジアミノフ ェノールとジカルボン酸があらかじめ 1: 1の比で結合しているために、量論比のコント ロールが非常に容易になる。しかし、モノマー塩の安定性は必ずしも十分ではなぐ また、劣化抑制のために重合に長時間必要とする問題があった。
一方、非特許文献 2ではジアミノレゾルシノールとテレフタル酸を 1: 1で反応させた 形の化合物を用いて重合する方法が開示されている。この方法は原料の不安定さも 解消された優れた方法であるが、この方法でも 24時間以上の長時間の重合を必要と する問題があった。
このため、工業生産においては、経済性の点より、高重合度のポリベンゾォキサゾー ルポリマーを、より効率的に得る製造技術の確立が強く望まれていた。
特許文献 5 :米国特許 第 5, 194, 568号明細書
特許文献 6 :米国特許 第 5, 276, 128号明細書
非特許文献 2: Dotrong et al, J. polym.Sci part: A., 35, 3451(1997)
発明の開示
発明が解決しょうとする課題
[0006] 本発明は従来技術の課題を背景になされたもので、ポリベンザゾールポリマーの製 造方法に関し、短時間の反応で安定に製造できる製造方法を提供することにある。 課題を解決するための手段 本発明者らは、上記課題を解決するために、鋭意検討した結果遂に本発明を完成 するに到った。すなわち、第 1の発明は、下記一般式(1)で表される化合物を原料と し、非酸化性脱水溶媒中でポリベンザゾールポリマーを製造するに際し、 150°C以下 の温度の前期重合段階と 200°C以上の温度で重合させる後期重合段階とを設け、 少なくとも後期重合段階を混練型反応装置中で実施して重合反応を完結させること を特徴とするポリベンザゾールポリマーの製造方法である。
[化 3]
Figure imgf000005_0001
式中 Xは〇原子、 S原子または NH基を表し、 Arはベンゼン環、ナフタレン環また
1
はピリジン環を 2個以下含む 4価の有機基、 Arはベンゼン環、ナフタレン環またはピ
2
リジン環を 2個以下含む 2価の有機基を表し、 Ar、 Arは共にメチル基ゃヒロドキシル
1 2
基等の官能基を 1つもしくは複数有してもよい。 Rは Hまたは炭素数 1〜6の 1価の有 機基を表す。
第 2の発明は、上記一般式(1)の Arがベンゼン環またはナフタレン環を 2個以下
1
含む 4価の有機基、 Arがベンゼン環又はナフタレン環を 2個以下含む 2価の有機基
2
、 Rが Hまたは炭素数 1〜6の 1価の有機基で表される化合物を原料とし、非酸化性 脱水溶媒中でポリベンゾォキサゾールポリマーを製造するに際し、 150°C以下の温 度の前期重合段階と 200°C以上の温度で重合させる後期重合段階とを設け、少なく とも後期重合段階を混練型反応装置中で実施して重合反応を完結させることを特徴 とするポリベンゾォキサゾールポリマーの製造方法である。
第 3の発明は、全重合反応時間を 6時間以内とすることを特徴とする第 1、 2の発明 に記載のポリベンザゾールポリマーの製造方法である。
第 4の発明は、非酸化性脱水溶媒がポリ燐酸、五酸化リン又はメタンスルホン酸お よびそれらの混合物から選ばれた重合溶媒であり、還元剤を含有することを特徴とす る第 1〜3の発明に記載のポリベンザゾールポリマーの製造方法である。
第 5の発明は、第 1〜4の発明のいずれかに記載の方法で得られたポリマーであつ て、メタンスルホン酸中、 25°C、 0. 05dl/gで測定した固有粘度力 5dl/g以上であ ることを特徴とするポリベンザゾールポリマーである。
第 6の発明は、第 1〜4の発明のいずれかに記載の方法で得られたポリマーであつ て、 25°C、 0. 05dl/gで測定した固有粘度力 20dl/g以上であることを特徴とする ポリベンザゾールポリマーである。
発明の効果
[0008] 本発明によれば、高重合度のポリベンザゾールポリマーを 6時間以内の短時間でも 効率よく安定に製造することが出来る。
発明を実施するための最良の形態
[0009] まず本発明におけるポリベンザゾールポリマーの製造方法は下記一般式(1)の化 合物を原料として用いることを特徴としてレ、る。
[化 4]
Figure imgf000006_0001
…… ) 式中 Xは〇原子、 S原子または NH基を表し、 Arはベンゼン環、ナフタレン環また
1
はピリジン環を 2個以下含む 4価の有機基、 Arはベンゼン環、ナフタレン環またはピ
2
リジン環を 2個以下含む 2価の有機基を表し、 Ar、 Arは共にメチル基ゃヒロドキシル
1 2
基等の官能基を 1つもしくは複数有してもよい。 Rは Hまたは炭素数 1〜6の 1価の有 機基を表す。
[0010] 上記一般式(1)の化合物の中で、好ましい化合物としては、具体的に以下の化合 物が挙げられる。これらの化合物のカルボン酸は炭素数 1〜6のアルコールとのエス テルを形成してレ、ても良レ、。またこれらの化合物は強酸との塩を形成してレ、ても良く、 リン酸、ポリリン酸などと塩を形成していることが好ましい場合がある。さらにこれらは 単独で用いてもよぐ複数を混合して使用しても良レ、。また、ポリマーの構成単位の 1 0モル%を超えない範囲で、他のビスヒドロキシァミンや芳香族ジカルボン酸および
Zまたはその誘導体を併用しても良い。 [s [ετοο]
Figure imgf000007_0001
ZS6.TC/900Zdf/X3d 96 而 ·00Ζ OAV
Figure imgf000008_0001
Figure imgf000008_0002
[0014] [化 9]
Figure imgf000008_0003
[0015] [化 10]
Figure imgf000008_0004
[0016] [化 11]
Figure imgf000008_0005
[0017] [化 12]
Figure imgf000008_0006
[0018] [化 13]
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0005
[0023] [化 18]
Figure imgf000010_0001
[0024] [化 19]
Figure imgf000010_0002
[0025] 併用できる一般式(2)で表される化合物の好ましい例としては、 4, 6—ジアミノレゾ ノレシノーノレ、 2_メチル _4, 6—ジアミノレゾルシノール、 3, 3'—ジヒドロキシベンジ ジン、 4, 4'ージヒドロキシベンジジン、 1 , 4—ジァミノ一 2, 5 _ジチォ一ノレベンゼン、 1, 2, 4, 5_ベンゼンテトラミン、 2, 3, 5, 6—テトラアミノピリジンなどが挙げられる。
[0026] また、併用できる芳香族ジカルボン酸としては、好ましくは、テレフタル酸、イソフタ ル酸、 4, 4' _ビス安息香酸、 3, 4' _ビス安息香酸、 4, 4, _ォキシビス安息香酸 、 2, 6 _ナフタレンジカルボン酸、 2, 4 _ピリジンジカルボン酸、 2, 5 _ピリジンジカ ルボン酸、 2, 5—ジヒドロキシテレフタル酸、 2—メチルテレフタル酸およびそれらの 酸クロライド化合物、低級アルコールエステルなどが挙げられる。
[0027] 本発明に用いられる一般式(1)で表される化合物は、溶解性の面から微粒子状で あることが好ましいが、その形状、大きさは特に限定されない。好ましくは光散乱式粒 度分布計で測定したメジアン径が 5ミクロン以上 lmm以下、さらに好ましくは 10ミクロ ン以上 500ミクロン以下である。 [0028] 本発明に用いられる溶媒としては、脱水作用を持つ非酸化性溶媒であることが必 要である。従来公知のポリ燐酸、メタンスルホン酸を用いることが出来、適宜、五酸化 リンをカ卩えて脱水能力やポリマーの溶解性を調整することが出来る。
好ましレ、溶媒は、ポリリン酸と五酸化リンの混合溶媒およびメタンスルホン酸と五酸化 リンの混合溶媒である。特にポリリン酸と五酸化リンの混合溶媒が好ましい。この場合 、ポリリン酸の濃度は 110%以上が好ましぐさらに好ましくは 115%以上である。
[0029] ポリマーの濃度は、ポリマーが析出しない濃度であれば特に限定されなレ、が、液晶 性が発現する濃度であることが好ましレ、。また生産性の面からも高濃度であることが 好ましぐ 10%以上が好ましい。しかし、あまり高濃度にすると溶液の粘度が高くなり すぎるので、 20%以下が適当である。
[0030] また、本発明においては、この溶媒中には還元剤を含むことが好ましい。好ましい 還元剤としては塩化第一錫、塩化亜鉛などがあげられ、特に塩化第一錫が着色も無 く好ましい。還元剤の量は特に制限は無レ、が、ポリマーに対し 500〜10000ppm力 S 好ましい。
[0031] 本発明において、一般式(1)で表される化合物は反応溶媒中に一度に投入されて も分割して投入されても力まわなレ、。
[0032] 重合度の調整は、先に挙げた、芳香族ジカルボン酸類あるいは、ジァミノフエノー ル類を加えることによって可能であるが、末端停止剤を使用しても良い。末端停止剤 としては安息香酸、 0-アミノフヱノールなどを用いることが出来る。こうした重合度の調 整用化合物は、重合初期から投入しても良いし、反応がある程度進行し、オリゴマー が形成されてから投入してもよレヽ。
[0033] 本発明において、反応温度を適切に設定することが重要である。一般に温度の反 応に対する影響は非常に大きぐ高温で反応させるほど反応は早くなる。高温では、 重合反応も速くなるが、同時に副反応、特にアミノ基の分解反応も加速され、相対的 に分解反応が多くなつてしまう。この分解反応は分子量が大きくなるにつれ、つまり重 合度が上がるにつれ抑制される傾向にあるので、温度プロファイルを適切に設定す ることが重要である。
[0034] 本発明における前期重合段階とは、重合反応液が粘凋なスラリー状になるまでの 低重合度段階を意味し、この重合温度は 150°C以下で重合反応が進行する温度で あり、重合条件は 70〜: 150°Cの温度で 5分〜 3時間程度の重合時間が好ましい。 後期重合段階とは、前期重合段階で得られた低重合度物を、 目的とする高重合度 物にするための段階を言い、重合温度は 200°C以上とする。重合条件は、 200〜25 0°C程度までの温度で 15分〜 4時間程度が、重合反応が速いのみならず分解反応 を抑制できるため好ましい。
本発明においては、前期重合段階と後期重合段階と含めた全重合反応時間が 6時 間以内とすることが好ましい。
[0035] 反応装置としては、前期重合段階では、重合度が低く粘度は高くないため、アンカ 一翼型攪拌機、ダブルへリカルリボン翼型攪拌機などの一般的な攪拌装置を備えた 反応器でよいが、後期重合段階では、重合度が高く高粘度になるため、高粘度でも 攪拌が可能な混練型の攪拌が必要であり、このために少なくとも後期重合段階は混 練型反応装置で重合反応を進行させることが必要である。
かかる混練型反応装置としては、双腕型攪拌機を備えた遊星攪拌装置、高粘度で も攪拌可能なリボン型の攪拌翼を備えた反応装置、セルフクリーニング性をもった二 軸押出機、排出機構のついた横型送形反応機などが挙げられる。また、こうした反応 装置を反応の各段階の粘度に応じて適宜組み合わせて使用することが出来る。特に 後期重合段階では、高粘度でも攪拌が容易で重合反応時間を短縮できる点で二軸 押出機を用いることが好ましい。また、二軸押出機は、重合反応を速め分解反応を抑 制する効果にも優れている。
[0036] 本発明において得られるポリマーは、ポリマー濃度が 0. 05g/dlの濃度になるよう に、蒸留したメタンスルホン酸で溶解 '希釈し、ウベローデ型粘度計を用いて 25°Cで 測定した固有粘度が 5dl/g以上を示す重合度であることが必要である。また用途によ つては 20dl/g以上を示す重合度であることが必要であり、好ましくは 24dl/g以上であ る。また、あまり高重合度であると、成形時の粘度が高くなりすぎて成形性が損なわれ ることがあるので、上限は 40dl/g程度以下であることが好ましい。
[0037] 本発明において、ポリマーの耐久性を向上させたり、接着性を改善するなど、機能 を付与するために添加剤をポリマードープ中に添加しても良い。添加時期は特に限 定されず、重合初期でも後期でも良い。用いられる添加剤の例としては、ヨウ化銅の ような無機化合物、フタロシアニンのような有機化合物などが挙げられる。
[0038] こうして得られたポリベンザゾールポリマーは、従来公知の方法を用いて、繊維ゃフィ ルムに加工することが出来る。例えば、繊維に加工する場合には、米国特許第 4,533, 683号などの方法を適用すればよい。
実施例
[0039] 以下、実施例によってさらに詳しくこの発明を説明するが、これら実施例によってこ の発明は限定されるものではない。
1.固有粘度の測定
ポリベンザゾールポリマーまたはそのポリリン溶液を、ポリマー濃度が 0. 05g/dlの 濃度になるように、蒸留したメタンスルホン酸で溶解 ·希釈し、ウベローデ型粘度計を 用いて 25°Cで測定した。
[0040] 2.芳香族ジァミンの HPLC分析法による純度評価
下記条件で測定した。純度はピーク面積比で算出した。
装置: 日立製作所製の以下のパーツを組み合わせたシステム
送液ポンプ: L6200、検出器: L4200、カラム高温槽: L5020
脱気装置: L _ 5020、インテグレーター: D— 2500
カラム: Zorbax_ BP C8 φ 4. 6 X 250mm
移動相: ァセトニトリル Z水 = 5Z5 (vol/vol)、
リン酸 0. 0085モノレ Zl
流速: lmレ min
検出: UV (230nm)
展開温度: 50°C
試料濃度: lmg/ml
試料注入量: 20 μ ΐ
[0041] 実施例 1
(モノマー合成)
J. polym. Sci part: A. , 35, 3451 (1997)に記載の方法で合成した 4ー[5—アミノー 6 —ヒドロキシベンゾォキサゾール一 2_ィル]ベンゾイツクアシッド(ABA)を、メタノー ル ZDMF溶媒を用いて再結晶で精製し、 HPLCで測定した純度が 99%以上のも のを用いた。
(ポリべンゾォキサゾールの調製)
ダブルへリカルリボン翼型攪拌機、固形分投入口および液体投入口を備えた 501の ステンレス ί岡製の反応器に、 116%PPA26. 49kg,五酸ィ匕ニリン 3. 50kg,上記方 法で調製した ABA5. 77kg (21. 35モル)、第一塩化すず 200gを投入し、反応器 のジャケット温度を 100°Cにコントロールしながら、 3時間攪拌した。こうして出来た粘 凋なスラリーを上流力 Sわ力ら 150。C、 170。C、 200。C、 220。C、 170。Cに其々設定さ れた、 5つのヒーティングゾーンを持つ 2軸押出機に、ギヤポンプを用いて供給した。 同時に末端停止剤として、安息香酸の 20%ポリリン酸溶液をギヤポンプを用いて、 A BAに対して 0. 8モル%となるように、 2軸押し出し機に供給した。 2軸押出機内での 平均滞留時間が 1時間となるように吐出量を調整して重合反応をおこなった。押し出 し機出口からサンプリングしたポリマードープをメタンスルホン酸で希釈し、固有粘度 を求めたところ、 34dl/gであった。またこのポリマードープの色は、黄色であった。こ のドープ 100gをリボン型翼を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200°Cで加熱攪拌したが、固有粘度は変化せず、反応が完結していることが確認で きた。
(ポリべンゾォキサゾール繊維の製造)
上記ポリマードープを用い、孔数 334、孔径 0. 22mm,口金面積 54. lcm2 のノズノレから、ポリマードープ吐出量 158g/分、 口金温度 185°Cの条件で、ギヤポ ンプを用いて紡出し、温度 60°Cの冷却風で糸条を冷却、、ついでリン酸水溶液の凝 固浴に導き、ゴデットロールで卷き取った。卷き取った糸条を水洗し、リン酸を抽出し た後、水酸化ナトリウム水溶液で中和、再度水洗を行い、 200°Cで乾燥させた。得ら れたポリべンゾォキサゾール繊維の強度は 40cN/dtexであった。
実施例 2
J. polym. Sci part: A., 35, 3451 (1997)に記載の方法と同様の方法で、 4_ [5 _アミ ノー 6—チォキシベンゾチアゾールー 2—ィル]ベンゾイツクアシッド(ATBA)を、メタ ノール ZDMF溶媒を用いて再結晶で精製し、 HPLCで測定した純度が 99%以上 のものを用いた。
(ポリべンゾチアゾールの調製)
ダブルへリカルリボン翼型攪拌機、固形分投入口および液体投入口を備えた 501の ステンレス ί岡製の反応器に、 116%PPA26. 49kg,五酸ィ匕ニリン 3. 50kg,上記方 法で調製した ATBA6. 46kg (21. 35モル)、第一塩化すず 200gを投入し、反応器 のジャケット温度を 100°Cにコントロールしながら、 3時間攪拌した。こうして出来た粘 凋なスラリーを上流力 Sわ力ら 120。C、 170。C、 220。C、 220。C、 150。Cに其々設定さ れた、 5つのヒーティングゾーンを持つ 2軸押出機に、ギヤポンプを用いて供給した。 同時に末端停止剤として、安息香酸の 20%ポリリン酸溶液をギヤポンプを用いて、 A TBAに対して 1. 3モル%となるように、 2軸押出機に供給した。 2軸押出機内での平 均滞留時間が 1時間となるように吐出量を調整して重合反応をおこなった。押し出し 機出口力らサンプリングしたポリマードープをメタンスルホン酸で希釈し、固有粘度を 求めたところ、 22dl/gであった。またこのポリマードープの色は、オレンジ色であった。 このドープ 100gをリボン型翼を備えた 300mlセパラブルフラスコに入れ、さらに 3時 間 200°Cで加熱攪拌したが、固有粘度は変化せず、反応が完結していることが確認 できた。
[0043] 実施例 3
2軸押出機の温度設定を、上流側力ら 120°C、 170。C、 220°C、 220°C、 150。Cとし 、 2軸押出機内での平均滞留時間を 30分とした以外は、実施例 1と同様に反応させ た。出来たポリマードープの色は黄色で、固有粘度は 24dl/gであった。このドープ 10 0gをリボン型翼を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200°Cでカロ 熱攪拌したが、固有粘度は変化せず、反応が完結していることが確認できた。
[0044] 実施例 4
双腕型攪拌機、固形分投入口および液体投入口を備えた 501のステンレス鋼製の 反応器に、 116%PPA31. 00kg,五酸化二リン 7. 50kg,上記方法で調製した AB A5. 77kg (21. 35モル)、第一塩化すず 500gを投入し、反応器のジャケット温度を 140°Cにコントロールしながら、 2時間攪拌した。こうして得られたこうして出来た粘凋 なスラリーを実施例 1と同様の条件で反応させた。得られたポリマーは黄色で、固有 粘度は 26dl/gであった。このドープ 100gをリボン型翼を備えた 300mlセパラブルフ ラスコに入れ、さらに 3時間 200°Cで加熱攪拌したが、固有粘度は変化せず、反応が 完結してレ、ることが確認できた。
[0045] 実施例 5
5つのヒーティングゾーンを持つ 30mm φの 2軸押出の温度設定を上流側から 130 °C、 150°C、 220°C、 220°C、 180°Cとし、滞留時間が 1. 5時間となるように押出機の 回転数、パドル構成を設定した。第 1ゾーンに 100°Cに加熱した 117%ポリリン酸を 2 Occ/分でギヤポンプで供給しつつ、 ABAをスクリュー型粉体供給装置を用いて 6g /分の速度で、同じく第 1ゾーンに供給した。
第 4ゾーンに 20%アミノフヱノール/ポリリン酸溶液を 0. 5cc/分の速度で添加し た。得られたポリマーの固有粘度は 22dl/gで、ポリマー色調は黄色であった。このド ープ 100gをリボン型翼を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200 °Cで加熱攪拌したが、固有粘度は変化せず、反応が完結していることが確認できた。
[0046] 実施例 6
安息香酸の 20%ポリリン酸溶液をギヤポンプを用いて、 ABAに対して 2モル%とな るように、 2軸押出機に供給した以外は、実施例 1と同様に反応させた。出来たポリマ 一ドープの色は黄色で、固有粘度は 15dl/gであった。このドープ 100gをリボン型翼 を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200°Cで加熱攪拌したが、 固有粘度は変化せず、反応が完結してレ、ることが確認できた。
[0047] 比較例 1
501のステンレス鋼製の反応器の温度を 180°Cとした以外は、実施例 1と同様に反 応をおこなった。ポリマードープの色は濃い緑色で、固有粘度は 17dl/gであった。こ のドープ 100gをリボン型翼を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200°Cで加熱攪拌したが、固有粘度は変化せず、反応が完結していることが確認で きた。
(ポリべンゾォキサゾール繊維の製造)
上記ポリマードープを用い、孔数 334、孔径 0. 22mm,口金面積 54. 1cm2のノズ ノレ力ら、ポリマードープ吐出量 158gZ分、 口金温度 180°Cの条件で、ギヤポンプを 用いて紡出することを試みた力 糸切れが多発し、生産性に乏しい結果となった。
[0048] 比較例 2
2軸押出機のヒーター温度の設定を 150°C、 180。C、 180。C、 180°C、 170。Cとし、 平均滞留時間を 1. 5時間となるようにした以外は実施例 1と同様に反応をおこなった 。得られたポリマーの固有粘度は、 8dlZgと低力つた。このドープ 100gをリボン型翼 を備えた 300mlセパラブルフラスコに入れ、さらに 3時間 200°Cで加熱攪拌すると、 固有粘度は 22dl/gになり、 2軸押出機では反応が完結していなかったことが確認でき た。
[0049] 比較例 3
アンカー翼型攪拌機、固形分投入口および液体投入口を備えた 501のステンレス 鋼製の反応器に、 116%PPA26. 49kg,五酸化二リン 3. 50kg,上記方法で調製 した ΑΒΑ5· 77kg (21. 35モル)、第一塩化すず 200gを投入し、反応器のジャケット 温度を 100°Cにコントロールしながら、 3時間攪拌した。さらに 160°Cで 2時間反応さ せたのち、 210°Cで反応させた。 1時間おきにポリマーをサンプリングし、固有粘度を 測定した。固有粘度が最大となったのは、 8時間後でその固有粘度は 22dl/gであつ た。ポリマードープはところどころ緑色に変色しており、攪拌翼に卷きついて、反応缶 力 取り出すことが出来なかった。
産業上の利用可能性
[0050] 本発明のポリベンザゾールポリマーの製造方法は、従来になく短時間で、し力も安 定して製造が可能であるため、製造コストの低減など産業上の寄与が大である。

Claims

請求の範囲 下記一般式(1)で表される化合物を原料とし、非酸化性脱水溶媒中でポリべンザゾ 一ルポリマーを製造するに際し、 150°C以下の温度の前期重合段階と 200°C以上の 温度で重合させる後期重合段階とを設け、少なくとも後期重合段階を混練型反応装 置中で実施して重合反応を完結させることを特徴とするポリベンザゾールポリマーの 製造方法。
[化 1]
Figure imgf000018_0001
式中 Xは〇原子、 S原子または NH基を表し、 Arはベンゼン環、ナフタレン環また
1
はピリジン環を 2個以下含む 4価の有機基、 Arはベンゼン環、ナフタレン環またはピ
2
リジン環を 2個以下含む 2価の有機基、 Rは Hまたは炭素数 1〜6の 1価の有機基を表 す。
[2] 上記一般式(1)の Arがベンゼン環またはナフタレン環を 2個以下含む 4価の有機
1
基、 Arがベンゼン環又はナフタレン環を 2個以下含む 2価の有機基、 Rが Hまたは
2
炭素数 1〜6の 1価の有機基で表される化合物を原料とし、非酸化性脱水溶媒中で ポリベンゾォキサゾールポリマーを製造するに際し、 150°C以下の温度の前期重合 段階と 200°C以上の温度で重合させる後期重合段階とを設け、少なくとも後期重合 段階を混練型反応装置中で実施して重合反応を完結させることを特徴とするポリべ ンゾォキサゾ一ルポリマーの製造方法。
[3] 全重合反応時間を 6時間以内とすることを特徴とする請求項 1、 2に記載のポリベン ザゾールポリマーの製造方法。
[4] 非酸化性脱水溶媒がポリ燐酸、五酸化リン又はメタンスルホン酸およびそれらの混 合物から選ばれた重合溶媒であり、還元剤を含有することを特徴とする請求項 1〜3 に記載のポリベンザゾールポリマーの製造方法。
[5] 請求項 1〜4のいずれかに記載の方法で得られたポリマーであって、固有粘度が、
5dl/g以上であることを特徴とするポリベンザゾールポリマー。 [6] 請求項 1〜4のいずれかに記載の方法で得られたポリマーであって、固有粘度が 20dl/g以上であることを特徴とするポリベンザゾールポリマー。
PCT/JP2006/317952 2005-09-13 2006-09-11 ポリベンザゾールポリマーの製造方法およびそのポリマー WO2007032296A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/066,819 US20080269455A1 (en) 2005-09-13 2006-09-11 Process for Production of Polybenzazole Polymer and the Polymer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005265120 2005-09-13
JP2005-265120 2005-09-13
JP2005-265119 2005-09-13
JP2005265119 2005-09-13
JP2006056189A JP2007106980A (ja) 2005-09-13 2006-03-02 ポリベンゾオキサゾールポリマーの製造方法およびそのポリマー
JP2006-056190 2006-03-02
JP2006056190A JP2007106981A (ja) 2005-09-13 2006-03-02 ポリベンザゾールポリマーの製造方法およびそのポリマー
JP2006-056189 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007032296A1 true WO2007032296A1 (ja) 2007-03-22

Family

ID=37864889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317952 WO2007032296A1 (ja) 2005-09-13 2006-09-11 ポリベンザゾールポリマーの製造方法およびそのポリマー

Country Status (2)

Country Link
US (1) US20080269455A1 (ja)
WO (1) WO2007032296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495106B1 (en) * 2006-12-04 2009-02-24 United States Of America As Represented By The Secretary Of The Air Force O-aminophenol-containing AB-monomer for heterocyclic rigid-rod polymers
JP2016505522A (ja) * 2012-11-16 2016-02-25 浙江工▲業▼大学 4−(5−アミノ−6−ヒドロキシベンズオキサゾール−2−イル)安息香酸アンモニウム、並びにその製造及び使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942533B (zh) * 2012-11-16 2015-01-28 盐城鼎龙化工有限公司 一种4-(5-氨基-6-羟基-2-苯并噁唑基)苯甲酸的制备方法
CN103204805A (zh) * 2012-12-21 2013-07-17 浙江工业大学 Ab型pbz单体的关键中间体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316637A (ja) * 1982-09-17 1994-11-15 Sri Internatl 重合方法
JP2001226485A (ja) * 1999-12-06 2001-08-21 Toyobo Co Ltd ポリベンザゾールおよびその繊維

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533724A (en) * 1982-09-17 1985-08-06 Sri International Liquid crystalline poly (2,6-benzothiazole) compositions, process, and products
FR2577545B1 (fr) * 1985-02-15 1987-03-27 Elf France Emulsions cationiques de liants bitumineux du type bitume/polymere et systeme emulsifiant cationique utilisable notamment pour l'obtention de ces emulsions
US5756031A (en) * 1994-08-12 1998-05-26 Toyobo Co., Ltd. Process for preparing polybenzazole filaments and fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316637A (ja) * 1982-09-17 1994-11-15 Sri Internatl 重合方法
JP2001226485A (ja) * 1999-12-06 2001-08-21 Toyobo Co Ltd ポリベンザゾールおよびその繊維

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495106B1 (en) * 2006-12-04 2009-02-24 United States Of America As Represented By The Secretary Of The Air Force O-aminophenol-containing AB-monomer for heterocyclic rigid-rod polymers
JP2016505522A (ja) * 2012-11-16 2016-02-25 浙江工▲業▼大学 4−(5−アミノ−6−ヒドロキシベンズオキサゾール−2−イル)安息香酸アンモニウム、並びにその製造及び使用

Also Published As

Publication number Publication date
US20080269455A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
EP0231373B1 (en) A process for the production of a liquid crystalline extended chain polymer composition
CN101809067B (zh) 可结晶的聚醚酰亚胺、制备方法和由其获得的制品
JP3117973B2 (ja) 少なくとも20dL/gの固有粘度を有するポリマー
EP3366716B1 (en) Method for producing semi-aromatic polyamide and semi-aromatic polyamide
JP3245166B2 (ja) 硬質棒状ポリマー
WO2007032296A1 (ja) ポリベンザゾールポリマーの製造方法およびそのポリマー
JP2979283B2 (ja) 重合方法
WO2017214743A1 (zh) 聚对苯二甲酰对二苯胺的制备工艺
JP2007106980A (ja) ポリベンゾオキサゾールポリマーの製造方法およびそのポリマー
JP3685049B2 (ja) ポリベンザゾールおよびその繊維
JP2007106981A (ja) ポリベンザゾールポリマーの製造方法およびそのポリマー
CN101263179A (zh) 聚苯并唑聚合物的制造方法及其聚合物
CN113667119B (zh) 一种聚乙酰氨基酰亚胺薄膜及其制备方法
JP4370551B2 (ja) ポリベンズアゾール成形体の製造方法
JP4258700B2 (ja) ポリベンズアゾール成形体の製造方法
JP2005132903A (ja) ポリイミドベンゾオキサゾール前駆体の製造方法
JPH04114062A (ja) 芳香族ポリチアゾールの分子複合材の製造方法
Wang et al. High glass transitions and fluorescence of novel organosoluble poly (arylene ether) s containing kink noncoplanar heterocyclic structures
JPH0416490B2 (ja)
CA1259736A (en) Liquid crystalline poly (2,6-benzothiazole) compositions, process, and products
Shaplov POLYCONDENSATION 2016
KR930009278B1 (ko) 전 방향족 폴리아미드 펄프의 제조 방법
CN111454448A (zh) 聚酰胺及其制造方法
Glomm et al. Arrangement of substituted, rigid‐rod aramids in the highly‐ordered solid state
JPS6346221A (ja) 耐熱性ポリアミド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033615.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12066819

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06797778

Country of ref document: EP

Kind code of ref document: A1