WO2007032216A1 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
WO2007032216A1
WO2007032216A1 PCT/JP2006/317354 JP2006317354W WO2007032216A1 WO 2007032216 A1 WO2007032216 A1 WO 2007032216A1 JP 2006317354 W JP2006317354 W JP 2006317354W WO 2007032216 A1 WO2007032216 A1 WO 2007032216A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
light
image forming
laser light
Prior art date
Application number
PCT/JP2006/317354
Other languages
English (en)
French (fr)
Inventor
Tetsuro Mizushima
Kazuhisa Yamamoto
Yoshimasa Fushimi
Kiminori Mizuuchi
Shin-Ichi Kadowaki
Tatsuo Itoh
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/066,345 priority Critical patent/US20090257029A1/en
Priority to JP2007535422A priority patent/JP4987720B2/ja
Publication of WO2007032216A1 publication Critical patent/WO2007032216A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto

Definitions

  • the present invention relates to an image forming apparatus such as a television receiver or a video projector.
  • a projection display that displays an image on a screen is widely used.
  • a lamp light source is generally used.
  • the lamp light source has a problem that the color reproduction region has a short life span and the light use efficiency is low.
  • the laser light source has a long life and strong directivity compared to the lamp light source, so it is easy to improve the light utilization efficiency.
  • the laser light source since the laser light source exhibits monochromaticity, it is possible to display a clear image with a large color reproduction area.
  • Speckle noise is fine granular noise that is captured by the observer's eyes, which is generated when scattered light interferes when laser light is scattered on a screen.
  • Speckle noise is a random arrangement of particles whose size is determined by the F (F number) of the observer's eye and the wavelength of the laser light source, and interferes with capturing the image of the observer's power S screen. Causes serious image degradation.
  • Speckle noise includes diffractive surface (illumination) noise projected on a screen. This speckle noise becomes unevenness of the image and degrades the image.
  • the laser light source is made into a multi-array, and the spectrum width of the total output from the array is widened, thereby reducing the coherence and reducing speckle noise.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-208089
  • Patent Document 2 Japanese Translation of Special Publication 2004—503923
  • An object of the present invention is to solve the above-described conventional problems, and to provide an image forming apparatus that forms an image having excellent reliability and removing speckle noise.
  • the image forming apparatus of the present invention has a plurality of laser beam emitting units, a light source unit that emits laser beams from the plurality of laser beam emitting units, and a laser beam emitted from the plurality of laser beam emitting units. And at least one laser light emitting unit emits laser light at a timing different from that of the other laser light emitting units, and at least one laser light emitting unit illuminates the modulation element.
  • the light beam angle is different from the light beam angle when another laser beam emitting unit illuminates the modulation element.
  • speckle noise can be removed without providing a physical operation mechanism.
  • the reliability of the device is improved.
  • the image forming apparatus may further include an optical integrator between the plurality of laser beam emitting units and the modulation element.
  • the image forming apparatus includes a plurality of laser light emitting units arranged in an array, and further includes a photorefractive element between the plurality of laser light emitting units and the optical integrator. The light beam angle may be varied depending on the position where the laser light emitted from the emission part passes through the photorefractive element.
  • a plurality of laser beam emitting units are arranged in an array, and a light beam angle of 2 is set for each of the plurality of laser beam emitting units between the plurality of laser beam emitting units and the optical integrator.
  • a photorefractive element that changes the axis may be further provided.
  • the emission time of one pattern when a plurality of laser beam emitting units emit laser beams individually or in combination is 10 msec or less.
  • the continuous emission time of each laser beam emission section is 1 ⁇ sec or less.
  • the plurality of laser beam emitting units are configured so that the total light of the laser beams emitted from the plurality of laser beam emitting units becomes a pseudo continuous wave and the power of the total light is modulated by the image signal. Laser light may be emitted.
  • the plurality of laser beam emitting units modulate the power of the pseudo rectangular wave with an image signal so that the total light of the laser beams emitted from the plurality of laser beam emitting units becomes a pseudo rectangular wave of 100HZ to 2KHz. As you can see, laser light can be emitted.
  • the image forming apparatus may further include an optical integrator in which a plurality of laser beam emitting units are arranged on the side surface and the laser beam incident on the side surface is emitted to the main surface force modulation element.
  • the plurality of laser beam emitting units may be arranged on opposite sides of the side surface of the optical integrator.
  • the plurality of laser beam emitting sections may be respectively arranged on four sides of the side surface of the optical integrator.
  • the plurality of laser beam emitting portions may be arranged in a point-symmetrical position with respect to the central portion of the optical integrator.
  • the plurality of laser beam emitting portions may be respectively arranged at corner portions of the optical integrator.
  • Each laser beam emitting unit may be a laser light source that emits laser light.
  • the light source unit further includes a laser light source that emits laser light and a fiber, and each laser light emission unit may be an emission port that emits the laser light of the laser light source supplied via the fiber. good.
  • the image forming apparatus of the present invention is excellent in reliability and can form an image from which speckle noise is removed.
  • FIG. 1 is a schematic configuration diagram of an image forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the light source unit force of the first embodiment of the present invention and the light beam angle of the laser beam to the optical integrator, where (a) is a perspective view and (b) is a front view.
  • FIG. 3 is a diagram showing the emission timing and power of the laser beam emitting section of Embodiment 1 of the present invention.
  • ⁇ 4 Schematic configuration diagram of the image forming apparatus of Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing the light beam angle of the laser beam to the optical integrator as well as the light source unit force of Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing the emission timing and power of the laser beam emission part of the second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of an image forming apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic configuration diagram of an image forming apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic configuration diagram of an image forming apparatus according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic configuration diagram of an image forming apparatus according to Embodiment 6 of the present invention.
  • FIG. 1 shows a schematic diagram of an image forming apparatus according to Embodiment 1 of the present invention.
  • the image forming apparatus of this embodiment is a projection display using a laser light source.
  • the image forming apparatus includes a red light source unit la that emits red laser light, a green light source unit lb that emits green laser light, and a blue light source unit lc that emits blue laser light.
  • the red light source part la, the green light source part lb, and the blue light source part lc are respectively laser light emitting parts la-1, la-2, la-3, laser light emitting parts lb-1, lb-2, lb-3 , And a laser beam emitting portion lc-1, lc-2, lc-3.
  • the laser beam emitting portions la-1, la-2, and la-3 are red laser light sources that emit red laser light.
  • the laser beam emitting units lb-1, lb-2, and lb-3 are green laser light sources that emit green laser light.
  • the laser light emitting portions lc-1, lc-2, and lc-3 are blue laser light sources that emit blue laser light.
  • the image forming apparatus of this embodiment includes an illumination optical system 2 and a modulation element 7 for each of the light source units la to lc.
  • Laser light emitted from Lc is RG
  • the light is guided to the illumination optical system 2 that illuminates the modulation element 7 that modulates each color of B.
  • Each illumination optical system 2 shapes the laser light emitted from the light source units la to lc into a rectangle and makes it almost uniform, and the projection optical system 6 that relays the light from the light integrator 4 to the modulation element 7 including.
  • the projection optical system 6 includes a mirror 61 and a field lens 62.
  • the image forming apparatus of the present embodiment further includes a dichroic prism 9 that combines the RGB laser light emitted from the three modulation elements 7, and the combined light is enlarged on the screen 10.
  • the image forming apparatus of this embodiment forms a color image on the screen 10 by spatial additive color mixing.
  • FIG. 2 shows a configuration in which the laser beams emitted from the laser beam emitting units lb-1, lb-2, and lb-3 of the green light source unit lb are incident on the optical integrator 4 at different light beam angles.
  • FIG. 2 (a) is a perspective view showing the laser light emitting portions lb-1, lb-2 and lb-3, the photorefractive element 21, and the optical integrator 4 of the green light source portion lb, and (b) is a front view. It is.
  • the laser beam emitting portions lb-1, lb-2, and lb-3 are provided in three in the width direction, and a total of nine laser beam emitting portions are arranged in a two-dimensional array. .
  • the image forming apparatus of the present embodiment includes a photorefractive element 21 between nine laser light emitting units and the optical integrator 4.
  • the photorefractive element 21 is an element that varies the light beam angle for each laser light emitting portion, and specifically, a prism array having a different inclination for each convex lens or laser light emitting portion.
  • Each of the nine laser beam emitting part forces emitted from the green laser beam is incident on the photorefractive element 21, and the light beam angle is different in two axes for each laser beam emitting part depending on the passing position of the photorefractive element 21. , Guided to the light integrator 4.
  • the beam angle of the laser light emitted from each laser light emitting portion is controlled.
  • a plurality of laser beam emitting portions Forces When the emitted laser beams are incident on the illumination optical system 2 at different angles, the angle at which the modulation element 7 is illuminated is different for each laser beam emitting portion.
  • the green light source unit lb has been described, but the red light source unit la and the blue light source unit lc have the same configuration as that of the green light source unit lb and are arranged in a two-dimensional array.
  • Laser light power emitted from the laser light emitting part Through one photorefractive element 21
  • each laser beam is guided to the optical integrator 4 at different beam angles on the two axes.
  • each of the red light source unit la, the green light source unit lb, and the blue light source unit lc emits laser light from each laser light emitting unit in a predetermined order.
  • FIG. 3 shows the laser beam emission timing by each laser beam emission unit and the power modulation by the image signal, taking the red light source unit la as an example.
  • each laser beam emitting unit is la-l ⁇ la-2 ⁇ la-3 ⁇ la-1 so that the total light of each laser beam emitting unit of the red light source unit la becomes a pseudo continuous wave 31.
  • the laser beam is emitted continuously in the order of.
  • the image signal changes depending on the image such as a bright scene or a dark scene
  • the power of each laser beam emitting unit is modulated according to the image signal.
  • FIG. 3 shows an example in which the image signal is modulated for each frame, and the total light power of the red laser light source la is modulated stepwise for each frame.
  • the image forming apparatus is configured such that, in each of the red light source unit la, the green light source unit lb, and the blue light source unit 1c, the light beam angle is made different for each laser light emitting unit, and each laser light emitting unit has a different timing.
  • the laser beams are emitted in order.
  • the plurality of laser light emitting units individually emit laser light continuously and continuously so that the total light of each laser light emitting unit becomes a pseudo continuous wave 31. Even when an image is displayed, the peak output of each laser beam emitting section can be suppressed. Thereby, the safety
  • the optical components using laser light The damage of the light source itself can be prevented. Furthermore, the laser light source can be prevented from being deteriorated by heat, and the light resistance of the optical component is improved.
  • by power modulating the total light output for each frame the laser light output can be suppressed in the case of dark images, and power saving can be realized. Furthermore, the contrast and the number of gradations can be increased by controlling the modulation element 7 in synchronization.
  • each of the red light source unit la, the green light source unit lb, and the blue light source unit lc it is not necessary for all of the laser beam emitting units to emit laser beams in order.
  • Laser light may be emitted in order by combination. For example, (la—1 + la_2) ⁇ (la_2 + la_3) ⁇ (la_3 + la_l) ⁇ (la_l + la_2) + (la_2 ⁇ la—3) ⁇ ⁇ ”
  • the laser light emitting part to be used and the combination of the laser light emitting parts may be changed with time.
  • each of the red light source unit la, the green light source unit lb, and the blue light source unit lc three laser beam emitting units arranged in the width direction of the laser beam emitting unit as shown in FIG.
  • the laser light may be emitted, or the laser light may be emitted in order at different timings.
  • the three laser beam emitting units la-1 may emit laser beams at the same time as shown in la-1 in FIG. 3, or laser beams may be emitted in sequence at different timings.
  • the order of emitting the laser light is not limited to FIG. It is sufficient if the total light from each laser beam emitting part becomes a pseudo continuous wave 31.
  • the time tl of one cycle from when each laser beam emitting unit emits laser beam to the next laser beam is 10 msec or less. More preferably, when one laser beam is emitted by a single laser beam emitting unit or a combination of a plurality of laser beam emitting units (for example, laser beam emitting unit la-1 and laser beam emitting unit la-2).
  • the emission time t2 is preferably 10 msec or less.
  • the emission time for 10 patterns may be set to 10 msec or less.
  • the time for each laser beam emitting section to continuously emit the laser beam is 1 ⁇ sec or less.
  • the continuous emission time of each laser beam emission part By setting the continuous emission time of each laser beam emission part to 1 sec or less, the peak power can be increased by pulse emission of the laser beam, and the brightness of the image can be increased. In the case of the same image brightness, the number of laser beam emitting portions can be reduced, and miniaturization and low cost can be achieved. If the continuous emission time from one laser beam emitting part is 1 ⁇ sec or less, the effect of reducing speckle noise due to the decrease in coherence of the laser beam can be obtained at the same time. In order to shorten the continuous emission time of each laser beam emission part, the number of emission patterns repeated in the frame may be increased.
  • the output power of each laser light emitting section need not be the same, and the power per frame of the total light may be controlled to an amount modulated by the image signal.
  • the total light power step is modulated by the image signal.
  • the modulation shape may be any waveform.
  • the center wavelengths of the laser beams emitted from the laser beam emitting portions are not necessarily the same. It is preferable to shift the center wavelength within a range where the color displayed as a monochromatic laser light source can be faithfully reproduced to widen the total spectrum width as a monochromatic laser light source. By widening the spectrum width, it is possible to reduce coherence and further reduce speckle noise.
  • the total spectrum width is preferably in the range of 0.5 to LOnm from the full width at half maximum ⁇ .
  • the light beams emitted from the plurality of laser beam emitting units pass through the same optical integrator 4, It is preferable to illuminate the same modulation element 7.
  • the modulator 7 is illuminated using the same optical integrator 4, the light intensity is averaged.
  • the modulation element 7 can be easily illuminated uniformly.
  • a plurality of laser beam emitting units emit laser beams in order, so that different wavefronts (Angle) of light is emitted from the optical integrator 4 and the angle at which the modulation element 7 is illuminated changes.
  • the laser light emitting units provided in the red, green, and blue light source units la, lb, and lc are monochromatic laser light sources that emit laser light
  • the laser beam emitting unit may be an emission port for emitting laser beam.
  • each light source section has one single-color laser light source that emits either red, green, or blue laser light, and a monochromatic laser.
  • a configuration in which laser light from a light source is emitted from a plurality of laser light emission units at different timings as in this embodiment may be employed.
  • the present embodiment can be applied even when the laser beam emitting portion is an emission port.
  • FIG. 4 shows a schematic diagram of an image forming apparatus according to Embodiment 2 of the present invention.
  • the image forming apparatus of the present embodiment is a projection display, and the laser beams output from the red light source unit l la, the green light source unit l ib, and the blue light source unit 11c are transmitted through the same optical integrator 4 to the same.
  • the light is incident on the modulation element 47 of FIG.
  • the RGB three-color light source parts l la, l ib and 11 c use a single modulation element 47 in a time-sharing manner.
  • Other configurations and operations are almost the same as those in the first embodiment.
  • the configuration of the image forming apparatus of the present embodiment will be described in detail.
  • the image forming apparatus includes a red light source unit lla, a green light source unit l lb, and a blue light source unit 11c each having a plurality of laser beam emitting units.
  • the laser light emitting portions 11a-1, 11a-2, and 11a-3 of the red light source portion 11a are red laser light sources that emit red laser light.
  • the laser light emitting portions l ib-1, 11 b-2, and l ib-3 of the green light source portion l ib are green laser light sources that emit green laser light.
  • the 11 laser light emitting units 11, 11 c-2, 11 c-3 of the blue light source unit 11 are blue laser light sources that emit blue laser light.
  • the image forming apparatus of the present embodiment further includes an illumination optical system 2 and a modulation element 47 that are common to the RGB light source units l la to l lc. Light emitted from the RGB three-color laser light sources l la to l lc is guided to the same modulation element 47 through the same illumination optical system 2.
  • the illumination optical system 2 includes a dichroic prism 49, an optical integrator 4, and a projection optical system 6 that make each color laser beam substantially coaxial. A force dichroic mirror or polarizing mirror using the dichroic prism 49 to make the three colors of laser beams substantially coaxial may be used. If the single modulation element 47 can illuminate with multiple colors of laser light, it should not be coaxial.
  • the modulation element 47 is a two-dimensional micromirror device.
  • the RGB light sources lla, lib, and 11c use a single modulation element 47 in a time-sharing manner, and display a color image by time-average additive color mixing on the screen.
  • the plurality of laser beams emitted from the laser beam emitting units of the red light source unit lla, the green light source unit llb, and the blue light source unit 11c are guided to the dichroic prism 49 at different light beam angles.
  • Fig. 5 taking the green light source part l ib as an example, laser light emitting parts l ib-1, l ib-2 and 1 lb-3 and three laser light emitting parts arranged in different directions A photorefractive element 51 is shown.
  • the laser beam emitting sections l ib-1, l ib-2 and l ib-3 are arranged in a one-dimensional array.
  • Laser light emitted from the laser beam emitting sections l ib-1, l ib-2, l ib-3 is biaxially (X-axis with respect to the optical axis z) by the photorefractive element 51 provided on the emitting side.
  • the light beams are incident on the dichroic prism 49 at different ray angles on the two axes (y-axis).
  • the red light source unit 11a and the blue light source unit 11c include a photorefractive element 51, like the green light source unit ib.
  • Each of the laser beam emitting units of the red light source unit l la, the green light source unit l lb, and the blue light source unit 11c uses a single modulation element 71 in a time-sharing manner. Laser light is emitted in order so as to form a pseudo rectangular wave.
  • FIG. 6 shows the output timing of the laser beam emitting units 11a-1, 11a-2, and 11a-3 and the power modulation based on the image signal.
  • Figure 6 shows an example in which laser beams are emitted in sequence by combining multiple laser beam emitters. (11a-1 + 11a-3) ⁇ (l la-1 + l la-2) ⁇ (l la — 2+ l la— 3) ⁇ (l la— 1 + l la— 3) ⁇ ... Laser light is emitted in this order.
  • the laser light emitting units 11a-1, 11a-2, and 11a-3 emit laser light at an emission timing such that the total light of the red light source unit 11a becomes a pseudo rectangular wave 61.
  • the single modulation element 47 is time-divided using RGB three colors, so that the pulse width of the pseudo rectangular wave 61 of the red light source unit l la, the green light source unit l lb, and the blue light source unit 11c is Each is controlled to be in the range of 100-2KHz.
  • red, green, and blue pseudo rectangular waves 61 are sequentially applied to the modulation element 47 within one frame. By setting the pulse width of the pseudo-rectangular wave 61 to 100 to 2 KHz, it is possible to give the tone by the modulation element 47 that is free from color distortion.
  • FIG. 6 shows how each laser beam emitting unit modulates the emission power so that the pseudo-rectangular wave 61 of the total light is modulated stepwise for each frame by the image signal. Power saving can be realized in the case of dark images by modulating the power of each laser beam emitting unit according to the image signal. Further, by controlling the power of each laser beam emitting portion in synchronization with the modulation element 7, the contrast and gradation number of the image can be increased.
  • This embodiment has the same effect as that of the first embodiment. That is, in each light source unit, a photorefractive element 51 is provided for each laser emitting unit, the angle for illuminating the modulation element 47 is varied on two axes for each laser light emitting unit, and a plurality of laser light emitting units The number of speckle noise patterns increases as the combination emits laser light in order. Thereby, speckle noise after time averaging can be reduced.
  • the red, green, and blue light source units lla, lib, and 11c share the optical integrator 4 and the modulation element 47, and the red, green, and blue light source units l. la, l ib, and 11c laser beams Since the emission part illuminates the same modulation element 47 through the same optical integrator 4, the optical system of the image forming apparatus can be further downsized.
  • the laser light emitting section of each light source section is not limited to a monochromatic laser light source, and may be an emitting port that emits laser light supplied with a single monochromatic laser light source. good.
  • the configuration in which the light beam angles of the laser light emitting portions are made different is not limited to that shown in Figs. Any laser beam emitted from each laser beam emitting portion may be configured to be incident on the optical integrator 4 at different light beam angles on the two axes. For example, a configuration in which a plurality of laser light emitting portions arranged one-dimensionally are inclined and arranged in different directions so that laser light is incident on the dichroic prism 49 via the photorefractive element 21 in FIG. good.
  • the total light of each color of red, green, and blue forms one pseudo-rectangular wave 61 within one frame.
  • the emission timing of the laser beam emission unit may be controlled so that two or more pseudo rectangular waves 61 are formed.
  • one pattern of total light is configured by the combination of two laser beam emitting units.
  • a plurality of laser beam emitting units independently emit laser beams in order. Also good.
  • the number of repetitions of the emission pattern when forming one pseudo rectangular wave 61 may be increased to shorten the continuous emission time of each laser beam emission unit.
  • the peak power can be increased by pulse emission of laser light, and the brightness of the image can be increased.
  • the number of laser beam emitting portions can be reduced, and miniaturization and low cost can be achieved.
  • by shortening the continuous emission time of one laser beam emitting section it is possible to simultaneously obtain the effect of reducing speckle noise due to the reduced coherence of the laser beam.
  • the gap of the emission time by the laser beam emission part when forming the pseudo rectangular wave 61 is preferably 1 ⁇ sec or less. If the intensity fluctuation in the pseudo-rectangular wave is large in time, the problem is that the image gradation cannot be reproduced faithfully. However, the image gradation can be faithfully reproduced by setting the output time gap to 1 ⁇ sec or less. be able to. [0066]
  • the output powers of the laser light emitting units need not be the same, and may be controlled so that the power of the pseudo rectangular wave 61, which is the total light, becomes the power controlled by the image signal.
  • the projection optical system 8 and the screen 10 for projecting the image of the modulation elements 7 and 47 are not particularly limited to the embodiment, and it is sufficient that the viewer can observe the modulation element image.
  • the screen 10 may be a reflection type and a front projection type, or a transmission type may be a rear projection type.
  • a configuration may be adopted in which a transmissive screen is provided immediately after the modulation elements 7 and 47 without providing the projection optical system 8.
  • the illumination optical system 2 is not limited to the first and second embodiments, and may be any configuration as long as it can guide the light having the laser beam emitting portion power to the modulation elements 7 and 47.
  • the optical integrator 4 can use a fly-eye lens, a hologram element, or the like as long as the beam can be shaped and substantially uniform. Further, the projection optical system 6 that relays the light of the optical integrator 4 can be omitted by design.
  • FIG. 7 shows a schematic diagram of an image forming apparatus according to Embodiment 3 of the present invention.
  • the image forming apparatus of the present embodiment is a liquid crystal display and uses a laser light source as a backlight.
  • the image forming apparatus according to the present embodiment includes laser light emitting units 71a-l to 71a-6 that are red laser light sources, laser light emitting units 71b-l to 71b-6 that are green laser light sources, and laser emission that is a blue laser light source. 71c-1 to 71c-6 are provided.
  • the image forming apparatus includes a light guide plate-type optical integrator 74 that emits light from the main surface after the light of each laser light emitting unit is incident on the side surface, and the light from the light guide plate-type light integrator 74. And a modulation element 77 provided on the outgoing main surface side.
  • the light guide plate type optical integrator 74 and the modulation element 77 constitute an illumination optical system.
  • the laser light emitting portions 71a-l to 71a-6 which are red laser light sources, are arranged so that the laser light is incident on the light guide plate type optical integrator 74 at different angles for each laser light emitting portion. Arranged on the side of the optical integrator 74. The same applies to the green and blue laser light sources.
  • RGB laser light emitting sections are arranged on all four sides of the side surface of the light guide plate type optical integrator 74.
  • FIG. 7 there is a pair of RGB laser beam emitting sections on the top and bottom side surfaces of the light guide plate type light integrator 74.
  • RGB laser beam emitters there are two sets of RGB laser beam emitters on the left and right sides.
  • Each of the RGB laser beam emitting units irradiates the modulation element 77 by emitting laser beams in order, either alone or in combination as in the first or second embodiment.
  • the light guide plate type optical integrator 74 includes a reflection surface on the back surface and the side surface except for the portions where the laser beam emitting portions are provided.
  • the light guide plate type optical integrator 74 has a uniform diffusion means inside, and emits light with a uniform light amount distribution, with a main surface force. The light emitted from the light guide plate type optical integrator 74 is guided to the modulation element 77 to form an image.
  • the present embodiment has the same effects as those of the first embodiment. That is, the angle at which each of the RGB laser light emitting portions illuminates the modulation element 77 changes with time, so that speckle noise is removed. A viewer who views the image formed by the modulation element 77 can view an image without speckle noise. In addition, reliability is improved because no physical operation mechanism is provided.
  • the laser light source is a point light source, there is a problem that it is difficult to make uniform illumination with one laser light source.
  • the type optical integrator 74 By rubbing the configuration in which the light is incident on the type optical integrator 74, it is possible to increase the uniformity of illumination as compared with the case where the light is incident from one point.
  • the laser light emitting part is arranged on the side surface of the light guide plate type optical integrator 74.
  • the angle at which the modulation element 77 is illuminated is different.
  • the laser light emitting is provided on the back surface side. Parts may be arranged. Further, as long as the angle at which the light emitted from the light guide plate type light integrator 74 illuminates the modulation element 77 is different for each laser light emitting part, the laser light emitting part may be arranged at any position.
  • the laser beam emitting section for each RGB color is not limited to a monochromatic laser light source, but one
  • the monochromatic laser light source power may be an emission port for emitting the supplied laser beam.
  • FIG. 8 shows the configuration of the image forming apparatus according to the fourth embodiment of the present invention.
  • Laser light emitting portions 81b-1 to 81b-6 shown in FIG. 8 are emission ports for emitting laser light.
  • the image forming apparatus of the present embodiment branches the laser beam emitted from the green laser light source 81b-0, couples it to the fiber 82, and emits the laser beam from the laser beam emitting units 81b-1 to 81b-6.
  • the green laser light source 81b-0, the fiber 82, and the laser beam emitting units 81b-l to 81b_6 constitute a green light source unit.
  • the image forming apparatus of the present embodiment is configured to use a laser light source as a backlight of a liquid crystal display, and the light guide plate type optical integrator 74 and the modulation element 77 are the same as those of the third embodiment.
  • the light guide plate integrator 74 includes a diffusing structure, a prism group, and the like, and uniformly illuminates the modulation element 77.
  • Laser light emitting portions 81b-l to 81b-6 are respectively attached to the light guide plate type optical integrator 74 at different positions in order to illuminate the modulation element 77 from different angles.
  • the laser light emitting portions 81b-1 to 81b-6 are arranged on the four sides of the side surface of the light guide plate type optical integrator 74.
  • the laser beam emitting units 81b-1 to 81b-6 emit laser beams in order.
  • the laser light emission pattern may be emitted separately by the laser light emitting unit alone, as in the case of the second embodiment. good.
  • the laser beam may be emitted in order by changing the laser beam emitting unit used with time or the combination of the laser beam emitting units.
  • each laser light emitting unit force laser light is sequentially emitted within a time when the viewer recognizes the brightness. Speckle noise can be removed as in Form 7.
  • the light emitted from the light guide plate type light integrator 74 can be made uniform by emitting a plurality of laser light emitting unit force lights. In other words, the uniformity of lighting can be increased.
  • a plurality of laser beam emitting sections are provided, and the laser beam incident section force is also reduced by the light guide plate type integrator 74.
  • the optical power density of the laser light incident on the laser beam damage to optical components and the laser light source due to the laser light can be prevented.
  • the same structure as in FIG. 8 can be used for the force red laser light source and the blue laser light source described in the case of using the green laser light source 81b-0.
  • the laser light source itself is arranged on the side surface of the light guide plate type light integrator 74, as compared to FIG.
  • the RGB exits can be brought close to each other. Suitable for configurations that output white.
  • the RGB light source unit may be configured by combining the configuration of FIG. 7 and the configuration of FIG.
  • semiconductor lasers are used for the red and blue laser light sources
  • the laser light emitting part which is a laser light source
  • the fiber laser is used for the green laser light source.
  • the laser beam emitting part that is the emitting port may be arranged on the side surface of the light guide plate type optical integrator 74 as shown in FIG. Since it is difficult to emit green laser light with a semiconductor laser, it is conceivable to use a fiber laser that emits green laser light by wavelength conversion instead of a green laser light source. This embodiment is suitable when a fiber laser is used as a laser light source.
  • FIG. 9 shows the configuration of the image forming apparatus of the fifth embodiment.
  • the image forming apparatus according to the present embodiment includes a plate-like optical integrator 94, and laser light emitting portions 81b-5 and 81b-6 are provided on two sides which are opposite sides of the side surface of the plate-like optical integrator 94.
  • Other configurations are the same as those in the fourth embodiment.
  • the plate-like optical integrator 94 is a light guide plate type or hollow type optical integrator. Normally, when light is incident on the plate-shaped optical integrator 94 from one side, light is likely to be non-uniform at the upstream and downstream portions of the light incidence. In particular, in the plate-shaped light integrator 94 that emits light incident from the side surface to the front, a problem arises in that it is difficult to make the light uniform because the laser light source is a point light source. However, as in the present embodiment, by providing the laser light emitting portions 8 lb 5 and 8 lb 6 on the opposite side, the upstream and downstream portions of the light incidence can be eliminated. Further, uniform illumination can be realized by the laser light emitting units 81b_5 and 81b_6 emitting laser light alternately within a time period for which the viewer recognizes an image, for example, 10 msec or less.
  • the pair of laser light emitting portions is arranged on the opposite side.
  • the laser beam emitting portion may be disposed on the opposite side of the side surface of the plate-shaped optical integrator 94 so that the center of the plate-shaped optical integrator 94 is point-symmetric.
  • the emission angle of the laser light is adjusted so that the chief ray goes to the center of the plate-shaped optical integrator 94 facing each other.
  • speckle noise reduction and uniform illumination can be realized.
  • a plurality of sets of laser light emitting portions are arranged at point-symmetrical positions with respect to the opposite side or center of the plate-shaped optical integrator 94. It is preferable.
  • FIG. 10 shows the configuration of the image forming apparatus of the sixth embodiment.
  • the laser beam emitting units 101b-1 to LOlb-4 are arranged in a part of the corner of the light guide plate type optical integrator 74.
  • the laser beam emitting units 101b-1 to LOlb-4 are arranged so that the respective laser beam emitting units face each other, that is, so that the chief ray is directed to the center of the plate-like optical integrator 74.
  • the configuration and operation other than the arrangement of the laser beam emitting units 101b-1 to: LOlb-4 are the same as those in the fourth embodiment.
  • Laser beam emitting section 101b-1 ⁇ It is preferable to provide an optical element composed of a cylindrical lens that spreads the laser beam in the surface direction or a lenticular lens in which the cylindrical lenses are continuous on the emission side of L01b_4. By making the laser beam flat by using an optical element, uniformization can be assisted. [0094] Note that in Embodiments 1 to 6, the number of laser beam emitting portions is not limited to the embodiment. In order to be able to emit laser light in order, each RGB light source should have at least two laser light emitting parts.
  • each of the red, green, and blue light source units has a plurality of laser light emitting units. A plurality of at least one of red, green, and blue are used. The structure which provides the laser beam emission part of this may be sufficient.
  • the image forming apparatus has the power described in the case of using RGB three-color laser light sources.
  • the present invention is not particularly limited to this, and three or more color laser light sources are used. Also good.
  • the image forming apparatus of the present invention has excellent reliability when it can form an image from which speckle noise is removed, and is useful for a projection display or a liquid crystal display that forms a moving image, a still image, or the like. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Description

画像形成装置
技術分野
[0001] 本発明は、テレビ受像機や映像プロジェクタなどの画像形成装置に関する。
背景技術
[0002] 画像形成装置として、スクリーン上に画像を映し出すプロジェクシヨンディスプレイが 普及している。プロジェクシヨンディスプレイには、一般にランプ光源が用いられる力 ランプ光源は、寿命が短ぐ色再現領域が制限され、光利用効率が低いという問題 点を持っている。
[0003] これらの問題を解決するために、画像形成装置の光源として、レーザ光源を用いる ことが試みられている。レーザ光源は、ランプ光源に比べて、寿命が長ぐ指向性が 強いため、光利用効率を高めやすい。また、レーザ光源は単色性を示すため、色再 現領域が大きぐ鮮ゃ力な画像を表示することが可能となる。
[0004] しかしながら、レーザ光源を用いたディスプレイにお 、ては、レーザ光の干渉性が 高いために、スペックルノイズが生じる。
[0005] スペックルノイズとは、レーザ光がスクリーンで散乱される際に、散乱光同士が干渉 するために生じる、観察者の目で捉えられる微細な粒状のノイズである。スペックルノ ィズは、観察者の目の F (エフナンバー)とレーザ光源の波長で決まる大きさの粒がラ ンダムに配置されるノイズとなり、観察者力 Sスクリーンの画像を捉えるのを妨害し、深 刻な画像劣化を引き起こす。
[0006] また、スペックルノイズには、スクリーンに映し出される回折面(照明)のノイズがある 。このスペックルノイズは像のムラとなり、画像を劣化させる。
[0007] 上記スペックルノイズを低減する方法力 従来から数多く提案されて!ヽる。特許文 献 1のディスプレイ装置は、拡散素子を運動させて、変調素子を照明している。拡散 素子を運動させることにより、拡散素子で生じるスペックルパターンを時間的に変化さ せ、変調素子の照明光角度を実質的に変化させている。その結果、スクリーンを投射 する角度が時間的に変化することで、スクリーンで発生するスペックルパターンが変 化する。視聴者は複数のスペックルパターンを認識するため、スペックルノイズ分布 は平均化され、スペックルノイズが低減する。
[0008] 特許文献 2のレーザ画像システムは、レーザ光源をマルチアレイ化するとともに、ァ レイからのトータル出力のスペクトル幅を広げることで、干渉性を低下させて、スペック ルノイズを低減している。
特許文献 1:特開平 6— 208089号公報
特許文献 2:特表 2004— 503923号公報
発明の開示
発明が解決しょうとする課題
[0009] 特許文献 1のように拡散素子を運動させるためには、物理的な動作機構である可動 部品を設ける必要がある。しかし、可動部品が劣化すると、ディスプレイ装置としての 信頼性が問題となる。
[0010] 特許文献 2のようにスペクトル幅を広げるだけでは、スクリーン上に写る照明のスぺ ックルノイズを除去しきれな 、。
[0011] 本発明は、上記従来の課題を解決するもので、信頼性に優れ、スペックルノイズを 除去した画像を形成する画像形成装置を提供することを目的とする。
課題を解決するための手段
[0012] 本発明の画像形成装置は、複数のレーザ光出射部を有し、複数のレーザ光出射 部からレーザ光を出射する光源部と、複数のレーザ光出射部から出射されたレーザ 光により照明される変調素子と、を備え、少なくとも 1つのレーザ光出射部は、他のレ 一ザ光出射部と異なるタイミングでレーザ光を出射し、少なくとも 1つのレーザ光出射 部が変調素子を照明するときの光線角度が他のレーザ光出射部が変調素子を照明 するときの光線角度と異なる、ことを特徴とする。
[0013] 本発明の画像形成装置によれば、物理的な動作機構を設けなくても、スペックルノ ィズを除去することができる。物理的な動作機構を設けないことにより、装置としての 信頼性が向上する。
[0014] 上記画像形成装置は、複数のレーザ光出射部と変調素子との間に光インテグレー タをさらに備えても良い。 [0015] 上記画像形成装置は、複数のレーザ光出射部をアレイ状に配置すると共に、複数 のレーザ光出射部と光インテグレータとの間に光屈折素子をさらに備えて、複数のレ 一ザ光出射部から出射されるレーザ光が光屈折素子を通過する位置により、光線角 度が異なるようにしても良い。
[0016] 上記画像形成装置は、複数のレーザ光出射部をアレイ状に配置すると共に、複数 のレーザ光出射部と光インテグレータとの間に、複数のレーザ光出射部毎に光線角 度を 2軸に変化させる光屈折素子をさらに備えても良い。
[0017] 複数のレーザ光出射部が個々に又は組み合わせでレーザ光を出射するときの 1パ ターンの出射時間は、 10msec以下であることが好ましい。
[0018] さらに好ましくは、各レーザ光出射部の連続出射時間は、 1 μ sec以下である。
[0019] 複数のレーザ光出射部は、複数のレーザ光出射部から出射されるレーザ光の合計 光が擬似連続波となるように、且つ合計光のパワーが画像信号により変調されるよう に、レーザ光を出射しても良い。
[0020] 複数のレーザ光出射部は、複数のレーザ光出射部から出射されるレーザ光の合計 光が 100HZ〜2KHzの擬似矩形波となるように、且つ擬似矩形波のパワーが画像 信号により変調されるように、レーザ光を出射しても良 ヽ。
[0021] 上記画像形成装置は、複数のレーザ光出射部を側面に配置されて、側面に入射さ れたレーザ光を主面力 変調素子に出射する光インテグレータをさらに備えても良い
[0022] 複数のレーザ光出射部は、光インテグレータの側面の対辺にそれぞれ配置されて も良い。
[0023] 複数のレーザ光出射部は、光インテグレータの側面の 4辺にそれぞれ配置されても 良い。
[0024] 複数のレーザ光出射部は、光インテグレータの中心部に対して、点対称の位置に 配置されても良い。
[0025] 複数のレーザ光出射部は、光インテグレータのコーナー部にそれぞれ配置されて も良い。
[0026] 各レーザ光出射部は、レーザ光を発光するレーザ光源であっても良い。 [0027] 上記光源部は、レーザ光を発光するレーザ光源とファイバとをさらに備え、各レーザ 光出射部は、ファイバを介して供給されたレーザ光源のレーザ光を出射する出射口 であっても良い。
発明の効果
[0028] 本発明の画像形成装置は、信頼性に優れ、スペックルノイズを除去した画像を形成 することができる。
図面の簡単な説明
[0029] [図 1]本発明の実施形態 1の画像形成装置の概略構成図
[図 2]本発明の実施形態 1の光源部力も光インテグレータへのレーザ光の光線角度 を示す図であって、(a)は斜視図、(b)は正面図
[図 3]本発明の実施形態 1のレーザ光出射部の出射タイミングとパワーを示す図 圆 4]本発明の実施形態 2の画像形成装置の概略構成図
[図 5]本発明の実施形態 2の光源部力も光インテグレータへのレーザ光の光線角度 を示す図
[図 6]本発明の実施形態 2のレーザ光出射部の出射タイミングとパワーを示す図
[図 7]本発明の実施形態 3の画像形成装置の概略構成図
[図 8]本発明の実施形態 4の画像形成装置の概略構成図
[図 9]本発明の実施形態 5の画像形成装置の概略構成図
[図 10]本発明の実施形態 6の画像形成装置の概略構成図
符号の説明
[0030] la, 11a 赤色光源部
lb, l ib 緑色光源部
lc, 11c 青色光源部
la— 1〜: La— 3, 11a— 1〜: L la— 3, 71a— l〜71a— 6 赤色レーザ光出射部 lb— 1〜: Lb— 3, l ib— 1〜: L ib— 3, 71b— l〜71b— 6、 81b— l〜81b— 6、 10 lb— 1〜: LOlb— 4 緑色レーザ光出射部
lc— 1〜: Lc— 3, 11c— 1〜: L ie— 3, 71c— l〜71c— 6 青色レーザ光出射部 2 照明光学系 4 光インテグレータ
6 投影光学系
7, 47, 77 変調素子
8 投射光学系
9, 49 ダイクロイツクプリズム
10 スクリーン
21, 51 光屈折素子
74 導光板型光インテグレータ
81b— 0 緑色レーザ光源
82 ファイバ
94 板状光インテグレータ
発明を実施するための最良の形態
[0031] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0032] (実施形態 1)
図 1に、本発明の実施形態 1の画像形成装置の概略図を示す。本実施形態の画像 形成装置は、レーザ光源を用いたプロジェクシヨンディスプレイである。
[0033] [画像形成装置の構成]
本実施形態の画像形成装置は、赤色のレーザ光を出射する赤色光源部 la、緑色 のレーザ光を出射する緑色光源部 lb、及び青色のレーザ光を出射する青色光源部 lcを備える。赤色光源部 la、緑色光源部 lb、及び青色光源部 lcは、それぞれレー ザ光出射部 la— 1、 la— 2、 la— 3、レーザ光出射部 lb— 1、 lb— 2、 lb— 3、及び レーザ光出射部 lc— 1、 lc— 2、 lc— 3を有する。レーザ光出射部 la— 1、 la— 2、 la— 3は、赤色のレーザ光を発光する赤色レーザ光源である。レーザ光出射部 lb— 1、 lb— 2、 lb— 3は、緑色のレーザ光を発光する緑色レーザ光源である。レーザ光 出射部 lc— 1、 lc— 2、 lc— 3は、青色のレーザ光を発光する青色レーザ光源であ る。
[0034] 本実施形態の画像形成装置は、光源部 la〜lc毎に、照明光学系 2と変調素子 7と を備える。赤、緑、青 (RGB)の 3色の光源部 la〜: Lcから出射されたレーザ光は、 RG Bの各色の変調を行う変調素子 7を照明する照明光学系 2にそれぞれ導かれる。各 照明光学系 2は、光源部 la〜lcから出射されたレーザ光を矩形に整形し、ほぼ均一 化する光インテグレータ 4と、光インテグレータ 4の光を変調素子 7にリレーする投影 光学系 6とを含む。投影光学系 6は、ミラー 61とフィールドレンズ 62とを含む。
[0035] 本実施形態の画像形成装置はさらに、 3つの変調素子 7から出射された RGBのレ 一ザ光を合波するダイクロイツクプリズム 9と、合波された光を拡大してスクリーン 10上 に投射する投射光学系 8と、を備える。本実施形態の画像形成装置は、空間的加法 混色により、スクリーン 10上にカラー画像を形成する。
[0036] [レーザ光の光線角度]
図 2に、緑色光源部 lbのレーザ光出射部 lb— 1、 lb— 2及び lb— 3から出射され たレーザ光が異なる光線角度で光インテグレータ 4に入射される構成を示す。図 2 (a )は、緑色光源部 lbのレーザ光出射部 lb— 1、 lb— 2及び lb— 3、光屈折素子 21、 及び光インテグレータ 4を示す斜視図であり、(b)は正面図である。図 2に示すように 、レーザ光出射部 lb— 1、 lb— 2及び lb— 3は、幅方向に 3つずつ設けられ、合計 9 個のレーザ光出射部が 2次元アレイ状に配列される。
[0037] 本実施形態の画像形成装置は、 9個のレーザ光出射部と光インテグレータ 4との間 に、光屈折素子 21を備える。光屈折素子 21は、レーザ光出射部毎に光線角度を異 ならせる素子であり、具体的には、凸レンズやレーザ光出射部毎に傾きが異なるプリ ズムアレイである。 9個のレーザ光出射部力 それぞれ出射された緑色のレーザ光は 、光屈折素子 21に入射され、光屈折素子 21の通過位置により光線角度がレーザ光 出射部毎に 2軸に異なった状態で、光インテグレータ 4に導かれる。本実施形態は、 9個のレーザ光出射部に対して、一つの光屈折素子 21を設けることにより、各レーザ 光出射部から出射されるレーザ光の光線角度を制御する。複数のレーザ光出射部 力 出射されたレーザ光が照明光学系 2に入射するときの角度が異なることにより、 変調素子 7を照明する角度がレーザ光出射部毎に異なる。
[0038] 図 2においては、緑色光源部 lbについて説明したが、赤色光源部 laと青色光源部 lcにおいても緑色光源部 lbと同様の構成を持ち、 2次元アレイ状に配列された 9個 のレーザ光出射部から出射されるレーザ光力 1つの光屈折素子 21を介することに より、レーザ光出射部毎に 2軸に異なった光線角度で光インテグレータ 4にそれぞれ 導かれる。なお、複数のレーザ光出射部の光線角度において、全てが異なっている 必要はない。いくつかのレーザ光出射部の光線角度が異なる構成であれば、同じ光 線角度の組が複数有っても良 、。
[0039] [レーザ光の出射タイミング]
赤色光源部 la、緑色光源部 lb及び青色光源部 lcのそれぞれは、各レーザ光出 射部からレーザ光を所定の順番で出射する。各レーザ光出射部によるレーザ光の出 射タイミングと、画像信号によるパワー変調を、赤色光源部 laを例にして図 3に示す 。図 3においては、赤色光源部 laの各レーザ光出射部の合計光が擬似連続波 31と なるように、各レーザ光出射部は、 la— l→la— 2→la— 3→la— 1→· · ·の順番で 連続的にレーザ光を出射する。明るいシーンや暗いシーンなど映像によって画像信 号が変化すると、画像信号に従って、各レーザ光出射部のパワーが変調される。図 3 においては、画像信号がフレーム毎に変調する例を示しており、赤色レーザ光源 la の合計光のパワーはフレーム毎にステップ状に変調されている。
[0040] [作用効果]
本実施形態の画像形成装置は、赤色光源部 la、緑色光源部 lb及び青色光源部 1 cのそれぞれにおいて、レーザ光出射部毎に光線角度を異ならせると共に、各レーザ 光出射部が異なったタイミングで順番にレーザ光を出射する。この構成により、時間 変化とともに、変調素子 7を照明する光の角度が変化するため、スクリーン 10を投射 する角度を変化させることができる。これにより、視聴者から見て、スペックルノイズは 平均化されるため、スペックルノイズを除去することができる。このように、本実施形態 は、物理的な動作機構を設けなくても、スペックルノイズを除去することができる。よつ て、信頼性に優れた画像形成装置を実現できる。また、物理的な動作機構である可 動部品を設けないことにより、装置が小型化するという利点もある。
[0041] また、本実施形態によれば、各レーザ光出射部の合計光が擬似連続波 31となるよ うに、複数のレーザ光出射部が個々に絶え間なくレーザ光を出射することで、明るい 画像を表示する場合であっても、各レーザ光出射部のピーク出力を抑えることができ る。これにより、装置としての安全性が向上する。また、レーザ光による光学部品ゃレ 一ザ光源自身のダメージを防ぐことができる。さらに、レーザ光源の熱による劣化を防 ぐことができ、光学部品の耐光性が向上する。また、合計光の出力をフレーム毎にパ ヮー変調することにより、暗い画像の場合はレーザ光出力を押さえることができ、省電 力を実現できる。さらに、変調素子 7を同期させて制御することにより、コントラストおよ び諧調数を増加させることができる。
[0042] なお、赤色光源部 la、緑色光源部 lb及び青色光源部 lcのそれぞれにおいて、全 てのレーザ光出射部がそれぞれ順番にレーザ光を出射する必要はなぐ複数のレー ザ光出射部の組み合わせにより順番にレーザ光を出射しても良い。例えば、(la— 1 + la_2)→(la_2+ la_3)→(la_3 + la_l)→(la_l + la_2) + (la_2 →la— 3)→· "のように、各レーザ光出射部からレーザ光を出射しても良い。さらに 、時間変化と共に、使用するレーザ光出射部やレーザ光出射部の組み合わせが変 化するようにしても良い。
[0043] また、赤色光源部 la、緑色光源部 lb及び青色光源部 lcのそれぞれにおいて、図 2のようにレーザ光出射部の幅方向に 3個配置されたレーザ光出射部は、同時にレ 一ザ光を出射しても良いし、それぞれが異なるタイミングで順番にレーザ光を出射し ても良い。例えば 3個のレーザ光出射部 la— 1が図 3の la— 1に示すタイミングで同 時にレーザ光を出射しても良いし、それぞれが異なるタイミングで順番にレーザ光を 出射しても良い。また、レーザ光を出射する順番は図 3に限定されない。各レーザ光 出射部の合計光が擬似連続波 31になれば良 、。
[0044] 図 3において、各レーザ光出射部がレーザ光を出射して力 次にレーザ光を出射 するまでの 1サイクルの時間 tlは、 10msec以下であることが好ましい。さらに好ましく は、レーザ光出射部が単独で又は複数のレーザ光出射部の組み合わせ (例えば、レ 一ザ光出射部 la— 1とレーザ光出射部 la— 2)で 1パターンのレーザ光を出射すると きの出射時間 t2は、 10msec以下であることが好ましい。 1パターンの出射時間 t2を 10msec以下にすることで、視聴者が一つの画像と認識する時間内に複数のスぺッ クルノイズパターンを発生させることができ、スペックルノイズを除去することができる。 また、 1フレーム内に複数回のパターン出射が繰り返される場合は、全部のパターン について 10msec以下の時間にする必要はない。複数のスペックルノイズパターンを 発生させることができるようにすれば良ぐ例えば 1フレーム内において 15パターンの 出射が行われる場合に 10パターン分についての出射時間を 10msec以下にするよう にしても良い。
[0045] 各レーザ光出射部がレーザ光を連続出射する時間が 1 μ sec以下であることが、よ り好ましい。各レーザ光出射部の連続出射時間を 1 sec以下にすることにより、レー ザ光のパルス出射によるピークパワーの増大が可能となり、画像の明るさを明るくす ることができる。また同じ画像の明るさの場合、レーザ光出射部の個数を減らすことが でき、小型化、低コストィ匕が可能となる。一つのレーザ光出射部からの連続出射時間 を 1 μ sec以下とすると、レーザ光の干渉性が低下することによるスペックルノイズの低 減効果も同時に得ることができる。各レーザ光出射部の連続出射時間を短くする場 合、フレーム内において繰り返す出射パターンの回数を増やせば良い。
[0046] なお、各レーザ光出射部の出力パワーは同じである必要はなぐ合計光の 1フレー ムあたりのパワーが画像信号により変調された量に制御されていればよい。図 3にお いては、画像信号により合計光力ステップ状に変調される場合について説明したが、 ステップ状である必要はなぐ 1フレームあたりの合計光量が制御された量であれば、 合計光の変調形状は 、かなる波形でも構わな 、。
[0047] なお、擬似連続波 31となるように、連続的にレーザ光を出射するときの間隙ができ ないように、わずかに同時出射する時間を持たせることが好ましい。また、擬似連続 波 31となるように連続出射するときに、電気信号の遅延などによりわずかに間隙時間 ができた場合であっても、本発明においては擬似連続波とみなす。また、フレームの 切り替え時には、変調素子 7と同期させて、出射の間隙時間を形成するように制御し てもよい。
[0048] なお、複数のレーザ光出射部力 それぞれ出射されるレーザ光の中心波長は、同 一である必要はな 、。単色のレーザ光源として表示する色が忠実に再現できる範囲 で中心波長をずらし、単色レーザ光源としての合計スペクトル幅を広げることが好まし い。スペクトル幅を広げることにより、干渉性を低下させ、更にスペックルノイズを低下 させることができる。合計スペクトル幅は、半値全幅 Δ λが 0. 5〜: LOnmの範囲が好 ましい。 [0049] 本実施形態のように、赤、緑、青の単色の光源部 la、 lb、 lcのそれぞれにおいて、 複数のレーザ光出射部から出射された光線は、同一の光インテグレータ 4を経て、同 一の変調素子 7を照明することが好ましい。複数のレーザ光出射部を用いた場合、各 々の光量分布や光軸のずれによって、均一照明が困難になるが、同一の光インテグ レータ 4を用いて変調素子 7を照明すると、光量平均化が行われ、容易に変調素子 7 を均一に照明することができる。本実施形態のように、光源部 la、 lb、 lc毎に 1つの 光インテグレータ 4を用いた場合であっても、複数のレーザ光出射部が順番にレーザ 光を出射することで、逐次異なる波面 (角度)の光が光インテグレータ 4から出射し、 変調素子 7を照明する角度が変化する。
[0050] なお、本実施形態では、赤、緑、青の光源部 la、 lb、 lcがそれぞれ備えるレーザ 光出射部は、レーザ光を発光する単色のレーザ光源である場合について説明したが 、各レーザ光出射部は、レーザ光を出射するための出射口であっても良い。すなわ ち、赤、緑、青の光源部 la、 lb、 lcのそれぞれにおいて、各光源部が、赤、緑、青の いずれかのレーザ光を発光する 1つの単色レーザ光源を備え、単色レーザ光源から のレーザ光を本実施形態のように異なるタイミングで複数のレーザ光出射部から出射 する構成であっても良い。レーザ光出射部が出射口である場合であっても、本実施 形態を適用できる。
[0051] (実施形態 2)
図 4に、本発明の実施形態 2の画像形成装置の概略図を示す。本実施形態の画像 形成装置は、プロジェクシヨンディスプレイであり、赤色光源部 l la、緑色光源部 l ib 、及び青色光源部 11cから出力されたレーザ光を、同一の光インテグレータ 4を介し て、同一の変調素子 47に入射する構成を有する。 RGB3色の光源部 l la、 l ib, 11 cは、単一の変調素子 47を時分割して使用する。それ以外の構成や動作について は実施形態 1とほぼ同じである。以下、本実施形態の画像形成装置の構成について 、詳細を説明する。
[0052] [画像形成装置の構成]
本実施形態の画像形成装置は、実施形態 1と同様に、複数のレーザ光出射部をそ れぞれ有する、赤色光源部 l la、緑色光源部 l lb、及び青色光源部 11cを備える。 赤色光源部 11aのレーザ光出射部 11a— 1、 11a— 2、 11a— 3は、赤色のレーザ光 を発光する赤色レーザ光源である。緑色光源部 l ibのレーザ光出射部 l ib— 1、 11 b— 2、 l ib— 3は、緑色のレーザ光を発光する緑色レーザ光源である。青色光源部 11じのレーザ光出射部11じ—1、 11c— 2、 11c— 3は、青色のレーザ光を発光する 青色レーザ光源である。
[0053] 本実施形態の画像形成装置は、 RGBの光源部 l la〜l lcに共通の照明光学系 2 と変調素子 47とをさらに備える。 RGB3色のレーザ光源 l la〜l lcから出射された光 は、同一の照明光学系 2を経て、同一の変調素子 47に導かれる。照明光学系 2は、 各色のレーザ光を略同軸上とするダイクロイツクプリズム 49、光インテグレータ 4、及 び投影光学系 6を含む。 3色のレーザ光を略同軸上とするためにダイクロイツクプリズ ム 49を用いている力 ダイクロイツクミラーや偏光ミラーを用いてもよい。なお、単一の 変調素子 47を複数色のレーザ光が照明できる構成であれば、特に同軸上としなくて ちょい。
[0054] 変調素子 47は、具体的には 2次元マイクロミラーデバイスである。 RGB3色のレー ザ光源 l la、 l ib, 11cは単一の変調素子 47を時分割して使用し、スクリーン上で時 間平均的加法混色することにより、カラー画像を表示する。
[0055] [レーザ光の光線角度]
赤色光源部 l la、緑色光源部 l lb、及び青色光源部 11cの各レーザ光出射部から 出射された複数のレーザ光は、異なる光線角度で、ダイクロイツクプリズム 49に導か れる。図 5に、緑色光源部 l ibを例として、レーザ光出射部 l ib— 1、 l ib— 2及び 1 lb— 3と、レーザ光出射部毎に向きが異なるようにして配置された 3個の光屈折素子 51を示す。図 5に示すように、レーザ光出射部 l ib— 1、 l ib— 2及び l ib— 3は、 1 次元アレイ状に配列される。レーザ光出射部 l ib— 1、 l ib— 2、 l ib— 3から出射さ れたレーザ光は、出射側に設けられた光屈折素子 51により、 2軸上 (光軸 zに対する X軸、 y軸の 2軸)に異なる光線角度となって、ダイクロイツクプリズム 49に入射される。 赤色光源部 11aと青色光源部 11cは、緑色光源部 l ibと同様に、光屈折素子 51を 備える。
[0056] [レーザ光の出射タイミング] 赤色光源部 l la、緑色光源部 l lb、及び青色光源部 11cの各レーザ光出射部は、 単一の変調素子 71を時分割して使用するため、分割された時間に各色の合計光が 擬似矩形波となるように、順番にレーザ光を出射する。
[0057] 赤色光源部 11aを例として、レーザ光出射部 11a— 1、 11a— 2、 11a— 3の出射タ イミングと画像信号に基づくパワー変調を図 6に示す。図 6は、複数のレーザ光出射 部の組み合わせにより、レーザ光を順番に出射する例であり、(11a— 1 + 11a— 3) →(l la— 1 + l la— 2)→(l la— 2+ l la— 3)→(l la— 1 + l la— 3)→· · ·という 順番でレーザ光を出射する。赤色光源部 11aの合計光が擬似矩形波 61となるような 出射タイミングで、レーザ光出射部 11a— 1、 11a— 2、 11a— 3はレーザ光を出射す る。本実施形態は、単一の変調素子 47を RGB3色で時分割して使用するため、赤色 光源部 l la、緑色光源部 l lb、及び青色光源部 11cの擬似矩形波 61のパルス幅が 、それぞれ 100〜2KHzの範囲になるように制御される。本実施形態では、 1フレー ム内に赤、緑、青の各擬似矩形波 61が順に変調素子 47に照射される。擬似矩形波 61のパルス幅を 100〜2KHzにすることで、色われ等がなぐ変調素子 47による諧 調を与えることができるようになる。
[0058] 図 6は、画像信号により合計光の擬似矩形波 61がフレーム毎にステップ状に変調 するように、各レーザ光出射部が出射パワーを変調する様子を示している。画像信号 により、各レーザ光出射部がパワーを変調することにより、暗い画像の場合には省電 力化を実現できる。また、各レーザ光出射部のパワーを変調素子 7と同期させて制御 することにより、画像のコントラストと諧調数を増加させることができる。
[0059] [作用効果]
本実施形態は、実施形態 1と同様の効果を有する。すなわち、各光源部において、 光屈折素子 51を各レーザ出射部毎に備えて、変調素子 47を照明する角度をレーザ 光出射部毎に 2軸上に異ならせ、且つ複数のレーザ光出射部の組み合わせが順番 にレーザ光を出射することにより、スペックルノイズパターン数が増える。これにより、 時間平均化後のスペックルノイズを低減することができる。
[0060] 本実施形態の画像形成装置は、赤、緑、青の光源部 l la、 l ib, 11cが光インテグ レータ 4と変調素子 47とを共有し、赤、緑、青の光源部 l la、 l ib, 11cの各レーザ光 出射部が同一の光インテグレータ 4を経て、同一の変調素子 47を照明しているため 、画像形成装置の光学系の小型化が可能になるという効果をさらに有する。
[0061] なお、本実施形態において、各光源部のレーザ光出射部は単色のレーザ光源で ある場合に限らず、 1つの単色レーザ光源力 供給されたレーザ光を出射する出射 口であっても良い。
[0062] なお、レーザ光出射部の光線角度を異ならせる構成は、図 2や図 5に限定されない 。各レーザ光出射部から出射されたレーザ光が、 2軸上に異なった光線角度で光ィ ンテグレータ 4に入射される構成であれば良い。例えば、 1次元に配列された複数の レーザ光出射部をそれぞれ異なる向きに傾けて配置させて、図 2の光屈折素子 21を 介して、ダイクロイツクプリズム 49にレーザ光を入射する構成にしても良い。
[0063] なお、図 6では、赤、緑、青の各色の合計光が 1フレーム内において 1つの擬似矩 形波 61を形成するようにしているが、 1フレーム内において、各色の合計光が 2っ以 上の擬似矩形波 61を形成するように、レーザ光出射部の出射タイミングが制御され てもよい。また、 2個のレーザ光出射部の組み合わせにより、 1パターンの合計光を構 成しているが、実施形態 1のように、複数のレーザ光出射部が単独で順番にレーザ 光を出射しても良い。
[0064] また、 1つの擬似矩形波 61を形成するときの出射パターンの繰り返し回数を増やし て、各レーザ光出射部の連続出射時間を短くしても良い。実施形態 1と同様に、各レ 一ザ光出射部の連続出射時間を短くすることにより、レーザ光のパルス出射によるピ ークパワーの増大が可能となり、画像の明るさを明るくすることができる。また同じ画 像の明るさの場合、レーザ光出射部の個数を減らすことができ、小型化、低コストィ匕 が可能となる。また、一つのレーザ光出射部の連続出射時間を短くすることにより、レ 一ザ光の干渉性が低下することによるスペックルノイズの低減効果を同時に得ること ができる。
[0065] 擬似矩形波 61を形成するときのレーザ光出射部による出射時間の間隙は、 1 μ se c以下であることが好ましい。擬似矩形波内の強度変動が時間的に大きい場合、画 像諧調を忠実に再現できないことが問題となるが、出射時間の間隙を 1 μ sec以下と することで、画像諧調を忠実に再現することができる。 [0066] 各レーザ光出射部の出力パワーは同じである必要はなぐ合計光である擬似矩形 波 61のパワーが画像信号により制御されたパワーとなるように、制御されれば良い。
[0067] 実施形態 1及び実施形態 2において、変調素子 7、 47の像を投射する投射光学系 8およびスクリーン 10は、特に実施形態に限定されず、変調素子像を視聴者が観察 できれば良い。例えば、スクリーン 10を反射型としてフロントプロジェクシヨンタイプと しても良いし、透過型としてリアプロジェクシヨンタイプとしても良い。また投射光学系 8 を設けずに、変調素子 7、 47の直後に透過型スクリーンを設ける構成にしても良い。
[0068] なお、照明光学系 2は、実施形態 1、 2に限定されず、レーザ光出射部力 の光を 変調素子 7、 47に導ける構成であればよい。光インテグレータ 4は、ビームを整形し ほぼ均一化できればよぐフライアイレンズやホログラム素子などを用いることができる 。また、光インテグレータ 4の光をリレーする投影光学系 6は、設計により省略すること ちでさる。
[0069] (実施形態 3)
図 7に、本発明の実施形態 3の画像形成装置の概略図を示す。本実施形態の画像 形成装置は液晶ディスプレイであり、そのバックライトとしてレーザ光源を用いる。本 実施形態の画像形成装置は、赤色レーザ光源であるレーザ光出射部 71a— l〜71a —6、緑色レーザ光源であるレーザ光出射部 71b— l〜71b— 6、青色レーザ光源で あるレーザ出射部 71c— l〜71c— 6を備える。本実施形態の画像形成装置は、各レ 一ザ光出射部の光を側面に入射されて、主面から光を出射する導光板型光インテグ レータ 74と、導光板型光インテグレータ 74の光を出射する主面側に設けられた変調 素子 77とをさらに備える。導光板型光インテグレータ 74と変調素子 77は、照明光学 系を構成する。
[0070] 赤色レーザ光源であるレーザ光出射部 71a— l〜71a— 6は、レーザ光出射部毎 に異なった角度でレーザ光が導光板型光インテグレータ 74に入射するように、導光 板型光インテグレータ 74の側面に配置される。緑色及び青色のレーザ光源について も同様である。本実施形態においては、導光板型光インテグレータ 74の側面の 4辺 全てに、 RGBそれぞれのレーザ光出射部が配置される。図 7においては、導光板型 光インテグレータ 74の上面と底面側の側面に 1組の RGBのレーザ光出射部がそれ ぞれ設けられており、左右の側面に 2組の RGBのレーザ光出射部がそれぞれ設けら れている。レーザ光出射部毎に異なった角度でレーザ光が導光板型光インテグレー タ 74に入射するように構成することで、導光板型光インテグレータ 74が変調素子 77 を照明するときの光線角度をレーザ光出射部毎に異ならせている。
[0071] RGBそれぞれの各レーザ光出射部は、実施形態 1又は実施形態 2と同様に単独で 又は組み合わせで、順番にレーザ光を出射して、変調素子 77を照明する。
[0072] 導光板型光インテグレータ 74は、裏面と各レーザ光出射部が設けられている箇所 を除く側面に反射面を備える。導光板型光インテグレータ 74は、内部に均一拡散手 段を有し、光量分布を均一化させた光を主面力 出射する。導光板型光インテグレ ータ 74から出射された光は変調素子 77に導かれ、画像が形成される。
[0073] 本実施形態は、実施形態 1と同様の効果を有する。すなわち、 RGBの各レーザ光 出射部が変調素子 77を照明する角度が時間とともに変化するため、スペックルノイズ が除去される。変調素子 77で形成された画像を見る視聴者は、スペックルノイズのな い画像を見ることができる。さらに、物理的動作機構を設けていないため、信頼性が 向上する。
[0074] また、本実施形態の構成によれば、複数のレーザ光出射部を分散して配置すること ができるため、レーザ光出射部の放熱機構の設計の自由度が広がるという効果をさ らに有する。
[0075] また、レーザ光源は点光源であるため、 1つのレーザ光源では照明の均一化が困 難であるという問題が生じるが、本実施形態のように、複数のレーザ光出射部から導 光板型光インテグレータ 74に光を入射する構成〖こすることにより、 1点から入射する 場合と比較して、照明の均一度を上げることができる。
[0076] なお、本実施形態では、導光板型光インテグレータ 74の側面にレーザ光出射部を 配置しているが、変調素子 77を照明する角度が異なれば良ぐ例えば裏面側にレー ザ光出射部を配置しても良い。また、導光板型光インテグレータ 74から出射された光 が変調素子 77を照明する角度が、レーザ光出射部毎に異なれば、レーザ光出射部 をどのような位置に配置しても構わな 、。
[0077] なお、 RGB各色のレーザ光出射部は単色のレーザ光源である場合に限らず、 1つ の単色レーザ光源力 供給されたレーザ光を出射する出射口であっても良い。
[0078] (実施形態 4)
図 8に、本発明の実施形態 4の画像形成装置の構成を示す。図 8に示すレーザ光 出射部 81b— l〜81b— 6は、レーザ光を出射するための出射口である。本実施形 態の画像形成装置は、緑色レーザ光源 81b— 0から出射されたレーザ光を分岐して 、ファイバ 82にカップリングし、レーザ光出射部 81b— l〜81b— 6からレーザ光を出 射する。緑色レーザ光源 81b— 0、ファイバ 82及びレーザ光出射部 81b— l〜81b _6は緑色光源部を構成する。
[0079] 本実施形態の画像形成装置は、液晶ディスプレイのバックライトとしてレーザ光源を 用いる構成であり、導光板型光インテグレータ 74と変調素子 77は、実施形態 3と同じ である。導光板型インテグレータ 74は拡散構造やプリズム群などで構成され、変調素 子 77を均一に照明する。
[0080] レーザ光出射部 81b— l〜81b— 6は、変調素子 77を異なる角度から照明するた めに、導光板型光インテグレータ 74に対して異なる位置にそれぞれ取り付けられる。 図 8においては、実施形態 3と同様に、レーザ光出射部 81b— l〜81b— 6は導光板 型光インテグレータ 74の側面の 4辺に配置される。
[0081] レーザ光出射部 81b— l〜81b— 6は、レーザ光を順番に出射する。レーザ光の出 射パターンは、実施形態 1と同様にレーザ光出射部が単独で順次出射しても良ぐ実 施形態 2のように複数のレーザ光出射部の組み合わせが順番に出射しても良い。ま た、時間変化と共に使用するレーザ光出射部を、又はレーザ光出射部の組み合わ せを変化させて、順番にレーザ光を出射しても良い。
[0082] 本実施形態のようにレーザ光源を 1つしか用いない場合であっても、視聴者が明る さを認識する時間内に各レーザ光出射部力 レーザ光を順次出射することで、実施 形態 7と同様に、スペックルノイズを除去することができる。
[0083] また、 1つのレーザ光源であっても、複数のレーザ光出射部力 光を出射することに より、導光板型光インテグレータ 74から出射される光を均一化することができる。すな わち、照明の均一度をあげることができる。
[0084] レーザ光出射部を複数個設けて、レーザ光入射部力も導光板型インテグレータ 74 に入射されるレーザ光の光パワー密度を低下させることにより、レーザ光による光学 部品やレーザ光源のダメージを防ぐことができる。
[0085] なお、図 8においては、緑色レーザ光源 81b— 0を用いた場合について説明してい る力 赤色レーザ光源と青色レーザ光源についても、図 8と同様の構成を用いること ができる。 RGBのそれぞれにおいて、 1つのレーザ光源に対して複数の出射口を導 光板型光インテグレータ 74の側面に設けることにより、レーザ光源自体を導光板型 光インテグレータ 74の側面に配置する図 7よりも、 RGBの各出射口を近づけることが できる。白色を出力する構成に適している。
[0086] また、図 7の構成と図 8の構成とを組み合わせて、 RGBの光源部をそれぞれ構成し ても良い。例えば、赤色と青色のレーザ光源については半導体レーザを用いて、図 7 のようにレーザ光源であるレーザ光出射部を導光板型光インテグレータ 74の側面に 配置し、緑色のレーザ光源についてはファイバレーザを用いて、図 8のように出射口 であるレーザ光出射部を導光板型光インテグレータ 74の側面に配置しても良い。緑 色のレーザ光を半導体レーザにより発光させることは難しいため、緑色レーザ光源に っ 、ては、波長変換により緑色のレーザ光を発光するファイバレーザを用いることが 考えられる。本実施形態は、ファイバレーザをレーザ光源として使用する場合に適し ている。
[0087] (実施形態 5)
図 9に、実施形態 5の画像形成装置の構成を示す。本実施形態の画像形成装置は 、板状光インテグレータ 94を備え、板状光インテグレータ 94の側面の対辺となる 2辺 にレーザ光出射部 81b— 5及び 81b— 6を設ける。それ以外の構成は、実施形態 4と 同じである。
[0088] 板状光インテグレータ 94は導光板型又は中空型の光インテグレータである。通常、 板状光インテグレータ 94に対して 1辺カゝら光りを入射する場合、光入射の上流部と下 流部とで光の不均一化が生じ易い。特に、側面から入射された光を正面に出射する 板状光インテグレータ 94においては、レーザ光源が点光源であるために光の均一化 が困難になるという問題が生じる。しかし、本実施形態のように、対辺にレーザ光出射 部 8 lb 5及び 8 lb 6を設けることで、光入射の上流部と下流部とを無くすことがで き、さらに視聴者が画像を認識する時間内、例えば 10msec以下で、レーザ光出射 部 81b_5と 81b_6とが交互にレーザ光を出射することで、均一照明を実現できる。
[0089] スペックルノイズを低減するための光の入射角度の変化が最も大きくなるの力 180 度であるため、レーザ光出射部の組は対辺に配置されることが好ましい。なお、板状 光インテグレータ 94の中心部に対し、点対称の位置になるように、レーザ光出射部を 板状光インテグレータ 94の側面の対辺に配置すると良い。レーザ光の出射角度は、 対向して板状光インテグレータ 94の中心部に主光線が行くように調整されることが、 スペックルノイズの除去のために好まし 、。
[0090] 本実施形態によれば、スペックルノイズの低減と均一照明とを実現できる。スペック ルノイズの低減と均一照明とを実現するためには、少なくとも 1組のレーザ光出射部 を板状光インテグレータ 94の側面の対辺に設けると良い。なお、スペックルノイズの 低減をより大きくし、より均一な照明を実現するためには、複数組のレーザ光出射部 を、板状光インテグレータ 94の対辺もしくは中心部に対する点対称の位置に配置す ることが好ましい。
[0091] (実施形態 6)
図 10に、実施形態 6の画像形成装置の構成を示す。本実施形態の画像形成装置 は、レーザ光出射部 101b— 1〜: LOlb— 4を導光板型光インテグレータ 74のコーナ 一部に配置する。レーザ光出射部 101b— 1〜: LOlb— 4は、各レーザ光出射部が対 向するように、すなわち板状光インテグレータ 74の中心部に主光線が向くように、配 置される。本実施形態において、レーザ光出射部 101b— 1〜: LOlb— 4の配置以外 の構成と動作は実施形態 4と同じである。
[0092] 点光源であるレーザ光源を用いた場合、光が板状光インテグレータ 74のコーナー 部に到達しにくいため、均一化が難しいが、本実施形態のように、コーナー部にレー ザ光出射部 101b— 1〜: LOlb— 4を設けることにより、均一化を容易に実現できる。
[0093] レーザ光出射部 101b— 1〜: L01b_4の出射側には、面方向にレーザ光を広げる シリンドリカルレンズ又はシリンドリカルレンズが連続しているレンチキュラーレンズか らなる光学素子を設けることが好ましい。光学素子により、レーザビームを平面状に することで、均一化を助けることができる。 [0094] なお、実施形態 1から実施形態 6について、レーザ光出射部の数は実施形態に限 定されない。順番にレーザ光を出射できるように、 RGBの各光源部において、 2個以 上のレーザ光出射部を設けて 、れば良 、。
[0095] また、実施形態 1から実施形態 6では、赤、緑、青の光源部のそれぞれが複数のレ 一ザ光出射部を設けた力 赤、緑、青の少なくともいずれか 1色について複数のレー ザ光出射部を設ける構成であっても良い。
[0096] さらに、実施形態 1から実施形態 6の画像形成装置は、 RGB3色のレーザ光源を用 いる場合について説明した力 本発明は特にこれに限定されず、 3色以上のレーザ 光源を用いても良い。
産業上の利用可能性
[0097] 本発明の画像形成装置は、信頼性に優れ、スペックルノイズを除去した画像を形成 できると ヽぅ効果を有し、動画や静止画などを形成するプロジェクシヨンディスプレイ や液晶ディスプレイに有用である。

Claims

請求の範囲
[1] 複数のレーザ光出射部を有し、前記複数のレーザ光出射部力 レーザ光を出射す る光源部と、
前記複数のレーザ光出射部力 出射されたレーザ光により照明される変調素子と、 を備え、
少なくとも 1つのレーザ光出射部は、他のレーザ光出射部と異なるタイミングでレー ザ光を出射し、
前記少なくとも 1つのレーザ光出射部が前記変調素子を照明するときの光線角度 が前記他のレーザ光出射部が前記変調素子を照明するときの光線角度と異なる、 ことを特徴とする画像形成装置。
[2] 前記複数のレーザ光出射部と前記変調素子との間に光インテグレータをさらに備 える請求項 1に記載の画像形成装置。
[3] 前記複数のレーザ光出射部をアレイ状に配置すると共に、
前記複数のレーザ光出射部と前記光インテグレータとの間に光屈折素子をさらに 備え、
前記複数のレーザ光出射部から出射されるレーザ光が前記光屈折素子を通過す る位置により、前記光線角度が異なることを特徴とする請求項 2に記載の画像形成装 置。
[4] 前記複数のレーザ光出射部をアレイ状に配置すると共に、
前記複数のレーザ光出射部と前記光インテグレータとの間に、前記複数のレーザ 光出射部毎に前記光線角度を 2軸に変化させる光屈折素子を備える、請求項 2に記 載の画像形成装置。
[5] 前記複数のレーザ光出射部が個々に又は組み合わせでレーザ光を出射するとき の 1パターンの出射時間は、 10msec以下であることを特徴とする請求項 1に記載の 画像形成装置。
[6] 各レーザ光出射部の連続出射時間は、 1 μ sec以下であることを特徴とする請求項
1に記載の画像形成装置。
[7] 前記複数のレーザ光出射部は、前記複数のレーザ光出射部から出射されるレーザ 光の合計光が擬似連続波となるように、且つ前記合計光のパワーが画像信号により 変調されるように、レーザ光を出射することを特徴とする請求項 1に記載の画像形成 装置。
[8] 前記複数のレーザ光出射部は、前記複数のレーザ光出射部から出射されるレーザ 光の合計光が 100HZ〜2KHzの擬似矩形波となるように、且つ前記擬似矩形波の ノ ヮ一が画像信号により変調されるように、レーザ光を出射することを特徴とする請求 項 1に記載の画像形成装置。
[9] 前記複数のレーザ光出射部を側面に配置されて、側面に入射されたレーザ光を主 面力 前記変調素子に出射する光インテグレータをさらに備える請求項 1に記載の 画像形成装置。
[10] 前記複数のレーザ光出射部は、前記光インテグレータの側面の対辺にそれぞれ配 置される請求項 9に記載の画像形成装置。
[11] 前記複数のレーザ光出射部は、前記光インテグレータの側面の 4辺にそれぞれ配 置される請求項 9に記載の画像形成装置。
[12] 前記複数のレーザ光出射部は、前記光インテグレータの中心部に対して、点対称 の位置に配置される請求項 9に記載の画像形成装置。
[13] 前記複数のレーザ光出射部は、前記光インテグレータのコーナー部にそれぞれ配 置される請求項 12に記載の画像形成装置。
[14] 各レーザ光出射部は、レーザ光を発光するレーザ光源である請求項 1に記載の画 像形成装置。
[15] 前記光源部は、レーザ光を発光するレーザ光源とファイバとをさらに備え、
各レーザ光出射部は、前記ファイバを介して供給された前記レーザ光源のレーザ 光を出射する出射口である、請求項 1に記載の画像形成装置。
PCT/JP2006/317354 2005-09-14 2006-09-01 画像形成装置 WO2007032216A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/066,345 US20090257029A1 (en) 2005-09-14 2006-09-01 Image forming device
JP2007535422A JP4987720B2 (ja) 2005-09-14 2006-09-01 画像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-266526 2005-09-14
JP2005266526 2005-09-14

Publications (1)

Publication Number Publication Date
WO2007032216A1 true WO2007032216A1 (ja) 2007-03-22

Family

ID=37864815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317354 WO2007032216A1 (ja) 2005-09-14 2006-09-01 画像形成装置

Country Status (4)

Country Link
US (1) US20090257029A1 (ja)
JP (1) JP4987720B2 (ja)
CN (1) CN101263421A (ja)
WO (1) WO2007032216A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024975A (ja) * 1996-07-10 1998-01-27 Yoshino Kogyosho Co Ltd トリガー式液体噴出器の吐出弁
JP2008256979A (ja) * 2007-04-05 2008-10-23 Konica Minolta Opto Inc 照明光学系
JP2009086269A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 投写型映像表示装置
JP2009237077A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp レーザ光源装置
JP2013530418A (ja) * 2010-04-28 2013-07-25 レモプティックス ソシエテ アノニム スペックル防止撮像モードを備えるマイクロプロジェクションデバイス
JP2014163974A (ja) * 2013-02-21 2014-09-08 Seiko Epson Corp 光源装置およびプロジェクター
US9380279B2 (en) 2013-02-15 2016-06-28 Seiko Epson Corporation Illumination device and projector
WO2017204119A1 (ja) * 2016-05-23 2017-11-30 新日鐵住金株式会社 形状測定装置及び形状測定方法
JP2018180382A (ja) * 2017-04-17 2018-11-15 日本電信電話株式会社 映像投影装置
WO2020194850A1 (ja) * 2019-03-26 2020-10-01 日立化成株式会社 スペックルノイズ低減光学系

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170835A (ja) * 2009-01-22 2010-08-05 Sanyo Electric Co Ltd 照明装置および投写型映像表示装置
TW201232153A (en) * 2011-01-26 2012-08-01 Hon Hai Prec Ind Co Ltd Laser projecting device
FR3013462B1 (fr) * 2013-11-18 2017-06-09 Commissariat Energie Atomique Systeme d'affichage d'une image sur un pare-brise
CN105372827A (zh) * 2015-10-22 2016-03-02 北京工业大学 一种消除激光显示散斑的方法及激光光源
CN105301792A (zh) * 2015-10-22 2016-02-03 北京工业大学 一种抑制激光散斑的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329977A (ja) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp 投写型表示装置
JP2004045684A (ja) * 2002-07-11 2004-02-12 Sony Corp 画像表示装置における照明光学装置及び画像表示装置
JP2004070065A (ja) * 2002-08-07 2004-03-04 Mitsubishi Electric Corp 映像表示装置
JP2004334083A (ja) * 2003-05-12 2004-11-25 Plus Vision Corp 半導体レーザ素子を光源に用いた照明光学系およびそれを利用したプロジェクタ
JP2004334081A (ja) * 2003-05-12 2004-11-25 Plus Vision Corp 半導体レーザ素子を光源に用いた照明光学系およびそれを利用したプロジェクタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313479A (en) * 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
US5838709A (en) * 1995-06-07 1998-11-17 Nikon Corporation Ultraviolet laser source
IL138374A (en) * 1998-03-11 2004-07-25 Nikon Corp An ultraviolet laser device and an exposure device that includes such a device
JP2004503923A (ja) * 2000-07-10 2004-02-05 コーポレーション フォー レーザー オプティックス リサーチ 帯域幅強調によるスペックル低減のためのシステム及び方法
TW571119B (en) * 2001-12-20 2004-01-11 Delta Electronics Inc Image projection device with integrated semiconductor light emitting element light source
US6577429B1 (en) * 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
KR20070062611A (ko) * 2002-12-26 2007-06-15 산요덴키가부시키가이샤 조명 장치
US6950454B2 (en) * 2003-03-24 2005-09-27 Eastman Kodak Company Electronic imaging system using organic laser array illuminating an area light valve
WO2004106983A2 (en) * 2003-05-22 2004-12-09 Optical Research Associates Illumination in optical systems
JP4020397B2 (ja) * 2004-06-14 2007-12-12 惠次 飯村 点光源を用いた面光源
WO2006015133A2 (en) * 2004-07-30 2006-02-09 Novalux, Inc. Projection display apparatus, system, and method
JP2006154025A (ja) * 2004-11-26 2006-06-15 Seiko Epson Corp 画像表示装置
US7316497B2 (en) * 2005-03-29 2008-01-08 3M Innovative Properties Company Fluorescent volume light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329977A (ja) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp 投写型表示装置
JP2004045684A (ja) * 2002-07-11 2004-02-12 Sony Corp 画像表示装置における照明光学装置及び画像表示装置
JP2004070065A (ja) * 2002-08-07 2004-03-04 Mitsubishi Electric Corp 映像表示装置
JP2004334083A (ja) * 2003-05-12 2004-11-25 Plus Vision Corp 半導体レーザ素子を光源に用いた照明光学系およびそれを利用したプロジェクタ
JP2004334081A (ja) * 2003-05-12 2004-11-25 Plus Vision Corp 半導体レーザ素子を光源に用いた照明光学系およびそれを利用したプロジェクタ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024975A (ja) * 1996-07-10 1998-01-27 Yoshino Kogyosho Co Ltd トリガー式液体噴出器の吐出弁
JP2008256979A (ja) * 2007-04-05 2008-10-23 Konica Minolta Opto Inc 照明光学系
JP2009086269A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 投写型映像表示装置
JP2009237077A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp レーザ光源装置
US8998424B2 (en) 2010-04-28 2015-04-07 Lemoptix Sa Micro-projection device with anti-speckle imaging mode
JP2013530418A (ja) * 2010-04-28 2013-07-25 レモプティックス ソシエテ アノニム スペックル防止撮像モードを備えるマイクロプロジェクションデバイス
US9380279B2 (en) 2013-02-15 2016-06-28 Seiko Epson Corporation Illumination device and projector
JP2014163974A (ja) * 2013-02-21 2014-09-08 Seiko Epson Corp 光源装置およびプロジェクター
WO2017204119A1 (ja) * 2016-05-23 2017-11-30 新日鐵住金株式会社 形状測定装置及び形状測定方法
JP6281667B1 (ja) * 2016-05-23 2018-02-21 新日鐵住金株式会社 形状測定装置及び形状測定方法
US10605591B2 (en) 2016-05-23 2020-03-31 Nippon Steel Corporation Shape measurement apparatus and shape measurement method
JP2018180382A (ja) * 2017-04-17 2018-11-15 日本電信電話株式会社 映像投影装置
WO2020194850A1 (ja) * 2019-03-26 2020-10-01 日立化成株式会社 スペックルノイズ低減光学系

Also Published As

Publication number Publication date
JPWO2007032216A1 (ja) 2009-03-19
JP4987720B2 (ja) 2012-07-25
US20090257029A1 (en) 2009-10-15
CN101263421A (zh) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4987720B2 (ja) 画像形成装置
US7972007B2 (en) Image generating apparatus using a mirror common to a plurality of optical paths
JP3551187B2 (ja) 光学素子及び照明装置並びに投射型表示装置
US7997737B2 (en) Projection display device, and speckle reduction element
US9482877B2 (en) Laser projector with reduced speckle
US7185984B2 (en) Illumination optical system and projector comprising the same
JP4256423B2 (ja) 2次元画像形成装置
US10678061B2 (en) Low etendue illumination
CN110383145B (zh) 用于增强的图像投影的系统和方法
US7255448B2 (en) Pixelated color management display
JPH10507278A (ja) 表示システム
JP2010527027A (ja) 表示装置、方法および光源
JP2006513447A (ja) 画像投影装置および方法
WO2006026386A2 (en) Simultaneous color illumination
JP2002189263A (ja) 投射型表示装置
CN113341639A (zh) 三色激光光源及投影设备
KR20020022916A (ko) 화상투사장치
CN111722461A (zh) 激光投影装置
US9964845B2 (en) Projection apparatus and illumination apparatus
CN112130413A (zh) 一种投影显示系统
JP2003329977A (ja) 投写型表示装置
JP4992488B2 (ja) 照明装置及びプロジェクタ
US11662597B2 (en) Homogenizing lens array for display imaging
JP5593872B2 (ja) プロジェクター
JP2002268003A (ja) 表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033674.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12066345

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007535422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797296

Country of ref document: EP

Kind code of ref document: A1