WO2007032179A1 - カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法 - Google Patents

カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2007032179A1
WO2007032179A1 PCT/JP2006/316210 JP2006316210W WO2007032179A1 WO 2007032179 A1 WO2007032179 A1 WO 2007032179A1 JP 2006316210 W JP2006316210 W JP 2006316210W WO 2007032179 A1 WO2007032179 A1 WO 2007032179A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
nanoparticle
solution
nanoparticle phosphor
production method
Prior art date
Application number
PCT/JP2006/316210
Other languages
English (en)
French (fr)
Inventor
Naoko Furusawa
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007535405A priority Critical patent/JP5157446B2/ja
Publication of WO2007032179A1 publication Critical patent/WO2007032179A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • Nanoparticle phosphor of chalcogenite compound and method for producing the same
  • the present invention relates to a nanoparticle phosphor of a chalcogenite compound and a method for producing the same.
  • Phosphors irradiate excitation rays (ultraviolet rays, visible light, infrared rays, infrared rays, heat rays, electron rays, X-rays, etc.) with light (ultraviolet rays, visible rays, infrared rays, etc.). It is commonly used as a material to convert.
  • Devices using such phosphors include fluorescent lamps, electron tubes, cold cathode displays, fluorescent display tubes, plasma display panels (hereinafter also referred to as “PDP”), electoric luminescence panels, scintillators.
  • Non-Patent Document 1 examples include sillon detectors, X-ray image intensifiers, thermofluorescence dosimeters, and imaging plates (see Non-Patent Document 1, for example). O These devices all convert electrical energy into excitation energy. It is a device that converts the energy of excitation rays into light. Electronic devices in which such devices are combined with electronic circuits or device parts (lighting devices, computers, keyboards, electronic devices that do not use phosphors, etc.) are widely used as lighting devices and display devices.
  • phosphor-using articles using phosphors powdered phosphors and liquids such as water or organic solvents, substances other than phosphors such as resin, plastics, metals or ceramic materials, etc.
  • phosphor-containing materials in combination with, for example, liquid materials such as phosphor paints and paste materials, solid materials such as ashtrays, display materials such as guide plates and guidance articles, seals, etc.
  • oxides, sulfides, selenides, tellurides, etc. are used in various fields such as light emitting materials, optoelectronics, magneto-optical materials, magnetic materials, etc. It is an important basic material.
  • semiconductor nanoparticles of group VI-VI can obtain better light absorption characteristics and light emission characteristics as compared with the crystal structure of Balta bodies, research reports have been actively made in recent years.
  • the excellent optical properties of these semiconductor nanoparticles are thought to be due to the fact that the crystal grain size is as small as nanometers, which increases the band gap and manifests a quantum size effect.
  • nanoparticles are Inn! ⁇ Refers to crystal grains with a particle size of about lOOnm, commonly called nanocrystals.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-322468
  • Patent Document 2 JP 2005-239775 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-310770
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-104058
  • Non-Patent Document 1 “Phosphor Handbook” edited by the Society of Phosphors, Ohm, 1987 Disclosure of Invention
  • the present invention provides a method for producing a nanoparticle phosphor that suppresses the formation of coarse particles and can produce a highly luminous nanoparticle phosphor in the production of a chalcogenite compound nanoparticle phosphor. Another object is to provide a nanoparticle phosphor produced by the method.
  • a production method comprising using a continuous mixing device when preparing a nanoparticle phosphor of a chalcogenide compound by mixing a cationic component solution and a cation component solution in the presence of a protective colloid.
  • the chalcogenite compound nanoparticle phosphor produced by the method according to any one of (1) to (5) above, wherein the nanoparticle phosphor has an average particle size of 1 nm or more and 10 Onm or less.
  • a production method capable of suppressing the formation of coarse particles and producing a highly luminous nanoparticle phosphor, and the nanoparticle fluorescence produced by the method can be provided.
  • the production method of the present invention uses a continuous mixing apparatus when preparing a nanoparticle phosphor of a chalcogenite compound by mixing a cationic component solution and a key component solution in the presence of a protective colloid.
  • a nanoparticle phosphor having an average particle diameter of 1 nm or more and lOOnm or less and an average particle diameter distribution within ⁇ 10% of the average value can be produced.
  • various polymer compounds can be used regardless of natural or artificial, and among them, proteins can be preferably used.
  • Examples of the protein include gelatin, water-soluble protein, and water-soluble glycoprotein. Specific examples include albumin, ovalbumin, casein, soy protein, synthetic protein, and protein synthesized by genetic engineering.
  • gelatin examples include lime-processed gelatin and acid-processed gelatin, and these may be used in combination. Further, hydrolysates of these gelatins and enzymatic degradation products of these gelatins may be used.
  • the protective colloid may be mixed with various binders that do not need to have a single composition.
  • binders that do not need to have a single composition.
  • a graft polymer of the above gelatin and another polymer can be used.
  • the average molecular weight of the protective colloid is preferably 10,000 or more, 10,000 to 300, 00
  • the protective colloid can be added to one or more of the raw material solutions. It may be added to all of the raw material solution.
  • the particle size of the precursor can be controlled by the amount of protective colloid added and the addition rate of the reaction solution.
  • the phosphor precursors By forming the phosphor precursor in the presence of the protective colloid, the phosphor precursors can be prevented from aggregating with each other, and the phosphor precursor can be made sufficiently small. [0029] (Cation component solution)
  • the cationic component solution according to the present invention contains cations such as zinc (Zn), cadmium (Cd), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba).
  • a preferred cationic component solution is a zinc ion-containing solution.
  • metal salts such as zinc nitrate and zinc carbonate can be used.
  • the production method of the present invention is suitable as a production method for producing a chalcogenite compound nanoparticle phosphor.
  • the chalcogenite compound oxides, sulfides, selenides, tellurides and the like are preferable.
  • the cation component solution according to the present invention includes chalcogen elements, that is, oxygen (0), sulfur (S), selenium (Se), tellurium (Te) which are elements of Group 6B (oxygen group) of the periodic table.
  • a solution containing elemental ions is used.
  • a particularly preferred ion component solution is a sulfur ion-containing solution.
  • sulfur supply compound examples include thiourea, dithiolene, thioacetamide, hydrogen sulfide and the like.
  • Sodium sulfate and potassium sulfate are preferred.
  • selenium supply compound and the tellurium supply compound a selenium releasing compound or tellurium releasing compound known as a sensitizer in the technical field of halogen silver photographic materials is used. Can do.
  • the nanoparticle phosphor according to the present invention may be doped with an activator.
  • an activator depending on the required fluorescent wavelength range (emission color), those usually used as an activator for phosphors, for example, metal ions such as copper, manganese, silver, gold, rare earth elements, alone or in combination. These combinations are selected and used.
  • a co-activator such as chlorine, bromine, iodine, or aluminum can be doped.
  • the activator is manganese (Mn 2+ ).
  • the particle diameter of the sparingly soluble salt is determined by the degree of supersaturation, and if the supersaturation is high, small particles are precipitated.
  • the solubility Ce is a factor that determines the degree of supersaturation.
  • the continuous mixing device means that at least the phosphor raw material solution fed from the first flow channel and the phosphor raw material solution fed from the second flow channel are continuously collided and mixed with each other.
  • the third flow path is continuously discharged after the liquid mixture after the collision is fed for 0.001 seconds or more at a Reynolds number of 3000 or more. It is an excellent mixing device in that the supersaturation degree can be kept constant from the beginning to the end of the addition, and is a method suitable for obtaining a nanoparticle phosphor.
  • the production method of the present invention is based on a liquid phase method.
  • the concentration of the activator and coactivator can be controlled uniformly with higher accuracy. This is because the uniformity including the matrix components is very high.
  • the liquid phase method is not particularly limited, but the coprecipitation method may be used depending on the type and application of the phosphor V, or the reaction crystallization method may be used.
  • the phosphor basically includes (A) a nanoparticle phosphor forming step in which a solution containing a constituent metal element of an inorganic phosphor is mixed to form a nanoparticle phosphor, and (B) phosphor formation After the step, a drying step of drying the nanoparticle phosphor obtained by the nanoparticle phosphor formation step, and (C) if necessary, a dried nanoparticle phosphor is baked and crystallized after the drying step. It is obtained by a manufacturing method including a firing step for increasing the degree of conversion.
  • the nanoparticle phosphor is formed by a liquid phase method (liquid phase synthesis method).
  • a coprecipitation method or a sol-gel method or a reaction crystallization method may be used. Among them, it is preferable to use a coprecipitation method or a reaction crystallization method, and it is particularly preferable to use a reaction crystallization method.
  • an embodiment in which a solution of two or more phosphor raw materials is added to a solvent is suitable for producing a nanoparticle phosphor having a small particle size distribution.
  • the addition rate and position of the phosphor raw material solution, the phosphor raw material solution and the solvent It is preferable to adjust various physical properties such as the stirring conditions (including pH).
  • reaction crystallization method is a production method for synthesizing a nanoparticle phosphor by mixing a raw material solution or a raw material gas in a liquid phase or a solid phase.
  • the raw material solution is preferably mixed in the liquid phase.
  • a solid phase precipitates from the liquid phase (crystallization phenomenon), and the nanoparticle phosphor formation process is a physical and chemical operation that induces the crystallization phenomenon. It is a process by.
  • the nanoparticle phosphor is synthesized by the liquid phase synthesis method including the reaction crystallization method and the coprecipitation method described above, depending on the type of the phosphor, the reaction temperature, the addition speed, the addition position, the stirring It is preferable to adjust various physical properties such as conditions and pH. In addition, it may be irradiated with ultrasonic waves when dispersed in a solution or during a reaction. In order to control the average particle diameter, it is also preferable to add a protective colloid or a surfactant. It is also a preferred embodiment that the liquid is concentrated and Z or aged as necessary after the addition of the raw materials.
  • the particle size and aggregation of the phosphor particles By controlling the amount of protective colloid to be added, ultrasonic irradiation time, stirring conditions, etc., and making the dispersed state of the host nucleus of the phosphor in the solution preferable, the particle size and aggregation of the phosphor particles The state can be controlled, and the average particle diameter of the phosphor particles after firing can be set to a desired size.
  • the nanoparticle phosphor is synthesized by the liquid phase method as described above, it is preferably collected by a method such as filtration, evaporation to dryness, and centrifugation, as necessary, followed by washing and desalting treatment steps.
  • the desalting process is a process for removing impurities such as by-salts from the phosphor.
  • Various membrane separation methods, coagulation sedimentation methods, electrodialysis methods, methods using ion-exchange resin, Nudell water washing methods, etc. Can be applied.
  • the electrical conductivity after desalting is from the viewpoint of improving the productivity of the phosphor and sufficiently removing the secondary salt and impurities to prevent the coarsening of the particles and the expansion of the particle size distribution.
  • a drying step may be further performed.
  • the nanoparticle phosphor obtained in the nanoparticle phosphor forming step is dried at a predetermined drying temperature.
  • the drying temperature is preferably in the range of 20 to 300 ° C, more preferably in the range of 90 to 200 ° C.
  • the phosphor may be directly dried.
  • a spray drying method in which the phosphor is dried while being evaporated or granulated is used. Can be applied.
  • the drying step it is preferable to remove unnecessary salts by an existing method such as filtration and washing or membrane separation, if necessary. Further, the nanoparticle fluorescence can be obtained by a method such as filtration or centrifugation. It is preferable to separate the body fluid power.
  • the phosphor according to the present invention can be obtained by firing the nanoparticle phosphor obtained in the precursor-forming process.
  • the firing temperature and time which may be used are adjusted so that the performance becomes the highest.
  • a phosphor having the desired composition can be obtained by firing at a temperature of 80 ° C to 1800 ° C for a suitable time in the atmosphere.
  • the baking apparatus any apparatus known at present can be used.
  • a box furnace, a crucible furnace, a cylindrical tube type, a boat type, a rotary kiln and the like are preferably used.
  • acidity, reducibility, inert gas and the like can be used according to the phosphor composition, and can be appropriately selected. Further, if necessary, reduction treatment or oxidation treatment may be performed after firing.
  • an anti-sintering agent may be added as necessary during firing! /.
  • a sintering inhibitor When added, it can be added as a slurry during phosphor formation. Alternatively, the powdery material may be mixed with the dried phosphor and fired.
  • the sintering inhibitor is not particularly limited, and is appropriately selected depending on the type of phosphor and firing conditions. For example, depending on the firing temperature range of the phosphor, a metal oxide such as TiO is used for baking at 800 ° C or lower, and for baking at 1000 ° C or lower, it is used for baking at 1800 ° C or lower.
  • various steps such as a cooling step and a surface treatment step may be performed or classified.
  • a treatment for cooling the fired product obtained in the firing step is performed.
  • the cooling treatment is not particularly limited, but can be appropriately selected from known cooling methods, for example, the fired product. Can be cooled while filling the baking apparatus. In addition, the temperature can be lowered by leaving it alone, or the temperature can be forcibly lowered while controlling the temperature using a cooler.
  • the phosphor produced in the present invention can be subjected to a surface treatment such as adsorption and coating for various purposes.
  • a surface treatment such as adsorption and coating for various purposes.
  • the point at which surface treatment is applied depends on the purpose, and the effect becomes more prominent when properly selected.
  • nanoparticle phosphor according to the present invention can be used for various purposes and applications as described in the “Background Art” section.
  • a coating method using an inkjet nozzle can be used.
  • Conventional phosphors with a size of several meters are likely to be clogged with nozzles, and the nozzle diameter needs to be sized to match the phosphor size, making it unsuitable for coating fine patterns. .
  • nanoparticles using an inkjet nozzle with a small nozzle diameter it becomes possible to apply a fine pattern.
  • Examples of such application applications include the production of fluorescent panels such as PDP'FPD, and the production of fluorescent ink prints (posters, signboards, T-shirts, etc.) using nanoparticles.
  • the phosphors according to the present invention were manufactured, and each was evaluated in a solution state as follows.
  • Zinc nitrate hexahydrate 294.4g, manganese nitrate 1.789g, molecular weight 20000 gelatin 60g is dissolved in pure water to make 2L.
  • the temperature of liquid A and liquid B was 50 ° C, and the two liquids were mixed using a continuous mixer to obtain phosphor solution 1.
  • a phosphor solution 2 was obtained in the same manner as in the phosphor 1 production method except that gelatin was not used in the B solution. [0073] (Method for producing phosphor 3)
  • Phosphor solution 3 was obtained in the same manner as phosphor 1 except that 60 g of acrylic acid was added to solution B instead of gelatin.
  • Zinc nitrate hexahydrate 294.4g, manganese nitrate 1.789g, molecular weight 20000 gelatin 60g is dissolved in pure water to make 1L.
  • the emission spectrum was measured by irradiating the solution with UV light (254 nm).
  • the luminescence intensity was measured with a Florescence Spectrophotometer F3010 manufactured by Hitachi.
  • the phosphor of the present invention has a narrow distribution and high emission intensity.

Abstract

 本発明の目的は、粗大粒子の形成を抑え、高発光なカルコゲナイト化合物のナノ粒子蛍光体を製造することができる製造方法、及びその方法によって製造されるナノ粒子蛍光体を提供することにあり、それは保護コロイド存在下でカチオン成分溶液とアニオン成分溶液を混合してカルコゲナイト化合物のナノ粒子蛍光体を作製する際に、連続混合装置を用いることによって達成される。

Description

明 細 書
カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法
技術分野
[0001] 本発明は、カルコゲナイトイ匕合物のナノ粒子蛍光体及びその製造方法に関する。
背景技術
[0002] 蛍光体は、励起線 (紫外線、可視光、赤外線、熱線、電子線、及び X線等)を照射 することにより、当該励起線のエネルギーを光 (紫外線、可視光及び赤外線等)に変 換する材料として一般に使用されている。当該蛍光体を用いたデバイスとしては、蛍 光ランプ、電子管、冷陰極ディスプレイ、蛍光表示管、プラズマディスプレイパネル (P lasma Display Panel :以下において、「PDP」ともいう。)、エレクト口ルミネッセンス パネル、シンチレーシヨン検出器、 X線イメージインテンシファイア、熱蛍光線量計お よびイメージングプレート等が挙げられる(例えば、非特許文献 1参照。 ) oこれらのデ バイスは、いずれも、電気エネルギーを励起線のエネルギーに変換し、さらに、励起 線のエネルギーを光に変換するデバイスである。このようなデバイスと、電子回路また は機器部品(照明器具、コンピュータ、キーボード、蛍光体を用いていない電子機器 等)とを組み合わせた電子機器は、照明装置や表示装置等として広く用いられている
[0003] また、蛍光体を用いた蛍光体使用物品としては、粉末状の蛍光体と、水もしくは有 機溶媒等の液体、榭脂、プラスチック、金属またはセラミクス材料等の蛍光体以外の 物質とを組み合わせた蛍光体含有物があり、これらは、例えば、蛍光体塗料等の液 状物やペースト状物、灰皿などの固形物、案内板や誘導用物品等の表示物、シール
、文房具、アウトドア用品、安全標識等として広く用いられている。
[0004] 更に、上記のような用途のみならず、例えばトレーサーとしての使用など、医学分野 やバイオ分野における活用の進展も期待されている。
[0005] 本願発明に係るカルコゲンィ匕合物蛍光体としては、酸化物、硫化物、セレン化物、 テルル化物等が、発光材料、オプトエレクトロニクス、光磁気材料、磁性体等、色々な 分野にお 、て利用されて 、る、重要な基本材料である。 [0006] 一方、近年、 Π— VI族の半導体ナノ粒子は、バルタ体の結晶構造に比べ、良好な光 吸収特性および発光特性を得られることから、近年その研究報告が活発になされて いる。この半導体ナノ粒子の優れた光学特性は、結晶粒の粒径がナノメートルサイズ と小さいため、バンドギャップが増大し、量子サイズ効果が発現すること等に起因する と考えられている。ここで、ナノ粒子とは、 Inn!〜 lOOnm程度の粒径の結晶粒のこと をいい、一般的にナノクリスタルとも呼ばれて 、る。
[0007] 近年、ナノ粒子蛍光体の一例として、沈殿技術を使用することにより製造される ZnS ナノ粒子およびドープされた ZnS: Mn2+ナノ粒子に関する多くの報告がなされて 、る (例えば、特許文献 1, 2参照。;)。また、共沈を利用した液相反応中にアクリル酸等の 有機酸を添加し、ナノ粒子蛍光体を合成することで、発光強度が上昇することなどが 報告されている (特許文献 3, 4参照。 )0
特許文献 1:特開 2002— 322468号公報
特許文献 2:特開 2005 - 239775号公報
特許文献 3:特開平 10— 310770号公報
特許文献 4:特開 2000— 104058号公報
非特許文献 1 :蛍光体同学会編「蛍光体ハンドブック」、オーム社、 1987年 発明の開示
発明が解決しょうとする課題
[0008] し力しながら、上記の方法では得られるナノ粒子の凝集を防ぐことが出来ず、ナノ粒 子の平均サイズをそろえることが難しいため粗大粒子の形成を招くという問題点があ つた。このような粗大粒子は、発光強度が低いことに加え溶液中の発光を散乱してし まうためナノ粒子溶液の発光強度を著しく減少させてしまう。
[0009] そこで、本発明は、上記課題に鑑みて、カルコゲナイトイ匕合物のナノ粒子蛍光体の 製造において、粗大粒子の形成を抑え、高発光なナノ粒子蛍光体を製造することが できる製造方法及びその方法によって製造されるナノ粒子蛍光体の提供を目的とす る。
課題を解決するための手段
[0010] 本発明の上記目的は、以下の構成によって達成される。 [0011] (1)
保護コロイド存在下でカチオン成分溶液とァ-オン成分溶液を混合してカルコゲナイ ト化合物のナノ粒子蛍光体を作製する際に、連続混合装置を用いることを特徴とする 製造方法。
[0012] (2)
カチオン成分が、亜鉛イオンであることを特徴とする前記(1)に記載の製造方法。
[0013] (3)
ァ-オン成分が、硫黄イオンであることを特徴とする前記(1)又は(2)に記載の製造 方法。
[0014] (4)
賦活剤として、マンガン (Mn2+)を存在させることを特徴とする前記(1)〜(3)の 、ず れか 1項に記載の製造方法。
[0015] (5)
前記保護コロイドがゼラチンであることを特徴とする前記(1)〜 (4)の 、ずれか 1項に 記載の製造方法。
[0016] (6)
前記(1)〜(5)の 、ずれか 1項に記載の製造方法によって製造されたカルコゲナイト 化合物のナノ粒子蛍光体であって、そのナノ粒子蛍光体の平均粒径が lnm以上 10 Onm以下であり、かつ、平均粒径分布が平均値の ± 10%以内であることを特徴とす るナノ粒子蛍光体。
[0017] (7)
アクリル酸をさらに添加することを特徴とする前記(6)に記載のナノ粒子蛍光体。 発明の効果
[0018] 本発明により、カルコゲナイト化合物のナノ粒子蛍光体の製造において、粗大粒子 の形成を抑え、高発光なナノ粒子蛍光体を製造することができる製造方法及びその 方法によって製造されるナノ粒子蛍光体を提供することができる。
発明を実施するための最良の形態
[0019] 我々は、鋭意検討の結果、粒子をゼラチン等の保護コロイド中で形成することにより 凝集が抑えられ、平均粒径が小さぐかつ粒径分布の狭いナノ粒子を形成すること、 さらに、ゼラチンを保護コロイドとして使用した場合には、蛍光体が発光することを見 出した。
[0020] 本発明の製造方法は、保護コロイド存在下でカチオン成分溶液とァ-オン成分溶 液を混合してカルコゲナイト化合物のナノ粒子蛍光体を作製する際に、連続混合装 置を用いることを特徴とし、本発明により、平均粒径が lnm以上 lOOnm以下であり、 かつ、平均粒径分布が平均値の ± 10%以内であるナノ粒子蛍光体を製造すること ができる。
[0021] 以下、本発明とその構成要素等について詳細に説明する。
[0022] (保護コロイド)
本発明に係る保護コロイドとしては、天然、人工を問わず各種高分子化合物を用い ることができるが、中でもタンパク質を好ましく使用することができる。
[0023] タンパク質としては、例えば、ゼラチン、水溶性タンパク質、水溶性糖タンパク質が 挙げられる。具体的には、アルブミン、卵白アルブミン、カゼイン、大豆タンパク、合成 タンパク質、遺伝子工学的に合成されたタンパク質等を挙げることができる。
[0024] ゼラチンとしては、例えば、石灰処理ゼラチン、酸処理ゼラチンを挙げることができ、 これらを併用してもよい。さらにこれらのゼラチンの加水分解物、これらのゼラチンの 酵素分解物を用いてもよい。
[0025] また、保護コロイドは、単一の組成である必要はなぐ各種バインダーを混合しても よい。具体的には、例えば、上記ゼラチンと他の高分子とのグラフトポリマーを用いる ことができる。
[0026] なお、保護コロイドの平均分子量は 10, 000以上力好ましく、 10, 000〜300, 00
0力より好ましく、 10, 000〜30, 000力特に好まし!/、。
[0027] 保護コロイドは、原料溶液の一つ以上に添加することができる。原料溶液の全てに 添加してもよい。保護コロイドを添加する量や、反応液の添加速度により、前駆体の 粒径を制御することができる。
[0028] 保護コロイドの存在下で、蛍光体前駆体を形成することにより、蛍光体前駆体同士 が凝集するのを防ぎ、蛍光体前駆体を十分小さくすることができる。 [0029] (カチオン成分溶液)
本発明に係るカチオン成分溶液としては、亜鉛 (Zn)、カドミウム(Cd)、マグネシゥ ム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等のカチオンを含有 これらのうち、特に好ましいカチオン成分溶液は、亜鉛イオン含有溶液である。
[0030] なお、上記の各種カチオン供給ィ匕合物としては、硝酸亜鉛、炭酸亜鉛等の金属塩 を用いることができる。
[0031] (ァ-オン成分溶液)
本発明の製造方法は、カルコゲナイトイ匕合物のナノ粒子蛍光体を製造するための 製造方法として適している力 カルコゲナイトイ匕合物としては、酸化物、硫化物、セレ ン化物、テルル化物等が好ましい。従って、本発明に係るァ-オン成分溶液としては 、カルコゲン元素、すなわち、周期表 6B族 (酸素族)の元素である、酸素 (0)、硫黄( S)、セレン(Se)、テルル (Te)元素のァ-オンを含有する溶液を用いる。これらのうち 、特に、好ましいァ-オン成分溶液は硫黄イオン含有溶液である。
[0032] このような溶液を調製するためには、下記のカルコゲン供給ィ匕合物を使用すること ができる。
[0033] (カルコゲン供給ィ匕合物)
硫黄供給ィ匕合物としては、チォ尿素、ジチオレン、チオアセトアミド、硫化水素等を 挙げることができる。硫ィ匕ナトリウム、硫ィ匕カリウムが好ましい。
[0034] セレン供給ィ匕合物及びテルル供給ィ匕合物としては、ハロゲンィ匕銀写真感光材料の 技術分野で増感剤として知られているセレン放出性又はテルル放出性の化合物を 使用することができる。
[0035] (賦活剤)
本発明に係るナノ粒子蛍光体には、賦活剤をドープすることもできる。賦活剤として は、要求される蛍光の波長域 (発光色)に応じ、蛍光体に賦活剤として通常使用され るもの、例えば銅、マンガン、銀、金、希土類元素等の金属イオンの単独あるいはこ れらの組合せが選択使用される。また、必要に応じ、塩素、臭素、ヨウ素、アルミ-ゥ ム等の共賦活剤をドープすることもできる。
[0036] 本発明にお 、て、特に好まし 、賦活剤は、マンガン (Mn2+)である。 [0037] (反応条件)
ZnSのような、難溶性塩を析出させる反応においては、難溶性塩の粒径は過飽和 度で決定され、過飽和度が高ければ小さな粒子が析出する。過飽和度 pは、溶質の 溶液濃度 Cと溶質の溶解度 Ceから決まり、 p = (C— Ce) ZCeで表される。溶液濃 度 Cが一定の場合には、溶解度 Ceが過飽和度を決定する因子となる。
[0038] たとえば、硫化亜鉛の溶解度積は 3 X 10—22と小さいため、過飽和度が高くナノ粒子 が析出しやすい組成であると言える。このような、過飽和度の制御が必要な晶析反応 においては、混合装置は重要である。添加時の濃度局在によりどちらかのイオンが過 剰に存在する状態下では、過飽和度が低くなり粒子の溶解が起こるからである。
[0039] (連続混合装置)
上記のような問題を解決するために、我々は、連続混合装置を用いることが好まし いということを見出した。連続混合装置とは、少なくとも、第 1の流路から送り込まれる 蛍光体原料溶液と、第 2の流路から送り込まれる蛍光体原料溶液とを連続的に衝突' 混合させて力 第 3の流路に連続的に送り込むとともに、衝突後の混合液をレイノル ズ数 3000以上で 0. 001秒以上送液した後に、該第 3の流路カも連続的に吐出させ るように構成したことを特徴とする混合装置であり、過飽和度を添加の最初から最後 まで一定に保つことができる点で優れた混合装置であり、ナノ粒子蛍光体を得るのに 適した方法である。
[0040] さらに鋭意検討の結果、保護コロイド中で形成された蛍光体ナノ粒子水溶液にァク リル酸を加えることで、凝集を防ぎかつ発光強度が上昇することを見出した。アクリル 酸のみでは、防げない凝集を保護コロイドとの併用で回避することができ、かつアタリ ル酸がゼラチンと競争吸着をすることで、表面の賦活剤 Mn2+に吸着し、表面修飾剤 として機能するためと考えられる。
[0041] 以下において、更に詳しぐ本発明の製造方法の典型的態様について説明する。
[0042] (蛍光体の製造方法)
一般的には、固相法、気相法、及び蛍光体を液相で作製し焼成を行う液相法によ り得ることができるが、本発明の製造方法は液相法によるものである。液相法を用い ることでより高い精度で賦活剤、共賦活剤の濃度を均一にコントロールできることにカロ え、母体成分を含めた均一性が非常に高いことによる。
[0043] また液相法としては、特に限定はないが蛍光体の種類 ·用途に応じて共沈法を用 V、ても反応晶析法を用いてもょ 、。
[0044] 次に、本発明の液相法による典型的製造方法について説明する。
[0045] 蛍光体は、基本的には、 (A)無機蛍光体の構成金属元素を含む溶液を混合して ナノ粒子蛍光体を形成するナノ粒子蛍光体形成工程と、 (B)蛍光体形成工程の後 に当該ナノ粒子蛍光体形成工程により得られたナノ粒子蛍光体を乾燥する乾燥ェ 程と、必要によっては (C)乾燥工程の後に乾燥済みのナノ粒子蛍光体を焼成して結 晶化度を高める焼成工程とを含む製造方法により得られる。
[0046] 以下にお 、て、ナノ粒子蛍光体の製造方法を構成する上記の各工程につ!、て説 明する。
[0047] (A)ナノ粒子蛍光体形成工程
本発明に係るナノ粒子蛍光体形成工程では、液相法 (液相合成法)によりナノ粒子 蛍光体を形成する。適用可能な液相法に特に限定はないが、ナノ粒子蛍光体の種 類-用途に応じて共沈法を用いてもょ 、し、ゾルゲル法ゃ反応晶析法を用いてもょ 、 。その中でも共沈法や反応晶析法を用いることが好ましぐ特に反応晶析法を用いる のが好ましい。
[0048] 「共沈法」を適用する場合は、 2液以上の蛍光体原料の溶液を溶媒中に添加すると いう態様が、微小で粒度分布の狭いナノ粒子蛍光体を製造するのに適している。こ の場合、作製しょうとするナノ粒子蛍光体の種類やそのナノ粒子蛍光体に発揮させよ うとする性能に合わせて、蛍光体原料の溶液の添加速度や添加位置、蛍光体原料 の溶液と溶媒との攪拌条件 (pHを含む。 )等の諸物性値を調整するのが好ま 、。
[0049] 「反応晶析法」とは、液相中又は固相中で原料溶液又は原料ガスを混合することで ナノ粒子蛍光体を合成する製法である。蛍光体形成工程では、液相中で原料溶液 を混合させるのがよい。反応晶析法によるナノ粒子蛍光体形成工程では、冷却、蒸 発、 pH調節、濃縮等による物理的又は化学的な環境の変化を生じる場合や、化学 反応によって混合系の状態に変化を生じる場合等に液相中から固相が析出し (晶析 現象)、当該ナノ粒子蛍光体形成工程は、晶析現象を誘発する物理的 ·化学的操作 による工程となっている。
[0050] 上記の反応晶析法及び共沈法を含めて、液相合成法でナノ粒子蛍光体を合成す る場合には、蛍光体の種類により、反応温度、添加速度や添加位置、攪拌条件、 pH 等、諸物性値を調整すると好ましい。また、溶液中に分散させるときや反応中に超音 波を照射してもよ ヽ。平均粒径制御のために保護コロイドや界面活性剤などを添カロ することも好ましい。原料を添加し終ったら必要に応じて液を濃縮、及び Zまたは熟 成することも好ましい態様の 1つである。
[0051] 添加する保護コロイドの量や超音波照射時間、攪拌条件等を制御し、溶液中の蛍 光体の母核の分散状態を好ましい状態とすることにより、蛍光体粒子の粒径や凝集 状態を制御し、焼成後の蛍光体粒子の平均粒径を所望の大きさにすることができる。
[0052] 以上のように液相法でナノ粒子蛍光体を合成した後、必要に応じてろ過、蒸発乾固 、遠心分離等の方法で回収した後に好ましくは洗浄、脱塩処理工程を行う。
[0053] 脱塩処理工程は蛍光体から副塩などの不純物を取り除くための工程であり、各種 膜分離法、凝集沈降法、電気透析法、イオン交換榭脂を用いた方法、ヌーデル水洗 法などを適用することができる。
[0054] 本発明においては、蛍光体の生産性向上、且つ、副塩や不純物を十分に除去し、 粒子の粗大化や粒子径分布の拡大を防止する観点から、脱塩後の電気伝導度が 0 . 01mSZcm〜20mSZcmの範囲であることが好ましぐさらに好ましくは 0. 01〜1 OmSZcmであり、特に好ましくは 0. 01mSZcm〜5mSZcmである。
[0055] 上記のような電気伝導度になるように調整することにより、最終的に得られる蛍光体 の発光輝度の向上にも効果がある。なお、電気伝導度の測定方法はどのような方法 を用いることも可能であるが、市販の電気伝導度測定器を使用すればょ 、。
[0056] (B)乾燥工程
脱塩処理工程終了後、さらに乾燥工程を行ってもよい。乾燥工程では、ナノ粒子蛍 光体形成工程で得られたナノ粒子蛍光体を所定の乾燥温度で乾燥させる。乾燥温 度としては、 20〜300°Cの範囲とするのが好ましぐ 90〜200°Cの範囲とするのが更 に好ましい。乾燥工程では蛍光体を直接的に乾燥させてもよぐそのような乾燥方法 としては、エバポレーシヨン又は顆粒ィ匕しながら乾燥させるスプレードライ方式の方法 を適用することができる。
[0057] なお、乾燥工程の前に、必要に応じて不要な塩類を濾過'洗浄や膜分離等の既存 の方法で除去することが好ましぐ更に濾過や遠心分離等の方法でナノ粒子蛍光体 を液体力も分離することが好まし 、。
[0058] (C)焼成工程
本発明に係る蛍光体は、上記前駆対体形成工程により得たナノ粒子蛍光体を焼成 処理することにより得られる。
[0059] 蛍光体を焼成する際には、いかなる方法を用いてもよぐ焼成温度や時間は最も性 能が高くなるように調整すればよい。例えば、大気中で 80°C〜1800°Cの間で適当 な時間焼成することにより、目的の組成の蛍光体を得ることができる。焼成装置 (焼成 容器)は現在知られているあらゆる装置を使用することができる。例えば箱型炉、坩 堝炉、円柱管型、ボート型、ロータリーキルン等が好ましく用いられる。雰囲気も蛍光 体組成に合わせて酸ィ匕性、還元性、不活性ガス等を用いることができ、適宜選択す ることができる。さらに、必要に応じて焼成の後に還元処理又は酸化処理等を施して も良い。
[0060] また、焼成時に必要に応じて焼結防止剤を添加してもよ!/、。焼結防止剤を添加す る場合は、蛍光体形成時にスラリーとして添加することができる。また、粉状のものを 乾燥済蛍光体と混合して焼成してもよ ヽ。
[0061] 焼結防止剤は特に限定されるものではなぐ蛍光体の種類、焼成条件によって適 宜選択される。例えば、蛍光体の焼成温度域によって 800°C以下での焼成には TiO 等の金属酸化物が、 1000°C以下での焼成には SiO ί 1700°C以下での焼成に
2 2
は Al O 1S それぞれ好ましく使用される。
2 3
[0062] なお、蛍光体の組成や反応条件等によっては、結晶化が進み、焼成を行う必要が 無 、場合がある。その場合は焼成工程を省 、ても構わな 、。
[0063] 焼成工程後、冷却工程、表面処理工程等の諸工程を施してもよぐ分級してもよい
[0064] 冷却工程では、焼成工程で得られた焼成物を冷却する処理を行う。冷却処理は特 に限定されないが、公知の冷却方法より適宜選択することができ、例えば、該焼成物 を前記焼成装置に充填したまま冷却することができる。また、放置により温度低下さ せてもょ 、し、冷却機を用いて温度制御しながら強制的に温度低下させてもょ 、。
[0065] 本発明で製造される蛍光体は、種々の目的で吸着'被覆等の表面処理を施すこと 力 Sできる。どの時点で表面処理を施すかはその目的によって異なり、適宜適切に選 択するとその効果がより顕著になる。
[0066] なお、本発明に係るナノ粒子蛍光体は、「背景技術」の欄において述べたような種 々の目的 ·用途のために使用することができる。
[0067] 例えば、 lOOnm以下の微粒子乃至ナノ粒子蛍光体を塗布膜状にして使用する場 合には、インクジェットノズルを用いた塗布方法を用いることができる。従来の数 m 程度のサイズの蛍光体ではノズルが目詰まりを起こし易ぐまたノズル径を蛍光体サ ィズに見合った大きさにする必要があり、精細なパターンの塗布には不向きであった 。ナノ粒子をノズル径の小さなインクジェットノズルを用いて塗布することにより精細な パターンの塗布を行うことが可能となる。
[0068] このような、塗布の応用例としては、 PDP'FPD等の蛍光パネルの作製や、ナノ粒 子を用いた蛍光インクの印刷物(ポスター、看板、 Tシャツ等)の作製等がある。
実施例
[0069] 以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるも のではない。
[0070] 本実施例では、本発明に係る蛍光体を製造し、それぞれを溶液状態で、下記のよう に評価した。
[0071] (蛍光体 1の製造方法)
硝酸亜鉛 6水和物 294. 4g、硝酸マンガン 1. 789g、分子量 20000のゼラチン 60 gを純水に溶解し 2Lとし A液とする。硫ィ匕ナトリウム 78. lgを純水に溶解し 2Lとし B液 とする。 A液と B液の温度を 50°Cとし、連続混合機で 2液を混合し、蛍光体溶液 1を得 た。
[0072] (蛍光体 2の製造方法)
B液にゼラチンを用いないことを除けば蛍光体 1の製造方法と同様にして、蛍光体 溶液 2を得た。 [0073] (蛍光体 3の製造方法)
B液にゼラチンの代わりにアクリル酸 60gを添カ卩したことを除けば蛍光体 1の製造方 法と同様にして、蛍光体溶液 3を得た。
[0074] (蛍光体 4の製造方法)
硝酸亜鉛 6水和物 294. 4g、硝酸マンガン 1. 789g、分子量 20000のゼラチン 60 gを純水に溶解し 1Lとし A液とする。硫化ナトリウム 78. lgを純水に溶解し 1Lとし Bit とする。分子量 20000のゼラチン 60gを純水に溶解し 2Lとし C液とする。
[0075] A液〜 C液の温度を 50°Cとし、 C液を激しく攪拌した中に A液及び B液を等速で 3 分間かけて添加を行い、蛍光体溶液 4を得た。
[0076] (蛍光体 5の製造方法)
蛍光体溶液 1を 30°Cで攪拌した中に、アクリル酸 30gを添加し 15分攪拌を行い蛍 光体溶液 5を得た。
[0077] 以上のようにして得られた蛍光体の TEM写真を撮影し、画像処理を行い粒子サイ ズ分布の測定を行った。粒子は、 1サンプルに付き 1000個を測定し、球形換算値で サイズを求めた。
[0078] また、溶液に UV光(254nm)を照射して発光スペクトルの測定を行った。発光強度 は、 Hitachi社製 Florescence Spectrophotometer F3010で測定を行った。
[0079] 発光強度、平均粒径、及び分布 (分布 =∑ [ (粒径一平均粒径) Z平均粒径] Z粒 子数)の測定結果を表 1に示す。
[0080] [表 1]
Figure imgf000012_0001
[0081] このように、本発明の蛍光体は、分布が狭ぐ発光強度が高いことが示された。

Claims

請求の範囲
[1] 保護コロイド存在下でカチオン成分溶液とァ-オン成分溶液を混合してカルコゲナイ ト化合物のナノ粒子蛍光体を作製する際に、連続混合装置を用いることを特徴とする 製造方法。
[2] カチオン成分が、亜鉛イオンであることを特徴とする請求の範囲第 1項に記載の製造 方法。
[3] ァ-オン成分が、硫黄イオンであることを特徴とする請求の範囲第 1項又は第 2項に 記載の製造方法。
[4] 賦活剤として、マンガン (Mn2+)を存在させることを特徴とする請求の範囲第 1項乃至 第 3項の 、ずれか 1項に記載の製造方法。
[5] 前記保護コロイドがゼラチンであることを特徴とする請求の範囲第 1項乃至第 4項の いずれか 1項に記載の製造方法。
[6] 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の製造方法によって製造された カルコゲナイトイ匕合物のナノ粒子蛍光体であって、そのナノ粒子蛍光体の平均粒径 力 Slnm以上 lOOnm以下であり、かつ、平均粒径分布が平均値の ± 10%以内である ことを特徴とするナノ粒子蛍光体。
[7] アクリル酸をさらに添加することを特徴とする請求の範囲第 6項に記載のナノ粒子蛍 光体。
PCT/JP2006/316210 2005-09-16 2006-08-18 カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法 WO2007032179A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535405A JP5157446B2 (ja) 2005-09-16 2006-08-18 カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-270023 2005-09-16
JP2005270023 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032179A1 true WO2007032179A1 (ja) 2007-03-22

Family

ID=37864777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316210 WO2007032179A1 (ja) 2005-09-16 2006-08-18 カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法

Country Status (2)

Country Link
JP (1) JP5157446B2 (ja)
WO (1) WO2007032179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013091604A1 (de) * 2011-12-19 2013-06-27 Inoviscoat Gmbh Leuchtelemente mit einer elektrolumineszenzanordnung sowie verfahren zur herstellung eines leuchtelements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310770A (ja) * 1997-03-10 1998-11-24 Sony Corp 発光体の製造方法
JP2003088743A (ja) * 2001-09-20 2003-03-25 Fuji Photo Film Co Ltd 半導体微粒子の製造方法
JP2004018709A (ja) * 2002-06-18 2004-01-22 Konica Minolta Holdings Inc 蛍光体前駆体製造装置及び蛍光体前駆体の製造方法
JP2004535930A (ja) * 2001-07-27 2004-12-02 アンシャン ユニバーシティ オブ サイエンス アンド テクノロジー ナノメートルサイズの粉末及びナノメートルサイズの粒子疎集合体粉末の製造方法
JP2005239775A (ja) * 2004-02-24 2005-09-08 Doshisha 蛍光体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310770A (ja) * 1997-03-10 1998-11-24 Sony Corp 発光体の製造方法
JP2004535930A (ja) * 2001-07-27 2004-12-02 アンシャン ユニバーシティ オブ サイエンス アンド テクノロジー ナノメートルサイズの粉末及びナノメートルサイズの粒子疎集合体粉末の製造方法
JP2003088743A (ja) * 2001-09-20 2003-03-25 Fuji Photo Film Co Ltd 半導体微粒子の製造方法
JP2004018709A (ja) * 2002-06-18 2004-01-22 Konica Minolta Holdings Inc 蛍光体前駆体製造装置及び蛍光体前駆体の製造方法
JP2005239775A (ja) * 2004-02-24 2005-09-08 Doshisha 蛍光体およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013091604A1 (de) * 2011-12-19 2013-06-27 Inoviscoat Gmbh Leuchtelemente mit einer elektrolumineszenzanordnung sowie verfahren zur herstellung eines leuchtelements
US9301367B2 (en) 2011-12-19 2016-03-29 Inoviscoat Gmbh Luminous elements with an electroluminescent arrangement and method for producing a luminous element

Also Published As

Publication number Publication date
JPWO2007032179A1 (ja) 2009-03-19
JP5157446B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
JP6293710B2 (ja) 半導体ナノ粒子およびその製造方法
TWI412575B (zh) 核/殼型磷光體前驅物及磷光體
JP6838086B2 (ja) 半導体ナノ粒子および半導体ナノ粒子の製造方法ならびに発光デバイス
Yan et al. Molten salt synthesis, characterization and luminescence of ZnWO4: Eu3+ nanophosphors
US8287951B2 (en) Single-source precursor for semiconductor nanocrystals
WO2007102458A1 (ja) コア/シェル型微粒子蛍光体
HU227775B1 (en) Zinc sulphide electroluminophores and method for production thereof
Ashwini et al. Solvothermal synthesis, characterization and photoluminescence studies of ZnS: Eu nanocrystals
JP2006143993A (ja) 照明用途向けの、酸化物ベースの蛍光体のナノ結晶性粉末の製造方法
Buchold et al. Microemulsion Approach to Non‐Agglomerated and Crystalline Nanomaterials
Zhang et al. PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4: Tb3+ green phosphor
Li et al. Low temperature molten salt synthesis of YAG: Ce spherical powder and its thermally stable luminescent properties after post-annealing treatment
Feng et al. Microwave radiation heating synthesis and luminescence of SrWO4 and SrWO4: xEu3+ powders
JP2007117937A (ja) 微粒子粉末、その製造方法および製造装置
Lovisa et al. Red-emitting CaWO4: Eu3+, Tm3+ phosphor for solid-state lighting: luminescent properties and morphology evolution
Zhu et al. Controllable synthesis of water-soluble luminescent CdxZn1− xS nanocrystals
US6627113B2 (en) Phosphor consisting of hollow particles, phosphor slurry, phosphor beads for analysis using tracer technique and their production processes
JP5157446B2 (ja) カルコゲナイト化合物のナノ粒子蛍光体及びその製造方法
JPWO2008152891A1 (ja) 近赤外発光蛍光体ナノ粒子、その製造方法、それを用いた生体物質標識剤
JPWO2007034657A1 (ja) 微粒子蛍光体とその製造方法
Li et al. Nanostructured CaWO4, CaWO4: Eu3+ and CaWO4: Tb3+ particles: sonochemical synthesis and luminescent properties
JP2007106832A (ja) 蛍光体の製造方法及びその方法によって製造された蛍光体
WO2007040063A1 (ja) ナノサイズ蛍光体
WO2022181572A1 (ja) AgAuS系化合物からなる半導体ナノ粒子
Sun et al. Facile synthesis and optimization of ZnSe–GSH quantum dots by hydrothermal method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796521

Country of ref document: EP

Kind code of ref document: A1