WO2007029538A1 - 2次元フォトニック結晶面発光レーザ光源 - Google Patents

2次元フォトニック結晶面発光レーザ光源 Download PDF

Info

Publication number
WO2007029538A1
WO2007029538A1 PCT/JP2006/316866 JP2006316866W WO2007029538A1 WO 2007029538 A1 WO2007029538 A1 WO 2007029538A1 JP 2006316866 W JP2006316866 W JP 2006316866W WO 2007029538 A1 WO2007029538 A1 WO 2007029538A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
dimensional photonic
laser light
electrode
light source
Prior art date
Application number
PCT/JP2006/316866
Other languages
English (en)
French (fr)
Inventor
Dai Ohnishi
Wataru Kunishi
Eiji Miyai
Susumu Noda
Original Assignee
Kyoto University
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Rohm Co., Ltd. filed Critical Kyoto University
Priority to EP06783095A priority Critical patent/EP1930999A4/en
Priority to US11/991,097 priority patent/US8379686B2/en
Priority to CN2006800322649A priority patent/CN101258652B/zh
Priority to JP2007534338A priority patent/JPWO2007029538A1/ja
Publication of WO2007029538A1 publication Critical patent/WO2007029538A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1021Coupled cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity

Definitions

  • Two-dimensional photonic crystal surface emitting laser light source Two-dimensional photonic crystal surface emitting laser light source
  • the present invention relates to a surface emitting laser light source that emits laser light in a direction perpendicular to a surface from a planar light source.
  • a Fabry-Perot type laser light source using a Fabry-Perot resonator and a distributed feedback (DFB) type laser light source using a diffraction grating have been used.
  • Each of these laser light sources oscillates laser light by amplifying light of a predetermined wavelength by resonance or diffraction.
  • a photonic crystal is a material in which a periodic structure is artificially formed on a dielectric matrix.
  • the periodic structure is formed by periodically providing a region having a refractive index different from that of the base material (a different refractive index region) in the base material.
  • This periodic structure causes Bragg diffraction in the crystal and amplifies light of a predetermined wavelength to obtain laser oscillation.
  • Patent Document 1 describes a two-dimensional photonic crystal surface emitting laser light source in which an active layer containing a light emitting material is provided between two electrodes and a two-dimensional photonic crystal is provided in the vicinity of the active layer.
  • a conventional two-dimensional photonic crystal surface emitting laser light source will be described in detail with reference to FIG.
  • An active layer 12 is provided on the lower cladding layer (substrate) 11 via a spacer layer 161, and a two-dimensional photonic crystal 13 is provided on the active layer 12 via a spacer layer 162.
  • the active layer 12 is made of a material that emits light by current injection.
  • An example of such a material is multiple-quantum well (MQW) made of indium gallium arsenide (InGaAs) Z gallium arsenide (GaAs).
  • MQW multiple-quantum well
  • the two-dimensional photonic crystal 13 is a plate material in which cylindrical holes 14 are periodically arranged in a square lattice shape.
  • a spacer layer 163, an upper cladding layer 17, and a contact layer 18 are laminated in this order.
  • An upper electrode 191 is provided on the contact layer 18, and a lower electrode 192 is provided below the lower cladding layer 11.
  • the lower electrode 192 is formed on the entire lower surface of the lower cladding layer 11, whereas the upper electrode 191 is formed only near the center of the upper surface of the contact layer 18.
  • FIG. 1 in order to show the structure of the two-dimensional photonic crystal 13, it is drawn with a space between the two-dimensional photonic crystal 13 and the spacer layer 163. Yes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-332351 ([0037] to [0056], FIG. 1)
  • the problem to be solved by the present invention is to provide a two-dimensional photonic crystal surface emitting laser light source capable of forming a beam without accompanying side lobes.
  • a two-dimensional photonic crystal surface emitting laser light source according to the present invention which has been made to solve the above problems,
  • a substrate made of a material having translucency for a target wavelength
  • a window-like electrode provided on the upper surface of the substrate, the window-like electrode having a window through which the laser beam having the target wavelength passes;
  • D a mounting surface electrode provided on the lower surface of the mounting layer and having a smaller area than the window electrode including the window;
  • the active layer side is expressed as the “lower” side with reference to the substrate for the purpose of showing the positional relationship of each component, but this is merely for the sake of convenience to show one directionality. It is a notation and does not prescribe anything about the mounting direction of the two-dimensional photonic crystal surface emitting laser light source of the present invention.
  • This light source is the same as the conventional two-dimensional photonic crystal surface emitting laser light source in that an active layer and a two-dimensional photonic crystal are provided on one side of the substrate, and a pair of electrodes is provided above and below it. It is. The stacking order of the active layer and the two-dimensional photonic crystal is not important.
  • a laminate of an active layer and a two-dimensional photonic crystal is also referred to as a laser oscillation unit as appropriate.
  • a mounting layer is provided below the laser oscillation unit. Therefore, this light source has a laser oscillation part (two-dimensional photonic crystal and active layer) interposed between the substrate and the mounting layer. A member such as a spacer may be inserted between these layers (including between the two-dimensional photonic crystal and the active layer).
  • the laser beam also emits the upper surface side force of the substrate (in the present application, when simply referred to as “substrate”, indicates the substrate of the laser light source).
  • a light-transmitting material that can transmit light having a target wavelength, that is, laser light extracted outside, is used for the substrate.
  • the upper surface of the substrate Called the “face”.
  • the active layer and the two-dimensional photonic crystal can be the same as the conventional one.
  • a two-dimensional photonic crystal is formed by periodically arranging a number of different refractive index regions having different refractive indexes in a plate-like base material.
  • the different refractive index region can also be formed by embedding a member having a refractive index different from that of the base material.
  • the formation of the hole by forming a hole in the base material is a refraction with the base material. This is desirable because it allows a large difference in rate and is easy to manufacture.
  • the holes may be deformed by the high temperature. In such a case, it is advisable to form a different refractive index region by embedding some member in the base material that is not a hole.
  • the mounting layer is a layer for attaching this laser light source to an external substrate or the like.
  • the bottom surface (mounting surface) of the mounting layer serves to dissipate heat generated in the laser light source (particularly the active layer) by contacting an external substrate.
  • One of the pair of electrodes is provided on the upper surface of the substrate.
  • an electrode having a window through which a laser beam having a target wavelength passes is used.
  • This electrode is called a “window electrode”.
  • a window electrode for example, a plate-like electrode in which a central portion is cut out can be used.
  • the electrode material may not transmit the oscillated laser beam. Therefore, as this electrode material, a material suitable for charge injection that has been used for an electrode of a conventional two-dimensional photonic crystal surface emitting laser light source can be used as it is.
  • the other electrode is provided on the lower surface of the mounting layer.
  • This electrode is referred to as a “mounting surface electrode”.
  • the area of the mounting surface electrode should be smaller than the area of the window electrode including the window.
  • the distance between the mounting surface electrode (mounting surface) and the active layer is made smaller than the distance between the window electrode (light emitting surface) and the active layer.
  • the area of the mounting surface electrode and the distance between each electrode and the active layer are set as described above will be described.
  • side lobes can be prevented by using window electrodes.
  • the area of the window electrode including the window is larger than that of a normal electrode without a window. It is distributed and the luminous efficiency becomes low. Therefore, the window-like electrode including the window area of the mounting surface electrode Smaller than the area of.
  • the current flows through a conical region that spreads from the mounting surface electrode toward the window electrode.
  • the distance between the window-shaped electrode and the active layer and the distance between the active layer and the mounting surface electrode are determined as described above, and the active layer is disposed closer to the mounting surface electrode having a smaller area.
  • the current density in the active layer can be increased. As a result, the emission intensity can be increased.
  • the area of the window electrode including the window portion and the mounting It is desirable that the area ratio of the surface electrode is 2: 1 to 400: 1 and that the ratio of the exit surface force to the active layer and the mounting surface force to the active layer is 2: 1 to 400: 1. .
  • the substrate side is used as the mounting surface.
  • the active layer is separated from the mounting surface. It was.
  • the light emission efficiency (ratio of light emission intensity to injection current) of the laser light in which the heat generated by the recombination of holes and electrons is hardly released to the outside, was low.
  • the active layer is provided near the mounting surface (the lower surface of the mounting layer), so that the heat of the active layer is dissipated to the outside. And the luminous efficiency can be increased as compared with the prior art.
  • the mounting layer is made of a conductive material, and an insulating region is formed around a partial region (conductive region) on the lower surface thereof.
  • the mounting surface electrode may be disposed so as to cover the conductive region, and may be made of a material that reflects a laser beam having a target wavelength.
  • the region that contributes to the current injection into the active layer in the mounting surface electrode that is, the region that functions as the mounting surface electrode is only directly under the conductive region.
  • the insulating region can be formed by implanting ions for increasing electrical resistance into the mounting layer.
  • the laser oscillation unit emits laser light in any direction.
  • the light emitted to the opposite side of the emission surface cannot be emitted from the emission surface as it is, resulting in a loss.
  • the lower electrode provided on the opposite side of the emission surface has a relatively large area, so that the opposite side of the laser oscillation part is used. A part of the light emitted to the light was reflected by the lower electrode, and the output surface force was extracted.
  • such a lower electrode is not intended for light reflection itself, its reflection efficiency was not sufficient.
  • the extraction efficiency from the window electrode side can be increased by providing the reflection part below the laser oscillation part, that is, on the opposite side of the window electrode.
  • the distance between the laser oscillating unit and the reflecting unit is such that the reflected light emitted from the laser oscillating unit force and reflected by the reflecting unit and the directly emitted light emitted from the laser oscillating unit toward the window electrode are enhanced by interference. It is desirable to set. This distance can be set by adjusting the thickness of a distance adjustment layer such as a buffer layer or a clad layer provided between the laser oscillation part and the reflection part.
  • a distance adjustment layer such as a buffer layer or a clad layer provided between the laser oscillation part and the reflection part.
  • This distance is defined as the distance between the reflecting part side surface of the two-dimensional photonic crystal and the reflecting surface of the reflecting part.
  • the laser beam emitted from the laser oscillation unit is also taken out from the window electrode side force having a window on the opposite side of the mounting layer. It is not blocked by the electrodes. For this reason, it prevents light emitted from both sides of the electrode from interfering with each other by blocking with an electrode like a conventional two-dimensional photonic crystal surface emitting laser light source, thereby preventing unnecessary side lobes from being formed. Can do.
  • the active layer extends from the mounting surface. Is shorter than the distance to the active layer, the heat generated from the active layer due to the recombination of holes and electrons is easily released to the outside, and the light emission efficiency (emission intensity and The ratio of injection current) can be made higher than before.
  • the reflecting portion in the two-dimensional photonic crystal surface emitting laser light source of the present invention By providing the reflecting portion in the two-dimensional photonic crystal surface emitting laser light source of the present invention, the light emitted from the laser oscillation portion to the mounting surface electrode side is reflected by the reflecting portion, and together with the directly emitted light. The exit surface force can be extracted. For this reason, it is possible to suppress the loss of laser light despite the fact that the surface area is small and the emitted light cannot be sufficiently reflected. Can be increased.
  • the intensity of the laser light can be further increased.
  • FIG. 1 is a perspective view showing a conventional two-dimensional photonic crystal surface emitting laser light source.
  • FIG. 2 is a diagram showing the cause of side lobes.
  • FIG. 3 is a perspective view showing a first embodiment of a two-dimensional photonic crystal surface emitting laser light source according to the present invention.
  • FIG. 4 is a perspective view showing a configuration of a two-dimensional photonic crystal in the first embodiment.
  • FIG. 5 is a longitudinal sectional view showing the operation of the laser light source of the first embodiment.
  • FIG. 6 is a longitudinal sectional view showing a mounting state of the laser light source of the first embodiment.
  • FIG. 7 is a graph of injection current I-light output L characteristics in the laser light source of the first embodiment.
  • FIG. 8 is a perspective view showing a second embodiment of a two-dimensional photonic crystal surface emitting laser light source according to the present invention.
  • FIG. 9 is a perspective view showing a configuration of a two-dimensional photonic crystal in a second embodiment.
  • FIG. 10 is an explanatory diagram of the amplitude and intensity of laser light in the second embodiment and an example in which there is no reflecting portion.
  • FIG. 11 is a graph showing the result of calculating the Q value of the surface emitting laser of the second embodiment and an example having no reflecting portion.
  • FIG. 13 is a perspective view showing a configuration of a two-dimensional photonic crystal in a third embodiment.
  • FIG. 14 is a schematic view of a longitudinal section of a two-dimensional photonic crystal according to a third embodiment.
  • FIG. 3 is a perspective view of the laser light source of the first embodiment.
  • An indium gallium arsenide (InGaAs) Z gallium arsenide (GaAs) multi-quantum well (underlying) is sandwiched between an n-type semiconductor gallium arsenide (GaAs) substrate substrate 31 and a cladding layer 341 and a spacer 39.
  • An active layer 32 having a multiple-quantum well (MQW) is provided.
  • a two-dimensional photonic crystal 33 is provided under the active layer 32.
  • the two-dimensional photonic crystal 33 used in the first embodiment is a plate-like base material 331 made of p-type GaAs force and cylindrical holes 332 arranged periodically in a square lattice pattern (Fig. 4). ), The length of one side of the square lattice is 285nm.
  • a mounting layer 35 is provided under the two-dimensional photonic crystal 33 via a cladding layer 342. The lower surface of the mounting layer 35 becomes the mounting surface 38.
  • the mounting layer 35 is formed by forming an insulating film (for example, SiO 2) on the mounting surface 38 side of a plate material made of GaAs.
  • the upper surface (outgoing surface) of the element substrate 31 has a square-shaped window 361 in the center, and gold.germanium.
  • 'A window-like electrode 36 formed of a square-shaped member made of a nickel alloy is provided.
  • a mounting surface electrode 37 formed of a regular rectangular plate-like member having a gold / zinc alloy force is provided on the mounting surface 38.
  • the mounting surface electrode 37 is drawn away from the mounting surface 38 for the sake of clarity in the figure, but in actuality, it is in close contact with the mounting surface 38.
  • no reflecting part is provided in the laser light source of the first embodiment.
  • Main dimensions of each component in the laser light source of the first embodiment are as follows.
  • the length of one side of the window-shaped electrode 36 is 400 / ⁇ ⁇ , and the length of one side of the window 361 is 300 / zm.
  • the length of one side of the mounting surface electrode 37 is 50 / zm.
  • the distance between the upper surface of the element substrate 31 and the active layer 32 is about 80 m (the thickness of the element substrate 31 is about 80 ⁇ m, and the total thickness of the cladding layer 341 and the spacer 39 is about 1 ⁇ m.
  • the distance between the active layer 32 and the mounting surface 38 is about 1 m (the thickness of the two-dimensional photonic crystal is 0.12 m, and the combined thickness of the cladding layer 342 and the mounting layer 35 is about 1 / zm).
  • each component is drawn with a dimensional ratio different from that of an actual element in order to clearly show each component.
  • a voltage is applied between the window-shaped electrode 36 and the mounting surface electrode 37 to pass a current between the electrodes. Electrons and holes introduced into the device by this current are recombined in the active layer 32 to emit light.
  • the area of the window electrode 36 is larger than the area of the mounting surface electrode 37, the current spreads on the mounting surface electrode 37 according to the direction force on the mounting surface electrode 37 as shown in FIG. So as to flow in the region 401.
  • the region 401 is narrowed to a narrower range at the position of the active layer 32 near the mounting surface electrode 37 than at the position near the window-like electrode 36, so that the current density in the active layer 32 can be increased.
  • the laser beam is emitted from the surrounding force of the electrode, and unnecessary side lobes are formed in the beam due to interference. Does not occur.
  • the element is mounted with the mounting surface 38 in contact with the member 30 outside the element.
  • the distance between the active layer 32 and the mounting surface 38 can be made sufficiently small. For this reason, the laser light source of this embodiment can prevent the adverse effects of heat that has a high heat dissipation effect from inside the element. And high luminous efficiency.
  • FIG. 7 shows a graph of the I-L characteristic representing the relationship between the injection current 1 (unit: mA) and the optical output L (unit: W) obtained by experiments in the laser light source of the first embodiment.
  • the laser light source of the present embodiment a higher light output than a conventional two-dimensional photonic crystal laser light source of 15 mW or more can be obtained. Such light output is considered to have been obtained due to increased heat dissipation due to junction-down mounting.
  • Second embodiment two-dimensional photonic crystal surface emitting laser light source having a reflecting portion
  • FIG. 8 is a perspective view of the surface emitting laser according to the second embodiment. It is made of InGaAs / GaAs with an n-type semiconductor gallium arsenide (GaAs) 41 and an n-type aluminum gallium arsenide (A aAs) clad layer 441 and spacer 49 sandwiched between them. An active layer 42 having a multiple-quantum well (MQW) is provided. Then, a two-dimensional photonic crystal 43 is provided under the active layer 42.
  • MQW multiple-quantum well
  • the two-dimensional photonic crystal 43 includes a plate-like base material 431 made of p-type GaAs and equilateral triangular holes 432 arranged periodically in a square lattice (FIG. 9).
  • the active layer 42 and the two-dimensional photonic crystal 43 constitute a laser oscillation unit.
  • the positions of the active layer 42 and the two-dimensional photonic crystal 43 may be interchanged with each other! /.
  • the laser oscillation part (the active layer 42 and the two-dimensional photonic crystal 43) is formed by making the shape of the holes asymmetric with respect to at least one axis of the square lattice.
  • the force can also suppress the interference of the emitted laser light, and the generation of side lobes can be further suppressed.
  • a two-dimensional photonic crystal 43 having equilateral triangular holes can also be used.
  • the two-dimensional photonic crystal 33 having the above-described cylindrical holes may be used!
  • a reflecting portion 45 is provided via a clad layer 442 made of p-type AlGaAs.
  • a GaAs / AlGaAs multilayer film can be used for the reflecting portion 45.
  • a reflecting surface for reflecting the laser light emitted from the surface emitting laser according to the second embodiment is formed.
  • a square-shaped window 461 is provided in the center.
  • a window-like electrode 46 formed by the above method is provided.
  • a mounting surface electrode 47 having a square plate shape and a smaller area than the window electrode 46 is provided on the lower surface of the reflecting portion 45. In FIG. 8, the mounting surface electrode 47 is drawn away from the reflecting portion 45 for the sake of clarity in the drawing, but is actually in close contact with the reflecting portion 45.
  • the element substrate 41 has a distance L between the lower surface of the two-dimensional photonic crystal 43 and the upper surface of the reflector 45 that is sufficiently smaller than the distance between the lower surface of the two-dimensional photonic crystal 43 and the upper surface of the element substrate 41.
  • the thickness of the cladding layers 441 and 442 is adjusted. In the surface emitting laser of the second embodiment, the distance L is about 1.2 m, and the distance is about 80 m.
  • the light from which the top surface force of the two-dimensional photonic crystal 43 is emitted and the bottom force of the two-dimensional photonic crystal 43 are also emitted and reflected by the reflector. Fine tune the distance L so that the light reflected at 45 is intensified by interference.
  • FIG. 8 in order to clearly show each component, each component is drawn with a dimensional ratio different from that of an actual element.
  • a voltage is applied between the window electrode 46 and the mounting surface electrode 47 to pass a current between the electrodes. Electrons and holes introduced into the device by this current recombine in the active layer 42 to emit light. Of the light emitted from the active layer 42, light of a specific wavelength is strengthened by interference in the two-dimensional photonic crystal 43, and laser oscillation occurs.
  • the laser light thus obtained, about 50% of the intensity ratio is directed to the window electrode 46 side as direct emission light, and the remaining about 50% is directed to the reflector 45, respectively.
  • the laser beam directed toward the reflecting portion 45 is reflected on the upper surface of the reflecting portion 45 and propagates by force toward the window electrode 46 side.
  • the reflected light and the directly emitted light interfere on the upper side of the two-dimensional photonic crystal 43. This interference acts to increase the intensity of the laser beam by finely adjusting the distance L as described above.
  • the interference light thus obtained is emitted from the window 461 of the window electrode 46.
  • FIG. 10 (a) shows an example without a reflecting part
  • FIG. 10 (b) shows the second embodiment.
  • the laser beam 51 is emitted from the upper surface of the two-dimensional photonic crystal 43 and the laser beam 52 is emitted from the upper surface with the same amplitude A. From the window 461, only the laser beam 51 having an amplitude A is extracted. Its intensity (energy per unit time) P is proportional to the square of the amplitude.
  • the laser beam 52 having an amplitude of A and an intensity of P cannot be extracted from the window 461, resulting in a loss. Therefore, in this example, the energy per unit time of the laser light emitted from the laser oscillation unit is 2P.
  • the upper surface force of the two-dimensional photonic crystal 43 is the same as that of the laser beam (directly emitted light) 53 and the lower surface force laser beam (reflected light) 54 has no reflection part.
  • the laser beam 54 is reflected by the reflecting portion 45 and propagates to the window 461 side, interferes with the laser beam 53, and this interference beam is extracted from the emission surface.
  • the amplitude of the interference light is 2A, which is the sum of the amplitude of the laser light 53 and the amplitude of the laser light 54, and the intensity of the interference light is 4P because it is the square of this amplitude. Therefore, the intensity of the laser beam emitted from the emission surface in the second embodiment is four times that in the case where there is no reflecting portion.
  • the energy of the laser beam emitted from the laser oscillation part of the second embodiment is 4P.
  • the Q value of the surface emitting laser was calculated by the three-dimensional FDTD method by changing the value of the distance L to various values without being limited to the above-mentioned 8.5 wavelengths.
  • the structure of the two-dimensional photonic crystal has an infinite periodic structure only in one direction due to the calculation capacity.
  • the Q value of the surface-emitting laser is obtained by using the Q that is perpendicular to the two-dimensional photonic crystal and the Q that is parallel to the Q direction.
  • Figure 11 shows the Q and Q calculation results.
  • the horizontal axis in Fig. 11 represents the distance L in units of the wavelength of the laser beam. Since twice the distance L is the optical path difference between the direct light and the reflected light, the horizontal axis shows the range of one wavelength of the optical path difference.
  • Q shows almost the same value regardless of the distance L. This is because there is no structural difference in the direction parallel to the two-dimensional photonic crystal between the second embodiment and the example without the reflecting portion. On the other hand, Q indicates a value depending on L due to the presence or absence of the reflecting portion 45.
  • Q becomes the minimum value when the distance L is 4.25 wavelengths, and the value is the surface emission when there is no reflecting part. It becomes about 1/2 of the value with the laser. This is because the energy emitted from the laser oscillation part of the surface emitting laser of the comparative example is 2P, whereas the energy emitted from the laser oscillation part of the surface emitting laser having no reflection part with a distance L of 4.25 wavelength is 2P. This corresponds to 4P, which is twice that of when there is no reflector.
  • Q is smaller than that of the comparative example, and laser light having a higher intensity can be emitted.
  • Q hardly depends on the distance L, whereas Q changes periodically in units of 0.5 wavelengths due to the effects of the interference described above.
  • the external differential quantum efficiency is a value in which the number of carriers injected into the active layer is the denominator and the number of photons of the laser light emitted to the outside is the numerator. The larger this value, the more efficiently the laser light with a small current. It shows that can be obtained.
  • the external differential quantum efficiency 7? Is the energy emitted from the upper surface of the two-dimensional photonic crystal d
  • Q is the Q value related to the energy
  • Q is the Q value related to the energy emitted to the lower surface side
  • Q is the Q value related to the direction parallel to the two-dimensional photonic crystal
  • the Q value is related to the internal loss of the surface emitting laser.
  • Q and Q are the same in the example where there is no reflector and this example, and Q is the same.
  • FIG. 12 is a graph showing the relationship between r? And 7? In equation (5). In an example where there is no reflector, 2D photo
  • a value smaller than 7? Indicates that in addition to laser light emission from the bottom surface of the 2D photonic crystal, there are losses in the direction parallel to the 2D photonic crystal and internal losses. Yes. When it is smaller than r? force, it exceeds 7? / ⁇ force ⁇ .
  • FIG. 13 is a perspective view of the surface emitting laser according to the third embodiment.
  • the same components as those of the surface emitting laser of the second embodiment described above are denoted by the same reference numerals as those of the second embodiment (FIG. 8).
  • the second actual instead of the reflecting portion 45 in the embodiment, a plate member 61 having the same material force as that of the mounting surface electrode 47 is provided.
  • a conductive region limiting layer 62 is provided as a mounting layer.
  • Other configurations are the same as those of the surface emitting laser of the second embodiment.
  • the plate member 61 and the conductive region limiting layer 62 will be described in detail with reference to the longitudinal sectional view of FIG.
  • the conductive region limiting layer 62 only the region near the center is conductive near the lower surface (conductive region 621), and the surrounding region is insulative (insulating region 622).
  • the area of the conductive region 621 is sufficiently smaller than the area of the window electrode 46 including the window 461.
  • the plate-like member 61 is made of a material that has conductivity and reflects light of a target wavelength.
  • the plate-like member 61 covers the entire conductive region 621 and a part of the insulating region 622.
  • the current between the plate member 61 and the window electrode 46 flows so as to pass only through the region 611 and the conductive region 621 of the plate member 61 immediately below the conductive region 621. Therefore, only the region 611 of the plate-like member 61 functions as a mounting surface electrode. Since the area of the conductive region 621 is sufficiently smaller than the area of the window electrode 46, the current can be concentrated in a narrow region of the active layer, as in the first and second embodiments.
  • the entire plate-like member 61 functions as a reflecting portion. Therefore, the configuration of the surface emitting laser can be simplified as compared with the case where a separate reflecting portion is provided.
  • the area of the plate member 61 is larger than the area of the region 611 for injecting current into the active layer, it is possible to reduce the size of the member constituting the mounting surface electrode without providing a separate reflecting portion. The area that can be reflected by the components of the mounting surface electrode can be increased.

Abstract

 本発明は、不要なサイドローブを随伴しないビームを形成することができる2次元フォトニック結晶面発光レーザ光源を提供する。面発光を取り出す側の素子基板31の表面に、中央に電極材料のない窓361を形成した窓状電極36を設ける。実装面38に、窓361を含めた窓状電極36の面積よりも小さい面積を有する実装面電極37を設ける。また、素子基板31と活性層32の距離は実装面38と活性層32の距離よりも大きくする。電極間に電圧を印加すると、電荷が活性層32に注入されて発光が得られ、2次元フォトニック結晶33で所定の波長の光が増幅されることによりレーザ光が発振し、レーザ光は窓361から外部に取り出される。窓状電極36が光の出射を遮らないため、出射光が干渉によりサイドローブを形成することを防ぐことができる。また、活性層32が実装面38に近いため、高い放熱効果も得られる。

Description

明 細 書
2次元フォトニック結晶面発光レーザ光源
技術分野
[0001] 本発明は、平面状の光源から面に垂直な方向にレーザ光を放射する面発光レー ザ光源に関する。
背景技術
[0002] 従来より、フアブリ'ペロー共振器を用いたフアブリ'ペロー型レーザ光源や、回折格 子を用いた分布帰還 (Distributed Feedback; DFB)型レーザ光源が用いられている。 これらのレーザ光源はいずれも、共振や回折により所定の波長の光を増幅してレー ザ光を発振させるものである。
[0003] それに対して、近年、フォトニック結晶を用いた新しいタイプのレーザ光源が開発さ れている。フォトニック結晶は、誘電体から成る母材に周期構造を人工的に形成した ものである。周期構造は一般に、母材とは屈折率が異なる領域 (異屈折率領域)を母 材内に周期的に設けることにより形成される。この周期構造により、結晶内でブラッグ 回折を生じさせ、所定の波長の光を増幅してレーザ発振を得るものである。特許文献 1には、 2枚の電極の間に発光材料を含む活性層を設け、その活性層の近傍に 2次 元フォトニック結晶を設けた 2次元フォトニック結晶面発光レーザ光源が記載されてい る。
[0004] 図 1を用いて、従来の 2次元フォトニック結晶面発光レーザ光源を詳しく説明する。
下部クラッド層(基板) 11の上に、スぺーサ層 161を介して活性層 12を設け、活性 層 12の上にスぺーサ層 162を介して 2次元フォトニック結晶 13を設ける。活性層 12 には、電流の注入により発光する材料を用いる。そのような材料の一例に、インジウム •ガリウム砒素 (InGaAs)Zガリウム砒素 (GaAs)から成る多重量子井戸 (Multiple-Quant um Well; MQW)がある。 2次元フォトニック結晶 13は板材に円柱状の空孔 14を正方 格子状に周期的に配置したものである。 2次元フォトニック結晶 13の上にスぺーサ層 163、上部クラッド層 17、コンタクト層 18をこの順に積層する。そしてコンタクト層 18の 上に上部電極 191を、下部クラッド層 11の下に下部電極 192を、それぞれ設ける。 下部電極 192は下部クラッド層 11の下面全体に形成するのに対して、上部電極 191 はコンタクト層 18の上面の中心付近にのみ形成する。なお、図 1では、 2次元フォト二 ック結晶 13の構造を示すために、 2次元フォトニック結晶 13とスぺーサ層 163の間を 空けて描いたが、実際には両者は密着している。
[0005] 従来の 2次元フォトニック結晶面発光レーザ光源力 得られるレーザ光をコンタクト 層 18から十分に離れた位置で観測すると、中心ビームの周囲にそれよりも強度の弱 い随伴ビームが見られる。この随伴ビームをサイドローブと呼ぶ。サイドローブが出現 する原因の一つに、上部電極 191の存在が挙げられる。図 2に示すように、コンタクト 層 18の表面からレーザ光が面的に出射する際に、上部電極 191が形成されている 領域において出射が遮られる。そのため、上部電極 191を挟んだ両側から出射され る光がビームの中心力 ずれた位置において干渉して強め合うことにより、メインピー ク 21から離れた位置にサイドローブ 22が形成される。
[0006] 透光性を有する材料力 なる電極を用いればサイドローブの形成を防止することが できると考えられる。しかし、電極の材料は活性層に電荷を注入する効率が高いもの である必要があるのに対し、良好な透光性と高 、電荷注入効率と 、う 2つの条件を兼 ね備えた材料は、現在のところ見出されていない。
[0007] 特許文献 1 :特開 2000- 332351号公報([0037]〜[0056],図 1)
発明の開示
発明が解決しょうとする課題
[0008] 本発明が解決しょうとする課題は、不要なサイドローブを随伴することのないビーム を形成することができる 2次元フォトニック結晶面発光レーザ光源を提供することであ る。
課題を解決するための手段
[0009] 上記課題を解決するために成された本発明に係る 2次元フォトニック結晶面発光レ 一ザ光源は、
a)目的波長に対して透光性を有する材料からなる基板と、
b)前記基板の下側に設けた活性層と、
c)前記基板と前記活性層の間又は前記活性層よりも下側に設けた、板状の母材内 に母材とは屈折率が異なる領域を多数、周期的に配置してなる、前記目的波長の光 を増幅する 2次元フォトニック結晶と、
d)前記 2次元フォトニック結晶及び前記活性層よりも下側に設けた層であって、該 層の下面から前記活性層までの距離が前記基板の上面から前記活性層までの距離 よりも短くなるように設けた、実装時に外部の部材と接する実装層と、
e)前記基板の上面に設けた、前記目的波長のレーザ光を通過させる窓を有する窓 状電極と、
D前記実装層の下面に設けた、前記窓を含めた前記窓状電極よりも面積の狭い実 装面電極と、
を備えることを特徴とする。
[0010] なお、本願では、各構成要素の位置関係を示すために便宜上、基板を基準として 活性層側を「下」側と表現するが、これは単に一つの方向性を示すための便宜上の 表記であって、本発明の 2次元フォトニック結晶面発光レーザ光源の実装時の向きを 何ら規定するものではな 、。
[0011] (1)本発明に係る 2次元フォトニック結晶面発光レーザ光源の構成
以下、本発明に係る 2次元フォトニック結晶面発光レーザ光源の構成を詳しく説明 する。この光源は、基板の一方の側に活性層と 2次元フォトニック結晶を設け、その上 下に 1対の電極を設けるという点においては従来の 2次元フォトニック結晶面発光レ 一ザ光源と同様である。活性層と 2次元フォトニック結晶の積層順は問わない。なお、 以下、活性層と 2次元フォトニック結晶の積層体を適宜レーザ発振部とも呼ぶ。本発 明に係るレーザ光源ではレーザ発振部よりも下側に実装層を設ける。従ってこの光 源は、基板と実装層の間にレーザ発振部 (2次元フォトニック結晶と活性層)が介挿さ れて成る。これら各層の間(2次元フォトニック結晶と活性層の間を含め)にはスぺー サ等の部材が挿入されて 、てもよ 、。
[0012] 上述のように実装層側に外部基板等を取り付けることから、レーザ光は基板 (本願 では単に「基板」と呼ぶ場合、レーザ光源の基板を指す)の上面側力も外部に出射さ せる必要がある。そのため、基板には、目的波長の光、即ち外部に取り出されるレー ザ光を透過することができる透光性の材料を用いる。本願では基板の上面を「出射 面」と呼ぶ。
[0013] 活性層及び 2次元フォトニック結晶には従来と同様のものを用いることができる。 2 次元フォトニック結晶は板状の母材内にそれとは屈折率の異なる異屈折率領域を多 数、周期的に配置することにより形成される。異屈折率領域は、母材にそれとは屈折 率の異なる部材を埋め込むことによつても形成することができるが、母材に空孔を設 けることにより形成する方が、母材との屈折率の差を大きく取ることができるうえ、製造 も簡単であるため望ましい。但し、製造時に 2次元フォトニック結晶と他の層を高温で 融着する必要がある場合、高温により空孔が変形することがある。そのような場合に は、空孔ではなぐ母材に何らかの部材を埋め込むことにより異屈折率領域を形成す るようにしてちょい。
[0014] 実装層はこのレーザ光源を外部の基板等に取り付けるための層である。実装層の 下面 (実装面)は、外部基板等に接することによりレーザ光源内(特に活性層)に発生 した熱を放熱する役割を有する。
[0015] 1対の電極のうちの一方は基板の上面に設ける。この電極には、目的波長のレーザ 光を通過させる窓を有するものを用いる。この電極を「窓状電極」と呼ぶ。窓状電極の 窓には、例えば板状の電極の中央部をくり抜いたようなものを用いることができる。電 極の材料は、発振されるレーザ光を透過しなくてもよい。従って、この電極材料には、 従来の 2次元フォトニック結晶面発光レーザ光源の電極に用いられていた、電荷の 注入に適した材料をそのまま用いることができる。
[0016] 他方の電極は実装層の下面に設ける。この電極を「実装面電極」と呼ぶ。実装面電 極の面積は、窓の部分を含めた窓状電極の面積よりも小さくなるようにする。また、基 板や実装層等の厚さを調整することにより、実装面電極 (実装面)と活性層の距離が 窓状電極(出射面)と活性層の距離よりも小さくなるようにする。
[0017] このように実装面電極の面積及び各電極と活性層の距離を設定する理由を説明す る。本発明では窓状電極を用いることにより、サイドローブの発生を防止することがで きる。しかし、窓を含めた窓状電極の面積は窓のない通常の電極よりも大きくなるた め、従来と同じ量の電荷を電極カゝら注入すると、電荷は従来よりも拡がって活性層内 に分布し、発光効率が低くなる。そこで、実装面電極の面積を窓を含めた窓状電極 の面積よりも小さくする。これにより、電流は実装面電極から窓状電極に向けて拡がる 錐状領域を流れるようになる。そして、窓状電極と活性層の間の距離及び活性層と実 装面電極の間の距離を前述のように定め、活性層を、面積の小さい実装面電極のよ り近くに配置することにより、活性層における電流密度を高くすることができる。これに より発光強度を高めることができる。
[0018] 活性層における電流密度を十分に高くして発光強度を従来の 2次元フォトニック結 晶面発光レーザ光源よりも高くするためには、窓の部分を含めた窓状電極の面積と 実装面電極の面積の比を 2:1〜400:1とすると共に、出射面力も活性層まで距離と実 装面力も活性層までの距離の比を 2:1〜400:1とすることが望ましい。
[0019] また、活性層をより実装面電極に近づけたことにより、次のような効果が得られる。
従来の 2次元フォトニック結晶面発光レーザ光源では基板側を実装面としていたが 、基板の厚さがレーザ光源素子全体の厚さの大半を占めているため、活性層と実装 面とが離れていた。このような構成では、正孔と電子の再結合により生じる熱が外部 へ放出されにくぐレーザ光の発光効率 (発光強度と注入電流の比)が低かった。そ れに対して、本発明の 2次元フォトニック結晶面発光レーザ光源では、活性層が実装 面 (実装層の下面)の近くに設けられて 、ることから、活性層の熱が外部へ放散し易く なり、発光効率を従来よりも高めることができる。
[0020] (2)反射部を有する 2次元フォトニック結晶面発光レーザ光源
レーザ発振部の下側 (すなわち、レーザ発振部と実装面電極の間)に、目的波長の レーザ光を反射させる反射部を設けることが望ましい。これにより、発光効率を高める ことができる。
[0021] また、実装層を導電性材料で作製し、その下面の一部領域 (導電性領域)の周囲 に絶縁性領域を形成し、
実装面電極を、前記導電性領域を覆うように配置すると共に、目的波長のレーザ光 を反射する材料で作製するようにしてもょ ヽ。
この場合、実装面電極のうち活性層への電流の注入に寄与する領域、即ち実装面 電極として機能する領域は導電性領域の直下のみとなる。これにより、活性層の電流 密度を高くすることができるとともに、実装面電極がレーザを反射して、発光効率を高 める。絶縁性領域は、実装層に電気抵抗を高めるためのイオンを注入することにより 形成することができる。
[0022] 2次元フォトニック結晶面発光レーザ光源では、レーザ発振部は上下いずれの方向 にもレーザ光を放出する。このうち、出射面の反対側 (本発明では実装面側)に放出 された光は、そのままでは出射面から出射させることができず損失となる。従来の 2次 元フォトニック結晶面発光レーザ光源では、一般に、出射面の反対側に設けられた 下部電極には比較的面積が大き 、ものが用いられて 、たため、レーザ発振部の反 対側に放出された光の一部は下部電極により反射され、出射面力 取り出されてい た。しかし、このような下部電極は光の反射自体を目的としたものではないため、その 反射の効率は十分なものではな力つた。更に、本発明では下部電極に該当する実 装面電極の面積を小さくするため、そのままでは反射効率が更に低下し、出射面か らの取り出し効率も低下する。そのため、本発明ではレーザ発振部の下側、即ち窓状 電極の反対側に反射部を設けることにより、窓状電極側からの取り出し効率を高める ことができる。
[0023] レーザ発振部と反射部の距離は、レーザ発振部力 出射し反射部により反射される 反射光とレーザ発振部から窓状電極側に出射する直接出射光が干渉により強めら れるように設定することが望ましい。この距離は、レーザ発振部と反射部の間に設けら れているバッファ層ゃクラッド層等の距離調整層の厚さを調整することにより、設定す ることがでさる。
なお、この距離は、 2次元フォトニック結晶の反射部側の面と反射部の反射面の間 の距離で定義される。
発明の効果
[0024] 本発明に係る 2次元フォトニック結晶面発光レーザ光源では、レーザ発振部から出 射するレーザ光は実装層の反対側にある、窓を有する窓状電極側力も外部に取り出 され、電極により遮られることがない。そのため、従来の 2次元フォトニック結晶面発光 レーザ光源のように電極で遮られることによりその電極を挟んだ両側から出射された 光が干渉して不要なサイドローブが形成されることを防止することができる。
[0025] また、本発明の 2次元フォトニック結晶面発光レーザ光源では、実装面から活性層 までの距離が出射面力 前記活性層までの距離よりも短いため、正孔と電子の再結 合により活性層から生じる熱を外部へ放出し易くなり、レーザ光の発光効率 (発光強 度と注入電流の比)を従来よりも高くすることができる。
[0026] 実装面電極の面積を窓状電極の面積よりも十分に小さくすることにより、窓状電極 よりも実装面電極に近 ヽ位置にある活性層には、電流が狭 ヽ領域に集中して注入さ れる。これにより発光効率を高めることができる。
[0027] 本発明の 2次元フォトニック結晶面発光レーザ光源に反射部を設けることにより、レ 一ザ発振部から実装面電極側に出射された光は反射部により反射され、直接出射 光と一緒に出射面力 取り出すことができる。そのため、面積が小さく出射光を十分 に反射させることができな 、実装面電極を用いて 、るにも関わらず、レーザ光の損失 を抑えることができ、それにより外部に取り出されるレーザ光の強度を大きくすること ができる。
[0028] 反射光と直接出射光が干渉により強められるようにレーザ発振部と反射部の距離を 設定することにより、レーザ光の強度を一層強くすることができる。
図面の簡単な説明
[0029] [図 1]従来の 2次元フォトニック結晶面発光レーザ光源を示す斜視図。
[図 2]サイドローブの発生原因を示す図。
[図 3]本発明に係る 2次元フォトニック結晶面発光レーザ光源の第 1の実施形態を示 す斜視図。
[図 4]第 1実施形態における 2次元フォトニック結晶の構成を示す斜視図。
[図 5]第 1実施形態のレーザ光源の動作を示す縦断面図。
[図 6]第 1実施形態のレーザ光源の実装状態を示す縦断面図。
[図 7]第 1実施形態のレーザ光源における注入電流 I-光出力 L特性のグラフ。
[図 8]本発明に係る 2次元フォトニック結晶面発光レーザ光源の第 2の実施形態を示 す斜視図。
[図 9]第 2実施形態における 2次元フォトニック結晶の構成を示す斜視図。
[図 10]第 2実施形態及び反射部がない例におけるレーザ光の振幅及び強度の説明 図。 [図 11]第 2実施形態及び反射部がない例の面発光レーザの Q値を計算した結果を示 すグラフ。
[図 12]反射部がない例の面発光レーザの外部微分量子効率 η と第 2実施形態の面
1
発光レーザの外部微分量子効率 7? の比較を示すグラフ。
2
[図 13]第 3実施形態における 2次元フォトニック結晶の構成を示す斜視図。
[図 14]第 3実施形態の 2次元フォトニック結晶の縦断面の概略図。
符号の説明
11···下部クラッド層
12、 32、 42···活性層
13、 33、 43···2次元フォトニック結晶
14、 332、 432···空孔
161、 162、 163···スぺーサ層
17···上部クラッド層
18…コンタクト層
191···上咅隨極
192···下咅隨極
21···メインピーク
22…サイドローブ
31、 41···素子基板
331、 431···母材
341、 342、 441、 442···クラッド層
35…実装層
36、 46···窓状電極
361、 461···窓
37、 47…実装面電極
38…実装面
39、 49···スぺーサ
401…電流が流れる領域 402· ··素子外部の部材
45…反射部
51、 52、 53、 54· · ·レーザ光
61 · · ·板状部材
611…板状部材 61のうち導電性領域 621の直下の領域
62…導電性領域限定層
621…導電性領域
622…絶縁性領域
発明を実施するための最良の形態
[0031] (1)第 1実施形態 (反射部のない 2次元フォトニック結晶面発光レーザ光源)
本発明に係る 2次元フォトニック結晶面発光レーザ光源(以下、「レーザ光源」とする )の第 1の実施形態を、図 3〜図 7を用いて説明する。図 3は第 1実施形態のレーザ光 源の斜視図である。 n型半導体のガリウムヒ素 (GaAs)から成る素子基板 31の下に、ク ラッド層 341及びスぺーサ 39を挟んで、インジウム 'ガリウム砒素 (InGaAs)Zガリウム 砒素 (GaAs)から成り多重量子井戸 (Multiple-Quantum Well; MQW)を有する活性層 3 2を設ける。そして、活性層 32の下に 2次元フォトニック結晶 33を設ける。第 1実施形 態で用 、た 2次元フォトニック結晶 33は p型 GaAs力 成る板状の母材 331に円柱状 の空孔 332を正方格子状に周期的に配置したものであり(図 4)、その正方格子の 1 辺の長さは 285nmである。 2次元フォトニック結晶 33の下に、クラッド層 342を介して 実装層 35を設ける。実装層 35の下面が実装面 38となる。この実装層 35は GaAsから 成る板材の実装面 38側に絶縁膜 (例えば SiO )を形成したものである。
2
[0032] 素子基板 31の上面(出射面)に、中央に正四角形の窓 361を有し金.ゲルマニウム
'ニッケル合金から成る正四角形の枠状の部材により形成された窓状電極 36を設け る。また、実装面 38に金 ·亜鉛合金力も成る正四角形の板状の部材により形成された 実装面電極 37を設ける。なお、図 3では実装面電極 37は、図中に明示するために 実装面 38から離して描いたが、実際には実装面 38に密着している。第 1実施形態の レーザ光源では、反射部は設けられていない。
[0033] 第 1実施形態のレーザ光源における各構成要素の主な寸法は以下の通りである。 窓状電極 36の 1辺の長さは 400 /ζ πι、窓 361の 1辺の長さは 300 /z mである。一方、実 装面電極 37の 1辺の長さは 50 /z mである。また、素子基板 31の上面と活性層 32との 距離は約 80 m (素子基板 31の厚さが約 80 μ m、クラッド層 341とスぺーサ 39を合わ せた厚さが約 1 μ m)、活性層 32と実装面 38の距離は約 1 m (2次元フォトニック結 晶の厚さが 0.12 m、クラッド層 342と実装層 35を合わせた厚さが約 l /z m)である。な お、図 3では、各構成要素を明示するために、実際の素子とは異なる寸法比で各構 成要素を描いた。
[0034] 第 1実施形態のレーザ光源の動作を説明する。窓状電極 36と実装面電極 37の間 に電圧を印加して両電極間に電流を流す。この電流により素子内に導入された電子 及び正孔は、活性層 32内において再結合して発光する。この時、窓状電極 36の面 積が実装面電極 37の面積よりも大きいため、図 5(a)に示すように、電流は実装面電 極 37側力も窓状電極 36に向力 に従って拡がるように領域 401内を流れる。これに より、実装面電極 37寄りにある活性層 32の位置では、窓状電極 36寄りの位置よりも 領域 401は狭い範囲に絞られるため、活性層 32における電流の密度を高めることが できる。
[0035] 活性層 32において発光した光のうち特定の波長の光は 2次元フォトニック結晶 33 内において干渉により強められ、 2次元フォトニック結晶面発光レーザ光源と同様の 作用によりレーザ発振が生じる。生成されたレーザ光は素子基板 31の表面から素子 外部に出射する。この時、素子基板 31の表面にある窓状電極 36に窓 361が設けら れているため、出射光は窓状電極 36に遮られることなぐ窓 361から出射する(図 5(b
))。そのため、従来の 2次元フォトニック結晶面発光レーザ光源のように電極の周囲 力もレーザ光が出射して干渉により不要なサイドローブがビームに形成されるというこ とは、本実施形態のレーザ光源では生じない。
[0036] また、本実施形態のレーザ光源では、図 6に示すように、素子の実装は素子外部の 部材 30に実装面 38が接するように取り付けて行う。そして本実施形態のレーザ光源 では、素子基板 31側ではなぐその裏側にある実装層 35の下面を実装面 38とする ため、活性層 32と実装面 38の距離を十分に小さくすることができる。そのため、本実 施形態のレーザ光源は素子内からの放熱効果が高ぐ熱による悪影響を防ぐことが でき、発光効率が高い。
[0037] 図 7に、第 1実施形態のレーザ光源において実験により求めた注入電流 1 (単位: mA )と光出力 L (単位: W)の関係を表す I-L特性のグラフを示す。本実施形態のレーザ 光源により、 15mW以上という従来の 2次元フォトニック結晶レーザ光源よりも高い光 出力を得ることができる。このような光出力は、ジャンクションダウン実装により放熱性 が高まったことにより得られたと考えられる。
[0038] (2)第 2実施形態 (反射部を有する 2次元フォトニック結晶面発光レーザ光源)
次に、反射部を有する面発光レーザの一実施形態 (第 2実施形態)を、図 8〜図 12 を用いて説明する。図 8は第 2実施形態の面発光レーザの斜視図である。 n型半導体 のガリウムヒ素 (GaAs)から成る素子基板 41の下に、 n型のアルミニウム 'ガリウム砒素( A aAs)から成るクラッド層 441及びスぺーサ 49を挟んで、 InGaAs/GaAsから成り多 重量子井戸 (Multiple-Quantum Well; MQW)を有する活性層 42を設ける。そして、活 性層 42の下に 2次元フォトニック結晶 43を設ける。第 2実施形態では、 2次元フォト- ック結晶 43には、 p型 GaAsから成る板状の母材 431に正三角形の空孔 432を正方 格子状に周期的に配置したもの(図 9)を用いた。これら活性層 42及び 2次元フォト- ック結晶 43によりレーザ発振部が構成される。ここで、活性層 42と 2次元フォトニック 結晶 43は互 、の位置を入れ替えて配置してもよ!/、。
[0039] 上述の正三角形のように、空孔の形状を正方格子の少なくとも一方の軸に対して非 対称な形状にすることにより、レーザ発振部 (活性層 42と 2次元フォトニック結晶 43) 力も出射されるレーザ光の干渉を抑え、サイドローブの発生を一層抑制することがで きる。なお、第 1実施形態においても正三角形空孔を有する 2次元フォトニック結晶 4 3を用いることができる。また、第 2実施形態において上述の円柱状空孔を有する 2次 元フォトニック結晶 33を用いてもよ!、。
[0040] 2次元フォトニック結晶 43の下に、 p型の AlGaAsから成るクラッド層 442を介して反 射部 45を設ける。反射部 45には例えば GaAs/AlGaAs多層膜を用いることができる。 反射部 45の上面には第 2実施形態の面発光レーザが放出するレーザ光を反射する 反射面が形成されている。
[0041] 素子基板 41の上面に、中央に正四角形の窓 461を有し正四角形の枠状の部材に より形成された窓状電極 46を設ける。また、反射部 45の下面に、正四角形の板状で あって窓状電極 46よりも狭い面積を持つ実装面電極 47を設ける。なお、図 8では、 実装面電極 47を図中に明示するために反射部 45から離して描いたが、実際には反 射部 45に密着している。
[0042] 2次元フォトニック結晶 43の下面と反射部 45の上面の距離 Lは 2次元フォトニック結 晶 43の下面と素子基板 41の上面の距離じよりも十分に小さくなるように素子基板 41 、クラッド層 441及び 442の厚さを調整する。第 2実施形態の面発光レーザでは距離 Lは約 1.2 mとし、距離じは約 80 mとした。また、光が反射部 45で反射される際の 位相変化を考慮したうえで、 2次元フォトニック結晶 43の上面力も放出される光と 2次 元フォトニック結晶 43の下面力も放出されて反射部 45で反射される光が干渉により 強められるように、距離 Lを微調整する。なお、図 8では、各構成要素を明示するため に、実際の素子とは異なる寸法比で各構成要素を描!、た。
[0043] 第 2実施形態の面発光レーザの動作を説明する。窓状電極 46と実装面電極 47の 間に電圧を印加して両電極間に電流を流す。この電流により素子内に導入された電 子及び正孔は、活性層 42内において再結合して発光する。活性層 42において発光 した光のうち特定の波長の光は 2次元フォトニック結晶 43内において干渉により強め られ、レーザ発振する。
[0044] こうして得られたレーザ光のうち、強度比で約 50%分は直接出射光として窓状電極 46側に向力つて、残りの約 50%分は反射部 45に向力つて、それぞれ 2次元フォト- ック結晶 43から放出される。反射部 45に向かったレーザ光は反射部 45の上面にお いて反射され、窓状電極 46側に向力つて伝播する。この反射光と直接出射光は、 2 次元フォトニック結晶 43よりも上側において干渉する。この干渉は、前述のように距離 Lを微調整しておくことにより、レーザ光の強度を強めるように作用する。こうして得ら れた干渉光は、窓状電極 46の窓 461から出射する。
[0045] 第 2実施形態の面発光レーザと、反射部がない点を除いて第 2実施形態と同じ構 成を有する面発光レーザにおける、窓 461から外部に出射するレーザ光の振幅及び 強度について、図 10の模式図を用いて説明する。図 10(a)は反射部がない例を、図 10(b)は第 2実施形態を、それぞれ示す。 反射部がないものでは、 2次元フォトニック結晶 43の上面からレーザ光 51が、下面 力もレーザ光 52が、それぞれ同じ振幅 Aで出射する。窓 461からは、振幅 Aのレーザ 光 51のみが取り出される。その強度(単位時間当たりのエネルギー) Pは振幅の 2乗 に比例する。一方、同じく振幅が A、強度が Pであるレーザ光 52は窓 461から取り出 すことができず、損失となる。従って、この例では、レーザ発振部から放出されたレー ザ光の単位時間当たりのエネノレギーは 2Pとなる。
それに対して、第 2実施形態では、 2次元フォトニック結晶 43の上面力もレーザ光( 直接出射光) 53が、下面力 レーザ光 (反射光) 54が、それぞれ反射部がない場合 と同じ振幅 Aで出射する。このうちレーザ光 54は反射部 45で反射されて窓 461側に 伝播し、レーザ光 53と干渉し、この干渉光が出射面から取り出される。その干渉光の 振幅はレーザ光 53の振幅とレーザ光 54の振幅の和である 2Aとなり、干渉光の強度 はこの振幅の 2乗であるため 4Pとなる。従って、第 2実施形態で出射面から出射する レーザ光の強度は反射部がな 、場合の 4倍となる。第 2実施形態のレーザ発振部か ら放出されるレーザ光のエネルギーは 4Pとなる。
次に、第 2実施形態において、距離 Lの値を上述の 8.5波長分に限らずに様々な値 に変化させて面発光レーザの Q値を 3次元 FDTD法で計算した。この計算では、計算 の容量の都合上、 2次元フォトニック結晶の構造は 1方向のみ無限周期構造を有する と仮定した。ここで、面発光レーザの Q値は、 2次元フォトニック結晶に対して垂直方 向の Q値である Q と、平行方向の Q値である Q を用いて、
1/Q=1/Q +1/Q (1)
で表される。
Q 及び Q の計算結果を図 11に示す。図 11の横軸は距離 Lをレーザ光の波長を 単位として表したものである。距離 Lの 2倍が直接出射光と反射光の光路差になるた め、ここでは横軸は光路差の 1波長分の範囲を示している。
Q は距離 Lに関わらずほぼ同じ値を示す。これは、第 2実施形態と反射部がない例 の間には、 2次元フォトニック結晶に対して平行な方向には構造上の相違がないため である。それに対して Q は、反射部 45の有無に起因して、 Lに依存した値を示す。
Q は距離 Lが 4.25波長の時に最小値となり、その値は反射部がない場合の面発光 レーザでの値の約 1/2になる。これは、比較例の面発光レーザがレーザ発振部から 放出するエネルギーが 2Pであるのに対して、反射部がないの面発光レーザにおいて 距離 Lが 4.25波長のものがレーザ発振部から放出するエネルギーが反射部がない場 合の 2倍の 4Pであることに対応している。距離 Lが約 4.13波長から約 4.37波長の範囲 内にある時、比較例よりも Q が小さくなり、それにより大きい強度のレーザ光を出射 することができる。
[0047] なお、図 11では距離しカ .0波長〜 4.5波長の範囲内での Q 及び Q のみを示した
1S この範囲外においても、 Q は距離 Lにほとんど依存しないのに対して、 Q は前 述の干渉による作用により、 0.5波長分を単位として周期的に変化する。
[0048] 次に、第 2実施形態のうち、距離 Lが 4.25波長分である時について、面発光レーザ の外部微分量子効率について述べる。外部微分量子効率は、活性層に注入された キャリア数を分母とし、外部に放出されたレーザ光の光子数を分子とする値であり、こ の値が大きい程、小さい電流で効率よくレーザ光を得ることができることを示すもので ある。外部微分量子効率 7? は、 2次元フォトニック結晶の上面側に放出されるェネル d
ギーに関する Q値である Q 、同じく下面側に放出されるエネルギーに関する Q値で ある Q 2次元フォトニック結晶に平行な方向に関する Q値である Q 、及び面発光 レーザの内部損失に関する Q値である を用いて、
[数 1]
と表される。反射部がない場合には Q =Q (この値を Q
0とする)となり、その場合の 外部微分量子効率 r? は
1
[数 2]
1 ~
Figure imgf000016_0001
となる。一方、第 2実施形態では反射部があるため、 1/Q =0となると共に Q は比較 例の 1/4となることから、第 2実施形態の外部微分量子効率 r? は
2
[数 3]
4/Qo (
' 2 一 4/g0 + 1/Q|| + l /Qi リ となる。ここで、反射部がない例と本実施例では、 Q及び Q は共通であり、 Qを共通
0 II I であると仮定すると、(3)及び (4)式より、 η と η は次の関係を満たす。
1 2
4 , χ
2 + 1/ 771
[0049] 図 12に、(5)式の r? と 7? の関係をグラフで示す。反射部がない例では 2次元フォト
1 2
ニック結晶から放出されるレーザ光の半分(2次元フォトニック結晶の下面力 放出さ れる分)が損失となるため、 7? の最大値は 0.5である。 η =0.5は、反射部がない場合
1 1
にお 、て 2次元フォトニック結晶の下面力 放出される分を除 、てレーザ光の損失が ないことを示しており、その 7} =0.5に対応する 7} の値が 1であることは、このように他
1 2
の損失がない面発光レーザに反射部を設けることにより、損失を 0にすることができる ことを示している。この時の 7} / η の値が 2であるのに対して、 7} 〈0.5では 7} / 7} の
2 1 1 2 1 値は 2よりも大きくなる。例えば、 η が 0.3の時には 7} / η は 2.5、 η が 0.1の時には 7}
1 2 1 1
/ η は 3.3である。
2 1
7? 力 よりも小さいということは、 2次元フォトニック結晶の下面からのレーザ光の 放出に加えて、 2次元フォトニック結晶に平行な方向への損失や内部損失等が存在 することを示している。 r? 力 よりも小さい時に 7? / η 力^を越えていることは、これ
1 2 1
らの損失が大きい程、面発光の効率が向上することを示している。
[0050] (3)第 3実施形態 (実装面電極の部材を反射部として用いたもの)
次に、実装面電極を反射部として用いる面発光レーザの一実施形態 (第 3実施形 態)を、図 13及び図 14を用いて説明する。図 13は第 3実施形態の面発光レーザの 斜視図である。ここで、上述の第 2実施形態の面発光レーザと同じ構成要素には第 2 実施形態のもの(図 8)と同じ符号を付した。本実施形態の面発光レーザでは、第 2実 施形態における反射部 45の代わりに、実装面電極 47と同じ材料力も成る板状部材 6 1を設ける。また、クラッド層 442の代わりに、実装層として導電性領域限定層 62を設 ける。それ以外の構成は第 2実施形態の面発光レーザと同じである。
[0051] 板状部材 61及び導電性領域限定層 62について、図 14の縦断面図を用いて詳しく 説明する。導電性領域限定層 62は、その下面付近において中央付近の領域のみが 導電性を有し (導電性領域 621)、その周囲の領域は絶縁性を有する (絶縁性領域 6 22)。導電性領域 621の面積は窓 461を含めた窓状電極 46の面積よりも十分に小さ い。板状部材 61は導電性を有すると共に目的波長の光を反射する材料から成る。そ して、板状部材 61は導電性領域 621の全体と絶縁性領域 622の一部を覆っている。
[0052] 板状部材 61と窓状電極 46の間の電流は、板状部材 61のうち導電性領域 621の直 下の領域 611及び導電性領域 621のみを通過するように流れる。そのため、板状部 材 61のうち領域 611のみが実装面電極として機能する。導電性領域 621の面積が 窓状電極 46の面積よりも十分に小さいため、第 1実施形態及び第 2実施形態の場合 と同様に、電流を活性層の狭い領域に集中することができる。
[0053] また、板状部材 61はその全体が反射部として機能する。そのため、別途反射部を 設ける場合よりも面発光レーザの構成を簡素化することができる。また、活性層に電 流を注入する領域 611の面積よりも板状部材 61の面積の方が大きいため、別途反 射部を設けることなく実装面電極を構成する部材を小さくする場合よりも、実装面電 極の構成部材により反射することができる面積を大きくすることができる。

Claims

請求の範囲
[1] a)目的波長に対して透光性を有する材料からなる基板と、
b)前記基板の下側に設けた活性層と、
c)前記基板と前記活性層の間又は前記活性層よりも下側に設けた、板状の母材内 に母材とは屈折率が異なる領域を多数、周期的に配置してなる、前記目的波長の光 を増幅する 2次元フォトニック結晶と、
d)前記 2次元フォトニック結晶及び前記活性層よりも下側に設けた層であって、該 層の下面から前記活性層までの距離が前記基板の上面から前記活性層までの距離 よりも短くなるように設けた、実装時に外部の部材と接する実装層と、
e)前記基板の上面に設けた、前記目的波長のレーザ光を通過させる窓を有する窓 状電極と、
D前記実装層の下面に設けた、前記窓を含めた前記窓状電極よりも面積の狭い実 装面電極と、
を備えることを特徴とする 2次元フォトニック結晶面発光レーザ光源。
[2] 前記窓を含めた前記窓状電極の面積と前記実装面電極の面積の比が 2: 1〜400:1 であり、前記基板上面力 前記活性層まで距離と前記実装面下面力 活性層までの 距離の比が 2: 1〜400:1であることを特徴とする請求項 1に記載の 2次元フォトニック結 晶面発光レーザ光源。
[3] 前記異屈折率領域が正方格子状に配置され、該正方格子の少なくとも一方の軸に 対して該異屈折率領域の形状が非対称であることを特徴とする請求項 1又は 2に記 載の 2次元フォトニック結晶面発光レーザ光源。
[4] 前記異屈折率領域の形状が正三角形であることを特徴とする請求項 3に記載の 2 次元フォトニック結晶面発光レーザ光源。
[5] 前記活性層及び前記 2次元フォトニック結晶から成るレーザ発振部の下側に、前記 目的波長のレーザ光を反射させる反射部を備えることを特徴とする請求項 1〜4のい ずれかに記載の 2次元フォトニック結晶面発光レーザ光源。
[6] 前記反射部が前記レーザ発振部と前記実装面電極の間に配置されていることを特 徴とする請求項 5に記載の 2次元フォトニック結晶面発光レーザ光源。
[7] 前記実装層が導電性材料から成り、該実装層の下面の一部領域である導電性領 域の周囲に絶縁性領域が形成されており、
前記実装面電極が前記絶縁性領域を覆うように設けられており、且つ、前記目的 波長のレーザ光を反射する材料から成る、
ことを特徴とする請求項 5に記載の 2次元フォトニック結晶面発光レーザ光源。
[8] 前記絶縁性領域が、電気抵抗を高めるためのイオンが実装層に注入されることによ り形成されていることを特徴とする請求項 7に記載の 2次元フォトニック結晶面発光レ 一ザ光源。
[9] 前記レーザ発振部から出射し前記反射部により反射される反射光と前記レーザ発 振部から前記窓状電極側に出射する直接出射光が干渉により強められるように、前 記レーザ発振部と前記反射部の距離が設定されていることを特徴とする請求項 5〜8 のいずれかに記載の 2次元フォトニック結晶面発光レーザ光源。
[10] 前記レーザ発振部と前記反射部の距離が、該レーザ発振部と該反射部の間に配 置される 1つ又は複数の距離調整層により調整されていることを特徴とする請求項 9 に記載の 2次元フォトニック結晶面発光レーザ光源。
[11] 前記活性層が InGaAsと GaAsの多重量子井戸であり、前記基板が n型の GaAsである ことを特徴とする請求項 1〜10のいずれかに記載の 2次元フォトニック結晶面発光レ 一ザ光源。
PCT/JP2006/316866 2005-09-02 2006-08-28 2次元フォトニック結晶面発光レーザ光源 WO2007029538A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06783095A EP1930999A4 (en) 2005-09-02 2006-08-28 SOURCE OF LASER LIGHT WITH PHOTONIC CRYSTALLINE SURFACE EMISSION IN TWO DIMENSIONS
US11/991,097 US8379686B2 (en) 2005-09-02 2006-08-28 Two-dimensional photonic crystal surface-emitting laser light source
CN2006800322649A CN101258652B (zh) 2005-09-02 2006-08-28 二维光子晶体面发光激光光源
JP2007534338A JPWO2007029538A1 (ja) 2005-09-02 2006-08-28 2次元フォトニック結晶面発光レーザ光源

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-255638 2005-09-02
JP2005255638 2005-09-02
JP2006077471 2006-03-20
JP2006-077471 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007029538A1 true WO2007029538A1 (ja) 2007-03-15

Family

ID=37835659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316866 WO2007029538A1 (ja) 2005-09-02 2006-08-28 2次元フォトニック結晶面発光レーザ光源

Country Status (7)

Country Link
US (1) US8379686B2 (ja)
EP (1) EP1930999A4 (ja)
JP (1) JPWO2007029538A1 (ja)
KR (1) KR20080049740A (ja)
CN (1) CN101258652B (ja)
TW (1) TW200717957A (ja)
WO (1) WO2007029538A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283920A (ja) * 2008-04-21 2009-12-03 Canon Inc 面発光レーザ
US8155163B2 (en) 2007-03-23 2012-04-10 Sumitomo Electric Industries, Ltd. Photonic crystal laser and method of manufacturing photonic crystal laser
WO2016031966A1 (ja) * 2014-08-29 2016-03-03 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ
JP2017168594A (ja) * 2016-03-15 2017-09-21 株式会社東芝 面発光量子カスケードレーザ
US10447012B2 (en) 2017-11-16 2019-10-15 Kabushiki Kaisha Toshiba Surface-emitting quantum cascade laser
JPWO2018159606A1 (ja) * 2017-02-28 2019-12-19 国立大学法人京都大学 フォトニック結晶レーザ
US10714897B2 (en) 2016-03-15 2020-07-14 Kabushiki Kaisha Toshiba Distributed feedback semiconductor laser
US10938177B2 (en) 2014-08-29 2021-03-02 Kyoto University Two-dimensional photonic crystal surface emitting laser
US11258233B2 (en) 2017-12-27 2022-02-22 Kabushiki Kaisha Toshiba Quantum cascade laser

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2305172T3 (en) 2003-03-28 2016-08-22 Inguran Llc DEVICE AND PROCEDURES TO PROVIDE SEXUAL ANIMAL SEED
JP4241905B2 (ja) * 2007-06-28 2009-03-18 コニカミノルタホールディングス株式会社 2次元フォトニック結晶面発光レーザ
JP2013161965A (ja) * 2012-02-06 2013-08-19 Kyoto Univ 半導体発光素子
WO2017150387A1 (ja) * 2016-02-29 2017-09-08 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ及びその製造方法
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11637409B2 (en) * 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
JP6959042B2 (ja) 2017-06-15 2021-11-02 浜松ホトニクス株式会社 発光装置
JP7245169B2 (ja) 2017-12-08 2023-03-23 浜松ホトニクス株式会社 発光装置およびその製造方法
JP7125327B2 (ja) * 2018-10-25 2022-08-24 浜松ホトニクス株式会社 発光素子及び発光装置
CN110932091B (zh) * 2019-12-06 2020-10-09 北京大学 一种基于能带反转光场限制效应的拓扑体态激光器及方法
JP2023173193A (ja) * 2022-05-25 2023-12-07 国立大学法人京都大学 面発光レーザ素子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284975A (ja) * 1985-06-12 1986-12-15 Hitachi Ltd 半導体装置
JPH0320090A (ja) * 1989-06-16 1991-01-29 Matsushita Electric Ind Co Ltd 化合物半導体素子の製造方法
JP2000332351A (ja) 1999-05-21 2000-11-30 Susumu Noda 半導体発光デバイスおよび半導体発光デバイスの製造方法
JP2001097800A (ja) * 1999-09-30 2001-04-10 Toyota Central Res & Dev Lab Inc Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子
JP2003273456A (ja) * 2002-03-14 2003-09-26 Japan Science & Technology Corp 2次元フォトニック結晶面発光レーザ
JP2004296538A (ja) * 2003-03-25 2004-10-21 Japan Science & Technology Agency 2次元フォトニック結晶面発光レーザ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164949A (en) * 1991-09-09 1992-11-17 Motorola, Inc. Vertical cavity surface emitting laser with lateral injection
US5724376A (en) * 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US6243407B1 (en) * 1997-03-21 2001-06-05 Novalux, Inc. High power laser devices
US6882669B2 (en) * 2001-02-10 2005-04-19 Zhijiang Hang High-power surface emitting laser and fabrication methods thereof
JP3561244B2 (ja) * 2001-07-05 2004-09-02 独立行政法人 科学技術振興機構 二次元フォトニック結晶面発光レーザ
GB2379084B (en) * 2001-08-24 2006-03-29 Marconi Caswell Ltd Surface emitting laser
US7085301B2 (en) * 2002-07-12 2006-08-01 The Board Of Trustees Of The University Of Illinois Photonic crystal single transverse mode defect structure for vertical cavity surface emitting laser
JP4602701B2 (ja) 2004-06-08 2010-12-22 株式会社リコー 面発光レーザ及び光伝送システム
US20070030873A1 (en) * 2005-08-03 2007-02-08 Finisar Corporation Polarization control in VCSELs using photonics crystals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284975A (ja) * 1985-06-12 1986-12-15 Hitachi Ltd 半導体装置
JPH0320090A (ja) * 1989-06-16 1991-01-29 Matsushita Electric Ind Co Ltd 化合物半導体素子の製造方法
JP2000332351A (ja) 1999-05-21 2000-11-30 Susumu Noda 半導体発光デバイスおよび半導体発光デバイスの製造方法
JP2001097800A (ja) * 1999-09-30 2001-04-10 Toyota Central Res & Dev Lab Inc Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子
JP2003273456A (ja) * 2002-03-14 2003-09-26 Japan Science & Technology Corp 2次元フォトニック結晶面発光レーザ
JP2004296538A (ja) * 2003-03-25 2004-10-21 Japan Science & Technology Agency 2次元フォトニック結晶面発光レーザ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OHNISHI D. ET AL.: "Continuous wave operation of surface emitting two-dimensional photonic crystal laser", ELECTRONICS LETTERS, vol. 39, no. 7, 2003, pages 612 - 614, XP006020126 *
See also references of EP1930999A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155163B2 (en) 2007-03-23 2012-04-10 Sumitomo Electric Industries, Ltd. Photonic crystal laser and method of manufacturing photonic crystal laser
KR101414911B1 (ko) * 2007-03-23 2014-07-04 스미토모덴키고교가부시키가이샤 포토닉 결정 레이저 및 포토닉 결정 레이저의 제조방법
US7869483B2 (en) * 2008-04-21 2011-01-11 Canon Kabushiki Kaisha Surface emitting laser
JP2009283920A (ja) * 2008-04-21 2009-12-03 Canon Inc 面発光レーザ
US10461501B2 (en) 2014-08-29 2019-10-29 Kyoto University Two-dimensional photonic crystal surface emitting laser
WO2016031966A1 (ja) * 2014-08-29 2016-03-03 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ
US10938177B2 (en) 2014-08-29 2021-03-02 Kyoto University Two-dimensional photonic crystal surface emitting laser
US9893493B2 (en) 2016-03-15 2018-02-13 Kabushiki Kaisha Toshiba Surface emitting quantum cascade laser
US10714897B2 (en) 2016-03-15 2020-07-14 Kabushiki Kaisha Toshiba Distributed feedback semiconductor laser
JP2017168594A (ja) * 2016-03-15 2017-09-21 株式会社東芝 面発光量子カスケードレーザ
JPWO2018159606A1 (ja) * 2017-02-28 2019-12-19 国立大学法人京都大学 フォトニック結晶レーザ
JP7057949B2 (ja) 2017-02-28 2022-04-21 国立大学法人京都大学 フォトニック結晶レーザ
US10447012B2 (en) 2017-11-16 2019-10-15 Kabushiki Kaisha Toshiba Surface-emitting quantum cascade laser
US11258233B2 (en) 2017-12-27 2022-02-22 Kabushiki Kaisha Toshiba Quantum cascade laser

Also Published As

Publication number Publication date
CN101258652A (zh) 2008-09-03
KR20080049740A (ko) 2008-06-04
EP1930999A4 (en) 2011-04-27
EP1930999A1 (en) 2008-06-11
US8379686B2 (en) 2013-02-19
TW200717957A (en) 2007-05-01
JPWO2007029538A1 (ja) 2009-03-19
US20090279579A1 (en) 2009-11-12
CN101258652B (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2007029538A1 (ja) 2次元フォトニック結晶面発光レーザ光源
US7869483B2 (en) Surface emitting laser
JP3983933B2 (ja) 半導体レーザ、および半導体レーザの製造方法
JP5187474B2 (ja) 半導体レーザアレイおよび光学装置
US7912105B2 (en) Vertical cavity surface emitting laser
US8179941B2 (en) Laser diode and method of manufacturing the same
CN101350499B (zh) 表面发射激光器及其制造方法
JP2004503118A (ja) 半導体レーザ・ポンピング固体レーザ・システムに使用するvcselおよび集積マイクロレンズを有するvcselアレイ
TW201140976A (en) Vertical-cavity surface-emitting lasers with non-periodic gratings
JP2010093127A (ja) 半導体発光装置
JP7453489B2 (ja) 波長変換装置及び発光装置
TWI276274B (en) Semiconductor laser device
JP2006216961A (ja) 効率的な冷却構造を有する半導体発光素子及びその製造方法
JP2010251342A (ja) 半導体レーザ
JP2019208004A (ja) 垂直共振器型発光素子
JP4985954B2 (ja) 面発光型半導体レーザ
JP2019091839A (ja) 面発光量子カスケードレーザ
JP5205034B2 (ja) 面発光レーザダイオード
KR100860696B1 (ko) 수직 공진형 표면 방출 레이저
JP3356436B2 (ja) レーザ装置
JP6512953B2 (ja) 半導体レーザ装置
JP2008243963A (ja) 2次元フォトニック結晶面発光レーザ
JP2015026640A (ja) 面発光レーザアレイ及びその製造方法
JP5494936B2 (ja) 面発光型半導体レーザ
JP2014007335A (ja) 半導体発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032264.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006783095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 11991097

Country of ref document: US