WO2007029515A1 - 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法 - Google Patents

使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法 Download PDF

Info

Publication number
WO2007029515A1
WO2007029515A1 PCT/JP2006/316657 JP2006316657W WO2007029515A1 WO 2007029515 A1 WO2007029515 A1 WO 2007029515A1 JP 2006316657 W JP2006316657 W JP 2006316657W WO 2007029515 A1 WO2007029515 A1 WO 2007029515A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
steel
toughness
resistant steel
present
Prior art date
Application number
PCT/JP2006/316657
Other languages
English (en)
French (fr)
Inventor
Naoki Saitoh
Tatsuya Kumagai
Katsumi Kurebayashi
Hirohide Muraoka
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP06796763A priority Critical patent/EP1930459A4/en
Priority to CN2006800329559A priority patent/CN101258257B/zh
Priority to US11/991,592 priority patent/US8097099B2/en
Priority to BRPI0615885-4A priority patent/BRPI0615885B1/pt
Publication of WO2007029515A1 publication Critical patent/WO2007029515A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • High toughness wear resistant steel with less change in hardness during use and manufacturing method thereof
  • the present invention is a wear-resistant steel having a hardness of HB400 or more and a hardness of HB520 or less, which is required for construction machines, industrial machines, etc., with little change in hardness during use, and excellent toughness, It relates to the method. Background art
  • wear-resistant steels are required to have stable wear-resistant properties for a long time and to be able to withstand long-term use.
  • the conventional invention has improved the delayed crack resistance, the thermal crack resistance, and the low temperature toughness assumed to be used at a low temperature. Things are disclosed.
  • a technique for reducing Mn may be further hardened 200-500 after quenching.
  • a technique for example, JP-A-63-317623
  • JP-A-63-317623 has been reported which applies a tempering treatment method at a low temperature of ° C.
  • a manufacturing technology see, for example, Japanese Patent Laid-Open No. Hei 1-172514
  • a limited composition such as Mn, Cr, Mo etc.
  • there is a technique of limiting the component system mainly on the alloy element see, for example, JP 2001-49387 A, JP 2005-179783 A, JP 2004-10996 A). It is disclosed.
  • wear-resistant steels are used in various wear environments, but even in environments that are generally used at room temperature, the wear surface is frictional heat due to the material used from room temperature to about 100 ° C, and over a long time It is known to be exposed.
  • the characteristics of the wear-resistant steel at temperatures slightly higher than room temperature, such as the change in hardness have hardly been investigated, and the present invention has demonstrated that the present invention has been in use for a long time in such an environment. It is an object of the present invention to provide a high toughness wear resistant steel with less change in hardness and a method of manufacturing the same.
  • the present invention has been made in order to provide a technique necessary for maintaining long-term stable hardness in wear resistant steel, and the gist of the present invention is
  • a high toughness wear-resistant steel having a small change in hardness during use characterized in that it has a component in which the M value defined is M: —10 to 16.
  • V 0.01 to 0 ⁇ 1%
  • Nb 0.005 to 0 ⁇ 05%
  • Ti 0.005 to 0.03%
  • Ca 0.0005 to 0.05%
  • Mg 0.0005 to 0.05%
  • R EM A high toughness wear resistant steel with little change in hardness during use according to the above (1), characterized in that it contains one or more of 0.001 to 0.1%.
  • a steel having the chemical composition according to the above (1) or (2) is hot-rolled and then quenched from a temperature of 3 or more Ac points.
  • the present invention in wear resistant steels generally used at room temperature, has found a range of components for preventing a change in hardness during long-term use and an M value serving as an index of alloy design, thereby achieving wear life. Enables provision of steel plates that can be dramatically improved. Brief description of the drawings
  • Figure 1 shows the effect of alloying elements on the change in hardness after holding at 150 ° C for 10 hours.
  • FIG. 2 shows the effect of alloying elements on Charpy absorption energy at ⁇ 20 ° C. after holding at 150 ° C. for 10 hours.
  • Si It is effective as a deoxidizing material and an element that suppresses hardness reduction during use, and a remarkable effect is observed when it is added at 0.30% or more. However, if it is added at more than 1.00%, toughness may be inhibited. , 1.00% or less is the upper limit.
  • Mn An element effective mainly for improving hardenability and 0.32% or more is required, but it has a function to lower the hardness to promote the formation of cementite plate at low temperature in martensite, and a large amount of addition is As this is not preferable, the range is set to 0.32% or more and 0.70% or less.
  • Mo Improves hardenability, and at the same time, suppresses changes in hardness during long-term holding, so addition of 0.1% or more is necessary, but if it exceeds 1.0%, toughness may be impaired.
  • the upper limit is set to 1.0%.
  • A1 Added to steel as a deoxidizing element, but it needs 0.01% or more The addition of more than 0.1% tends to inhibit the toughness, so the upper limit is made 0.1%.
  • N A large amount of N added to the steel sheet lowers the toughness, so the lower the content, the lower the content is preferably 0.01% or less.
  • V, Nb and Ti are further elements as elements for improving the hardness and toughness of the base material, and from the object of further improving the ductility and toughness.
  • One or more of Ca, Mg and REM can be added.
  • V An element that improves the hardenability and contributes to the improvement of hardness. Addition of 0.01% or more is required, but addition of excessive amount impairs toughness, so the upper limit is made 0.1%.
  • Nb, Ti An element that can improve toughness by refining the crystal grains of the base material, and all effects can be obtained by adding 0.005%, but significant addition can result in the formation of coarse precipitates such as carbonitrides.
  • the amount of Nb added should be 0.005 to 0.05% and Ti: 0.005 to 0.03%, since the toughness may be impaired through the above.
  • Ca, Mg, REM All of these elements are effective as an element for preventing the reduction in ductility due to the expansion of sulfide during hot rolling, and Ca and Mg are each 0.0005% or more, REM is Although the effect is exhibited by the addition of 0.001% or more, the excessive addition may generate coarse oxides at the same time as the coarsening of sulfides, at the same time when it is produced. Therefore, the range of addition is as follows: Ca: 0.0005 to 0.05%, Mg: 0.0005 to 0 ⁇ 05%, REM: 0.001 to 0.1%.
  • Fig. 1 shows a steel containing 0.23 to 0.26% C-0.20 to 0.80% Si-0.35 to 1.23% Mn-0.45 to 1% Cr-0.2 to 0.5% Mo-0 to 105% V to 25 mm thickness
  • the difference between the hardness of the hardened material after rolling and the hardness after holding it at 150 ° C for 10 hours is taken as the vertical axis, and the horizontal axis is plotted as the M value calculated from the amount of alloy elements. is there .
  • Holding for 10 hours at 150 ° C. corresponds to an accelerated test when held at a temperature of about room temperature to about 100 ° C. for a long time.
  • the change in hardness ( ⁇ ⁇ ) depends on the value of ⁇ value, and when ⁇ value exceeds ⁇ 10, ⁇ ⁇ becomes 7 or less, and it can be seen that almost no decrease in hardness is observed .
  • FIG. 2 shows the Charbi absorption energy value at _ 20 ° C. at that time on the vertical axis. As apparent from this figure, when the M value exceeds 16, a tendency is observed that the toughness decreases.
  • the inventors considered that they can provide a manufacturing technology of a wear resistant steel having characteristics of less change in hardness and good toughness, as shown in FIG. 1 and FIG.
  • the range of the range is from 1 to 16 because of the change in hardness when held for a long time near room temperature and the influence of the M value on the toughness value.
  • the steel according to the present invention can be suitably used particularly for a bucket of a power shovel, a member for a vessel of a dump truck or a member for a vessel of a dump truck, and when applied to these members, the hardness during long term use does not decrease.
  • the wear of parts can be significantly reduced over a long period, and the service life can be improved by 1.4 times or more.
  • a billet having the above component system is used as a starting material , Heating ⁇ Rolling process, manufactured through heat treatment.
  • Steel billets are manufactured as steel billets by processes such as continuous casting and ingot formation and agglomeration after the components are adjusted and melted in a converter or an electric furnace.
  • the heating temperature of the billet, the condition of rolling, and the condition at the time of quenching may be any conditions generally used in general.
  • direct hardening may be performed immediately after heating and rolling the billet.
  • the billet heating temperature is 1000 ° C or more and 1250 ° C or less, and if the finishing temperature during hot rolling is 850 ° C or more, there is no problem in the characteristics after direct hardening.
  • the restriction on the heating temperature of the billet is that if it becomes less than 1000 ° C, solutionizing of the contained alloying elements does not proceed and there is a concern that the hardness will decrease, and if the temperature exceeds 1270 ° C, heating This condition is used because there is a concern that the old austenite grains may become coarse and the toughness may decrease.
  • the limitation of finishing temperature at the time of hot rolling is provided to secure the temperature at the time of direct hardening which is subsequently carried out, and when the rolling finishing temperature is less than 850 ° C.
  • a temperature of 850 ° C or higher is taken as the lower limit of the finishing temperature because there is a concern that the hardness of the steel will decrease.
  • Table 1 shows the chemical composition of the test steel manufactured as an example of the present invention.
  • Each of the test steels is manufactured as a steel material by the ingot-slab method or the continuous structural method, and in the table, in the steels A to I, those having the chemical components within the scope of the present invention, J ⁇ P 'steel is manufactured out of the chemical composition range of the present invention.
  • Each piece of steel shown in Table 1 was heated under the production conditions shown in Table 2 And after hot rolling, some of them were heat-treated to produce steel plates having a thickness of up to 25 to 50 mm. After that, Brinell hardness measurement of 0.5 mm immediately below the surface layer was carried out. Furthermore, a part of the steel plate is cut out, heat treatment is applied at 150 ° C. for 10 hours, HB of the 0.5 mm portion below the surface of the steel plate is measured, and a thickness of 1/4 t part to a Charpy test piece The samples were taken (longitudinal direction of rolling) and the test was carried out at Table 2 also shows their results.
  • Steel 10 to Steel 18 are cases where either one of the chemical composition or the steel sheet manufacturing condition deviates from the scope of the present invention.
  • the chemical components are outside the scope of the present invention. That is, in the steel 10 and the steel 11, the amount of C deviates from the scope of the present invention. As a result, in the case of steel 11, although the C content is deviated lower than the present invention range of 0.19%, the hardness of the base material is reduced to HB382. On the other hand, in the case of steel 11, conversely, the C content is deviated high, and the hardness of the base material is remarkably increased as SHB 563, and the toughness is also low.
  • Steel 12 is an example where the amount of Si added deviates high from the range of the present invention. In this case, the toughness is lowered as a result of the increase in the hardness of the base material.
  • Steel 13 is an example in which the addition amount of Mn is out of the range of the present invention. As a result, at the same time when the change in hardness ⁇ is slightly large at around 15, the toughness is also low.
  • Steels 14 and 15 have Cr and Mo amounts which are out of the range of the present invention. In this case, although the change in hardness ⁇ is small, the toughness is remarkable. Low.
  • Steel 16 is the case where the M value is out of the range of the present invention. In this case, although the toughness is good, the change in hardness ⁇ HB is extremely large at 31.
  • Steels 17 and 18 are produced at conditions outside the scope of the present invention in the component range and production conditions. That is, steels 17 and 18 have a component system in which the amount of Mn deviates high, and when the hardening temperature after rolling is heated below the Ac 3 transformation point, steel 18 is subjected directly to the hardening process.
  • the rolling finish temperature is lower than the range of the present invention of 850 ° C. or higher. In all cases, the hardness of the base material is HB400 or less, and it does not have the desired hardness.
  • the present invention makes it possible to significantly reduce the change in hardness during use which is extremely important for the properties of wear resistant steels, and the industrial use effect is extremely large.

Abstract

本発明は、HB400以上でHB520以下の硬さを有し、長期間の使用中の硬さの変化が少なく、かつ、靱性の優れた耐摩耗鋼を提供するもので、質量%で、C:0.21%~0.30%、Si:0.30~1.00%、Mn:0.32~0.70%、P:0.02%以下、S:0.01%以下、Cr:0.1~2.0%、Mo:0.1~1.0%、B:0.0003~0.0030%、Al:0.01~0.1%、N:0.01%以下を含有し、さらに、V:0.01~0.1%、Nb:0.005~0.05%、Ti:0.005~0.03%、Ca:0.0005~0.05%、Mg:0.0005~0.05%、REM:0.001~0.1%の1種または2種以上を含み、残部がFeであり、さらに、次式(1)で定義されるM値が−10~16である成分を有することを特徴とする。M=26×〔Si〕−40×〔Mn〕−3×〔Cr〕+36×〔Mo〕+63×〔V〕 …(1)

Description

明 細 書 使用中の硬さ変化が少ない高靱性耐摩耗鋼およびその製造方法 技術分野
本発明は、 建設機械、 産業機械などで必要とされる HB400以上で H B520以下の硬さを有し、 使用中の硬さの変化が少なく、 かつ、 靱性 の優れた耐摩耗鋼およびその製造方法に関するものである。 背景技術
耐摩耗鋼は言うまでもなく、 長時間の安定した耐摩耗特性を有し 、 長期の使用に耐えうることが求められる。 耐摩耗鋼が使用中に環 境から与えられる様々なダメージに対し、 従来の発明では、 耐遅れ 割れ性や耐熱亀裂性、 さらに、 低温で使用される場合を想定した低 温靭性などを改善したものが開示されている。
例えば、 耐遅れ割れ性の優れた鋼板の製造技術を提供するものと して、 低 Mn化による技術 (例えば、 特開昭 60- 59019号公報参照) が 、 さ らに焼入れ後、 200〜 500°Cの低温で焼き戻す処理方法を適用す る技術 (例えば、 特開昭 63— 317623号公報) が報告されている。 耐熱亀裂性の優れた鋼の提供を目的として、 Mn, Cr, Moなどの成 分を限定した製造技術 (例えば、 特開平 1 一 1725 14号公報参照) が 、 さらに、 低温靱性の優れた鋼の製造技術として、 やはり、 合金元 素を主体としてそれらの成分系を限定する技術 (例えば、 特開 2001 一 49387号公報、 特開 2005— 179783号公報、 特開 2004— 10996号公報 参照) が開示されている。
上記の発明は、 それぞれの目的にあった優れた発明ではあるが、 一般の耐摩耗鋼に期待される最も基本的な特性である長期間に安定 した硬さを維持できるか、 すなわち、 室温近くで長時間使用される 材料の硬さの変化に着目した発明は現在のところ見あたらない。 発明の開示
近年、 省エネルギー、 省資源の社会的な要請から、 耐摩耗性ゃ耐 腐食性などの長期にわたり材料の機能を維持する必要がある特性に 対し、 さらなる長期間の安定性が求められている。 特に、 耐摩耗鋼 では、 様々な摩耗環境で使用されるが、 一般に室温で使用される環 境においても、 摩耗面は摩擦熱により使用材料が室温から 100°C程 度に、 しかも長時間にわたりさらされていることが知られている。 しかしながら、 このように室温よりわずかに高い温度域での耐摩耗 鋼の特性、 中でも硬さの変化は、 ほとんど調べられておらず、 本発 明は、 このような環境下で長期間使用中の硬さの変化が少ない高靭 性耐摩耗鋼およびその製造方法を提供することを課題とする。
本発明は、 上記の課題を解決するために、 耐摩耗鋼において長時 間安定した硬さを維持するために必要な技術を提供するために、 な したものであって、 その骨子は、
( 1 ) 質量%で、 C : 0.21%〜0.30%、 Si: 0.30〜 1· 00%、 Mn: 0.32〜0.70%、 P : 0, 02%以下、 S : 0.01%以下、 Cr: 0.1〜2.0% 、 Mo: 0.1〜 1.0%、 B : 0.0003〜0.0030%、 A1 : 0.01〜 0.1 %、 N : 0.01%以下を含有し、 残部が不可避的不純物と Feであり、 さらに 、 次式 ( 1 ) で定義される M値が M : — 10〜 16である成分を有する ことを特徴とする使用中の硬さ変化が少ない高靱性耐摩耗鋼。
M = 26X 〔Si〕 -40X 〔Mn〕 - 3 X 〔Cr〕 + 36X 〔Mo〕
+ 63X C V] … ( 1 )
( 2 ) 質量%で、 更に、 V : 0.01〜0· 1%、 Nb: 0.005〜0· 05%、 Ti: 0.005〜0.03%、 Ca: 0.0005〜0.05%、 Mg: 0.0005〜 0.05 %、 R EM : 0.001〜 0. 1%の 1種または 2種以上を含有することを特徴とす る上記 ( 1 ) 記載の使用中の硬さ変化が少ない高靱性耐摩耗鋼。
( 3 ) 上記 ( 1 ) または ( 2 ) に記載の化学成分を有する鋼を、 熱間圧延し、 その後 Ac3点以上の温度から焼き入れることを特徴と する使用中の硬さ変化が少ない高靱性耐摩耗鋼板の製造方法。
( ) 上記 ( 1 ) または ( 2 ) に記載の化学成分を有する鋼を、 1000°C〜1270°Cに加熱後、 850°C以上の温度で熱間圧延を終了した 後、 直ちに焼き入れることを特徴とする使用中の硬さ変化が少ない 高靱性耐摩耗鋼板の製造方法。
本発明は、 一般に室温で使用される耐摩耗鋼において、 長時間使 用中の硬さの変化を防止するための成分範囲および合金設計の指標 となる M値を見出したことで、 摩耗寿命を格段に改善できる鋼板の 提供を可能にする。 図面の簡単な説明
図 1 は、 150°Cで 10時間保持した後の硬さの変化に対する合金元 素の影響を示した図である。
図 2は、 150°Cで 10時間保持した後の— 20°Cにおけるシャルピ一 吸収エネルギーに対する合金元素の影響を示した図である。 発明を実施するための最良の形態
本発明を実施する上で、 耐摩耗鋼材としての硬さゃ靱性に対する 合金添加量の規定は非常に重要である。 まず、 本発明の鋼成分を規 定した理由について説明する。
C : 硬さを向上させる最も重要な元素であり、 焼入れ硬さを確保 するためには、 0.21%以上の添加が必要であるが、 0.30%を超える と、 硬さが高くなりすぎ、 耐水素割れ性を著しく損なうので、 その 上限を 0.30%とする。
Si: 脱酸材および使用中の硬さ低下を抑制する元素として有効で あり、 0.30%以上の添加で著しい効果が認められるが、 1.00%を超 えて添加すると、 靱性を阻害する恐れがあるため、 1.00%以下を上 限とする。
Mn: 主として焼入れ性を高めるのに有効な元素で 0.32%以上必要 であるが、 マルテンサイ ト中の低温でのセメンタイ 卜の形成を促進 するために硬さを低下させる働きがあり、 多量の添加は好ましくな いので、 その範囲を 0.32%以上、 0.70%以下とする。
P : 多量に存在すると靱性を低下させるので少ない方が望ましく 、 上限の含有量は 0.02%とする。 不可避的に混入する含有量をでき る限り少なくするのがよい。
S : 多量に存在すると靱性を低下させるので少ない方が望ましく 、 上限の含有量は 0.01%とする。 Sも Pと同様に不可避的な混入量 をできる限り少なくするのがよい。
Cr: 焼入れ性を改善する元素であり、 0.1%以上の添加が必要で あるが、 多量に添加すると、 靱性を低下させる恐れがあるために、 その上限を 2.0%以下とする。
Mo: 焼入れ性を改善すると同時に、 長時間保持中の硬さ変化を抑 える働きがあるので、 0.1%以上の添加が必要であるが、 1.0%を超 えて添加されると、 靱性を損なう恐れがあるために、 その上限を 1. 0%とする。
B : フェライ トの生成を抑制し焼入れ性を著しく向上させる元素 であり、 0.0003 %以上の添加が必要であるが、 0.0030 %を超えた添 加量では、 ボロン化合物を生成し、 かえって焼入れ性が低下する傾 向があるため、 その上限を 0.003%とする。
A1: 脱酸元素として鋼中に添加され、 0.01%以上を必要とするが 、 0. 1%を超える添加では、 靭性を阻害する傾向があるため、 その 上限を 0.1%とする。
N : 鋼板に多量に添加されると靱性を低下させるので、 少ない方 が望ましく、 上限の含有量は、 0.01%以下とする。
以上が本発明にかかる基本成分であるが、 さらに、 本発明におい ては、 母材の硬さおよび靱性を改善する元素として、 V, Nbおよび Tiを、 さらに延性や靱性を改善する元素目的から、 Ca, Mgおよび RE Mの 1種または 2種以上を添加できる。
V : 焼入れ性を改善し、 硬さの向上に寄与する元素である。 0.01 %以上の添加が必要となるが、 過剰の添加は靱性を損なうため、 そ の上限を 0.1%とする。
Nb, Ti : 母材の結晶粒の微細化により、 靱性を改善できる元素で あり、 いずれも 0.005 %の添加で効果が得られるが、 著しい添加は 、 炭窒化物などの粗大な析出物の形成を通じて靱性を損なう恐れが あるため、 その添加量を、 Nb: 0.005〜0.05%、 Ti : 0.005〜0.03% の範囲とする。
Ca, Mg, REM : これらの元素は、 いずれも熱間圧延中の硫化物の 展伸による延性の低下を防止する元素として有効であり、 それぞれ 、 Ca, Mgは、 0.0005 %以上、 REMは、 0.001 %以上の添加により効果 が発揮されるが、 過剰の添加は、 硫化物の粗大化と同時に、 溶製時 に粗大な酸化物を生じる可能性がある。 従って、 その添加の範囲を 、 それぞれ、 Ca: 0.0005〜0.05%、 Mg: 0.0005〜 0· 05 %、 REM: 0.0 01〜0.1%とする。
以上の成分範囲を基本として、 本発明では、 さらに、 下記、 式 ( 1 ) により M値の範囲の制約を設ける。
M = 26X 〔Si〕 -40X 〔Mn〕 - 3 X 〔Cr〕 +36X 〔Mo〕
+ 63X 〔 V〕 … ( 1 ) 本発明者らは、 多くの実験の結果、 耐摩耗鋼において、 室温〜 10 o°c近傍で長時間保持された場合の硬さの変化は、 合金元素に大き く依存することを明らかにした。 図 1は、 0.23〜0.26% C— 0.20〜 0.80%Si— 0.35〜1.23%Mn—0.45〜 l % Cr - 0.2〜 0.5 % Mo— 0〜0, 105% Vを含有した鋼を板厚 25mmに圧延した後、 焼入れしたものの 硬さと、 それを 150°Cで 10時間保持した後の硬さとの差を縦軸に、 横軸には合金元素量から計算される M値をプロッ トしたものである 。 150°Cで 10時間の保持は、 室温〜 100°C程度の温度で長時間保持さ れた場合の加速試験に相当する。 この結果から分かるように、 硬さ の変化 (ΔΗν) は Μ値の値に依存し、 Μ値が— 10を超えると ΔΗνが 7以下となり、 硬さの低下がほとんど見られなくなることが分かつ た。
さらに図 2は、 その時の _ 20°Cにおけるシャルビ一吸収エネルギ 一値を縦軸に示したものである。 この図から明らかなように、 M値 が 16を超えると靱性が低下する傾向が認められる。
以上の実験事実から、 発明者らは、 .硬さの変化が少なく、 かつ、 靱性が良好な特性を有する耐摩耗鋼の製造技術を提供できると考え 、 図 1および図 2に示されたように、 室温付近で長時間保持された 場合の硬さの変化および靱性値に対する M値の影響から、 本発明の 目的とする特性を得るためには、 その,範囲が一 10〜 16である制約を 設けた。
本発明に係る鋼は、 特にパワーショベルのバケツ 卜用部材ゃダン プトラックのベッセル用部材に好適に用.いることができ、 これら部 材に適用すると長期間使用中の硬さが低減しないので、 部材の磨耗 が長期間にわたり著しく低減し、 使用寿命を 1.4倍以上に向上させ ることができる。
本発明法においては、 上記の成分系を有する鋼片を出発材として 、 加熱 · 圧延工程、 熱処理を経て製造される。 鋼片は、 転炉あるい は、 電気炉により成分調整され溶製後、 連続铸造法および造塊 , 分 塊法などの工程により、 鋼片として製造される。
次に、 鋼片を加熱後、 熱間圧延により 目的とする板厚まで圧延さ れ、 その後、 Ac3点以上の温度に再び加熱後、 焼入れを施される。 この時、 鋼片の加熱温度および圧延の条件、 焼入れ時の条件は、 通 常一般に用いられる条件であれば何ら差し支えない。
また、 鋼板の再加熱焼入れの替わりに、 鋼片を加熱し圧延後、 直 ちに直接焼入れを実施しても良い。 その時の鋼片加熱温度は、 1000 °C以上 1250°C以下、 で、 熱間圧延時の仕上温度が 850°C以上であれ ば、 直接焼入れ後の特性に何ら問題を生じない。 鋼片の加熱温度の 制約は、 1000°C未満になると、 含まれている合金元素の溶体化が進 まず、 硬さの低下を起こす懸念があり、 1270°Cを超える温度になる と、 加熱時の旧オーステナイ ト結晶粒が粗大化し、 靱性が低下する 懸念があるので、 この条件とする。
一方、 熱間圧延時の仕上げ温度の制約は、 それに引き続いて実施 される直接焼入れ時の温度を確保するために設けられたもので、 85 0°C未満の圧延仕上げ温度になると、 直接焼入れ後の硬さが低下す る懸念があるので、 850°C以上の温度を仕上げ温度の下限とする。 実施例
表 1 に本発明の実施例として製造された供試鋼の化学成分を示す 。 各供試鋼は、 造塊分塊法あるいは、 連続铸造法により鋼材として 製造されたものであり、 表の中で、 A〜 I鋼においては、 本発明範 囲の化学成分を有するもの、 J 〜 P '鋼は、 本発明の化学成分範囲を 逸脱して製造されたものである。
表 1 に示したそれぞれの鋼片を表 2に示した製造条件にて加熱お よび熱間圧延後、 一部のものについては、 熱処理を施し、 25〜50mm までの板厚を有する鋼板として製造した。 その後、 表層部直下 0. 5m mのブリネル硬さの測定を実施した。 さらに、 鋼板の一部を切り出 し、 150°Cで 10時間の熱処理を加え、 それらの鋼板の表層下 0. 5mm部 の HBを測定するとともに、 板厚 1 / 4 t部からシャルピー試験片を 採取 (圧延の長手方向) し、 一 20°Cにおいて試験を実施した。 それ らの結果についても表 2 に示した。
表 2において、 鋼 1から鋼 9 については、 本発明範囲内でのもの である。 いずれの条件においても、 表面下の硬さは、 HB400〜HB520 範囲であり、 長時間使用中の硬さの低下が HB 10以下であり、 極めて 小さいことが分かる。 さらに、 靱性についても一 20°Cにおいてすべ て 2 1 J以上の値を示している。
それに対し、 鋼 10から鋼 18は化学成分あるいは、 鋼板の製造条件 の一方が本発明範囲を逸脱している場合である。
まず、 鋼 10〜鋼 16においては、 化学成分が本発明範囲を逸脱して いる場合である。 すなわち、 鋼 10および鋼 1 1は、 C量が本発明の範 囲を逸脱している。 その結果、 鋼 1 1では C量が 0. 19 %と本発明範囲 より低くはずれている場合であるが、 母材の硬さ HB382と低下して いる。 一方、 鋼 1 1では逆に C量が高くはずれている場合であり、 母 材の硬さ力 SHB563と著しく上昇しており、 靱性も低い。
鋼 12は S iの添加量が本発明範囲を高く逸脱している例である。 こ の場合、 母材の硬さが上昇する結果、 靱性が低くなつている。
鋼 13は Mnの添加量が本発明範囲を高めにはずれている例である。 その結果、 硬さの変化 Δ ΗΒが 15程度とやや大きくなつていると同時 に、 靱性も低い。
鋼 14および 15は C rおよび Mo量が本発明範囲を高くはずれているも のである。 この場合、 硬さの変化 Δ ΗΒは小さいものの、 靭性が著し く低い。
鋼 16は M値が本発明範囲を逸脱している場合である。 この場合、 靱性は良好であるが、 硬さの変化 Δ HBが 31と極めて大きくなつてい る。
鋼 17および鋼 18は成分範囲および製造条件において、 本発明範囲 外の条件で製造された場合である。 すなわち、 鋼 17および 18は Mn量 が高くはずれた成分系を有するものであり、 鋼 17は圧延後の焼入れ 温度が Ac3変態点以下で加熱された場合、 鋼 18は直接焼入れ工程に おいて、 圧延仕上げ温度が本発明の範囲である 850°C以上より低い 場合である。 いずれも母材の硬さが HB400以下となり、 目的とする 硬さを有していない。
〔表 1〕
Figure imgf000012_0001
下線は本発明の範囲外であることを示す。
〔表 2〕
Figure imgf000013_0001
下線は本発明の範囲外であることを示す 産業上の利用可能性
本発明は、 耐摩耗鋼の特性上極めて重要な使用中の硬さの変化を 著しく低減することを可能にしたもので、 その産業上の利用効果は 極めて大きい。

Claims

1. 質量%で、
C : 0.21%〜0.30%、
Si : 0.30〜 1.00%、
Mn: 0.32〜0.70%、
P : 0.02%以下、
S : 0.01%以下、
Cr: 0. ト 2.0%、
Mo: 0.1〜 1.0%、
B : 0.0003〜0.0030 % , .
A1 : 0.01〜0.1%、
N : 0.01%以下
を含有し、 残部が不可避的不純物と?eであり、 さらに、 次式 ( 1 ) で定義される M値が
M : 一 10〜 16
である成分を有することを特徴とする使用中の硬さ変化が少ない高 靱性耐摩耗鋼。
M = 26X 〔Si〕 -40X 〔Mn〕 - 3 X 〔Cr〕 + 36X 〔Mo〕
+ 63X 〔V〕 - ( 1 )
2. 質量%で、 さらに、
V : 0.01〜0.1%、
Nb: 0.005〜0.05%、
Ti : 0.005〜0.03%、
Ca: 0.0005〜0.05%、
Mg: 0.0005〜0.05%、
REM: 0.001〜0. 1% の 1種または 2種以上を含有することを特徴とする請求項 1記載の 使用中の硬さ変化が少ない高靱性耐摩耗鋼。
3 . 請求項 1 または 2に記載の化学成分を有する鋼を、 熱間圧延 し、 その後 Ac 3点以上の温度から焼き入れることを特徴とする使用 中の硬さ変化が少ない高靱性耐摩耗鋼板の製造方法。
4 . 請求項 1 または 2に記載の化学成分を有する鋼を、 1 000 °C〜 1270°Cに加熱後、 8 50°C以上の温度で熱間圧延を終了した後、 直ち に焼き入れることを特徴とする使用中の硬さ変化が少ない高靱性耐 摩耗鋼板の製造方法。
PCT/JP2006/316657 2005-09-09 2006-08-18 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法 WO2007029515A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06796763A EP1930459A4 (en) 2005-09-09 2006-08-18 HIGH-TECH WEAR-RESISTANT STEEL WITH LOW HARD CHANGE IN USE AND METHOD OF MANUFACTURING THEREOF
CN2006800329559A CN101258257B (zh) 2005-09-09 2006-08-18 使用中的硬度变化小的高韧性耐磨耗钢及其制造方法
US11/991,592 US8097099B2 (en) 2005-09-09 2006-08-18 High toughness abrasion resistant steel with little change in hardness during use and method of production of same
BRPI0615885-4A BRPI0615885B1 (pt) 2005-09-09 2006-08-18 Aço e método de produção de chapa de aço

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-262297 2005-09-09
JP2005262297A JP4846308B2 (ja) 2005-09-09 2005-09-09 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007029515A1 true WO2007029515A1 (ja) 2007-03-15

Family

ID=37835638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316657 WO2007029515A1 (ja) 2005-09-09 2006-08-18 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法

Country Status (7)

Country Link
US (1) US8097099B2 (ja)
EP (1) EP1930459A4 (ja)
JP (1) JP4846308B2 (ja)
KR (1) KR20080034987A (ja)
CN (1) CN101258257B (ja)
BR (1) BRPI0615885B1 (ja)
WO (1) WO2007029515A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122087A (ja) * 2010-12-06 2012-06-28 Nippon Steel Corp 細粒鉄源運搬部材及びこれを用いたベッセル等
CN109609839A (zh) * 2018-11-16 2019-04-12 邯郸钢铁集团有限责任公司 高延伸性能的低合金高强耐磨钢nm450及其生产方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089224B2 (ja) 2007-03-30 2012-12-05 株式会社神戸製鋼所 オンライン冷却型高張力鋼板の製造方法
JP5145804B2 (ja) * 2007-07-26 2013-02-20 Jfeスチール株式会社 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP5323552B2 (ja) * 2008-03-31 2013-10-23 株式会社神戸製鋼所 スポット溶接継手の十字引張強度に優れた焼入れ用鋼板
KR101122840B1 (ko) * 2009-03-27 2012-03-21 신닛뽄세이테쯔 카부시키카이샤 침탄 켄칭성이 우수한 탄소 강판 및 그 제조 방법
CN101691640B (zh) * 2009-09-01 2011-09-07 东北大学 一种高强度低合金耐磨钢板及其制造方法
CN102134682B (zh) * 2010-01-22 2013-01-02 宝山钢铁股份有限公司 一种耐磨钢板
JP5655356B2 (ja) * 2010-04-02 2015-01-21 Jfeスチール株式会社 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP2012031511A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
JP5866820B2 (ja) * 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
AT12365U1 (de) * 2010-12-23 2012-04-15 Advanced Manufacture Technology Ct Camtc Ein formstahl
US9938599B2 (en) 2011-03-29 2018-04-10 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
MX348365B (es) * 2011-03-29 2017-06-08 Jfe Steel Corp Placa de acero o lamina de acero resistente a la abrasion excelente en resistencia al agrietamiento por corrosion y esfuerzo y metodo para la fabricacion de la misma.
CN102345071B (zh) * 2011-07-08 2013-07-17 南阳汉冶特钢有限公司 一种合金用结构钢30CrMo加B钢板及其生产方法
CN102337455A (zh) * 2011-09-05 2012-02-01 内蒙古包钢钢联股份有限公司 一种稀土处理的高韧性耐磨钢板
CN102912239A (zh) * 2012-03-06 2013-02-06 泰州市永昌冶金科技有限公司 一种高温耐磨钢
CN102876969B (zh) * 2012-07-31 2015-03-04 宝山钢铁股份有限公司 一种超高强度高韧性耐磨钢板及其制造方法
WO2014045553A1 (ja) 2012-09-19 2014-03-27 Jfeスチール株式会社 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
CN103103448A (zh) * 2012-12-29 2013-05-15 内蒙古包钢钢联股份有限公司 一种低合金高强韧性耐磨钢板
CN103834877B (zh) * 2014-03-26 2015-11-18 武汉钢铁(集团)公司 一种薄板坯生产切割鞋模用钢及其制备方法
CN103993246B (zh) * 2014-04-23 2016-07-20 中建材宁国新马耐磨材料有限公司 一种低合金球磨机耐磨衬板及其制备方法
JP6350340B2 (ja) * 2015-03-04 2018-07-04 Jfeスチール株式会社 耐摩耗鋼板およびその製造方法
CN107746935B (zh) * 2017-10-26 2019-06-28 河钢股份有限公司 一种高强度耐磨钢板及其生产工艺
WO2024022531A1 (zh) * 2022-07-29 2024-02-01 宝山钢铁股份有限公司 一种耐腐蚀性耐磨钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059019A (ja) * 1983-09-13 1985-04-05 Sumitomo Metal Ind Ltd 耐遅れ破壊性の優れた耐摩耗性鋼板の製造法
JPH01149921A (ja) * 1987-12-04 1989-06-13 Kawasaki Steel Corp 耐遅れ割れ性の優れた直接焼入れ型高強度鋼の製造方法
JPH01172514A (ja) * 1987-12-25 1989-07-07 Nippon Steel Corp 耐熱亀裂性に優れた高硬度高靭性耐摩耗鋼の製造法
JPH09118950A (ja) * 1995-10-24 1997-05-06 Nippon Steel Corp 厚手高硬度高靱性耐摩耗鋼およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317623A (ja) 1987-06-19 1988-12-26 Kobe Steel Ltd 耐遅れ割れ性の優れた耐摩耗用鋼板の製造方法
US5853502A (en) * 1995-08-11 1998-12-29 Sumitomo Metal Industries, Ltd. Carburizing steel and steel products manufactured making use of the carburizing steel
US5900077A (en) * 1997-12-15 1999-05-04 Caterpillar Inc. Hardness, strength, and fracture toughness steel
JP2001049387A (ja) 1999-08-03 2001-02-20 Nippon Steel Corp 高靭性厚手高温耐摩耗鋼
JP4238832B2 (ja) 2000-12-27 2009-03-18 Jfeスチール株式会社 耐摩耗鋼板及びその製造方法
JP2004010996A (ja) 2002-06-10 2004-01-15 Jfe Steel Kk 低温靭性に優れた耐摩耗鋼およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059019A (ja) * 1983-09-13 1985-04-05 Sumitomo Metal Ind Ltd 耐遅れ破壊性の優れた耐摩耗性鋼板の製造法
JPH01149921A (ja) * 1987-12-04 1989-06-13 Kawasaki Steel Corp 耐遅れ割れ性の優れた直接焼入れ型高強度鋼の製造方法
JPH01172514A (ja) * 1987-12-25 1989-07-07 Nippon Steel Corp 耐熱亀裂性に優れた高硬度高靭性耐摩耗鋼の製造法
JPH09118950A (ja) * 1995-10-24 1997-05-06 Nippon Steel Corp 厚手高硬度高靱性耐摩耗鋼およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930459A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122087A (ja) * 2010-12-06 2012-06-28 Nippon Steel Corp 細粒鉄源運搬部材及びこれを用いたベッセル等
CN109609839A (zh) * 2018-11-16 2019-04-12 邯郸钢铁集团有限责任公司 高延伸性能的低合金高强耐磨钢nm450及其生产方法

Also Published As

Publication number Publication date
BRPI0615885A2 (pt) 2011-05-31
KR20080034987A (ko) 2008-04-22
CN101258257A (zh) 2008-09-03
EP1930459A4 (en) 2012-01-11
BRPI0615885B1 (pt) 2015-08-04
CN101258257B (zh) 2011-01-19
JP4846308B2 (ja) 2011-12-28
US8097099B2 (en) 2012-01-17
JP2007070713A (ja) 2007-03-22
US20100059150A1 (en) 2010-03-11
EP1930459A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2007029515A1 (ja) 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法
KR100732733B1 (ko) 인장 강도가 780 MPa 이상이고 우수한 국부 성형성을가지며 용접부 경도 상승이 억제된 고강도 냉연 강판
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
EP2692889B1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP5786318B2 (ja) 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4590012B2 (ja) 高温耐摩耗性および曲げ加工性に優れる耐摩耗鋼板およびその製造方法
JP4718866B2 (ja) 溶接性およびガス切断性に優れた高張力耐火鋼およびその製造方法
JP5786317B2 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
TW200946694A (en) Ferritic stainless steel with excellent heat resistance and toughness
US10030282B2 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
EP3728679B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP4362318B2 (ja) 耐遅れ破壊特性に優れた高強度鋼板及びその製造方法
KR20240012608A (ko) 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
JP7226598B2 (ja) 耐摩耗鋼板およびその製造方法
JP6037087B1 (ja) 高強度冷延鋼板およびその製造方法
JP2004315857A (ja) 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2005264328A (ja) 加工性に優れた高強度鋼板およびその製造方法
JP5993570B2 (ja) 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ冷間圧延鋼板及び冷間圧延鋼板の製造方法
JP2000256777A (ja) 強度および低温靱性に優れた高張力鋼板
KR102544854B1 (ko) 구멍 확장비가 높은 냉연 어닐링된 강판 및 그 제조 방법
JP6843245B2 (ja) 曲げ性及び伸びフランジ性に優れた高張力亜鉛系めっき鋼板及びその製造方法
RU2711696C1 (ru) Способ изготовления холоднокатаной стальной полосы из высокопрочной, содержащей марганец стали с trip-свойствами
JP2002047532A (ja) 溶接性に優れた高張力鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032955.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11991592

Country of ref document: US

Ref document number: 2006796763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1973/DELNP/2008

Country of ref document: IN

Ref document number: 1020087005588

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0615885

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080310