WO2007026509A1 - 可変抵抗素子及びその製造方法 - Google Patents

可変抵抗素子及びその製造方法 Download PDF

Info

Publication number
WO2007026509A1
WO2007026509A1 PCT/JP2006/315649 JP2006315649W WO2007026509A1 WO 2007026509 A1 WO2007026509 A1 WO 2007026509A1 JP 2006315649 W JP2006315649 W JP 2006315649W WO 2007026509 A1 WO2007026509 A1 WO 2007026509A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable resistor
metal
electrode
variable
general formula
Prior art date
Application number
PCT/JP2006/315649
Other languages
English (en)
French (fr)
Inventor
Yasunari Hosoi
Shigeo Ohnishi
Yasushi Ogimoto
Takashi Oka
Naoto Nagaosa
Yoshinori Tokura
Original Assignee
Sharp Kabushiki Kaisha
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, National Institute Of Advanced Industrial Science And Technology filed Critical Sharp Kabushiki Kaisha
Priority to US11/990,774 priority Critical patent/US7978047B2/en
Priority to JP2007533149A priority patent/JPWO2007026509A1/ja
Publication of WO2007026509A1 publication Critical patent/WO2007026509A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/1013Thin film varistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/115Titanium dioxide- or titanate type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure

Definitions

  • the present invention relates to a variable resistance element in which a variable resistor is provided between two metal electrodes, and an electric resistance between the metal electrodes is changed by applying a voltage pulse between the metal electrodes, and its manufacture Regarding the method.
  • NVRAM non-volatile random access memory
  • FeRAM Feroelectric RAM
  • MRAM Magnetic RAM
  • OUM Olet Ultra Mem
  • various device structures such as ory
  • these current memory devices have their merits and demerits, and it is still far from the ideal realization of “universal memory” that combines the advantages of SRAM, DRAM, and flash memory.
  • RRAM Resistance Control Random Access Memory
  • RRAM is Sharp Corporation. Company registered trademark
  • the structure of this variable resistance element is very simple.
  • the variable resistance element has a laminated structure in which variable resistor 2 is provided between upper electrode 1 and lower electrode 3, which are two metal electrodes.
  • By applying a voltage pulse between 1 and the lower electrode 3, the resistance value between the two electrodes can be reversibly changed.
  • a novel nonvolatile memory device can be realized by reading the resistance value in this reversible resistance change operation (hereinafter referred to as “switching operation” as appropriate).
  • PCMO PCMO
  • Non-patent document 5 discloses that switching is also performed in binary transition metal oxides in addition to the skite material.
  • Non-Patent Document 2 proposes.
  • Patent Document 1 US Pat. No. 6,204,139
  • Non-patent literature l Zhuang, H. H. et al., "Novel Colossal Random Access Memory (RRAM)", IEDM, paper number 7.5, December 2002
  • Non-patent literature 3 M. Imada et al., "Metal—Insulator Transition", Review of Moderan Physics 70, pp. 1039 to 1247, 1998, especially Chapter 4 (pp. 1144 to 1245)
  • Non-patent literature 4 G Kotliar et al., Compressibility Divergence and the Finite Temperature Mott Transition ", Physical Review Letters, Vol. 89, No. 4, pp. 046401— 1-046401— 4, 2002
  • Non-Patent Document 5 G. Dearnaley et al., "Electrical Phenomena in Amorphous Oxide Films, Reports on Progress in Physics 33, pp. 1129-1191, 197 Sep.
  • variable resistor made of a strong correlation material is provided between two metal electrodes, and a voltage pulse is applied between the metal electrodes.
  • the metal electrodes and variable resistors are appropriately designed by supporting the clear switching operation principle, and the low resistance state and high resistance of the electrical resistance.
  • An object of the present invention is to provide a variable resistance element that enables a switching operation with a large resistance ratio between states.
  • variable resistance element in order to achieve the above object, is provided with a variable resistor made of a strongly correlated material between two metal electrodes, and a voltage pulse is applied between the metal electrodes.
  • a variable resistance element in which an electrical resistance between the metal electrodes changes, and a metal is applied at the interface between the first electrode of the two metal electrodes and the variable resistor by the application of the voltage pulse. Insulator transition occurs.
  • variable resistance element having the above-described characteristics includes a work function differential force between the first electrode and the variable resistor. It is characterized by a work function difference that can form a coexisting phase.
  • variable resistance element having the above characteristics is characterized in that the metal-insulator transition is a Mott transition.
  • variable resistance element having the above characteristics is characterized in that the variable resistor is a perovskite type oxide.
  • variable resistor has a general formula (RE AE)
  • the RE force in the general formula is any one rare earth element selected from La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and AE force in the general formula Any one selected from Ca, Sr, Ba It is a rucal earth element, and is characterized in that it is any one element selected from the B forces Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu in the above general formula.
  • variable resistance element having the above characteristics is a transition metal oxide or a lanthanoid metal oxide.
  • the variable resistor has a stoichiometry in which the general formula MO (m and m (l -z) n and n are determined by the valence of the metal (M) ion.
  • Composition, z is the carrier concentration per unit cell due to the introduction of excess oxygen, p-type semiconductor represented by 0 ⁇ ⁇ 1), or general formula MO (m and n are valence of metal (M) ion Stoichiometric composition determined mn (l -z)
  • Z is a metal oxide of an n-type semiconductor represented by carrier concentration per unit cell by introduction of oxygen deficiency, 0 ⁇ z ⁇ l), and M in the above general formula is 3d electron, 4d electron or 5d
  • M in the above general formula is 3d electron, 4d electron or 5d
  • One element selected from a transition metal having an electron or a lanthanoid metal having a 4f electron is one element.
  • variable resistor may be (M N) O (m and
  • 1—zzmnn is the stoichiometric composition determined by the valence of the metal (M) ion, z is a metal with a different valence from M (N is an alkali metal, alkaline earth metal, transition metal, lanthanoid metal) ), A metal oxide represented by 0 ⁇ 1), where M in the general formula represents a transition metal having 3d electrons, 4d electrons, or 5d electrons, or 4f electrons.
  • M in the general formula represents a transition metal having 3d electrons, 4d electrons, or 5d electrons, or 4f electrons.
  • the lanthanide-based metal possessed by any one element is also selected.
  • a potential difference Vd defined by a work function difference between the first electrode and the variable resistance antibody that is a p-type semiconductor has a doping ratio of the variable resistor z, If the bandwidth of the variable resistor is W and the motto gap of the variable resistor is ⁇ ,
  • a potential difference Vd defined by a work function difference between the first electrode and the variable resistance antibody that is a ⁇ -type semiconductor has a doping rate of the variable resistor ⁇ , If the bandwidth of the variable resistor is W and the motto gap of the variable resistor is ⁇ ,
  • variable resistance element manufacturing method is a variable resistance element manufacturing method in which a variable resistor having a strongly correlated material force is provided between two metal electrodes, the variable resistance element being a variable resistance element.
  • a metal-insulator transition occurs at the interface between the first electrode of one of the two metal electrodes and the variable resistor, and the metal electrode
  • the work resistance difference between the first electrode and the variable resistor is a two-phase metal phase and insulator phase in the vicinity of the interface between the variable resistor and the first electrode.
  • the material and composition of the first electrode and the material and composition of the variable resistor are set so as to have a work function difference that can form a coexisting phase.
  • variable resistance element having the above characteristics is characterized in that the variable resistor is a velovite oxide.
  • variable resistor is represented by the general formula (RE
  • variable resistance element manufacturing method having the above characteristics is characterized in that it is a transition metal oxide or a lanthanide-based metal oxide.
  • variable resistor is represented by a general formula M
  • z is the carrier concentration per unit cell due to the introduction of oxygen deficiency, and is an n-type semiconductor metal oxide represented by 0 ⁇ z ⁇ l), where M in the general formula is 3d electrons, 4d From transition metals with electrons or 5d electrons, or lanthanoid metals with 4f electrons It is any one element selected.
  • variable resistor is (M N)
  • a metal oxide represented by a doping amount of a different number of metals N (N is an alkali metal, alkaline earth metal, transition metal, lanthanoid metal), 0 ⁇ z ⁇ l), M is a transition metal having 3d electrons, 4d electrons, or 5d electrons, or any one element selected from the medium forces of lanthanoid metals having 4f electrons.
  • the potential difference Vd defined by the work function difference between the first electrode and the p-type semiconductor is the doping rate of the variable resistor.
  • Z where W is the bandwidth of the variable resistor, and ⁇ is the Mott gap of the variable resistor.
  • the material and composition of the first electrode and the material and composition of the variable resistor are set so as to satisfy the inequality shown in FIG.
  • the potential difference Vd defined by the work function difference between the first electrode and the ⁇ -type semiconductor is ⁇ type semiconductor.
  • the material and composition of the first electrode and the material and composition of the variable resistor are set so as to satisfy the inequality shown in FIG.
  • the metal insulator transition Mott transition
  • the metal insulator transition at the interface between the first electrode of one of the two metal electrodes and the variable resistor Theoretically showing the principle of switching operation by clarifies the material design conditions for obtaining an appropriate switching operation, and a variable resistance capable of switching operation with a large resistance ratio between the low resistance state and the high resistance state.
  • the potential difference Vd defined by the work function difference between the first electrode and the variable resistor is such that the doping concentration of the variable resistor is z, the bandwidth of the variable resistor is W, and the variable resistor When the Mott gap is ⁇ , for the variable resistor of the p-type semiconductor,
  • FIG. 1 is an element cross-sectional view schematically showing a cross-sectional structure of a variable resistance element according to the present invention in a first embodiment using a ⁇ -type semiconductor strongly correlated material as a variable resistor.
  • FIG. 2 is a diagram showing the potential dependence of the electron density near the metal-insulator transition point of the variable resistor in the first embodiment.
  • FIG. 3 is a diagram showing the spatial dependence near the interface between the metal electrode and the strongly correlated material when the two-phase coexisting phase of the variable resistor in the first embodiment is in the metal state.
  • FIG. 4 is a diagram showing the spatial dependence near the interface between the metal electrode and the strongly correlated material when the two-phase coexisting phase of the variable resistor in the first embodiment is in the insulator state.
  • FIG. 5 shows the behavior of current-voltage characteristics in the ON and OFF states when the interface potential ⁇ (0) between the metal electrode and strongly correlated material is in the middle of the phase transition points ⁇ 1 and ⁇ 2 in the first embodiment.
  • FIG. 6 is a potential conceptual diagram of a variable resistance element according to the present invention in the first embodiment using a p-type semiconductor strongly correlated material as a variable resistor.
  • FIG. 7 Sm Ca MnO (SCMO) as a variable resistor of the variable resistance element according to the present invention
  • FIG. 8 The book in the second embodiment using a strongly correlated material of n-type semiconductor as a variable resistor.
  • FIG. 9 is a diagram showing the potential dependence of the electron density near the metal-insulator transition point of the variable resistor in the second embodiment.
  • FIG. 10 is a diagram showing the spatial dependence near the interface between the metal electrode and the strongly correlated material when the two-phase coexisting phase of the variable resistor in the second embodiment is in the metal state.
  • FIG. 11 is a diagram showing the spatial dependence near the interface between the metal electrode and the strongly correlated material when the two-phase coexisting phase of the variable resistor in the second embodiment is in the insulator state.
  • FIG. 12 Current-voltage characteristics in the ON and OFF states when the interface potential ⁇ (0) between the metal electrode and strongly correlated material is in the middle of the phase transition points ⁇ ⁇ and ⁇ 2 in the second embodiment.
  • Current-voltage characteristics diagram showing
  • FIG. 13 is a potential conceptual diagram of a variable resistance element according to the second embodiment using a strongly correlated material of an n-type semiconductor as a variable resistor.
  • variable resistance element and a method for manufacturing the same according to the present invention (hereinafter simply referred to as “the element of the present invention” and “the method of the present invention” as appropriate) will be described based on the drawings. It should be noted that both the element of the present invention and the method of the present invention are referred to as “the present invention” as appropriate.
  • the element of the present invention is provided with a variable resistor having a strongly correlated material force between two metal electrodes, and the electric resistance between the metal electrodes is changed by applying a voltage pulse between the metal electrodes.
  • This is a variable resistance element.
  • the method of the present invention provides the manufacture of the variable resistance element. Is the method.
  • Non-Patent Document 3 describes the metal-insulator transition of various strongly correlated materials.
  • the strongly correlated material used in the element of the present invention is selected from the substance group detailed in the latter half of this paper (Chapter 4).
  • Chapter 4 of Non-Patent Document 3 V O, NiS Se, RNiO, NiS Se, Ca Sr VO, La Sr TiO are used as strongly correlated materials.
  • Non-Patent Document 4 a theoretical analysis is performed on the hysteresis phenomenon of the potential dependence of the electron density in the metal-insulator transition phenomenon observed in strongly correlated materials! The theoretical support of the characteristics shown in FIGS. 2 and 9 in the first and second embodiments of the present invention is given below.
  • FIG. 1 shows a cross-sectional structure of the element of the present invention in the first embodiment.
  • the element of the present invention is produced by sequentially depositing a lower electrode 3, a variable resistor 2 made of a strongly correlated material of p-type semiconductor (strongly correlated electron material), and an upper electrode 1 on a substrate 4.
  • the variable resistor 2 in the metal state is sandwiched between the electrodes 1 and 3 and operated by applying a voltage pulse between the electrodes.
  • Pulse voltage with a voltage amplitude greater than the absolute value of the threshold voltage described below Is used to realize the switching operation between ON state (low resistance state) and OFF state (high resistance state), and the resistance state of the element of the present invention is read by applying a voltage smaller than the threshold voltage as a memory element. use.
  • I and V in Fig. 1 indicate an ammeter and a voltmeter when measuring the current-voltage characteristics of the element of the present invention.
  • Non-Patent Document 5 the electron density near the potential at which the metal-insulator transition occurs shows a history as shown in FIG. In other words, as shown in Fig. 2, when the metal state force potential ⁇ is lowered, it is transferred to the insulator at the potential ⁇ 1. Conversely, when the potential ⁇ is increased from the insulator state, the metal state is changed to the metal state at the potential ⁇ 2. Metastasize.
  • the potential ⁇ is between the two phase transition points ⁇ ⁇ and ⁇ 2 ( ⁇ 1 ⁇ ⁇ 2), it is called a two-phase coexisting phase, and the electron density is in either the metallic state or the insulating state. Is also possible.
  • variable resistor strongly correlated material
  • metal ON state
  • insulator OFF state
  • RRAM resistive nonvolatile memory
  • An important point in the present invention is the work function difference between the electrode material of the lower electrode or the upper electrode (first electrode) and the variable resistor, and setting an appropriate work function difference Therefore, it is necessary to realize a two-phase coexistence phase in the variable resistor.
  • the potential in the variable resistor is ⁇ (X) (where X is the distance from the interface with the first electrode), ⁇ (X) varies in space due to the effect of charge injection from the electrode metal.
  • it is necessary to set a work function difference such that ⁇ X ⁇ (0) ⁇ 2 is satisfied, which is a condition that ⁇ (X) crosses the phase transition point.
  • Fig. 3 shows the device in the ON state where the two-phase coexisting phase is in the metal state
  • Fig. 4 shows the device in the OFF state where the two-phase coexisting phase is in the insulator state. Since the resistance increases when the insulator phase at the interface between the electrode and the strongly correlated material is thick, the current-voltage characteristics are different in Figs. 3 and 4 where two different insulator phase thicknesses are realized.
  • Fig. 5 shows the behavior of the current-voltage characteristics in the ON state and OFF state of the element of the present invention.
  • FIG. 6 is an energy band diagram showing a potential conceptual diagram at the interface between the metal electrode material and the strongly correlated material in the element of the present invention.
  • hole-doped p-type semiconductors are used as strongly correlated materials.
  • Mott metal insulator transition phenomenon at the interface due to band bending was theoretically calculated using Density Matrix Renormalization Group. The result can be explained by slightly expanding the Poisson equation used in semiconductor heterojunctions. Basically, a mott insulating phase (two-phase coexisting phase) is formed at the interface under no noise, that is, the thickness of the Mott insulating phase d> 0 is necessary to explain the switching phenomenon.
  • the thickness d of the Mott insulating phase is expressed by the following Equation 1, the thickness d of the Mott insulating phase
  • the potential difference Vd defined by the difference between the work function of the electrode material and the work function of the variable resistor (strongly correlated material) must satisfy at least the condition expressed by Equation 2 below. Need to be satisfied.
  • Equation 1 and Equation 2 above ⁇ is the doping rate of the variable resistor, W is the bandwidth of the variable resistor (see FIG. 6), and ⁇ is the mott of the variable resistor. It is a gap (see Figure 6).
  • is the dielectric constant of the variable resistor (Mott insulating phase), and e is the elementary charge.
  • the doping rate z corresponds to the number of carriers per unit cell that actually carry the conductivity of the variable resistor. In the first embodiment, since it is a variable resistance antibody type semiconductor, carriers are holes.
  • the doping rate z is set to the A value of the perovskite oxide.
  • One bing rate z can be expressed as 0 ⁇ z ⁇ 1).
  • the doping ratio z is specifically the composition analysis of the variable resistor
  • W is the photoelectron spectroscopy measurement of the variable resistor
  • is the optical spectrum (optical conductivity) of the variable resistor.
  • a P-type semiconductor velovskite oxide represented by the structural formula (general formula) of the following chemical formula 1 or the structural formula P-type semiconductor solids that can be combined with several different perovskite-type oxides.
  • n l, 2 or ⁇ , and 0 ⁇ 1.
  • RE is one rare earth element selected from La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and AE is Ca
  • Perovskite-type oxides have a flexible structure and a wide range of elements with a wide range of substitution. Therefore, precise control of bandwidth (W) and Mott gap ( ⁇ ), which are important parameters that determine the characteristics of variable resistance elements (threshold value, resistance value, resistance change ratio, stability), is easy.
  • W bandwidth
  • Mott gap
  • the material can be designed using the average ionic radius of RE and AE as the control parameter, and the bandwidth as the control parameter and the carrier amount as the doping rate z.
  • A-site ordered bebskite-type oxides a substance in which RE and AE ions at the A site are ordered (herein referred to as A-site ordered bebskite-type oxides) has a metal-insulator transition.
  • the preferred charge alignment temperature (or orbital alignment temperature, or defined as the charge orbital alignment temperature if they are aligned at the same temperature) is much higher than room temperature. Specifically, it is a substance expressed as REBaMn O (RE is
  • an example of a material having an elemental force other than Mn as the B site element is as follows.
  • Sm Sr NiO, E z 3 1 z z 3 1-z z 3 1-z z 3 u Sr NiO, etc. are preferable because the metal-insulator transition temperature is higher than room temperature.
  • n 1 (RE
  • La Sr) CuO, (La Ba) CuO and the like are preferable.
  • Sm Ca MnO (hereinafter referred to as “SCMO”) as a variable resistor is shown in the lower part.
  • a variable resistance element formed by forming Ti on the oxide electrode SRO, which is an electrode, and forming Ti as the upper electrode (first electrode), and PrCa MnO (PCMO) as the variable resistor,
  • Each switching characteristic of a variable resistance element is shown in which a film is formed on an oxide electrode SRO, which is a pole, and Ti is formed as the upper electrode (first electrode).
  • SRO oxide electrode
  • Ti is formed as the upper electrode (first electrode).
  • the switching ratio resistance ratio
  • SCMO SCMO is used as the variable resistor
  • a switching ratio of about 100 was obtained.
  • Sm is used for the A site
  • the Mott gap increases, so the resistance ratio increases compared to PCMO, which explains the switching operation principle obtained in the present invention, and the correspondence between theory and experimental data. Qualitatively good agreement was obtained.
  • FIG. 8 shows a cross-sectional structure of the element of the present invention in the second embodiment.
  • the element of the present invention is produced by sequentially depositing a lower electrode 3, a variable resistor 5 made of a strongly correlated material of n-type semiconductor, and an upper electrode 1 on a substrate 4.
  • the variable resistor 2 in the metal state is sandwiched between the electrodes 1 and 3, and the voltage resistor is applied between the electrodes to operate.
  • the switching operation between the ON state (low resistance state) and OFF state (high resistance state) is realized using a pulse voltage with a voltage amplitude larger than the absolute value of the threshold voltage described below.
  • the resistance state of the element of the present invention is read by application and used as a memory element.
  • I and V in Fig. 8 indicate the ammeter and voltmeter when measuring the current-voltage characteristics of the element of the present invention.
  • Non-Patent Document 5 the electron density near the potential at which the metal-insulator transition occurs shows a history as shown in FIG. 9 with respect to the potential change.
  • the metal state force potential ⁇ when the metal state force potential ⁇ is increased, it is transferred to the insulator at the potential ⁇ 1, but conversely, when the potential ⁇ is decreased, the metal state is changed to the metal state at the potential ⁇ 2.
  • Metastasize When the potential ⁇ is between the two phase transition points ⁇ , and ⁇ 2 ( ⁇ 2 and ⁇ and ⁇ 1), it is called a two-phase coexisting phase, and the electron density is in either the metallic state or the insulating state. Is also possible.
  • variable resistor strongly correlated material
  • metal ON state
  • insulator OFF state
  • RRAM resistive nonvolatile memory
  • An important point in the present invention is the work function difference between the electrode material of the lower electrode or the upper electrode (first electrode) and the variable resistor, and it is necessary to set an appropriate work function difference. This Therefore, it is necessary to realize a two-phase coexistence phase in the variable resistor. If the potential in the variable resistor is ⁇ (X) (where X is the distance from the interface with the first electrode), ⁇ (X) varies in space due to the effect of charge injection from the electrode metal. In the present invention, it is necessary to set a work function difference such that ⁇ 2 ⁇ (0) ⁇ 1, which is a condition that ⁇ (X) crosses the phase transition point.
  • Fig. 10 shows the device in the ON state where the two-phase coexisting phase is in the metal state
  • Fig. 11 shows the device in the OFF state where the two-phase coexisting phase is in the insulator state. Since the resistance increases when the insulator phase at the interface between the electrode and the strongly correlated material is thick, the current-voltage characteristics are different in Fig. 10 and Fig. 11, where two different insulator phase thicknesses are realized.
  • FIG. 12 shows the behavior of the current-voltage characteristics in the ON state and OFF state of the element of the present invention.
  • the device in the ON state, when a positive voltage noise with a voltage amplitude larger than the absolute value IV t3 I of the threshold voltage is applied to the element of the present invention, the device transits to the OFF state, and conversely, in the OFF state, When a negative voltage pulse with a voltage amplitude greater than the absolute value I Vt4 I of the threshold voltage is applied to the inventive device, it transitions to the ON state.
  • FIG. 13 is an energy band diagram showing a potential conceptual diagram at the interface between the metal electrode material and the strongly correlated material in the element of the present invention.
  • An electron-doped n-type semiconductor is used as the strongly correlated material.
  • Mott metal insulator transition phenomenon at the interface due to band bending was theoretically calculated using Density Matrix Renormalization Group. The result can be explained by slightly expanding the Poisson equation used in semiconductor heterojunctions. Basically, a mott insulating phase (two-phase coexisting phase) is formed at the interface under no-noise, that is, the thickness of the mott insulating phase d> 0 is necessary to explain the switching phenomenon.
  • the thickness d of the Mott insulating phase is expressed by the following Equation 3, the thickness d of the Mott insulating phase
  • is the driving ratio of the variable resistor
  • W is the bandwidth of the variable resistor (see FIG. 13)
  • is the Mott gap of the variable resistor (see Fig. 13).
  • represents the dielectric constant of the variable resistor (Mott insulating phase)
  • e represents the elementary electric quantity.
  • the doping rate z actually corresponds to the number of carriers per unit cell that carry the conductivity of the variable resistor.
  • the carrier is an electron.
  • the doping ratio z is the composition ratio (molar fraction) of the alkaline earth metal AE that replaces the rare earth metal RE at the A site of the perovskite oxide. )
  • RE AE the alkaline earth metal AE that replaces the rare earth metal RE at the A site of the perovskite oxide.
  • the doping rate z is specifically the composition analysis of the variable resistor
  • W is the photoelectron spectroscopic measurement at the variable resistor Balta
  • is the optical spectrum at the variable resistor Balta (optical conductivity) Respectively.
  • an n-type semiconductor velovskite oxide represented by the structural formula (general formula) of the following chemical formula 2 or the structural formula
  • An n-type semiconductor solid solution which is a combination force of a plurality of different perovskite type oxides.
  • n l, 2 or ⁇ , and 0 ⁇ 1.
  • RE is any one selected from La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Force One rare earth element AE is one alkaline earth element selected from Ca, Sr, Ba, B force One element selected from Ti, V It is.
  • examples of the Ti oxide include Sr La TiO, La Y TiO, and Y Ca TiO.
  • La Ca VO and La Sr VO are preferred as V oxides!
  • the strongly correlated material of the variable resistor may be a material other than the velovskite-type oxides exemplified in the first and second embodiments, by introducing oxygen vacancies or excessively. It is possible to induce a similar resistance switching operation by introducing oxygen into the substrate.
  • One example is binary oxides such as NiO and CoO into which oxygen deficiency or excess oxygen is introduced. Since there are few kinds of metal elements, the composition can be easily adjusted. Fe 2 O and the like are also suitable. Furthermore, VO, V O, and
  • V 2 O is doped with Cr
  • the carrier function per unit cell is z, and the work function of the electrode material and the variable resistance antibody (strong When the potential difference Vd defined by the work function difference of the correlation material satisfies the condition expressed by the following formula 5, a variable resistance element exhibiting good switching characteristics can be obtained.
  • W is the bandwidth of the variable resistor, and ⁇ is the mott gap of the variable resistor.
  • variable resistor material by introducing excess oxygen in the present embodiment, a transition metal oxide (or lanthanoid metal oxide) of a ⁇ -type semiconductor represented by the following structural formula (general formula) of chemical formula 3 Product).
  • m and n are the stoichiometric composition determined by the valence of the metal (M) ion, and z is the carrier concentration per unit cell by introduction of excess oxygen. Yes, 0 ⁇ z ⁇ 1.
  • M is any one element selected from the transition metals having 3d electrons, 4d electrons, or 5d electrons, or the lanthanoid metal having 4f electrons.
  • z which is the carrier concentration per unit cell, is defined as the doping rate z as in the case of the perovskite type oxide in the first embodiment.
  • variable resistor material by introducing oxygen vacancies in the present embodiment, a transition metal oxide (or lanthanoid metal oxide) of an ⁇ -type semiconductor represented by the following structural formula (general formula) of Chemical Formula 4 ).
  • m and n are the stoichiometric composition determined by the valence of the metal (M) ion, and z is the carrier per unit cell due to the introduction of oxygen deficiency. Concentration, where 0 ⁇ z ⁇ 1.
  • M is any one element selected as a transition metal having 3d electrons, 4d electrons, or 5d electrons, or a lanthanoid metal having 4f electrons.
  • z which is the carrier concentration per unit cell, is defined as the doping rate z, as in the case of the perovskite type oxide in the second embodiment.
  • a binary transition metal oxide is formed by doping a metal element with a structural formula of the following chemical formula 5 (general An n-type or p-type semiconductor transition metal oxide (or lanthanoid oxide) represented by the formula) is a suitable example of a variable resistor material.
  • m and n are the stoichiometric composition determined by the valence of the metal (M) ion, and z is the doping of the metal N having a valence different from that of M.
  • Quantity 0 ⁇ 1.
  • M is an element of any force selected as a medium force of transition metals having 3d electrons, 4d electrons or 5d electrons, or lanthanoid metals having 4f electrons.
  • N is one element selected from alkali metals, alkaline earth metals, transition metals, and lanthanoid metals.
  • z which is the carrier concentration per unit cell, is defined as the doping rate z, as in the case of Chemical Formula 3 or 4 above.
  • the oxide material of the above embodiment is preferable.
  • sulfides such as NiS Se can be used as strongly correlated materials for variable resistors.
  • 2-z z is considered as a candidate, but from the viewpoint of the environment, the above oxide material is preferable to sulfide.
  • a force using a perovskite type oxide doped in the A site as a strongly correlated material of the variable resistor As a strongly correlated material of the variable resistor.
  • a similar resistance switching operation can be induced even in a container.
  • the velovskite-type oxides doped at the B site are represented by the structural formula (general formula) of the following chemical formula 6.
  • a material such as SrTi Nb O doped with Nb in Ti at the B site is also suitable.
  • A is an alkaline earth element, and TA and TB are different transition metal elements.
  • variable resistance element and the manufacturing method thereof according to the present invention include a variable resistor provided between two metal electrodes, and an electric resistance between the metal electrodes by applying a voltage pulse between the metal electrodes.
  • the present invention can be used for a nonvolatile semiconductor memory device including a variable resistance element that changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Adjustable Resistors (AREA)

Abstract

 2つの金属電極の間に強相関材料からなる可変抵抗体を設けてなり、金属電極間に電圧パルスを印加することにより金属電極間の電気抵抗が変化する可変抵抗素子において、明確なスイッチング動作原理の裏付けによって、金属電極及び可変抵抗体を適切に設計して、電気抵抗の低抵抗状態と高抵抗状態間の抵抗比の大きなスイッチング動作を可能とする可変抵抗素子を提供する。電圧パルスの印加によって、2つの金属電極1,3の何れか一方の第1電極と可変抵抗体2の界面において金属絶縁体転移が生じるように第1電極と可変抵抗体の材料及び組成を設定する。更に、第1電極と可変抵抗体の仕事関数差が、可変抵抗体の第1電極との界面近傍において金属相と絶縁体相の2相共存相を形成し得る仕事関数差となっている。

Description

明 細 書
可変抵抗素子及びその製造方法
技術分野
[0001] 本発明は、 2つの金属電極の間に可変抵抗体を設けてなり、該金属電極間に電圧 パルスを印加することにより該金属電極間の電気抵抗が変化する可変抵抗素子及び その製造方法に関する。
背景技術
[0002] 近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメ モリ (NVRAM : Nonvolatile Random Access Memory)として、 FeRAM (Fer roelectric RAM)、 MRAM (Magnetic RAM)、 OUM (Ovonic Unified Me mory)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及 び、プロセス整合性という観点から、激しい開発競争が行われている。しかしながら、 現状のこれらメモリデバイスには各々一長一短があり、 SRAM, DRAM,フラッシュメ モリの各利点を併せ持つ「ユニバーサルメモリ」の理想実現には未だ遠 、。
[0003] これら既存技術に対して、電圧パルスを印加することによって可逆的に電気抵抗が 変化する可変抵抗素子を用いた抵抗性不揮発性メモリ RRAM (Resistance Contr ol Random Access Memory、: RRAMはシャープ株式会社の登録商標)が提 案されている。この可変抵抗素子の構造は極めて単純で、図 1に示すように、 2つの 金属電極である上部電極 1と下部電極 3の間に可変抵抗体 2を設けた積層構造とな つており、上部電極 1と下部電極 3間に電圧パルスを印加することにより、両電極間の 抵抗値を可逆的に変化させることができる。この可逆的な抵抗変化動作 (以下、適宜 「スイッチング動作」と称す。 )における抵抗値を読み出すことによって、新規な不揮発 性記憶装置が実現できる。
[0004] 米国ヒューストン大の Shangquing Liuや Alex Ignatiev等によって、上記可変 抵抗体の材料として超巨大磁気抵抗(CMR: colossal magnetoresistance)効果 で知られるぺロブスカイト材料に電圧パルスを印加することにより可逆的に電気抵抗 を変化させる方法が、下記の特許文献 1及び非特許文献 1に開示されている。これは 超巨大磁気抵抗効果で知られるベロブスカイト材料を用いながらも、磁場の印加なし に室温においても数桁にわたる抵抗変化が現れるという極めて画期的なものである。 尚、特許文献 1に例示する素子構造では、上記可変抵抗体の材料としてべ口ブス力 イト型酸化物である結晶性プラセォジゥム.カルシウム.マンガン酸化物 pr Ca Mn
1 -Z z
O (以下、適宜「PCMO」と称す。)膜が用いられている。また、材料としては、ぺロブ
3
スカイト材料以外に、 2元系の遷移金属酸ィ匕物においても、スイッチングすることが非 特許文献 5にお 、て開示されて 、る。
[0005] 現在のところ、上記可変抵抗素子のスイッチングの動作原理については解明されて いないが、独立行政法人産業技術総合研究所の Sawa等により、電極と可変抵抗体 の間にショットキー障壁を形成することにより、抵抗比の大きなメモリを実現することが
、下記の非特許文献 2で提案されている。
[0006] 特許文献 1:米国特許第 6204139号明細書
非特許文献 l : Zhuang, H. H.他、 "Novel Colossal Random Access Mem ory (RRAM) ", IEDM,論文番号 7. 5, 2002年 12月
^f^f^ lS^A- Sawafti^ Hysteretic current— voltage characteristic an d resistance switching at a rectifying Ti/PrO. 7CaO. 3Mn03 interfa ce", Applied Physics Letter, vol. 85 pp. 4073〜4075, 2004年 11月 非特許文献 3 : M. Imada他、" Metal— Insulator Transition", Review of Mo deran Physics70, pp. 1039〜1247, 1998年、特に第 4章(pp. 1144〜1245) 非特許文献 4 : G. Kotliar他、 Compressibility Divergence and the Finite Temperature Mott Transition", Physical Review Letters, Vol. 89, N o. 4, pp. 046401— 1〜046401— 4, 2002年
非特許文献 5 : G. Dearnaley他、 "Electrical Phenomena in Amorphous O xide Films , Reports on Progress in Physics 33, pp. 1129〜1191, 197 0年 9月
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、従来の発明及び文献で提案されている抵抗変化ランダムアクセスメ モリにおいては、未だにスイッチング動作の動作原理が解明されておらず、デバイス を設計するためのプロセスパラメータの制御指針が明確になって ヽな 、。
[0008] 本発明は、上記の問題点に鑑みてなされたものであり、 2つの金属電極の間に強相 関材料カゝらなる可変抵抗体を設けてなり、金属電極間に電圧パルスを印加すること により金属電極間の電気抵抗が変化する可変抵抗素子において、明確なスィッチン グ動作原理の裏付けによって、金属電極及び可変抵抗体を適切に設計して、電気 抵抗の低抵抗状態と高抵抗状態間の抵抗比の大きなスイッチング動作を可能とする 可変抵抗素子を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するための本発明に係る可変抵抗素子は、 2つの金属電極の間に 強相関材料カゝらなる可変抵抗体を設けてなり、前記金属電極間に電圧パルスを印加 することにより前記金属電極間の電気抵抗が変化する可変抵抗素子であって、前記 電圧パルスの印加によって、前記 2つの金属電極の何れか一方の第 1電極と前記可 変抵抗体の界面において金属絶縁体転移が生じることを特徴とする。
[0010] 更に、上記特徴の可変抵抗素子は、前記第 1電極と前記可変抵抗体の仕事関数 差力 前記可変抵抗体の前記第 1電極との界面近傍において金属相と絶縁体相の 2 相共存相を形成し得る仕事関数差であることを特徴とする。
[0011] 更に、上記特徴の可変抵抗素子は、前記金属絶縁体転移がモット転移であること を特徴とする。
[0012] 更に、上記特徴の可変抵抗素子は、前記可変抵抗体がぺロブスカイト型酸ィ匕物で あることを特徴とする。
[0013] 更に、上記特徴の可変抵抗素子は、前記可変抵抗体が、一般式 (RE AE )
1— z z n+ 1
B O 、(但し、 n= l, 2または∞、且つ、ドーピング率 zは 0≤ζ≤1を満たす)で表 n 3n+ l
される P型半導体または n型半導体のぺロブスカイト型酸化物、或いは、前記一般式 で表される複数の異なるぺロブスカイト型酸ィ匕物の組み合わせ力 なる P型半導体ま たは n型半導体の固溶体であり、前記一般式における RE力 La, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れか 1つの希土類元素 であり、前記一般式における AE力 Ca, Sr, Baの中から選択される何れか 1つのァ ルカリ土類元素であり、前記一般式における B力 Sc, Ti, V, Cr, Mn, Fe, Co, Ni , Cuの中力 選択される何れか 1つの元素であることを特徴とする。
[0014] 更に、上記特徴の可変抵抗素子は、遷移金属酸化物、または、ランタノイド系金属 酸化物であることを特徴とする。
[0015] 更に、上記特徴の可変抵抗素子は、前記可変抵抗体が、一般式 M O (m及 m (l -z) n び nは金属(M)イオンの価数により決定される化学量論組成、 zは過剰酸素の導入 による 1ユニットセル当たりのキャリア濃度、 0< ζ< 1)で表される p型半導体、または、 一般式 M O (m及び nは金属(M)イオンの価数により決定される化学量論組成 m n(l -z)
、 zは酸素欠損の導入による 1ユニットセル当たりのキャリア濃度、 0< z< l)で表され る n型半導体の金属酸化物であり、前記一般式の Mが、 3d電子、 4d電子または 5d 電子を有する遷移金属、または、 4f電子を有するランタノイド系金属の中から選択さ れる何れ力 1つの元素であることを特徴とする。
[0016] 更に、上記特徴の可変抵抗体素子は、前記可変抵抗体が、(M N ) O (m及び
1— z z m n nは金属(M)イオンの価数により決定される化学量論組成、 zは Mとは価数の異なる 金属 N (Nは、アルカリ金属、アルカリ土類金属、遷移金属、ランタノイド系金属)のド 一ビング量、 0≤ζ≤1)で表される金属酸ィ匕物であり、前記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金属、または、 4f電子を有するランタノイド系金 属の中力も選択される何れか 1つの元素であることを特徴とする。
[0017] 更に、上記特徴の可変抵抗素子は、前記第 1電極と p型半導体である前記可変抵 抗体の仕事関数差で定義される電位差 Vdが、前記可変抵抗体のドーピング率を z、 前記可変抵抗体のバンド幅を W、前記可変抵抗体のモットギャップを Δとした場合、
Vd < -z (W- Δ ) /2
で示される不等式を満足することを特徴とする。
[0018] 更に、上記特徴の可変抵抗素子は、前記第 1電極と η型半導体である前記可変抵 抗体の仕事関数差で定義される電位差 Vdが、前記可変抵抗体のドーピング率を ζ、 前記可変抵抗体のバンド幅を W、前記可変抵抗体のモットギャップを Δとした場合、
Vd > z (W- Δ ) /2
で示される不等式を満足することを特徴とする。 [0019] 更に、本発明に係る可変抵抗素子の製造方法は、 2つの金属電極の間に強相関 材料力もなる可変抵抗体を設けてなる可変抵抗素子の製造方法であって、前記可 変抵抗素子が、前記金属電極間に電圧パルスを印加することにより、前記 2つの金 属電極の何れか一方の第 1電極と前記可変抵抗体の界面において金属絶縁体転移 が生じて、前記金属電極間の電気抵抗が変化する特性を有し、前記第 1電極と前記 可変抵抗体の仕事関数差が、前記可変抵抗体の前記第 1電極との界面近傍におい て金属相と絶縁体相の 2相共存相を形成し得る仕事関数差となるように、前記第 1電 極の材料及び組成、前記可変抵抗体の材料及び組成を設定することを特徴とする。
[0020] 更に、上記特徴の可変抵抗素子の製造方法は、前記可変抵抗体が、ベロブスカイ ト型酸化物であることを特徴とする。
[0021] 更に、上記特徴の可変抵抗素子の製造方法は、前記可変抵抗体が、一般式 (RE
AE ) B O 、(但し、 n= l, 2または∞、且つ、ドーピング率 zは 0≤z≤ 1を満
-Z z n+ 1 n 3n+ l
たす)で表される p型半導体または n型半導体のぺロブスカイト型酸化物、或いは、前 記一般式で表される複数の異なるぺロブスカイト型酸ィ匕物の組み合わせ力 なる P型 半導体または n型半導体の固溶体であり、前記一般式における RE力 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れか 1つの希 土類元素であり、前記一般式における AE力 Ca, Sr, Baの中力 選択される何れ 力 1つのアルカリ土類元素であり、前記一般式における B力 Sc, Ti, V, Cr, Mn, F e, Co, Ni, Cuの中力 選択される何れ力 1つの元素であることを特徴とする。
[0022] 更に、上記特徴の可変抵抗素子の製造方法は、遷移金属酸化物、または、ランタノ イド系金属酸ィ匕物であることを特徴とする。
[0023] 更に、上記特徴の可変抵抗素子の製造方法は、前記可変抵抗体が、一般式 M
m (l
Ο (m及び nは金属(M)イオンの価数により決定される化学量論組成、 zは過剰酸
-z) n
素の導入による 1ユニットセル当たりのキャリア濃度、 0< z< 1)で表される p型半導体 、または、一般式 M O (m及び nは金属(M)イオンの価数により決定される化学
m n(l -z)
量論組成、 zは酸素欠損の導入による 1ユニットセル当たりのキャリア濃度、 0< z< l) で表される n型半導体の金属酸化物であり、前記一般式の Mが、 3d電子、 4d電子ま たは 5d電子を有する遷移金属、または、 4f電子を有するランタノイド系金属の中から 選択される何れか 1つの元素であることを特徴とする。
[0024] 更に、上記特徴の可変抵抗体素子の製造方法は、前記可変抵抗体が、(M N )
1— z z
O (m及び nは金属(M)イオンの価数により決定される化学量論組成、 zは Mとは価 m n
数の異なる金属 N (Nは、アルカリ金属、アルカリ土類金属、遷移金属、ランタノイド系 金属)のドーピング量、 0≤z≤l)で表される金属酸ィ匕物であり、前記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金属、または、 4f電子を有するランタノ イド系金属の中力 選択される何れか 1つの元素であることを特徴とする。
[0025] 更に、上記特徴の可変抵抗素子の製造方法は、前記第 1電極と p型半導体である 前記可変抵抗体の仕事関数差で定義される電位差 Vdが、前記可変抵抗体のドーピ ング率を z、前記可変抵抗体のバンド幅を W、前記可変抵抗体のモットギャップを Δと した ¾口ゝ
Vd < -z (W- Δ ) /2
で示される不等式を満足するように、前記第 1電極の材料及び組成、前記可変抵抗 体の材料及び組成を設定することを特徴とする。
[0026] 更に、上記特徴の可変抵抗素子の製造方法は、前記第 1電極と η型半導体である 前記可変抵抗体の仕事関数差で定義される電位差 Vdが、前記可変抵抗体のドーピ ング率を z、前記可変抵抗体のバンド幅を W、前記可変抵抗体のモットギャップを Δと した ¾口ゝ
Vd > z (W- Δ ) /2
で示される不等式を満足するように、前記第 1電極の材料及び組成、前記可変抵抗 体の材料及び組成を設定することを特徴とする。
発明の効果
[0027] 上記特徴の可変抵抗素子または上記特徴の可変抵抗素子の製造方法によれば、 2つの金属電極の何れか一方の第 1電極と可変抵抗体の界面における金属絶縁体 転移 (モット転移)によるスイッチング動作原理が理論的に示されることで、適正なスィ ツチング動作を得る材料設計条件が明らかとなり、電気抵抗の低抵抗状態と高抵抗 状態間の抵抗比の大きなスイッチング動作の可能な可変抵抗素子を得ることができ る。 [0028] 特に、第 1電極と前記可変抵抗体の仕事関数差で定義される電位差 Vdが、前記 可変抵抗体のドーピング濃度を z、前記可変抵抗体のバンド幅を W、前記可変抵抗 体のモットギャップを Δとした場合、 p型半導体の前記可変抵抗体に対しては、
Vd < -z (W- Δ ) /2
で示される不等式を満足するように、また、 η型半導体の前記可変抵抗体に対しては
Vd > z (W- Δ ) /2
で示される不等式を満足するように、第 1電極の材料及び組成、可変抵抗体の材料 及び組成を設定することで、具体的な材料設計条件が明らかとなり、より詳細なスイツ チング動作特性の可変抵抗素子の提供が可能となる。 図面の簡単な説明
[0029] [図 1]可変抵抗体として ρ型半導体の強相関材料を用いた第 1実施形態における本 発明に係る可変抵抗素子の断面構造を模式的に示す素子断面図
[図 2]第 1実施形態における可変抵抗体の金属絶縁体転移点近傍における電子密 度の電位依存性を示す図
[図 3]第 1実施形態における可変抵抗体の 2相共存相が金属状態にある場合の金属 電極と強相関材料の界面近傍の空間依存性を示す図
[図 4]第 1実施形態における可変抵抗体の 2相共存相が絶縁体状態にある場合の金 属電極と強相関材料の界面近傍の空間依存性を示す図
[図 5]第 1実施形態において金属電極と強相関材料の界面電位 φ (0)が相転移点 φ 1, φ 2の中間にある場合の ON状態と OFF状態における電流電圧特性の振る舞い を示す電流電圧特性図
[図 6]可変抵抗体として p型半導体の強相関材料を用いた第 1実施形態における本 発明に係る可変抵抗素子のポテンシャル概念図
[図 7]本発明に係る可変抵抗素子の可変抵抗体として Sm Ca MnO (SCMO)
0. 7 0. 3 3 を用いた場合と Pr Ca MnO (PCMO)を用いた場合のスイッチング特性を示す
0. 7 0. 3 3
特性図
[図 8]可変抵抗体として n型半導体の強相関材料を用いた第 2実施形態における本 発明に係る可変抵抗素子の断面構造を模式的に示す素子断面図
[図 9]第 2実施形態における可変抵抗体の金属絶縁体転移点近傍における電子密 度の電位依存性を示す図
[図 10]第 2実施形態における可変抵抗体の 2相共存相が金属状態にある場合の金 属電極と強相関材料の界面近傍の空間依存性を示す図
[図 11]第 2実施形態における可変抵抗体の 2相共存相が絶縁体状態にある場合の 金属電極と強相関材料の界面近傍の空間依存性を示す図
[図 12]第 2実施形態において金属電極と強相関材料の界面電位 φ (0)が相転移点 φ ΐ , φ 2の中間にある場合の ON状態と OFF状態における電流電圧特性の振る舞 いを示す電流電圧特性図
[図 13]可変抵抗体として n型半導体の強相関材料を用いた第 2実施形態における本 発明に係る可変抵抗素子のポテンシャル概念図
符号の説明
[0030] 1 : 上部電極
2 : p型半導体の強相関材料 (可変抵抗体)
3 : 下部電極
4 : 基板
5 : n型半導体の強相関材料 (可変抵抗体)
W: 可変抵抗体のバンド幅
Δ: 可変抵抗体のモットギャップ
d : モット絶縁相の厚み
Ml
発明を実施するための最良の形態
[0031] 以下、本発明に係る可変抵抗素子及びその製造方法 (以下、適宜「本発明素子」 及び「本発明方法」と略称する)の実施形態を図面に基づいて説明する。尚、本発明 素子と本発明方法の両方を指して適宜「本発明」と略称する。
[0032] 本発明素子は、 2つの金属電極の間に強相関材料力 なる可変抵抗体を設けてな り、前記金属電極間に電圧パルスを印加することにより前記金属電極間の電気抵抗 が変化する可変抵抗素子である。また、本発明方法は、当該可変抵抗素子の製造 方法である。
[0033] 本願の発明者等の鋭意検討により、金属電極と強相関材料の界面に電圧が印加さ れたとき、強相関材料がモット転移し、上記素子構造の可変抵抗素子が抵抗スィッチ ング動作することが理論的に初めて明らかになった。本発明素子及び本発明方法は
、当該抵抗スイッチング動作の理論的に解明された動作メカニズムに基づいて、その 意味内容が規定されている。以下、詳細に説明する。
[0034] 尚、参考として、一般的な強相関材料の相転移については、背景技術の欄の末尾 に記載した非特許文献 3や非特許文献 4で説明されており、当該非特許文献 3及び
4を本願の先行技術文献として開示する。
[0035] 非特許文献 3にお ヽては、種々の強相関材料の金属絶縁体転移にっ ヽて解説さ れている。本発明素子で用いる強相関材料は、この論文の後半 (第 4章)において詳 述されている物質群等から選択する。尚、非特許文献 3の第 4章において、強相関材 料として、 V O 、 NiS Se、 RNiO、 NiS Se、 Ca Sr VO、 La Sr TiO
2 3-y 2-x x 3 l _x x l _x y 3 l _x x
、 La Sr VO、 La Sr CuO、 Nd Ce CuO、 YBa Cu O , Bi Sr Ca
3 1 -x x 3 2-x x 4 2-x x 4 2 3 7-y 2 2 l _x
R Cu O , La Sr CuO 、 Sr Ca Cu O 、 BaVS、 Fe O、 La Sr Fe x 2 8+ δ 1 -x x 2. 5 14-χ x 24 41 3 3 4 1 -x x
O、 La Sr NiO 、 La Sr MnO、 La Sr MnO , La Sr Mn O、
3 2-x x 4+y 1 -x 1 +x 4 1 -x x 3 2_2x l + 2x 2 7
FeSi、 VO、 Ti O、 LaCoO , La A VS 、 Sr RuO、及び、 Ca Sr Ru
2 2 3 3 1. 17-x x 3. 17 2 4 1 -x x oが開示されている。
3
[0036] 非特許文献 4においては、強相関材料で見られる金属絶縁体転移現象における電 子密度の電位依存性の履歴現象に対する理論的解析を行なって!/、る。本発明の下 記の第 1及び第 2実施形態における図 2及び図 9に示す特性の理論的裏付けを与え ている。
[0037] 〈第 1実施形態〉
図 1に、第 1実施形態における本発明素子の断面構造を示している。本発明素子 は、基板 4上に下部電極 3、 p型半導体の強相関材料 (強相関電子系の材料)からな る可変抵抗体 2、上部電極 1を順次堆積することにより作成される。金属状態にある 可変抵抗体 2を両電極 1, 3間に挟み、電極間に電圧パルスを印加することにより動 作させる。以下で説明する閾値電圧の絶対値より大きな電圧振幅によるパルス電圧 を用いて ON状態 (低抵抗状態)と OFF状態 (高抵抗状態)の間のスイッチング動作 を実現し、該閾値電圧より小さな電圧の印加により本発明素子の抵抗状態を読み出 し、メモリ素子として使用する。 ON状態と OFF状態とで異なった電気抵抗を持った めには、適切な仕事関数を有する電極材料を選択する必要があり、電極と可変抵抗 体の組み合わせによってスイッチング動作の性能が異なる。尚、図 1中の Iと Vは、本 発明素子の電流電圧特性測定時の電流計と電圧計を示している。
[0038] 先ず、スイッチング動作原理について説明する。非特許文献 5に示すように、金属 絶縁体転移が起こる電位付近の電子密度は、電位変化に対して、図 2に示すような 履歴を示す。つまり、図 2に示すように、金属状態力 電位 φを下げると、電位 φ 1で 絶縁体に転移するが、逆に絶縁体状態カゝら電位 φを上げると、電位 φ 2で金属状態 に転移する。電位 φが 2つの相転移点 φ ΐ, φ 2の中間にある場合( φ 1 < φ < φ 2) は、 2相共存相と呼ばれ、電子密度は金属状態と絶縁状態の何れの状態にも成り得 る。可変抵抗体 (強相関材料)中でこの 2相共存相を実現させ、金属 (ON状態)と絶 縁体 (OFF状態)の間を変化させることにより、抵抗性不揮発性メモリ (RRAM)に使 用可能な可変抵抗素子として機能させることが可能になる。
[0039] 本発明で重要なポイントは、下部電極または上部電極の何れか一方 (第 1電極)の 電極材料と可変抵抗体との仕事関数差であり、適切な仕事関数差を設定すること〖こ より、可変抵抗体中に 2相共存相を実現させる必要がある。可変抵抗体中の電位を φ (X) (但し、 Xは第 1電極との界面からの距離)とすると、 φ (X)は電極金属からの電 荷注入の効果により空間変化する。本発明においては、 φ (X)が相転移点を横切る 条件である、 φ Κ φ (0) < φ 2が成立するような仕事関数差を設定する必要がある 。このとき、相転移点が 2相共存相の両側に φ ΐ, φ 2の 2点存在するため、何れが選 択されるかによつて可変抵抗体内における絶縁体相の厚みが異なる。図 3は 2相共 存相が金属状態にある ON状態にあるデバイスを、図 4は 2相共存相が絶縁体状態 にある OFF状態にあるデバイスを、夫々示している。電極と強相関材料の界面の絶 縁体相が厚いと抵抗が大きくなるため、異なる 2通りの絶縁体相の厚みが実現してい る図 3と図 4では電流電圧特性が異なる。
[0040] 図 5に、本発明素子の ON状態と OFF状態における電流電圧特性の振る舞いを示 す。図 5に示すように、 OFF状態において、本発明素子に閾値電圧の絶対値 | Vtl Iより大きい電圧振幅の正電圧パルスを印加すると ON状態に遷移し、逆に、 ON状 態において、本発明素子に閾値電圧の絶対値 | Vt2 |より大きい電圧振幅の負電 圧パルスを印加すると OFF状態に遷移する。
[0041] 次に、スイッチング動作を実現するための条件を説明する。図 6は、本発明素子に おける金属電極材料と強相関材料の界面におけるポテンシャル概念図を示すエネ ルギバンド図である。尚、強相関材料として、正孔ドープの p型半導体を用いている。 バンドベンディングによる界面でのモット金属絶縁体転移現象は、密度行列繰り込み 群(Density Matrix Renormalization Group)を用いて理論計算した。結果は 、半導体へテロ接合で使われるポアツソン方程式を少し拡張すれば説明できる。基 本的には、無ノィァス下において、界面にモット絶縁相(2相共存相)が形成されるこ と、つまり、モット絶縁相の厚み d >0が、スイッチング現象を説明するのに必要な条
Ml
件である。
[0042] モット絶縁相の厚み d は、下記の数式 1で表されるため、モット絶縁相の厚み d
MI MI
が正値 (実数)となるためには、電極材料の仕事関数と可変抵抗体 (強相関材料)の 仕事関数の差で定義される電位差 Vdが、少なくとも下記の数式 2で表される条件を 満足する必要がある。
[0043] (数式 1)
d = ( ε (- 2Vd-z (W- A ) ) / (ez) ) 1/2
MI
[0044] (数式 2)
Vd < -z (W- Δ ) /2
[0045] 但し、上記数式 1及び数式 2にお 、て、 ζは可変抵抗体のドーピング率であり、 Wは 可変抵抗体のバンド幅であり(図 6参照)、 Δは可変抵抗体のモットギャップである(図 6参照)。また、上記数式 1において、 εは可変抵抗体 (モット絶縁相)の誘電率を、 e は電気素量を夫々示す。ここで、ドーピング率 zは、実際には可変抵抗体の持つ導電 を担うキャリアの 1ユニットセル当たりの個数に相当する。第 1実施形態では、可変抵 抗体力 ¾型半導体であるため、キャリアは正孔である。可変抵抗体として後述のぺロ ブスカイト型酸化物を使用する場合、ドーピング率 zをぺロブスカイト型酸化物の Aサ イトの希土類金属 REを置換するアルカリ土類金属 AEの組成比(モル分率)として、 可変抵抗体を一般式 (RE AE ) B O 、(但し、 n= l, 2または∞、且つ、ド
1 -z z n+ 1 n 3n+ l
一ビング率 zは 0≤z≤ 1を満たす)で表すことができる。
[0046] 従って、ドーピング率 zは具体的には可変抵抗体の組成分析、 Wは可変抵抗体の バルタでの光電子分光測定、 Δは可変抵抗体のバルタでの光学スペクトル (光学伝 導度)から、夫々導出できる。
[0047] 本発明にお 、ては、絶縁体転移相として、強相関材料が有望であるとして 、るが、 以下に例示する物質が望ましい。
[0048] 本実施形態における可変抵抗体の強相関材料の好適例として、下記化学式 1の構 造式 (一般式)で示される P型半導体のベロブスカイト型酸化物、或いは、当該構造 式で表される複数の異なるぺロブスカイト型酸ィ匕物の組み合わせ力 なる P型半導体 の固容体が挙げられる。
[0049] (化学式 1)
(RE AE ) B O
l -z z n+ 1 n 3n+ l
[0050] ここで、上記構造式において、 n= l, 2または∞、 0≤ζ≤1である。また、 REは、 La , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れ 力 1つの希土類元素であり、 AEは、 Ca, Sr, Baの中から選択される何れか 1つのァ ルカリ土類元素であり、 Bが、 Sc, Cr, Mn, Fe, Co, Ni, Cuの中力 選択される何 れか 1つの元素である。
[0051] 化学式 1に示す構造式は、具体的には、 n=∞の場合は、(RE AE ) BOとなり、
1 -z z 3 n= lの場合は、(RE AE ) BOとなり、 n= 2の場合は、(RE AE ) B Oとなる
1 -z z 2 4 1 -z z 3 2 7
[0052] ぺロブスカイト型酸ィ匕物はその構造の柔軟性力 元素の置換範囲が広ぐ幅広いド 一ビングが可能である。このため、可変抵抗素子の特性(閾値、抵抗値、抵抗変化比 、安定性)を決定する重要なパラメータであるバンド幅 (W)及びモットギャップ( Δ )の 精密な制御が容易であるという特長を有する。これは、即ち REと AEの平均のイオン 半径によりバンド幅を、ドーピング率 zによりキャリア量を、夫々制御パラメータとして材 料設計可能なためである。 [0053] 具体的には、化学式 1に示す構造式における Bサイト元素として Mnを選択した場 合の n=∞の(RE AE ) BO構造の Mn酸化物としては、 La Ca MnO、 Pr
1— z z 3 1— z z 3 1— z
Ca MnO、 Nd Ca MnO、 Sm Ca MnO、 Gd Ca MnO、 La Sr MnO z 3 1— z z 3 1— z z 3 1— z z 3 1 z z 3
、 Pr Sr MnO、 Nd Sr MnO、 Sm Sr MnO、 Gd Sr MnO等力 子まし
1— z z 3 1 z z 3 1— z z 3 1— z z 3 い。更に、当該ぺロブスカイト型酸化物において、 Aサイトの REイオン、 AEイオンが 秩序化した物質 (ここでは、 Aサイト秩序化べ口ブスカイト型酸ィ匕物と称す)は、金属 絶縁体転移が得られる電荷整列温度 (或いは軌道整列温度、または、これらが同一 の温度で揃う場合には電荷軌道整列温度として定義される)が室温よりも十分に高 ヽ ことからより好ましい。具体的には、 REBaMn Oとして表される物質である(REは、
2 6
上記の希土類元素が対応する)。
[0054] また、 n= lの場合の(RE AE ) BO構造の Mn酸化物としては、(La Sr ) M
1— z z 2 4 1— z z 2 nOが好ましい。更に、 n= 2の場合の(RE AE ) B O構造の Mn酸化物としては
4 1-z z 3 2 7
、 (La Sr ) Mn Oが好ましい。
1-z z 3 2 7
[0055] 続、て、 Bサイト元素として Mn以外の元素力もなる材料の例を挙げれば以下の通り である。
[0056] Ni酸化物としては、 n=∞の(RE AE ) BO構造の場合、 La Sr NiO、 Nd
1— z z 3 1— z z 3 1— z
Sr NiO、 Sm Sr NiO、 Eu Sr NiO等力 ^好まし!/ヽ。特に、 Sm Sr NiO、 E z 3 1 z z 3 1— z z 3 1— z z 3 u Sr NiO等は、金属絶縁体転移温度が室温より高く好ましい。また、 n= 1の (RE
1-z z 3
AE ) BO構造の場合、 (La Sr ) NiOが好ましい。
1 -z z 2 4 1 -z z 2 4
[0057] また、 Fe酸化物としては、 n=∞の(RE AE ) BO構造の La Sr FeOが好ま
1— z z 3 1 z z 3 しい。
[0058] 更に、 Cu酸化物としては、 n= lの(RE AE ) BO構造の(La Ca ) CuO、 (
1-z z 2 4 1-z z 2 4
La Sr ) CuO、 (La Ba ) CuO等が好ましい。
1-z z 2 4 1-z z 2 4
[0059] 図 7に、可変抵抗体として Sm Ca MnO (以下、「SCMO」と称す。)を、下部
0. 7 0. 3 3
電極である酸化物電極 SRO上に成膜し、更に、上部電極 (第 1電極)として Tiを形成 してなる可変抵抗素子と、可変抵抗体として Pr Ca MnO (PCMO)を、下部電
0. 7 0. 3 3
極である酸ィ匕物電極 SRO上に成膜し、更に、上部電極 (第 1電極)として Tiを形成し てなる可変抵抗素子の各スイッチング特性を示す。 [0060] 図 7に示すように、 PCMO膜の場合、スイッチング比 (抵抗比)は 10程度であるが、 可変抵抗体として SCMOを用いた場合、 100程度のスイッチング比が得られた。 Aサ イトに Smを用いた場合、モットギャップが大きくなるため、 PCMOに比べて抵抗比の 大きくなることが、本発明で得られたスイッチング動作原理カゝら説明でき、理論と実験 データの対応において定性的に良い一致が得られた。
[0061] 〈第 2実施形態〉
図 8に、第 2実施形態における本発明素子の断面構造を示している。本発明素子 は、基板 4上に下部電極 3、 n型半導体の強相関材料カゝらなる可変抵抗体 5、上部電 極 1を順次堆積することにより作成される。金属状態にある可変抵抗体 2を両電極 1 , 3間に挟み、電極間に電圧ノ ルスを印加することにより動作させる。以下で説明する 閾値電圧の絶対値より大きな電圧振幅によるパルス電圧を用いて ON状態 (低抵抗 状態)と OFF状態 (高抵抗状態)の間のスイッチング動作を実現し、該閾値電圧より 小さな電圧の印加により本発明素子の抵抗状態を読み出し、メモリ素子として使用す る。 ON状態と OFF状態とで異なった電気抵抗を持っためには、適切な仕事関数を 有する電極材料を選択する必要があり、電極と可変抵抗体の組み合わせによってス イッチング動作の性能が異なる。尚、図 8中の Iと Vは、本発明素子の電流電圧特性 測定時の電流計と電圧計を示して!/ヽる。
[0062] 先ず、スイッチング動作原理について説明する。非特許文献 5に示すように、金属 絶縁体転移が起こる電位付近の電子密度は、電位変化に対して、図 9に示すような 履歴を示す。つまり、図 9に示すように、金属状態力 電位 φを上げると、電位 φ 1で 絶縁体に転移するが、逆に絶縁体状態カゝら電位 φを下げると、電位 φ 2で金属状態 に転移する。電位 φが 2つの相転移点 φ ΐ , φ 2の中間にある場合( φ 2ぐ φぐ φ 1) は、 2相共存相と呼ばれ、電子密度は金属状態と絶縁状態の何れの状態にも成り得 る。可変抵抗体 (強相関材料)中でこの 2相共存相を実現させ、金属 (ON状態)と絶 縁体 (OFF状態)の間を変化させることにより、抵抗性不揮発性メモリ (RRAM)に使 用可能な可変抵抗素子として機能させることが可能になる。
[0063] 本発明で重要なポイントは、下部電極または上部電極の何れか一方 (第 1電極)の 電極材料と可変抵抗体との仕事関数差であり、適切な仕事関数差を設定すること〖こ より、可変抵抗体中に 2相共存相を実現させる必要がある。可変抵抗体中の電位を φ (X) (但し、 Xは第 1電極との界面からの距離)とすると、 φ (X)は電極金属からの電 荷注入の効果により空間変化する。本発明においては、 φ (X)が相転移点を横切る 条件である、 φ 2< φ (0) < φ 1が成立するような仕事関数差を設定する必要がある 。このとき、相転移点が 2相共存相の両側に φ ΐ, φ 2の 2点存在するため、何れが選 択されるかによつて可変抵抗体内における絶縁体相の厚みが異なる。図 10は 2相共 存相が金属状態にある ON状態にあるデバイスを、図 11は 2相共存相が絶縁体状態 にある OFF状態にあるデバイスを、夫々示している。電極と強相関材料の界面の絶 縁体相が厚いと抵抗が大きくなるため、異なる 2通りの絶縁体相の厚みが実現してい る図 10と図 11では電流電圧特性が異なる。
[0064] 図 12に、本発明素子の ON状態と OFF状態における電流電圧特性の振る舞いを 示す。図 12に示すように、 ON状態において、本発明素子に閾値電圧の絶対値 I V t3 Iより大きい電圧振幅の正電圧ノ ルスを印加すると OFF状態に遷移し、逆に、 O FF状態において、本発明素子に閾値電圧の絶対値 I Vt4 Iより大きい電圧振幅の 負電圧パルスを印加すると ON状態に遷移する。
[0065] 次に、スイッチング動作を実現するための条件を説明する。図 13は、本発明素子に おける金属電極材料と強相関材料の界面におけるポテンシャル概念図を示すエネ ルギバンド図である。尚、強相関材料として、電子ドープの n型半導体を用いている。 バンドベンディングによる界面でのモット金属絶縁体転移現象は、密度行列繰り込み 群(Density Matrix Renormalization Group)を用いて理論計算した。結果は 、半導体へテロ接合で使われるポアツソン方程式を少し拡張すれば説明できる。基 本的には、無ノ ィァス下において、界面にモット絶縁相(2相共存相)が形成されるこ と、つまり、モット絶縁相の厚み d >0が、スイッチング現象を説明するのに必要な条
Ml
件である。
[0066] モット絶縁相の厚み d は、下記の数式 3で表されるため、モット絶縁相の厚み d
MI MI
が正値 (実数)となるためには、電極材料の仕事関数と可変抵抗体 (強相関材料)の 仕事関数の差で定義される電位差 Vdが、少なくとも下記の数式 4で表される条件を 満足する必要がある。 [0067] (数式 3)
d = ( ε (- 2Vd+z (W- A ) ) / (-ez) ) 1/2
MI
[0068] (数式 4)
Vd > z (W- Δ ) /2
[0069] 但し、上記数式 3及び数式 4において、第 1実施形態と同様に、 ζは可変抵抗体のド 一ビング率であり、 Wは可変抵抗体のバンド幅であり(図 13参照)、 Δは可変抵抗体 のモットギャップである(図 13参照)。また、上記数式 3において、第 1実施形態と同様 に、 εは可変抵抗体 (モット絶縁相)の誘電率を、 eは電気素量を夫々示す。ここで、 ドーピング率 zは、実際には可変抵抗体の持つ導電を担うキャリアの 1ユニットセル当 たりの個数に相当する。第 2実施形態では、可変抵抗体が n型半導体であるため、キ ャリアは電子である。可変抵抗体として後述のぺロブスカイト型酸化物を使用する場 合、ドーピング率 zをぺロブスカイト型酸ィ匕物の Aサイトの希土類金属 REを置換する アルカリ土類金属 AEの組成比(モル分率)として、可変抵抗体を一般式 (RE AE
1— z z
) B O 、(但し、 n= l, 2または∞、且つ、ドーピング率 zは 0≤z≤ 1を満たす) n+ 1 n 3n+ l
で表すことができる。
[0070] 従って、ドーピング率 zは具体的には可変抵抗体の組成分析、 Wは可変抵抗体の バルタでの光電子分光測定、 Δは可変抵抗体のバルタでの光学スペクトル (光学伝 導度)から、夫々導出できる。
[0071] 本発明においては、絶縁体転移相として、強相関材料が有望であるとしているが、 以下に例示する物質が望ましい。
[0072] 本実施形態における可変抵抗体の強相関材料の好適例として、下記化学式 2の構 造式 (一般式)で示される n型半導体のベロブスカイト型酸化物、或いは、当該構造 式で表される複数の異なるぺロブスカイト型酸ィ匕物の組み合わせ力 なる n型半導体 の固容体が挙げられる。
[0073] (化学式 2)
(RE AE ) B O
l -z z n+ 1 n 3n+ l
[0074] ここで、上記構造式において、 n= l, 2または∞、 0≤ζ≤1である。また、 REは、 La , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れ 力 1つの希土類元素であり、 AEは、 Ca, Sr, Baの中から選択される何れか 1つのァ ルカリ土類元素であり、 B力 Ti, Vの中から選択される何れか 1つの元素である。
[0075] 化学式 2に示す構造式は、具体的には、 n=∞の場合は、(RE AE ) BOとなり、
1 -z z 3 n= lの場合は、(RE AE ) BOとなり、 n= 2の場合は、(RE AE ) B Oとなる
1 -z z 2 4 1 -z z 3 2 7
[0076] 具体的には、 Ti酸化物としては、 Sr La TiO、 La Y TiO、 Y Ca TiO等
1— z z 3 1— z z 3 1— z z 3 が好まし!/、。更に、 V酸化物としては、 La Ca VO、 La Sr VOが好まし!/、。
1— z z 3 1— z z 3
[0077] 〈第 3実施形態〉
本発明においては、可変抵抗体の強相関材料としては、上記第 1及び第 2実施形 態で例示したベロブスカイト型酸ィ匕物以外の材料でも、酸素欠損を導入することより、 或いは、過剰に酸素を導入することにより、同様の抵抗スイッチング動作を惹起する ことが可能である。その一例として、酸素欠損または過剰酸素を導入した NiO、 CoO 等の 2元酸ィ匕物が挙げられる。金属元素の種類が少ないために組成の調整が容易 であるという特長を有する。また、 Fe O等も好適である。更に、 VOや V O、更には
3 4 2 2 3
、 V Oに Crをドープした材料等も好適である。同様に、 TiOや Ti O (n= 2, 3)
2 3 2 n 2n- l 等の材料も好適である。
[0078] また、過剰酸素の導入による場合は、キャリアとして正孔が導入され p型半導体とな るため、 1ユニットセル当たりのキャリア濃度を zとして、電極材料の仕事関数と可変抵 抗体 (強相関材料)の仕事関数の差で定義される電位差 Vdが、下記の数式 5で表さ れる条件を満足する場合は、良好なスイッチング特性を示す可変抵抗素子が得られ る。尚、 Wは可変抵抗体のバンド幅であり、 Δは可変抵抗体のモットギャップである。
[0079] (数式 5)
Vd < -z (W- Δ ) /2
[0080] 本実施形態における過剰酸素の導入による可変抵抗体材料の好適例として、下記 の化学式 3の構造式 (一般式)で示される ρ型半導体の遷移金属酸化物 (またはラン タノイド系金属酸化物)が挙げられる。
[0081] (化学式 3)
Μ Ο [0082] ここで、上記構造式にぉ 、て、 m及び nは金属(M)イオンの価数により決定される 化学量論組成、 zは過剰酸素の導入による 1ユニットセル当たりのキャリア濃度であり 、 0< z< 1である。また、 Mは 3d電子、 4d電子または 5d電子を有する遷移金属、ま たは、 4f電子を有するランタノイド系金属の中力 選択される何れか 1つの元素であ る。また、 1ユニットセル当たりのキャリア濃度である zは、第 1実施形態でのぺロブス力 イト型酸ィ匕物における場合と同様に、ドーピング率 zとして定義される。
[0083] 酸素欠損の導入による場合は、キャリアとして電子が導入され n型半導体となるため 、 1ユニットセル当たりのキャリア濃度を zとして、電極材料の仕事関数と可変抵抗体( 強相関材料)の仕事関数の差で定義される電位差 Vdが、下記の数式 6で表される条 件を満足する場合は、良好なスイッチング特性を示す可変抵抗素子が得られる。尚、 Wは可変抵抗体のバンド幅であり、 Δは可変抵抗体のモットギャップである。
[0084] (数式 6)
Vd > z (W- Δ ) /2
[0085] 本実施形態における酸素欠損の導入による可変抵抗体材料の好適例として、下記 化学式 4の構造式 (一般式)で示される η型半導体の遷移金属酸化物 (またはランタノ イド系金属酸化物)が挙げられる。
[0086] (化学式 4)
Μ Ο
m n(l -z)
[0087] ここで、上記構造式にぉ 、て、 m及び nは金属(M)イオンの価数により決定される 化学量論組成であり、 zは酸素欠損の導入による 1ユニットセル当たりのキャリア濃度 であり、 0< z< 1である。また、 Mは 3d電子、 4d電子または 5d電子を有する遷移金 属、または、 4f電子を有するランタノイド系金属の中力 選択される何れか 1つの元 素である。また、 1ユニットセル当たりのキャリア濃度である zは、第 2実施形態でのぺ 口ブスカイト型酸ィ匕物における場合と同様に、ドーピング率 zとして定義される。
[0088] 過剰酸素の導入による可変抵抗体材料または酸素欠損の導入による可変抵抗体 材料の具体的な化合物として、 TiO、 Ti O (n= 1, 2)、 VO、 V O、 Crドープ
2 n 2n- l 2 2 3
V O、 V O、 Fe O、 CoO、 CuO、 Cu 0、 SnO、 ZnO、 In O、 Tl O、 NbO、 La
2 3 3 5 3 4 2 2 2 3 2 3
0、 NdO、 SmO、 EuO、 ReO、 ReO、 CrO、 RhO、 Rh O、 OsO、 IrO、 WO、 MxWO (M =アルカリ金属、アルカリ土類金属、希土類元素)、 Mo02、等が好まし
3
い。
[0089] 本実施形態では、これら 2元系の遷移金属酸化物のみだけではなぐ 2元系の遷移 金属酸化物に金属元素をドープすることにより形成される、下記の化学式 5の構造式 (一般式)で示される n型または p型半導体の遷移金属酸化物 (またはランタノイド系 酸化物)が、可変抵抗体材料の好適例として挙げられる。
[0090] (化学式 5)
(M N ) O
1— z z m n
[0091] ここで、上記構造式にぉ 、て、 m及び nは金属(M)イオンの価数により決定される 化学量論組成であり、 zは Mとは価数の異なる金属 Nのドーピング量であり、 0≤ζ≤1 である。また、 Mは、 3d電子、 4d電子または 5d電子を有する遷移金属、または、 4f電 子を有するランタノイド系金属の中力 選択される何れ力 1つの元素である。 Nは、ァ ルカリ金属、アルカリ土類金属、遷移金属、ランタノイド系金属中から選択される何れ 力 1つの元素である。また、 1ユニットセル当たりのキャリア濃度である zは、上記化学 式 3または 4と同様〖こ、ドーピング率 zとして定義される。
[0092] 上記化学式 5で表される具体的な化合物として、 (V Cr ) O、(Ti N ) 0 (N
1 -z z 2 3 1 -z z 2
= Nb, Fe, Ni, Co)等が好ましい。
[0093] 次に、本発明素子及び本発明方法の別実施形態について説明する。
[0094] 本発明にお 、ては、可変抵抗体の強相関材料としては、上記以外にも、 BEDT-
TTF等の有機物質も利用可能であるが、長期信頼性を必要とする場合には、上記 実施形態の酸ィ匕物材料が好適である。
[0095] また、可変抵抗体の強相関材料としては、酸化物以外にも、 NiS Se等の硫化物
2-z z が候補として考えられが、環境の側面からは硫化物よりも上記酸化物材料が好適で ある。
[0096] 更に、本発明にお ヽては、可変抵抗体の強相関材料として、 Aサイトにドーピングし たぺロブスカイト型酸ィ匕物を用いた力 Bサイトにドーピングを施したぺロブスカイト型 酸ィ匕物でも同様の抵抗スイッチング動作を惹起することが可能である。 Bサイトにドー ビングを施したベロブスカイト型酸ィ匕物は、下記化学式 6の構造式 (一般式)で表すこ とができ、例えば、 Bサイトの Tiに Nbをドープした SrTi Nb O等の材料も好適であ
1 -z z 3
る。尚、化学式 6の構造式において、 Aはアルカリ土類元素であり、 TAと TBは、夫々 異なる遷移金属元素である。
[0097] (化学式 6)
A (TA TB ) O 、(但し、 n= l, 2または∞、 0≤ζ≤1)
n+ 1 1 -z z n 3n+ l
産業上の利用可能性
[0098] 本発明に係る可変抵抗素子及びその製造方法は、 2つの金属電極の間に可変抵 抗体を設けてなり、該金属電極間に電圧パルスを印加することにより該金属電極間 の電気抵抗が変化する可変抵抗素子を備えた不揮発性半導体記憶装置に利用可 能である。

Claims

請求の範囲
[1] 2つの金属電極の間に強相関材料力もなる可変抵抗体を設けてなり、前記金属電 極間に電圧パルスを印加することにより前記金属電極間の電気抵抗が変化する可変 抵抗素子であって、
前記電圧パルスの印加によって、前記 2つの金属電極の何れか一方の第 1電極と 前記可変抵抗体の界面において金属絶縁体転移が生じることを特徴とする可変抵 抗素子。
[2] 前記第 1電極と前記可変抵抗体の仕事関数差が、前記可変抵抗体の前記第 1電 極との界面近傍において金属相と絶縁体相の 2相共存相を形成し得る仕事関数差 であることを特徴とする請求項 1に記載の可変抵抗素子。
[3] 前記金属絶縁体転移が、モット転移であることを特徴とする請求項 1に記載の可変 抵抗素子。
[4] 前記可変抵抗体が、ぺロブスカイト型酸ィ匕物であることを特徴とする請求項 1に記 載の可変抵抗素子。
[5] 前記可変抵抗体が、一般式 (RE AE ) B O 、(但し、 n= l, 2または∞、
1 -z z n+ 1 n 3n+ l
且つ、ドーピング率 zは 0≤ζ≤ 1を満たす)で表される ρ型半導体または η型半導体の ぺロブスカイト型酸化物、或いは、前記一般式で表される複数の異なるぺロブスカイト 型酸化物の組み合わせからなる Ρ型半導体または η型半導体の固溶体であり、 前記一般式における REが、 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れか 1つの希土類元素であり、
前記一般式における AE力 Ca, Sr, Baの中力 選択される何れ力 1つのアルカリ 土類元素であり、
前記一般式における Bが、 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cuの中力 選択さ れる何れ力 1つの元素であることを特徴とする請求項 4に記載の可変抵抗素子。
[6] 前記可変抵抗体が、遷移金属酸化物、または、ランタノイド系金属酸ィ匕物であるこ とを特徴とする請求項 1に記載の可変抵抗素子。
[7] 前記可変抵抗体が、一般式 M O (m及び nは金属(M)イオンの価数により決 m (l -z) n
定される化学量論組成、 zは過剰酸素の導入による 1ユニットセル当たりのキャリア濃 度、 0< z< 1)で表される p型半導体、または、一般式 M O (m及び nは金属(M
m n(l-z)
)イオンの価数により決定される化学量論組成、 Zは酸素欠損の導入による 1ユニット セル当たりのキャリア濃度、 0< z< l)で表される n型半導体の金属酸ィ匕物であり、前 記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金属、または、 4f電 子を有するランタノイド系金属の中力 選択される何れ力 1つの元素であることを特徴 とする請求項 6に記載の可変抵抗素子。
[8] 前記可変抵抗体が、(M N ) O (m及び nは金属(M)イオンの価数により決定さ
丄一 z z m n
れる化学量論組成、 zは Mとは価数の異なる金属 N (Nは、アルカリ金属、アルカリ土 類金属、遷移金属、ランタノイド系金属)のドーピング量、 0≤ζ≤1)で表される金属 酸化物であり、前記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金 属、または、 4f電子を有するランタノイド系金属の中力 選択される何れか 1つの元 素であることを特徴とする請求項 6に記載の可変抵抗素子。
[9] 前記第 1電極と p型半導体である前記可変抵抗体の仕事関数差で定義される電位 差 Vdが、前記可変抵抗体のドーピング率を z、前記可変抵抗体のバンド幅を W、前 記可変抵抗体のモットギャップを Δとした場合、
Vd < -z (W- Δ ) /2
で示される不等式を満足することを特徴とする請求項 1〜8の何れ力 1項に記載の可 変抵抗素子。
[10] 前記第 1電極と η型半導体である前記可変抵抗体の仕事関数差で定義される電位 差 Vdが、前記可変抵抗体のドーピング率を z、前記可変抵抗体のバンド幅を W、前 記可変抵抗体のモットギャップを Δとした場合、
Vd > z (W- Δ ) /2
で示される不等式を満足することを特徴とする請求項 1〜8の何れ力 1項に記載の可 変抵抗素子。
[11] 2つの金属電極の間に強相関材料力 なる可変抵抗体を設けてなる可変抵抗素子 の製造方法であって、
前記可変抵抗素子は、前記金属電極間に電圧パルスを印加することにより、前記 2 つの金属電極の何れか一方の第 1電極と前記可変抵抗体の界面において金属絶縁 体転移が生じて、前記金属電極間の電気抵抗が変化する特性を有し、 前記第 1電極と前記可変抵抗体の仕事関数差が、前記可変抵抗体の前記第 1電 極との界面近傍において金属相と絶縁体相の 2相共存相を形成し得る仕事関数差と なるように、前記第 1電極の材料及び組成、前記可変抵抗体の材料及び組成を設定 することを特徴とする可変抵抗素子の製造方法。
[12] 前記可変抵抗体が、ぺロブスカイト型酸ィ匕物であることを特徴とする請求項 11に記 載の可変抵抗素子の製造方法。
[13] 前記可変抵抗体が、一般式 (RE AE ) B O 、(但し、 n= 1, 2または∞、
1 -z z n+ 1 n 3n+ l
且つ、ドーピング率 zは 0≤ζ≤ 1を満たす)で表される ρ型半導体または η型半導体の ぺロブスカイト型酸化物、或いは、前記一般式で表される複数の異なるぺロブスカイト 型酸化物の組み合わせからなる Ρ型半導体または η型半導体の固溶体であり、 前記一般式における REが、 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luの中から選択される何れか 1つの希土類元素であり、
前記一般式における AE力 Ca, Sr, Baの中力 選択される何れ力 1つのアルカリ 土類元素であり、
前記一般式における Bが、 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cuの中力 選択さ れる何れ力 1つの元素であることを特徴とする請求項 12に記載の可変抵抗素子の製 造方法。
[14] 前記可変抵抗体が、遷移金属酸化物、または、ランタノイド系金属酸ィ匕物であるこ とを特徴とする請求項 11に記載の可変抵抗素子の製造方法。
[15] 前記可変抵抗体が、一般式 M O (m及び nは金属(M)イオンの価数により決 m (l -z) n
定される化学量論組成、 zは過剰酸素の導入による 1ユニットセル当たりのキャリア濃 度、 0< z< 1)で表される p型半導体、または、一般式 M O (m及び nは金属(M m n(l -z)
)イオンの価数により決定される化学量論組成、 Zは酸素欠損の導入による 1ユニット セル当たりのキャリア濃度、 0< z< l)で表される n型半導体の金属酸ィ匕物であり、前 記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金属、または、 4f電 子を有するランタノイド系金属の中力 選択される何れ力 1つの元素であることを特徴 とする請求項 14に記載の可変抵抗素子の製造方法。
[16] 前記可変抵抗体が、(M N ) O (m及び nは金属(M)イオンの価数により決定さ
丄一 z z m n
れる化学量論組成、 zは Mとは価数の異なる金属 N (Nは、アルカリ金属、アルカリ土 類金属、遷移金属、ランタノイド系金属)のドーピング量、 0≤ζ≤1)で表される金属 酸化物であり、前記一般式の Mが、 3d電子、 4d電子または 5d電子を有する遷移金 属、または、 4f電子を有するランタノイド系金属の中力 選択される何れか 1つの元 素であることを特徴とする請求項 14に記載の可変抵抗素子の製造方法。
[17] 前記第 1電極と p型半導体である前記可変抵抗体の仕事関数差で定義される電位 差 Vdが、前記可変抵抗体のドーピング率を z、前記可変抵抗体のバンド幅を W、前 記可変抵抗体のモットギャップを Δとした場合、
Vd < -z (W- Δ ) /2
で示される不等式を満足するように、前記第 1電極の材料及び組成、前記可変抵抗 体の材料及び組成を設定することを特徴とする請求項 11〜16の何れか 1項に記載 の可変抵抗素子の製造方法。
[18] 前記第 1電極と η型半導体である前記可変抵抗体の仕事関数差で定義される電位 差 Vdが、前記可変抵抗体のドーピング率を z、前記可変抵抗体のバンド幅を W、前 記可変抵抗体のモットギャップを Δとした場合、
Vd > z (W- Δ ) /2
で示される不等式を満足するように、前記第 1電極の材料及び組成、前記可変抵抗 体の材料及び組成を設定することを特徴とする請求項 11〜16の何れか 1項に記載 の可変抵抗素子の製造方法。
PCT/JP2006/315649 2005-08-29 2006-08-08 可変抵抗素子及びその製造方法 WO2007026509A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/990,774 US7978047B2 (en) 2005-08-29 2006-08-08 Variable resistor element and its manufacturing method
JP2007533149A JPWO2007026509A1 (ja) 2005-08-29 2006-08-08 可変抵抗素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247071 2005-08-29
JP2005-247071 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026509A1 true WO2007026509A1 (ja) 2007-03-08

Family

ID=37808610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315649 WO2007026509A1 (ja) 2005-08-29 2006-08-08 可変抵抗素子及びその製造方法

Country Status (4)

Country Link
US (1) US7978047B2 (ja)
JP (1) JPWO2007026509A1 (ja)
TW (1) TW200731546A (ja)
WO (1) WO2007026509A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058264A2 (en) * 2006-11-08 2008-05-15 Symetrix Corporation Correlated electron memory
JP2008124471A (ja) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd 不揮発性記憶装置及びその動作方法
WO2009114796A1 (en) * 2008-03-13 2009-09-17 Symetrix Corporation Correlated electron material with morphological formations
WO2010026634A1 (ja) * 2008-09-04 2010-03-11 株式会社 東芝 情報記録再生装置
JP2010166039A (ja) * 2008-12-18 2010-07-29 Hiroshima Univ ペロブスカイト型酸化物の相転移誘起方法、電子機能素子材料として用いられるペロブスカイト型酸化物、ペロブスカイト型酸化物を用いた電子機能素子及び電子装置
JP2011049269A (ja) * 2009-08-26 2011-03-10 Fujitsu Ltd 抵抗スイッチ素子および抵抗スイッチメモリ素子
JP2011523772A (ja) * 2008-05-01 2011-08-18 インターモレキュラー,インク. 半導体デバイスの形成電圧の低下
JP2012525016A (ja) * 2009-08-14 2012-10-18 4ディー−エス ピーティワイ リミテッド ヘテロ接合酸化物の不揮発性メモリデバイス
JP2013030527A (ja) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research 電解質メモリ素子
WO2013058044A1 (ja) * 2011-10-19 2013-04-25 富士電機株式会社 強相関不揮発メモリー素子
WO2013061559A1 (ja) * 2011-10-24 2013-05-02 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置
JP2013183040A (ja) * 2012-03-02 2013-09-12 Tottori Univ 不揮発性半導体記憶装置および同装置の製造方法
JP5309397B2 (ja) * 2007-08-24 2013-10-09 国立大学法人 岡山大学 電子素子及び電気伝導度制御方法
JP2015521364A (ja) * 2012-04-10 2015-07-27 セエヌエールエス(サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク) データを記憶する抵抗スイッチングメモリにおける中心対称性モット絶縁体の使用
KR20190065980A (ko) * 2019-02-25 2019-06-12 연세대학교 산학협력단 전이금속산화물 재료의 특성을 이용한 차세대 비휘발성 모트 메모리 소자
JP2019161175A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
KR20190119971A (ko) * 2018-04-13 2019-10-23 연세대학교 산학협력단 저항 변화 메모리 소자 및 이의 제조 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687760B1 (ko) * 2005-10-19 2007-02-27 한국전자통신연구원 급격한 금속-절연체 전이를 하는 절연체 및 그 제조방법,이를 이용한 소자
KR100982424B1 (ko) * 2006-11-28 2010-09-15 삼성전자주식회사 저항 메모리 소자의 제조 방법
WO2009025037A1 (ja) * 2007-08-22 2009-02-26 Fujitsu Limited 抵抗変化型素子
US8259485B2 (en) 2010-08-31 2012-09-04 Hewlett-Packard Development Company, L.P. Multilayer structures having memory elements with varied resistance of switching layers
TWI496146B (zh) * 2011-09-23 2015-08-11 Univ Nat Sun Yat Sen 具氮化矽絕緣層之電阻式隨機存取記憶體構造
TWI501234B (zh) * 2011-09-23 2015-09-21 Univ Nat Sun Yat Sen 具二氧化矽絕緣層之電阻式隨機存取記憶體構造
US9847478B2 (en) 2012-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for resistive random access memory (RRAM)
TWI553925B (zh) 2014-09-26 2016-10-11 華邦電子股份有限公司 自整流電阻式隨機存取記憶體記憶胞結構
US9755146B2 (en) 2015-09-10 2017-09-05 ARM, Ltd. Asymmetric correlated electron switch operation
US9997242B2 (en) * 2016-10-14 2018-06-12 Arm Ltd. Method, system and device for non-volatile memory device state detection
US10734805B2 (en) * 2016-12-16 2020-08-04 Arm Limited Power clamp with correlated electron material device
JP6635054B2 (ja) * 2017-01-06 2020-01-22 株式会社村田製作所 抵抗素子およびその製造方法
CN109678495B (zh) * 2019-01-15 2021-09-07 陕西科技大学 一种BaTiO3-Sr2CoMoO6磁电复合陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204348A (ja) * 2002-12-20 2004-07-22 Sharp Corp Mocvdを介して金属酸化物の薄膜を堆積させる方法
JP2006120701A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子とその駆動方法、および半導体装置
JP2006196566A (ja) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd 可変抵抗薄膜素子およびそれを用いた不揮発性記憶素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204139B1 (en) 1998-08-25 2001-03-20 University Of Houston Method for switching the properties of perovskite materials used in thin film resistors
US7608467B2 (en) * 2004-01-13 2009-10-27 Board of Regents University of Houston Switchable resistive perovskite microelectronic device with multi-layer thin film structure
JP2005311071A (ja) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP4822287B2 (ja) * 2005-03-23 2011-11-24 独立行政法人産業技術総合研究所 不揮発性メモリ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204348A (ja) * 2002-12-20 2004-07-22 Sharp Corp Mocvdを介して金属酸化物の薄膜を堆積させる方法
JP2006120701A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子とその駆動方法、および半導体装置
JP2006196566A (ja) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd 可変抵抗薄膜素子およびそれを用いた不揮発性記憶素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAWA A. ET AL.: "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface", APPLIED PHYSICS LETTERS, vol. 85, no. 18, November 2004 (2004-11-01), pages 4073 - 4075, XP012063180 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058264A2 (en) * 2006-11-08 2008-05-15 Symetrix Corporation Correlated electron memory
WO2008058264A3 (en) * 2006-11-08 2008-09-04 Symetrix Corp Correlated electron memory
JP2008124471A (ja) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd 不揮発性記憶装置及びその動作方法
JP5309397B2 (ja) * 2007-08-24 2013-10-09 国立大学法人 岡山大学 電子素子及び電気伝導度制御方法
WO2009114796A1 (en) * 2008-03-13 2009-09-17 Symetrix Corporation Correlated electron material with morphological formations
JP2011523772A (ja) * 2008-05-01 2011-08-18 インターモレキュラー,インク. 半導体デバイスの形成電圧の低下
WO2010026634A1 (ja) * 2008-09-04 2010-03-11 株式会社 東芝 情報記録再生装置
JP5318107B2 (ja) * 2008-09-04 2013-10-16 株式会社東芝 情報記録再生装置
US8416606B2 (en) 2008-09-04 2013-04-09 Kabushiki Kaisha Toshiba Information recording and reproducing device
JP2010166039A (ja) * 2008-12-18 2010-07-29 Hiroshima Univ ペロブスカイト型酸化物の相転移誘起方法、電子機能素子材料として用いられるペロブスカイト型酸化物、ペロブスカイト型酸化物を用いた電子機能素子及び電子装置
JP2012525016A (ja) * 2009-08-14 2012-10-18 4ディー−エス ピーティワイ リミテッド ヘテロ接合酸化物の不揮発性メモリデバイス
JP2011049269A (ja) * 2009-08-26 2011-03-10 Fujitsu Ltd 抵抗スイッチ素子および抵抗スイッチメモリ素子
JP2013030527A (ja) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research 電解質メモリ素子
US8963221B2 (en) 2011-10-19 2015-02-24 Fuji Electric Co., Ltd. Strongly correlated nonvolatile memory element
JP5621940B2 (ja) * 2011-10-19 2014-11-12 富士電機株式会社 強相関不揮発メモリー素子
WO2013058044A1 (ja) * 2011-10-19 2013-04-25 富士電機株式会社 強相関不揮発メモリー素子
WO2013061559A1 (ja) * 2011-10-24 2013-05-02 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置
US8957399B2 (en) 2011-10-24 2015-02-17 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element and nonvolatile memory device
JP2013183040A (ja) * 2012-03-02 2013-09-12 Tottori Univ 不揮発性半導体記憶装置および同装置の製造方法
JP2015521364A (ja) * 2012-04-10 2015-07-27 セエヌエールエス(サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク) データを記憶する抵抗スイッチングメモリにおける中心対称性モット絶縁体の使用
JP2019161175A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
KR20190119971A (ko) * 2018-04-13 2019-10-23 연세대학교 산학협력단 저항 변화 메모리 소자 및 이의 제조 방법
KR102216734B1 (ko) * 2018-04-13 2021-02-16 연세대학교 산학협력단 저항 변화 메모리 소자 및 이의 제조 방법
KR20190065980A (ko) * 2019-02-25 2019-06-12 연세대학교 산학협력단 전이금속산화물 재료의 특성을 이용한 차세대 비휘발성 모트 메모리 소자
KR102049687B1 (ko) 2019-02-25 2019-11-27 연세대학교 산학협력단 전이금속산화물 재료의 특성을 이용한 차세대 비휘발성 모트 메모리 소자

Also Published As

Publication number Publication date
US20090231083A1 (en) 2009-09-17
TWI311376B (ja) 2009-06-21
TW200731546A (en) 2007-08-16
JPWO2007026509A1 (ja) 2009-03-05
US7978047B2 (en) 2011-07-12

Similar Documents

Publication Publication Date Title
WO2007026509A1 (ja) 可変抵抗素子及びその製造方法
CN102484127B (zh) 基于混合金属价键化合物的记忆电阻
JP4365737B2 (ja) 可変抵抗素子の駆動方法及び記憶装置
KR100723420B1 (ko) 비정질 합금 산화층을 포함하는 비휘발성 메모리 소자
US9208869B2 (en) Resistive RAM, method for fabricating the same, and method for driving the same
Sawa Resistive switching in transition metal oxides
JP4822287B2 (ja) 不揮発性メモリ素子
JP5156023B2 (ja) 相関電子メモリ
KR100966063B1 (ko) 가변 저항 소자와 그 제조 방법, 그리고 가변 저항 소자를구비한 기억 장치
Fujisaki Current status of nonvolatile semiconductor memory technology
US7723714B2 (en) Programmable-resistance memory cell
WO2007020832A1 (ja) スイッチング素子
CN106960856A (zh) 开关器件及包括其的电阻式随机存取存储器
Liu et al. Improved resistive switching properties in Pt/Pr0. 7Ca0. 3MnO3/Y2O3-stabilized ZrO2/W via-hole structures
Dai et al. Complementary resistive switching in flexible RRAM devices
WO2006101151A1 (ja) 不揮発性メモリ素子
JP6813844B2 (ja) トンネル接合素子及び不揮発性メモリ素子
Gao et al. Mechanism of ferroelectric resistive switching in Bi0. 9La0. 1FeO3 thin films
Lim et al. High-Reliability and Self-Rectifying Alkali Ion Memristor through Bottom Electrode Design and Dopant Incorporation
KR20160142424A (ko) 크로스바 어레이 구조의 저항변화 메모리에 적용가능한 다층 박막 구조 및 상기 다층 박막 구조를 이용한 저항 변화 메모리
Bruchhaus et al. Bipolar resistive switching in oxides for memory applications
Bogusz et al. Resistive switching in thin multiferroic films
Yang Resistive switching properties of p-type cobalt oxide thin films and devices
Rana et al. Resistive memory device with piezoelectric and ferroelectric thin films by solution synthesis
Kano A proposal of novel resistive switching devices using CeOx with NiSi2 electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007533149

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11990774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782475

Country of ref document: EP

Kind code of ref document: A1