WO2007023962A1 - 高周波加熱電源装置 - Google Patents

高周波加熱電源装置 Download PDF

Info

Publication number
WO2007023962A1
WO2007023962A1 PCT/JP2006/316769 JP2006316769W WO2007023962A1 WO 2007023962 A1 WO2007023962 A1 WO 2007023962A1 JP 2006316769 W JP2006316769 W JP 2006316769W WO 2007023962 A1 WO2007023962 A1 WO 2007023962A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
power supply
mode
magnetron
input current
Prior art date
Application number
PCT/JP2006/316769
Other languages
English (en)
French (fr)
Inventor
Hideaki Moriya
Haruo Suenaga
Shinichi Sakai
Nobuo Shirokawa
Manabu Kinoshita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007532207A priority Critical patent/JP5179874B2/ja
Priority to CN2006800312878A priority patent/CN101258778B/zh
Priority to US12/064,911 priority patent/US9301346B2/en
Priority to EP06783058.8A priority patent/EP1926349B1/en
Publication of WO2007023962A1 publication Critical patent/WO2007023962A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits

Definitions

  • the present invention relates to a control for suppressing overshoot of an input current generated from an unstable state immediately after oscillation of a magnetron in the field of a high-frequency heating power supply apparatus that performs dielectric heating by driving a magnetron like a microwave oven.
  • FIG. 9 shows an example of a high-frequency heating power supply device (inverter power supply) for driving a magnetron.
  • DC power supply 1 leakage transformer 2, first semiconductor switching element 3, first capacitor 5 (snapper capacitor), second capacitor 6 (resonance capacitor), third capacitor 7 (smoothing capacitor), second The semiconductor switching element 4, the drive unit 13, the full-wave voltage doubler rectifier circuit 11, and the magnetron 12.
  • the DC power supply 1 applies full-wave rectification to the commercial power supply and applies the DC voltage VDC to the series circuit of the second capacitor 6 and the primary winding 8 of the leakage transformer 2.
  • the first semiconductor switching element 3 and the second semiconductor switching element 4 are connected in series, and the series circuit of the primary winding 8 and the second capacitor 6 of the leakage transformer 2 is connected to the second semiconductor switching element 4. Connected in parallel.
  • the first capacitor 5 is connected in parallel to the second semiconductor switching element 4, and has a snubber role of suppressing inrush current (voltage) generated during switching. Leakage
  • the AC high voltage output generated in the secondary feeder 9 of the lance 2 is converted into a DC high voltage by the full-wave voltage doubler rectifier circuit 11 and applied between the anode swords of the magnetron 12.
  • the tertiary winding 10 of the leakage transformer 2 supplies current to the power sword of the magnetron 12.
  • the first semiconductor switching element 3 and the second semiconductor switching element 4 are composed of an IGBT and a flywheel diode connected in parallel thereto. Needless to say, the first and second semiconductor switching elements 3 and 4 are not limited to this type, and thyristors, GTO switching elements, and the like may be used.
  • the drive unit 13 has an oscillation unit for generating drive signals for the first semiconductor switching element 3 and the second semiconductor switching element 4 therein, and a rectangular wave having a predetermined frequency is generated in the oscillation unit. Then, the DRIVE signal is given to the first semiconductor switching element 3 and the second semiconductor switching element 4. Immediately after one of the first semiconductor switching element 3 or the second semiconductor switching element 4 is turned off, the voltage across the other semiconductor switching element is high. If turned off at this point, a snooping excessive current flows and is unnecessary. Loss and noise occur. However, by providing a dead time, the turn-off is delayed until the voltage at both ends is reduced to about 0 V, so that the unnecessary loss and noise generation can be prevented. Of course, it works in the same way when switching in reverse.
  • each mode by the DRIVE signal given from the drive unit 13 is omitted, but the circuit configuration of Fig. 9 is characterized by the highest voltage in Europe 240V, which is the highest voltage for general household power supply.
  • the drive unit 13 controls the input current Iin and the reference voltage (REF) corresponding to each output level by the input current constant control unit 14 to obtain a desired output level.
  • REF reference voltage
  • FIG. 10 shows the input current Iin until the non-oscillating state force is oscillated by the operation of the inverter power supply. Time is plotted on the horizontal axis, and the input current Iin (A) and the control signal for the input current (PWM signal from the microcomputer) are marked on duty on the vertical axis.
  • the process until the magnetron oscillates is subdivided into 1) non-oscillation (start-up mode) 1), 2) oscillation (startup mode), 3) oscillation (steady mode).
  • start-up mode the process until the magnetron oscillates is subdivided into 1) non-oscillation (start-up mode) 1), 2) oscillation (startup mode), 3) oscillation (steady mode).
  • start-up mode the magnetron oscillates and is in an infinite impedance state.
  • the input current Iin flows only slightly, and naturally the desired input indicated by PWM cannot be obtained.
  • Oscillation startsup mode is the part that needs to be improved. That is, it is difficult to precisely control the input current in the unstable state of the magnetron immediately after oscillation, and it can be seen that overshoot occurs as shown in the figure. 3) It can be said that stable input current control is possible in oscillation (steady mode).
  • Fig. 11 shows the resonance characteristics of this type of inverter power supply circuit (a resonance circuit is composed of inductance L and capacitance C).
  • Fig. 11 is a diagram showing the current operating frequency characteristics when a constant voltage is applied.
  • the frequency fO is the resonance frequency.
  • the current frequency curve characteristic II solid line part in the frequency range fl to f 3 higher than this frequency fO is used.
  • a desired output is obtained by changing the frequency of an inverter power source that drives a magnetron that is a non-linear load. For example, a linear continuous output that is impossible with an LC power source can be obtained, such as near f3 when using 200 W output, near f2 when using 600 W output, and near fl when using 1200 W output.
  • the operating frequency for each output level is given by the drive unit 13 shown in FIG. 9, and the content of the input is controlled so that the input current converted into voltage is controlled to be the same as each output level reference voltage. This is realized by the constant circuit section 14. Also, since AC commercial power is used, the resonance current increases as the inverter operating frequency in this section in accordance with the characteristics of the magnetron that does not oscillate at high frequency unless a high voltage is applied near the power phase of 0 ° and 180 °. Set near fl. This increases the step-up ratio of the magnetron applied voltage to the commercial power supply voltage, and widens the conduction angle for emitting radio waves.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-21559 Disclosure of the invention
  • a reference signal (REF) is set for controlling the input current (using the input current control signal from the microcomputer on the external control board), and the current actually flowing to the inverter power supply is converted to a voltage.
  • REF reference signal
  • the present invention provides non-oscillation (startup mode) and oscillation of a magnetron.
  • the present invention can suppress an overload applied to each component by suppressing an overshoot of the input current in an unstable state immediately after the magnetron oscillates a non-oscillating state force, and smoothly. Magnetron oscillation (shift from start-up to steady state) can be realized. It also solves the problem of stopping abnormal voltage detection due to an excessive voltage generated during overshoot.
  • the control is attempted to a large current immediately after oscillation including overshoot. Since the Hanagu magnetron shifts to a stable state and shifts to the actual steady-state PWM setting value, the overshoot of the input current can be suppressed as much as possible.
  • FIG. 1 is a schematic configuration diagram of an inverter power supply for driving a magnetron according to a first embodiment of the present invention.
  • FIG. 2 Characteristic diagram of input current to magnetron non-oscillating force oscillation in Embodiment 1 of the present invention
  • ⁇ 3 Schematic configuration diagram of the inverter power supply for driving the magnetron according to the second embodiment of the present invention.
  • ⁇ 4 Characteristic diagram of the input current to the magnetron non-oscillating force oscillation according to the second embodiment of the present invention.
  • ⁇ 5 Schematic configuration diagram of the inverter power supply for driving the magnetron according to the third embodiment of the present invention.
  • ⁇ 6 Characteristic diagram of the input current to the magnetron non-oscillating force oscillation according to the third embodiment of the present invention.
  • ⁇ 7 Schematic configuration diagram of the inverter power supply for driving the magnetron according to the fourth embodiment of the present invention.
  • ⁇ 8 Characteristic diagram of the input current to the magnetron non-oscillating force oscillation according to the fourth embodiment of the present invention.
  • a first invention is a high-frequency heating power supply apparatus that drives a magnetron by using a commercial power supply to perform a high-frequency switching operation with a semiconductor switching element. An overshoot of an input current immediately after the magnetron oscillates is provided. In order to suppress this, a control signal for input current is used.
  • a second invention is characterized in that, in the invention according to claim 1, the input current control signal is set to a different value for non-oscillation (start-up mode) and oscillation (steady mode) of the magnetron. To do.
  • the set value of the start mode of the input current control signal gradually changes toward the set value of the steady mode after the magnetron oscillates. It is characterized by making it.
  • a fourth invention is characterized in that, in the invention of claim 2 or claim 3, the setting value of the starting mode of the input current control signal is constant regardless of each output level of the steady mode. .
  • the set value of the start mode of the input current control signal is determined to be non-oscillating and oscillating (both in the start mode). It is characterized in that it is changed with the same slope regardless of each output level when shifting to the set value in the subsequent steady mode.
  • the magnetron is in a non-oscillating state force.
  • Overload applied to each component can be avoided by suppressing the overshoot of the input current that occurs in an unstable state immediately after oscillation, and smooth magnetron oscillation (startup) Force can also be achieved). It also solves the problem of abnormal voltage detection stop due to excessive voltage generated during overshoot.
  • the present invention is a PWM setting of a control signal for input current in non-oscillation (startup mode) and oscillation (steady mode) of a magnetron. By changing the value, overshoot immediately after oscillation can be suppressed.
  • the configuration after the REF output signal in Figs. 1, 3, 5, and 7 is the same as that in Fig. 9. Note that the present invention is not limited to the embodiments.
  • FIG. 1 is a schematic configuration diagram of the magnetron driving inverter power supply according to the first embodiment. As described above, since the configuration after the REF output signal is the same as the conventional configuration shown in FIG. 9, the description thereof is omitted here.
  • the PWM setting unit 101 shown in FIG. 1 sets different PWMs in the startup mode and the steady mode.
  • the non-oscillation / oscillation determination unit 102 compares the ⁇ signal and the Iin signal, and switches between the start mode and the steady mode. That is, IINTH> Iin is judged as non-oscillating, and Iin is judged as oscillating.
  • the signal is provided with a time lag, and then input to the PWM setting unit 101 via the start / steady state determination unit 103, and it is determined whether the output PWM signal is set to the start mode value or the steady mode value.
  • FIG. 2 is an input current characteristic diagram showing by the input current Iin until the magnetron oscillates in a non-oscillating state force by the operation of the magnetron driving inverter power supply according to the present invention.
  • the overshoot suppression of the input current is realized by changing the on-duty of the PWM setting value in the startup mode and the steady mode (Claim 1).
  • the on-duty of the PWM setting value is set low so that the input current is controlled to a low level.
  • the PWM setting value in the desired steady mode is set.
  • the PWM setting value in the steady mode is the maximum output, stable start-up is achieved while suppressing overshoot (Claim 2).
  • the PWM signal from the external control board is converted to the reference signal REF proportional to the on-duty in the inverter power supply, and compared with the signal converted from the input current to voltage. Then, it is transmitted to the drive unit that controls the operating frequency so as to be equalized by the constant input control unit. At this time, a rapid change in on-duty as shown in Fig. 2 is absorbed by using a capacitor for the REF pin.
  • a threshold value shown in the figure is provided, and the judgment is made based on whether or not the input current exceeds the threshold value. . Furthermore, the oscillation stability of the magnetron can still be secured immediately after exceeding the threshold value! Therefore, after setting a time lag of several times the PWM period in the communication between the inverter power supply and the external control board, it is switched to the PWM setting value in the steady mode.
  • a precaution for the PWM setting value in the start-up mode is to set the Iin value according to the setting value to be larger than the threshold value. Otherwise, the PWM setting value cannot be transferred to the steady mode.
  • FIG. 3 shows a schematic configuration diagram of the magnetron driving inverter power supply according to the second embodiment.
  • the configuration after the REF output signal is the same as the conventional configuration shown in FIG. 9, the description thereof is omitted here.
  • the inverter power supply for driving the magnetron of the second embodiment as shown in FIG.
  • the other processes are the same as those in the first embodiment, and the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 4 shows the input current characteristics of the second embodiment in which the starting mode force gradually changes the set value transition of the PWM signal to the steady mode in addition to the method shown in the first embodiment. Show the figure. For example, if the PWM setting value in startup mode is 30%, it is 85% of MAX in steady mode, and if it is l% Zms, the final steady mode setting value is reached after 55 ms. By so doing, it is possible to further improve the overshoot suppression of the input current shown in the first embodiment (claim 3).
  • FIG. 5 shows a schematic configuration diagram of the magnetron driving inverter power supply according to the third embodiment.
  • the configuration after the REF output signal is the same as the conventional configuration shown in FIG. 9, the description thereof is omitted here.
  • Magnetron of Embodiment 3 In the drive inverter power supply as shown in FIG. 5, the setting value of the start mode in the PWM setting unit 301 is fixed at a duty ratio of 30%.
  • Other processing is the same as in the first embodiment.
  • the other processes are the same as those in the first embodiment, and the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 6 is a diagram illustrating the present embodiment in which the PWM setting value in the start-up mode is fixed regardless of the PWM setting value in the steady mode corresponding to each output level in the methods shown in the first and second embodiments.
  • the input current characteristic diagram of Form 3 is shown.
  • the PWM setting value in the start-up mode is set to a value that keeps the precautions of the PWM setting value in the start-up mode described in Embodiment 1 and can sufficiently suppress overshoot even in the case of the maximum output value in the steady mode. (Claim 4).
  • FIG. 7 shows a schematic configuration diagram of the magnetron driving inverter power supply according to the fourth embodiment.
  • the setting value of the start mode is set to the same value as the threshold value in the PWM setting unit 401 as shown in FIG.
  • the transition from start to steady is a fixed value of ⁇ (MAX-II NTH) Z20ms.
  • the other processes are the same as those of the first embodiment, and the same components as those described above are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 8 shows an input current characteristic diagram of the fourth embodiment in which the PWM setting value in the start mode is set to be the same as the II NTH threshold in the method shown in the third embodiment.
  • the slope to be shifted toward the PWM setting value in the steady mode is constant regardless of the output level, eliminating the complexity of control.
  • the transition slope appropriate, it is possible to switch to an immediate steady mode that does not require a time lag of several times the PWM cycle in communication between the inverter power supply and the external control board as described in Embodiment 1.
  • the PWM setting value can be changed.
  • the fourth embodiment suppresses a smoother overshoot. Controlled start-up control (Claim 5).
  • the high-frequency heating power supply device that is effective in the present invention, even if the PWM setting value in the steady mode is set to the maximum output value, it includes a large overshoot immediately after oscillation. Attempts to control the current will be continued, and the magnetron will shift to a stable state before shifting to the actual steady mode PWM setting value. Therefore, the overshoot of the input current can be suppressed as much as possible. Can be applied to circuits.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

 本発明の課題は、マグネトロンが発振した直後の不安定な状態で生ずる入力電流のオーバーシュートを抑制する高周波加熱電源装置を提供することである。  マグネトロン(12)が非発振から発振するまでの過程を細分化すると非発振(起動モード)、発振(起動モード)、発振(定常モード)となる。課題となるのは発振直後の不安定な状態の時であり、この時のPWM設定値を定常モードのPWM設定値よりも低く設定することで例え定常モード時のPWM設定値が最大出力値に設定されていたとしても発振直後にはオーバーシュートを含んで大電流に制御することはなく、マグネトロンが安定した状態に移行してから実際の定常モードのPWM設定値に移行するため、入力電流のオーバーシュートは極力抑制することができる。

Description

明 細 書
高周波加熱電源装置
技術分野
[0001] 本発明は、電子レンジのようにマグネトロンを駆動して誘電加熱を行う高周波加熱 電源装置の分野で、マグネトロンの発振直後の不安定な状態から生じる入力電流の オーバーシュートを抑制する制御に関するものである。 背景技術
[0002] 一般家庭で使用される電子レンジ等の高周波加熱調理機器に用いられる電源とし てはその性質上 (持ち運びが容易で且つ調理室を大きくするために電源が内蔵され る機械室スペースは小さいものが望まれる)、小型で軽いものが望まれてきた。そのた め、電源のスイッチングィ匕による小型軽量化、低コスト化が進められ、インバータ電源 が主流になりつつある。また、高出力化の要望もあり大電流を制御する技術も必要と なり、特にマイクロ波を照射するマグネトロンが非発振の状態力 発振した際に生じる 入力電流のオーバーシュートを如何にして抑制するかが課題であり、その制御方式 が提案されている (例えば、特許文献 1参照)。
[0003] 図 9はマグネトロン駆動用の高周波加熱電源装置 (インバータ電源)の一例を示し ている。直流電源 1、リーケージトランス 2、第一の半導体スイッチング素子 3、第一の コンデンサ 5 (スナパコンデンサ)、第二のコンデンサ 6 (共振コンデンサ)、第三のコン デンサ 7 (平滑コンデンサ)、第二の半導体スイッチング素子 4、駆動部 13、全波倍電 圧整流回路 11、およびマグネトロン 12とから構成されている。
[0004] 直流電源 1は商用電源を全波整流して直流電圧 VDCを、第二のコンデンサ 6とリ 一ケージトランス 2の一次卷線 8との直列回路に印加する。第一の半導体スィッチン グ素子 3と第二の半導体スイッチング素子 4とは直列に接続され、リーケージトランス 2 の一次卷線 8と第二のコンデンサ 6との直列回路は第二の半導体スイッチング素子 4 に並列に接続されている。
[0005] 第一のコンデンサ 5は第二の半導体スイッチング素子 4に並列に接続され、スィッチ ングの際に発生する突入電流 (電圧)を抑えるスナバ的な役割を有する。リーケージト ランス 2の二次卷線 9で発生した交流高電圧出力は全波倍電圧整流回路 11で直流 の高電圧に変換されてマグネトロン 12のアノード一力ソード間に印加されている。リー ケージトランス 2の三次卷線 10はマグネトロン 12の力ソードに電流を供給している。
[0006] 第一の半導体スイッチング素子 3および第二の半導体スイッチング素子 4は IGBTと 、それに並列に接続されるフライホイールダイオードとから構成されている。当然であ るが前記第一、第二の半導体スイッチング素子 3、 4はこの種類に限定されるもので はなくサイリスタ、 GTOスイッチング素子等を用いることもできる。
[0007] 駆動部 13はその内部に第一の半導体スイッチング素子 3と第二の半導体スィッチ ング素子 4の駆動信号を作るための発振部を有し、この発振部で所定周波数の矩形 波が発生され、第一の半導体スイッチング素子 3および第二の半導体スイッチング素 子 4に DRIVE信号が与えられる。第一の半導体スイッチング素子 3、あるいは第二の 半導体スイッチング素子 4の一方がターンオフした直後は他方の半導体スイッチング 素子の両端電圧が高いため、この時点でターンオフさせるとスノイク状の過大電流が 流れ、不要な損失、ノイズが発生する。しかし、デッドタイムを設けることにより、この両 端電圧が約 0Vに減少するまでターンオフを遅らせるため前記不要な損失、ノイズ発 生が防止できる。当然、逆の切り替わり時も同様の働きをする。
[0008] 駆動部 13より与えられる DRIVE信号による各モードの詳細な動作については割愛 するが図 9の回路構成の特徴としては一般家庭向け電源で最も高い電圧となる欧州 240Vにお 、ても第一の半導体スイッチング素子 3、第二の半導体スイッチング素子 4への発生電圧は直流電源電圧 VDCと同等となり、すなわち 240 2 = 339Vとなる 。よって雷サージ、瞬時電圧低下等の異常時を想定したとしても第一の半導体スイツ チング素子 3と第二の半導体スイッチング素子 4は安価な 600V程度の耐圧品で問 題なく使用できる。また駆動部 13は入力電流 Iinと各出力レベルに応じた基準電圧 ( REF)とを入力電流一定制御部 14により制御され所望の出力レベルを得ている。
[0009] 図 10はインバータ電源の動作によりマグネトロンが非発振の状態力も発振するまで を入力電流 Iinにて示している。横軸に時間をとり、縦軸に入力電流 Iin (A)と入力電 流用の制御信号 (マイコンからの PWM信号)をオンデューティ標記して 、る。またマ グネトロンが非発振力 発振するまでの過程を細力べ細分ィ匕すると 1)非発振 (起動モ 一ド)、 2)発振 (起動モード)、 3)発振 (定常モード)と示せる。まず 1)非発振 (起動モー ド)ではマグネトロンが発振して ヽな 、インピーダンス無限大の状態であり、入力電流 Iinはわずかに流れるのみで当然 PWMで示す所望の入力は得られない。 2)発振 (起 動モード)は今回の改善が必要となる部分である。すなわち、発振した直後のマグネ トロンの不安定な状態で入力電流を精密に制御するには困難な領域であり、同図の ようにオーバーシュートして 、ることが分かる。 3)発振 (定常モード)では安定した入力 電流制御が可能となる領域と言える。
[0010] 次にこの種のインバータ電源回路 (インダクタンス Lとキャパシタンス Cで共振回路を 構成)における共振特性を図 11に示す。図 11は一定電圧を印加した場合の電流 使用周波数特性を示す線図であり、周波数 fOが共振周波数である。実際のインバー タ動作においてはこの周波数 fOより高い周波数範囲 fl〜f 3の電流 周波数曲線特 性 II (実線部)を使用している。
[0011] すなわち、共振周波数 fOの時が電流 IIは最大で周波数範囲が fl〜f3へと高くなる にしたがって電流 IIは減少する。なぜなら fl〜f3の間で低周波になるほど共振周波 数に近づくためリーケージトランスの二次側に流れる電流が大きくなり、逆に高周波 になると共振周波数力 遠ざ力るためリーケージトランスの二次側電流が小さくなるか らである。非線形負荷であるマグネトロンを駆動するインバータ電源にぉ 、てはこの 周波数を変えることにより所望の出力を得ている。例えば 200W出力で使用する場合 は f3近傍に、 600W出力の場合は f2近傍、 1200W出力の場合は fl近傍という具合 に LC電源では不可能なリニアな連続出力を得ることができる。この出力レベルごとの 動作周波数は図 9に示した駆動部 13により与えられるが、その中身は入力電流を電 圧に変換したものを各々の出力レベル基準電圧と同じになるように制御する入力制 御一定回路部 14にて実現している。また、交流の商用電源を使用しているため電源 位相の 0° 、 180° 付近では高電圧を印加しないと高周波発振しないマグネトロンの 特性に合わせて、この区間ではインバータ動作周波数として共振電流が大きくなる fl 近傍に設定する。これにより商用電源電圧に対するマグネトロン印加電圧の昇圧比 を高め、電波を発する導通角が広げられることとなる。
特許文献 1 :特開 2000— 21559号公報 発明の開示
発明が解決しょうとする課題
[0012] し力しながら、上記のような構成では下記の課題があった。
[0013] すなわち、入力電流を制御する際に基準となる信号 (REF)を設定 (外部コントロー ル基板のマイコンからの入力電流用制御信号を使用)し、インバータ電源に実際に 流れる電流を電圧に変換して上記の基準信号 REFと同じになるように制御するがゆ えに最大出力時にはマグネトロンの非発振力 発振直後の不安定な状態で生ずる 入力電流のオーバーシュートが大きくなるという問題があった。
課題を解決するための手段
[0014] 本発明は、上記課題を解決するために、マグネトロンの非発振 (起動モード)と発振
(定常モード)における入力電流用制御信号の PWM設定値を変えることで発振直後 のオーバーシュートを抑制できる構成とした。
[0015] 上記のような構成において本発明は、マグネトロンが非発振の状態力も発振した直 後の不安定な状態における入力電流のオーバーシュートを抑制して各部品に与える 過負荷を回避でき、スムーズなマグネトロン発振 (起動から定常への移行)を実現でき る。またオーバーシュートの際に発生する過大電圧による異常電圧検出停止と 、つ た問題も解決できる。
発明の効果
[0016] 本発明の高周波加熱電源装置によれば、例え定常モード時の PWM設定値が最 大出力値に設定されていたとしても発振直後にはオーバーシュートを含んで大電流 に制御を試みることはなぐマグネトロンが安定した状態に移行して力 実際の定常 モードの PWM設定値に移行するため、入力電流のオーバーシュートは極力抑制す ることがでさる。
図面の簡単な説明
[0017] [図 1]本発明の実施の形態 1のマグネトロン駆動用インバータ電源の概略構成図
[図 2]本発明の実施の形態 1におけるマグネトロン非発振力 発振への入力電流特 性図 圆 3]本発明の実施の形態 2のマグネトロン駆動用インバータ電源の概略構成図 圆 4]本発明の実施の形態 2におけるマグネトロン非発振力 発振への入力電流特 性図
圆 5]本発明の実施の形態 3のマグネトロン駆動用インバータ電源の概略構成図 圆 6]本発明の実施の形態 3におけるマグネトロン非発振力 発振への入力電流特 性図
圆 7]本発明の実施の形態 4のマグネトロン駆動用インバータ電源の概略構成図 圆 8]本発明の実施の形態 4におけるマグネトロン非発振力 発振への入力電流特 性図
圆 9]高周波加熱電源装置の回路構成図
圆 10]従来のマグネトロン非発振力も発振への入力電流特性図
圆 11]インバータ共振回路に一定電圧を印力!]した場合の電流—使用周波数特性グ ラフ
符号の説明
1 直流電源
2 リーケージトランス
3 第一の半導体スイッチング素子
4 第二の半導体スイッチング素子
5 第一のコンデンサ
6 第二のコンデンサ
7 第三のコンデンサ
11 全波倍電圧整流回路
12 マグネトロン
13 駆動部
14 入力一定制御回路
101、 201、 301、 401 PWM設定部
102 非発振 ·発振判定部
103 起動 ·定常判定部 104 パルス幅,電圧変換部
105 フォトカプラ
発明を実施するための最良の形態
[0019] 第 1の発明は商用電源を用いて半導体スイッチング素子にて高周波スイッチング動 作をさせることによりマグネトロンを駆動する高周波加熱電源装置において、前記マ グネトロンが発振した直後の入力電流のオーバーシュートを抑制するために入力電 流用制御信号を用 、ることを特徴とする。
[0020] 第 2の発明は、請求項 1記載の発明において前記入力電流用制御信号は前記マ グネトロンの非発振 (起動モード)と発振 (定常モード)で異なる値を設定したことを特 徴とする。
[0021] 第 3の発明は、請求項 2記載の発明において前記入力電流用制御信号の起動モ ードの設定値は前記マグネトロンが発振した後から除々に定常モードの設定値に向 けて変化させることを特徴とする。
[0022] 第 4の発明は、請求項 2または請求項 3記載の発明において前記入力電流用制御 信号の起動モードの設定値は定常モードの各出力レベルに関わらず一定としたこと を特徴とする。
[0023] 第 5の発明は、請求項 3記載の発明において前記入力電流用制御信号の起動モ ードの設定値は非発振と発振 (共に起動モードに於いて)を見極める ΠΝΤΗ閾値と 同じになるように設定され、その後の定常モードでの設定値に移行する際に各出力 レベルに関わらず同じ傾斜で変化させることを特徴とする。
[0024] 上記の構成により、マグネトロンが非発振の状態力 発振した直後の不安定な状態 で生ずる入力電流のオーバーシュートを抑制して各部品に与える過負荷を回避でき 、スムーズなマグネトロン発振 (起動力も定常への移行)を実現できる。またオーバー シュートの際に発生する過大電圧による異常電圧検出停止といった問題も解決でき る。
[0025] 以下、本発明の実施の形態について、図面を参照しながら説明する力 本発明は 前記した通りマグネトロンの非発振 (起動モード)と発振 (定常モード)における入力電 流用制御信号の PWM設定値を変えることで発振直後のオーバーシュートを抑制で きる構成としたものであり、図 1, 3, 5, 7の REF出力信号以降の構成は図 9と同様で ある。なお、この実施の形態によって本発明が限定されるものではない。
[0026] (実施の形態 1)
図 1は、本実施の形態 1のマグネトロン駆動用インバータ電源の概略構成図を示し ている。なお、上述のように、 REF出力信号以降の構成については図 9に示した従来 の構成と同様であるので、ここでは説明を省略する。
[0027] 図 1に示す PWM設定部 101は、起動モード時と定常モード時では異なる PWMを 設定する。非発振 ·発振判定部 102は、 ΠΝΤΗ信号と Iin信号を比較して、起動モー ドと定常モードとの切り替えを行う。すなわち、 IINTH>Iinが非発振, ΠΝΤΗく Iin が発振と判定される。その信号はタイムラグを設けた後、起動 ·定常判定部 103を経 て PWM設定部 101に入力され、出力する PWM信号を起動モード値にするか定常 モード値にするかが決められる。
[0028] パルス幅→電圧変換部 104では、 PWMのオンデューティー比に比例する形で電 圧に変換され、例えば PWM = 85 %の際は REF = 6 Vで 1 OOOW出力の基準信号に 、 PWM = 60%の際は REF = 4. 2Vで 700W出力の基準信号に設定できる。なお、 図 1中のフォトカプラ 105は、 GND電位の異なるインバータ側と外部コントロール基 板 (制御基板)側との絶縁インターフェースとして用いて 、る。
[0029] 図 2は、本発明に係わるマグネトロン駆動用インバータ電源の動作によりマグネトロ ンが非発振の状態力 発振するまでを入力電流 Iinにて示した入力電流特性図であ る。図の通り起動モードと定常モードにおいて PWM設定値のオンデューティを変え ることにより入力電流のオーバーシュート抑制を実現している(請求項 1)。すなわち マグネトロン発振直後の不安定な間は PWM設定値のオンデューティを低く設定する ことにより入力電流を低く制御する状態にしており、発振直後から安定した発振状態 に移行したことを確認した後に正規の所望の定常モードにおける PWM設定値にし ている。これにより、例え定常モードでの PWM設定値が最大出力であったとしてもォ 一バーシュートを抑制しながら安定した起動を実現している(請求項 2)。
[0030] 実際には外部コントロール基板からの PWM信号はインバータ電源内でオンデュー ティに比例した基準信号 REFに変換され、入力電流を電圧に変換した信号とを比較 して入力一定制御部にて等しくなるように動作周波数を司る駆動部に伝えられる。こ の際、 REF端子にはコンデンサを用いることで図 2に示すようなオンデューティの急 激な変化は吸収されて 、る。
[0031] また、発振 (起動モード)と発振 (定常モード)への PWM信号の切り替えにおいては 同図に示す ΠΝΤΗ閾値を設けて入力電流がその閾値を超えた力否かにより判断し て 、る。さらに ΠΝΤΗ閾値を超えた直後はまだマグネトロンの発振安定性は確保でき て!ヽな 、ためインバータ電源と外部コントロール基板との通信の中で PWM周期の数 倍程度のタイムラグを設けた後に定常モードの PWM設定値に切り替えている。
[0032] 起動モードでの PWM設定値の注意点としては設定値による Iin値が ΠΝΤΗ閾値よ りも大きくなるように設定することである。そうしなければ定常モードへの PWM設定値 移行ができなくなるからである。
[0033] (実施の形態 2)
図 3は、本実施の形態 2のマグネトロン駆動用インバータ電源の概略構成図を示し ている。なお、上述のように、 REF出力信号以降の構成については図 9に示した従来 の構成と同様であるので、ここでは説明を省略する。本実施の形態 2のマグネトロン 駆動用インバータ電源は、図 3に示すように、 PWM設定部 201において起動→定常 の制御が追加されている。それ以外の処理は実施の形態 1と同様であり、上述した構 成要素と同一の構成要素については同一の符号を付し、その説明を省略する。
[0034] 図 4は、上記実施の形態 1にて示した方式にカ卩えて起動モード力も定常モードへの PWM信号の設定値移り変わりを除々に変化させている本実施の形態 2の入力電流 特性図を示して 、る。例えば起動モードでの PWM設定値を 30%とすると定常モー ドでは MAXの 85%であり、 l%Zmsとすれば 55ms後に最終の定常モード設定値 に到達する。こうすることで実施の形態 1において示した入力電流のオーバーシユー ト抑制をさらに改善することができる (請求項 3)。
[0035] (実施の形態 3)
図 5は、本実施の形態 3のマグネトロン駆動用インバータ電源の概略構成図を示し ている。なお、上述のように、 REF出力信号以降の構成については図 9に示した従来 の構成と同様であるので、ここでは説明を省略する。本実施の形態 3のマグネトロン 駆動用インバータ電源は、図 5に示すように、 PWM設定部 301において起動モード の設定値をデューティー比 30%固定としている。それ以外の処理は実施の形態 1と なんら変わりはない。それ以外の処理は実施の形態 1と同様であり、上述した構成要 素と同一の構成要素にはついては同一の符号を付し、その説明を省略する。
[0036] 図 6は、上記実施の形態 1および 2にて示した方式において、各出力レベルに応じ た定常モードの PWM設定値に関わらず起動モードの PWM設定値を固定としてい る本実施の形態 3の入力電流特性図を示している。この場合定常モードでの最小出 力値力 NTH閾値より低い値であったとしても特に起動モードにおける設定値を計 算して設定する必要はな 、。実施の形態 1で述べた起動モードでの PWM設定値の 注意点を守り且つ、定常モードにおける最大出力値の場合においてもオーバーシュ ートを十分抑制できる値に起動モードでの PWM設定値を一度だけ設定すれば良い (請求項 4)。
[0037] (実施の形態 4)
図 7は、本実施の形態 4のマグネトロン駆動用インバータ電源の概略構成図を示し ている。なお、上述のように、 REF出力信号以降の構成については図 9に示した従来 の構成と同様であるので、ここでは説明を省略する。本実施の形態 4のマグネトロン 駆動用インバータ電源は、図 7に示すように、 PWM設定部 401において起動モード の設定値を ΠΝΤΗ閾値と同値としている。さらに起動→定常の推移は Δ (MAX— II NTH)Z20msの固定値としている。それ以外の処理は実施の形態 1と同様であり、 上述した構成要素と同一の構成要素については同一の符号を付し、その説明を省 略する。
[0038] 図 8は、上記実施の形態 3に示した方式において起動モードでの PWM設定値を II NTH閾値と同じに設定している本実施の形態 4の入力電流特性図を示している。ま た、定常モードでの PWM設定値に向けて変移させる傾斜は各出力レベルに関わら ず一定であり制御の煩雑さを解消している。さらに変移傾斜を適切にすることで、実 施の形態 1で述べたようなインバータ電源と外部コントロール基板との通信の中で P WM周期の数倍程度のタイムラグを設ける必要もなぐ即定常モードへの PWM設定 値に変移可能である。このように実施の形態 4ではより滑らかなオーバーシュートを抑 制した起動制御を実現できる(請求項 5)。
[0039] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 本出願は、 2005年 8月 26日出願の日本特許出願'出願番号 2005-24561 9に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0040] 以上のように、本発明に力かる高周波加熱電源装置によれば、定常モード時の PW M設定値が最大出力値に設定されていたとしても発振直後にはオーバーシュートを 含んで大電流に制御を試みることはなぐマグネトロンが安定した状態に移行してか ら実際の定常モードの PWM設定値に移行するため、入力電流のオーバーシュート は極力抑制することができるもので、種々のインバータ回路に応用できる。

Claims

請求の範囲
[1] 商用電源を用いて半導体スイッチング素子にて高周波スイッチング動作をさせること によりマグネトロンを駆動する高周波加熱電源装置において、前記マグネトロンが発 振した直後の入力電流のオーバーシュートを抑制するために入力電流用制御信号 を用いることを特徴とした高周波加熱電源装置。
[2] 前記入力電流用制御信号は前記マグネトロンの非発振 (起動モード)と発振 (定常モ ード)で異なる値を設定したことを特徴とした請求項 1記載の高周波加熱電源装置。
[3] 前記入力電流用制御信号の起動モードの設定値は前記マグネトロンが発振した後 力 除々に定常モードの設定値に向けて変化させることを特徴とした請求項 2記載の 高周波加熱電源装置。
[4] 前記入力電流用制御信号の起動モードの設定値は定常モードの各出力レベルに関 わらず一定としたことを特徴とした請求項 2または請求項 3記載の高周波加熱電源装 置。
[5] 前記入力電流用制御信号の起動モードの設定値は非発振と発振 (共に起動モード に於いて)を見極める ΠΝΤΗ閾値と同じになるように設定され、その後の定常モード での設定値に移行する際に各出力レベルに関わらず同じ傾斜で変化させることを特 徴とした請求項 3記載の高周波加熱電源装置。
PCT/JP2006/316769 2005-08-26 2006-08-25 高周波加熱電源装置 WO2007023962A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007532207A JP5179874B2 (ja) 2005-08-26 2006-08-25 高周波加熱電源装置
CN2006800312878A CN101258778B (zh) 2005-08-26 2006-08-25 高频加热电源
US12/064,911 US9301346B2 (en) 2005-08-26 2006-08-25 Power supply for a high frequency heating
EP06783058.8A EP1926349B1 (en) 2005-08-26 2006-08-25 High-frequency heating power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005245619 2005-08-26
JP2005-245619 2005-08-26

Publications (1)

Publication Number Publication Date
WO2007023962A1 true WO2007023962A1 (ja) 2007-03-01

Family

ID=37771700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316769 WO2007023962A1 (ja) 2005-08-26 2006-08-25 高周波加熱電源装置

Country Status (5)

Country Link
US (1) US9301346B2 (ja)
EP (1) EP1926349B1 (ja)
JP (1) JP5179874B2 (ja)
CN (1) CN101258778B (ja)
WO (1) WO2007023962A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199975A (ja) * 2008-02-25 2009-09-03 Panasonic Corp 高周波加熱電源

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332812A (zh) * 2011-09-17 2012-01-25 深圳麦格米特电气股份有限公司 一种变频微波炉电源自适应起动方法
CN103208938B (zh) * 2013-03-22 2018-04-10 洛阳科诺工业设备有限公司 一种感应加热电源逆变器反馈方向自适应电路及方法
EP3339872B1 (en) * 2016-12-21 2019-02-13 Bruker BioSpin GmbH Epr resonator with extended transparency and homogeneity in rf range

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432191A (ja) * 1990-05-25 1992-02-04 Toshiba Corp 高周波加熱調理装置
JPH08227790A (ja) * 1995-02-21 1996-09-03 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH1187048A (ja) * 1997-09-10 1999-03-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2000021559A (ja) 1998-06-30 2000-01-21 Toshiba Corp 電子レンジ
JP2001210463A (ja) * 2000-01-27 2001-08-03 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003308960A (ja) * 2002-04-17 2003-10-31 Sanyo Electric Co Ltd 高周波加熱調理器
JP2005317306A (ja) * 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd 高周波加熱装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006174B1 (ko) * 1987-07-27 1991-08-16 마쯔시다덴기산교 가부시기가이샤 고주파가열장치
US5274208A (en) 1990-03-28 1993-12-28 Kabushiki Kaisha Toshiba High frequency heating apparatus
JPH07161464A (ja) 1993-12-09 1995-06-23 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP3830144B2 (ja) * 2002-06-21 2006-10-04 松下電器産業株式会社 高周波誘電加熱用電力制御方法およびその装置
KR100591314B1 (ko) * 2003-12-05 2006-06-19 엘지전자 주식회사 인버터 전자레인지 및 그 제어방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432191A (ja) * 1990-05-25 1992-02-04 Toshiba Corp 高周波加熱調理装置
JPH08227790A (ja) * 1995-02-21 1996-09-03 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH1187048A (ja) * 1997-09-10 1999-03-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2000021559A (ja) 1998-06-30 2000-01-21 Toshiba Corp 電子レンジ
JP2001210463A (ja) * 2000-01-27 2001-08-03 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003308960A (ja) * 2002-04-17 2003-10-31 Sanyo Electric Co Ltd 高周波加熱調理器
JP2005317306A (ja) * 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd 高周波加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1926349A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199975A (ja) * 2008-02-25 2009-09-03 Panasonic Corp 高周波加熱電源

Also Published As

Publication number Publication date
US20090134153A1 (en) 2009-05-28
CN101258778B (zh) 2012-03-21
EP1926349B1 (en) 2014-08-20
CN101258778A (zh) 2008-09-03
JPWO2007023962A1 (ja) 2009-03-26
EP1926349A4 (en) 2009-07-29
EP1926349A1 (en) 2008-05-28
JP5179874B2 (ja) 2013-04-10
US9301346B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
CN102484907B (zh) 感应加热装置
JP4978062B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
JP4912581B2 (ja) 高周波加熱装置
CN107820669B (zh) 双桥dc/dc功率变换器
KR20020010195A (ko) 전자렌지 및 그 제어방법
EP1811813B1 (en) High-frequency heating power source
US9960689B1 (en) Resonant control device and resonant control method thereof
WO2007023962A1 (ja) 高周波加熱電源装置
Yachiangkam et al. Steady-state analysis of ZVS and NON-ZVS full-bridge inverters with asymmetrical control for induction heating applications
KR100399134B1 (ko) 전자렌지
JP2001128462A (ja) インバータ装置の制御方法
JP2004006331A (ja) 誘導加熱装置
Mishima et al. A new ZVS phase-shifted high-frequency resonant inverter incorporating asymmetrical PWM-based unit control for induction heating
JP2007328982A (ja) 高周波誘電加熱用電力制御装置およびその制御方法
JP2009043700A (ja) 誘導加熱装置
JP5092286B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
Yachiangkam et al. Resonant inverter with a variable-frequency asymmetrical voltage-cancellation control for low q-factor loads in induction cooking
Matsushige et al. Voltage-clamped soft switching PWM inverter-type DC-DC converter for microwave oven and its utility AC side harmonics evaluations
Sarnago et al. Hybrid full/half wave inverter designed for low cost induction heating appliances
JP5124996B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
KR100361027B1 (ko) 전자렌지
JP2009289422A (ja) 誘導加熱装置
CN106686787B (zh) 电磁微波加热系统、方法及加热器具
JP2005149828A (ja) 高周波加熱装置
WO2006077879A1 (ja) 高周波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031287.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532207

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12064911

Country of ref document: US

Ref document number: 2006783058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE