WO2007020941A1 - 無線マルチホップネットワークにおける通信経路制御方法および通信端末 - Google Patents

無線マルチホップネットワークにおける通信経路制御方法および通信端末 Download PDF

Info

Publication number
WO2007020941A1
WO2007020941A1 PCT/JP2006/316100 JP2006316100W WO2007020941A1 WO 2007020941 A1 WO2007020941 A1 WO 2007020941A1 JP 2006316100 W JP2006316100 W JP 2006316100W WO 2007020941 A1 WO2007020941 A1 WO 2007020941A1
Authority
WO
WIPO (PCT)
Prior art keywords
hello message
hello
information
transmission interval
communication
Prior art date
Application number
PCT/JP2006/316100
Other languages
English (en)
French (fr)
Inventor
Tomohiko Yagyu
Shigeru Asai
Masahiro Jibiki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007531009A priority Critical patent/JP4947430B2/ja
Publication of WO2007020941A1 publication Critical patent/WO2007020941A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/30Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/26Route discovery packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/36Backward learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery

Definitions

  • the present invention relates to a communication path control method and a communication terminal in a wireless multi-hop network, and in particular to a situation in which a large number of communication terminals (hereinafter simply referred to as “terminal” or “node”) exist on the network.
  • the present invention relates to a communication path control method and a communication terminal.
  • the wireless communication range is exceeded by passing, as a relay node, another terminal that exists within the communication range where its own wireless signal can be reached, as the terminals communicate directly with each other wirelessly.
  • Wireless multi-hop networks that allow data to be sent and received between terminals are known!
  • This wireless multi-hop network is composed of a plurality of terminals, and each terminal is not addressed to itself, and has a router function for transferring packets. With this router function, each terminal can deliver a packet to a target terminal by directly transmitting a packet to another terminal that has not received the wireless capability.
  • a routing protocol that autonomously and distributively controls this packet transfer route
  • a Reactive (Reactive) type protocol that searches for a route at the start of communication or periodically exchanges messages with other terminals to maintain the latest route. Proactive type protocol etc. are adopted. In the following, path control of a wireless multi-hop network using a proactive routing protocol will be described.
  • a terminal existing within the wireless communication range by transmitting and receiving periodical adjacency discovery messages (referred to as “: hello messages”). Understand (referred to as “adjacent terminal” or “adjacent node”).
  • hello messages periodical adjacency discovery messages
  • acknowledge referred to as “adjacent terminal” or “adjacent node”
  • topology message including link information with the adjacent terminal to the entire network
  • each terminal grasps the network topology (the shape of which communication terminals are connected to each other). And its topology information power also each terminal
  • the route control of the wireless multi-hop network is realized by calculating the shortest route to the end.
  • OLSR Optimized Link State Routing Protocol
  • a terminal transmits a hello message at a preset transmission interval after its activation.
  • This Hello message can be received only by the adjacent terminals present in the wireless reachable range, and transfer to other terminals is not performed via the adjacent terminals.
  • the terminal when the terminal receives a Hello message from the adjacent terminal, the terminal also includes information including the IP address (adjacent node information) of the adjacent node included in the Hello message during the effective period (described later) included in the Hello message. Is recorded in the form of a list in the adjacent node table.
  • the terminal transmits the Hello message next time it transmits the list of IP addresses of all the adjacent nodes recorded in the adjacent node table in the adjacent node information of the Hello message.
  • the terminal that has received the Hello message including the adjacent node information selects the adjacent node's multipoint relay (MPR) based on the adjacent node information, and uses the selected MPR to select TC (Topology). Control) Send and forward messages.
  • MPR multipoint relay
  • MPR is a set of forwarding nodes for forwarding a message sent by a certain terminal so that all the terminals in the network can receive it. From the viewpoint of a communication terminal, MPR selection is performed by calculating a set of adjacent nodes that cover all the terminals existing in two hops ahead. The selected MPR is notified to the adjacent node by Hello message. In this way, the adjacent node can recognize that it needs to forward the message when it receives a control message that requires notification from all of the terminals to all the terminals in the network, such as a TC message. . All control messages except Hello messages are forwarded by MPR to all nodes in the network. Hello messages are not forwarded and only nodes that are within radio coverage will receive.
  • the TC message is a message for notifying all nodes in the network of the link information (usually, the link between the selected MPR node) and its own. This TC message is created at a preset transmission interval, transferred by the above MPR, All terminals in the network are notified. Other terminal power The link information of the received TC message is stored in the topology table. Each terminal also creates a network topology graph with the link information power recorded in the topology table, calculates the shortest route to each terminal, and sets the communication transfer route according to the calculation result.
  • Non-Patent Document 1 T. Clausen, et al., "Optimized Link State Routing Protocol (OLSR)", IETF RFC 3626, October 2003
  • OLSR Optimized Link State Routing Protocol
  • Non-Patent Document 2 R. Ogier et al., Opology Dissemination Based on Reverse-Path Forwarding (TBRPF) ", IETF RFC 3684, February 2004
  • the Hello inter- It needs to be set.
  • the Hello interval is actually about twice as large. Under this condition, if all the terminals are activated at the same time, it takes at least a time equal to or more than the Hello interval before communication becomes possible between all the terminals. I can not start. This point is the same as when the terminal newly joins the network.
  • An object of the present invention is to provide a wireless network having a narrow bandwidth, in which a large number of communication terminals are in an adjacent state and communication terminals are simultaneously activated in an environment existing within a wireless communication range. It is to shorten the route convergence time between communication terminals when participating in. Means to solve the problem
  • a control packet including a Hello message, which is a control message for detecting an adjacent node is exchanged between a plurality of communication terminals by wireless. Then, a multi-hop network is formed by using the plurality of communication terminals as nodes, topology information of the multi-hop network is held, and communication of packets transmitted and received among the plurality of communication terminals based on the topology information.
  • a step of suppressing an amount of information of the hello message when transmitting the hello message at a predetermined transmission interval, a step of suppressing an amount of information of the hello message, an amount of information of the hello message Transmission of the steady state Hello message while the transmission interval is suppressed Characterized by a step of setting the short had transmission interval than Ntabaru.
  • the method may further include the step of adjusting the transmission interval according to the number of adjacent nodes found by the hello message.
  • the state of the number of adjacent nodes discovered during suppression of the information amount of the Hello message is monitored, and the state value of the Hello message is less than a preset threshold value.
  • the method may further include the steps of releasing the information amount suppression and adjusting the transmission interface after releasing the information amount suppression of the Hello message.
  • the power of the node newly joined to the multi-hop network when the Hello message is received the step of suppressing the information amount of the Hello message, and the information amount of the Hello message Reconfiguring the transmission interface to a transmission interval shorter than the steady state transmission interval while is suppressed.
  • the network load for exchanging Hello messages is considered. It is possible to suppress and accelerate the convergence of the route. By this means, it is possible to shorten the time until the terminal can communicate.
  • FIG. 1 is a diagram showing an example of the overall configuration of a wireless multi-hop network according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a functional configuration of the communication terminal shown in FIG.
  • FIG. 3 A diagram showing an example of a hello message configuration of the communication terminal shown in FIG.
  • FIG. 4 is a flowchart showing an operation sequence of the communication terminal shown in FIG.
  • FIG. 5 is a diagram for explaining transition of Hello intervals by the communication terminal shown in FIG. 1; Explanation of sign
  • the wireless multi-hop network (mopiled ad hoc network) according to the present embodiment is an application of the method using Proactive Protocol (OLSR protocol: Optimized Link State Routing Protocol) described in Non-Patent Document 1 above. is there.
  • OLSR protocol Optimized Link State Routing Protocol
  • FIG. 1 shows an example of a network configuration in a wireless multi-hop network according to the present embodiment.
  • a plurality of communication terminals 11 to 14 respectively correspond to nodes on the wireless network.
  • a wireless multi-hop network is formed by configuring and wirelessly exchanging control packets between these nodes (Al 1 to A 14 in the figure indicate the wireless reach of each communication terminal 11 to 14). Show).
  • the communication terminals 11 to 14 can be applied to any of a mobile phone, a notebook PC (Personal Computer), an on-board unit mounted on a vehicle, and the like.
  • Each of the communication terminals 11 to 14 has a unique node ID and an IP (Internet Protocol) address. Since the IP addresses assigned to the communication terminals 11 to 14 do not overlap, it is also possible to use an IP address as a node ID.
  • IP Internet Protocol
  • FIG. 2 shows an internal functional configuration of the communication terminal 11.
  • the other communication terminals 12 to 14 have the same configuration as that of the communication terminal 11, and thus the description thereof will be omitted.
  • the communication terminal 11 has a wireless communication device 20, an adjacent node table 26, a topology table 27, a packet transfer function 28, a route control function 29, and a communication application program 30 as its internal functions.
  • the wireless communication device 20 wirelessly exchanges data packets with all other route control messages such as Hello messages and TC messages with other communication terminals.
  • the route control message is exchanged via the route control function 29.
  • the data packet is transmitted and received by the communication application program 30 via the packet transfer function 28.
  • the packet transfer function 28 receives communication path information based on the shortest path to another communication terminal calculated by the path control function 29 and thereby controls the communication path of the data packet from the communication application program 30. .
  • the topology table 27 relates to the network topology according to the link information included in the TC message received via the wireless communication device 20 through transfer of other communication terminals in the network, or possibly through other communication terminals. Information is recorded.
  • the contents of these two tables 26 and 27 are the same as those described in known documents such as Non-Patent Document 1.
  • the routing control function 29 discovers the adjacent node also in the received Hello message power and records the information in the adjacent node table 26.
  • Discover that information and It has a topology discovery function 24 recorded in one table 27 and a path calculation function 25 for creating a network topology graph recorded in the topology table 27 and calculating the shortest path to each terminal.
  • the route control function 29 controls the Hello information suppression function 21 for suppressing the information amount of the Hello message, and the Hello interval adjustment for adjusting the Hello interval (the interval for transmitting the Hello message). And 22.
  • Each communication terminal when activated, broadcasts a Hello message within the wireless coverage area to inform other communication terminals of its existence, as in the above-mentioned OLSR.
  • FIG. 3 shows the packet format of the Hello message.
  • the packet of this Hello message is “message type”, “valid period”, “message size”, “creation node ID”, “TT L”, “hop count”, “sequence number”, “S bit”, It consists of "advertising interval”, “willingness”, and "adjacent node IP address”.
  • "Message type” indicates the type of the message (in this case, Hello message).
  • the “validity period” indicates the time that the message is sent and the force is also valid.
  • "Message size” indicates the length of the message, and "Creating node ID” indicates the node ID of the terminal that created the message.
  • TTL (Time To Live)” indicates the maximum number of hops to forward a message, and hello messages can be 1 (that is, not forward). The "hop count” is incremented by one each time a message is forwarded.
  • “Sequence number” is an identification number assigned to uniquely identify each message, and is incremented by one each time a message is created.
  • the “S bit” is a flag indicating that adjacent node information is omitted in the “adjacent node discovery stage” described later.
  • "Advertising interval” indicates the time interval for advertising the message.
  • "Willingness” indicates the positiveness to transfer messages and data packets. It has a value of 0 to 7, and the higher the value, the easier it is to select another node as a packet transfer node.
  • the “adjacent node IP address” is the IP address of the other terminal that has received a valid Hello message.
  • FIG. 4 is a schematic flowchart showing an operation sequence of the communication terminal 11.
  • the communication terminal 11 proceeds to (3) route establishment phase (step St4) after (1) adjacent node discovery phase (step St1), (2) its end determination (step St2), and At the same time, after (4) the end determination (step St4), (5) the steady state (step St5) is entered.
  • step St4 route establishment phase
  • step St2 adjacent node discovery phase
  • step St2 end determination phase
  • step St5 steady state
  • the communication terminal 11 transmits a hello message by the hello interval adjustment function 22 every predetermined first hello interval Is # 1. This stage is called "adjacent node discovery stage".
  • the terminal that has received Hello messages of other terminals stores the information of the adjacent node in the adjacent node table 26, and the list of IP addresses of the adjacent nodes recorded in the next Hello message (adjacent node IP Insert the address) and send.
  • the communication terminal 11 sets the “S bit” flag by the hello information suppression function 21 and omits the IP address information of the adjacent node. Send This makes exchange of Hello messages much shorter than ordinary OLSR, so exchange Hello messages with all adjacent nodes at Hello interval (first Hello interval) Is # 1 earlier than usual. It is possible to finish
  • step St2 Judgment of termination of adjacent node discovery phase
  • the number of adjacent nodes found by the previous Hello interval and the number of adjacent nodes discovered by the previous Hello interval are not changed or set in advance. If it is less than the specified threshold, it is judged that almost all the adjacent nodes have been found, and the process proceeds to the next route establishment stage. Alternatively, it is possible to make a transition when a predetermined number of first Hello interleaves have been completed.
  • the communication terminal 11 uses the Hello interval adjustment function 22 to calculate the second Hello interval from the number of adjacent nodes (that has received Hello). calculate.
  • the calculation formula is as follows, for example.
  • N Number of adjacent nodes found
  • Pr Percentage of bandwidth available for route control at the route establishment stage (0 ⁇ Pr ⁇ 1)
  • the percentage of bandwidth available for route control at the route establishment stage is set to 0.3 (30%), as an example.
  • the second Hello interleaver can also be set to a preset value.
  • the setting value in this case is set within a range shorter than the first Hello interval Is # 1 and longer than the normal Hello interval.
  • Each terminal sets the "S bit” flag, puts the adjacent node information found in the adjacent node discovery phase into the Hello message, and transmits it according to the second Hello interval Is # 2.
  • the terminal that has received the Hello message (full Hello) containing the adjacent node information selects the MPR and transmits the TC message.
  • the link information of TC messages received by other terminals is stored in the topology table 27.
  • the communication terminal 11 transitions to the next steady state when the second Hello interval of the preset number of times is completed in the path establishment phase.
  • Step St5 Transition to Steady State
  • the communication terminal 11 that has completed the path establishment phase transmits a hello message at a preset steady state Hello interval or an interval in which the force such as the number of adjacent nodes is also calculated.
  • the calculation formula is as follows, for example.
  • N Number of adjacent nodes found
  • B Wireless band [bit Zsec]
  • the communication terminal 11 suppresses part of the information included in the Hello message, for example, when a new adjacent terminal is found for a certain period after activation or the like by the Hello information suppression function 21. Keep the message length short. Also, the communication terminal 11 adjusts the Hello interval short while the Hello message length is suppressed by the Hello interval adjustment function 22, and after the suppression of the Hello message length is shorter than usual, the second Hello interval is Calculate and reset to the steady state Hello interval after releasing the second Hello interval.
  • FIG. 5 shows the Hello interval described above and the transition of each stage. Is # 1 in the figure, Is
  • Non-Patent Document 1 In the normal OLSR shown in Non-Patent Document 1, such adjustment of Hello interval is not performed, and Hello message is transmitted at fixed Hello interval. Also, in the normal OSLR, since the adjacent node information in the Hello message is not suppressed, the amount of information of the Hello message to be transmitted becomes large, and as a result, a long Hell interval is needed to find the adjacent node.
  • the Hello message is transmitted at the Hello interval adjusted as described above.
  • the “S bit” flag is set, and the short and message length Hello message (short! /, Hello) power in which the adjacent node information (adjacent node IP address) is omitted. Sent in the first Hello interval Is # 1 using 50% bandwidth. This will find neighboring nodes.
  • Hello message (full hello) power is sent in the second Hello interval Is # 2 using, for example, 30% bandwidth.
  • Hello messages (full Hello) including all the information of the selected MPR are also transmitted in the second Hello interval Is # 2 using, for example, a 30% bandwidth. This establishes the path (convergence).
  • the steady state Hello message power is transmitted at steady state Hello interval In using, for example, a bandwidth of 10%.
  • a new communication terminal when a new communication terminal appears in a network in which a route is established and in a steady state, that communication terminal quickly establishes a route to another terminal, And, the other terminal performs the same operation as described above in order to quickly establish the route to the new terminal. That is, the communication terminal newly joining the network sets the "S bit” flag and transmits the hello message at the first hello interval Is # 1.
  • the other terminals that have received the Hello message with the "S bit” flag set themselves in the adjacent node discovery phase and set the "S bit” flag to suppress the adjacent node information.
  • Send with Hel lo interval Is # 1 The transition in this case is also performed to the steady state through the path establishing phase as described above. As a result, communication paths with terminals newly joined to the network can be quickly established.
  • the proactive routing method in the conventional wireless multi-hop network presupposes regular Hello message exchange, so narrow bandwidth! Congestion is considered when there are many terminals in the wireless network, etc. You have to send hello messages with a very long hello interval to avoid. When all communication terminals start up simultaneously or when a new terminal joins the network, it takes at least a time equal to or more than the Hello interval before all communication terminals can communicate. Communication can not be started immediately after startup or after joining.
  • part of the information included in the Hello message in a certain period after activation or when a new adjacent terminal is found.
  • the step of transmitting one interval shorter than the normal Hello interval (adjacent node finding phase) the step of determining the timing of releasing the suppression of the hello message length, and the second Hello interval after releasing the suppression of the hello message length. Calculation and sending Hello messages in the second Hello interval (route establishment phase) and releasing the second Hello interval and resetting to the steady state Hello interval (transition to steady state) Line).
  • the Hello interval is shortened, for a certain period after startup or when a new adjacent terminal is found. Priority is given to the discovery of adjacent terminals by transmitting data. Furthermore, after releasing the suppression of the Hello message length, the second Hello interval is calculated shorter than usual, and the Hello message is transmitted at the second Hello intermediation to exchange the adjacent terminal information promptly. Finally, the second Hello interval for exchanging the adjacent terminal information is released and reset to the steady state Hello interval.
  • each function of communication terminal 11 is stored in communication terminal 11 using a program code on a recording medium.
  • a program code may be realized by a CPU (CPU: Central Processing Unit).
  • CPU Central Processing Unit
  • program code and a recording medium for recording the program are included in the scope of the present invention.
  • the program code in this case includes the program code if the above function is realized in cooperation with the operating system, communication program or other application program.
  • a recording medium RO incorporated or connected to the processor Disk-type recording media (magnetic disks, optical disks, optical disks, etc.) communicably connected to a processor via a bus, and tape-type recording devices, as well as semiconductor memories such as M (Read Only Memory).
  • the program code is of a type in which other communication terminals on the wireless multi-hop network communicably connected to the communication terminal, and other communication terminals such as server devices are also downloaded via the network and used. But it is applicable.
  • the present invention can be used for applications such as a wireless multi-hop network composed of a plurality of communication terminals, a communication terminal, a communication path control method used in these, a communication path control device, a communication path control program, and a recording medium recording the same. It is.

Abstract

 無線マルチホップネットワークの通信端末11は、Hello情報抑制機能21により、起動後のある期間または新しい隣接端末が発見された場合にHelloメッセージに含まれる情報の一部を抑制してメッセージ長を短く抑える。また、この通信端末11は、Helloインターバル調整機能22により、Helloメッセージ長の抑制時にHelloインターバルを短く調整し、またHelloメッセージ長の抑制解除後に通常より短い第2のHelloインターバルを計算して設定し、さらに第2のHelloインターバルの解除後、定常状態のHelloインターバルに再設定する。こうすることで、帯域の狭い無線ネットワークにおいて、多数の通信端末が隣接状態にあり、無線通信範囲内に存在する環境で通信端末が一斉起動した場合または通信端末がネットワークに新たに参加した場合の通信端末間の経路収束時間を短縮する。

Description

明 細 書
無線マルチホップネットワークにおける通信経路制御方法および通信端 末
技術分野
[0001] 本発明は、無線マルチホップネットワークにおける通信経路制御方法および通信 端末に関し、特にネットワーク上に通信端末 (以下、単に「端末」または「ノード」と呼 ぶ)が多数存在する状況に適応した通信経路制御方法および通信端末に関する。 背景技術
[0002] 従来、無線ネットワークでは、端末同士が無線により直接通信するだけでなぐ自ら の無線信号が届く通信範囲内に存在する他の端末を中継ノードとして経由すること で、その無線通信範囲を超えて端末間でデータを送受信することを可能とする無線 マルチホップネットワークが知られて!/、る。
[0003] この無線マルチホップネットワークは、複数の端末で構成されており、各端末は自 分宛でな!、パケットを転送するためのルータ機能を持って 、る。このルータ機能によ り各端末は、直接無線の届力ない端末に対してパケットを他の端末を介することによ り目的の端末へ届けることができる。このパケット転送経路を自律分散的に制御する ルーティングプロトコルとしては、通信開始時に経路を探索するリアクティブ (Reactive )型プロトコルや、定期的に他の端末とメッセージを交換して常時最新経路を維持す るプロアクティブ(Proactive)型プロトコル等が採用されている。以下、プロアクティブ 型ルーティングプロトコルを用いた無線マルチホップネットワークの経路制御につ ヽ て説明する。
[0004] 従来のプロアクティブ型ルーティングプロトコル(以下、単にプロトコルと呼ぶ)では、 定期的な隣接発見メッセージ(「: Helloメッセージ」と呼ぶ)を送受信することにより、無 線通信範囲内に存在する端末(「隣接端末」又は「隣接ノード」と呼ぶ)を把握する。 次いで、その隣接端末との間のリンク情報を含むトポロジーメッセージを定期的にネ ットワーク全体へ広告することにより、各端末がネットワークトポロジー(どの通信端末 同士が繋がっているかの形状)を把握する。そして、そのトポロジー情報力も各端末 までの最短経路を計算することで、無線マルチホップネットワークの経路制御が実現 されている。こうした方式は、下記の非特許文献 1、非特許文献 2等で開示されている
[0005] ここで、非特許文献 1で開示されて!、る OLSR (Optimized Link State Routing Prot ocol)について説明する。
[0006] OLSRでは、端末は、その起動後に、あら力じめ設定された送信間隔で Helloメッ セージを送信する。この Helloメッセージは、無線到達範囲内に存在する隣接端末 のみが受信することができ、隣接端末を介して他の端末への転送は行われない。ま た、端末は、隣接端末力も Helloメッセージを受信した場合、その Helloメッセージに 含まれる有効期間(後述)の間、その Helloメッセージに含まれる隣接ノードの IPアド レス(隣接ノード情報)を含む情報を隣接ノードテーブルにリスト形式で記録する。次 いで、端末が、次回 Helloメッセージを送信する場合は、隣接ノードテーブルに記録 されている全隣接ノードの IPアドレスのリストを Helloメッセージの隣接ノード情報に含 めて送信する。隣接ノード情報の入った Helloメッセージを受信した端末は、その隣 接ノード情報を元にして、隣接ノードの中力 MPR (Multipoint Relay)を選択し、選 択された MPRを利用して TC (Topology Control)メッセージを送信および転送する。
[0007] MPRとは、ある端末が送信したメッセージを、ネットワーク内の全端末が受信できる ように転送するための転送ノードの集合である。ある通信端末から見た場合、 MPRの 選択は自分の 2ホップ先に存在する端末全てをカバーするような隣接ノードの組を計 算することで行われる。 自分が選択した MPRは、 Helloメッセージによって隣接ノード に通知される。これにより隣接ノードは、その端末から TCメッセージなどのネットヮー ク内の全端末に通知が必要な制御メッセージを受信した場合、 自分がそのメッセ一 ジを転送する必要があることを認識することができる。 Helloメッセージ以外の全ての 制御メッセージは、 MPRによってネットワーク内の全ノードに転送される。 Helloメッセ ージは転送されず、無線到達範囲内に存在するノードのみが受信する。
[0008] TCメッセージとは、 自分の持つリンク情報 (通常は、選択した MPRノードとの間のリ ンク)をネットワーク内の全ノードに通知するためのメッセージである。この TCメッセ一 ジは、あらかじめ設定された送信間隔で作成され、上述の MPRによって転送され、 ネットワーク内の全端末に通知される。他の端末力 受信した TCメッセージのリンク 情報は、トポロジーテーブルに保存される。各端末は、トポロジーテーブルに記録さ れたリンク情報力もネットワークトポロジーグラフを作成し、各端末までの最短経路を 計算し、その計算結果に従って通信転送経路を設定する。
非特許文献 1 : T. Clausen,他 1名, "Optimized Link State Routing Protocol (OLSR)" , IETF RFC3626, 2003年 10月
非特許文献 2 : R. Ogier,他 2名, opology Dissemination Based on Reverse-Path F orwarding (TBRPF)", IETF RFC3684, 2004年 2月
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、上述した従来のプロアクティブ型ルーティング方式では、定期的な H elloメッセージの交換を前提とするため、帯域の狭い無線ネットワークにおいては、輻 輳を防ぐために非常に長い Helloインターバル (Helloメッセージを送信する間隔)で Helloメッセージを送信しなければならない。
[0010] 例えば、 28. 8KbitZsecの帯域しか持たない無線ネットワークにおいて 100台の 端末がすべて隣接状態にあるような状況を考える。こういった状況では、データリンク 層におけるオーバーヘッドやパケット衝突を無視したとしても、経路制御メッセージ負 荷を 10%以下に抑えるためには、約 460秒 (約 7分)程度の Helloインターノ レを設 定する必要がある。とくに、データリンク層でのオーバーヘッドやパケット衝突を考慮 すれば、実際にはその倍程度の Helloインターバルが必要である。この条件下で一 斉に全端末が起動した場合、全端末間で通信可能な状態になるまでには、少なくと も Helloインターバルと同等以上の時間が必要となるため、起動後すぐに通信を開始 することができない。この点は、端末がネットワークに新たに参加した場合も同様であ る。
[0011] 本発明の目的は、帯域の狭い無線ネットワークにおいて、多数の通信端末が隣接 状態にあり、無線通信範囲内に存在する環境で通信端末が一斉起動した場合また は通信端末がネットワークに新たに参加した場合の通信端末間の経路収束時間を短 縮することである。 課題を解決するための手段
[0012] 上記目的を達成するため、本発明に係る無線マルチホップネットワークの通信経路 制御方法は、複数の通信端末間で無線により隣接ノード発見用の制御メッセージで ある Helloメッセージを含む制御パケットを交換して該複数の通信端末をノードとする マルチホップネットワークを形成し、そのマルチホップネットワークのトポロジー情報を 保持し、そのトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケ ットの通信経路を制御する無線マルチホップネットワークの通信経路制御方法にお いて、前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセ ージの情報量を抑制するステップと、前記 Helloメッセージの情報量が抑制される間 、前記送信インターバルを、定常状態の Helloメッセージの送信インターバルより短 い送信インターバルに設定するステップとを有することを特徴とする。
[0013] 本発明において、前記 Helloメッセージにより発見される隣接ノード数に応じて、前 記送信インターバルを調整するステップをさらに有してもよい。
[0014] 本発明にお 、て、前記 Helloメッセージの情報量抑制中に発見された隣接ノード数 の状態を監視し、その状態値があらかじめ設定された閾値以下になった場合に前記 Helloメッセージの情報量抑制を解除するステップと、前記 Helloメッセージの情報量 抑制の解除後に前記送信インターノ レを調整するステップとをさらに有してもよい。
[0015] 本発明にお!/、て、前記マルチホップネットワークに新しく参加したノード力 前記 He lloメッセージを受信した場合、該 Helloメッセージの情報量を抑制するステップと、前 記 Helloメッセージの情報量が抑制される間、前記送信インターノ レを、定常状態の 送信インターバルより短い送信インターバルに再設定するステップとをさらに有しても よい。
発明の効果
[0016] 本発明によれば、通信端末が多数存在し一斉に起動する場合、もしくは、新たな通 信端末がネットワークに参カ卩した場合などに、 Helloメッセージの交換のためのネット ワーク負荷を抑え、経路の収束を早くすることができる。これにより、端末が通信可能 となるまでの時間を短縮することができる。
図面の簡単な説明 [0017] [図 1]本発明の実施例 1に係る無線マルチホップネットワークの全体構成例を示す図 である。
[図 2]図 1に示す通信端末の機能構成例を示す図である。
[図 3]図 1に示す通信端末の Helloメッセージ構成例を示す図である。
[図 4]図 1に示す通信端末の動作シーケンスを示すフローチャートである。
[図 5]図 1に示す通信端末による Helloインターバルの移行を説明する図である。 符号の説明
11' -14 無線端末
20 無線通信装置
21 Hello情報抑制機能
22 Helloインターバル調整機能
23 隣接ノード発見機能
24 トポロジー発見機能
25 経路計算機能
26 隣接ノードテーブル
27 トポロジーテープノレ
28 パケット転送機能
29 経路制御機能
30 通信アプリケーションプログラム
発明を実施するための最良の形態
[0019] 以下、本発明に係る無線マルチホップネットワークにおける通信経路制御方法およ び通信端末を実施するための最良の形態について、添付図面を参照して説明する。
[0020] 本実施の形態による無線マルチホップネットワーク(モパイルアドホックネットワーク) は、前述の非特許文献 1のプロアクティブ型プロトコル(OLSRプロトコル: Optimized Link State Routing Protocol)を用いた方式を適用したものである。
[0021] 図 1は、本実施の形態の無線マルチホップネットワークにおけるネットワーク構成例 を示す。
[0022] 図 1の例では、複数の通信端末 11〜14がそれぞれ無線ネットワーク上のノードを 構成し、これら各ノード間で無線により自律的に制御パケットを交換することで無線マ ルチホップネットワークが形成されている(図中の Al 1〜A14は各通信端末 11〜14 の無線到達範囲を示す)。通信端末 11〜14は、携帯電話やノート PC (Personal Co mputer)、車両に搭載される車載器など、いずれでも適用可能である。
[0023] 各通信端末 11〜14は、それぞれ固有のノード IDと IP (Internet Protocol)アドレス を持っている。各通信端末 11〜14に割り当てられる IPアドレスは、重複しないため、 IPアドレスをノード IDとして利用することも可能である。
[0024] 図 2は、通信端末 11の内部機能構成を示している。なお、他の通信端末 12〜14 についても、通信端末 11と同様の構成であるため、その説明を省略する。
[0025] 通信端末 11は、その内部機能として、無線通信装置 20、隣接ノードテーブル 26、 トポロジーテーブル 27、パケット転送機能 28、経路制御機能 29、および通信アプリ ケーシヨンプログラム 30を有する。
[0026] 無線通信装置 20は、他の通信端末との間で、 Helloメッセージや TCメッセージな どの全ての経路制御メッセージと、データパケットとを無線によりやり取りする。経路制 御メッセージは、経路制御機能 29を介して授受される。データパケットは、通信アプリ ケーシヨンプログラム 30によりパケット転送機能 28を介して送受信される。パケット転 送機能 28には、経路制御機能 29により計算される他の通信端末までの最短経路に 基づく通信経路情報が入力され、これにより通信アプリケーションプログラム 30からの データパケットの通信経路が制御される。
[0027] 隣接ノードテーブル 26には、隣接ノードから無線通信装置 20を介して受信した He lloメッセージに従って隣接ノードに関する情報が記録される。トポロジーテーブル 27 には、ネットワーク内の他の通信端末から、或いは場合によっては他の通信端末の転 送を経て、無線通信装置 20を介して受信した TCメッセージに含まれるリンク情報に 従ってネットワークトポロジーに関する情報が記録される。これらの両テーブル 26、 2 7の内容は、非特許文献 1などの公知文献に記されているものと同様である。
[0028] 経路制御機能 29は、受信された Helloメッセージ力も隣接ノードを発見しその情報 を隣接ノードテーブル 26に記録する隣接ノード発見機能 23と、受信された TCメッセ ージ力 ネットワークトポロジーに関するリンク情報を発見しその情報をトポロジーテ 一ブル 27に記録するトポロジー発見機能 24と、トポロジーテーブル 27に記録された リンク情報力 ネットワークトポロジーグラフを作成し、各端末までの最短経路を計算 する経路計算機能 25とを有する。
[0029] その他、経路制御機能 29は、本実施の形態では、 Helloメッセージの情報量を抑 制する Hello情報抑制機能 21と、 Helloインターバル (Helloメッセージを送信する間 隔)を調整する Helloインターバル調整機能 22とを有する。
[0030] 各通信端末は、起動すると前述の OLSRと同様に Helloメッセージを無線到達範 囲内にブロードキャストして、その存在を他の通信端末に知らせる。
[0031] 図 3は、 Helloメッセージのパケットフォーマットを示す。この Helloメッセージのパケ ットは、「メッセージタイプ」、「有効期間」、「メッセージサイズ」、「作成ノード ID」、「TT L」、「ホップカウント」、「シーケンス番号」、「Sビット」、「広告間隔」、「Willingness」、 および「隣接ノード IPアドレス」で構成される。
[0032] 「メッセージタイプ」は、そのメッセージの種類(この場合は、 Helloメッセージ)を示 す。「有効期間」は、そのメッセージが送信されて力も有効である時間を示す。「メッセ ージサイズ」はメッセージの長さ、「作成ノード ID」は、そのメッセージを作成した端末 のノード IDを示す。「TTL (Time To Live)」は、メッセージを転送する最大ホップ数を 示し、 Helloメッセージでは 1 (つまり、転送しない)力入る。「ホップカウント」は、メッセ ージが転送される毎に 1ずつ増やされる。「シーケンス番号」は、各メッセージを一意 に識別するために割り当てられる識別番号であり、メッセージが作成されるたびに 1ず つ増やされる。「Sビット」は、後述する「隣接ノード発見段階」において、隣接ノード情 報を省略していることを示すフラグである。「広告間隔」は、メッセージを広告する時間 間隔を示す。「Willingness」は、メッセージやデータパケットの転送への積極性を示 し、 0〜7の値を持ち、値が高いほどパケットの転送ノードとして他のノード力 選ばれ やすい。「隣接ノード IPアドレス」は、自分が有効な Helloメッセージを受信した相手 端末の IPアドレスである。
[0033] 上記のパケットフォーマットで非特許文献 1と異なる点は、「Sビット」フラグを追加し たことである。
[0034] 次に、図 4および図 5を参照して、本実施の形態の動作を説明する。 [0035] 図 4は、通信端末 11の動作シーケンスを示す概略フローチャートである。図 4にお いて、通信端末 11は、(1)隣接ノード発見段階 (ステップ Stl)、 (2)その終了判定( ステップ St2)を経て、(3)経路確立段階 (ステップ St4)へと移行すると共に、(4)そ の終了判定 (ステップ St4)を経て、(5)定常状態 (ステップ St5)へと移行する。以下 、その詳細を順次説明する。
[0036] (1)隣接ノード発見段階 (ステップ Stl)
通信端末 11は、この段階では、 Helloメッセージを、 Helloインターバル調整機能 2 2により、あら力じめ決められた第 1の Helloインターバル Is # 1毎に送信する。この段 階を「隣接ノード発見段階」と呼ぶ。通常の OLSRでは、他の端末の Helloメッセージ を受信した端末は、隣接ノードの情報を隣接ノードテーブル 26に保存し、次回送信 する Helloメッセージに記録された隣接ノードの IPアドレスのリスト(隣接ノード IPァ ドレス)を入れて送信する。
[0037] しかし、本実施例では、通信端末 11は、隣接ノード発見段階においては、 Hello情 報抑制機能 21により、「Sビット」フラグを立てて隣接ノードの IPアドレス情報を省略し た Helloメッセージを送信する。これにより、通常の OLSRに比べ、非常に短い Hello メッセージの交換で済むため、通常より早 、Helloインターバル(第 1の Helloインタ 一バル) Is # 1で、全隣接ノードとの Helloメッセージの交換を終えることが可能となる
[0038] (2)隣接ノード発見段階の終了判定 (ステップ St2)
通信端末 11は、前回の Helloインターバルまでに発見した隣接ノード数と、前回の Helloインターバルカも今回の Helloインターバルまでの間に発見した隣接ノード数 に変化が見られな力つた、もしくは事前に設定された閾値以下であった場合に、ほぼ 全ての隣接ノードを発見し終えたと判断し、次の経路確立段階へ移行する。または、 あら力じめ決められた回数の第 1の Helloインターノ レが終了した場合に移行するこ とも可能である。
[0039] (3)経路確立段階 (ステップ St3)
通信端末 11は、隣接ノード発見段階を終えた後、発見した (Helloを受信した)隣 接ノード数から、 Helloインターバル調整機能 22により、第 2の Helloインターバルを 計算する。計算式は、例えば以下のようになる。
[0040] Is # 2 = S X NZ (B X Pr)
Is # 2:第 2の Helloインターバル [秒]
S:隣接ノード情報を全て含む Helloメッセージのサイズ [bit]
N :発見された隣接ノード数
B :無線帯域 [bitZsec]
Pr:経路確立段階で経路制御に利用可能な帯域の割合 (0 < Pr < 1)
[0041] 経路確立段階で経路制御に利用可能な帯域の割合 Prは、一例として、 0. 3 (30% )に設定される。
[0042] 第 2の Helloインターノ レは、あらかじめ設定された値に設定することも可能である 。この場合の設定値は、第 1の Helloインターバル Is # 1より長ぐ通常の Helloインタ 一バルよりも短い範囲内で設定される。
[0043] 各端末は、「Sビット」フラグを立てな ヽで、隣接ノード発見段階で発見した隣接ノー ド情報を Helloメッセージに入れ、第 2の Helloインターバル Is # 2に従って送信を行 う。隣接ノード情報の入った Helloメッセージ(フル Hello)を受信した端末は、 MPR の選択を行い、 TCメッセージの送信などを行う。他の端末カゝら受信した TCメッセ一 ジのリンク情報は、トポロジーテーブル 27に保存される。
[0044] (4)経路確立段階の終了判定 (ステップ St4)
通信端末 11は、経路確立段階において、あらかじめ設定された回数の第 2の Hell oインターバルが終了した時点で、次の定常状態へ移行する。
[0045] (5)定常状態への移行 (ステップ St5)
経路確立段階を終了した通信端末 11は、あらかじめ設定された定常状態の Hello インターバル、もしくは隣接ノード数など力も計算されたインターバルで、 Helloメッセ ージの送信を行う。計算式は、例えば以下のようになる。
[0046] In = S X N/ (B X Pn)
In:定常状態の Helloインターバル [秒]
S:隣接ノード情報を全て含む Helloメッセージのサイズ [bit]
N :発見された隣接ノード数 B :無線帯域 [bitZsec]
Pn:定常状態で経路制御に利用可能な帯域の割合 (0く Pnく Pr)
[0047] 定常状態で経路制御に利用可能な帯域の割合 Pnは、通常、前述した経路確立段 階で経路制御に利用可能な帯域の割合 Prよりも小さく設定される。一例として、 Pr= 0. 3 (30%)の場合、 Pn=0. 1 (10%)に設定される。
[0048] 上記のように、通信端末 11は、 Hello情報抑制機能 21により、起動後のある期間ま たは新しい隣接端末が発見された場合などに Helloメッセージに含まれる情報の一 部を抑制してメッセージ長を短く抑える。また、この通信端末 11は、 Helloインターバ ル調整機能 22により、 Helloメッセージ長が抑制される間、 Helloインターバルを短く 調整し、 Helloメッセージ長の抑制解除後に通常より短!、第 2の Helloインターバルを 計算し、第 2の Helloインターバルの解除後、定常状態の Helloインターバルに再設 定する。
[0049] 図 5は、上記の Helloインターバルと各段階の移行の様子を示す。図中の Is # 1、 Is
# 2、 Inはそれぞれ第 1の Helloインターバル、第 2の Helloインターバル、定常状態 の Helloインターバルをあらわして!/、る。
[0050] 非特許文献 1に示される通常の OLSRでは、こうした Helloインターバルの調整は 行われず、固定された Helloインターバルで Helloメッセージが送信される。また、通 常の OSLRでは、 Helloメッセージ中の隣接ノード情報が抑制されないため、送信さ れる Helloメッセージの情報量が多くなり、結果的に隣接ノード発見のために長い He lloインターバルが必要となる。
[0051] これに対し、本実施の形態では、前述のように調整された Helloインターバルで Hel loメッセージが送信される。
[0052] すなわち、隣接ノード発見段階では、「Sビット」フラグを立てて、隣接ノード情報(隣 接ノード IPアドレス)が省略された短 、メッセージ長の Helloメッセージ(短!/、Hello) 力 例えば帯域 50%を使用して第 1の Helloインターバル Is # 1で送信される。これ により隣接ノードが発見される。
[0053] 次いで、隣接ノード発見段階の終了判定を経て経路確立段階に移行すると、「Sビ ット」フラグを立てな!/ヽで、隣接ノード発見段階で発見された隣接ノード情報を全て入 れた Helloメッセージ(フル Hello)力 例えば帯域 30%を使用して第 2の Helloインタ 一バル Is # 2で送信される。この段階では、さらに選択した MPRの情報を全て含めた Helloメッセージ(フル Hello)も、例えば帯域 30%を使用して第 2の Helloインターバ ル Is # 2で送信される。これにより、経路が確立 (収束)される。
[0054] 次いで、経路確立段階が終了して収束後の定常状態に移行すると、定常状態の H elloメッセージ力 例えば帯域 10%を使用して定常状態の Helloインターバル Inで 送信される。
[0055] また、本実施の形態では、経路が確立され定常状態になっているネットワークに、 新たな通信端末が現れた場合、その通信端末が他の端末への経路をすみやかに確 立し、かつ、他の端末がその新端末への経路を速やかに確立するため、上記と同様 の動作を行う。つまり、ネットワークに新たに参加した通信端末は、「Sビット」フラグを 立てて第 1の Helloインターバル Is # 1で Helloメッセージを送信する。「Sビット」フラ グが立った Helloメッセージを受信した他の端末は、自身も隣接ノード発見段階に入 り、「Sビット」フラグを立てて隣接ノード情報を抑制した Helloメッセージを、第 1の Hel loインターバル Is # 1で送信する。この場合の移行も、上記の説明と同様に経路確立 段階を経て定常状態まで動作が行われる。これにより、新たにネットワークに参加した 端末との通信経路確立が速やかに行われる。
[0056] 従って、本実施の形態によれば、従来例と比べ、次のような効果が得られる。
[0057] 従来の無線マルチホップネットワークにおけるプロアクティブ型ルーティング方式で は定期的な Helloメッセージ交換を前提とするため、帯域の狭!、無線ネットワークに 多数の端末が存在する場合などにおいては、輻輳を避けるため非常に長い Helloィ ンターバルで Helloメッセージを送信しなければならな 、。一斉に全通信端末が起動 した場合や新たな端末がネットワークに参加した場合など、全通信端末間で通信可 能な状態になるまでには少なくとも Helloインターバルと同等以上の時間が必要とな るため、起動後もしくは参加後すぐに通信を開始することができない。
[0058] これに対し、本実施の形態による無線マルチホップネットワークの通信経路制御方 法では、起動後のある期間または新しい隣接端末が発見された場合などに Helloメッ セージに含まれる情報の一部を抑制して Helloメッセージ長を短く抑え、 Helloインタ 一バルを通常の Helloインターバルよりも短くして送信するステップ(隣接ノード発見 段階)と、 Helloメッセージ長の抑制解除タイミングを決定するステップと、 Helloメッセ ージ長の抑制解除後に第 2の Helloインターバルを計算し、第 2の Helloインターバ ルで Helloメッセージを送信するステップ (経路確立段階)と、第 2の Helloインターバ ルを解除し、定常状態の Helloインターバルに再設定するステップ (定常状態への移 行)とを有している。
[0059] これによれば、起動後のある期間または新しい隣接端末が発見された場合などに Helloメッセージに含まれる情報の一部を抑制してメッセージ長を短く抑え、代わりに Helloインターバルを短くして送信することにより、隣接端末の発見を優先する。更に 、 Helloメッセージ長の抑制解除後に通常より短 、第 2の Helloインターバルを計算し 、第 2の Helloインターノ レで Helloメッセージを送信することにより隣接端末情報の 交換を速やかに行う。最後に、隣接端末情報の交換のための第 2の Helloインターバ ルを解除し、定常状態の Helloインターバルに再設定する。
[0060] その結果、通信端末が多数存在し一斉に起動する場合、もしくは、新たな通信端末 がネットワークに参加した場合などにおいて、 Helloメッセージの交換のためのネット ワーク負荷を抑え、経路の収束を早くすることにより、端末が通信可能となるまでの時 間を短縮することができる。
[0061] 以上、本発明の実施の形態を詳細に説明した力 本発明は、代表的に例示した上 述の実施の形態に限定されるものではなぐ当業者であれば、特許請求の範囲の記 載内容に基づき、本発明の要旨を逸脱しない範囲内で種々の態様に変形、変更す ることができる。これらの変形例や変更例も本発明の権利範囲に属するものである。
[0062] 例えば、前述した本発明の実施の形態による通信端末 11が有している各機能の少 なくとも一部を、記録媒体上のプログラムコードを用いて通信端末 11に内蔵されるプ 口セッサ(CPU : Central Processing Unit)に実現させてもよい。この場合、かかるプロ グラムコードと、これを記録する記録媒体とは、本発明の範疇に含まれる。この場合の プログラムコードは、オペレーティングシステムや通信プログラム或いはその他のァプ リケーシヨンプログラム等と共同して上記機能が実現される場合は、それらのプロダラ ムコードも含まれる。また、記録媒体としては、プロセッサに内蔵又は接続された RO M (Read Only Memory)等の半導体メモリで構成してよぐその他、プロセッサにバス を介して通信可能に接続されたディスク型記録媒体 (磁気ディスク、光ディスク、光磁 気ディスク等)、テープ型記録媒体 (磁気テープ等)、カード型記録媒体等、いずれの タイプでも用いることができる。また、プログラムコードは、通信端末に通信可能に接 続された無線マルチホップネットワーク上の他の通信端末やサーバ装置等のコンビュ 一タ機カもそのネットワークを介してダウンロードして使用するタイプのものでも適用 可能である。
産業上の利用可能性
本発明は、複数の通信端末で構成される無線マルチホップネットワーク、通信端末 、これらで用いる通信経路制御方法、通信経路制御装置、通信経路制御プログラム およびこれを記録した記録媒体等の用途に利用可能である。

Claims

請求の範囲
[1] 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークの通信経路制御方法において、 前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセージ の情報量を抑制するステップと、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の Helloメッセージの送信インターバルより短い送信インターバルに設定するステ ップとを有することを特徴とする無線マルチホップネットワークの通信経路制御方法。
[2] 前記 Helloメッセージにより発見される隣接ノード数に応じて、前記送信インターバ ルを調整するステップをさらに有することを特徴とする請求項 1記載の無線マルチホ ップネットワークの通信経路制御方法。
[3] 前記 Helloメッセージの情報量抑制中に発見された隣接ノード数の状態を監視し、 その状態値があら力じめ設定された閾値以下になった場合に前記 Helloメッセージ の情報量抑制を解除するステップと、
前記 Helloメッセージの情報量抑制の解除後に前記送信インターバルを調整する ステップとをさらに有することを特徴とする請求項 1記載の無線マルチホップネットヮ ークの通信経路制御方法。
[4] 前記マルチホップネットワークに新しく参加したノードから前記 Helloメッセージを受 信した場合、該 Helloメッセージの情報量を抑制するステップと、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の送信インターバルより短い送信インターバルに再設定するステップとをさらに有 することを特徴とする請求項 1から 3のいずれ力 1項に記載の無線マルチホップネット ワークの通信経路制御方法。
[5] 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークの通信経路制御方法において、 前記 Helloメッセージを所定の送信インターバルで送信する際、前記 Helloメッセ一 ジに含まれる情報の一部を抑制して Helloメッセージ長を短く抑制するステップと、 前記 Helloメッセージ長が抑制される間、前記送信インターバルを定常状態の送信 インターバルより短い第 1の送信インターバルに設定するステップと、
前記第 1の送信インターバルで前記 Helloメッセージ長が短く抑制された Helloメッ セージを送信するステップと、
前記 Helloメッセージ長の抑制を解除するステップと、
前記 Helloメッセージ長の抑制解除後に、前記送信インターバルを第 2の送信イン ターバルに設定するステップと、
前記第 2の送信インターバルで前記 Helloメッセージを送信するステップと、 前記第 2の送信インターバルを解除するステップと、
前記第 2の送信インターバル解除後に、前記送信インターバルを定常状態の送信 インターバルに設定するステップとを有することを特徴とする無線マルチホップネット ワークの通信経路制御方法。
[6] 前記第 2の送信インターバルを Is # 2 [秒]とし、前記 Helloメッセージにより発見さ れた隣接ノード数を Nとし、隣接ノード情報を全て含む前記 Helloメッセージのサイズ を S [ビット]とし、前記 Helloメッセージの無線帯域を [bitZsec]とし、経路制御に利 用可能な帯域の割合を Pr (0く Prく 1)としたとき、
前記第 2の送信インターバルは、
Is # 2 = S X NZ (B X Pr)
の式で計算されることを特徴とする請求項 5記載の無線マルチホップネットワークの 通信経路制御方法。
[7] 前記定常状態の送信インターバルを In [秒]とし、前記 Helloメッセージにより発見さ れた隣接ノード数を Nとし、隣接ノード情報を全て含む前記 Helloメッセージのサイズ を S [ビット]とし、前記 Helloメッセージの無線帯域を [bitZsec]とし、経路制御に利 用可能な帯域の割合を Pn (0< Pn< Pr)としたとき、
前記定常状態の送信インターバルは、
In= S X N/ (B X Pn)
の式で計算されることを特徴とする請求項 6記載の無線マルチホップネットワークの 通信経路制御方法。
[8] 前記 Helloメッセージに含まれる情報の一部は、隣接ノードの IPアドレス情報である ことを特徴とする請求項 5から 7のいずれか 1項に記載の無線マルチホップネットヮー クの通信経路制御方法。
[9] 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークで用いる通信端末にぉ 、て、
前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセージ の情報量を抑制する Hello情報抑制手段と、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の Helloメッセージの送信インターバルより短い送信インターバルに設定する Hell oインターバル設定手段とを有することを特徴とする無線マルチホップネットワークで 用いる通信端末。
[10] 前記 Helloインターバル設定手段は、前記 Helloメッセージにより発見される隣接ノ ード数に応じて、前記送信インターバルを調整することを特徴とする請求項 9記載の 無線マルチホップネットワークで用いる通信端末。
[11] 前記 Hello情報抑制手段は、前記 Helloメッセージの情報量抑制中に発見された 隣接ノード数の状態を監視し、監視された隣接ノード数の状態値があらかじめ設定さ れた閾値以下になった場合に前記 Helloメッセージの情報量抑制を解除し、 前記 Helloインターバル設定手段は、前記 Helloメッセージの情報量抑制の解除後 に前記送信インターバルを調整することを特徴とする請求項 9記載の無線マルチホッ プネットワークで用いる通信端末。
[12] 前記 Hello情報抑制手段は、前記マルチホップネットワークに新しく参加したノード 力も前記 Helloメッセージを受信した場合、該 Helloメッセージの情報量を抑制し、 前記 Helloインターバル設定手段は、前記 Helloメッセージの情報量が抑制される 間、前記送信インターバルを、定常状態の送信インターノ レより短い送信インターバ ルに再設定することを特徴とする請求項 9から 11のいずれか 1項に記載の無線マル チホップネットワークで用いる通信端末。
[13] 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークにおいて、
前記複数の通信端末は、
前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセージ の情報量を抑制する Hello情報抑制手段と、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の Helloメッセージの送信インターバルより短い送信インターバルに設定する Hell oインターバル設定手段とを有することを特徴とする無線マルチホップネットワーク。
[14] 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークの通信経路制御装置において、 前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセージ の情報量を抑制する Hello情報抑制手段と、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の Helloメッセージの送信インターバルより短い送信インターバルに設定する Hell oインターバル設定手段とを有することを特徴とする無線マルチホップネットワークの 通信経路制御装置。 複数の通信端末間で無線により隣接ノード発見用の制御メッセージである Helloメ ッセージを含む制御パケットを交換して該複数の通信端末をノードとするマルチホッ プネットワークを形成し、そのマルチホップネットワークのトポロジー情報を保持し、そ のトポロジー情報に基づいて前記複数の通信端末間で送受信されるパケットの通信 経路を制御する無線マルチホップネットワークの通信経路制御プログラムにおいて、 コンピュータに、
前記 Helloメッセージを所定の送信インターバルで送信する際、該 Helloメッセージ の情報量を抑制する手順と、
前記 Helloメッセージの情報量が抑制される間、前記送信インターバルを、定常状 態の Helloメッセージの送信インターバルより短い送信インターバルに設定する手順 とを実行させることを特徴とする無線マルチホップネットワークの通信経路制御プログ ラム。
PCT/JP2006/316100 2005-08-18 2006-08-16 無線マルチホップネットワークにおける通信経路制御方法および通信端末 WO2007020941A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531009A JP4947430B2 (ja) 2005-08-18 2006-08-16 無線マルチホップネットワークにおける通信経路制御方法および通信端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005237498 2005-08-18
JP2005-237498 2005-08-18

Publications (1)

Publication Number Publication Date
WO2007020941A1 true WO2007020941A1 (ja) 2007-02-22

Family

ID=37757600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316100 WO2007020941A1 (ja) 2005-08-18 2006-08-16 無線マルチホップネットワークにおける通信経路制御方法および通信端末

Country Status (3)

Country Link
US (1) US20080298304A1 (ja)
JP (1) JP4947430B2 (ja)
WO (1) WO2007020941A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301445A (ja) * 2007-06-04 2008-12-11 Panasonic Electric Works Co Ltd マルチホップ通信ネットワークにおける隣接ノード探索方法、マルチホップ通信ネットワークのノード
JP2008306314A (ja) * 2007-06-05 2008-12-18 Panasonic Electric Works Co Ltd マルチホップ通信ネットワークにおける隣接ノード確認方法、マルチホップ通信ネットワークのノード
JP2009218922A (ja) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp 無線アドホック端末およびアドホック・ネットワーク・システム
JP2009239868A (ja) * 2008-03-28 2009-10-15 Toshiba Corp 無線端末装置とその経路探索方法
EP2104392A3 (en) * 2008-03-18 2010-08-11 Sony Corporation Communication apparatus and communication method, communication system and computer program
JP2011055394A (ja) * 2009-09-04 2011-03-17 Oki Electric Industry Co Ltd 無線通信装置及び無線通信プログラム
JP2014520312A (ja) * 2011-05-26 2014-08-21 クアルコム,インコーポレイテッド 広告制御情報を通信するための方法および装置
WO2016194205A1 (ja) * 2015-06-04 2016-12-08 三菱電機株式会社 無線通信装置および無線通信方法
WO2018016079A1 (ja) * 2016-07-22 2018-01-25 株式会社日立国際電気 通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005613A (ko) * 2010-07-09 2012-01-17 삼성전자주식회사 무선통신시스템에서 메시지 전송 오버헤드를 줄이기 위한 장치 및 방법
US8862774B2 (en) * 2011-09-12 2014-10-14 Cisco Technology, Inc. Dynamic keepalive parameters for reverse path validation in computer networks
WO2015155510A1 (en) * 2014-04-07 2015-10-15 Bae Systems Plc Ad hoc network with unidirectional link
US20160242072A1 (en) * 2015-02-18 2016-08-18 Qualcomm Incorporated Handling over-sized call setup messages
JP6479704B2 (ja) * 2016-03-29 2019-03-06 古河電気工業株式会社 ネットワークシステム、通信装置、および、通信方法
CN108075991B (zh) * 2016-11-18 2020-09-08 新华三技术有限公司 报文转发方法及装置
EP3895474A1 (en) * 2018-12-14 2021-10-20 Telefonaktiebolaget LM Ericsson (publ) A method of, and a node device for, supporting establishment of a path from a source node to a destination node in wireless mesh network
CN109818866B (zh) * 2019-03-22 2021-04-16 武汉大学 一种能量意识和多维参数感知的服务质量保障路由方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008588A (ja) * 2001-06-20 2003-01-10 Japan Radio Co Ltd 無線通信システム
WO2003081846A1 (en) * 2002-03-26 2003-10-02 Toyota Jidosha Kabushiki Kaisha Radio communication device, radio communication system, radio communication method, and vehicle
JP2003304572A (ja) * 2002-04-09 2003-10-24 Japan Telecom Co Ltd 通信システム及び通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327683B2 (en) * 2000-03-16 2008-02-05 Sri International Method and apparatus for disseminating topology information and for discovering new neighboring nodes
US7532588B2 (en) * 2003-02-19 2009-05-12 Nec Corporation Network system, spanning tree configuration method and configuration program, and spanning tree configuration node
US7881229B2 (en) * 2003-08-08 2011-02-01 Raytheon Bbn Technologies Corp. Systems and methods for forming an adjacency graph for exchanging network routing data
JP4396416B2 (ja) * 2003-10-24 2010-01-13 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7664130B2 (en) * 2004-03-01 2010-02-16 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method and computer program
JP2006033124A (ja) * 2004-07-13 2006-02-02 Fujitsu Ltd トンネル障害通知装置および方法
JP2006217461A (ja) * 2005-02-07 2006-08-17 Funai Electric Co Ltd アドホックネットワークに接続される情報端末、及びこの情報端末から構成されるアドホックネットワーク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008588A (ja) * 2001-06-20 2003-01-10 Japan Radio Co Ltd 無線通信システム
WO2003081846A1 (en) * 2002-03-26 2003-10-02 Toyota Jidosha Kabushiki Kaisha Radio communication device, radio communication system, radio communication method, and vehicle
JP2003304572A (ja) * 2002-04-09 2003-10-24 Japan Telecom Co Ltd 通信システム及び通信方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301445A (ja) * 2007-06-04 2008-12-11 Panasonic Electric Works Co Ltd マルチホップ通信ネットワークにおける隣接ノード探索方法、マルチホップ通信ネットワークのノード
JP2008306314A (ja) * 2007-06-05 2008-12-18 Panasonic Electric Works Co Ltd マルチホップ通信ネットワークにおける隣接ノード確認方法、マルチホップ通信ネットワークのノード
JP2009218922A (ja) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp 無線アドホック端末およびアドホック・ネットワーク・システム
US9681410B2 (en) 2008-03-18 2017-06-13 Sony Corporation Communication apparatus and communication method, communication system, and computer program
EP2104392A3 (en) * 2008-03-18 2010-08-11 Sony Corporation Communication apparatus and communication method, communication system and computer program
EP2418906A1 (en) * 2008-03-18 2012-02-15 Sony Corporation Communication apparatus and communication method, communication system, and computer program
CN102523631A (zh) * 2008-03-18 2012-06-27 索尼株式会社 通信装置、通信方法、通信系统及计算机程序
US8254414B2 (en) 2008-03-18 2012-08-28 Sony Corporation Communication apparatus and communication method, communication system, and computer program
US10743273B2 (en) 2008-03-18 2020-08-11 Sony Corporation Communication apparatus and communication method, communication system, and computer program
US8958442B2 (en) 2008-03-18 2015-02-17 Sony Corporation Communication apparatus and communication method, communication system, and computer program
US10368330B2 (en) 2008-03-18 2019-07-30 Sony Corporation Communication apparatus and communication method, communication system, and computer program
JP2009239868A (ja) * 2008-03-28 2009-10-15 Toshiba Corp 無線端末装置とその経路探索方法
JP2011055394A (ja) * 2009-09-04 2011-03-17 Oki Electric Industry Co Ltd 無線通信装置及び無線通信プログラム
JP2014520312A (ja) * 2011-05-26 2014-08-21 クアルコム,インコーポレイテッド 広告制御情報を通信するための方法および装置
JPWO2016194205A1 (ja) * 2015-06-04 2017-10-19 三菱電機株式会社 無線通信装置および無線通信方法
CN107637134A (zh) * 2015-06-04 2018-01-26 三菱电机株式会社 无线通信装置和无线通信方法
DE112015006595B4 (de) * 2015-06-04 2019-02-21 Mitsubishi Electric Corporation Funkkommunikationsvorrichtung und Funkkommunikationsverfahren
CN107637134B (zh) * 2015-06-04 2019-05-17 三菱电机株式会社 无线通信装置和无线通信方法
WO2016194205A1 (ja) * 2015-06-04 2016-12-08 三菱電機株式会社 無線通信装置および無線通信方法
WO2018016079A1 (ja) * 2016-07-22 2018-01-25 株式会社日立国際電気 通信装置
US10912149B2 (en) 2016-07-22 2021-02-02 Hitachi Kokusai Electric Inc. Communication device

Also Published As

Publication number Publication date
JP4947430B2 (ja) 2012-06-06
JPWO2007020941A1 (ja) 2009-02-26
US20080298304A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
WO2007020941A1 (ja) 無線マルチホップネットワークにおける通信経路制御方法および通信端末
JP5087553B2 (ja) メッシュネットワークにおける適応性無線ルーティングプロトコルのための方法およびシステム
CA2627432C (en) Route selection in wireless networks
JP4682249B2 (ja) 無線通信ルートの品質を向上させる方法及びシステム
JP4571666B2 (ja) 無線マルチホップアドホックネットワークにおけるアドレス解決マッピングのための方法、通信デバイスおよびシステム
JP4214960B2 (ja) 無線通信ネットワークシステム
JP2005168020A (ja) 無線マルチホップネットワークの通信経路制御方法及び通信端末
Roy et al. Extensions to OSPF to support mobile ad hoc networking
JP5287622B2 (ja) 通信システム、ノード、通信制御方法、およびプログラム
JP5241481B2 (ja) アドホックネットワークを含む通信システム、通信システムの移動通信装置、通信システムでの通信方法
JP2007089182A (ja) 高速な経路確立の方法及び装置
JP4569544B2 (ja) 無線マルチホップネットワークの経路制御システム
JP2007243932A (ja) 無線データ通信システム
JP7326230B2 (ja) 通信システム、ノード、通信方法及びプログラム
JP2003309596A (ja) モバイル通信網システム、外部エージェントルータ、アドレスサーバ及びそれらに用いるパケット配送方法
Roy et al. RFC 5820: Extensions to OSPF to Support Mobile Ad Hoc Networking
CA2817659C (en) Route selection in wireless networks
CA2896911C (en) Route selection in wireless networks
JP2007142543A (ja) アドホックネットワークについてルーティングプロトコルを選択する携帯端末及びプログラム
JP2023042904A (ja) 通信システム、ノード、通信方法及びプログラム
KR20050079459A (ko) 보안 라우터 및 그 라우팅 방법
Lee Distributed Proxy Based Interworking Method for IPv6 Mobile Devices in WLAN Mesh Networks
JP2001189750A (ja) 経路制御方法、経路制御表作成方法、経路制御表及びルータ
JP2009105936A (ja) ブロードキャストシステムとそのブロードキャスト方法、及びブロードキャストプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007531009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796459

Country of ref document: EP

Kind code of ref document: A1