WO2007013200A1 - 発光素子の封止方法及び発光素子モジュール - Google Patents

発光素子の封止方法及び発光素子モジュール Download PDF

Info

Publication number
WO2007013200A1
WO2007013200A1 PCT/JP2006/304589 JP2006304589W WO2007013200A1 WO 2007013200 A1 WO2007013200 A1 WO 2007013200A1 JP 2006304589 W JP2006304589 W JP 2006304589W WO 2007013200 A1 WO2007013200 A1 WO 2007013200A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
sealing material
emitting element
light emitting
gel sealing
Prior art date
Application number
PCT/JP2006/304589
Other languages
English (en)
French (fr)
Inventor
Kouki Hatsuda
Hiroshi Samukawa
Original Assignee
Sony Chemical & Information Device Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical & Information Device Corporation filed Critical Sony Chemical & Information Device Corporation
Priority to CN200680018857XA priority Critical patent/CN101189734B/zh
Priority to KR1020087002674A priority patent/KR101196715B1/ko
Priority to US11/996,724 priority patent/US8072139B2/en
Publication of WO2007013200A1 publication Critical patent/WO2007013200A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3621Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices a plurality of individual elements acting on the material in the same or diferent directions, e.g. making tubular T-joints, profiles
    • B29C2043/3623Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices a plurality of individual elements acting on the material in the same or diferent directions, e.g. making tubular T-joints, profiles coupled on a support, e.g. plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0022Multi-cavity moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to a method for sealing a light emitting device using a gel sealing material obtained by gelling a gel precursor to lose fluidity.
  • the present invention also relates to a light emitting element module formed using this method.
  • Light emitting element modules such as light emitting diodes (LEDs) have features such as low power consumption, small size, and light weight, and are used as light sources for printer heads, liquid crystal knocklights, and various meters. It's being used.
  • LEDs light emitting diodes
  • Such a light emitting element module As an example of such a light emitting element module, as shown in FIG. 7, it has a light emitting element 90, a base 91 having a recess for housing the light emitting element 90, and a lid 92 covering the light emitting element 90. There is a light emitting element module in which a silicone gel 93 for sealing the light emitting element 90 is disposed between the base 91 and the lid 92.
  • the silicone gel 93 that seals the light emitting element 90 is gelled by mixing and heating two types of liquids. These two liquids cause a silylation reaction by generating heat of about 80 ° C to 150 ° C to form silicone gel 93.
  • the lid 92 and the base 91 are integrated together, and as shown in FIG.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-318448
  • the base 91 and the lid 92 must use materials that can withstand the heat necessary for gelling, and the materials that can be used are limited. Further, in this method, a substance that uses a solvent as a gel precursor of the gel cannot be used because it evaporates into bubbles and causes a decrease in light emission output.
  • the method for sealing a light emitting element of Patent Document 1 can prevent generation of bubbles in a flexible member having fluidity by placing a lid projecting in the direction of the light emitting element. And positioning at the time of pouring the flexible member which has fluidity is comparatively easy.
  • heating is required for gelling of the flexible member, and a substance that uses a solvent for the gel precursor of the flexible member cannot be used.
  • V can't solve the problem! /.
  • the present invention prevents gel formation after mounting the lid, prevents generation of bubbles in the light emitting element module, and uses a solvent such as a gel precursor. It is an object of the present invention to provide a method for sealing a light emitting element capable of sealing the light emitting element with a gel sealing material. And it aims at providing the light emitting element module formed with this sealing method.
  • the light emitting device sealing method of the present invention is a method of sealing a light emitting device with a gel sealing material that has lost fluidity by gelling the gel precursor, Forming the gel sealing material by gelation; placing the formed gel sealing material on the light emitting element; and sealing the gel together with the light emitting element on the gel sealing material. It has the process of mounting a cover body so that a stop material may be pinched
  • the lid in the step of pressing the lid toward the light emitting element, the lid is pressed by a pressing unit under reduced pressure. To do. By reducing the atmosphere around the light emitting element, it is possible to prevent bubbles from being mixed between the light emitting element and the gel sealing material and between the gel sealing material and the lid.
  • the gel sealing material aligned on the light emitting element is moved from one end to the other end. It is characterized by being continuously pressed by force. Thereby, since the gel sealing material is pressed so as to push out the bubbles between the gel sealing material and the light emitting element, it is possible to prevent the bubbles from being mixed between the light emitting element and the gel sealing material. .
  • a film or lid is formed on a predetermined release sheet. After the gel precursor is formed in a shape corresponding to the shape of the body, the gel precursor is gelled to form the gel sealing material, and the formed gel sealing material is peeled from the release sheet. It is characterized by being. As a result, the formed gel sealing material can be easily handled.
  • G loss elastic modulus
  • G ' storage elastic modulus
  • the gel sealing material is a composition in which polyvinylidene fluoride resin is dissolved in a medium.
  • the refractive index of a composition in which polyvinyl fluoride resin is dissolved in a medium has a higher refractive index than that of silicone that is often used as a gel sealant. Therefore, even when using a lid having a relatively high refractive index, the composition having such a high refractive index is used as a gel sealing material, so that the refractive index of the gel sealing material and the lid can be reduced. The difference from the refractive index of the body is reduced, and the light emitting element power to be sealed can increase the luminance of the emitted light.
  • the light-emitting element module of the present invention includes a light-emitting element, a gel sealing material in which a gel precursor is gelled to lose fluidity, and a lid that sandwiches the gel sealing material together with the light-emitting element. And the formed gel sealing material is placed on the light emitting element, a lid is placed on the gel sealing material, and the lid is pressed toward the light emitting element. Thus, the light emitting element is sealed.
  • the light emitting device module of the present invention gelation of the gel precursor of the gel sealing material is performed before placing on the light emitting device, and the gel sealing material loses fluidity. There is no need to perform a gelling step such as heating after the light emitting element is sealed. Therefore, it is also possible to use highly viscous gel precursors that are difficult to handle by the injection method. A substance that uses a solvent as the gel precursor of the gel sealant can also be used. It is possible to provide a high-luminance light emitting element module free from bubbles.
  • G loss elastic modulus
  • G ' storage elastic modulus
  • the gel sealing material is a composition in which polyvinylidene fluoride resin is dissolved in a medium.
  • the refractive index of a composition in which polyvinyl fluoride resin is dissolved in a medium has a higher refractive index than that of silicone that is often used as a gel sealant. Therefore, even when using a lid having a relatively high refractive index, the composition having such a high refractive index is used as a gel sealing material, so that the refractive index of the gel sealing material and the lid can be reduced.
  • the difference between the refractive index of the body and the light emitting element module with high brightness can be provided.
  • the sealing method of the light emitting device of the present invention as described above is performed before gelation of the gel precursor of the gel sealing material is placed on the light emitting device, and the fluidity of the gel sealing material is lost. Therefore, it is not necessary to perform gelling after installing the lid. Therefore, it is also possible to use highly viscous gel precursors that are difficult to handle by the injection method. Further, a substance that uses a solvent as the gel precursor of the gel sealing material can be used.
  • the light emitting device module of the present invention as described above, gelation of the gel precursor of the gel sealing material is performed before placing on the light emitting device, and the gel sealing material flows. Therefore, it is not necessary to perform a gelling process such as heating after sealing the light emitting element. Therefore, highly viscous gel precursors that are difficult to handle by the injection method can be used. A substance that uses a solvent as the gel precursor of the gel sealing material can also be used. A light-emitting element module with high brightness can be provided without bubbles being mixed.
  • FIG. 1 is a view showing an example of a light emitting element module having a light emitting element sealed by the method for sealing a light emitting element of the present invention.
  • FIG. 2 is a diagram illustrating a method for forming a gel sealing material used in the method for sealing a light emitting device of the present invention.
  • FIG. 3 is a diagram for explaining affirmation of placing a gel sealing material on a light emitting element in the method for sealing a light emitting element of the present invention.
  • FIG. 4 is a diagram for explaining a step of pressing a translucent lens against a light emitting element in the light emitting element sealing method of the present invention.
  • FIG. 5 In the method for sealing a light-emitting element of the present invention, a translucent lens is directed to the light-emitting element. It is a figure explaining an example of the process to press.
  • FIG. 6 is a diagram for explaining another example of the step of pressing the translucent lens against the light emitting element in the light emitting element sealing method of the present invention.
  • FIG. 7 is a diagram illustrating a process of injecting a gel precursor of a gel sealing material in a conventional method for sealing a light emitting device.
  • LED light emitting diode
  • the sealing method of the present invention includes a step of gelling a gel precursor to form a gel sealing material, a step of placing the formed gel sealing material on an LED element, a gel sealing A step of placing the lid on the material and a step of pressing the lid against the LED element.
  • FIG. 1 is a view showing an LED element module using an LED element sealed by the sealing method of the present invention.
  • the LED element module 1 is mounted on the LED element 10 that is a light emitting element, a base body 20 that houses the LED element 10, a gel sealing material 30 that seals the LED element 10, and a gel sealing material 30. And a translucent lens 40 as a lid.
  • the LED element 10 is a chip-like light emitting element and is housed in the recess 21 of the base body 20.
  • the LED element 10 has an electrode (not shown) on the surface.
  • the position of this electrode is not particularly limited.
  • a pair of positive and negative electrodes may be provided on the upper surface of the LED element 10.
  • the pair of electrodes and the lead wire 22 of the substrate 20 are connected by the wiring 11.
  • the lead wire 22 of the substrate 20 is connected to a mounting board (not shown) to conduct electricity, and the LED element 10 can emit light.
  • This wiring method is also not limited.
  • the wiring 11 is not particularly limited.
  • a material having a low electrical resistance such as gold or copper may be used.
  • the wiring 11 The surroundings may be coated with grease or the like.
  • an n-type semiconductor and a p-type semiconductor are stacked to form a pn junction.
  • the voltage is applied to the pn junction via the n-type and p-type electrodes formed on the surface of this LED element 10.
  • light of a predetermined wavelength also emits light with a pn junction force.
  • the semiconductor composing the LED element 10 include semiconductors such as GaP, GaAs, GaAsP, GaAlAs, GaN, and SiC.
  • the base body 20 has a recess for housing the LED element 10.
  • a lead wire 22 connected to the pair of electrodes of the LED element 10 through the wiring 11 is projected inside the recess.
  • a heat sink 23 is provided below the LED element 10 to release heat generated by the light emitted from the LED element 1 to the outside.
  • the shape of the substrate 20 is not particularly limited as long as it can be sandwiched so as to enclose the gel sealing material 30 and the LED element 10 together with the translucent lens 40 having different forces depending on the translucent lens 40. It is not a thing.
  • the shape of the translucent lens 40 is a dome shape, the flat substrate 20 may be used.
  • the gel sealing material 30 is a sealing material that has a light transmitting property and seals the LED element 10.
  • This gel sealing material 30 has appropriate flexibility, and can protect the LED element 10 and the wiring 11 from moisture and impact. Further, it is possible to make it difficult for heat generated by light emission of the LED element 10 to be transmitted to the translucent lens 40, and to prevent deterioration of the translucent lens 40 due to heat.
  • the gel sealing material 30 is made to lose fluidity by gelation of a gel precursor before being placed on the LED element 10. Since the gel encapsulating material 30 is formed before it is placed on the LED element 10, gel precursors that use a powerful solvent that cannot be used because it causes bubbles are also used. It becomes possible.
  • the gel precursor is a composition for forming the gel sealing material 30 by gelation, and the composition thereof is not limited.
  • a reactive composition in which a monomer, an oligomer, or a polymer having one or more polymerizable groups is blended with a catalyst, a polymerization initiator, a curing agent, a polymerization inhibitor, a medium, high refractive index particles, or the like. It is.
  • silicone resin when silicone resin is used as the gel sealing material 30, it can be obtained by mixing a siloxane compound having a bur group and a siloxane compound having a SiH group, adding a catalyst such as platinum and heating.
  • oligomers or polymers such as dimethylsiloxane, methylphenol siloxane, and diphenylsiloxane are used as the siloxane compound to be used.
  • these may be single-polymerized or copolymerized.
  • This composition is also It may be a composition that causes a sol-gel transition by heat, such as a polymer having physical crosslinkability dissolved in a medium. In this case, it becomes a solution at a high temperature and can be handled as a gel precursor, and can be handled as a gel sealant at the time of cooling.
  • the medium shown here is a liquid that dissolves polyvinylidene fluoride resin or polyhexafluoropropylene resin, and includes toluene, methyl ethyl ketone, methyl isobutyl ketone, acetone, and cyclohexane. Also included are solvents with relatively low boiling points such as xane and cyclohexanone, and liquids with relatively high boiling points such as polyethylene glycol and silicone oil.
  • a composition obtained by dissolving poly (vinylidene fluoride) resin or polyhexafluoropropylene resin in a medium has a higher refractive index than that of silicone that has been conventionally used as a gel sealant.
  • the gel encapsulating material 30 and the translucent lens 30 can be obtained by using such a material having a high refractive index as the gel encapsulating material 30. And the brightness of the light emitting element is improved.
  • the gel sealing material 30 may be formed by mixing a material for adjusting the refractive index, the color of light emitted from the LED element 10, and the like into the gel precursor.
  • the refractive index of the gel sealing material 30 to be formed can be adjusted by adding a powder of a compound containing a sulfur atom or nanoscale titanium oxide particles to the gel precursor.
  • a powder of a compound containing a sulfur atom it is necessary to dissolve the powder of the compound containing a gel precursor and a sulfur atom in a solvent.
  • the solvent can be removed when the gel sealing material 30 is formed, that is, before being placed on the LED element 10.
  • the solvent used for the gel precursor of the gel sealant 30 does not cause bubbles. Further, when the oxide titanium particles are used, the viscosity of the gel precursor is increased. However, since the gel precursor is not injected after the lens is mounted as in the prior art, the gel sealing material 30 having a predetermined shape is used. This is not a problem because it is mounted on the LED element 10 after formation.
  • the gel sealing material 30 is not particularly limited as long as it is a gel sealing material having translucency and flexibility.
  • a gel made of a conventionally used silicone resin may be used as the gel sealing material 30 .
  • This silicone resin is formed by gelation before the gel precursor of the gel sealing material 30 made of silicone resin is placed on the LED element 10. The fluidity of the gel is lost. Therefore, it is not necessary to perform gelling by heating or the like after the translucent lens 40 is placed on the gel sealing material 30.
  • the gel sealing material 30 does not pose a problem even when the viscosity of the gel precursor is increased by mixing a substance for adjusting the refractive index of the gel sealing material 30.
  • Examples of materials other than silicone resin include a gel made of a composition in which vinylidene fluoride resin is dissolved in a medium.
  • a gel sealing material 30 is appropriately selected depending on the relationship between the refractive index of the translucent lens 40 and the refractive index of the gel sealing material 30, the flexibility of the gel sealing material 30, and the like.
  • the solvent used for the gel precursor is preferably one that evaporates by heating, but is not particularly limited.
  • a solvent necessary for forming the gel sealing material 30 can be used.
  • This solvent can be evaporated when the gel sealing material 30 is formed, that is, when the gel precursor is gelled. Even if the gel precursor does not completely evaporate during gelling, it can be evaporated before being placed on the LED element 10.
  • the gel precursor loses its fluidity by, for example, heating, and the gel sealing material 30 is formed.
  • the gel sealing material 30 preferably has a refractive index substantially the same as the refractive index of the translucent lens 40.
  • the light emitted from the LED element 10 is converted into the gel sealing material 30 and the translucent lens 40. Reflection at the interface is reduced. That is, the amount of light that can be extracted from the LED element module 1 is increased, and the luminance can be improved.
  • the refractive index of the translucent lens to be used is 1.7
  • the refractive index of the gel sealing material 30 is refracted by the translucent lens by mixing the material of the gel sealing material 30 or a predetermined substance.
  • the brightness of the LED element module 1 to be formed can be improved by adjusting it so that the ratio is close to 1.7.
  • the translucent lens 40 that is a lid has mechanical strength and translucency, and is placed on the gel sealing material 30 so as to sandwich the gel sealing material 30 together with the LED element 10.
  • the translucent lens 40 can guide the light emitted from the LED element 10 in the upper surface direction, the side surface direction, or the like with respect to the LED element 10 and extract the light from a predetermined direction.
  • the translucent lens 40 is sandwiched between the LED element 10 and the gel sealing material 30 with the base body 20, and the LED element 10, the base body 20, the gel sealing material 30, and the translucent lens 40. Together.
  • the translucent lens 40 and the base body 20 may be formed so as to be fitted.
  • the gel sealing material 30 is sticky
  • the LED sealing element 30, the substrate 20, the gel sealing material 30, and the translucent lens 40 may be integrated by the gel sealing material 30.
  • the LED element 10 can be sealed with the gel sealing material 30, and the LED element module 1 can be formed.
  • the shape of the translucent lens 40 may be any shape as long as light can be extracted in a predetermined direction as described above. For example, it may be a dome shape as shown in FIG. 1 or a convex lens shape.
  • transparent resin such as epoxy resin, acrylic resin, silicone resin, polycarbonate resin, cycloolefin resin and the like having excellent weather resistance is used. Is mentioned.
  • the gel precursor of the gel sealing material 30 is gelled.
  • This gel has different conditions depending on the formed gel sealant 30 and its gel precursor. Therefore, it is appropriately changed according to the gel sealing material 30 and its gel precursor.
  • the gel precursor is cured by heating the gel precursor to about 150 ° C. to form a gel made of silicone resin.
  • the gel sealing material 30 formed here has a predetermined shape corresponding to the shape of the base 20 and the translucent lens 40 in order to seal the LED element 10.
  • a gel precursor that forms the gel sealing material 30 is imitated into a predetermined shape by dispenser screen printing or the like.
  • There is a method of processing the precursor into a predetermined shape after gelation but there is no particular limitation as long as the gel sealing material 30 having a predetermined shape can be formed.
  • the gel precursor 35 of the gel sealing material 30 is extended into a film shape, and the film is heated by heating means such as a heater 39 as shown in FIG.
  • the gel-like gel precursor 35 is gradually heated to heat the gel, and the heater 39 is moved to form the film-like gel sealing material 30.
  • the formed film-shaped gel sealing material 30 is formed into a shape necessary for sealing the LED element 10 by die cutting or the like. Thereby, the gel sealing material 30 having the same shape can be easily formed.
  • the gel precursor is shaped on the release sheet so as to have the shape shown above, the gel precursor is gelled by heating, and the formed gel sealing material 30 is removed. It may be peeled from the mold sheet. As a result, the formed gel sealing material 30 is not damaged, and a part of the gel sealing material 30 does not remain on the sheet. It is also possible to peel the gel sealing material 30 from the release sheet after placing it on the LED element 10 without peeling the gel sealing material 30 from the release sheet. Accordingly, the gel sealing material 30 can be placed on the LED element 10 without being stained or scratched. That is, the gel sealing material 30 can be easily handled.
  • the wiring 11 may be coated with a resin or the like so as not to be cut to improve the mechanical strength.
  • wiring may be performed along the concave portion of the base body 20.
  • the translucent lens 40 is placed on the gel sealing material 30. Then, the translucent lens 40 is pressed toward the LED element 10 as shown in FIG. The Thus, the gel sealing material 30 is sandwiched between the LED element 10 and the translucent lens 40, and the LED element 10 can be sealed with the gel sealing material 30. Then, the LED element module 1 can be formed by integrating the base body 20, the translucent lens 40, the LED element 10, and the gel sealing material 30.
  • the gel sealing material 30 that seals the LED element 10 is gelled before being placed on the LED element 10. Therefore, even if a gel precursor using a solvent is used, the solvent can be evaporated before being placed on the LED element 10, so that the LED element 10 is sealed without mixing bubbles derived from the solvent. be able to. That is, a substance that uses a solvent as the gel precursor of the gel sealing material 30 can also be used.
  • the method of pressing the translucent lens 40 toward the LED element 10 is not particularly limited.
  • a plurality of translucent lenses 40 are arranged in a state of being placed on the gel sealing material 30, and the periphery of the element is decompressed with a pump or the like.
  • a pressing means such as a bonder 2 having an appropriate flexibility at the portion in contact with the translucent lens 40
  • the upward force of each LED element 10 can also press the translucent lens 40.
  • the gas that can be confined in the translucent lens 40 and the gel sealing material 30, the gel sealing material 30, and the LED element 10 can be reduced.
  • the LED element 10 can be sealed with the gel sealing material 30 without introducing bubbles that cause deterioration of the light emission output.
  • the pressing force of the translucent lens 40 by the bonder 12 may be singular without being arranged in plural.
  • any material having comparative flexibility can be used, for example, rubber or gel-like resin.
  • the gel sealing material 30 may be pressed against the LED element 10 before placing the translucent lens 40 on the gel sealing material 30. By this pressing, the bubbles in the light emitting element and the gel sealing material are pushed out toward the outside, and the mixing of bubbles can be reduced. For example, press the gel sealing material 30 toward the LED element 10 by the method shown in FIG.
  • a gel sealing material 30 imitated by a release paper by the method described above, and a film that is detachable at substantially the same interval as the gel sealing material 30. Align the LED element 10 fixed to the base with the base in which the LED element 10 is stored at a predetermined position. As a result, the gel sealant 30 And the LED element 10 can be aligned. Then, the gel sealing material 30 and the LED element 10 are kept in position by directing the gel sealing material 30 against the roller 3 having an interval so that the gel sealing material 30 can be sufficiently pressed against the LED element 10. Move it.
  • the gel sealing material 30 and the LED element 10 are continuously pressed with the one end force of the gel sealing material 30 directed toward the other end so as to sandwich the aligned gel sealing material 30 and the LED element 10.
  • the gel sealing material 30 and the LED element 10 are sandwiched between the rollers 3 so that the gel sealing material 30 can be pressed toward the LED element 10.
  • the gel sealing material 30 can be peeled from the release sheet.
  • bubbles that can be mixed between the gel sealing material 30 and the LED element 10 can also be pushed out toward the outside by moving one end force of the gel sealing material 30 toward the other end. Therefore, it is possible to prevent air bubbles from being mixed between the gel sealing material 30 and the LED element 10.
  • the gel sealing material 30 may be pressed against the LED element 10 by moving a roller.
  • the translucent lens 40 is placed on the gel sealing material 30 as described above, and the translucent light is transmitted.
  • the LED element 10 can be sealed by pressing the directional lens 40 toward the LED element 10 by pressing it. And since the gel sealing material 30 has lost fluidity, it is not necessary to perform a gelling step such as heating after the LED element 10 is sealed.
  • the light-emitting element module of the present invention can be formed by using the above-described method for sealing a light-emitting element. As a result, it is possible to prevent bubbles from entering the light emitting element module, and the light emitting element module in which the light emission output does not decrease due to the bubbles is obtained. Furthermore, since a gel precursor using a solvent can be used, the gel sealing material and the material mixed in the sealing material are appropriately changed so as to match the refractive index of the translucent lens. It is also possible to adjust the refractive index of the stop material, and a light-emitting element module with higher brightness can be formed.
  • a mixed solution of toluene and methyl ethyl ketone mixed 1 1, 5 g of powder of bis (4-methacryloylthiol) sulfide (manufactured by Sumitomo Seika), 5 g of urethane acrylate EB230 (manufactured by Daicel), Polymerization initiator perhexyl 0 (manufactured by NOF Corporation) 0. lg was mixed. And Then, using a dispenser, the mixed solution was dropped onto the release paper so that the gel was formed into a disk shape having a diameter of 3 mm and a thickness of 0.75 mm. Thereafter, the mixed solution was heated to 100 ° C. to evaporate the solvent and gelled to form a gel sealing material to be placed on the LED element. The refractive index of this gel sealant was 1.61.
  • the LED element was housed in the recess of the base, and the electrode of the LED element and the lead wire of the base were connected by a gold wire.
  • the gel sealing material formed in Example 1 was picked with tweezers and placed on this LED element. Furthermore, a translucent lens was placed on the gel sealing material. The refractive index of this translucent lens was 1.61.
  • a plurality of LED elements each having this translucent lens mounted on a gel sealing material were arranged in a space where pressure can be reduced. Then, the space in which the LED elements were arranged was depressurized to 0.5 Torr. After that, using a bonder made of silicone rubber, the upward force of the translucent lens was also pressed against the LED element to seal the LED element. The pressure at this time was lOOOOPa.
  • the LED element could be sealed with the gel sealing material without mixing bubbles.
  • this method made it possible to form LED element modules without bubbles.
  • the refractive index of the translucent lens and the gel encapsulating material are almost the same, and the brightness of the formed LED element module is improved.
  • Titanium oxide nanoparticles with an average particle size of 12 nm The dispersion liquid dispersed in 4 g of methyl ethyl ketone was mixed with 10 g of potting silicone 3062 A (GE Toshiba Silicone). Next, the mixture formed by mixing 10 g of Potting Silicone 3062 Liquid B (GE Toshiba Silicone) in the same way as Liquid A mixed with the dispersion, forms a film with a coater thickness of 1.25 mm on the release paper. It was extended to become. The mixture stretched into a film was heated at 150 ° C. with a heater to evaporate the solvent and harden to form a gel film.
  • potting silicone 3062 A GE Toshiba Silicone
  • the LED element was housed in the recess of the base, and the electrode of the LED element and the lead wire of the base were connected by a gold wire. Then, a plurality of substrates containing the LED elements were detachably fixed to the film at predetermined intervals.
  • the base material containing the LED element on the film and the gel sealing material formed on the release paper are aligned, and the gel sealing material and the base are pressed with a roller so as to laminate, One end force of the gel sealing material
  • the film and the release paper were moved by applying force toward the other end.
  • the gel sealing material was pressed against the LED element so that the gel sealing material and the LED element were moved by the one end force of the gel sealing material also directed toward the other end. This prevented air bubbles from entering between the gel sealant and the LED element.
  • the release paper was peeled off, a translucent lens was placed on the gel sealing material, and the LED element was sealed with the gel sealing material by the method of Example 1.
  • the LED element could be sealed with the gel sealing material without mixing bubbles even when the gel precursor of the gel sealing material dissolved in the solvent was used. This method also allowed the formation of bubble-free LED element modules.
  • Example 2 instead of the dispersion solution in which titanium oxide nanoparticles mixed in solution A were dispersed in methyl ethyl ketone, only methyl ethyl ketone as a solvent was mixed in solution A to form a silicone gel. Then, the LED element was sealed in the same manner as in Example 2. As a result, the LED element could be sealed with the gel sealing material without mixing bubbles even when the gel precursor of the gel sealing material dissolved in the solvent was used. In addition, this method made it possible to form LED element modules without bubbles.
  • Viscoelasticity measurement was performed using a dynamic viscoelasticity measuring device (DMS-6100 (SII—manufactured by NT)).
  • the gel sealing material formed in Examples 1 and 3 was sandwiched between parallel plates with a diameter of 12.5 mm, and the lower plate was moved alternately left and right under 10% strain to reduce the angular velocity to 0.
  • the storage elastic modulus (G '), loss elastic modulus (G "), and tan ⁇ were measured in the range of lradZs to 400 radZs.
  • the rate (G,) force was SO.
  • the gel sealing material formed in Example 3 has a storage elastic modulus (G ′). At 17 kPa, the loss elastic modulus (G ") was 750 Pa, tan ⁇ was 0.0441, and tan ⁇ was 1 or less. Therefore, the gel sealing material formed in Examples 1 and 3 had fluidity. I knew there wasn't.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の課題は、蓋体装着後のゲル化を行わず、発光素子モジュール中の気泡の発生を防止するとともに、溶剤を使用するようなゲル前駆体からなるゲル封止材によって発光素子を封止することが可能な発光素子の封止方法を提供することを目的とする。そして、この封止方法により形成される発光素子モジュールを提供することを目的とする。本発明の発光素子の封止方法は、ゲル封止材のゲル前駆体のゲル化を発光素子上に載置する前に行うため、蓋体装着後にゲル化を行う必要がない。そのため、注入法では扱い難い粘性の高いゲル前駆体も使用することができる。また、ゲル封止材のゲル前駆体として溶剤を使用するような物質も使用することができる。そして、この方法により気泡の混入のない高輝度の発光素子モジュールが提供できる。

Description

明 細 書
発光素子の封止方法及び発光素子モジュール
技術分野
[0001] 本発明は、ゲル前駆体をゲルイ匕して流動性を失わせたゲル封止材を用いて発光 素子を封止する方法に関するものである。また、この方法を使用して形成される発光 素子モジュールに関するものである。
背景技術
[0002] 発光ダイオード(LED : Light Emitting Diode)等の発光素子モジュールは、低 消費電力、小型、軽量等の特徴を有し、プリンターヘッドの光源、液晶ノ ックライトの 光源、各種メータの光源等に利用されている。
[0003] このような発光素子モジュールの一例として、図 7のように、発光素子 90と、発光素 子 90を収納する凹部を有する基体 91と、発光素子 90を覆う蓋体 92とを有し、基体 9 1と蓋体 92との間に、発光素子 90を封止するシリコーンゲル 93が配された発光素子 モジュールがある。
[0004] この発光素子 90を封止するシリコーンゲル 93は、 2種類の液体を混合して加熱す ることでゲル化したものである。この 2種類の液体は、 80°Cから 150°C程度の熱をカロ えることでシリルイ匕反応を起こし、シリコーンゲル 93を形成する。
[0005] この発光素子を封止する方法の 1つに、基体 91に発光素子 90を載置した後、蓋体 92と基体 91を一体ィ匕し、図 7のように、蓋体 92と基体 91の隙間から、注入器 94を用 いて、シリコーンゲル 93となる 2種類の液体を混合しながら注入し、加熱するという方 法がある。このとき、発光出力の低下等の原因となる気泡が入らないように、 2種類の 液体の混合物を吹き漏れするまで注入する。
[0006] また、基体凹部に発光素子を収納して柔軟部材を注入し、発光素子方向に突出し た蓋体を載置した後、加熱により一体化させて発光素子を封止する方法がある(例え ば、特許文献 1参照)。この柔軟部材は、ポッティングにより注入されることから流動性 を有しており、蓋体の載置後の加熱は、柔軟部材をゲルイ匕させるものである。
[0007] 特許文献 1 :特開 2003— 318448号 [0008] し力しながら、 2種類の液体を混合しながら注入器 94で注入する方法では、基体 9 1と蓋体 92との間に気泡ができないように 2種類の液体を注入するため、この液体を 吹き漏れするまで注入しなければならない。すなわち、吹き漏れした液体は無駄とな つてしまう。また、注入器 94の先端と、 2種類の液体を基体 91と蓋体 92との間に注入 する注入口との位置決めが難 、と 、う問題点もある。
[0009] さらに、シリコーンゲル 93となる 2種類の液体をゲル化させるために、加熱しなけれ ばならない。すなわち、基体 91と蓋体 92等がゲルィ匕に必要な熱に耐えうる材料を使 用しなければならず、使用できる材料が限られてしまう。またこの方法では、蒸発して 気泡となり、発光出力の低下を招くため、ゲルのゲル前駆体として溶剤を使用するよ うな物質が使用できない。
[0010] 一方、特許文献 1の発光素子を封止する方法は、発光素子方向に突出した蓋体を 載置することで、流動性を有する柔軟部材における気泡の発生を防ぐことができる。 そして、流動性を有する柔軟部材を注入する際の位置決めは比較的容易である。し 力しながら、この特許文献 1の方法では、柔軟部材のゲルイ匕のために加熱を必要と すること、この柔軟部材のゲル前駆体に溶剤を使用するような物質が使用できな 、と
V、う問題点は解決できな!/、。
発明の開示
[0011] そこで、本発明は、そのような従来の実状に鑑み、蓋体装着後にゲル化を行わず、 発光素子モジュール中の気泡の発生を防止するとともに、溶剤を使用するようなゲル 前駆体力 なるゲル封止材によって発光素子を封止することが可能な発光素子の封 止方法を提供することを目的とする。そして、この封止方法により形成される発光素 子モジュールを提供することを目的とする。
[0012] 本発明の発光素子の封止方法は、ゲル前駆体をゲルイ匕することによって流動性を 失わせたゲル封止材で発光素子を封止する方法であって、前記ゲル前駆体をゲル 化にして前記ゲル封止材を形成する工程と、形成された前記ゲル封止材を前記発 光素子上に載置する工程と、前記ゲル封止材上に前記発光素子とともに前記ゲル 封止材を挟むように蓋体を載置する工程と、前記蓋体を前記発光素子に向かって押 圧する工程とを有することを特徴とする。 [0013] 本発明の発光素子の封止方法によれば、ゲル封止材のゲル前駆体のゲルィ匕を発 光素子上に載置する前に行い、ゲル封止材の流動性を失わせるため、蓋体装着後 にゲルィ匕を行う必要がない。そのため、注入法では扱い難い粘性の高いゲル前駆体 も使用することができる。また、ゲル封止材のゲル前駆体として溶剤を使用するような 物質も使用することができる。
[0014] 本発明の発光素子の封止方法において、前記ゲル封止材上に前記蓋体を載置す る前に、前記ゲル封止材を前記発光素子に向力つて押圧する工程とを有することを 特徴とする。この押圧により、発光素子とゲル封止材との間に気泡が混入することを 防止することができる。
[0015] また、本発明の発光素子の封止方法において、前記蓋体を前記発光素子に向か つて押圧する工程では、減圧下で、押圧手段によって前記蓋体が押圧されることを 特徴とする。発光素子の周囲の雰囲気を減圧とすることで、発光素子とゲル封止材と の間、及び、ゲル封止材と蓋体との間に気泡が混入することを防ぐことができる。
[0016] さらに、本発明の発光素子の封止方法において、前記蓋体を前記発光素子に向か つて押圧する工程では、前記発光素子上に位置合わせしたゲル封止材の一端から 他端に向力つて連続的に押圧されることを特徴とする。これにより、ゲル封止材と発 光素子との間の気泡を押し出すようにゲル封止材を押圧するため、発光素子とゲル 封止材との間に気泡が混入することを防ぐことができる。
[0017] またさらに、本発明の発光素子の封止方法において、前記ゲル前駆体をゲル化に よって前記ゲル封止材を形成する工程では、所定の離型シート上に、フィルム状又 は蓋体の形状に対応する形状に前記ゲル前駆体が形成された後、前記ゲル前駆体 をゲル化して前記ゲル封止材が形成され、形成された前記ゲル封止材が前記離型 シートから剥離されることを特徴とする。これにより、形成されるゲル封止材は取り扱 いが容易となる。
[0018] また、本発明の発光素子の封止方法において、前記ゲル封止材は、粘弾性測定に よって測定される貯蔵弾性率 (G')に対する損失弾性率 (G")の比 (tan δ =G"/G' )が 1以下であることを特徴とする。例えば、回転式レオメーターを用いて、正弦波ね じり歪を加えたときの動的応力を、ゲル前駆体の温度を徐々に上昇させながら行うと 、ゲルィ匕温度の前後においてゲル前駆体の tan δは急速に減少して 1以下となる。 すなわち、粘弾性測定によって導き出せる tan δ力 ^以下である場合、ゲル前駆体が ゲルイ匕して流動性のないゲルとなったことを確認できる。したがって、 tan δ力^以下 のゲル封止材を使用することで、蓋体装着後にゲルィヒを行う必要がなぐゲル前駆 体として溶剤を使用するような物質も使用することができる。
[0019] さらに、本発明の発光素子の封止方法において、前記ゲル封止材は、ポリフッ化ビ ユリデン榭脂を媒体に溶解させた組成物であることを特徴とする。ポリフッ化ビ -リデ ン榭脂を媒体に溶解させた組成物の屈折率は、よくゲル封止材として利用されるシリ コーンよりも高い屈折率を有している。そのため、比較的高い屈折率を有する蓋体を 使用する場合でも、このような高!ヽ屈折率を有する組成物をゲル封止材として使用す ることで、ゲル封止材の屈折率と蓋体の屈折率との差が少なくなり、封止される発光 素子力 発光する光の輝度を高くすることができる。
[0020] また、本発明の発光素子モジュールは、発光素子と、ゲル前駆体をゲルイ匕して流 動性を失わせたゲル封止材と、前記発光素子とともに前記ゲル封止材を挟む蓋体と を有し、形成された前記ゲル封止材が前記発光素子上に載置され、前記ゲル封止 材上に蓋体が載置され、前記蓋体が前記発光素子に向かって押圧されることで前記 発光素子が封止されることを特徴とする。
[0021] 本発明の発光素子モジュールによれば、ゲル封止材のゲル前駆体のゲル化を発 光素子上に載置する前に行い、ゲル封止材は流動性を失っているため、発光素子 の封止後に加熱等のゲルィ匕工程を行う必要がない。そのため、注入法では扱い難い 粘性の高いゲル前駆体も使用することができる。また、ゲル封止材のゲル前駆体とし て溶剤を使用するような物質も使用することができる。気泡の混入のない高輝度の発 光素子モジュールを提供できる。
[0022] また、本発明の発光素子モジュールにお 、て、前記ゲル封止材は、粘弾性測定に よって測定される貯蔵弾性率 (G')に対する損失弾性率 (G")の比 (tan δ =G"/G' )が 1以下であることを特徴とする。 tan δ力 ^以下のゲル封止材を使用することで、蓋 体装着後にゲルィ匕を行う必要がない。すなわち、気泡の混入のない発光素子モジュ ールを提供できる。 [0023] さらに、本発明の発光素子モジュールにおいて、前記ゲル封止材は、ポリフッ化ビ ユリデン榭脂を媒体に溶解させた組成物であることを特徴とする。ポリフッ化ビ -リデ ン榭脂を媒体に溶解させた組成物の屈折率は、よくゲル封止材として利用されるシリ コーンよりも高い屈折率を有している。そのため、比較的高い屈折率を有する蓋体を 使用する場合でも、このような高!ヽ屈折率を有する組成物をゲル封止材として使用す ることで、ゲル封止材の屈折率と蓋体の屈折率との差が少なくなり、高輝度の発光素 子モジュールが提供できる。
[0024] 以上のような本発明の発光素子の封止方法は、ゲル封止材のゲル前駆体のゲル 化を発光素子上に載置する前に行い、ゲル封止材の流動性を失わせるため、蓋体 装着後にゲルィ匕を行う必要がない。そのため、注入法では扱い難い粘性の高いゲル 前駆体も使用することができる。また、ゲル封止材のゲル前駆体として溶剤を使用す るような物質ち使用することができる。
[0025] また、以上のような本発明の発光素子モジュールによれば、ゲル封止材のゲル前 駆体のゲル化を発光素子上に載置する前に行 ヽ、ゲル封止材は流動性を失って!/、 るため、発光素子の封止後に加熱等のゲルィ匕工程を行う必要がない。そのため、注 入法では扱い難い粘性の高いゲル前駆体も使用することができる。また、ゲル封止 材のゲル前駆体として溶剤を使用するような物質も使用することができる。気泡の混 入のな 、高輝度の発光素子モジュールが提供できる。
図面の簡単な説明
[0026] [図 1]本発明の発光素子の封止方法により封止される発光素子を有する発光素子モ ジュールの一例を示す図である。
[図 2]本発明の発光素子の封止方法に使用するゲル封止材の形成方法を説明する 図である。
[図 3]本発明の発光素子の封止方法において、ゲル封止材を発光素子上に載置す る肯定を説明する図である。
[図 4]本発明の発光素子の封止方法において、透光性レンズを発光素子に向力つて 押圧する工程を説明する図である。
[図 5]本発明の発光素子の封止方法において、透光性レンズを発光素子に向力つて 押圧する工程の一例を説明する図である。
[図 6]本発明の発光素子の封止方法において、透光性レンズを発光素子に向力つて 押圧する工程の別の例を説明する図である。
[図 7]従来の発光素子の封止方法にお 、て、ゲル封止材のゲル前駆体を注入するェ 程を説明する図である。
発明を実施するための最良の形態
[0027] 以下、本発明の発光素子の封止方法及び発光素子モジュールにつ!/、て、発光素 子として発光ダイオード(LED : Light Emitting Diode)素子を例に挙げて説明 する。なお、本発明は、以下の説明に限られるものではなぐ本発明の主旨を逸脱し な 、範囲にお!、て適宜変更可能である。
[0028] 本発明の封止方法は、ゲル前駆体をゲル化してゲル封止材を形成する工程と、形 成されたゲル封止材を LED素子上に載置する工程と、ゲル封止材上に蓋体を載置 する工程と、蓋体を LED素子に向力つて押圧する工程とを有して 、る。
[0029] 図 1は、本発明の封止方法により封止された LED素子を使用した LED素子モジュ ールを示す図である。この LED素子モジュール 1は、発光素子である LED素子 10と 、 LED素子 10を収納する基体 20と、 LED素子 10を封止するゲル封止材 30と、ゲル 封止材 30上に載置される蓋体である透光性レンズ 40とを有している。
[0030] LED素子 10は、チップ状の発光素子で、基体 20の凹部 21〖こ収納されている。こ の LED素子 10は、表面に図示されない電極を有している。この電極の位置は特に 限定されるものではないが、例えば、 LED素子 10の上面に正負一対の電極を有し ていてもよい。このような場合、図 1のように、その一対の電極と基体 20のリード線 22 とを配線 11により接続する。これにより、基体 20のリード線 22を図示されない実装基 板に接続することで導通し、 LED素子 10を発光させることができる。この配線方法も また限定されるものではない。また、この配線 11は、特に限定されるものではなぐ例 えば、金や銅等の電気抵抗の少ない材料を用いてもよぐまた、配線 11の機械的強 度を向上させるために配線 11の周囲を榭脂等でコーティングされて 、てもよ 、。
[0031] LED素子 10は、 n型及び p型半導体が積層され、 pn接合が形成されている。そし て、この LED素子 10の表面に形成された n型電極、 p型電極を介して pn接合に電圧 をかけることで、 pn接合力も所定の波長の光が発光する。この LED素子 10を構成す る半導体としては、 GaP、 GaAs、 GaAsP、 GaAlAs、 GaN、 SiC等の半導体が挙げ られる。
[0032] 基体 20は、上述のように、 LED素子 10を収納する凹部を有している。そして、その 凹部の内部には、配線 11を介して LED素子 10の一対の電極と接続するリード線 22 が突出するように形成されている。また、 LED素子 10の下部には、 LED素子 1の発 光により発生する熱を外部に放出するヒートシンク 23が設けられている。この基体 20 の形状は、透光性レンズ 40により異なる力 透光性レンズ 40とともにゲル封止材 30と LED素子 10とを内包するように挟むことができるような形状であれば特に限定される ものではない。例えば、透光性レンズ 40の形状がドーム状である場合、平板状の基 体 20を使用してもよい。
[0033] ゲル封止材 30は、透光性を有し、 LED素子 10を封止する封止材である。このゲル 封止材 30は、適度な柔軟性を有しており、 LED素子 10や配線 11を水分や衝撃等 力ら保護することができる。また、 LED素子 10の発光により発生する熱を透光性レン ズ 40に伝え難くし、透光性レンズ 40の熱による劣化を防止することもできる。
[0034] このゲル封止材 30は、 LED素子 10上に載置する前に、ゲル前駆体のゲル化によ り流動性を失わせたものである。ゲル前駆体力もゲル封止材 30の形成は LED素子 1 0に載置する前に行われるため、従来、気泡の原因となるため使用できな力つた溶剤 を使用するようなゲル前駆体も使用可能となる。
[0035] このゲル前駆体は、ゲル化によってゲル封止材 30を形成する組成物であり、その 組成は限定されるものではない。通常は 1種以上の重合性基を有するモノマー、オリ ゴマー、或いは、ポリマーに、触媒、重合開始剤、硬化剤、重合禁止剤、媒体、高屈 折率粒子等を配合した反応性の組成物である。例えば、シリコーン榭脂をゲル封止 材 30として使用する場合、ビュル基を有するシロキサン化合物と SiH基を有するシロ キサン化合物とを混合し、白金等の触媒を添加、加熱することで得られる。このとき、 用いられるシロキサン化合物には、ジメチルシロキサン、メチルフエ-ルシロキサン、 ジフエニルシロキサン等のオリゴマーやポリマーが用いられる。また、これらは単独重 合されたものであっても、共重合されたものであってもよい。また、この組成物は、物 理架橋性を有するポリマーを媒体に溶解させたような、熱によりゾルゲル転移を起こ す組成物であってもよい。この場合は、高温時には溶液となりゲル前駆体として扱い 、冷却時にはゲル封止材として扱うことができる。例えば、ポリフッ化ビ-リデン榭脂 やポリへキサフルォロプロピレン榭脂を媒体に溶解させた組成物などである。ここで 示す媒体とは、ポリフッ化ビ-リデン榭脂やポリへキサフルォロプロピレン榭脂を溶解 させる液体のことであり、トルエン、メチルェチルケトン、メチルイソブチルケトン、ァセ トン、シクロへキサン、シクロへキサノン等の比較的沸点の低い溶剤や、ポリエチレン グリコール、シリコーンオイルといった比較的沸点の高い液体も含まれる。ポリフッ化 ビ-リデン榭脂やポリへキサフルォロプロピレン榭脂を媒体に溶解させた組成物は、 屈折率が従来よくゲル封止材として使用しているシリコーンの屈折率よりも高い。した がって、高い屈折率を有する透光性レンズ 40を使用しても、このような高い屈折率を 有する材質をゲル封止材 30として使用することで、ゲル封止材 30と透光性レンズ 40 との差が小さくなり、発光素子の輝度が向上する。
[0036] このゲル前駆体に屈折率や LED素子 10から発光する光の色等を調整するための 物質を混入させ、ゲル封止材 30を形成してもよい。例えば、ゲル前駆体に硫黄原子 を含有する化合物の粉末やナノスケールの酸化チタン粒子等を入れることで、形成さ れるゲル封止材 30の屈折率を調節することができる。硫黄原子を含有する化合物の 粉末を混入させるには、溶剤中にゲル前駆体と硫黄原子を含有する化合物の粉末 を溶解させる必要がある。本発明の封止方法によれば、溶剤はゲル封止材 30の形 成時すなわち、 LED素子 10に載置する前に除去することができる。したがって、ゲル 封止材 30のゲル前駆体に使用した溶剤は、気泡の原因とはならない。また、酸ィ匕チ タン粒子を使用するとゲル前駆体の粘度が高くなるが、従来のようにレンズ装着後に ゲル前駆体を注入するものではな 、ため、所定の形状のゲル封止材 30を形成後に LED素子 10に載置するため問題とはならない。
[0037] このゲル封止材 30としては、透光性と柔軟性を有するゲル封止材であれば特に限 定されるものではない。例えば、ゲル封止材 30として、従来使用されているシリコー ン榭脂からなるゲルを使用してもよい。このシリコーン榭脂は、シリコーン榭脂からなる ゲル封止材 30のゲル前駆体が LED素子 10に載置する前にゲル化され、形成される ゲルの流動性が失われる。したがって、このゲル封止材 30に透光性レンズ 40を載置 した後に加熱等によるゲルィ匕を行う必要がなくなる。さらに、ゲル封止材 30は、ゲル 封止材 30の屈折率を調節するための物質を混入させるなどでゲル前駆体の粘度が 高くなつても問題とならない。
[0038] また、シリコーン榭脂以外の材質としては、例えば、フッ化ビ-リデン榭脂を媒体に 溶解させた組成物からなるゲルが挙げられる。これにより、比較的高い屈折率を有す る透光性レンズ 40を使用する場合でも、このようなより高 ヽ屈折率を有する素材をゲ ル封止材 30として使用することで、ゲル封止材 30の屈折率と透光性レンズ 40と屈折 率との差が少なくなり、形成される発光素子モジュールの輝度を高くすることができる 。このゲル封止材 30の材質としては、透光性レンズ 40の屈折率とゲル封止材 30の 屈折率の関係や、ゲル封止材 30の柔軟性などにより適宜選択される。
[0039] ゲル前駆体に使用される溶剤は、加熱により蒸発するものが好ましいが特に限定す るものではなぐゲル封止材 30を形成するために必要な溶剤を使用することができる 。例えば、トルエン、メチルェチルケトン、メチルイソブチルケトン、アセトン、シクロへ キサン、シクロへキサノン等が挙げられる。この溶剤は、ゲル封止材 30の形成時、す なわち、ゲル前駆体のゲルィ匕時に蒸発させることができる。また、このゲル前駆体の ゲルィ匕時に完全に蒸発しなくても、 LED素子 10に載置する前に蒸発させることも可 能である。
[0040] このゲル前駆体を、例えば加熱することにより流動性を失わせ、ゲル化したゲル封 止材 30が形成される。このとき、ゲル封止材 30は、粘弾性測定によって測定される 貯蔵弾性率 (G')に対する損失弾性率 (G")の比 (tan S =G"ZG')が 1以下である ことが好ましい。貯蔵弾性率 (G')と、損失弾性率 (G")とは、粘弾性測定により計測 でき、その比 tan δは、 tan δ =G"ZG'によって算出できる。この tan δ力^より大きく なると、流動性を有していることを示し、ゲル封止材 30ではなぐまだゲル前駆体であ ることを示す。 tan δ力^より大きいものを LED素子 10上に載置しても、透光性レンズ 40を LED素子 10に向かって押圧する工程の後に、ゲルィ匕するために再度加熱等を 行う必要がある。すなわち、溶剤を使用するようなゲル前駆体を使用することができな くなる。一方、 tan δ力^以下であれば、流動性がないことを示し、本発明で示すゲル 封止材 30であることを示す。したがって、透光性レンズ 40を LED素子 10に向力つて 押圧した後に、ゲルイ匕の工程を行う必要がない。したがって、ゲル前駆体として溶剤 を使用するような物質も使用することができる。
[0041] また、ゲル封止材 30は、透光性レンズ 40の屈折率と略同じ屈折率を有することが 好まし 、。透光性レンズ 40と略同じ屈折率を有するゲル封止材 30によって LED素 子 10を封止することで、 LED素子 10から発光した光が、ゲル封止材 30と透光性レン ズ 40との界面での反射が減少する。すなわち、 LED素子モジュール 1から取り出せ る光の量が多くなり、輝度を向上させることができる。例えば、使用する透光性レンズ の屈折率が 1. 7である場合、ゲル封止材 30の材質や所定の物質を混入させる等で ゲル封止材 30の屈折率を透光性レンズの屈折率 1. 7に近づけるように調整すること で、形成される LED素子モジュール 1の輝度を向上させることができる。
[0042] 蓋体である透光性レンズ 40は、機械的強度と透光性を有し、 LED素子 10とともに ゲル封止材 30を挟むようにゲル封止材 30上に載置される。この透光性レンズ 40は、 LED素子 10から発光する光を LED素子 10に対して上面方向や側面方向等に導き 、所定の方向からその光を取り出すことができる。
[0043] この透光性レンズ 40は、基体 20とで LED素子 10とゲル封止材 30とを内包するよう に挟み込み、 LED素子 10と基体 20とゲル封止材 30と透光性レンズ 40とを一体ィ匕 する。一体化させるために、例えば、透光性レンズ 40と基体 20とを嵌合するように形 成されていてもよい。また、ゲル封止材 30に粘着性がある場合、そのゲル封止材 30 によって LED素子 10と基体 20ゲル封止材 30と透光性レンズ 40とを一体化してもよ い。これにより LED素子 10をゲル封止材 30で封止することができ、 LED素子モジュ ール 1を形成することができる。この透光性レンズ 40の形状は、上述のように光を所 定の方向に取り出すことができればどのような形状であってもよい。例えば、図 1のよ うなドーム型や、凸レンズ状のものでもよい。この透光性レンズ 40を形成する材質とし ては、エポキシ榭脂、アクリル榭脂、シリコーン榭脂、ポリカーボネート榭脂、シクロォ レフイン榭脂等と ヽつた、耐候性に優れた透明榭脂ゃガラス等が挙げられる。
[0044] 本発明の発光素子の封止方法は、まず、ゲル封止材 30のゲル前駆体のゲル化を 行う。このゲルィヒは、形成されるゲル封止材 30及びそのゲル前駆体により条件が異 なるため、ゲル封止材 30及びそのゲル前駆体に応じて適宜変更される。例えば、シ リコーン榭脂の場合、ゲル前駆体にもよるが、 150°C程度にゲル前駆体を加熱するこ とでゲル前駆体が硬化し、シリコーン榭脂からなるゲルが形成される。
[0045] ここで形成されるゲル封止材 30は、 LED素子 10を封止するために、基体 20や透 光性レンズ 40の形状等に対応する所定の形状を有して 、る。ゲル封止材 30を所定 の形状に加工する方法としては、ゲル封止材 30を形成するゲル前駆体をデイスペン サゃスクリーン印刷等で所定の形状に模つた後にゲルィ匕を行う方法や、ゲル前駆体 をゲル化した後に所定の形状に加工する方法があるが、所定の形状のゲル封止材 3 0を形成することが可能であれば特に限定されるものではない。
[0046] ゲル化後に所定の形状に加工する方法としては、例えば、ゲル封止材 30のゲル前 駆体 35をフィルム状に延ばし、図 2のように、ヒータ 39等の加熱手段により、フィルム 状のゲル前駆体 35を加熱することで徐々にゲルィ匕を行って、ヒータ 39を移動させる ことでフィルム状のゲル封止材 30を形成する。そして、形成したフィルム状のゲル封 止材 30を型抜き等で LED素子 10を封止するために必要な形状にする。これにより、 同じ形状のゲル封止材 30を容易に形成することができる。
[0047] このゲル化時に、ゲル前駆体を離型シート上に上記に示した形状となるように模り、 加熱によりゲル前駆体をゲルイ匕し、形成されたゲル封止材 30をこの離型シートから 剥離してもよい。これにより、形成されたゲル封止材 30を剥す際に破損し、シート上 にゲル封止材 30の一部が残ることがない。また、離型シートからゲル封止材 30を剥 さない状態で LED素子 10上に載置した後、ゲル封止材 30を離型シートから剥すこと も可能である。これにより、ゲル封止材 30に汚れや傷をつけずに LED素子 10上に 載置することも可能である。すなわち、ゲル封止材 30の取り扱いが容易となる。
[0048] 次に、図 3のように、基体 20の凹部に収納されるとともに、配線 11によってリード線 22と接続された LED素子 10上に、上述のように形成されたゲル封止材 30を載置す る。このとき、配線 11は、切断されないように榭脂等で皮膜し、機械的強度を向上さ せてもよい。あるいは、基体 20の凹部に沿うように配線してもよい。
[0049] LED素子 10上にゲル封止材 30を載置した後、ゲル封止材 30上に透光性レンズ 4 0を載置する。そして、図 4のように透光性レンズ 40を LED素子 10に向かって押圧す る。これにより、 LED素子 10と透光性レンズ 40との間にゲル封止材 30を挟み込み、 LED素子 10をゲル封止材 30によって封止することができる。そして、基体 20と透光 性レンズ 40と LED素子 10とゲル封止材 30とを一体として、 LED素子モジュール 1を 形成することができる。
[0050] また、 LED素子 10を封止するゲル封止材 30は、 LED素子 10上に載置する前に ゲル化される。したがって、溶剤を使用したゲル前駆体を使用しても、 LED素子 10 に載置する前にこの溶剤を蒸発させることができるため、溶剤由来の気泡を混入させ ずに LED素子 10を封止することができる。すなわち、ゲル封止材 30のゲル前駆体と して溶剤を使用するような物質も使用することができる。
[0051] この透光性レンズ 40を LED素子 10に向かって押圧する方法は、特に限定するも のではない。例えば、図 5のように、透光性レンズ 40をゲル封止材 30上に載置した 状態で複数配列し、その素子周囲をポンプ等で減圧する。そして、透光性レンズ 40 と接触する部分に適度な柔軟性を有するボンダ一 2等の押圧手段を使用して、それ ぞれの LED素子 10の上方力も透光性レンズ 40を押圧する方法が挙げられる。透光 性レンズ 40の押厚時に減圧とすることで、透光性レンズ 40とゲル封止材 30及びゲル 封止材 30と LED素子 10等に閉じ込められ得る気体を少なくすることができる。すな わち、発光出力の劣化等を引き起こす気泡を混入させることなく LED素子 10をゲル 封止材 30により封止することができる。また、ボンダ一 2による透光性レンズ 40の押 圧は、複数配列させなくても単数であってもよい。ここで使用するボンダ一 2は、比較 的柔軟性を有するものであればよぐ例えば、ゴムやゲル状の榭脂等が挙げられる。
[0052] 本発明の封止方法において、透光性レンズ 40をゲル封止材 30上に載置する前に 、ゲル封止材 30を LED素子 10に向力つて押圧してもよい。この押圧により、発光素 子とゲル封止材中の気泡を外側に向カゝつて押し出し、気泡の混入を減少させること ができる。例えば、図 6に示される方法で、 LED素子 10に向かってゲル封止材 30を 押圧してちょい。
[0053] これは、図 6のように、まず、上述に示された方法で離型紙に模られたゲル封止材 3 0と、このゲル封止材 30と略同じ間隔に着脱自在にフィルム等に固着された LED素 子 10を所定の位置に収納した基体とを位置合わせする。これにより、ゲル封止材 30 と LED素子 10とを位置合わせすることができる。そして、ゲル封止材 30を LED素子 10に向力つて十分に押圧できるような間隔を有するローラ 3に向力つて、位置合わせ したゲル封止材 30と LED素子 10とを、その位置を保ったまま移動させる。すなわち 、位置合わせしたゲル封止材 30と LED素子 10とを、ローラ 3で挟むように、ゲル封止 材 30の一端力も他端に向力つて連続的に押圧する。ゲル封止材 30と LED素子 10 とがこのローラ 3によって挟まれることで、ゲル封止材 30を LED素子 10に向かって押 圧することができる。この押圧と同時にゲル封止材 30を離型シートから剥離すること ができる。この方法によってゲル封止材 30と LED素子 10との間に混入し得る気泡は 、ゲル封止材 30の一端力も他端の方向に移動し、外側に向力つて押し出すことがで きる。したがって、ゲル封止材 30と LED素子 10との間に気泡が混入することを防ぐこ とができる。この方法以外にも、例えば、ローラを移動させてゲル封止材 30を LED素 子 10に向力つて押圧してもよい。
[0054] このように、ゲル封止材 30を LED素子 10に向力つて押圧した後、上述で説明した ように、透光性レンズ 40をゲル封止材 30上に載置し、透光性レンズ 40を LED素子 1 0に向力つて押圧して LED素子 10を封止することができる。そして、ゲル封止材 30 は、流動性を失ったものであるため、 LED素子 10の封止後に加熱等のゲルィ匕工程 を行う必要がない。
[0055] 本発明の発光素子モジュールは、上述の発光素子の封止方法を用いて形成する ことができる。これにより、発光素子モジュール内への気泡の混入が防止でき、気泡 によって発光出力が低下しない発光素子モジュールとなる。さらに、溶剤を使用した ゲル前駆体を使用することができるため、透光性レンズの屈折率に合わせるように、 ゲル封止材の材質や封止材に混入させる物質を適宜変更してゲル封止材の屈折率 を調整することも可能で、より高輝度の発光素子モジュールを形成することができる。
[0056] [実施例]
[実施例 1]
トルエンとメチルェチルケトンとを 1: 1で混合した混合溶液中に、ビス (4—メタクリロ ィルチオフエ-ル)スルフイド(住友精化製)の粉末 5gと、ウレタンアタリレート EB230 ( ダイセル製) 5g、重合開始剤パーへキシル 0 (日本油脂製) 0. lgとを混合した。そし て、デイスペンサを使用して、ゲルの形成後に直径 3mm、厚み 0. 75mmの円盤状と なるように、離型紙上に混合溶液を滴下した。その後、この混合溶液に対して 100°C の熱をかけて溶剤を蒸発させることでゲル化させて、 LED素子上に載置するゲル封 止材を形成した。このゲル封止材の屈折率は、 1. 61であった。
[0057] LED素子は、基体の凹部に収納し、 LED素子の電極と、基体のリード線とを金線 によって接続した。そして、実施例 1で形成したゲル封止材をピンセットでつまみ、こ の LED素子上に載置した。さらに、そのゲル封止材上に透光性レンズを載置した。こ の透光性レンズの屈折率は、 1. 61であった。この透光性レンズをゲル封止材上に載 置した LED素子を、減圧可能な空間に複数配列した。そして、 LED素子を配列した 空間を 0. 5Torrとなるように減圧した。その後、シリコーンゴムで形成されたボンダ一 を使用して、透光性レンズの上方力も LED素子に向力つて押圧し、 LED素子を封止 した。このときの圧力は、 lOOOOPaであった。
[0058] これにより、ゲル封止材のゲル前駆体を溶剤に溶解させたものを使用しても、気泡 を混入させずに LED素子をゲル封止材で封止することができた。また、この方法によ り、気泡のない LED素子モジュールを形成することができた。また、透光性レンズ及 びゲル封止材の屈折率が略同一となり、形成された LED素子モジュールの輝度が 向上した。
[0059] [実施例 2]
平均粒径 12nmの酸化チタンのナノ粒子 4g力メチルェチルケトン中に分散された 分散液を、ポッティング用シリコーン 3062の A液 (GE東芝シリコーン) 10gに混合し た。次に分散液を混合した A液に同じくポッティング用シリコーン 3062の B液 (GE東 芝シリコーン) 10gを混合して形成された混合物を、離型紙上にコータで厚さ 1. 25m mのフィルム状となるように延ばした。フィルム状に延ばされた混合物にヒータで 150 °Cの熱をかけて溶剤を蒸発させるとともに硬化させ、ゲルフィルムを形成した。
[0060] LED素子は、基体の凹部に収納し、 LED素子の電極と、基体のリード線とを金線 によって接続した。そして、その LED素子を収納した複数の基体をそれぞれ所定の 間隔をあけて着脱自在にフィルムに固着させた。
[0061] 次に、形成したゲルフィルムをフィルム状に固着させた LED素子を収納した複数の 基体の間隔にあわせ、離型紙を残して型抜きした。このとき、ゲル封止材が直径 4m m、厚み 1. 25mmとなるように型抜きした。
[0062] このフィルム上の LED素子を収納した基体と、離型紙上に形成されたゲル封止材 との位置をあわせ、ラミネートするように、ローラでゲル封止材と基体とを押圧し、ゲル 封止材の一端力 他端に向力つてフィルムと離型紙とを移動させた。すなわち、ゲル 封止材の一端力も他端に向力つてゲル封止材と LED素子を移動させるように、ゲル 封止材を LED素子に向力つて押圧した。これにより、ゲル封止材と LED素子との間 への気泡の混入を防止できた。
[0063] その後、その離型紙が剥離され、ゲル封止材上に透光性レンズを載置し、実施例 1 の方法によってゲル封止材で LED素子を封止した。これにより、ゲル封止材のゲル 前駆体を溶剤に溶解させたものを使用しても、気泡を混入させずに LED素子をゲル 封止材で封止することができた。また、この方法により、気泡のない LED素子モジュ ールを形成することができた。
[0064] [実施例 3]
実施例 2で A液に混入させた酸ィ匕チタンのナノ粒子をメチルェチルケトンに分散さ せた分散溶液の替わりに溶剤であるメチルェチルケトンのみを A液に混ぜてシリコー ンゲルを形成し、実施例 2と同様の方法で LED素子を封止した。これにより、ゲル封 止材のゲル前駆体を溶剤に溶解させたものを使用しても、気泡を混入させずに LED 素子をゲル封止材で封止することができた。また、この方法により、気泡のない LED 素子モジュールを形成することができた。
[0065] [実施例 4]
粘弾性測定は、動的粘弾性測定装置 (DMS— 6100 (SII— NT社製) )を用いて行 つた。実施例 1及び 3で形成したゲル封止材を直径 12. 5mmのパラレルプレート間 に榭脂組成物を挟み、 10%歪み下で下側のプレートを左右に交互に動かし、角速 度を 0. lradZs〜400radZsの範囲で変え、貯蔵弾性率 (G')、損失弾性率 (G")、 及び、 tan δを測定した。その結果、実施例 1で形成したゲル封止材は、貯蔵弾性率 (G,)力 SO. 12MPaで、損失弹' 14率(G")力 1. 5kPaで、 tan δ力 0. 0125であり、 ta η δは 1以下であった。また、実施例 3で形成したゲル封止材は、貯蔵弾性率 (G')が 17kPaで、損失弾性率(G")が 750Paで、 tan δが 0. 0441であり、 tan δは 1以下 であった。そのため、実施例 1及び 3で形成したゲル封止材は流動性がないことがわ かった。

Claims

請求の範囲
[1] ゲル前駆体をゲル化することによって流動性を失わせたゲル封止材で発光素子を 封止する方法であって、
前記ゲル前駆体をゲル化にして前記ゲル封止材を形成する工程と、
形成された前記ゲル封止材を前記発光素子上に載置する工程と、
前記ゲル封止材上に前記発光素子とともに前記ゲル封止材を挟むように蓋体を載 置する工程と、
前記蓋体を前記発光素子に向力つて押圧する工程とを有することを特徴とする発 光素子の封止方法。
[2] 前記ゲル封止材上に前記蓋体を載置する前に、
前記ゲル封止材を前記発光素子に向力つて押圧する工程とを有することを特徴と する請求の範囲第 1項記載の発光素子の封止方法。
[3] 前記蓋体を前記発光素子に向かって押圧する工程では、
減圧下で、押圧手段によって前記蓋体が押圧されることを特徴とする請求の範囲 第 1項記載の発光素子の封止方法。
[4] 前記蓋体を前記発光素子に向かって押圧する工程では、
前記発光素子上に位置合わせしたゲル封止材の一端力 他端に向力つて連続的 に押圧されることを特徴とする請求の範囲第 2項記載の発光素子の封止方法。
[5] 前記ゲル前駆体をゲル化によって前記ゲル封止材を形成する工程では、
所定の離型シート上に、フィルム状又は蓋体の形状に対応する形状に前記ゲル前 駆体が形成された後、
前記ゲル前駆体をゲル化して前記ゲル封止材が形成され、
形成された前記ゲル封止材が前記離型シートから剥離されることを特徴とする請求 の範囲第 1項記載の発光素子の封止方法。
[6] 前記ゲル封止材は、粘弾性測定によって測定される貯蔵弾性率 (G')に対する損 失弾性率 (G")の比 (tan δ =G"ZG')が 1以下であることを特徴とする請求の範囲 第 1項記載の発光素子の封止方法。
[7] 前記ゲル封止材は、ポリフッ化ビ-リデン榭脂を媒体に溶解させた組成物であるこ とを特徴とする請求の範囲第 1項記載の発光素子の封止方法。
[8] 発光素子と、
ゲル前駆体をゲル化して流動性を失わせたゲル封止材と、
前記発光素子とともに前記ゲル封止材を挟む蓋体とを有し、
形成された前記ゲル封止材が前記発光素子上に載置され、前記ゲル封止材上に 蓋体が載置され、前記蓋体が前記発光素子に向かって押圧されることで前記発光素 子が封止されることを特徴とする発光素子モジュール。
[9] 前記ゲル封止材は、粘弾性測定によって測定される貯蔵弾性率 (G')に対する損 失弾性率 (G")の比 (tan δ =G"ZG')が 1以下であることを特徴とする請求の範囲 第 8項記載の発光素子モジュール。
[10] 前記ゲル封止材は、ポリフッ化ビ-リデン榭脂を媒体に溶解させた組成物であるこ とを特徴とする請求の範囲第 8項記載の発光素子モジュール。
PCT/JP2006/304589 2005-07-25 2006-03-09 発光素子の封止方法及び発光素子モジュール WO2007013200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680018857XA CN101189734B (zh) 2005-07-25 2006-03-09 发光元件的密封方法及发光元件模块
KR1020087002674A KR101196715B1 (ko) 2005-07-25 2006-03-09 발광 소자의 밀봉방법 및 발광 소자 모듈
US11/996,724 US8072139B2 (en) 2005-07-25 2006-03-09 Light emitting element module and method for sealing light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-214842 2005-07-25
JP2005214842A JP4818654B2 (ja) 2005-07-25 2005-07-25 発光素子の封止方法

Publications (1)

Publication Number Publication Date
WO2007013200A1 true WO2007013200A1 (ja) 2007-02-01

Family

ID=37683107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304589 WO2007013200A1 (ja) 2005-07-25 2006-03-09 発光素子の封止方法及び発光素子モジュール

Country Status (5)

Country Link
US (1) US8072139B2 (ja)
JP (1) JP4818654B2 (ja)
KR (1) KR101196715B1 (ja)
CN (1) CN101189734B (ja)
WO (1) WO2007013200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670374A (zh) * 2022-04-08 2022-06-28 成都希瑞方晓科技有限公司 一种密封胶帽成型模具

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961829B2 (ja) * 2005-08-09 2012-06-27 ソニー株式会社 ナノ粒子−樹脂複合材料の製造方法
JP5311281B2 (ja) * 2008-02-18 2013-10-09 日本電気硝子株式会社 波長変換部材およびその製造方法
EP2323186B1 (en) * 2009-11-13 2017-07-26 Tridonic Jennersdorf GmbH Light-emitting diode module and corresponding manufacturing method
US8469551B2 (en) * 2010-10-20 2013-06-25 3M Innovative Properties Company Light extraction films for increasing pixelated OLED output with reduced blur
DE102011080653A1 (de) * 2011-08-09 2013-02-14 Osram Opto Semiconductors Gmbh Trägerfolie für ein silikonelement und verfahren zum herstellen einer trägerfolie für ein silikonelement
CN108645544B (zh) * 2018-05-10 2020-03-20 厦门多彩光电子科技有限公司 一种检测封装胶的应力的方法及装置
JP7178761B2 (ja) * 2019-02-04 2022-11-28 日機装株式会社 半導体発光装置及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026302A (ja) * 2003-06-30 2005-01-27 Shin Etsu Handotai Co Ltd 発光モジュール
JP2005116817A (ja) * 2003-10-08 2005-04-28 Stanley Electric Co Ltd Ledランプ用パッケージおよび該ledランプ用パッケージを具備するledランプ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8502650A (nl) * 1985-09-27 1987-04-16 Pelt & Hooykaas Gasleger alsmede hiervoor geschikt legerdeel.
JP2712618B2 (ja) * 1989-09-08 1998-02-16 三菱電機株式会社 樹脂封止型半導体装置
US5324888A (en) * 1992-10-13 1994-06-28 Olin Corporation Metal electronic package with reduced seal width
JP2994219B2 (ja) * 1994-05-24 1999-12-27 シャープ株式会社 半導体デバイスの製造方法
EP0703613A3 (en) * 1994-09-26 1996-06-05 Motorola Inc Protection of electronic components in acidic and basic environments
US5807607A (en) * 1995-11-16 1998-09-15 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
TW408453B (en) * 1997-12-08 2000-10-11 Toshiba Kk Package for semiconductor power device and method for assembling the same
JP3663120B2 (ja) * 2000-09-04 2005-06-22 株式会社日立製作所 自動車用エンジンコントロールユニットの実装構造及び実装方法
JP2002198471A (ja) * 2000-12-22 2002-07-12 Aisin Aw Co Ltd 電子制御ユニット
US7075112B2 (en) * 2001-01-31 2006-07-11 Gentex Corporation High power radiation emitter device and heat dissipating package for electronic components
JP4269709B2 (ja) * 2002-02-19 2009-05-27 日亜化学工業株式会社 発光装置およびその製造方法
JPWO2004053984A1 (ja) * 2002-12-09 2006-04-13 株式会社豊田中央研究所 半導体素子放熱部材およびそれを用いた半導体装置ならびにその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026302A (ja) * 2003-06-30 2005-01-27 Shin Etsu Handotai Co Ltd 発光モジュール
JP2005116817A (ja) * 2003-10-08 2005-04-28 Stanley Electric Co Ltd Ledランプ用パッケージおよび該ledランプ用パッケージを具備するledランプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670374A (zh) * 2022-04-08 2022-06-28 成都希瑞方晓科技有限公司 一种密封胶帽成型模具
CN114670374B (zh) * 2022-04-08 2023-10-24 成都希瑞方晓科技有限公司 一种密封胶帽成型模具

Also Published As

Publication number Publication date
JP2007035798A (ja) 2007-02-08
US20100140654A1 (en) 2010-06-10
KR20080030074A (ko) 2008-04-03
CN101189734A (zh) 2008-05-28
US8072139B2 (en) 2011-12-06
CN101189734B (zh) 2012-06-06
JP4818654B2 (ja) 2011-11-16
KR101196715B1 (ko) 2012-11-07

Similar Documents

Publication Publication Date Title
WO2007013200A1 (ja) 発光素子の封止方法及び発光素子モジュール
US8247263B2 (en) Method for producing an optical, radiation-emitting component and optical, radiation-emitting component
US8946983B2 (en) Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED
JP5190993B2 (ja) 光半導体封止用シート
JP6641997B2 (ja) 積層体およびそれを用いた発光装置の製造方法
US9082940B2 (en) Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
US20130328091A1 (en) Light reflecting member for optical semiconductor, and substrate for mounting optical semiconductor and optical semiconductor device using the light reflecting member
TWI749058B (zh) 光學半導體元件覆蓋用薄片
CN101027786A (zh) 光学半导体器件及其制造方法
JP2010153500A (ja) 光半導体装置の製造方法
JPWO2015060289A1 (ja) 蛍光体組成物、蛍光体シート、蛍光体シート積層体ならびにそれらを用いたledチップ、ledパッケージおよびその製造方法
US20100209670A1 (en) Sheet for photosemiconductor encapsulation
WO2015033824A1 (ja) 波長変換シート、封止光半導体素子および光半導体素子装置
TW200847491A (en) Method of manufacturing optoelectronic component and optoelectronic component
JP5177693B2 (ja) 光半導体封止用シート
JP5972571B2 (ja) 光半導体装置および照明装置
CN105637660A (zh) 层叠体及使用所述层叠体的发光装置的制造方法
JP2014116598A (ja) 発光ダイオード封止用組成物、蛍光体シートならびにそれらを用いたledパッケージおよびその製造方法
JP2012138425A (ja) 樹脂レンズ、レンズ付led装置及びレンズ付led装置の製造方法
JP6395597B2 (ja) ダイシング用粘着テープおよび半導体チップの製造方法
Teng et al. P‐77: Advanced Encapsulation Film for Micro‐LED Display
JP2018041857A (ja) 蛍光体層光拡散層被覆光半導体素子
EP3658646B1 (en) Method of manufacturing an optoelectronic device
JP2012129362A (ja) 光半導体装置
JP2010263154A (ja) 光半導体封止用シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018857.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11996724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002674

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06715460

Country of ref document: EP

Kind code of ref document: A1