WO2007013170A1 - 自己診断機能を有する半導体デバイス製造検査装置 - Google Patents

自己診断機能を有する半導体デバイス製造検査装置 Download PDF

Info

Publication number
WO2007013170A1
WO2007013170A1 PCT/JP2005/013946 JP2005013946W WO2007013170A1 WO 2007013170 A1 WO2007013170 A1 WO 2007013170A1 JP 2005013946 W JP2005013946 W JP 2005013946W WO 2007013170 A1 WO2007013170 A1 WO 2007013170A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
semiconductor device
diagnosis
measurement
device manufacturing
Prior art date
Application number
PCT/JP2005/013946
Other languages
English (en)
French (fr)
Inventor
Keizo Yamada
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2005/013946 priority Critical patent/WO2007013170A1/ja
Publication of WO2007013170A1 publication Critical patent/WO2007013170A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2485Electric or electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a semiconductor device manufacturing / inspection apparatus having a self-diagnosis function.
  • the present invention also provides a semiconductor device manufacturing inspection apparatus and a semiconductor device manufacturing inspection method suitable for performing process evaluation during the semiconductor device manufacturing process using probes such as an electron beam, an ion beam, an electromagnetic wave, a sound wave, and vibration.
  • probes such as an electron beam, an ion beam, an electromagnetic wave, a sound wave, and vibration.
  • An apparatus using an electron beam is known as a semiconductor process evaluation apparatus.
  • Such an evaluation apparatus irradiates a semiconductor wafer to be evaluated (hereinafter referred to as “wafer”) with an electron beam controlled with high accuracy, collects secondary electrons generated during the irradiation, and forms an image. (See, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-26449
  • the operator observes the measurement result of the wafer or the like obtained by the evaluation apparatus to monitor whether there is any abnormality. There was a need. Further, in the conventional semiconductor process evaluation apparatus, it is necessary for an operator to measure the state of the evaluation apparatus to determine whether it is the same as the standard state (normal state). And when it was judged that there was an abnormality in the measurement result or the state of the evaluation device, the worker had readjusted. Therefore, in the conventional semiconductor process evaluation apparatus, in order to maintain a high measurement accuracy, a skilled worker is always required to check the operation of the evaluation apparatus, and there is a problem that it is very inefficient. .
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a semiconductor device having a self-diagnosis function capable of efficiently maintaining the measurement accuracy with respect to a semiconductor device. It is to provide a manufacturing inspection apparatus.
  • a semiconductor device manufacturing and inspection apparatus having a self-diagnosis function controls a probe generator that emits a probe such as an electron beam to a measurement sample, and the operation of the probe generator. And a database for inputting and storing information indicating the operation of each of the various devices including at least the probe generation device and the probe generation control device.
  • the operation states of various apparatuses such as a probe generation apparatus and a probe generation control apparatus can be sequentially stored in a database. Therefore, by comparing the operation state stored in the database with the reference state (normal state), it is possible to efficiently and accurately confirm the force / force of failure in various devices. Therefore, according to the present invention, it is possible to efficiently maintain the measurement accuracy for the semiconductor device.
  • the various apparatuses converge on the electron beam scanning control apparatus that scans the probe in the XY plane and the probe.
  • an objective lens to be diffused an objective lens drive control device that controls the focal point of the objective lens, an image recognition device that captures an image of the measurement sample, and a degree of vacuum so that the probe can emit light.
  • a vacuum chamber for controlling the pressure or gas flow rate of a pipe used for opening / closing the vacuum chamber or a valve related to the vacuum chamber, and a table on which the measurement sample is placed.
  • a stage that movably supports the sample with respect to the probe generator, a stage controller that controls the movement of the stage, and Detecting secondary electrons generated in the measurement sample with the radiation lobe secondary electron detector instrumentation And a substrate current measuring device that detects a substrate current that is a current generated in the measurement sample in accordance with the irradiation of the probe, and the database is stored in at least one of the various devices.
  • a measurement sample such as a wafer can be irradiated with a probe (such as an electron beam) with high accuracy, and a secondary electron or substrate current generated by the probe irradiation is measured and measured.
  • the physical characteristics of the sample can be detected extremely finely and with high accuracy. Furthermore, according to the present invention, the measurement and detection accuracy can be easily maintained.
  • the operation states of various devices are stored in the database together with the time of occurrence of the operations, for example, it is possible to easily confirm whether or not the force is operating normally on a specific day. . Therefore, the administrator of each device can easily confirm that the measurement of the measurement sample was performed on the device in the normal state, and can perform daily inspection easily and quickly.
  • the semiconductor device manufacturing / inspection apparatus having a self-diagnosis function determines whether at least one of the various apparatuses is normal when performing self-diagnosis of the one apparatus. It has a management information setting device for setting a management value as a reference for determination, and the database has means for storing the management value output by the management information setting device together with its output time.
  • the invention is stored in a database! By comparing the operating state of each device and the management value (normal state), it can be efficiently and accurately confirmed whether or not an abnormality has occurred in each device.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention stores means for storing management value data, which is data including a threshold value when the information indicating the operation is determined as normal operation or abnormal operation ( Management reference value setting device, management reference value storage device), and the management value data and the information indicating the operation stored in the database are compared, so that at least one operation of the various devices is normal or abnormal Determined to be And self-diagnosis means.
  • management value data which is data including a threshold value when the information indicating the operation is determined as normal operation or abnormal operation
  • the self-diagnosis means can efficiently and accurately confirm the force force that has caused an abnormality in various devices. Therefore, it can be easily confirmed whether the measurement sample is defective or whether the measurement device (various devices) is broken.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention is designated by a display means for displaying a judgment result of the self-diagnosis means and a judgment result displayed on the display means by an input means. Corresponding to (for example, being clicked), it has a detailed information display means for searching the database and displaying the information on the determination result on the display means.
  • the self-diagnosis result of the semiconductor device manufacturing inspection apparatus can be easily confirmed.
  • the detailed information of the abnormal state can be confirmed easily and quickly by clicking on the part displayed as the abnormal state.
  • the first stage display allows you to easily and quickly confirm whether or not there is any abnormality in the entire semiconductor device manufacturing / inspection equipment. Detailed information can be confirmed quickly and easily.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention includes a pattern matching ratio (for example, a score) used for positioning the irradiation position of the probe in the measurement sample, and the pattern It has a means to accumulate
  • a pattern matching ratio for example, a score
  • the present invention for example, it is possible to easily and quickly confirm whether or not the force of the positioning of the measurement position is normally determined and whether or not the positioning mechanism is normal.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention displays a figure (for example, a wafer map) indicating the arrangement of the constituent elements of the measurement sample on the screen, and determines the self-diagnosis means.
  • Information relating to the measurement of the abnormal point corresponding to the means for indicating the abnormal point as a result on the graphic and the abnormal point indicated on the graphic being designated (for example, clicked) by the input means.
  • the present invention it is possible to display which part of the measurement sample is abnormal. For example, when a large number of semiconductor chips are formed on the plane of a wafer, an administrator or the like can easily and quickly find an abnormal semiconductor chip. Moreover, the power of what the abnormality is can be displayed by the detailed information display means.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention uses the file name of a recipe, which is a file for setting the manufacturing process conditions for the measurement sample, as a key for information indicating the operation. It has means for storing in the database a set of measurement time, measurement conditions, measurement results, and parameters of the various devices.
  • the present invention for example, when inspecting (measuring) a plurality of wafers, which wafer has an abnormal force, when the inspected wafer has an abnormal force, etc. Can be confirmed.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function provides a method for dealing with an abnormality in a management item for at least one of the various devices.
  • the present invention it is possible to easily and quickly grasp a management item in which an abnormality has occurred. In addition, it is possible to quickly and easily grasp the countermeasures to make the management items in which an abnormality has occurred normal.
  • the number of operating days of the apparatus or the operating time is automatically integrated and calculated by an internal timer.
  • the coping method includes information on a failure location, a replacement part, and a replacement timing of the replacement part.
  • the present invention when a component of a semiconductor device manufacturing inspection apparatus fails, the It is possible to easily and quickly find a failure, and to replace the failed part with a normal part. Therefore, for example, it is possible to quickly cope with a failure that occurs when there is no skilled manager.
  • the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present invention has a means for displaying the judgment result of the self-diagnosis means on the screen, and an abnormality corresponding to the click on the screen. And a means for displaying the coping method.
  • the failure when a failure occurs in the semiconductor device manufacturing / inspection apparatus, the failure can be found easily and quickly, and the failure can be easily and quickly dealt with.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention, when one of the various apparatuses is in a standard measurement state indicating a normal state, Means for storing a standard waveform, which is a measurement waveform when measured, and when the various devices are in the standard measurement state, it is unknown (or has not been confirmed) about the standard sample with the various devices. Means for storing an actual measurement waveform that is a measured waveform when measured, and self-diagnosis means for determining whether or not there is an abnormality in the various devices by comparing the standard waveform with the actual measurement waveform It is characterized by that.
  • the present invention it is possible to confirm whether or not various devices are normal based on the measured waveform. For example, it can be confirmed whether or not there is an abnormality in the rising or falling speed of the amplifier which is a component of various devices.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention inputs a standard signal to the various devices when one of the various devices is in a standard measurement state indicating a normal state.
  • the frequency analysis is performed on the output signal at that time, the means for storing the standard frequency spectrum as a result of the frequency analysis, and whether the various devices are in the standard measurement state are unknown (or confirmed).
  • the frequency analysis is performed on the output signal when the standard signal is input to the various devices, and the measured frequency spectrum as a result of the frequency analysis is stored, and the standard frequency spectrum By comparing the measured frequency spectrum with the measured frequency spectrum.
  • self-diagnosis means for refusing are examples of the standard signal.
  • the present invention it is possible to confirm whether or not various devices are normal by performing frequency analysis on the output signals of the various devices. For example, it can be confirmed whether or not any of the various devices is vibrating.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention includes means for measuring a voltage or a current applied to the probe generator, and a probe generated by the probe generator (for example, Means for measuring the intensity of the electron beam) or the amount per unit time, means for extracting the noise contained in the probe, and frequency analysis of the noise, and the amount of noise at a specific frequency is a reference value
  • self-diagnosis means for judging whether or not the probe generator has an abnormality based on the magnitude, force vj, and length compared to the control value.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function includes a stage on which the measurement sample is placed and movably supporting the measurement sample with respect to the probe generator. And a means for storing in the database an instruction value defining the movement amount of the stage and an actual movement amount with respect to the instruction value.
  • the semiconductor device manufacturing / inspection apparatus having a self-diagnosis function of the present invention, when the difference between the indicated value and the actual movement amount is equal to or greater than a predetermined control value, an abnormality is detected with respect to the stage. It is characterized by having a self-diagnosis means for judging that there is.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention includes a means for measuring a fluctuation state of power supplied to the various apparatuses or a frequency component of the power, and a measurement result of the means for measuring. And a means for storing in the database together with the measurement date and time.
  • the semiconductor device manufacturing inspection apparatus having a self-diagnosis function of the present invention provides the measurement Comparing a result with a control value that is a reference value, and when the difference between the measurement result and the control value is larger than a predetermined threshold value, it has means for starting self-diagnosis for the various devices. To do.
  • the present invention it is possible to easily and quickly confirm whether there is an abnormality in the power source that supplies power to the semiconductor device manufacturing inspection apparatus.
  • it is possible to perform frequency analysis on the waveform of power, and to accurately determine the force or power that is abnormal in power.
  • the semiconductor device manufacturing / inspection apparatus having a self-diagnosis function includes a means for measuring a flow rate or pressure fluctuation of a gas added to any one of the various apparatuses (for example, a vacuum chamber), and the measurement. And means for storing the measurement results of the means together with the measurement date and time in the database.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention compares the measurement result with a management value that is a reference value, and the difference between the measurement result and the management value is a predetermined threshold value. If larger than the above, it has means for starting a self-diagnosis for the various devices.
  • the present invention it is possible to easily and quickly confirm whether or not there is an abnormality in, for example, the gas flow rate to the vacuum chamber or the gas flow rate and pressure of piping used for the opening / closing operation of the valve.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention includes: a means for measuring the temperature of the cooling water with respect to! / Of the various apparatuses; and a measurement result of the means for measuring And a self-diagnosis means for determining whether or not there is an abnormality in the misalignment of the various devices based on the measurement result and a management value that is a reference value. It is characterized by having.
  • an apparatus that operates with heat generation such as an objective lens can easily and quickly confirm whether or not there is an abnormality in the cooling mechanism.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention includes position data obtained by measuring a position of a video input device (for example, a CCD camera) used for positioning the measurement sample, and the The input signal of the video input device when the position is measured Self-determining whether or not there is an abnormality in any of the various devices based on the means for storing the signal in the database together with the measurement date and time, the position data, the input signal, and the control value as the reference value And a diagnostic means.
  • a video input device for example, a CCD camera
  • pattern matching for example, pattern matching
  • the semiconductor device manufacturing / inspection apparatus having a self-diagnosis function of the present invention is characterized by having means for starting self-diagnosis when power is input to any of the various apparatuses.
  • the self-diagnosis can be started with the start-up (power-on) of the semiconductor device manufacturing inspection apparatus.
  • a self-diagnosis may be performed in accordance with a startup (power OFF) signal of the semiconductor device manufacturing inspection apparatus.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention is characterized by having a scheduler for periodically starting self-diagnosis.
  • the measurement result of the operation number or operation time of any of the various apparatuses and the measurement result of the measurement means are reference values. It has a means to start self-diagnosis when the control value is exceeded.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention performs an operation for measuring the measurement sample by all or part of the various apparatuses, and all or part of the various apparatuses. It is characterized by having the function of performing the self-diagnosis operation simultaneously in parallel.
  • the measurement 'inspection operation for the measurement sample and the inspection of the semiconductor device manufacturing / inspection apparatus that performs the measurement' inspection can be performed simultaneously.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function activates the self-diagnosis operation while the measurement sample is being measured by all or a part of the various apparatuses.
  • the semiconductor device manufacturing / inspection apparatus when the semiconductor device manufacturing / inspection apparatus performs all measurement / inspection on the measurement sample, it is possible to interrupt and inspect the semiconductor device manufacturing / inspection apparatus. In addition, in this semiconductor device manufacturing inspection apparatus, it is possible to avoid adversely affecting the measurement sample being measured.
  • a semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention has an RDI F attached to any one of the various apparatuses, peripheral devices, or replacement parts thereof, and the RDIF is It has the information about the apparatus or components attached, It has a means to memorize
  • the semiconductor device manufacturing / inspection apparatus having a self-diagnosis function of the present invention is a company or department (manufacturing or selling any one of the various apparatuses based on the self-diagnosis result of any of the various apparatuses ( For example, it has a notification means for notifying the self-diagnosis result via a communication network.
  • a vendor or the like can easily and quickly grasp and deal with the occurrence of the failure.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention can record the apparatus state in a database and can always manage numerical values. Therefore, it is possible to check the device status at a glance by automatically comparing the values recorded in the database with the standard values. For example, it can be easily confirmed whether or not the semiconductor device manufacturing and inspection apparatus is maintained in a normal state, or whether or not it has been maintained normally on a specific day. Therefore, the user or administrator of the semiconductor device manufacturing / inspection apparatus can easily confirm that his / her measurement was performed in the normal state of the apparatus. The daily inspection will be completed soon.
  • These are hosts that comprehensively manage semiconductor device manufacturing and inspection equipment. It can also be used on a computer, and can be automatically linked with other devices.
  • the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present invention can easily obtain information on all the component apparatuses that are considered to have caused an abnormality when the apparatus has an abnormality. As a result, trackback can be performed easily and countermeasures against abnormalities can be executed smoothly.
  • the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present invention can take measures to be taken quickly using data stored in the database and fishbone analysis data.
  • the semiconductor device manufacturing and inspection apparatus having a self-diagnosis function of the present invention can quickly know the device state, it can quickly know the abnormality and can quickly correct the abnormality. .
  • the effective operating rate of the apparatus increases and the investment effect increases. Since there are fewer managers, the operation cost of the equipment can be reduced.
  • the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present invention can store all the replacement parts in the database, so that the maintenance record of the apparatus will not be forgotten.
  • FIG. 1 is a diagram showing an example of the overall configuration of a semiconductor device manufacturing / inspection apparatus having a self-diagnosis function according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the semiconductor device manufacturing / inspection apparatus same as above.
  • FIG. 3 is a diagram illustrating one example of items recorded in the database of the semiconductor device manufacturing / inspection apparatus same as above.
  • FIG. 4 is a diagram showing an example of management values used for self-diagnosis of the semiconductor device manufacturing inspection apparatus same as above.
  • FIG. 5 is a diagram showing an operation of performing self-diagnosis by comparing a control value and an actual measurement value in the semiconductor device manufacturing / inspection apparatus same as above.
  • FIG. 6 is a diagram showing that the semiconductor device manufacturing / inspection apparatus can track back.
  • FIG. 7 is a diagram showing an example of pattern matching results in the semiconductor device manufacturing and inspection apparatus same as above.
  • FIG. 8 is a schematic plan view showing an example of measurement results for a measurement sample.
  • FIG. 10 A diagram showing an example of recording and utilizing know-how for device abnormality in a database.
  • FIG. 11 is a diagram showing a second embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a countermeasure to be taken to return to normal.
  • FIG. 13 is a diagram showing a third embodiment of the present invention.
  • FIG. 14 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 15 is a view showing a modification of the fourth embodiment.
  • FIG. 16 is a diagram showing a fifth embodiment of the present invention.
  • FIG. 17 is a diagram showing a sixth embodiment of the present invention.
  • FIG. 18 is a diagram showing a seventh embodiment of the present invention.
  • FIG. 19 is a diagram showing an eighth embodiment of the present invention.
  • FIG. 20 is a diagram showing a ninth embodiment of the present invention.
  • FIG. 21 is a diagram showing a tenth embodiment of the present invention.
  • FIG. 22 is a view showing a modification of the tenth embodiment.
  • FIG. 23 shows an eleventh embodiment of the present invention.
  • FIG. 24 is a diagram showing a twelfth embodiment of the present invention.
  • FIG. 25 is a drawing showing a thirteenth embodiment of the present invention.
  • FIG. 26 is a diagram showing a fourteenth embodiment of the present invention.
  • FIG. 27 shows a fifteenth embodiment of the present invention.
  • FIG. 28 is a diagram showing a sixteenth embodiment of the present invention.
  • Electron beam source (probe irradiation means)
  • FIG. 1 is a diagram showing an overall configuration example of a semiconductor device manufacturing / inspection apparatus having a self-diagnosis function according to the first embodiment of the present invention.
  • the semiconductor device manufacturing and inspection apparatus of the present embodiment includes an electron beam source 1, a tray 5, an XY stage 6, a vacuum chamber 7, an electron gun 10, an electron beam generation control device 21, and an electron beam scanning control device. 22 and objective lens drive system Control device 23, image recognition device 24, vacuum control device 25, database 26, management information setting device 27, stage control device 28, various data acquisition devices 29, overall control device 30, and time
  • the generator 31 and the display device 32 are included.
  • the electron gun 10 includes a condenser lens 2, an objective lens 3, an aperture 11, and a secondary electron detector 12.
  • All of these various devices are controlled by digital data.
  • the indication values given to control these various devices, the measurement results obtained by actual measurement execution by various devices, and the state change information of various devices are all digital data and And is stored in the database 26 together with the event occurrence time.
  • the electron beam source (probe irradiating means) 1 emits an electron beam (probe) 13 having a constant energy and current amount.
  • the electron beam source 1 a thermoelectron method using a W filament, a thermal field emitter method using Wzr, or a cold cathode electron beam source using a metal single crystal having a sharp tip can be applied.
  • the objective lens 3 is used to focus the electron beam 14 on the surface (measurement site) of the measurement sample 4, and determines the particle (electron) density of the electron beam 14 irradiated to the measurement sample 4. To be used. That is, by adjusting the lens intensity of the objective lens 3, the electron beam 14 is focused on the surface of the measurement sample 4, and the particle density of the electron beam 14 at the measurement site is set.
  • the vacuum chamber 7 is for controlling the atmosphere so that the electron beam 14 can be emitted. It is known that an electron beam propagates in the air depending on energy. However, since the apparatus of the present embodiment uses the electron beam 14 with relatively small energy, the vacuum chamber 7 is provided with a vacuum gauge, and an appropriate vacuum can be maintained using the value.
  • the semiconductor device manufacturing and inspection apparatus includes a high voltage power source (not shown) that supplies a high voltage current necessary for the electron gun 10 to generate an electron beam 14 having a desired energy level. It is prepared.
  • the semiconductor device manufacturing inspection apparatus deflects the electron beam 14.
  • a control power source (not shown) for controlling the voltage for the purpose is provided.
  • the measurement sample 4 is an object to be measured, and corresponds to a semiconductor substrate such as a wafer during the semiconductor device manufacturing process.
  • the tray 5 supports the measurement sample 4 and also functions as an electrode for collecting the substrate current flowing through the measurement sample 4.
  • the XY stage 6 is a positioning mechanism for irradiating the electron beam 14 to a desired place. For the XY stage 6, one using a ball screw or one using ceramic vibration can be applied. In order to perform alignment more precisely, an optical microscope or a method of performing pattern matching using a secondary electron image obtained upon irradiation with the electron beam 14 may be applied as a positioning mechanism.
  • the semiconductor device manufacturing and inspection apparatus includes an amplification circuit for measuring a current (substrate current) generated in the measurement sample 4 when the measurement sample 4 is irradiated with the electron beam 14.
  • the input end of the amplifier circuit is connected to the measurement sample 4 via a tray (electrode) 5.
  • the current waveform which is the output of the amplifier circuit, is continuously captured as a digital signal by various AZD converters in various data acquisition devices 29 and stored in the database 26 as a function of the electron beam irradiation position.
  • the semiconductor device manufacturing inspection apparatus may include a filter for limiting a frequency band such as a current waveform and an FFT for performing frequency analysis of the current waveform.
  • the overall control device 30 controls the operation of the semiconductor device manufacturing / inspection apparatus as a whole.
  • the time generator 31 generates time information.
  • the time generation device 31 may output information indicating the generation time of signals output from various devices that are components of the semiconductor device manufacturing and inspection apparatus.
  • the display device 32 can display the measurement result of the semiconductor device manufacturing and inspection device and the result of self-diagnosis.
  • the electron beam generation control means 21 is a device that controls the electron beam source 1 so that the electron beam 14 having a desired acceleration voltage and current is irradiated from the electron beam source 1. For example, if 500V, 5pA and an instruction value are given to the electron beam generation control means 21 from the overall control device (computer) 30, the acceleration voltage and the extraction electrode are added to the other electron beam control means. And controlled as such.
  • the applied voltage is digital The voltmeter and the amount of emitted electron beam are confirmed by a Faraday cup.
  • the electron beam scanning control device 22 is a device that generates a signal for scanning the emitted electron beam 14 in the XY plane.
  • a signal having a sawtooth voltage profile is generated independently for each of the X and Y axes. For example, by sending data indicating the position such as XY coordinates to this apparatus, the electron beam 14 can be irradiated to a desired position.
  • the objective lens drive control device 23 is for controlling the objective lens 3 that determines the spot size of the electron beam 14 irradiated to the measurement sample 4.
  • the lens strength is adjusted so that the electron beam 14 is focused at a desired distance.
  • the objective lens drive control device 23 also has an autofocus function and a function for correcting the tip shape distortion of the electron beam 14.
  • the image recognition device 24 compares an image captured by the electron beam 14 or an optical microscope with a predetermined reference image, performs image matching processing (PM), and performs measurement on the measurement sample 4. It is used to find a measurement target location that exists in a specific location. When matching is performed, the device coordinates and the coordinates of the reference image are compared, and the degree of match is scored. For example, 100 points are generated if they all match, and 0 points are generated if they are completely out of alignment. By using this function, it is possible to calculate the position of the reference image included in the acquired image.
  • PM image matching processing
  • the actual measurement sample 4 is irradiated with the electron beam 14 so that the position irradiated with the electron beam 14 becomes the center of the reference image.
  • the position can be adjusted automatically.
  • the vacuum control device 25 has a function of maintaining and managing the vacuum degree of the vacuum chamber 7 and the vacuum degree of the place where the electron beam source 1 is located in a necessary state.
  • the vacuum degree of the vacuum chamber 7 which is the main chamber is maintained at about 10 to the fifth power Pascal.
  • the degree of vacuum is measured in real time by various vacuum gauges.
  • the place where the electron beam source 1 is located is also a high vacuum such as 10 minus 8th power Pascal. In that case, the current flowing through the ion pump is used as a measure of the degree of vacuum to control the degree of vacuum.
  • the stage control device 28 outputs a control pulse to the XY stage 6 by designating an XY coordinate value, and moves the position of the measurement sample 4 relative to the electron gun 10. is there.
  • stage position control in the order of nm is achieved by capturing information from a precision position measurement device such as a laser interferometer or laser scale and performing claw loop control. be able to.
  • the stage position at that time can be accurately known on the order of nm by a position measuring device such as a laser interferometer or a laser scale.
  • the management information setting device 27 is used to input and set a management value as a reference for determining whether the device is normal or abnormal when performing self-diagnosis of various devices in the semiconductor device manufacturing inspection device. Device.
  • the management value set by the management information setting device 27 is used to interpret and judge the self-diagnosis result and generate an alarm and necessary management information.
  • the database 26 is a database in which information indicating operations such as measurement data, control data, computer operations, and the like generated by the semiconductor device manufacturing and inspection apparatus as described above is recorded. Recording is recorded in real time, synchronous, asynchronous timing as needed. What is characteristic is that everything that happens on the device is recorded as a function or pair of event times.
  • a recording medium of the database 26 for example, a node disk is used. In order to increase the reliability of hard disks, it is desirable to apply a RAID configuration.
  • the storage medium of database 26 may be a memory device such as flash memory.
  • the various data acquisition device 29 takes in the measurement device control output signals output from the various devices of the semiconductor device manufacturing inspection device and stores them in the database 26.
  • the measurement device control output signal is directly converted from a computer I / O port in the case of a digital signal, or converted into a digital signal using AZD conversion in the case of an analog signal, and then taken into various data acquisition devices 29.
  • the measurement device control output signal is converted into a data format for managing the device, stored in the database 26, and used as device management information. Since the information generation time is important for device management information, each information is Stored in pairs with the time.
  • FIG. 2 is a flowchart showing the operation of the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function shown in FIG.
  • a measurement sample 4 (for example, a wafer) to be measured by the present apparatus is placed in a container usually called a wafer cassette.
  • This vessel is sometimes called POD when the wafer is a 300mm device.
  • the overall control device 30 acquires the data via the various data acquisition devices 29. After that, in order to know the state of the wafer, the slot in the cassette is checked with a sensor using light or the like, and the overall control device 30 acquires the data.
  • the overall control device 30 checks whether there is a wafer present in the slot designated by the recipe, and if so, instructs the robot to go to get the wafer. All of these series of robot operations are stored in the storage device of the overall control device 30, the database 26, or the like. The wafer placed in the wafer cassette holder is loaded by the robot into the vacuum channel 7 where the measurement is performed (step S2).
  • the wafer is placed on a device called a liner that directs the rotational position of the wafer in the correct direction, and the wafer is rotated and positioned in the desired direction (step S3).
  • step S4 the wafer is transferred to a preliminary vacuum chamber called a sub-chamber (not shown) with a relatively low degree of vacuum.
  • the preliminary vacuum chamber is initially filled with nitrogen gas and controlled at normal pressure.
  • vacuuming is automatically started by a vacuum pump, and the vacuum level is reduced to a predetermined level. Raised. A series of these operations and the degree of vacuum are all recorded in the database 26.
  • a vacuum wall Between the main chamber and the sub chamber is a vacuum wall called a gate valve.
  • the vacuum gauge constantly monitors the degree of vacuum in these chambers. When a predetermined degree of vacuum is achieved, the gate valve is opened and the wafer is transferred from the sub-chamber to the main chamber.
  • Ueno (measurement sample 4) transported to the vacuum chamber 7 which is the main chamber is placed on a tray 5 provided on the XY stage 6 which is a precision stage. All of these series of operations are also recorded in the database 26.
  • step S6 a wafer positioning means called global alignment is provided (step S6).
  • Global alignment is the determination of the absolute position of the wafer using alignment marks provided on the wafer.
  • the graphic information used for global alignment and the values of the optical microscope and electron microscope parameters used for alignment are all recorded in the database 26.
  • the alignment mark has a size of several meters.
  • the wafer is moved using the XY stage 6 to the position where the alignment mark is assumed to be and to the position where the observation field of the optical microscope is observed.
  • an image is acquired using an optical microscope, registered in advance as alignment marks, and pattern matching is performed with a reference image called a template.
  • pattern matching the force that the position of the image obtained with the optical microscope differs from the reference image is calculated (step S7).
  • the alignment mark is observed at higher magnification using an electron microscope, and alignment is performed with higher accuracy. Specifically, first, the alignment mark is irradiated with an electron beam to capture an SEM image. Next, the alignment mark recorded as the reference image Compared with the corresponding template, the position of the reference image and the position of the sample are compared. The SEM parameters, template images, positional deviation from the reference image, and image filters used at this time are all recorded in the database 26.
  • the electron beam irradiation position is corrected so that the position of the measurement sample 4 matches the reference image.
  • the above global alignment work and pattern matching are usually performed on two or three alignment marks that are far away from each other on the wafer. A series of these operations is recorded in the database 26 for each alignment mark.
  • the calibration regarding the position coordinates to be measured is completed.
  • the electron beam 14 used for the measurement is calibrated.
  • a container made of a metal or conductor called a Faraday cup is used to measure the electron beam dose.
  • This container has a size of several tens of ⁇ m to several mm. It is necessary to accurately enter the electron beam 14 into the container. Therefore, as before, the electron beam irradiation position is first moved to the position coordinates where the Faraday cup exists using the XY stage 6. Thereafter, the Faraday cup is irradiated with an electron beam 14 to capture an SEM image. After that, the template image set in advance and the SEM image are compared, and the positional deviation from the template image is extracted. For example, calculate the XY coordinate difference between the template center coordinates and the center coordinates of the acquired FEM F Cup. All of these series of operations are recorded in the database 26.
  • the overall control device 30 instructs the electron beam scanning control device 22 on the amount of electron beam deflection necessary for correcting the misalignment so that the electron beam 14 hits the center of the Faraday cup. Adjust automatically. After that, the Faraday cup is irradiated with the electron beam used for measurement and the amount is measured (step S8). The current waveform at the time of electron beam irradiation is digitally recorded as it is, and the electron beam irradiation amount is measured by processing the waveform.
  • step S9 the electron beam irradiation is cut off, and the XY stage 6 is operated so that the measurement point is in the vicinity of the electron beam irradiation point.
  • This pattern matching is recorded in advance and compared with an SEM image to be measured called a template.
  • a template an SEM image to be measured.
  • the amount of deviation is used to control the electron beam irradiation position, and automatic adjustment is performed so that the electron beam is correctly irradiated onto the measurement target. All of these series of operations are recorded in the database 26.
  • the SEM image of the object to be measured is recorded. Since image recognition by pattern matching is not perfect, it is possible to determine the actual measurement target by leaving a test picture of these measurement targets.
  • a spread electron beam 14 called a blanket mode is irradiated onto a measurement object, and the substrate current flowing at that time is measured.
  • pattern matching is performed (step S12).
  • the measurement in the blanket mode is performed through the same operation as described above (step S13).
  • the SEM image of the measurement target is recorded as evidence in order to determine the state immediately before the measurement.
  • the measurement in the line scan mode (LSM) is performed (step S15).
  • step S14 pattern matching is executed to accurately irradiate the measurement point with the electron beam 14 (step S14).
  • SCI measurement which is image measurement using the substrate current
  • SCI is a measurement mode for acquiring an image called a substrate current image
  • a contrast image is obtained by scanning an electron beam 14 focused on a measurement target and using the substrate current flowing during the scan.
  • the series of operation information, images, and acquired data are all recorded in the database 26.
  • the Faraday cup is irradiated with an electron beam to measure the irradiation current value (step S20).
  • the wafer used for the measurement is unloaded from the main chamber to the sub-chamber (steps S21 and S22), and finally stored in the wafer cassette (step S23).
  • the record record unit is a recipe unit.
  • the date and time when the recipe was executed is linked, and all device information is recorded in conjunction with the date and time. .
  • FIG. 3 illustrates one of the items recorded in the database 26 as described above.
  • Each piece of information shown in Fig. 3 is recorded based on the event occurrence date and time.
  • FIG. 4 shows an example of management values used for self-diagnosis of the semiconductor device manufacturing / inspection apparatus of this embodiment.
  • the upper and lower limits of the control values related to the measuring device such as the acceleration voltage, irradiation current, and beam diameter are determined.
  • FIG. 5 shows the operation of performing self-diagnosis by comparing the control value and the actual measurement value in the semiconductor device manufacturing inspection apparatus of this embodiment.
  • Step S33 Start data acquisition. All the acquired data is stored in the database 26 (step S33). Next, the management reference value data stored in advance in the database 26 is extracted and compared with the actually measured data (steps S34, S35, S36, S37). If it is determined that there is an abnormality by this determination, the display device displays the device abnormality (step S39), and uploads the data indicating the abnormality to the host computer etc. that controls the control ( Step S38).
  • FIG. 6 is a diagram showing that the trackback can be performed when there is an abnormality in the data stored in the database 26 or the like.
  • All measurement data and control data are recorded in the database 26 as a function of date and time (measurement date and time). Therefore, by writing a graph against date and time as shown in Fig. 6, it is possible to confirm at a glance when an abnormality has occurred. Multiple data can be compared with each other, and the relationship between each other can be grasped at a glance.
  • all the data are linked in the database 26 based on the measurement date and time. So, for example, if you click on the point where an abnormality is recorded (abnormal point P) on the screen, the recipe used at that time can quickly access the data being measured.
  • FIG. 7 shows an example of the result of pattern matching used at an abnormal point (abnormal point P). For example, clicking on the abnormal point P in FIG. 6 may display the screen in FIG. As described above, according to the present embodiment, the pattern matching result and the SEM image remain, so that the point is correctly measured and it is possible to immediately determine whether the force is applied. In this example, pattern matching is normal and SEM is normal, so it is easy to see that there are other causes of abnormality. If an anomaly is found, the relevant data can be accessed from anywhere.
  • FIG. 8 is a schematic plan view showing an example of the measurement result for the measurement sample 4.
  • Fig. 8 shows an example in which measurement anomalies were observed at the tip (5, 4).
  • the abnormal point (5, 4) By simply clicking on the abnormal point (5, 4) on the screen, the information shown in Fig. 9 is displayed, and you can see the details of the measurement actually performed in that measurement. In this case, since the pattern matching score is low, it can be confirmed at a glance that there was a cause for pattern matching. In other words It is easy to confirm that there was an abnormality in the measurement 'inspection of the chip (5, 4) rather than an abnormality in the process of the chip (5, 4).
  • FIG. 10 shows an example in which know-how for coping with device abnormalities known in the past is recorded in the database 26 as a fishbone chart and utilized. For example, if a management item exceeds the management standard value! /, (Step S41), the computer automatically searches the database 26 regarding the countermeasures belonging to that management item to find the one closest to the case. Select (Step S42, S43) and display on the screen (Step S44). They may be organized by frequency or in alphabetical order. The displayed contents indicate the part failure part, replacement method, and replacement time (step S46). Based on this information, the field engineer or user can repair the equipment to a normal state (step S45).
  • FIG. 11 is a diagram showing a second embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the self-diagnosis result display button When the self-diagnosis result display button is pressed, a list of self-diagnosis items is displayed on the display device 32 as shown in FIG.
  • the display shows icons for each item so that you can see at a glance whether each item is normal or abnormal.
  • the database 26 When the icon is clicked, the database 26 immediately collects necessary data and displays detailed data. Based on the detailed information, actions can be taken to correct device abnormalities.
  • the database 26 stores separately known methods for dealing with each trouble and functions as a fishbon chart. Therefore, as shown in Fig. 12, not only the values indicating anomalies are called up and displayed from the database 26, but also the actions to be taken to restore the anomalies to normal are also retrieved and displayed at the same time. It also functions as a kind of expert system.
  • FIG. 13 is a diagram showing a third embodiment of the present invention.
  • the apparatus configuration of the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of this embodiment is the same as that of the first embodiment shown in FIG. The same device can be applied.
  • the present embodiment discloses a method for self-diagnosis of the current state of the apparatus by comparing the acquired waveform when the measuring apparatus is operating normally and the actually acquired waveform. .
  • a waveform (standard sample waveform) for a standard sample obtained under standard conditions in a normal apparatus state is recorded.
  • a standard sample placed in the device is measured under standard conditions during the device idle time, and waveforms are collected.
  • the degree of coincidence of the waveforms is measured. Comparisons may be made using the rise time, fall time or peak height representing the characteristics of the waveform as an index. For example, if the degree of coincidence between the two is low in comparison with a predetermined standard, it is determined that the device is abnormal.
  • FIG. 14 is a diagram showing a fourth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • a substrate current amplifier has problems in response characteristics and transfer characteristics. Therefore, the response characteristics of the signal acquisition device (electric circuit system) are measured in order to determine whether signals such as the substrate current have been acquired normally.
  • a test waveform for a test is prepared and applied to a signal acquisition device (for example, an amplifier in various data acquisition devices 29). The response waveform of the signal acquisition device is compared with the normal waveform recorded in advance to determine whether the signal is normal or abnormal.
  • FIG. 15 is a modification of the present embodiment, and shows a method for determining abnormality by performing frequency analysis! Record the current generated by the substrate current and other sensors in the database 26 and perform frequency analysis of the waveform.
  • the standard frequency analysis data recorded in the database 26 in advance and the frequency data generated by the current device are collated to determine normality.
  • As a management value an allowable amount is determined for each frequency spectrum band, Compare that value with the frequency spectrum component of the actual measurement. All the original data and the compared contents are stored in database 26.
  • information indicating the abnormality is recorded in the database 26, and data is uploaded to the overall control device 30 (such as a host computer) that controls the device.
  • FIG. 16 is a diagram showing a fifth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • This semiconductor device manufacturing / inspection apparatus is provided with an XY precision stage 40 corresponding to the XY stage 6 of FIG.
  • the operation of the XY precision stage 40 is controlled by the XY stage controller 43. Since the XY precision stage 40 is a mechanical device, in addition to the original mechanical error, thermal expansion or wear due to long-term use may cause an error in the device accuracy.
  • the XY precision stage 40 is provided with a laser scale or laser interferometers 41 and 42 for precise measurement of the stage position.
  • the comparator 45 checks the absolute position error with respect to the stage indication value every time measurement is performed. The result of this comparison is stored in database 26.
  • FIG. 17 is a diagram showing a sixth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the waveform of the power supply (power) supplied to the factory is very uneasy, far from the sine wave. Dirty, dirty, corrugated. A drop in the power supply voltage and fluctuations in the harmonic components contained in it will affect the measured value. Therefore, the semiconductor device manufacturing and inspection apparatus has a function of constantly monitoring the quality of the power supply, and the value is periodically recorded in the database 26 (step S51). Then, frequency analysis is performed on the monitored power supply waveform, and the analysis result is compared with the control value. If it is determined that there is an abnormality, self-diagnosis is started (steps S52 and S53).
  • FIG. 18 is a diagram showing a seventh embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the semiconductor device manufacturing / inspection apparatus of this embodiment has a function of constantly monitoring the gas pressure, and regularly records the value in the database 26 (step S61).
  • commonly used gases such as nitrogen gas and factory vacuum are supplied at the factory level.
  • positive L is not supplied depending on the load conditions.
  • gas pressure is used for control of a valve for adjusting the degree of vacuum, nitrogen purge of the vacuum channel 7, and the like. It is very important to monitor the gas pressure because this fluctuation in gas pressure will lead to the breakdown and malfunction of the measuring device.
  • Gas pressure When the value fluctuates beyond the control value (step S62), a device abnormality is notified and self-diagnosis is automatically started (step S63). The self-diagnosis determines whether gas fluctuations have affected the measurement. If no abnormality is detected, the measured value is treated as if it were a normal measurement.
  • FIG. 19 is a diagram showing an eighth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the cooling water is used for cooling the objective lens 3 that generates heat by flowing a large amount of current and its driving circuit. These temperatures have a large effect on the stability of the direct electron beam 14 and must be monitored at all times. These are equipped with temperature sensors, water leak detectors, etc., which periodically pick up signals and store them in the database 26 as a function of time (step S71).
  • step S72 If the temperature is different from the predetermined standard temperature (control value) (step S72), a signal for notifying the abnormality is generated, the device display device is informed of the abnormality, and the self-diagnosis is started. (Step S73), and upload the data to the host computer that controls the device.
  • FIG. 20 is a diagram showing a ninth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the CCD camera is used together with the light source to observe the surface of measurement sample 4 (wafer), and is used for global alignment.
  • the CCD camera is mechanically fixed to a device (such as a vacuum channel 7).
  • a device such as a vacuum channel 7
  • position changes such as opening the lid for maintenance, changing the degree of vacuum, and deformation that occurs over time will affect the measurement. In that case, measurement recipes created in the past may become unusable. Therefore, the self-diagnosis system of this semiconductor device manufacturing inspection system always monitors the installation position of the CCD camera and stores the position data. Recorded in database 26 (step S81).
  • step S82 If the standard position force exceeds the allowable amount and the camera position has moved (step S82), a signal to notify the abnormality is generated, displayed on the display device, and self-diagnosis is started (step S83). ), Upload a signal indicating an abnormality to the host computer that controls the measuring device. Also, to check whether the light source is operating correctly, turn on and off the light source and observe the change in the output of the CCD camera. If the light source is operating correctly, the brightness of the image obtained when observing the standard sample with a CCD camera will be a predetermined brightness, but if the light source is abnormal, it will be brighter or darker than the standard brightness. That happens. By monitoring this value, it is determined whether the light source is normal or abnormal.
  • FIG. 21 is a diagram showing a tenth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • This embodiment discloses a method for automatically performing self-diagnosis when a semiconductor device manufacturing / inspection apparatus is started up or down.
  • the power of the measuring device is reduced when the measuring device is newly moved or when parts are replaced.
  • a power-on signal is automatically picked up (step S91), and self-diagnosis is automatically started after a predetermined time after power-on (step S92).
  • a separate scheduler it is also possible to have a separate scheduler, and if the self-diagnosis is performed on the nearest Sunday when the power is turned on, it can also be set (step S93).
  • Fig. 22 is a modification of the present embodiment and shows a method for providing a function of periodically tracing.
  • a scheduler for automatically generating traces (Step S101), and the date and time can be freely set once a day, once a week, or once a month.
  • Self-diagnosis can be executed by specifying (Step S102). All the self-diagnosis results are stored in the database 26 (step S103).
  • FIG. 23 is a diagram showing an eleventh embodiment of the present invention.
  • the self-diagnosis function of this embodiment The same semiconductor device manufacturing inspection apparatus as that of the first embodiment shown in FIG. 1 can be applied.
  • This semiconductor device manufacturing / inspection apparatus is provided with a timer for measuring the apparatus start-up time or an apparatus for measuring the number of measured sheets (step S111). Using these, MTBF average failure interval, MTTR average repair time, availability, etc. are calculated and displayed on the screen as necessary. Self-diagnosis is automatically started using the output of the timer or the number-of-measuring device (steps S112 and S113).
  • the measuring apparatus may have an irregular operation frequency.
  • the self-diagnosis is started by using a measurement number indicating the usage frequency or a timer.
  • FIG. 24 is a diagram showing a twelfth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the semiconductor device manufacturing and inspection apparatus can execute the self-diagnosis process (steps S131 to S135) and the measurement inspection (steps S121 to S126) for the measurement sample 4 simultaneously in parallel.
  • a computer can run multiple programs called processes at the same time, and this device applies a self-diagnostic program to one of them. With this program, each time each operation is performed, the device acquires the signal necessary for grasping the device status in real time and stores it in the database 26.
  • FIG. 25 is a diagram showing a thirteenth embodiment of the present invention. The same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • Step S141 and S142 while performing the measurement inspection (steps S141 and S142) for the measurement sample 4, an interrupt for self-diagnosis is generated as necessary.
  • Step S143 the self-diagnosis can be performed with priority over all device operations (Steps S144 to S148). After the self-diagnosis, a subsequent measurement test is performed.
  • step S141 when the device is measuring (steps S141, S142), specify it as the highest priority interrupt
  • Step S143 the wafer is evacuated to a place where it is safe to interrupt the measurement (Step S144), and if the electron beam irradiation is in progress, the unit measurement is completed. Thereafter, the self-diagnosis is entered immediately (step S 145).
  • step S 145 When the self-diagnosis is completed, the measurement state is restored and the suspended measurement is started again (steps S146 to S148).
  • FIG. 26 is a diagram showing a fourteenth embodiment of the present invention. The same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • FIG. 26 shows a method of automatically checking whether the electron beam source 1 of the electron gun 10 is operating normally.
  • the electron beam source 1 uses a thermal electric field field emitter having a ZrW equal force. Thermal electrons are emitted from the tip of the emitter by being heated by the filament.
  • the emitted noise of the emitter is also reduced. In other words, the emitter that is operating normally has less noise compared to the case where it is not, so it can be determined by measuring the noise whether the emitter is operating normally! .
  • the semiconductor device manufacturing / inspection apparatus of this embodiment has means for receiving the electron beam 14 emitted by the emitter force with an electronic current converter such as a Faraday cup 50 and measuring the noise component of the signal converted into a current. is doing.
  • the computer 53 (corresponding to the overall control device 30) stores a table and a formula for controlling the current value stored in the electron beam source 1 of the electron gun 10, and the computer 53 indicates the indicated value according to the table. Is sent to the electron beam generation controller 21.
  • the computer 53 sets the amount of current flowing through the filament for heating the electron source to 2A, 2.
  • Automatic control is performed so that the current gradually increases, such as 1A and 2.2A, and the electron beam 14 emitted when each current is applied is converted into a receiving current by the Faraday cup 50 or the semiconductor wafer.
  • this current is very small, it is sufficiently amplified by the current amplifier 51 and then converted to a digital signal by an AZD conversion device or the like. Input to the frequency analyzer 52 as necessary. Zhou The wave number analyzer 52 is a tool for examining the frequency component of each frequency, and can examine the frequency component of noise.
  • a standard noise component amount indicated in a predetermined band by a normally operating electron source is stored in a storage device in advance.
  • the amount of noise at a specific frequency generated by the currently operating electron source is measured.
  • the two noise components are compared to determine whether they are normal.
  • the display unit 32 automatically displays that the emitter is abnormal, and the host computer that manages the measuring device and the database 26 that records the device status indicate that there is an abnormality. Upload the indicated data.
  • the device itself can automatically shift to the optimal emitter adjustment state.
  • FIG. 27 is a diagram showing a fifteenth embodiment of the present invention.
  • the same device configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing inspection apparatus 100 having the self-diagnosis function of the present embodiment.
  • the semiconductor device manufacturing and inspection apparatus 100 has a function of automatically recording the maintenance history of the apparatus.
  • the semiconductor device manufacturing and inspection apparatus 100 has a database 26 that can record all state variables related to the operation of the apparatus. In this database 26, the apparatus state at an arbitrary time and the inspection result brought about by the state are recorded, and all the recipe information for obtaining the result is recorded.
  • a very important force in the history is a history of parts replacement for maintenance.
  • This device has a mechanism in which information such as the date and time of parts replacement and product number is automatically recorded in the database 26 using the RFID 60 and the RFID tracking device 61.
  • the RFID tracking device 61 reads the content of the RFID 60 and records it in the database 26. As a result, the date and time of automatic maintenance and the date and time of parts replacement are recorded, so it is easy to estimate the next replacement time and the current status.
  • FIG. 28 is a diagram showing a sixteenth embodiment of the present invention.
  • the same configuration as that of the first embodiment shown in FIG. 1 can be applied to the semiconductor device manufacturing and inspection apparatus having the self-diagnosis function of the present embodiment.
  • the semiconductor device manufacturing / inspection apparatus 100 performs self-diagnosis of the apparatus from a remote location.
  • technology that enables remote access to the database 26 has rapidly developed with technologies such as communication lines 300 such as the Internet and broadband. That is, the database 26 of the semiconductor device manufacturing / inspection apparatus 100 is connected to the terminal 201 of the vendor site 200 via the measuring apparatus 102, the measuring apparatus control apparatus 101, and the communication line 300. Therefore, the diagnosis of the apparatus is periodically performed from the terminal 201 of the vendor site 200.
  • a broadband Internet that connects a remote site where the semiconductor device manufacturing inspection system 100 is deployed and the vendor company, and security settings are made so that the vendor can access only the data related to the maintenance contents. RU
  • the vendor can access information related to maintenance collected by the semiconductor device manufacturing and inspection apparatus 100 automatically or by a command from a remote location via the Internet, and can monitor the activity status of the apparatus.
  • the apparatus-side force also sends an apparatus abnormality signal to the vendor via the Internet. As a result, the dispatch request is automatically made and the vendor can quickly cope with the device abnormality.
  • the present invention is useful for a semiconductor measuring apparatus, a semiconductor measuring method, and a semiconductor device manufacturing method used for inspection, manufacturing, measurement, or evaluation in a semiconductor device or its manufacturing process.
  • the present invention can be applied to a semiconductor measuring apparatus, a semiconductor measuring method, and a semiconductor device manufacturing method that use a method of irradiating a semiconductor substrate such as a wafer with an electron beam, light, electromagnetic wave, or ion beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 本発明の課題は、半導体デバイスに関しての測定精度を効率的に維持することができる自己診断機能を有する半導体デバイス製造検査装置を提供することにある。  本発明の自己診断機能を有する半導体デバイス製造検査装置は、電子ビーム等のプローブを測定サンプルに出射するプローブ発生装置と、前記プローブ発生装置の動作を制御するプローブ発生制御装置と、前記プローブ発生装置及び前記プローブ発生制御装置を少なくとも含む各種装置のそれぞれの動作を示す情報を入力して記憶するデータベースとを有することを特徴とする。

Description

明 細 書
自己診断機能を有する半導体デバイス製造検査装置
技術分野
[0001] 本発明は、自己診断機能を有する半導体デバイス製造検査装置に関する。また、 本発明は、電子ビーム、イオンビーム、電磁波、音波、振動などのプローブを利用し て、半導体デバイス製造工程途中のプロセス評価を行うのに好適な半導体デバイス 製造検査装置および半導体デバイス製造検査方法に関する。
背景技術
[0002] 半導体プロセスの評価装置として電子ビームを用いた装置が知られている。このよ うな評価装置は、高精度に制御された電子ビームを評価対象の半導体ウェハ (以下 、「ウェハ」という。 )に照射して、この照射時に発生する二次電子を収集し、画像を形 成する方法である(例えば、特許文献 1参照)。
[0003] また、従来においては、電子ビームを制御するためには、加速電圧、照射電流、ゥ ェハが載置される XYステージの位置制御、画像認識による測定点抽出などが必要 であり、それぞれが正常に動作するように人が管理して 、る。
特許文献 1:特開 2005— 26449号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来の半導体プロセスの評価装置では、測定精度を維持するために 、評価装置力 得られたウェハ等の測定結果を作業者が観察して異常がな 、か監視 する必要があった。また、従来の半導体プロセスの評価装置では、評価装置の状態 を作業者が測定して標準状態 (正常状態)と同じかどうかを判断する必要があった。 そして、測定結果又は評価装置の状態に異常があると判断した場合には、作業者が 再調整を行っていた。そこで、従来の半導体プロセスの評価装置では、測定精度を 高度に維持するために、いつも評価装置の動作を確認するための熟練した作業者が 必要となり、非常に効率が悪いと言う課題があった。
[0005] また、評価装置に異常が生じたとき、その異常を修復するために、異常原因を追跡 する必要がある。従来においては、その異常原因の追跡を行うためには手作業で異 常原因を一つ一つ調査する必要があり、非常に長い時間と、異常原因を見つけるた めの熟練が必要であった。
[0006] 本発明はこのような問題を解決するためになされたものであり、その目的は、半導 体デバイスに関しての測定精度を効率的に維持することができる自己診断機能を有 する半導体デバイス製造検査装置を提供することにある。
課題を解決するための手段
[0007] 上記課題を解決するため、本発明の自己診断機能を有する半導体デバイス製造 検査装置は、電子ビーム等のプローブを測定サンプルに出射するプローブ発生装 置と、前記プローブ発生装置の動作を制御するプローブ発生制御装置と、前記プロ ーブ発生装置及び前記プローブ発生制御装置を少なくとも含む各種装置のそれぞ れの動作を示す情報を入力して記憶するデータベースとを有することを特徴とする。 本発明の自己診断機能を有する半導体デバイス製造検査装置によれば、プローブ 発生装置及びプローブ発生制御装置などの各種装置の動作状態を逐次データべ一 スに記憶させることができる。そこで、データベースに記憶されている動作状態と基準 状態 (正常状態)とを比較することなどで、各種装置に異常が発生した力否力を効率 的にかつ高精度に確認することができる。したがって、本発明によれば、半導体デバ イスに関しての測定精度を効率的に維持することができる。
[0008] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置が、前記プローブを XY面状に走査させる電子ビーム走査制御装置と、前記プロ ーブにつ 、て収束又は拡散させる対物レンズと、前記対物レンズの焦点を制御する 対物レンズ駆動制御装置と、前記測定サンプルにつ ヽての画像を取り込む画像認識 装置と、前記プローブが出射可能なように真空度が制御される真空チャンバと、前記 真空チャンバ又は前記真空チャンバに関しての弁の開閉動作に用いられる配管の 圧力又はガス流量を制御する真空制御装置と、前記測定サンプルが載置される台で あって前記測定サンプルを前記プローブ発生装置に対して移動可能に支持するス テージと、前記ステージの移動動作を制御するステージ制御装置と、前記プローブ の照射に伴って前記測定サンプルで発生した二次電子を検出する二次電子検出装 置と、前記プローブの照射に伴って前記測定サンプルで発生した電流である基板電 流を検出する基板電流測定装置と、を含み、前記データベースは、前記各種装置の うちの少なくとも一つの装置への指示値と、前記各種装置のうちの少なくとも一つの 装置が発生する情報とを、前記動作を示す情報として、前記指示値の発生時間又は 前記装置が発生する情報の発生時間と共に記憶する手段を有することを特徴とする 本発明によれば、ウェハ等の測定サンプルに対して高精度にプローブ (電子ビーム など)を照射でき、そのプローブ照射によって生じた二次電子又は基板電流を測定し て、測定サンプルの物理的特性を極めて微細に且つ高精度に検出することができる 。さらに本発明によれば、前記の測定及び検出精度を簡便に維持することができる。 さらに本発明によれば、各種装置の動作状態がその動作の発生時間と共にデータ ベースに記憶されるので、例えば、あるいは特定の日に正常に動作していた力どうか を容易に確認することができる。したがって、各種装置の管理者は、測定サンプルに ついての測定が正常状態の装置にて行われたことが容易に確認でき、日常点検も簡 易 ·迅速に行うことができる。
[0009] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のうちの少なくとも一つの装置に対して、前記一つの装置の自己診断をするとき に正常か否かを判断するための基準とする管理値を設定する管理情報設定装置を 有し、前記データベースは、前記管理情報設定装置が出力する管理値をその出力 時間と共に記憶する手段を有することを特徴とする。
本発明によれば、データベースに記憶されて!、る各種装置の動作状態と管理値 ( 正常状態)とを比較することなどにより、各種装置に異常が発生したか否かを効率的 にかつ高精度に確認することができる。
[0010] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記動作 を示す情報について正常動作又は異常動作と判断するときの閾値を含むデータで ある管理値データを記憶する手段 (管理基準値設定装置、管理基準値記憶装置)と 、前記管理値データと前記データベースに記憶された動作を示す情報とを比較する ことにより、前記各種装置のうちの少なくとも一の動作が正常又は異常であると判断 する自己診断手段とを有することを特徴とする。
本発明によれば、自己診断手段により、各種装置に異常が発生した力否力を効率 的にかつ高精度に確認することができる。したがって、測定サンプルが不良品である のか、又は測定装置 (各種装置)が故障しているのか、なども簡便に確認することもで きる。
[0011] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記自己 診断手段の判断結果を表示する表示手段と、前記表示手段に表示された判断結果 について入力手段によって指定される(例えばクリックされる)ことに対応して、前記判 断結果に関する情報につ 、て前記データベースを検索して前記表示手段に表示さ せる詳細情報表示手段とを有することを特徴とする。
本発明によれば、半導体デバイス製造検査装置についての自己診断結果を簡便 に確認することができる。さらに、自己診断結果に異常がある場合などは、その異常 状態と表示された部位をクリックすることなどにより、その異常状態の詳細情報を簡易 かつ迅速に確認することができる。すなわち、第 1段階目の表示により、半導体デバ イス製造検査装置の全体につ 、て異常がな!、か否かを簡易迅速に確認でき、第 2段 階目の表示により、異常部分についての詳細情報を簡易迅速に確認することができ る。
[0012] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 サンプルにおける前記プローブの照射位置の位置決めに利用されるパターンマッチ ングでの一致割合 (例えば点数)と、前記パターンマッチングで用いられた画像とを 前記データベースに蓄積する手段を有することを特徴とする。
本発明によれば、例えば、測定位置の位置決めが正常に行われた力否力 その位 置決め機構が正常であるか否力などを簡易迅速に確認することができる。
[0013] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 サンプルの構成要素の配置を示す図形 (例えばウェハマップ)を画面上に表示する と共に、前記自己診断手段の判断結果である異常点を前記図形上に示す手段と、 前記図形上に示された異常点について入力手段によって指定される(例えばクリック される)ことに対応して、前記異常点についての測定に関する情報を少なくとも前記 データベース力 抽出して表示させる詳細情報表示手段とを有することを特徴とする
本発明によれば、測定サンプルにおけるどの部位に異常があるか表示することがで きる。例えば、ウェハの平面上に多数の半導体チップが形成されている場合に、異 常のある半導体チップを簡易迅速に管理者等が見つけることができる。また、異常が どのような内容である力も詳細情報表示手段によって表示することができる。
[0014] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 サンプルについての製造プロセスの条件を設定するファイルであるレシピのファイル 名をキーとして、前記動作を示す情報についての測定時間、測定条件、測定結果、 前記各種装置のパラメータを組にして前記データベースに蓄積する手段を有するこ とを特徴とする。
本発明によれば、例えば、複数のウェハについて検査 (測定)したときに、どのゥェ ハに異常がある力、何時検査したウェハに異常がある力 検査した装置はどれか等 を簡易迅速に確認することができる。
[0015] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のうちの少なくとも一つについての管理項目に異常が起こったときの対処方法を 前記管理項目ごとに前記データベースに記憶させる手段と、前記管理項目に異常が 生じたときに、前記異常が生じたことを画面上に表示させる手段と、前記管理項目に 異常が生じたとき又は所定の入力動作に応じて、前記管理項目に異常が起こったと きの対処方法を画面上に表示させる手段とを有することを特徴とする。
本発明によれば、異常が生じた管理項目を簡易迅速に把握することができる。さら に、異常が生じた管理項目を正常にするための対処方法なども簡易迅速に把握する ことができる。
[0016] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、自動的に 装置稼働日数あるいは、稼働時間等が内部にあるタイマーによって積算され計算さ れる。前記対処方法に、故障箇所、交換部品および前記交換部品の交換時期に関 しての情報が含まれて ヽることを特徴とする。
本発明によれば、半導体デバイス製造検査装置の構成部品が故障したときに、そ の故障を簡易迅速に見つけることができ、さらにその故障部品を正常部品に交換す ることなどを簡易迅速に実行することができる。したがって、例えば熟練管理者などが いないときに生じた故障に対しても、迅速に対処することが可能となる。
[0017] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記自己 診断手段の判断結果を画面上に表示させる手段と、前記画面についてクリックされた ことに対応して、異常についての対処方法を表示させる手段とを有することを特徴と する。
本発明によれば、半導体デバイス製造検査装置に故障が生じたときに、その故障 を簡易迅速に見つけることができ、さらにその故障にっ 、て簡易迅速に対処すること が可能となる。
[0018] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のうちの一つが正常状態を示す標準測定状態であるときに、前記各種装置で標 準試料につ 、て測定したときの測定波形である標準波形を記憶する手段と、前記各 種装置が前記標準測定状態であるか不明である(又は確認していない)ときに、前記 各種装置で前記標準試料について測定したときの測定波形である実測波形を記憶 する手段と、前記標準波形と前記実測波形とを比較することにより、前記各種装置に 異常があるカゝ否かを判断する自己診断手段とを有することを特徴とする。
本発明によれば、測定波形に基づ 、て各種装置が正常であるか否力確認すること ができる。例えば、各種装置の構成要素である増幅器の立ち上がり又は立ち下がり 速度に異常がある力否かなども確認することができる。
[0019] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のうちの一つが正常状態を示す標準測定状態であるときに、前記各種装置に標 準信号を入力したときの出力信号につ!ヽて周波数分析を行 ヽ、前記周波数分析した 結果である標準周波数スペクトラムを記憶する手段と、前記各種装置が前記標準測 定状態であるか不明である (又は確認していない)ときに、前記各種装置に標準信号 を入力したときの出力信号につ!ヽて周波数分析を行 ヽ、前記周波数分析した結果で ある実測周波数スペクトラムを記憶する手段と、前記標準周波数スペクトラムと前記実 測周波数スペクトラムとを比較することにより、前記各種装置に異常がある力否かを判 断する自己診断手段とを有することを特徴とする。
本発明によれば、各種装置の出力信号を周波数分析することにより、各種装置が 正常であるか否力確認することができる。例えば、各種装置のいずれかが振動してい るカゝ否かなども確認することができる。
[0020] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記プロ ーブ発生装置に加えられている電圧又は電流を測定する手段と、前記プローブ発生 装置が発生するプローブ (例えば電子ビーム)の強さ又は単位時間当たりの量を測 定する手段と、前記プローブに含まれるノイズを抽出する手段と、前記ノイズについて 周波数分析して、特定の周波数のノイズ量が基準値である管理値と比較して大き 、 力 vj、さいかにより、前記プローブ発生装置に異常があるか否かを判断する自己診断 手段とを有することを特徴とする。
本発明によれば、プローブ発生装置に異常があるか否かを簡易迅速に確認するこ とがでさる。
[0021] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 サンプルが載置される台であって前記測定サンプルを前記プローブ発生装置に対し て移動可能に支持するステージと、前記ステージの移動量を規定する指示値と前記 指示値に対する実際の移動量とを前記データベースに記憶させる手段とを有するこ とを特徴とする。
[0022] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記指示 値と前記実際の移動量との差が所定の管理値以上である場合は前記ステージに関 して異常があると判断する自己診断手段を有することを特徴とする。
本発明によれば、ステージの移動動作に関して異常がある力否かを簡易迅速に確 認することができる。
[0023] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置に供給される電力の変動状況又は前記電力の周波数成分を測定する手段と、 前記測定する手段の測定結果を測定日時と共に前記データベースに記憶させる手 段とを有することを特徴とする。
[0024] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 結果と基準値である管理値とを比較して、前記測定結果と管理値との差が所定の閾 値よりも大きい場合、前記各種装置に関しての自己診断を開始する手段を有すること を特徴とする。
本発明によれば、半導体デバイス製造検査装置に電力を供給する電源に関して異 常がある力否かを簡易迅速に確認することができる。また、電力についての波形を周 波数分析することができ、電力に異常がある力否力を高精度に判断することができる
[0025] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のいずれか (例えば真空チャンバ)〖こ加えられるガスの流量又は圧力変動を測 定する手段と、前記測定する手段の測定結果を測定日時と共に前記データベース に記憶させる手段とを有することを特徴とする。
[0026] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 結果と基準値である管理値とを比較して、前記測定結果と管理値との差が所定の閾 値よりも大きい場合、前記各種装置に関しての自己診断を開始する手段を有すること を特徴とする。
本発明によれば、例えば真空チャンバへのガス流量、又は弁の開閉動作に用いら れる配管のガス流量及び圧力などに関して、異常があるか否かを簡易迅速に確認す ることがでさる。
[0027] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置の!/、ずれかに対しての冷却水の温度を測定する手段と、前記測定する手段の 測定結果を測定日時と共に前記データベースに記憶させる手段と、前記測定結果と 基準値である管理値とに基づ 、て、前記各種装置の 、ずれかに異常がある力否かを 判断する自己診断手段とを有することを特徴とする。
本発明によれば、例えば対物レンズのように発熱を伴って動作する装置にっ 、て 冷却する機構に関して、異常がある力否かを簡易迅速に確認することができる。
[0028] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記測定 サンプルの位置決めに用いられる映像入力装置 (例えば CCDカメラ)の位置を測定 して得た位置データ、及び、前記位置を測定したときの前記映像入力装置の入力信 号を、測定日時と共に前記データベースに記憶させる手段と、前記位置データ及び 入力信号と基準値である管理値とに基づいて、前記各種装置のいずれかに異常が あるカゝ否かを判断する自己診断手段とを有することを特徴とする。
本発明によれば、例えば、測定サンプルの位置決めのためにパターンマッチング(
PM)をする装置などにっ 、て、異常がある力否かを簡易迅速に確認することができ る。
[0029] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のいずれかに電源が入力されたときに、自己診断を開始する手段を有すること を特徴とする。
本発明によれば、半導体デバイス製造検査装置の立ち上げ (電源投入)に伴って、 自己診断を開始することができる。また、半導体デバイス製造検査装置の立ち下げ 上げ (電源 OFF)信号に伴って、自己診断をすることとしてもよい。
[0030] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、自己診断 を定期的に開始するためのスケジューラを有することを特徴とする。
[0031] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のいずれかの稼働回数又は稼働時間を計測する手段と、前記計測する手段の 計測結果が基準値である管理値を超えた場合、自己診断を開始する手段を有するこ とを特徴とする。
[0032] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置の全部又は一部により前記測定サンプルについての測定をする動作と、前記各 種装置の全部又は一部について自己診断をする動作とを、同時並列的に行う機能 を有することを特徴とする。
本発明によれば、測定サンプルについての測定 '検査動作と、その測定 '検査を行 う半導体デバイス製造検査装置の検査とを同時に行うことができる。
[0033] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置の全部又は一部により前記測定サンプルについての測定を行っている最中に おいて、自己診断動作の起動を要求する割り込み信号を入力する割り込み信号入 力手段と、前記割り込み信号入力部により割り込み信号が入力されたときに、測定さ れている前記測定サンプルを所定の場所に移動させる手段と、前記自己診断動作 が終了したときに、前記測定サンプルを前記移動の前の状態に戻す手段とを有する ことを特徴とする。
本発明によれば、半導体デバイス製造検査装置が測定サンプルにつ 、ての測定 · 検査を行っているときに、割り込んで、その半導体デバイス製造検査装置を検査する ことができる。また、この半導体デバイス製造検査装置の検査において、測定 '検査 中の測定サンプルに悪影響を与えることを回避できる。
[0034] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のいずれか、周辺機器、又はこれらについての交換部品に取り付けられた RDI Fを有し、前記 RDIFは、取り付けられている装置又は部品についての情報を有し、 前記 RDIFの情報を前記データベースに記憶させる手段を有することを特徴とする。 本発明によれば、 RDIFにより、半導体デバイス製造検査装置についての維持、管 理、保守等の履歴を、簡便に且つ正確に作成することができる。
[0035] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、前記各種 装置のいずれかの自己診断結果に基づいて、前記各種装置のいずれかについて製 造又は販売する会社又は部門(例えばベンダ)に通信網を介して前記自己診断結果 につ 、て通知する通知手段を有することを特徴とする。
本発明によれば、例えば、半導体デバイス製造検査装置に故障が生じた場合、ベ ンダ等がその故障発生について簡易迅速に把握して対処することができる。 発明の効果
[0036] 本発明の自己診断機能を有する半導体デバイス製造検査装置は、装置状態につ いてデータベースに記録することができ、常に数値管理することができる。そこで、デ ータベースに記録された値と標準値とを自動的に比較することにより、装置状態を一 目で確認することが可能となる。例えば、半導体デバイス製造検査装置が正常な状 態に維持されているかどうか、あるいは特定の日に正常に維持されていたかどうかを 容易に確認できる。したがって、半導体デバイス製造検査装置の使用者又は管理者 は、容易に自分の測定が装置正常状態にて測定されたことが確認できる。 日常点検 もすぐ終わる。これらは、半導体デバイス製造検査装置を総合的に管理しているホス トコンピュータ上でも利用可能であり、そのほかの装置との自動連携を取ることもでき る。
[0037] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、その装置 に異常が起こった場合、異常を誘発したと思われる全ての構成装置に関する情報を 簡単に入手することができるので、容易にトラックバックが可能であり、異常に対する 対策をスムーズに実行することができる。
[0038] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、データべ ースに蓄積されたデータやフィッシュボーン解析データを用いて、迅速に行うべき対 策をすることができる。
[0039] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、迅速に装 置状態を知ることができるので、異常を早く知ることができるとともに、迅速に異常を直 すことができる。そのため、装置の実効稼働率が上昇し、投資効果が高くなる。管理 者なども少なくて済むので、装置の運用コストも下げることができる。
[0040] また、本発明の自己診断機能を有する半導体デバイス製造検査装置は、交換部品 なども全てデータベースに記憶することができ、装置のメンテナンス記録に忘れが生 じることがない。
図面の簡単な説明
[0041] [図 1]本発明の第 1実施形態に係る己診断機能を有する半導体デバイス製造検査装 置の全体構成例を示す図である。
[図 2]同上の半導体デバイス製造検査装置の動作を示すフローチャートである。
[図 3]同上の半導体デバイス製造検査装置のデータベースへの記録項目の 1例示し た図である。
[図 4]同上の半導体デバイス製造検査装置の自己診断に用いられる管理値の一例を 示した図である。
[図 5]同上の半導体デバイス製造検査装置における管理値と実測値を比較して自己 診断を下す動作を示す図である。
[図 6]同上の半導体デバイス製造検査装置がトラックバックできることを示した図であ る。 [図 7]同上の半導体デバイス製造検査装置におけるパターンマッチングの結果例を 示した図である。
[図 8]測定サンプルについての測定結果の一例を示した模式平面図である。
圆 9]同上の半導体デバイス製造検査装置における情報の表示例を示す図である。
[図 10]装置異常に対するノウハウをデータベースに記録し活用する例を示す図であ る。
圆 11]本発明の第 2実施形態を示す図である。
[図 12]正常に戻すために行われるべき対処法の一例を示す図である。
圆 13]本発明の第 3実施形態を示す図である。
圆 14]本発明の第 4実施形態を示す図である。
圆 15]第 4実施形態の変形例を示す図である。
圆 16]本発明の第 5実施形態を示す図である。
圆 17]本発明の第 6実施形態を示す図である。
圆 18]本発明の第 7実施形態を示す図である。
圆 19]本発明の第 8実施形態を示す図である。
圆 20]本発明の第 9実施形態を示す図である。
圆 21]本発明の第 10実施形態を示す図である。
圆 22]第 10実施形態の変形例を示す図である。
圆 23]本発明の第 11実施形態を示す図である。
圆 24]本発明の第 12実施形態を示す図である。
圆 25]本発明の第 13実施形態を示す図である。
圆 26]本発明の第 14実施形態を示す図である。
圆 27]本発明の第 15実施形態を示す図である。
圆 28]本発明の第 16実施形態を示す図である。
符号の説明
1 電子ビーム源 (プローブ照射手段)
2 コンデンサレンズ
3 対物レンズ 4 測定サンプル
5 卜レイ
6 XYステージ
7 真空チャンノ
10 電子銃
11 アパーチャ
12 二次電子検出器
14 電子ビーム
21 電子ビーム発生制御装置
22 電子ビーム走査制御装置
23 対物レンズ駆動制御装置
24 画像認識装置
25 真空制御装置
26 データベース
27 管理情報設定装置
28 ステージ制御装置
29 各種データ取得装置
30 全体制御装置
31 時刻発生装置
32 表示装置
発明を実施するための最良の形態
[0043] 次に、本発明を実施するための最良の形態について図面を参照して説明する。
[0044] [第 1実施形態]
(装置の構成)
図 1は、本発明の第 1実施形態に係る自己診断機能を有する半導体デバイス製造 検査装置の全体構成例を示す図である。本実施形態の半導体デバイス製造検査装 置は、電子ビーム源 1と、トレイ 5と、 XYステージ 6と、真空チャンバ 7と、電子銃 10と、 電子ビーム発生制御装置 21と、電子ビーム走査制御装置 22と、対物レンズ駆動制 御装置 23と、画像認識装置 24と、真空制御装置 25と、データベース 26と、管理情 報設定装置 27と、ステージ制御装置 28と、各種データ取得装置 29と、全体制御装 置 30と、時刻発生装置 31と、表示装置 32とを有して構成されている。
電子銃 10は、コンデンサレンズ 2、対物レンズ 3、アパーチャ 11及び二次電子検出 器 12からなる。
[0045] これらの各種装置の制御は全てデジタルデータで行われている。また、これらの各 種装置を制御するために与えた指示値、各種装置が実際に測定実行することによつ て得られた測定結果、及び各種装置の状態変化情報などは、全てデジタルデータと して入出力され、イベント発生時間とともにデータベース 26に記憶される。
[0046] 電子ビーム源 (プローブ照射手段) 1は、一定のエネルギー及び電流量を有する電 子ビーム(プローブ) 13を放出するものである。電子ビーム源 1には、 Wフィラメントを 用いた熱電子方式、 Wzrを用いた熱フィールドェミッタ方式、又は先端に鋭利な金属 単結晶を用いた冷陰極電子ビーム源などが適用できる。
[0047] 対物レンズ 3は、電子ビーム 14を測定サンプル 4の表面(測定部位)にフォーカスさ せるために利用されるとともに、測定サンプル 4へ照射される電子ビーム 14の粒子( 電子)密度を決定するために利用される。すなわち、対物レンズ 3のレンズ強度を調 整することにより、測定サンプル 4の表面に電子ビーム 14の焦点が合わせられるとと もに、測定部位での電子ビーム 14の粒子密度が設定される。
[0048] 真空チャンバ 7は、電子ビーム 14が放出できるように雰囲気制御するためのもので ある。エネルギーによっては、空気中でも電子ビームが伝播することが知られている。 しかし、本実施形態の装置では、比較的小さなエネルギーの電子ビーム 14を使うの で、真空チャンバ 7には真空ゲージが備えられており、その値を用いて適度な真空に 保たれる。
[0049] そして、真空チャンバ 7内には、電子ビーム 14が照射され測定対象となる測定サン プル 4と、トレイ 5と、 XYステージ 6とが配置されている。また、本半導体デバイス製造 検査装置には、電子銃 10が所望のエネルギーレベルを有した電子ビーム 14を発生 するために必要な高圧電流をその電子銃 10に供給する高圧電源(図示せず)が備 えられている。また、本半導体デバイス製造検査装置には、電子ビーム 14を偏向す るための電圧を制御する制御電源(図示せず)が備えられている。
[0050] また、測定サンプル 4は、測定対象となるものであり、半導体デバイス製造工程の途 中におけるウェハ等の半導体基板などが該当する。トレイ 5は、測定サンプル 4を支 持すると共に、測定サンプル 4に流れる基板電流を集めるための電極としても機能す るものである。 XYステージ 6は、電子ビーム 14を所望の場所に照射するための位置 決め機構である。 XYステージ 6には、ボールネジを使用したものやセラミック振動を 利用したものなどが適用できる。より精密に位置合わせを行うためには、光学顕微鏡 あるいは電子ビーム 14の照射時に得られる二次電子画像を利用してパターンマッチ ングを行う方法を、位置決め機構として適用してもよい。
[0051] また、本半導体デバイス製造検査装置は、測定サンプル 4へ電子ビーム 14が照射 された時に、その測定サンプル 4に生じる電流 (基板電流)を測定するための増幅回 路を備えている。その増幅回路の入力端は、トレイ (電極) 5を介して測定サンプル 4 に接続されている。その増幅回路の出力である電流波形は、 AZD変換器をつかつ て連続的にデジタル信号として各種データ取得装置 29に取り込まれ、電子ビーム照 射位置の関数としてデータベース 26に記憶される。また、本半導体デバイス製造検 查装置は、電流波形などの周波数帯域を制限するためにフィルタ、及び、電流波形 などの周波数分析を行うために FFTなどを備えることとしてもよ 、。
[0052] 全体制御装置 30は、本半導体デバイス製造検査装置の動作を全体的に制御する ものである。時刻発生装置 31は、時刻情報を発生するものである。また、時刻発生装 置 31は、本半導体デバイス製造検査装置の構成要素である各種装置が出力する信 号の発生時刻を示す情報を出力するものとしてもよい。表示装置 32は、本半導体デ バイス製造検査装置の測定 '検査結果を表示すると共に、自己診断の結果などを表 示することができる。
[0053] 電子ビーム発生制御手段 21は、電子ビーム源 1から所望の加速電圧および電流 の電子ビーム 14が照射されるように、電子ビーム源 1を制御する装置である。例えば 、 500V, 5pAと全体制御装置(コンピュータ) 30から電子ビーム発生制御手段 21へ 指示値を与えると、加速電圧及び引き出し電極ある!ヽはその他の電子ビーム制御手 段に適切な制御量が加えられ、そのように制御される。加えられている電圧はデジタ ル電圧計、放射されている電子ビーム量はファラデーカップなどにより、確認される。
[0054] 電子ビーム走査制御装置 22は、出射された電子ビーム 14を XY面状に走査するた めの信号を発生させる装置である。電子ビーム 14の走査幅、走査速度、本数等をデ ジタル値として指示すると、のこぎり波状の電圧プロファイルを有する信号を X軸、 Y 軸ごとに独立に発生させる。この装置に例えば、 XY座標等の位置を示すデータを送 り込むことで、所望の位置に電子ビーム 14を照射できる。
[0055] 対物レンズ駆動制御装置 23は、測定サンプル 4に照射する電子ビーム 14のスポッ トサイズを決める対物レンズ 3を制御するためのものである。 Zセンサからの入力値あ るいはオートフォーカスアルゴリズムが発生する制御値を対物レンズ駆動制御装置 2 3に入力すると、電子ビーム 14が所望の距離に焦点をもつようにレンズの強さが調整 される。この対物レンズ駆動制御装置 23は、オートフォーカス機能及び電子ビーム 1 4の先端形状ひずみを補正するための機能も有して 、る。
[0056] 画像認識装置 24は、電子ビーム 14あるいは光学式の顕微鏡で取り込んだ画像と 予め決められている基準画像とを比較して、画像のマッチング処理 (PM)を行い、測 定サンプル 4上の特定の場所に存在する測定対象場所を見つけ出すのに利用され る。マッチングが行われると、装置座標と基準画像のもっている座標が比較され、一 致度が採点される。例えば、全て一致していれば 100点、全くはずれていれば 0点と いうように、 0から 100までの値を発生する。その機能を利用すると、取得画像の中に 含まれる、基準画像の位置を算出することが可能である。現在の位置と上記方法によ つて得られた位置の差を用いて、例えば電子ビーム 14の照射する位置が基準画像 の中心となるように、実際の測定サンプル 4に照射される電子ビーム 14の位置を自動 調整することができる。
[0057] 真空制御装置 25は、真空チャンバ 7の真空度及び電子ビーム源 1のある場所の真 空度を必要な状態に維持管理する機能をもっている。例えば、メインチャンバである 真空チャンバ 7の真空度は 10のマイナス 5乗パスカル程度に維持される。真空度は 種々の真空ゲージによりリアルタイム測定されている。電子ビーム源 1のある場所はさ らに 10のマイナス 8乗パスカル等の高真空になっている力 その場合はイオンポンプ に流れる電流を真空度の目安として利用し、真空度を管理する。 [0058] ステージ制御装置 28は、 XY座標値を指定することにより、 XYステージ 6に対して 制御パルスを出力し、測定サンプル 4の位置を電子銃 10に対して相対的に移動させ るものである。機械ステージの位置精度は数/ z mである力 必要によりレーザ干渉計 又はレーザスケール等の精密位置測定装置からの情報を取り込み、クローストルー プ制御を行うことで、 nmオーダのステージ位置制御を実現することができる。また、そ のときのステージ位置はレーザ干渉計又はレーザスケール等の位置測定装置によつ て nmのオーダで正確に知ることができる。
[0059] 管理情報設定装置 27は、本半導体デバイス製造検査装置における各種装置の自 己診断を行う際に、正常か異常かを判断するための基準となる管理値などを入力設 定するための装置である。この管理情報設定装置 27により設定された管理値を用い て自己診断結果を解釈および判定し、警報及び必要な管理情報を発生させる。
[0060] データベース 26は、本半導体デバイス製造検査装置が発生する上記説明したよう なあらゆる、測定データ、制御データ、コンピュータ動作など、動作を示す情報を記 録しておくデータベースである。記録はリアルタイム、同期、非同期いろいろなタイミ ングで必要に応じて記録される力 特徴的なのは、装置上で起こった全てのことが、 イベント時刻の関数あるいは対にして記録されることである。データベース 26の記録 媒体としては、例えばノヽードディスクが利用される。ハードディスクの信頼性を増すた めに、 RAID構成を適用することが望ましい。データベース 26の記録媒体は、フラッ シュメモリのようなメモリデバイスでもよ 、。
[0061] データベース 26の記憶媒体がフルになった場合は、ホットスワップする力磁気テー プ等にバックアップ保管し、不要なデータを削除する。
[0062] 各種データ取得装置 29は、本半導体デバイス製造検査装置の各種装置が出力す る測定装置制御出力信号を取り込み、データベース 26に記憶させる。測定装置制御 出力信号は、デジタル信号の場合はそのままコンピュータの I/Oポートから、アナ口 グ信号の場合は AZD変 を用いてデジタル信号に変換されてから、各種データ 取得装置 29に取り込まれる。また、測定装置制御出力信号は、装置を管理するため のデータフォーマットに変換されて、データベース 26に保管され、装置管理情報とさ れる。装置管理情報は情報発生時刻が重要なので、それぞれの情報は情報発生時 刻と対にして保存される。
[0063] (装置の動作)
図 2は、図 1に示す自己診断機能を有する半導体デバイス製造検査装置の動作を 示すフローチャートである。
[0064] 先ず、本装置によって測定されるべき測定サンプル 4 (例えばウェハ)は、通常ゥェ ハカセットと呼ばれる器に入っている。この器は、ウェハが 300mm装置の場合には P ODと呼ばれることがある。そのウェハカセットをカセット置きに配置する(ステップ S1)
[0065] すると、ウェハカセットが配置されたことを検出するセンサが働き、そのデータを各 種データ取得装置 29を介して全体制御装置 30が取得する。その後、ウェハの状態 を知るために、光などを使ったセンサでカセットのどのスロットにウェハが入っている のかを調べ、そのデータを全体制御装置 30が取得する。
[0066] 全体制御装置 30は、レシピで指定されたスロットに存在するウェハがあるかどうかを チェックして、ある場合にはそのウェハを取りに行くようにロボットに指示する。これら 一連のロボット動作は全て、全体制御装置 30の記憶装置又はデータベース 26など に記憶される。ウェハカセット置きに置かれたウェハは、測定が行われる真空チャン ノ 7の内部に、ロボットによりロードされる(ステップ S2)。
[0067] その後、ウェハはー且ァライナーと呼ばれるウェハの回転位置を正しい方向に向け る装置の上に乗せられ、ウェハが回転し、所望の方向に位置出しされる (ステップ S3
) o
これらのデータも全てデータベース 26に記録される。
[0068] その後、ウェハは、サブチャンバ(図示せず)と呼ばれる比較的真空度の低 、予備 真空室に搬送される (ステップ S4)。
この予備真空室は、最初、窒素ガスなどが充満して常圧に制御されており、ウェハ 力 ードされると自動的に真空ポンプにより真空引きが開始され、所定の真空度まで 真空度が上げられる。これら一連の動作及び真空度も全てデータベース 26に記録さ れる。
[0069] その後、このウェハは、メインチャンバである真空チャンバ 7に搬送される (ステップ S5)。
メインチャンバとサブチャンバの間には、ゲートバルブと呼ばれる真空壁がある。真 空計はこれらチャンバの真空度を常にモニタしており、所定の真空度が達成されると 、このゲートバルブを開けて、サブチャンバからメインチャンバにウェハを搬送する。メ インチャンバである真空チャンバ 7に搬送されたウエノ、 (測定サンプル 4)は、精密ス テージである XYステージ 6の上に設けられたトレイ 5の上に乗せられる。これら一連 の動作も全てデータベース 26に記録される。
[0070] トレイ 5に乗せられたウェハは常に同じ位置にいるとは限らないので、位置情報を正 確に把握するため、グローバルァライメントと呼ばれる、ウェハの位置出し手段が講じ られる(ステップ S6)。
グローバルァライメントとは、ウェハ上に設けられたァライメントマークを用いて、ゥェ ハの絶対位置を確定するこという。グローバルァライメントに用いられた図形情報や、 ァライメントを行うために用いた光学顕微鏡及び電子顕微鏡の緒パラメータの値など は、全てデータベース 26に記録される。
[0071] 例えば、ァライメントマークは数 mの大きさをもつ。グローバルァライメントを行うに は、先ず、ァライメントマークがあると想定されている位置にであって、光学顕微鏡の 観察視野に入る位置に、 XYステージ 6を使用してウェハを移動させる。その後、光学 顕微鏡を用いて画像取得を行 、、ァライメントマークとして予め登録して 、るテンプレ ートと呼ばれる基準画像とパターンマッチングを行う。このパターンマッチングでは、 光学顕微鏡で得られた画像が基準画像とどれだけ位置的に異なっているの力を計 算する (ステップ S 7)。
[0072] これらのマッチングスコア及びずれ量なども全てデータベース 26に記録される。こ のパターンマッチングでの計算値に基づき、 XYステージ 6を移動させ、測定サンプ ル (ウェハ) 4のもつァライメントマークが基準画像と同じ位置関係になるようにウェハ 位置を調整する。
[0073] 次に、電子顕微鏡を用いて、ァライメントマークをさらに高倍率観察し、さらに高精 度に位置あわせを行う。具体的には、先ず、ァライメントマークに電子ビームを照射し て SEM画像を取り込む。次に、基準画像として記録されているァライメントマークに 対応するテンプレートと比較され、基準画像の位置とサンプルの位置が比較される。 このとき利用された SEMパラメータ、テンプレート画像、基準画像との位置ずれ量、 画像フィルタなども、全てデータベース 26に記録される。
[0074] その後、比較された位置座標を元に、測定サンプル 4の位置が基準画像と一致す るように、電子ビーム照射位置が修正される。以上のグローバルァライメント作業及び パターンマッチングは、通常ウェハ上のお互いに遠く離れた 2つあるいは 3つのァライ メントマークにつ 、て行われる。これら一連の動作はそれぞれのァライメントマークご とに全てデータベース 26に記録される。
[0075] このようにして、 XYステージ 6上に設けられたトレイ 5の上に乗せられた測定サンプ ル 4と電子ビーム 14の照射位置との関係が一義的に決定される。これらの関係は、ト レイ 5と測定サンプル 4 (ウェハ)の位置関係が変化しない限り、 1つの測定サンプル 4 について測定中(照射電流測定中)は一定なので、それらのデータはデータベース 2 6に蓄積されるとともに、測定装置内にも記録されている。
[0076] 以上のようにして、測定を行う位置座標に関する校正が完了したので、次は、測定 に用いられる電子ビーム 14を校正する。一般に、電子ビーム照射量を測定するため にはファラデーカップと呼ばれる金属又は導電体で出来た入れ物を使用する。この 入れ物の大きさは数十 μ mから数 mmの大きさがある。電子ビーム 14をその入れ物 の中に正確に入射することが必要である。そこで、先ほどと同じように、先ずファラデ 一カップの存在する位置座標に、 XYステージ 6を用いて電子ビーム照射位置を移動 する。その後、電子ビーム 14をファラデーカップに照射し、 SEM画像を取り込む。そ の後、予め定めておいたテンプレート画像と SEM画像とを比較して、テンプレート画 像との位置ずれを抽出する。例えば、テンプレート中心座標と取得されたファラデー カップの SEM画像の中心座標との XY座標差を算出する。これら一連の動作は全て データベース 26に記録される。
[0077] 次 ヽで、全体制御装置 30は、電子ビーム走査制御装置 22に対して、位置ずれ修 正に必要な電子ビーム偏向量を指示し、ファラデーカップの中心に電子ビーム 14が 当たるように自動調節する。その後、測定に利用される電子ビームをファラデーカツ プに照射しその量を測定する (ステップ S8)。 電子ビーム照射時の電流波形はそのままデジタル記録され、その波形を処理する ことで電子ビーム照射量を測定する。
[0078] 次いで、ー且電子ビームの照射を切断し、測定点が電子ビーム照射点の近傍にな るように XYステージ 6を動作させる (ステップ S9)。
その後、測定対象となる場所の SEM画像を取り込み、パターンマッチングを行う(ス テツプ S 10, Sl l)。
このパターンマッチングは、予め記録されて 、るテンプレートと呼ばれる測定対象の SEM画像と比較される。その結果、測定サンプルに対して電子ビーム 14を照射して 取得した SEM画像とテンプレートの中心位置のずれ量が計算される。このずれ量を 用いて電子ビーム照射位置を制御し、測定対象に正しく電子ビームが照射されるよう に自動調整される。これら一連の動作は全てデータベース 26に記録される。
[0079] その後、実際に測定された対象を記録するために、測定対象の SEM画像を記録 する。ノ ターンマッチングによる画像認識は完璧ではないので、これら測定対象の証 拠写真を残すことで、実際に測定された対象を確定することができる。
[0080] 次に、ブランケットモード (BLM)と呼ばれる広げた電子ビーム 14を、測定対象に照 射してそのときに流れる基板電流を測定する。このブランケットモード測定の前に、パ ターンマッチングを行う(ステップ S12)。その後、上記と同様の操作を経て、ブランケ ットモードでの測定が行われる(ステップ S 13)。
これらの測定においても、測定直前の状態を確定するために、測定対象の SEM画 像が証拠として記録される。
[0081] 次 、で、測定サンプル 4における測定部分 (例えばホール)のサイズを測定するた めに、ラインスキャンモード(LSM)の測定が行われる(ステップ S 15)。
この測定に先立って、測定点に電子ビーム 14を正確に照射するために、パターン マッチングが実行される (ステップ S 14)。
[0082] 次に、基板電流を用いた画像測定である SCI測定を行う(ステップ S16, S17)。 SC Iは、基板電流像と呼ばれる画像を取得する測定モードであり、測定対象に絞った電 子ビーム 14を走査させ、その走査時に流れる基板電流を用いて、コントラスト画像が 得られる。 これらの一連の動作情報、画像及び取得データは、全てデータベース 26に記録さ れる。
[0083] このように、本半導体デバイス製造検査装置では、装置の全ての動作が再現できる ように、全ての指示値、測定結果、及び装置の出力値がデータベース 26に記録され る。そして、測定サンプル 4における必要な測定点につき繰り返し測定を行う(ステツ プ S18, S19)。
これらの全ての情報をデータベース 26に記録する。
[0084] 測定の最後には再び照射電流値を測定するためにファラデーカップに電子ビーム を照射して照射電流値を測定する (ステップ S20)。
[0085] 測定が全て終了すると、測定に使用されたウェハはメインチャンバからサブチャン バにアンロードされ (ステップ S21, S22)、最後にウェハカセットに収納される(ステツ プ S23)。
[0086] 測定が終了すると、全ての装置動作記録および測定値記録は、データベース 26に 蓄積される。ここで、記録レコード単位はレシピ単位であり、 1つのレシピに基づいて 測定が開始されると、そのレシピが実行された日時がひも付き、その日時に連動して 全ての装置情報が記録される。
[0087] つまり、レシピで指定された測定内容に基づいて得られた測定結果がどのような装 置環境のもとで行われたかを一発で検索できる仕組みをもっている。
[0088] 図 3は、上記のような、データベース 26への記録項目の 1つを例示したものである。
図 3に示すそれぞれの情報は、イベント発生日時を基準にして記録されている。
[0089] このような構成を持つことにより、 1つの測定を行った際に実際に行われた行為及び 装置状態を容易に関連づけることができ、測定装置の測定精度の確保、装置安定性 の確保を簡便に実行できる。
[0090] 図 4は、本実施形態の半導体デバイス製造検査装置の自己診断に用いられる管理 値の一例を示している。この例では、加速電圧、照射電流、ビーム径などの測定装置 に関する管理値の上限下限を決めている。
[0091] 図 5は、本実施形態の半導体デバイス製造検査装置における管理値と実測値を比 較して自己診断を下す動作にっ 、て示して!/、る。自己診断を開始すると (ステップ S 31)、予め決められた手順にしたがって、測定装置の自動運転が行われ (ステップ S
32)、データの取得を開始する。取得したデータはー且全てデータベース 26に蓄積 される (ステップ S33)。次いで、データベース 26に予め記憶されている管理基準値 のデータを引き出し、実測されたデータと比較し判定する (ステップ S34, S35, S36 , S37)。この判定により異常であることが判明した場合には、表示装置に装置異常 であることを表示し (ステップ S39)、制御をつかさどるホストコンピュータなどに対して 異常であることを示すデータをアップロードする(ステップ S38)。
[0092] 図 6は、データベース 26などに蓄積されたデータに異常があった場合、トラックバッ クできることを示した図である。全ての測定データ、制御データは日時 (測定日時)の 関数としてデータベース 26に記録されている。したがって、 日時に対するグラフを図 6に示すように書くことによって、いつ異常が生じたかを一目で確認できる。複数のデ ータを相互に比較することも可能であり、お互いの関連性についても一目で把握でき る。本実施形態では、データが全てデータベース 26の中で測定日時をもとにリンクし ている。そこで、例えば、異常が記録されたポイント(異常点 P)を画面上でクリックす ると、そのときに使用されたレシピゃ、測定途中のデータにすばやくアクセスすること ができる。
[0093] 図 7は異常ポイント(異常点 P)で使用されて 、たパターンマッチングの結果例を示 したものである。例えば、図 6の異常点 Pをクリックすると、図 7が画面表示されることと してもよい。このように、本実施形態によれば、パターンマッチングの結果および SE M画像が残って 、るので、その点が正しく測定されて 、た力どうかがすぐに判断でき る。この例では、パターンマッチングも正常で SEMも正常であることから、異常の原 因は他にあることが容易に判明する。異常点が見つかった場合は、どこからでも関連 データにアクセスすることができる。
[0094] 図 8は、測定サンプル 4についての測定結果の一例を示した模式平面図である。例 えば、図 8ではチップ(5, 4)で測定の異常が見つ力つた例を示している。その異常 点(5, 4)を画面上でクリックするだけで、図 9に示すような情報が表示され、その測定 で実際に行われた測定の詳細を見ることができる。この場合はパターンマッチングス コアが低いので、パターンマッチングに原因があったことが一目で確認できる。換言 すれは、チップ(5, 4)のプロセスに異常があるのではなぐチップ(5, 4)についての 測定 '検査に異常があったことを簡便に確認できる。
[0095] 図 10は、過去に知られている装置異常に対処するためのノウハウをデータベース 2 6にフィッシュボーンチャートとして記録し、活用する例を示している。例えば、ある管 理項目が管理基準値を超えて!/、た場合 (ステップ S41)、その管理項目に属する対 処法に関するデータベース 26をコンピュータは自動検索して該当事例に一番近いも のを選択し (ステップ S42, S43)、画面に表示する (ステップ S44)。頻度別に整理さ れていても良いし、アルファベット順などでも良い。表示内容には、部品の故障箇所 や交換方法および交換時期などが示されている (ステップ S46)。フィールドェンジ- ァあるいはユーザーはこの情報をもとに装置を正常状態に修繕することができる (ス テツプ S45)。
[0096] [第 2実施形態]
図 11は、本発明の第 2実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0097] 自己診断結果表示のボタンを押すと自己診断項目の一覧が図 11に示すように、表 示装置 32に表示される。表示には項目ごとの正常異常が一目で判るように、項目別 にアイコン表示されて 、る。アイコンある 、は表示部分をクリックするとデータベース 2 6はすぐさま必要なデータを収集し、詳細なデータを表示する。その詳細情報をもと に装置異常を直したりするアクションを起こすことができる。データベース 26には各ト ラブルに対処するための過去に知られた方法が別途蓄積されており、フィッシュボー ンチャートとして機能する。したがって、単に異常を示した値がデータベース 26から 呼び出されて表示されるだけではなぐ図 12にあるようにその異常を正常に戻すため に行われるべき対処法も同時にフィッシュボーンデータベース力 検索され表示され 、一種のエキスパートシステムとしても機能する。
[0098] [第 3実施形態]
図 13は、本発明の第 3実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0099] 本実施形態は、測定装置が正常に動作している際の取得波形と実際に取り込んだ 波形とを比較することにより、装置の現在状態の良否を自己診断する方法を開示して いる。
[0100] データベース 26には、正常な装置状態の際に標準条件で取得した標準試料に対 する波形 (標準サンプル波形)が記録されている。例えば、装置のアイドル時間に装 置内に配置された標準試料を標準条件で測定し、波形を収集する。この波形 (実測 サンプル波形)と記録してある波形 (標準サンプル波形)を相互に比較、相関をとるこ とにより、波形の一致度を計測する。波形の特徴を表す、立ち上がり時間、たち下が り時間あるいはピーク高さなどを指標として比較しても良い。例えば、予め設けた基準 と照らし合わせて、両者の一致度が低い場合、装置の異常と判断する。
[0101] [第 4実施形態]
図 14は、本発明の第 4実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0102] 本装置には、基板電流など信号の応答特性又は伝達特性が問題となる構成要素 がある。例えば、基板電流の増幅器は、応答特性、伝達特性の良否が問題となる。 そこで、正常に基板電流等の信号が取得されているのかどうかを判定するために、信 号取得装置 (電気回路系)の応答特性を測定する。応答特性を見るためには、試験 用の試験波形を用意し、信号取得装置 (例えば各種データ取得装置 29内の増幅器 )に加える。信号取得装置の応答波形を予め記録してある正常時の波形と比較して 正常異常判定を行う。これら試験結果は時刻、波形とともに全てデータベース 26に 保管される。
[0103] 図 15は、本実施形態の変形例であって、周波数解析を行って異常を判断する方 法にっ 、て示して!/、る。基板電流やその外のセンサが発生する波形をデータベース 26に記録し、かつ、その波形の周波数解析を行う。予めデータベース 26に記録され た標準的な周波数分析データと現在の装置が発生する周波数データとを照合し、正 常異常を判定する。管理値としては各周波数スペクトル帯域に許容量を定めておき、 その値と実際の測定値の周波数スペクトラム成分と比較する。元データおよび比較さ れた内容は全てデータベース 26に蓄積される。異常と判定されたときは、異常である ことを示す情報をデータベース 26に記録するとともに、装置を制御している全体制御 装置 30 (ホストコンピュータ等)にデータをアップロードする。
[0104] [第 5実施形態]
図 16は、本発明の第 5実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0105] 本半導体デバイス製造検査装置には、図 1の XYステージ 6に相当するものとして、 XY精密ステージ 40が設けられている。 XY精密ステージ 40の動作は、 XYステージ コントローラー 43で制御される。 XY精密ステージ 40は、機械装置であるため、もとも との機械誤差に加え、熱膨張したり長年の使用により磨耗したりして、装置精度に狂 いが生じる場合がある。 XY精密ステージ 40には、ステージ位置を精密測定するため のレーザスケール、あるいはレーザ干渉計 41, 42が設けられている。
[0106] 装置に異常が生じると、 XYステージ位置指示値 44からの乖離がレーザ干渉計 41 , 42やレーザスケールの測定値に見られる。本実施形態では、ステージ指示値に対 する絶対位置の誤差を、測定を行うたびに比較装置 45がチ ックする。この比較結 果は、データベース 26に記憶される。
[0107] 例えば、装置の初期では指示値と実際の移動位置には誤差が見られない。しかし 、異常が生じると両者に差が生じる。例えば、座標 (X, Y)を(100, 100) m移動と 指示したのに、実際には(103, 102) m移動したと言うことが起こる。このような指 示値に対する実行値との差をデータベース 26に記録する。また、管理値よりも大きな 変動が見られる場合は、装置異常と自己診断時に判断する。
[0108] [第 6実施形態]
図 17は、本発明の第 6実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0109] 工場に供給されている電源 (電力)の波形は、サイン波からは程遠ぐ非常に不安 定で汚 、波形をして 、る。電源電圧の低下やその中に含まれる高調波成分の変動 は測定値に影響を与える。そこで、本半導体デバイス製造検査装置は、電源の質を 常にモニタする機能を有しており、その値を定期的にデータベース 26に記録して ヽ る (ステップ S51)。そして、モニタした電源の波形について周波数分析等を行い、そ の分析結果を管理値と比較して、異常と判断した場合は自己診断を開始する (ステツ プ S52, S53)。
[0110] 測定装置には、大きく分けて 2種類の電源が存在する。 1つは、大型動力装置の動 作に必要な、電力を供給する電源であり、もう 1つは、精密な電流測定を行うための 必要な超精密電源である。とも〖こ、 100V単相、あるいは 200V、 3相などで供給され るが、停電などによって電力供給が停止すると、装置に甚大な被害が生じる。そこで 、一般的には、電力供給元に蓄電池を用いたインバータ型無停電電源や簡易発電 機などを配備する。本半導体デバイス製造検査装置では、瞬間停電なども検出して 、安全に測定装置を停止状態に誘導する。それらが生じた場合も、装置停止に至る までの装置情報を全てデータベース 26に記録する。停止状態が解除されて再び立 ち上がる際には、自動的に自己診断を開始して、装置が正しい状態にいるのかどう かを判定する。
[0111] [第 7実施形態]
図 18は、本発明の第 7実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0112] 本実施形態の半導体デバイス製造検査装置は、ガス圧力を常にモニタする機能を 有しており、その値を定期的にデータベース 26に記録している(ステップ S61)。工場 では窒素ガスや工場真空など共通的に利用されるガス類は工場単位で供給される。 しかし、これらの配管は種々の装置に接続されているため、負荷の状況によっては正 L ヽ供給がなされな 、場合がある。
[0113] 本半導体デバイス製造検査装置では、真空度を調節する弁の制御や、真空チャン ノ 7の窒素パージなどにガス圧が使われている。このガス圧の変動は測定装置の破 壊や誤動作につながるので、ガス圧をモニタすることは、非常に重要である。ガス圧 が管理値を超えて変動したときには (ステップ S62)、装置異常を知らせ、自動的に自 己診断を開始する (ステップ S63)。自己診断はガス変動が測定に影響を与えたのか どうかを判断するものであり、異常が認めなければ測定された測定値は通常の測定と 同様として扱う。
[0114] [第 8実施形態]
図 19は、本発明の第 8実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0115] 冷却水は、電流を大量に流して発熱する対物レンズ 3やその駆動回路の冷却に利 用される。これらの温度は直接電子ビーム 14の安定度に大きく影響を与えるので常 時モニタすることが必要である。これらには、温度センサや水漏れ検出器などが配備 されており、定期的に信号を吸い上げ、データベース 26に時刻の関数として保管し ている(ステップ S71)。
[0116] 予め決められた標準温度 (管理値)と異なる場合には (ステップ S72)、異常を知ら せるための信号を発生し、装置表示装置に異常であることを知らせるとともに、自己 診断を開始し (ステップ S73)、装置を制御しているホストコンピュータ等にもデータを アップロードする。
[0117] [第 9実施形態]
図 20は、本発明の第 9実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0118] CCDカメラは光源とともに利用されて測定サンプル 4 (ウェハ)の表面観察に利用さ れ、グローバルァライメント等に活用される。 CCDカメラは機械的に装置 (真空チャン ノ 7など)に固定されている。しかし、グローバルァライメントの必要精度は/ z mオーダ 一なので、蓋を開けてメンテナンスを行ったり、真空度が変化したり、時間が経つに つれて起こる変形などの位置変動が測定に影響を与える。その場合、過去に作成し た測定レシピが使えなくなる場合が起こる。そこで、本半導体デバイス製造検査装置 の自己診断システムは、常に CCDカメラの設置位置をモニタしてその位置データを データベース 26に記録している(ステップ S81)。
[0119] 標準の位置力も許容量を超えてカメラ位置が移動した場合には (ステップ S82)、異 常を知らせるための信号を発生し、表示装置に表示し、自己診断を開始し (ステップ S83)、測定装置を制御しているホストコンピュータ等に異常を表す信号をアップロー ドする。また、光源が正しく動作しているかを調べるために光源をオンオフして CCD カメラの出力の変化を見る。光源が正しく動作していれば、標準試料を CCDカメラで 観察した際に得られる画像の明るさが予め決められた明るさとなるが、光源が異常で あると、標準の明るさよりも明るいあるいは暗いということが起こる。この数値をモニタ することで光源の正常異常を判定する。
[0120] [第 10実施形態]
図 21は、本発明の第 10実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0121] 本実施形態は、半導体デバイス製造検査装置を立ち上げたとき、又はたち下げた とき、自動的に自己診断を行う方法を開示している。測定装置は新規に移設したとき や、部品交換を行ったときなど、電源を元力も落としてしまう場合も少なくない。そのよ うな場合は、電源投入の信号を自動的に拾って (ステップ S91)、電源投入後所定時 刻後に自動的に自己診断が開始される (ステップ S92)。もちろん、スケジューラを別 途持たせることも可能であり、電源が投入された一番近傍の日曜日に自己診断を行 うと 、うように設定を行うこともできる (ステップ S93)。
[0122] 図 22は、本実施形態の変形例であって、定期的にトレースを行う機能を提供する 方法について示している。半導体デバイス製造検査装置の中には、トレースを自動 発生させるための、スケジューラが用意されており(ステップ S 101)、毎日一回、ある いは毎週 1回あるいは毎月 1回等、自由に日時を指定して自己診断を実行できる (ス テツプ S102)。その自己診断の結果は、全てデータベース 26に保存される (ステップ S103)。
[0123] [第 11実施形態]
図 23は、本発明の第 11実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0124] 本半導体デバイス製造検査装置には、装置起動時間を測定するタイマーあるいは 測定枚数を測定する装置が設けられている (ステップ S111)。これらを用いて MTBF 平均故障間隔、 MTTR平均修理時間、稼働率などの計算も行い、必要に応じて画面 に表示する。そのタイマーあるいは測定枚数測定装置の出力を用いて自動的に自 己診断を開始する (ステップ S 112, S113)。
[0125] 測定装置は、製造装置と異なり、動作頻度が不定期な場合がある。そのような場合 は、使用頻度を表す測定枚数やタイマーを用いて、自己診断を開始させる。
[0126] [第 12実施形態]
図 24は、本発明の第 12実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0127] 本半導体デバイス製造検査装置は、自己診断処理 (ステップ S131〜S135)と、測 定サンプル 4についての測定検査 (ステップ S121〜S 126)とを、同時並行的に実行 させることができる。一般に、コンピュータはプロセスと呼ばれる複数のプログラムを同 時に動かすことが可能なようになっており、本装置ではその 1つに自己診断プロダラ ムを当てる。そのプログラムにより本装置は、それぞれの動作が行われるたびに、装 置状態を把握するために必要な信号を実時間取得し、データベース 26に蓄積する。
[0128] [第 13実施形態]
図 25は、本発明の第 13実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0129] 本半導体デバイス製造検査装置では、測定サンプル 4につ 、ての測定検査 (ステツ プ S141, S142)をしている途中で、必要に応じて自己診断をするための割り込みを 発生させて (ステップ S 143)、全ての装置動作に優先して自己診断を行うことができ る (ステップ S144〜S148)。自己診断の後に、続きの測定検査を行う。
[0130] 例えば、装置が測定中の場合に (ステップ S141, S142)、最優先割り込みに指定 した自己診断を実行させると (ステップ S143)、測定を中断しても困らない場所にゥ ェハを退避し (ステップ S 144)、電子ビーム照射中であれば、単位測定が終了する のを待ったのち、直ちに自己診断に入る (ステップ S 145)。自己診断が終了したらも との測定状態に戻し、中断中であった測定を復活開始させる (ステップ S146〜S14 8)。
[0131] [第 14実施形態]
図 26は、本発明の第 14実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0132] 図 26は、電子銃 10の電子ビーム源 1が正常に動作しているかどうかを自動的にチ エックする方法を示している。電子ビーム源 1には、 ZrW等力 なる熱電界フィールド ェミッタ等が利用されている。このェミッタの先端からはフィラメントによって加熱される ことにより熱電子が放出される。ここで、ェミッタが最良に調整されているときはェミツ タカも放出される電子のノイズが小さくなることが知られている。つまり、正常に動作し ているェミッタではそうで無い場合と比較して、ノイズが小さいので、ェミッタが正常に 動作して!/、るかどうかは、ノイズ測定をすることで判定することができる。
[0133] 本実施形態の半導体デバイス製造検査装置は、ェミッタ力 放出された電子ビーム 14をファラデーカップ 50等の電子電流変換装置で受け、電流に変換された信号の ノイズ成分を測定する手段を有している。コンピュータ 53 (全体制御装置 30に相当) には電子銃 10の電子ビーム源 1にカ卩える電流値を制御するための表や式が記憶さ れており、コンピュータ 53からはそれに従った指示値が電子ビーム発生制御装置 21 に送られる。
[0134] 例えば、コンピュータ 53は電子源を加熱するフィラメントに流す電流の量を 2A、 2.
1A、 2. 2Aというように徐々に増加させるように自動制御を行い、各電流を印加して いるときに放出されている電子ビーム 14をファラデーカップ 50あるいは半導体ウェハ で受け電流に変換する。
[0135] この電流は非常に小さいので電流アンプ 51等で十分に増幅した後、 AZD変換装 置などでデジタル信号に変換する。必要に応じて周波数分析器 52に入力する。周 波数分析器 52は、各周波数の周波数成分を調べる道具であり、ノイズの周波数成分 を調べることができる。
[0136] ノイズの大小を用いて正常異常を判定する方法はいろいろある。周波数帯域に関 わらず、 RMS値のようにノイズを持つ平均的な大きさを尺度とするものと、ある周波数 帯域に注目して、その帯域でのノイズの大きさの大小を用いて正常異常を判定する 方法などがある。
[0137] 一般に、電子銃 10の電子ビーム源 1が発生するノイズの周波数帯域は決まってい るので、ある帯域におけるノイズ成分量を用いて正常異常を判断することが望ましい
[0138] それを自動的に行うには、次のように行う。まず、正常に動作している電子源が予め 決められた帯域で示す標準的なノイズ成分量を予め記憶装置に記憶しておく。次に 、現在動作中の電子源が発生する特定周波数のノイズ量を測定する。次に、 2つのノ ィズ成分量を比較することで、正常かどうかを判定する。
[0139] 例えば、正常のときの電子ビーム 14のノイズ成分量力 ^OpAであれば、それを上回 つた場合には、ェミッタは何らかの異常が生じていると考えられる。その場合には、自 動的にェミッタが異常であることを表示装置 32に表示し、測定装置を管理しているホ ストコンピュータや装置状態を記録しているデータベース 26等に異常であることを示 すデータをアップロードする。
[0140] また、自己診断の最中に自動的に一番小さなノイズ量を示すフィラメント電流を探し に行くこともできる。そのときには、コンピュータ 53に記憶されているフィラメント電流 設定用のプロファイル表にしたがって順次フィラメント電流を変化させ、上述のように ノイズ測定を行い、一番小さなノイズが得られる場合のフィラメント電流に固定する。こ のように自己診断とともに、最適なェミッタ調整状態に装置自身が自動的に移行する ことができる。
[0141] [第 15実施形態]
図 27は、本発明の第 15実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置 100の装置構成は、図 1に示す第 1実施形態の 装置と同一のものを適用できる。 [0142] 本半導体デバイス製造検査装置 100は、装置のメンテナンスヒストリ (履歴)を自動 記録する機能を有している。本半導体デバイス製造検査装置 100は、装置の動作に 関わる全ての状態変数を記録できるデータベース 26を有して 、る。このデータべ一 ス 26には、任意の時刻の装置状態およびその状態によってもたらされた検査結果さ らに、その結果を得るためのレシピ情報などが全て記録される。
[0143] 例えば、ヒストリの中でも非常に重要なの力 保守のために行う部品交換について の履歴である。本装置では、部品交換の日時や製品番号などの情報は、 RFID60及 び RFIDトラッキング装置 61などを利用して、自動的にデータベース 26に記録される 仕組みをもっている。 RFIDトラッキング装置 61は、 RFID60の内容を読み取り、デー タベース 26に記録するものである。これらにより、自動的に保守を行った日時や部品 交換を行った日時が記録されるので、次回の交換時期の推定や現在の状態が容易 に推定できる。
[0144] [第 16実施形態]
図 28は、本発明の第 16実施形態を示す図である。本実施形態の自己診断機能を 有する半導体デバイス製造検査装置の装置構成は、図 1に示す第 1実施形態の装 置と同一のものを適用できる。
[0145] 本実施形態の半導体デバイス製造検査装置 100は、装置の自己診断を遠隔地か ら行うものである。近年は、インターネット等の通信回線 300やブロードバンドなどの 技術により、遠隔力もデータベース 26にアクセスできる技術が急速に発展した。すな わち、半導体デバイス製造検査装置 100のデータベース 26は、測定装置 102、測定 装置制御装置 101及び通信回線 300を介して、ベンダ—サイト 200の端末 201に接 続される。そこで、装置の診断はベンダ—サイト 200の端末 201から定期的に行うこと とする。ここでは、半導体デバイス製造検査装置 100が配備されている遠隔地とベン ダの会社を結ぶブロードバンドインターネットが想定されており、メンテナンス内容に 関するデータのみにベンダがアクセス可能なようにセキュリティ設定を行って 、る。
[0146] ベンダは必要に応じて、半導体デバイス製造検査装置 100が自動的にあるいは遠 隔地からの命令によって集めたメンテナンスにかかわる情報にインターネットを通じて アクセスし、装置の活動状況を見守ることができる。 [0147] 一方、半導体デバイス製造検査装置 100が自動的に自己診断を行った際にベン ダによる修繕を必要とした場合には、装置側力もベンダに対してインターネットを通じ て装置異常信号を送る。これにより、出動要請を自動的に行い、ベンダは迅速に装 置異常に対処することが可能となる。
産業上の利用可能性
[0148] 本発明は、半導体デバイス又はその製造工程での検査、製造、測定又は評価など に用いられる半導体測定装置、半導体測定方法および半導体デバイス製造方法に 有用である。例えば、ウェハなどの半導体基板に電子ビーム、光、電磁波又はイオン ビームなどを照射する手法を用いる半導体測定装置、半導体測定方法および半導 体デバイス製造方法に、本発明を適用することができる。

Claims

請求の範囲
[1] 電子ビーム等のプローブを測定サンプルに出射するプローブ発生装置と、
前記プローブ発生装置の動作を制御するプローブ発生制御装置と、
前記プローブ発生装置及び前記プローブ発生制御装置を少なくとも含む各種装置 のそれぞれの動作を示す情報を入力して記憶するデータベースとを有することを特 徴とする自己診断機能を有する半導体デバイス製造検査装置。
[2] 前記各種装置は、
前記プローブを XY面状に走査させる電子ビーム走査制御装置と、
前記プローブについて収束又は拡散させる対物レンズと、
前記対物レンズの焦点を制御する対物レンズ駆動制御装置と、
前記測定サンプルについての画像を取り込む画像認識装置と、
前記プローブが出射可能なように真空度が制御される真空チャンバと、 前記真空チャンバ又は前記真空チャンバに関しての弁の開閉動作に用いられる配 管の圧力又はガス流量を制御する真空制御装置と、
前記測定サンプルが載置される台であって前記測定サンプルを前記プローブ発生 装置に対して移動可能に支持するステージと、
前記ステージの移動動作を制御するステージ制御装置と、
前記プローブの照射に伴って前記測定サンプルで発生した二次電子を検出する 二次電子検出装置と、
前記プローブの照射に伴って前記測定サンプルで発生した電流である基板電流を 検出する基板電流測定装置と、
を含み、
前記データベースは、前記各種装置のうちの少なくとも一つの装置への指示値と、 前記各種装置のうちの少なくとも一つの装置が発生する情報とを、前記動作を示す 情報として、前記指示値の発生時間又は前記装置が発生する情報の発生時間と共 に記憶する手段を有することを特徴とする請求項 1に記載の自己診断機能を有する 半導体デバイス製造検査装置。
[3] 前記各種装置のうちの少なくとも一つの装置に対して、前記一つの装置の自己診 断をするときに正常力否かを判断するための基準とする管理値を設定する管理情報 設定装置を有し、
前記データベースは、前記管理情報設定装置が出力する管理値をその出力時間 と共に記憶する手段を有することを特徴とする請求項 1に記載の自己診断機能を有 する半導体デバイス製造検査装置。
[4] 前記動作を示す情報について正常動作又は異常動作と判断するときの閾値を含 むデータである管理値データを記憶する手段と、
前記管理値データと前記データベースに記憶された動作を示す情報とを比較する ことにより、前記各種装置のうちの少なくとも一の動作が正常又は異常であると判断 する自己診断手段とを有することを特徴とする請求項 1に記載の自己診断機能を有 する半導体デバイス製造検査装置。
[5] 前記自己診断手段の判断結果を表示する表示手段と、
前記表示手段に表示された判断結果について入力手段によって指定されることに 対応して、前記判断結果に関する情報について前記データベースを検索して前記 表示手段に表示させる詳細情報表示手段とを有することを特徴とする請求項 4に記 載の自己診断機能を有する半導体デバイス製造検査装置。
[6] 前記測定サンプルにおける前記プローブの照射位置の位置決めに利用されるパタ ーンマッチングでの一致割合と、前記パターンマッチングで用いられた画像とを前記 データベースに蓄積する手段を有することを特徴とする請求項 1に記載の自己診断 機能を有する半導体デバイス製造検査装置。
[7] 前記測定サンプルの構成要素の配置を示す図形を画面上に表示すると共に、前 記自己診断手段の判断結果である異常点を前記図形上に示す手段と、
前記図形上に示された異常点について入力手段によって指定されることに対応し て、前記異常点についての測定に関する情報を少なくとも前記データベース力 抽 出して表示させる詳細情報表示手段とを有することを特徴とする請求項 4に記載の自 己診断機能を有する半導体デバイス製造検査装置。
[8] 前記測定サンプルにつ 、ての製造プロセスの条件を設定するファイルであるレシピ のファイル名をキーとして、前記動作を示す情報についての測定時間、測定条件、 測定結果、前記各種装置のパラメータを組にして前記データベースに蓄積する手段 を有することを特徴とする請求項 1に記載の自己診断機能を有する半導体デバイス 製造検査装置。
[9] 前記各種装置のうちの少なくとも一つについての管理項目に異常が起こったときの 対処方法を前記管理項目ごとに前記データベースに記憶させる手段と、
前記管理項目に異常が生じたときに、前記異常が生じたことを画面上に表示させる 手段と、
前記管理項目に異常が生じたとき又は所定の入力動作に応じて、前記管理項目に 異常が起こったときの対処方法を画面上に表示させる手段とを有することを特徴とす る請求項 1に記載の自己診断機能を有する半導体デバイス製造検査装置。
[10] 前記対処方法には、故障箇所、交換部品および前記交換部品の交換時期に関し ての情報が含まれていることを特徴とする請求項 9に記載の自己診断機能を有する 半導体デバイス製造検査装置。
[11] 前記自己診断手段の判断結果を画面上に表示させる手段と、
前記画面にっ 、てクリックされたことに対応して、異常にっ 、ての対処方法を表示 させる手段とを有することを特徴とする請求項 4に記載の自己診断機能を有する半導 体デバイス製造検査装置。
[12] 前記各種装置のうちの一つが正常状態を示す標準測定状態であるときに、前記各 種装置で標準試料について測定したときの測定波形である標準波形を記憶する手 段と、
前記各種装置が前記標準測定状態であるか不明であるときに、前記各種装置で前 記標準試料について測定したときの測定波形である実測波形を記憶する手段と、 前記標準波形と前記実測波形とを比較することにより、前記各種装置に異常がある か否かを判断する自己診断手段とを有することを特徴とする請求項 1に記載の自己 診断機能を有する半導体デバイス製造検査装置。
[13] 前記各種装置のうちの一つが正常状態を示す標準測定状態であるときに、前記各 種装置に標準信号を入力したときの出力信号について周波数分析を行い、前記周 波数分析した結果である標準周波数スペクトラムを記憶する手段と、 前記各種装置が前記標準測定状態であるか不明であるときに、前記各種装置に標 準信号を入力したときの出力信号につ!ヽて周波数分析を行 ヽ、前記周波数分析した 結果である実測周波数スペクトラムを記憶する手段と、
前記標準周波数スペクトラムと前記実測周波数スペクトラムとを比較することにより、 前記各種装置に異常があるか否かを判断する自己診断手段とを有することを特徴と する請求項 1に記載の自己診断機能を有する半導体デバイス製造検査装置。
[14] 前記プローブ発生装置に加えられている電圧又は電流を測定する手段と、
前記プローブ発生装置が発生するプローブの強さ又は単位時間当たりの量を測定 する手段と、
前記プローブに含まれるノイズを抽出する手段と、
前記ノイズにっ 、て周波数分析して、特定の周波数のノイズ量が基準値である管 理値と比較して大きいか小さいかにより、前記プローブ発生装置に異常がある力否か を判断する自己診断手段とを有することを特徴とする請求項 1に記載の自己診断機 能を有する半導体デバイス製造検査装置。
[15] 前記測定サンプルが載置される台であって前記測定サンプルを前記プローブ発生 装置に対して移動可能に支持するステージと、
前記ステージの移動量を規定する指示値と前記指示値に対する実際の移動量とを 前記データベースに記憶させる手段とを有することを特徴とする請求項 1に記載の自 己診断機能を有する半導体デバイス製造検査装置。
[16] 前記指示値と前記実際の移動量との差が所定の管理値以上である場合は前記ス テージに関して異常があると判断する自己診断手段を有することを特徴とする請求 項 15に記載の自己診断機能を有する半導体デバイス製造検査装置。
[17] 前記各種装置に供給される電力の変動状況又は前記電力の周波数成分を測定す る手段と、
前記測定する手段の測定結果を測定日時と共に前記データベースに記憶させる 手段とを有することを特徴とする請求項 1に記載の自己診断機能を有する半導体デ バイス製造検査装置。
[18] 前記測定結果と基準値である管理値とを比較して、前記測定結果と管理値との差 が所定の閾値よりも大きい場合、前記各種装置に関しての自己診断を開始する手段 を有することを特徴とする請求項 17に記載の自己診断機能を有する半導体デバイス 製造検査装置。
[19] 前記各種装置の!/、ずれかに加えられるガスの流量又は圧力変動を測定する手段と 前記測定する手段の測定結果を測定日時と共に前記データベースに記憶させる 手段とを有することを特徴とする請求項 1に記載の自己診断機能を有する半導体デ バイス製造検査装置。
[20] 前記測定結果と基準値である管理値とを比較して、前記測定結果と管理値との差 が所定の閾値よりも大きい場合、前記各種装置に関しての自己診断を開始する手段 を有することを特徴とする請求項 19に記載の自己診断機能を有する半導体デバイス 製造検査装置。
[21] 前記各種装置の!/、ずれかに対しての冷却水の温度を測定する手段と、
前記測定する手段の測定結果を測定日時と共に前記データベースに記憶させる 手段と、
前記測定結果と基準値である管理値とに基づいて、前記各種装置のいずれかに異 常があるカゝ否かを判断する自己診断手段とを有することを特徴とする請求項 1に記載 の自己診断機能を有する半導体デバイス製造検査装置。
[22] 前記測定サンプルの位置決めに用いられる映像入力装置の位置を測定して得た 位置データ、及び、前記位置を測定したときの前記映像入力装置の入力信号を、測 定日時と共に前記データベースに記憶させる手段と、
前記位置データ及び入力信号と基準値である管理値とに基づ!、て、前記各種装置 のいずれかに異常があるカゝ否かを判断する自己診断手段とを有することを特徴とす る請求項 1に記載の自己診断機能を有する半導体デバイス製造検査装置。
[23] 前記各種装置のいずれかに電源が入力されたときに、自己診断を開始する手段を 有することを特徴とする請求項 1に記載の自己診断機能を有する半導体デバイス製 造検査装置。
[24] 自己診断を定期的に開始するためのスケジューラを有することを特徴とする請求項 1に記載の自己診断機能を有する半導体デバイス製造検査装置。
[25] 前記各種装置の!/、ずれかの稼働回数又は稼働時間を計測する手段と、
前記計測する手段の計測結果が基準値である管理値を超えた場合、自己診断を 開始する手段を有することを特徴とする請求項 1に記載の自己診断機能を有する半 導体デバイス製造検査装置。
[26] 前記各種装置の全部又は一部により前記測定サンプルについての測定をする動 作と、前記各種装置の全部又は一部について自己診断をする動作とを、同時並列的 に行う機能を有することを特徴とする請求項 1に記載の自己診断機能を有する半導 体デバイス製造検査装置。
[27] 前記各種装置の全部又は一部により前記測定サンプルについての測定を行って いる最中において、自己診断動作の起動を要求する割り込み信号を入力する割り込 み信号入力手段と、
前記割り込み信号入力部により割り込み信号が入力されたときに、測定されている 前記測定サンプルを所定の場所に移動させる手段と、
前記自己診断動作が終了したときに、前記測定サンプルを前記移動の前の状態に 戻す手段とを有することを特徴とする請求項 1に記載の自己診断機能を有する半導 体デバイス製造検査装置。
[28] 前記各種装置のいずれか、周辺機器、又はこれらについての交換部品に取り付け られた RDIFを有し、
前記 RDIFは、取り付けられている装置又は部品についての情報を有し、 前記 RDIFの情報を前記データベースに記憶させる手段を有することを特徴とする 請求項 1に記載の自己診断機能を有する半導体デバイス製造検査装置。
[29] 前記各種装置の!/、ずれかの自己診断結果に基づ!、て、前記各種装置の!/、ずれか について製造又は販売する会社又は部門に通信網を介して前記自己診断結果に ついて通知する通知手段を有することを特徴とする請求項 1に記載の自己診断機能 を有する半導体デバイス製造検査装置。
PCT/JP2005/013946 2005-07-29 2005-07-29 自己診断機能を有する半導体デバイス製造検査装置 WO2007013170A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013946 WO2007013170A1 (ja) 2005-07-29 2005-07-29 自己診断機能を有する半導体デバイス製造検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013946 WO2007013170A1 (ja) 2005-07-29 2005-07-29 自己診断機能を有する半導体デバイス製造検査装置

Publications (1)

Publication Number Publication Date
WO2007013170A1 true WO2007013170A1 (ja) 2007-02-01

Family

ID=37683078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013946 WO2007013170A1 (ja) 2005-07-29 2005-07-29 自己診断機能を有する半導体デバイス製造検査装置

Country Status (1)

Country Link
WO (1) WO2007013170A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119085A (ja) * 2009-12-02 2011-06-16 Hitachi High-Technologies Corp 荷電粒子線装置
JP2013083523A (ja) * 2011-10-07 2013-05-09 Hitachi Kokusai Denki Engineering:Kk 4探針抵抗率測定装置
WO2019102682A1 (ja) * 2017-11-27 2019-05-31 浜松ホトニクス株式会社 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体
JPWO2021044611A1 (ja) * 2019-09-06 2021-03-11
WO2022207222A1 (en) * 2021-03-30 2022-10-06 Asml Netherlands B.V. On system self-diagnosis and self-calibration technique for charged particle beam systems
WO2024106322A1 (ja) * 2022-11-15 2024-05-23 株式会社エヌテック 検査装置の診断装置、検査装置の診断方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011940A (ja) * 1998-06-22 2000-01-14 Nikon Corp 検査装置、検査装置のメンテナンス方法、検査方法
JP2003303867A (ja) * 2002-04-08 2003-10-24 Jeol Ltd コンタクトホールの検査方法およびその結果に基づいた不良コンタクトホールの補修加工方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011940A (ja) * 1998-06-22 2000-01-14 Nikon Corp 検査装置、検査装置のメンテナンス方法、検査方法
JP2003303867A (ja) * 2002-04-08 2003-10-24 Jeol Ltd コンタクトホールの検査方法およびその結果に基づいた不良コンタクトホールの補修加工方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119085A (ja) * 2009-12-02 2011-06-16 Hitachi High-Technologies Corp 荷電粒子線装置
JP2013083523A (ja) * 2011-10-07 2013-05-09 Hitachi Kokusai Denki Engineering:Kk 4探針抵抗率測定装置
WO2019102682A1 (ja) * 2017-11-27 2019-05-31 浜松ホトニクス株式会社 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体
CN111417860A (zh) * 2017-11-27 2020-07-14 浜松光子学株式会社 解析方法、解析装置、解析程序以及记录解析程序的存储介质
JPWO2019102682A1 (ja) * 2017-11-27 2020-10-01 浜松ホトニクス株式会社 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体
JP7057374B2 (ja) 2017-11-27 2022-04-19 浜松ホトニクス株式会社 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体
US11579184B2 (en) 2017-11-27 2023-02-14 Hamamatsu Photonics K.K. Analysis method, analysis device, analysis program, and recording medium for recording analysis program
JPWO2021044611A1 (ja) * 2019-09-06 2021-03-11
WO2021044611A1 (ja) * 2019-09-06 2021-03-11 株式会社日立ハイテク レシピ情報提示システム、レシピエラー推定システム
JP7153142B2 (ja) 2019-09-06 2022-10-13 株式会社日立ハイテク レシピ情報提示システム、レシピエラー推定システム
WO2022207222A1 (en) * 2021-03-30 2022-10-06 Asml Netherlands B.V. On system self-diagnosis and self-calibration technique for charged particle beam systems
WO2024106322A1 (ja) * 2022-11-15 2024-05-23 株式会社エヌテック 検査装置の診断装置、検査装置の診断方法及びプログラム

Similar Documents

Publication Publication Date Title
US8779360B2 (en) Charged particle beam device, defect observation device, and management server
TWI514497B (zh) 機台狀況定性監測方法及錯誤偵測分類系統
WO2007013170A1 (ja) 自己診断機能を有する半導体デバイス製造検査装置
KR20200013000A (ko) 기판 처리 장치, 장치 관리 컨트롤러 및 프로그램
US20070219664A1 (en) Device Processing System, Information Display Method, Program, and Recording Medium
US20060004544A1 (en) Monitoring device and monitoring method for vacuum device
TW201600861A (zh) 電子裝置的奈米探測裝置及方法
JP2008052577A (ja) 稼働状況を提示することができる装置
WO2010084777A1 (ja) プラズマ処理装置
KR100418072B1 (ko) 플라즈마처리장치의 메인티넌스방법 및 메인티넌스시스템
US7478014B2 (en) Method and system for facilitating preventive maintenance of an optical inspection tool
JP4579712B2 (ja) 走査電子顕微鏡
JP2013148349A (ja) レビュー方法、およびレビュー装置
US20200166542A1 (en) Inspection System
JP2984541B2 (ja) プロービング方法およびプローブ装置
JPS6332650A (ja) 製造設備の故障診断装置
JP2007242287A (ja) X線出力器診断装置およびx線出力器診断方法
Stevenson et al. A plasma process monitor/control system
JP3936873B2 (ja) 欠陥撮像装置及び撮像方法
WO2007037012A1 (ja) チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置
CN1791971A (zh) 制造设备中的差错检测方法
JP3858935B2 (ja) 監視方法および監視システム
JP3992066B2 (ja) 真空装置の監視装置および監視方法
JP7398930B2 (ja) 検査装置システム
TWI841413B (zh) 用於將用於預知特徵法的資料的處理腔室相關的收集的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05767272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP