WO2007037012A1 - チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置 - Google Patents

チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置 Download PDF

Info

Publication number
WO2007037012A1
WO2007037012A1 PCT/JP2005/017994 JP2005017994W WO2007037012A1 WO 2007037012 A1 WO2007037012 A1 WO 2007037012A1 JP 2005017994 W JP2005017994 W JP 2005017994W WO 2007037012 A1 WO2007037012 A1 WO 2007037012A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
maintenance
process processing
evaluation
substrate
Prior art date
Application number
PCT/JP2005/017994
Other languages
English (en)
French (fr)
Inventor
Keizo Yamada
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2005/017994 priority Critical patent/WO2007037012A1/ja
Publication of WO2007037012A1 publication Critical patent/WO2007037012A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • Chamber matching method semiconductor process support device, maintenance method, maintenance support device
  • the present invention relates to a chamber matching method, a semiconductor process support apparatus, a maintenance method, and a maintenance support apparatus for eliminating the influence due to machine differences in semiconductor process processing apparatuses, and suppresses variations in processing characteristics of the semiconductor process processing apparatuses.
  • the present invention relates to a technology for improving the compatibility of semiconductor process processing equipment.
  • a recipe is changed for each apparatus according to the characteristics of each semiconductor process processing apparatus. Things have been done.
  • This process of matching the processing characteristics of a plurality of semiconductor process processing apparatuses by changing the recipe in this way is generally called chamber-one matching.
  • the effectiveness of such measures is evaluated by analyzing the processed device structure with a FIB cross-section analyzer or by measuring the electrical characteristics of the completed device with a tester.
  • the characteristics of a semiconductor process processing apparatus may change fundamentally, which may reduce product yield. Therefore, it is possible to judge the quality of maintenance by analyzing the cross-sectional structure of the device processed using the semiconductor process processing equipment after maintenance, and the basic characteristics of the semiconductor processing equipment change due to maintenance. Check whether or not.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-064128
  • the cross-sectional structure is generally observed using a conventional analysis device such as a high-performance FIB. If it becomes smaller, it becomes difficult to accurately determine the hole center and measure the hole diameter due to the limitation of the alignment accuracy of the analyzer. In addition, it is necessary to quantitatively and accurately grasp the film residue of several nanometers at the bottom of the hole, which is difficult to detect with conventional analyzers.
  • the method using the conventional analysis device such as the FIB or SEM described above does not provide a quantitative index necessary for performing the chamber matching, and therefore performs sufficient chamber matching. There is a problem that it cannot be done. For this reason, effective chamber matching cannot be performed for semiconductor process processing equipment that processes devices that have been miniaturized at present, so as an alternative measure, specify a semiconductor process processing equipment that should be used for processing. Force that may be used in the so-called “unit designation” method This method lowers the operating rate of equipment other than the designated semiconductor process processing equipment, leading to lower production efficiency.
  • the quality of preventive maintenance is determined by an electrical test using a tester after the device is completed. If all processes are not completed, the semiconductor process processing after maintenance is performed. The state of the device cannot be evaluated. Therefore, since the entire semiconductor process usually takes several months, if the device is continuously manufactured using a semiconductor process equipment with insufficient maintenance, the original yield cannot be obtained, resulting in a large loss. It will also be.
  • the present invention provides a chamber-matching method that can effectively match the processing characteristics of a plurality of semiconductor process processing apparatuses used in the process of a device with advanced miniaturization. With the goal.
  • the present invention also relates to a semiconductor process used for process processing of a device that has been miniaturized. It is an object of the present invention to provide a maintenance support device that supports maintenance of the access processing device.
  • each semiconductor substrate processed under the same process condition by a plurality of semiconductor process processing apparatuses is irradiated with an electron beam, and the substrate current induced in the semiconductor substrate by the irradiation of the electron beam. Is measured as a process evaluation quantity.
  • the plurality of predetermined semiconductor substrates are equivalent to each other, and the process processing conditions applied in the plurality of semiconductor process processing apparatuses are the same. is there.
  • each micro structure formed on the plurality of predetermined semiconductor substrates by the processing of a plurality of semiconductor process processing apparatuses reflects the characteristics unique to each semiconductor process processing apparatus, and is dependent on each semiconductor process processing apparatus.
  • a semiconductor process support apparatus irradiates a plurality of semiconductor substrates respectively processed by a plurality of semiconductor process processing apparatuses with an electron beam, and generates a substrate current induced by the electron beam irradiation.
  • Forming the plurality of semiconductor substrates by measuring An analysis device for analyzing each fine structure formed; information storage means for storing analysis results by the analysis device; information processing means for statistically processing the analysis results stored in the database; and the information processing section And an information display means for comparing and displaying the analysis result statistically processed in association with the semiconductor process processing apparatus.
  • the semiconductor substrate processed by the semiconductor process processing apparatus is analyzed by the analysis apparatus using the substrate current induced by the electron beam irradiation, and the analysis result is stored in the information storage means. Accumulated and statistically processed by information processing means. The statistical processing results are displayed in comparison with the information display means in association with the semiconductor process processing apparatus. Therefore, it is possible to accurately grasp the state of each semiconductor process processing apparatus used in the process of a device that has been miniaturized from the content of the comparison display.
  • the semiconductor substrate processed by the semiconductor process processing apparatus is analyzed by the analysis apparatus using the substrate current induced by the electron beam irradiation, and the analysis result using the substrate current is Are stored in the information storage means and statistically processed by the information processing means.
  • the statistical processing results are displayed in comparison with the information display means in association with the semiconductor process processing apparatus. Therefore, it is possible to accurately grasp the necessity of each semiconductor process processing apparatus used in the process of a device that has been miniaturized from the content of the comparison display.
  • a maintenance method includes a first step of maintaining a semiconductor process processing apparatus, and a predetermined semiconductor substrate for maintenance is introduced into the semiconductor process processing apparatus after the maintenance, and the semiconductor substrate is processed into a predetermined process.
  • the semiconductor process under processing conditions
  • the fine structure on the semiconductor substrate processed by the semiconductor process processing apparatus is analyzed using the substrate current induced by the electron beam irradiation.
  • the analysis result using the substrate current is compared with a predetermined management value. For example, when the analysis result is not within the management range, it is determined that maintenance is necessary. Therefore, from this determination result, it is possible to accurately grasp the quality of maintenance of each semiconductor process processing apparatus used in the process of a device that has been miniaturized.
  • a maintenance support apparatus is obtained by using an evaluation apparatus that evaluates characteristics of a semiconductor process processing apparatus after maintenance using a substrate current induced by electron beam irradiation, and the evaluation apparatus.
  • a database for accumulating evaluation results relating to characteristics of the semiconductor process processing apparatus; and a communication means for communicating with a host computer managing various semiconductor process processing apparatuses involved in the process of the semiconductor substrate.
  • the apparatus is configured to upload the evaluation result stored in the database to the host computer via the communication means.
  • the chamber-matching method of the present invention since an analysis method using a substrate current induced by electron beam irradiation is introduced, a plurality of devices used in the process of a device that has been miniaturized have been introduced. It is possible to quantitatively evaluate the difference in characteristics of semiconductor process processing equipment, and to effectively match the processing characteristics of these equipment.
  • the substrate induced by the electron beam irradiation By introducing an analysis method using plate current, it is possible to accurately grasp the processing characteristics of multiple semiconductor process processors used in the process of devices that have been miniaturized.
  • the maintenance support apparatus of the present invention since an evaluation method using a substrate current induced by electron beam irradiation is introduced, a semiconductor used for process processing of a device that has been miniaturized. It can support maintenance of process equipment.
  • FIG. 2 is a diagram for explaining a first configuration example of a wafer (semiconductor substrate) used in chamber-one matching according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a second configuration example of a wafer (semiconductor substrate) used in chamber matching according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the procedure of chamber matching according to the first embodiment of the present invention.
  • FIG. 6 shows an example of a recipe used for chamber matching according to the first embodiment of the present invention.
  • FIG. 7 is a contour map of measured values of process evaluation values measured in chamber matching according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a distribution of measured values of process evaluation values (standard recipe use) measured in chamber-one matching according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a distribution (measurement time is changed) of measured values of process evaluation amounts measured in chamber matching according to the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a configuration example of a wafer (semiconductor substrate) used in the maintenance method according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing a current measuring device according to a fifth embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a maintenance method (a method for determining whether maintenance is necessary) according to the second embodiment of the present invention.
  • FIG. 14 is a view showing a change over time of a measured value of a process evaluation amount obtained by a maintenance method (a method for determining whether maintenance is necessary) according to a second embodiment of the present invention.
  • FIG. 15 is a diagram for explaining a maintenance method (a method for judging whether maintenance is good or bad) according to the second embodiment of the present invention.
  • FIG. 16 is a view showing a distribution of standard measurement values used as a criterion for discrimination in the maintenance method (determination method of maintenance quality) according to the second embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration example of a tracking device for tracking information obtained by a maintenance method (a method for determining whether maintenance is good) according to a second embodiment of the present invention.
  • FIG. 20 is a diagram for explaining an example of determining whether or not maintenance is required using the tracking device according to the second embodiment of the present invention.
  • FIG. 21 is a diagram showing a configuration of a maintenance support apparatus for managing information obtained by a maintenance method (a method for determining whether maintenance is good) according to a second embodiment of the present invention to support maintenance.
  • A, B, C chamber semiconductor process equipment
  • FIG. 1 schematically shows the configuration of a semiconductor analyzer used in each embodiment of the present invention.
  • the basic principle of this semiconductor analyzer is the same as that of the semiconductor evaluation apparatus disclosed in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2005-064128, and measures the substrate current induced on the wafer (semiconductor substrate) by electron beam irradiation. By doing so, the fine structure formed on the wafer is quantitatively analyzed.
  • this semiconductor analyzer includes a vacuum chamber 100 that accommodates a wafer (semiconductor substrate) 140, an electron gun 110 disposed above the vacuum chamber 100, and a vacuum chamber.
  • a vacuum chamber 100 that accommodates a wafer (semiconductor substrate) 140, an electron gun 110 disposed above the vacuum chamber 100, and a vacuum chamber.
  • 1 includes a tray 101 and an XY stage 102 disposed inside 100, and an ammeter 130 electrically connected to the wafer 140 through the tray 101.
  • a wafer 140 is placed on the tray 101, and the positional relationship between the tray 101 and the electron gun 110 is set so that the surface of the wafer 140 is irradiated with the electron beam EB from the electron gun 110. It has been determined.
  • the tray 101 is mounted on the XY stage 102. By moving the position of the tray 101 by the XY stage 102, the irradiation position of the electron beam EB on the wafer 140 can be adjusted.
  • Light and secondary electrons may be used to make the electron beam irradiation position accurate. In that case, the position of the electron beam is determined by capturing an image of light or secondary electrons and performing pattern matching.
  • the electron gun 110 includes an electron beam source 111, and a high voltage power source 120 is connected to the electron beam source 111.
  • a condenser lens 112, an aperture 113, and an objective lens 114 are arranged in this order in the electron gun 110 along the emission direction of the electron flow from the electron beam source 111.
  • this semiconductor analyzer is an AZD converter that converts the current value measured by the ammeter 130 into a digital signal, and a computer that performs arithmetic processing on the A / D converted digital signal. It has. This computer also executes processing for controlling the operation of each part of the device.
  • the amount of the substrate current depends on the amount of the electron beam reaching the wafer 140, and the amount of the electron beam depends on the formation state of the fine structure on the wafer 140 at the irradiation position of the electron beam EB.
  • the thickness of the polysilicon that forms the microstructure is large, and the amount of electron beam that passes through the region decreases. Therefore, the amount of electron beam that reaches the substrate decreases, and as a result, the substrate current induced by the electron beam decreases.
  • the amount of electron beam that passes through the portion where the film thickness of the fine structure is small increases, so that the amount of electron beam reaching the substrate increases, resulting in an increase in the substrate current induced by this electron beam. .
  • the electron beam that has reached the wafer 140 is a force that induces a substrate current.
  • This amount of substrate current depends on the amount of the electron beam that has reached the wafer 140, and the electron beam that has reached the wafer 140. The amount is affected by the microstructure on the wafer 140. Accordingly, the amount of substrate current induced by the electron beam reaching the wafer 140 reflects the formation state of the microstructure, and the shape of the microstructure formed on the wafer 140 from this substrate current is reflected. It becomes possible to know the completed state.
  • the amount of the electron beam EB irradiated to the wafer corresponds to a very weak current amount of about 1 Op A when converted to a current, and is likely to fluctuate due to the influence of environmental changes. For this reason, the measured substrate current value itself is not output as the final measured value, but the ratio of the substrate current amount to the electron beam EB irradiation amount, that is, the substrate current amount is determined by the electron beam irradiation amount. The measured value is output as the final measured value.
  • a chamber matching method according to a first embodiment of the present invention will be described with reference to the drawings.
  • a chamber-matching method will be described using an etching apparatus which is a kind of semiconductor process processing apparatus as an example.
  • one etching apparatus includes two or three chambers, and
  • a mass production factory is provided with a plurality of such etching apparatuses, and individual chambers of these etching apparatuses can be operated independently.
  • a standard memory factory has at least six etchers installed for contact hole etching, each with three chambers.
  • the chamber matching means that the processing characteristics of the etching apparatuses are matched to each other by changing the recipe applied to each etching apparatus.
  • matching the individual processing characteristics of the 18 chambers with each other results in chamber matching.
  • an evaluation wafer having a structure (layout pattern) in which the above-described phenomenon easily appears is formed in a chamber-one pine.
  • Each of a plurality of etching apparatuses to be subjected to ching is prepared, and the measured values of each wafer processed by the plurality of semiconductor process processing apparatuses are compared.
  • FIG. 2 shows a first configuration example of the evaluation wafer used in the present embodiment.
  • a plurality of regions called chips having the same layout pattern are formed in one evaluation wafer WF1.
  • FIG. 4 shows a third configuration example of the evaluation wafer.
  • the product wafer is also used as the evaluation wafer.
  • the above-described evaluation layout pattern required for chamber matching is arranged on a scribe line or a TEG (monitor chip on which a test pattern is arranged) arranged inside the chip. Since product wafers are susceptible to various fluctuations, it is desirable to use multiple product wafers made at the same time as evaluation wafers. As the TEG structure, it is desirable to adopt a structure in which the measurement results are not affected by the ground.
  • FIG. 5 shows a procedure (steps S1 to S4) for measuring a characteristic difference between chambers, which is the first half of the chamber-matching method according to the present embodiment, and elements related to this procedure.
  • chamber matching is performed for three chambers A, B, and C.
  • the evaluation wafers 1, 2, and 3 are introduced into the chambers A, B, and C of the etching apparatus, and each is processed in this etching apparatus using the same recipe (that is, the same process processing conditions).
  • Step S2 the above three wafers for evaluation 1, 2 and 3 are processed using the same recipe by three etching chambers A, B and C, respectively. If you only want to know the difference in the characteristics of the current process processing equipment, use the current process recipe.
  • the three evaluation wafers 1, 2, and 3, which have been etched by the chambers A, B, and C, are stripped of resist and washed as necessary, and then subjected to an electron beam.
  • the process is introduced into the above-described semiconductor analyzer using the induced substrate current (Fig. 1), and various process evaluation quantities are measured under the same measurement conditions for each evaluation wafer (step S3). That is, an electron beam is applied to each of the evaluation wafers 1, 2, and 3 that have been etched.
  • the substrate current induced in each wafer for evaluation by irradiation with the electron beam is measured as a process evaluation amount.
  • the measurement position by the process evaluation apparatus is the same for each chip. For example, when there are 100 chips in one wafer and one evaluation layout pattern is provided in one chip! /, The above is performed at 100 locations per wafer. Measurement is performed using a process evaluation device. This measurement result is used as basic data for chamber matching. From this data, it is possible to quantitatively determine the process distribution in the wafer surface and the difference in characteristics of each chamber due to the layout density.
  • each process evaluation amount measured by the semiconductor analyzer was processed by a computer (not shown), and three chambers A, B, and C were measured by the semiconductor analyzer.
  • Distribution AA, BB, CC of each process evaluation quantity is obtained (step S4).
  • These distributions AA, BB, and CC reflect the unique characteristics of chambers A, B, and C. From these distribution differences, the characteristic differences between chambers A, B, and C can be determined. can do.
  • the measurement result of the process evaluation apparatus is processed and displayed as a distribution, but the measurement result force of the process evaluation apparatus can be grasped for the characteristic difference between each chamber.
  • FIG. 6 shows an example of a recipe used for the etching process.
  • the contents of the process recipe for controlling the etching equipment include the gas flow ratio used in the process, the back pressure (vacuum level) of the chamber, the power of the RF plasma generated in the chamber, the substrate temperature, Parameters such as etching time are defined. Depending on the processing contents of the process equipment, other parameters may be listed in the recipe.
  • FIG. 7 to FIG. 11 show the processing results of the process evaluation amount measurement values obtained by the semiconductor analyzer in the procedure shown in FIG. 5 described above. These processing results are displayed on a display device such as a computer.
  • Fig. 7 shows a distribution of measured values of the above-mentioned process evaluation amount as a contour map.
  • the wafer for evaluation is measured by chambers A, B, and C using the recipe shown in Fig. 6 above. This is the distribution of the process evaluation amount in the wafer plane when the ching process is performed.
  • the etching amount generally shows a concentric distribution in any chamber. However, even if the same recipe is used, the center position of the distribution is biased, and matching between the chambers is not possible. You can see that there is no state.
  • the above contour map corresponding to each chamber is displayed on the same screen so that the characteristics of each chamber can be easily compared with each other on the screen of the computer that calculates the process evaluation value.
  • FIG. 8 shows a frequency diagram (histogram) of the measured values of the process evaluation values obtained by the procedure shown in FIG. 5 described above.
  • A, B and this is the result of etching the evaluation wafer.
  • the etching time is set to 60 seconds.
  • This frequency diagram quantitatively represents the characteristics of each chamber, and is displayed on a computer screen that computes the measured value of the process evaluation amount.
  • the processes are performed so that the processing characteristics of chambers A, B, and C match each other (that is, the processing results of chambers A, B, and C are equal to each other). Change the condition. If it is known that the yield of devices produced using chamber A is high, the center value of the distribution of other chambers B and C is changed to the center value of the distribution of chamber A. By matching, the chambers can be matched.
  • the reaction amount is proportional to time.
  • the process distribution is considered to be maintained in the same state. Therefore, as a method of adjusting the center value of the distribution, there is a method of adjusting the etching time for each chamber to adjust the center value of the distribution.
  • the distribution center values are 100, 80, and 110, respectively.
  • the etching time is changed according to the ratio. For example, the ideal value for the initial set value is automatically calculated from the ratio.
  • the etching times for chambers A, B, and C are changed to 60 seconds, 72.5 seconds, and 54 seconds, respectively.
  • FIG. 9 shows a frequency diagram of the process evaluation amount when the etching time is changed as described above.
  • the central value of the distribution of process evaluation values measured for chambers B and C after changing the etching time is the measured value of the process evaluation value measured for chamber A. In line with the center value of.
  • the difference in characteristics between chambers can be improved. Chamber matching is possible. As a result, the variation in the total process of the three chambers A, B, and C can be reduced, and the yield can be improved.
  • FIG. 10 shows a frequency diagram of the process evaluation amount when the plasma power that affects the in-plane distribution of etching is changed.
  • the plasma power is changed, the surface strength of the electrode generating the plasma changes the plasma intensity distribution on the silicon wafer. Therefore, if the plasma power is adjusted appropriately, the in-plane distribution of the etching equipment can be changed.
  • FIG. 11 shows a frequency diagram of the process evaluation amount when the substrate temperature is changed in consideration of the etching time and the plasma power described above.
  • the substrate temperature is a major factor that determines the chemical reaction rate. Since high throughput is important in the etching equipment, etching starts as soon as the wafer is introduced into the etching equipment. For this reason, if the temperature difference between the outside air temperature and the process chamber is too large, the process starts before the temperature of the silicon wafer becomes uniform, resulting in different chemical reaction rates depending on the location of the wafer. In such a case, the etching distribution can be reduced by bringing the substrate temperature as close to room temperature as possible. Since each device has different thermal resistance, the smallest process distribution can be realized at different substrate temperatures.
  • the chamber matching can be quantitatively and easily performed while checking the process evaluation amount reflecting the characteristics of the semiconductor process processing apparatus.
  • the present invention is used for maintenance of a semiconductor processing apparatus. The case where it applies is demonstrated. In this embodiment, it is determined whether or not maintenance is necessary by checking whether or not the chamber-matching state is maintained.
  • the etching apparatus is operated while scraping the material itself constituting the etching apparatus or depositing a polymer or the like. Therefore, as the operating days elapse, the characteristics of the etching apparatus are increased. Is easy to change.
  • the daily monitor monitors the change, and the daily monitor is performed by using a wafer for the daily monitor so that the characteristics of the etching apparatus can be grasped easily. Based on the results of this daily motor, necessary maintenance such as device adjustment is performed.
  • FIG. 12 shows a daily monitor wafer.
  • a pattern used for forming a monitoring hole by etching is formed in each chip region with a resist.
  • This pattern has a region with a high hole density (a region where holes are densely arranged) and a region with a low hole density (a region where holes are sparsely arranged).
  • FIG. 13 shows the procedure of the daily monitor.
  • the above-mentioned daily monitor wafer is introduced into the etching apparatus, and this etching apparatus is put into operation (step S121).
  • confirmation etching for daily monitoring is performed using a predetermined etching recipe (step S122).
  • the etched wafer is either dry or wet cleaned as necessary to remove the polymer unnecessary for measurement, and then the process current is measured by measuring the substrate current using the semiconductor analyzer described above. Measure (Step S123).
  • various etching evaluation quantities such as a distribution of substrate current values indicating the formation state of holes, a distribution of hole sizes, and a distribution of hole strain are measured.
  • the measurement result of the daily monitor wafer processed when the etching apparatus is in a normal state is recorded in advance as a management value. Compare the control value with the measured value of the daily monitor wafer obtained by etching with the etching device in the current state, and check whether the current state of the etching device is normal, that is, whether maintenance is necessary or not. Is determined (step S124). As a result of this determination, if the measured value deviates from the control value and it is determined that maintenance is necessary, information indicating that maintenance is required is transmitted, and the execution of the maintenance is urged (step S125).
  • FIG. 14 shows the result of daily monitoring of the process evaluation value, and shows the change over time of the measurement value.
  • FIG. 15 shows a method for determining whether the maintenance has been performed normally, that is, whether the maintenance is good or bad.
  • the etching apparatus is in a normally operated state (step S141), and in this state, regular maintenance is performed (step S142), and then confirmation etching is performed by the above-described daily monitor (step S143). .
  • the process evaluation amount of the wafer subjected to the confirmation etching is measured using the above-described semiconductor analyzer (step S 144). This measured value is compared with the above-mentioned control value, and it is judged whether the comparison result force maintenance is good or not, that is, whether the maintenance has been normally performed (step S145).
  • the maintenance is judged as defective and the maintenance is restarted (step S 142).
  • a maintenance confirmation wafer is introduced into the etching apparatus, and etching is performed using a maintenance confirmation process recipe that is determined in advance.
  • the substrate is subjected to a cleaning process as necessary, and then subjected to measurement by the semiconductor analyzer described above to measure the process evaluation amount. Then, if the state of the etching apparatus is normal, it can be confirmed that the etching is actually performed using the above-mentioned maintenance confirmation wafer for examining the performance of the etching apparatus, and that the result is the same as the normal state. Good. The result matches the normal state If so, it is determined that the maintenance has succeeded, and the etching apparatus continues normal operation.
  • the etching apparatus is again maintained.
  • the cause of the abnormality is that the electrode is not installed properly and tilted, the stage is tilted, or the delivered electrode has insufficient flatness or parallelism. There is a force. In that case, the maintenance which corrected the malfunction is performed. Such a cycle is repeated to finally return the etching apparatus to a normal state.
  • FIG. 16 in the above-mentioned database, various measured values obtained by the above-described semiconductor analyzer when the etching apparatus is operating normally are recorded.
  • the example shown in FIG. 16 is an example of measured values obtained by the semiconductor analyzer described above, and shows the distribution of the measured values.
  • the wafer etched by the maintained etching system is measured by the semiconductor analyzer described above, and the measured value is compared with the standard measured value (normal value) used as the control value.
  • the data recorded in the database is displayed in the form of graphs or tables on the computer screen.
  • the frequency of the measured values of the post-maintenance equipment to be compared with the normal state is the standard value used as the control value so that the user can easily check the state of the etching equipment. It is displayed on the screen along with the frequency of the measured value (normal value).
  • the frequency of the measured value normal value.
  • statistics such as the center value of the distribution and the standard deviation indicating the size of the distribution are displayed along with the frequency.
  • FIG. 18 shows an example of management values. It is desirable to obtain this control value using a standard wafer. However, if almost the same structure such as a memory is produced in large quantities and stably, a wafer for mass production can be used. For example, the degree of etching varies depending on the density of the hole, and the same control value may not be used depending on the location of the hole. Therefore, an appropriate management value is set according to the density of the hall or the location of the hall.
  • FIG. 19 shows the measured values of the process evaluation amount for managing the state of the etching apparatus. 1 shows the configuration of a king tracking device.
  • the apparatus shown in FIG. 19 traces the state information accumulated in the database 181 and the database 181 for inputting the state information of the semiconductor processing apparatus such as the etching apparatus from the measurement apparatus such as the semiconductor analysis apparatus described above.
  • the database 181 stores state information of a process apparatus such as an etching apparatus measured using a maintenance confirmation wafer.
  • a process apparatus such as an etching apparatus measured using a maintenance confirmation wafer.
  • each device status information is assigned an identification ID and stored in the database 181 so that the status information of each device can be tracked.
  • FIG. 20 is a graph showing the relationship between the measurement value obtained by the above-described semiconductor analyzer, which is maintenance status information, and the number of maintenance operations.
  • process equipment such as etching equipment does not return to its initial state due to aging, even if normal maintenance such as electrode replacement and chamber internal cleaning is repeated.
  • the status of the device exceeds the lower limit of the control value at the sixth maintenance.
  • the lower limit of this control value indicates a limit value that does not allow the device to return to a normal state during normal maintenance. In this case, the device must be overhauled.
  • FIG. 21 shows a configuration of a maintenance support apparatus for managing the measured value of the process evaluation amount described above and supporting maintenance.
  • a host computer 201 is a higher-level host computer that manages the plant, and is arranged in a management building that manages the entire factory.
  • the measuring device 202 is a semiconductor analyzer that measures a process evaluation amount using the substrate current induced by the electron beam described above, and is installed at each site of a factory.
  • the database 203 is a database that stores state information (that is, a measured value of the process evaluation amount) of each process processing device obtained by the evaluation device 202, and is provided in the measurement device 202 described above.
  • the measured value of the process evaluation amount measured by the measuring device 202 (relating to the state of each process processing device). Information) is uploaded to the host computer that manages the factory as needed. Thereby, each semiconductor process processing apparatus is controlled.
  • the evaluation results of the process evaluation device are displayed quantitatively on the screen and can be checked by anyone. Then, chamber matching can be easily realized using the evaluation result. According to the chamber matching described above, the productivity is improved, and the higher the matching level, the higher the yield. Since the difference between units (machine difference) disappears, unit designation is eliminated, and the effective operating rate of the factory improves.
  • chamber matching can be performed with very high accuracy.
  • the apparatus Since the necessity of maintenance of the semiconductor process processing apparatus can be quantitatively determined, the apparatus can be easily and safely maintained. Further, the matching state of the chamber of the maintained semiconductor process processing apparatus can be maintained well. Since maintenance defects can be prevented, the effective operating rate of the equipment can be improved.
  • the present invention is applicable to all process processing apparatuses such as cleaning, implantation, plating, CVD, heat treatment, and sputtering. Needless to say, the present invention can be applied.
  • the present invention is useful for a semiconductor device or an apparatus used for analysis, manufacturing, measurement, or evaluation in a manufacturing process thereof, and a semiconductor device manufacturing method.
  • the present invention is used in the fields of analysis technology, measurement technology, evaluation technology, inspection technology, and semiconductor device manufacturing apparatus and method using a method of irradiating a semiconductor substrate such as a wafer with an electron beam or ion beam. Can do.

Abstract

 本発明の課題は、微細化が進んだ半導体基板を処理するための半導体プロセス処理装置のチャンバーマッチングを良好に実施することを可能とするチャンバーマッチング方法を提供することにある。  本発明のチャンバーマッチング方法は、予め同等に処理された複数の所定の半導体基板を複数の半導体プロセス処理装置のそれぞれに導入して同一のプロセス処理条件で処理させる第1ステップと、前記複数の半導体プロセス処理装置によって処理された複数の半導体基板のそれぞれに電子ビームを照射し、前記半導体基板のプロセス評価量として前記電子ビームの照射により誘起された基板電流を測定する第2ステップと、前記複数の半導体プロセス処理装置の特性が互いに整合するように、前記プロセス評価量の測定値に基づき前記複数の半導体プロセス処理装置に適用されるプロセス処理条件を変更する第3ステップと、を含む。

Description

明 細 書
チャンバ一マッチング方法、半導体プロセス支援装置、メンテナンス方法 、メンテナンス支援装置
技術分野
[0001] 本発明は、半導体プロセス処理装置の機差による影響を解消するためのチャンバ 一マッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援 装置に関し、半導体プロセス処理装置の処理特性のばらつきを抑えて、半導体プロ セス処理装置の互換性を向上させるための技術に関する。
背景技術
[0002] 半導体製造工場では、研究開発段階における試作と異なり、同じ特性のデバイス が大量に生産される。そのため、各工程では、同一処理を目的とする多数の半導体 プロセス処理装置を並列運転させることにより、処理能力を高めている。
[0003] しかし、一般には、半導体プロセス処理装置は手作りで製造されるため、装置間に いわゆる機差(固体差による処理特性の差)が存在し、同一メーカーの同一機種であ つても各装置の特性は厳密には異なる。そのため、半導体プロセス処理装置ごと〖こ 処理結果は異なり、半導体プロセス処理装置の機差は、デバイス特性のバラツキの 原因となり、歩留まりに甚大な悪影響を与える。
[0004] そこで、従来、半導体プロセス処理装置の機差によるデバイス特性のバラツキを防 止するための方法の一つとして、個々の半導体プロセス処理装置の特性に応じて装 置ごとにレシピを変更することが行われている。このようにレシピを変更することによつ て複数台の半導体プロセス処理装置の処理特性を互いに整合させることを、一般に 、チャンバ一マッチングと呼んでいる。そのような対策の有効性についての評価は、 処理されたデバイス構造を FIB断面解析装置等により解析するか、完成したデバイス の電気特性をテスタで測定することによって行われる。
[0005] また、半導体プロセス処理装置の処理能力は経年変化するため、上述のように、装 置の機差をレシピの変更や装置の組み合わせ等により機差を調整したとしても、その 後の装置の経年変化によって新たな機差が生じる。そこで、そのような経年変化に対 応するために予防的メンテナンスが行われている。例えば、半導体プロセス処理装置 の一種であるエッチング装置などでは 200時間ごとに装置をダウン状態に移行させ て予防的メンテナンスが行われて 、る。
[0006] さらに、予防的メンテナンスを行うことにより半導体プロセス処理装置の特性が基本 変化し、製品の歩留りを低下させる場合がある。そこで、メンテナンス後の半導体プロ セス処理装置を用 ヽて処理されたデバイスの断面構造を解析することによりメンテナ ンスの良否判定を行 ヽ、メンテナンスによって半導体プロセス処理装置の基本特性 が変化して ヽな 、かどうかを確認して 、る。
特許文献 1 :特開 2005— 064128号公報
発明の開示
発明が解決しょうとする課題
[0007] し力し、近年のデバイスサイズの微細化により、従来の FIBや SEM等を用いても、 デバイス構造を解析することが困難になり、上述のチャンバ一マッチングを実施する ために必要なデバイス構造の解析情報がほとんど得られなくなつてきた。
[0008] 例えば、ホールが正常に形成されているかどうか確認するためには、一般には高性 能 FIB等の従来の解析装置を用いてその断面構造を観察するが、ホールサイズが 6 5應と小さくなると、その解析装置のァライメント精度の制限により正確にホール中心 を位置出してホール径を測定することが困難になる。また、ホール底にある数 nmの膜 の残渣も定量的に正確に把握する必要があるが、それも従来の解析装置では検出 が困難な量である。
[0009] このように、上述の FIBや SEM等の従来の解析装置を用いた方法では、チャンバ 一マッチングを実施するために必要な定量指標が得られないため、十分なチャンバ 一マッチングを実施することが出来ないという問題がある。そのため、現状では微細 化が進んだデバイスを処理する半導体プロセス処理装置に関しては有効なチャンバ 一マッチングを実施することができないので、その代わりの対策として、処理に使用 すべき半導体プロセス処理装置を指定するいわゆる"号機指定"と呼ばれる方法がと られる場合がある力 この方法によれば、指定された半導体プロセス処理装置以外の 装置の稼働率が低下し、生産効率の低下を招く。 [0010] また、プロセス処理装置の特性が所望の特性力も乖離すると言う意味では、同様の 問題として、半導体プロセス処理装置のメンテナンスの良否判断に関する問題がある 。即ち、前述のように、半導体プロセス処理装置は経年変化を起こすので、適切なタ イミングで予防的メンテナンスを実施する必要がある力 FIBや SEM等の従来の解 析装置を用いても、そのメンテナンスのためのプロセスの結果として得られるデバイス 構造が微小すぎて、デバイス構造を解析することができない。従って、予防的メンテ ナンスを行っても、このメンテナンスによって半導体プロセス処理装置の基本特性が 変化していないかどうかを有効に確認することができず、メンテナンスの良否判定を 行うことができな 、と!/、う問題がある。
[0011] そのため、現状では、予防的メンテナンスの良否判定はデバイスが完成した後にテ スタを用いた電気的テストによって行っており、全てのプロセスが終了した後でなけれ ば、メンテナンス後の半導体プロセス処理装置の状態を評価することができない。従 つて、通常、半導体の全プロセスは数ケ月のときを要するので、メンテナンスが不十分 な半導体プロセス処理装置を用いてデバイスの製造が続けられると、本来の歩留りが 得られず、大きな損失をもたらすことにもなる。
[0012] 以上より、本発明は、微細化が進んだデバイスのプロセスに使用される複数台の半 導体プロセス処理装置の処理特性を有効に整合させることができるチャンバ一マッチ ング方法を提供することを目的とする。
[0013] また、本発明、微細化が進んだデバイスのプロセスに使用される複数台の半導体プ ロセス処理装置の処理特性を的確に把握することを可能とするメンテナンス支援装 置を提供することを目的とする。
[0014] また、本発明は、微細化が進んだデバイスのプロセス処理に使用される半導体プロ セス処理装置のメンテナンスの要否を的確に判定することを可能とするメンテナンス 方法を提供することを目的とする。
[0015] また、本発明は、微細化が進んだデバイスのプロセス処理に使用される半導体プロ セス処理装置のメンテナンスの良否を的確に判定することを可能とするメンテナンス 方法を提供することを目的とする。
[0016] また、本発明は、微細化が進んだデバイスのプロセス処理に使用される半導体プロ セス処理装置のメンテナンスを支援するメンテナンス支援装置を提供することを目的 とする。
課題を解決するための手段
[0017] 本発明に係るチャンバ一マッチング方法は、予め同等に処理された複数の所定の 半導体基板を複数の半導体プロセス処理装置のそれぞれに導入して同一のプロセ ス処理条件で処理させる第 1ステップと、前記複数の半導体プロセス処理装置によつ て処理された複数の半導体基板のそれぞれに電子ビームを照射し、前記半導体基 板のプロセス評価量として前記電子ビームの照射により誘起された基板電流を測定 する第 2ステップと、前記複数の半導体プロセス処理装置の処理特性が互いに整合 するように、前記プロセス評価量の測定値に基づき前記複数の半導体プロセス処理 装置に適用されるプロセス処理条件を変更する第 3ステップと、を含む。
[0018] この構成によれば、複数の半導体プロセス処理装置によって同一プロセス条件下 でそれぞれ処理された各半導体基板には電子ビームが照射され、この電子ビームの 照射によって半導体基板に誘起された基板電流をプロセス評価量として測定される 。ここで、半導体プロセス処理装置にそれぞれ導入される前の初期状態では、複数 の所定の半導体基板は互いに同等であり、且つ、複数の半導体プロセス処理装置に おいて適用されるプロセス処理条件は同一である。このため、複数の半導体プロセス 処理装置の処理によって上記複数の所定の半導体基板上に形成された各微細構造 には、各半導体プロセス処理装置に固有の特性が反映され、各半導体プロセス処理 装置に応じて微細構造の形成状態が異なる。そこで、上記プロセス評価量の測定結 果に基づき、各半導体プロセス処理装置に適用するプロセス処理条件を適切に修正 変更することにより、各半導体基板に形成される微細構造の形成状態を互いに整合 させることが可能〖こなる。従って、微細化が進んだデバイスのプロセスに使用される 各半導体プロセス処理装置間に特性差が存在しても (即ち機差が存在しても)、各半 導体プロセス処理装置の処理特性を有効に整合させることが可能になる。
[0019] 本発明に係る半導体プロセス支援装置は、複数の半導体プロセス処理装置によつ てそれぞれ処理された複数の半導体基板に電子ビームを照射し、前記電子ビーム の照射により誘起された基板電流を測定することにより前記複数の半導体基板に形 成された各微細構造を解析する解析装置と、前記解析装置による解析結果を蓄積 する情報蓄積手段と、前記データベースに蓄積された前記解析結果を統計処理す る情報処理手段と、前記情報処理部により統計処理された前記解析結果を前記半 導体プロセス処理装置に対応づけて比較表示する情報表示手段とを備える。
[0020] この構成によれば、半導体プロセス処理装置によって処理された半導体基板は、 電子ビームの照射によって誘起される基板電流を利用する解析装置によって解析さ れ、この解析結果は、情報蓄積手段に蓄積されると共に情報処理手段によって統計 処理される。この統計処理結果は、半導体プロセス処理装置と対応づけられて情報 表示手段により比較表示される。従って、この比較表示の内容から、微細化が進んだ デバイスのプロセスに使用される各半導体プロセス処理装置の状態を的確に把握す ることが可能になる。
[0021] 本発明に係るメンテナンス方法は、メンテナンスの対象である半導体プロセス処理 装置に所定の半導体基板を導入し、該半導体基板を所定のプロセス処理条件で前 記半導体プロセス処理装置に処理させる第 1ステップと、前記半導体プロセス処理装 置によって処理された前記半導体基板に電子ビームを照射し、前記電子ビームの照 射により誘起された基板電流を測定することにより前記半導体基板に形成された微 細構造を解析する第 2ステップと、前記解析の結果に基づき前記半導体プロセス処 理装置のメンテナンスの要否を判定する第 3ステップと、を含む。
[0022] この構成によれば、半導体プロセス処理装置によって処理された半導体基板は、 電子ビームの照射によって誘起される基板電流を利用する解析装置によって解析さ れ、この基板電流を利用した解析結果は、情報蓄積手段に蓄積されると共に情報処 理手段によって統計処理される。この統計処理結果は、半導体プロセス処理装置と 対応づけられて情報表示手段により比較表示される。従って、この比較表示の内容 から、微細化が進んだデバイスのプロセスに使用される各半導体プロセス処理装置 の要否を的確に把握することが可能になる。
[0023] 本発明に係るメンテナンス方法は、半導体プロセス処理装置をメンテナンスする第 1ステップと、メンテナンス後の前記半導体プロセス処理装置にメンテナンス用の所定 の半導体基板を導入し、該半導体基板を所定のプロセス処理条件で前記半導体プ ロセス処理装置に処理させる第 2ステップと、前記半導体プロセス処理装置によって 処理された前記半導体基板に電子ビームを照射し、前記電子ビームの照射により誘 起された基板電流を測定することにより前記半導体基板に形成された微細構造を解 析する第 3ステップと、前記解析の結果を所定の管理値と比較することにより前記半 導体プロセス処理装置のメンテナンスの良否を判定する第 4ステップと、を含む。
[0024] この構成によれば、半導体プロセス処理装置によって処理された半導体基板上の 微細構造は、電子ビームの照射によって誘起される基板電流を利用して解析される 。この基板電流を利用した解析結果は、所定の管理値と比較され、例えば解析結果 が管理範囲内にない場合にはメンテナンスが必要であると判定される。従って、この 判定結果から、微細化が進んだデバイスのプロセスに使用される各半導体プロセス 処理装置のメンテナンスの良否を的確に把握することが可能になる。
[0025] 本発明に係るメンテナンス支援装置は、電子ビームの照射により誘起される基板電 流を利用してメンテナンス後の半導体プロセス処理装置の特性を評価する評価装置 と、前記評価装置によって得られた前記半導体プロセス処理装置の特性に関する評 価結果を蓄積するデータベースと、前記半導体基板のプロセスに関与する各種の半 導体プロセス処理装置を管理するホストコンピュータと通信するための通信手段とを 備え、前記評価装置は、前記データベースに蓄積された評価結果を、前記通信手段 を介して前記ホストコンピュータにアップロードするように構成される。
[0026] この構成によれば、微細化が進んだデバイスのプロセスに使用される半導体プロセ ス処理装置のメンテナンス後の特性がデータベースとして保存され、必要に応じてホ ストコンピュータにアップロードされる。従って、各半導体プロセス処理装置のメンテナ ンスの状態を適切に管理することが可能になる。
発明の効果
[0027] 本発明によるチャンバ一マッチング方法によれば、電子ビームの照射によって誘起 される基板電流を利用した解析手法を導入したので、微細化が進んだデバイスのプ ロセスに使用される複数台の半導体プロセス処理装置の特性差を定量的に評価す ることができ、それら装置の処理特性を有効に整合させることができる。
[0028] 本発明のメンテナンス支援装置によれば、電子ビームの照射によって誘起される基 板電流を利用した解析手法を導入したので、微細化が進んだデバイスのプロセスに 使用される複数台の半導体プロセス処理装置の処理特性を的確に把握することがで きる。
[0029] また、本発明のメンテナンス方法によれば、電子ビームの照射によって誘起される 基板電流を利用した解析手法を導入したので、微細化が進んだデバイスのプロセス 処理に使用される半導体プロセス処理装置のメンテナンスの要否を的確に判定する ことができる。
[0030] また、本発明のメンテナンス方法によれば、電子ビームの照射によって誘起される 基板電流を利用した解析手法を導入したので、微細化が進んだデバイスのプロセス 処理に使用される半導体プロセス処理装置のメンテナンスの良否を的確に判定する ことができる。
[0031] また、本発明のメンテナンス支援装置によれば、電子ビームの照射によって誘起さ れる基板電流を利用した評価手法を導入したので、微細化が進んだデバイスのプロ セス処理に使用される半導体プロセス処理装置のメンテナンスを支援することができ る。
なお、電子ビームの照射によって生じる二次電子や X線あるいは熱や温度などの変 化を基板電流と同時に使用しても良い事は明白である。
図面の簡単な説明
[0032] [図 1]本発明の実施形態で使用する半導体分析装置の構成を示す図である。
[図 2]本発明の第 1実施形態に係るチャンバ一マッチングで使用されるウェハー(半 導体基板)の第 1構成例を説明するための図である。
[図 3]本発明の第 1実施形態に係るチャンバ一マッチングで使用されるウェハー(半 導体基板)の第 2構成例を説明するための図である。
[図 4]本発明の第 1実施形態に係るチャンバ一マッチングで使用されるウェハー(半 導体基板)の第 3構成例を説明するための図である。
[図 5]本発明の第 1実施形態に係るチャンバ一マッチングの手順を説明するための図 である。
[図 6]本発明の第 1実施形態に係るチャンバ一マッチングで使用されるレシピの一例 を示す図である。
[図 7]本発明の第 1実施形態に係るチャンバ一マッチングにおいて測定されたプロセ ス評価量の測定値の等高線図である。
[図 8]本発明の第 1実施形態に係るチャンバ一マッチングにおいて測定されたプロセ ス評価量の測定値の分布 (標準のレシピ使用)を示す図である。
[図 9]本発明の第 1実施形態に係るチャンバ一マッチングにおいて測定されたプロセ ス評価量の測定値の分布 (エッチング時間を変更)を示す図である。
[図 10]本発明の第 1実施形態に係るチャンバ一マッチングにおいて測定されたプロ セス評価量の測定値の分布(プラズマパワーとエッチング時間を変更)を示す図であ る。
圆 11]本発明の第 1実施形態に係るチャンバ一マッチングにおいて測定されたプロ セス評価量の測定値の分布 (プラズマパワーと基板温度とエッチング時間を変更)を 示す図である。
圆 12]本発明の第 2実施形態に係るメンテナンス方法で使用されるウェハー(半導体 基板)の構成例を説明するための図である。本発明の第 5実施形態に係る電流測定 装置を示す図である。
圆 13]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの要否の判定方 法)を説明するための図である。
圆 14]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの要否の判定方 法)にお 、て得られるプロセス評価量の測定値の経時変化を示す図である。
圆 15]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)を説明するための図である。
圆 16]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)にお 、て判別の基準とされる標準的な測定値の分布を示す図である。
圆 17]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)にお 、て判別の基準とされる標準的な測定値の分と実際の測定値の分布を示す 図である。
圆 18]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)における判定基準の一例を示す図である。
[図 19]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)によって得られる情報をトラッキングするためのトラッキング装置の構成例を示す 図である。
[図 20]本発明の第 2実施形態に係るトラッキング装置を利用したメンテナンスの要否 の判定例を説明するための図である。
[図 21]本発明の第 2実施形態に係るメンテナンス方法 (メンテナンスの良否の判定方 法)によって得られる情報を管理してメンテナンスを支援するためのメンテナンス支援 装置の構成を示す図である。
符号の説明
[0033] 1, 2, 3 ウェハー(半導体基板)
A, B, C チャンバ一(半導体プロセス処理装置)
AA, BB, CC プロセス評価量の測定値の分布
S1〜S5, S121〜S125, S141〜S146 ステップ
発明を実施するための最良の形態
[0034] 本発明の各実施形態を説明する前に、本発明の各実施形態において使用する半 導体分析装置について説明しておく。
図 1に、本発明の各実施形態において使用する半導体分析装置の構成を概略的 に示す。この半導体分析装置の基本原理は、例えば前述の特開 2005— 064128号 公報に開示された半導体評価装置と同様であり、電子ビームの照射によってウェハ 一(半導体基板)に誘起された基板電流を測定することにより、ウェハー上に形成さ れた微細構造を定量的に分析するものである。
[0035] 同図に示すように、この半導体分析装置は、ウェハー(半導体基板) 140を収容す る真空チャンバ一 100と、真空チャンバ一 100の上部に配置された電子銃 110と、真 空チャンバ一 100の内部に配置されたトレイ 101及び XYステージ 102と、上記トレィ 101を介してウェハー 140に電気的に接続された電流計 130とから構成される。
[0036] 上記トレィ 101にはウェハー 140が載置され、このウェハー 140の表面に電子銃 1 10から電子ビーム EBが照射されるように、トレイ 101と電子銃 110との位置関係が設 定されている。トレイ 101は XYステージ 102上に取り付けられており、 XYステージ 10 2によりトレイ 101の位置を移動させることにより、ウェハー 140に対する電子ビーム E Bの照射位置を調整することが可能となって 、る。電子ビーム照射位置を正確にする ために、光や二次電子を利用する事もある。その場合には、光あるいは二次電子に よる画像を取り込み、パターンマッチングなどを行うことにより、電子ビーム位置を決 定する。
[0037] 電子銃 110は電子ビーム源 111を備え、電子ビーム源 111には高圧電源 120が接 続されている。また、電子銃 110には、上記電子ビーム源 111からの電子流の放出 方向に沿って、コンデンサレンズ 112、ァパチヤ一 113、対物レンズ 114がこの順に 配置されている。さらに、本半導体分析装置は、図示しないが、電流計 130で測定さ れた電流値をデジタル信号に AZD変換する AZD変換器と、 A,D変換されたデジ タル信号を演算処理するためのコンピュータを備えている。このコンピュータは、本装 置の各部の動作を制御するための処理も実行する。
[0038] 次に、本半導体分析装置の動作原理を説明する。
ウェハー 140に一定量の電子ビーム EBを照射すると、ウェハー 140に基板電流が 誘起される。この基板電流の量はウェハー 140に到達する電子ビームの量に依存し 、この電子ビームの量は、電子ビーム EBの照射位置におけるウェハー 140上の微細 構造の形成状態に応じたものとなる。例えば、微細構造をなすポリシリコンの膜厚が 大き 、部位では電子ビームの通過量が減少するため、基板に到達する電子ビーム の量が少なくなる結果、この電子ビームによって誘起される基板電流が少なくなる。こ れに対し、微細構造の膜厚が小さい部位では、電子ビームの通過量が増加するため 、基板に到達する電子ビームの量が多くなる結果、この電子ビームによって誘起され る基板電流が多くなる。
[0039] このように、ウェハー 140に到達した電子ビームは基板電流を誘起する力 この基 板電流量は、ウェハー 140に到達した電子ビーム量に応じたものとなり、ウェハー 14 0に到達する電子ビーム量はウェハー 140上の微細構造の影響を受ける。従って、 ウェハー 140に到達した電子ビームによって誘起される基板電流量には微細構造の 形成状態が反映され、この基板電流からウェハー 140上に形成された微細構造の形 成状態を知ることが可能となる。
[0040] なお、ウェハーに照射される電子ビーム EBの量は、電流に換算すると約 1 Op Aの 極めて微弱な電流量に相当し、環境変化の影響を受けて変動しやすい。このため、 測定された基板電流値そのものを最終的な測定値として出力するのではなぐ電子 ビーム EBの照射量に対する基板電流量の比率、即ち、基板電流量を電子ビームの 照射量で規格ィ匕した値を最終的な測定値として出力する。
以上で、各実施形態で使用される半導体分析装置を説明した。
[0041] [第 1実施形態]
以下、図面を参照して、本発明の第 1実施形態に係るチャンバ一マッチング方法を 説明する。本実施形態では、半導体プロセス処理装置の一種であるエッチング装置 を例とし、そのチャンバ一マッチングの方法を説明する。
[0042] 一般に、 1台のエッチング装置は 2台あるいは 3台のチャンバ一を備えており、かつ
、量産工場ではそのようなエッチング装置が複数台配備されているのが通例であり、 これらエッチング装置の個々のチャンバ一は独立に稼動可能になっている。例えば、 メモリーの標準的な工場には、コンタクトホールのエッチングのために少なくとも 6台の エッチング装置が設置されており、各エッチング装置は 3台のチャンバ一を備えてい る。
[0043] 本実施形態では、チャンバ一マッチングとは、各エッチング装置に適用されるレシ ピを変更することによって、チャンバ一を単位として各エッチング装置の処理特性を 相互に整合させることを意味する。上述の例では、 18台のチャンバ一の個々の処理 特性を互いに整合させることがチャンバ一マッチングをとることになる。
[0044] エッチング装置間の処理特性の差に起因する現象としては、マイクロローデイング 効果と呼ばれる加工対象の粗密の度合いによってエッチング速度が変化する現象や 、チャンバ一の中央部と周辺部とでエッチングレートに差が生じる現象や、エッチング 装置の出入口の方向に沿ってエッチングレートが変化するの現象など 、ろ 、ろ知ら れている。
[0045] 本実施形態では、チャンバ一マッチングを正確に実施するために、上述の現象が 現れやすい構造(レイアウトパターン)を有した評価用のウェハーを、チャンバ一マツ チングの対象となる複数のエッチング装置それぞれにつ 、て準備し、これら複数の半 導体プロセス処理装置で処理された各ウェハーの測定値を比較する。
[0046] 図 2に、本実施形態において使用する評価用ウェハーの第 1構成例を示す。同図 に示すように、 1枚の評価用ウェハー WF1内には同一レイアウトパターンを持つ複数 のチップと呼ばれる領域が形成されている。この例では、マイクロローデイング効果を 顕在化させるために、 1つのチップの中に、ホール密度の高い領域とホール密度の 低 、領域とを含むレイアウトパターンが存在し、必要に応じてホールサイズも異なった ものが設定されている。
[0047] 以上のような評価用のレイアウトパターンをシリコン酸化膜や低誘電率薄膜等のェ ツチング対象となる膜の上のレジストに形成し、上記レイアウトパターンを有するレジ ストが形成されたウェハーを少なくともチャンバ一の数だけ用意する。チャンバ一間 の特性差を厳密に比較するためには、複数の評価用のウェハーの初期状態が厳密 に等しい必要がある。これらの評価用のウェハーの状態はその後に行われるプロセ スの初期状態を規定するので、レジストのレイアウトパターンやその下地の構造が厳 密に同じ形状を持つように十分に注意して準備する。このように、予め同様に処理さ れて同様の構造を有する複数の評価用のウェハー (所定の半導体基板)を準備する
[0048] 図 3に、評価用ウェハーの第 2構成例を示す。この例では、実際の製品ウェハーを 評価用ウェハーとして使用し、製品チップのパターンを評価用のレイアウトパターンと して利用する。例えば、メモリー製品のように、同一レイアウトパターンを有する製品 が定常的に同じ頻度で生産されており、そのチップの中にチャンバ一マッチングの評 価用レイアウトパターンとして利用できるパターンが含まれている場合は、そのチップ の中の特定の場所を選択して評価してもよ 、。
[0049] 通常、製品ウェハーは下地に拡散領域やトランジスタなどの複雑な構造を含むの で、初期状態が全く同じ複数のウェハーを入手することは困難である。そこで、製品 ウェハーを用いる場合には、その量産時に、その一部を評価用ウェハーとして大量 に作成しておき、真空中あるいは不活性ガスなどの容器中に保管しておき、チャンバ 一マッチングの際に取り出して使用すればよい。 [0050] 図 4に、評価用ウェハーの第 3構成例を示す。この例でも、製品ウェハーを評価用 ウェハーとして使用する。ただし、この例では、スクライブラインあるいはチップ内部に 配置された TEG (テストパターンが配置されたモニタ用チップ)に、チャンバ一マッチ ングに必要とされる上述の評価用のレイアウトパターンを配置する。製品ウェハーは 種々の変動の影響を受けやすいので、同一時期に作られた複数の製品ウェハーを 評価用ウェハーとして利用することが望ましい。 TEGの構造としては、測定結果が下 地の影響を受けな 、ような構造を採用することが望まし 、。
[0051] 図 5に、本実施形態によるチャンバ一マッチング方法の前半の段階であるチャンバ 一間の特性差を測定する手順 (ステップ S1〜S4)と、この手順に関連する要素を示 す。この例では、 3つのチャンバ一 A, B, Cについてチャンバ一マッチングを実施す る。
先ず、上述の評価用ウェハー (または評価用レイアウトパターンを有する製品用ゥ ェハー)を、少なくともチャンバ一マッチングの対象となるチャンバ一の台数分だけ準 備する(ステップ Sl)。この例では、チャンバ一は 3台であるから、 3枚のチャンバ一マ ツチング用の評価用ウェハー 1, 2, 3を準備する。エッチング装置をチャンバ一マツ チングの対象とする場合、評価用ウェハー 1, 2, 3は、レジストパターンつきのウェハ 一であり、上述したように、予め同様に処理されて同様の構造を有している。
[0052] 続いて、評価用ウェハー 1, 2, 3をエッチング装置のチャンバ一 A, B, Cに導入し、 それぞれ同一レシピ(即ち同一のプロセス処理条件)を用いて、このエッチング装置 にプロセス処理を行わせる(ステップ S2)。この例では、 3つのエッチングチャンバ一 A, B, Cにより同一レシピを用いてそれぞれ上記 3枚の評価用ウェハー 1, 2, 3にプ ロセス処理を施す。なお、現状のプロセス処理装置の特性差を知るだけであれば、 現行のプロセスレシピを用いてもょ 、。
[0053] 次に、チャンバ一 A, B, Cによってエッチング処理が終了した 3枚の評価用ウェハ 一 1, 2, 3を、必要に応じて、レジストを剥離し、洗浄した後、電子ビームによって誘 起される基板電流を利用した前述の半導体分析装置(図 1)に導入し、各評価用ゥェ ハーに対して同一の測定条件で種々のプロセス評価量を測定する (ステップ S3)。即 ち、エッチング処理された評価用ウェハー 1, 2, 3のそれぞれに対して電子ビームを 照射し、この電子ビームの照射によって各評価用ウェハーに誘起された基板電流を 、プロセス評価量として測定する。
[0054] ここで、上述のプロセス評価量の代表例としては、ホールの位置、ホールトップ径、 ホールボトム径、ホール傾斜角、基板電流量、ホールボトム残渣量、ホール歪量、基 板電流の時間推移などがある。上記プロセス評価装置による測定位置は、各チップ について同一である。例えば、 1枚のウェハーの中に 100個のチップがあって、 1つ のチップの中に評価用レイアウトパターンが 1箇所設けられて!/、る場合、 1枚のウェハ 一当たり 100箇所で上記プロセス評価装置を用いた測定を行う。この測定結果は、 チャンバ一マッチングを行うための基礎データとされる。このデータからウェハー面内 のプロセス分布の様子やレイアウト粗密による各チャンバ一の特性差を定量ィ匕するこ とがでさる。
[0055] 次に、図示しないコンピュータにより、上記半導体分析装置で測定された各プロセ ス評価量を演算処理して、 3つのチャンバ一 A, B, Cについて、上記半導体分析装 置により測定された各プロセス評価量の分布 AA, BB, CCを得る(ステップ S4)。こ れら分布 AA, BB, CCには、上記チャンバ一 A, B, Cの固有の特性が反映されてお り、この分布の違いから、チャンバ一 A, B, C間の特性差を把握することができる。こ の例では、上記プロセス評価装置の測定結果を演算処理して分布として表示して 、 るが、上記プロセス評価装置の測定結果力 各チャンバ一間の特性差を把握するこ とも可能である。
以上により、本実施形態によるチャンバ一マッチング方法の前半の段階であるチヤ ンバ一間の特性差を測定する手順について説明した。
[0056] 図 6に、エッチング処理に使用されるレシピの一例を示す。この例では、エッチング 装置を制御するためのプロセスレシピの内容として、プロセスに利用するガス流量比 、チャンバ一の背圧 (真空度)、チャンバ一内で発生させる RFプラズマのパワー、基 板温度、およびエッチング時間等のパラメータが規定されている。プロセス処理装置 の処理内容によっては、他のパラメータがレシピに列挙される場合もある。
[0057] 次に、本実施形態によるチャンバ一マッチング方法の後半の段階であるプロセス処 理条件の変更手順について説明する。 この段階では、上述の前半の段階で得られた上記プロセス評価量の測定値に基 、 て、複数のエッチング装置のチャンバ一 A, B, Cの特性が互いに整合するように、複 数のチャンバ一 A, B, Cに適用される各プロセス処理条件を変更する。
[0058] 図 7ないし図 11に、上述の図 5に示す手順において半導体分析装置によって得ら れたプロセス評価量の測定値の処理結果を示す。これらの処理結果は、コンピュータ 等の表示装置に表示される。
[0059] 図 7は、上述のプロセス評価量の測定値の分布を等高線図として表したものであり 、上述の図 6に示すレシピを用いてチャンバ一 A, B, Cにより評価用ウェハーをエツ チング処理した場合のプロセス評価量のウェハー面内での分布である。この例では、 概略的には何れのチャンバ一につ 、てもエッチング量は同心円状の分布を示すが、 同一のレシピを用いても、分布の中心位置に偏りがあり、チャンバ一マッチングがとら れた状態にはな 、ことが分かる。プロセス評価量の測定値を演算処理するコンビユー タの画面上には、各チャンバ一の特性を互いに比較しやすいように、各チャンバ一に 対応する上記等高線図が同一画面上に表示される。
[0060] 図 8は、上述の図 5に示す手順で得られたプロセス評価量の測定値の頻度図(ヒス トグラム)を表したものであり、上述の図 6に示すレシピを用いてチャンバ一 A, B, こ より評価用ウェハーをエッチング処理した場合のものである。この例では、エッチング 時間が 60秒に設定されている。この頻度図は、各チャンバ一の特性を定量的に表し ており、上記プロセス評価量の測定値を演算処理するコンピュータ画面上に表示さ れる。
[0061] 図 8から理解されるように、各チャンバ一は同じ初期状態の評価用ウェハーを同じ レシピで処理したにもかかわらず、中心値も分布形状も異なっている。このような測定 結果を示すチャンバ一 A, B, Cは特性差を有し、チャンバ一マッチングの状態には ない。この状態で各エッチング装置を稼動させれば、最終的に製造される製品ゥェ ハーは、非常に幅の広い特性分布を持つことになり、その分布が管理値を超えれば 、不良品が多発することになる。
[0062] そこで、良品を得るため、チャンバ一 A, B, Cの各処理特性が互いに整合するよう に(即ち、チャンバ一 A, B, Cによる各処理結果が互いに同等になるように)プロセス 条件を変更する。いま、チャンバ一 Aを使用して生産されたデバイスの歩留まりが高 いことが知られているとすれば、他のチャンバ一 B, Cによる分布の中心値をチャンバ 一 Aの分布の中心値に合わせることによりチャンバ一マッチングを取ることができる。
[0063] ここで、多くの化学反応プロセスは時間に関して反応量は比例関係がある。つまり、 エッチングの時間を変えても、プロセス分布は同じ状態に維持されると考えられる。そ こで、分布の中心値を合わせる方法として、エッチング時間をチャンバ一ごとに調節 して分布の中心値を合わせる方法がある。図 8に示す例では、分布の中心値が合う 前の初期のチャンバ一 A, B, Cについて、分布の中心値はそれぞれ 100, 80、 110 であるが、チャンバ一 B, Cの中心値をチャンバ一 Aの中心値 100に合わせるために 、その比率に応じてエッチング時間を変更する。例えば、初期の設定値に対して理 想とされる値を比率から自動計算する。この例では、変更後のレシピでは、チャンバ 一 A, B, Cのそれぞれについてエッチング時間が 60秒、 72. 5秒、 54秒に変更され ている。
[0064] 図 9に、上述のようにエッチング時間を変更した場合のプロセス評価量の頻度図を 示す。この図から分力るように、エッチング時間を変更した後のチャンバ一 B, Cにつ いて測定されたプロセス評価量の分布の中心値は、チャンバ一 Aについて測定され たプロセス評価量の測定値の中心値と一致して 、る。このようにプロセス評価量の測 定値の分布や頻度を参照してレシピの一部を適宜変更し、分布や頻度の中心値を 合わせることにより、チャンバ一間の特性差を改善することができ、チャンバ一マッチ ングをとることができる。この結果、 3つのチャンバ一 A, B, Cのトータルプロセスのば らっきを小さくすることができ、歩留まりを向上させることができる。
[0065] 図 10に、エッチングの面内分布に影響を与えるプラズマパワーを変更した場合の プロセス評価量の頻度図を示す。プラズマのパワーを変えると、プラズマを発生させ ている電極面力 シリコンウェハーへのプラズマ強度分布が変化する。そのため、プ ラズマパワーを適切に調整すると、エッチング装置の面内分布を変えることが出来る
[0066] ただし、プラズマパワーを変更するとエッチングの速度も同時に変化するので、それ を補うようにエッチング時間を変更して中心値が所望の値に維持されるようにする。図 10に示す例では、チャンバ一 A, B, Cのプラズマパワー AP, BP, CPに対し、エッチ ング時間として 60秒、 80秒、 50秒をそれぞれ設定している。このようにプラズマパヮ 一とエッチング時間との組み合わせを最適化することにより、初期のチャンバ一マツ チング状態よりも上記プロセス評価量の測定値の分布そのものをお互いに一致させ 、かつ、その中心値も一致させることができる。
[0067] 上述の分布と中心値を一致させることができれば、チャンバ一マッチングを行わな い場合に比較して、 3つのエッチング装置 A, B, Cでそれぞれ処理された製品のばら つきは非常に小さくなり、何れのエッチング装置を使用しても、歩留まりを向上させる ことが可能となる。また、いわゆる号機指定を行う必要がなくなるため、各エッチング 装置の稼働率を向上させることもできる。
[0068] 図 11に、上述のエッチング時間とプラズマパワーにカ卩え、基板温度を変更した場合 のプロセス評価量の頻度図を示す。基板温度は化学反応速度を決定する主要因子 である。エッチング装置では高いスループットが重要なので、エッチング装置に外部 力もウェハーが導入されるとすぐにエッチングが開始される。そのため、外気温とプロ セスチャンバ一の温度差があまりに大きいと、シリコンウェハーの温度が均一になる 前にプロセスが開始されてしまい、ウェハーの場所によって異なった化学反応速度を 起こすこととなる。このような場合、基板温度を可能な限り室温に近づけると、エツチン グ分布を小さくすることが出来る。装置ごとに熱抵抗がことなるので、異なった基板温 度が一番小さなプロセス分布が実現できる。
[0069] 図 11に示す例では、プラズマパワー、基板温度、エッチング時間の組み合わせを エッチング装置ごとに変更することで、上記プロセス評価量の頻度分布をより急峻に し、かつ、その中心値を合わせることに成功している。もちろん他のエッチングパラメ ータを変更してチャンバ一マッチングを行ってもょ 、。
このように本実施形態によれば、半導体プロセス処理装置の特性を反映するプロセ ス評価量を確認しながら、チャンバ一マッチングを定量的かつ容易に実施することが できる。
[0070] [第 2実施形態]
本発明の第 2実施形態として、本発明を半導体プロセス処理装置のメンテナンスに 適用する場合を説明する。本実施形態では、チャンバ一マッチングの状態が維持さ れて 、るかどうかを確認して、メンテナンスの要否を判定する。
[0071] プロセス処理装置の中でも、特にエッチング装置は、エッチング装置を構成する部 材自体を削りながら、あるいはポリマー等を堆積しながら運用されるため、運用日数 の経過に伴って、エッチング装置の特性が変化しやすい。その変化をモニターする のがデイリーモニターであり、デイリーモニターは、エッチング装置の特性を用意に把 握できるようなデイリーモニター用のウェハーを利用して行われる。このデイリーモ- ターの結果に基づ 、て、装置の調整などの必要なメンテナンスが行われる。
[0072] 図 12は、デイリーモニター用ウェハーを示している。この例では、各チップ領域に、 エッチングによりモニター用のホールを形成するために使用されるパターンがレジスト で形成されている。このパターンには、ホールの密度が高い領域(ホールが密に配置 された領域)と、ホール密度が低い領域 (ホールが疎に配置された領域)とがある。
[0073] 図 13に、デイリーモニターの手順を示す。
先ず、エッチング装置に上述のデイリーモニター用ウェハーを導入し、このエツチン グ装置を運転状態とする (ステップ S121)。次に、予め決められたエッチングレシピを 用いて、デイリーモニターのための確認エッチングを行う(ステップ S122)。エツチン グされたウェハーは測定に不要なポリマーを除去するために必要に応じて乾式ある いは湿式洗浄され、その後、前述の半導体分析装置を用いて基板電流を測定するこ とによりプロセス評価量を測定する (ステップ S 123)。これにより、ホールの形成状態 を示す基板電流値の分布、ホールサイズの分布、ホール歪の分布など、各種のエツ チング評価量が測定される。
[0074] データベースには、あらかじめ、エッチング装置が正常状態にある時に処理された デイリーモニター用ウェハーの測定結果が管理値として記録されている。その管理値 と、現在の状態のエッチング装置によりエッチングして得られたデイリーモニター用ゥ ェハーの測定値を比較し、エッチング装置の現在の状態が正常か否か、即ちメンテ ナンスが必要力否かを判定する (ステップ S 124)。この判定の結果、測定値が管理 値から乖離しており、メンテナンスが必要と判断された場合、メンテナンスを必要とす る旨の情報を発信し、メンテナンスの実施を促す (ステップ S 125)。 [0075] 図 14は、プロセス評価量の測定値をデイリーでモニターした結果を示し、上記測定 値の経時変化を示している。この例では、 6日目に測定値が管理値よりも低い値を示 しているので、この時点で装置状態は正常ではない。そこで、メンテナンスが必要で あると判断し、メンテナンスの実施を促す。このような経時変化のモニターを全てのプ ロセス評価量について行う。また、管理値は、各プロセス評価値ごとに適切に設定さ れる。
[0076] 図 15は、メンテナンスが正常に行われたかどうか、即ちメンテナンスの良否を判定 するための方法を示している。
先ず、エッチング装置は通常運転された状態とされ (ステップ S141)、この状態で 定期的なメンテナンスが行われ (ステップ S142)、その後、上述のデイリーモニターに より確認エッチングが行われる(ステップ S 143)。そして、確認エッチングされたゥェ ハーのプロセス評価量を前述の半導体分析装置を用いて測定する (ステップ S 144) 。この測定値は前述の管理値と比較され、この比較結果力 メンテナンスの良否、即 ちメンテナンスが正常に行われたかどうかが判断される (ステップ S 145)。ここで、デ イリ一モニターによりプロセス評価量の測定値が管理値から乖離し、装置状態に異常 が発見された場合、メンテナンスが不良と判断され、メンテナンスがやり直される (ステ ップ S 142)。
[0077] エッチング装置のメンテナンスでは、種々の電極の交換、チャンバ一内部の掃除、 0リング等の交換、流量計の交換、ウェハーホルダーの交換等、装置の状態に応じ て種々の保守作業が実施される。メンテナンスの目的は、プロセス処理装置の状態を 異常状態から正常状態に戻すことである。
[0078] 上述のように、本実施形態では、メンテナンスが終了した後に、メンテナンス確認用 のウェハーをエッチング装置に導入し、あら力じめ決められたメンテナンス確認用の プロセスレシピにてエッチングを行う。エッチング後、必要に応じて洗浄プロセスを経 た後、前述の半導体分析装置による測定に供せられ、プロセス評価量が測定される 。そして、エッチング装置の状態が正常かどうかは、エッチング装置の性能を調べる ための上述のメンテナンス確認ウェハーを用いて実際にエッチングを実行し、その結 果が正常時と同じであることが確認出来ればよい。その結果が正常状態時と一致し ていれば、メンテナンスは成功したと判断され、エッチング装置は通常運転を «I続す る。一方、その結果が正常値と異なる場合には、メンテナンスは成功していないと判 断され、再度、エッチング装置のメンテナンスが実施される。例えば異常の原因として は電極の取り付け方が不備で傾いていたと力、ステージが傾いていたと力、あるいは 納品された電極などの平面度や平行度が不足して 、たとか、配線が適切でな力つた などがある。その場合にはその不具合を修正したメンテナンスを行う。このようなサイク ルを繰り返して、最終的にエッチング装置を正常状態に復帰させる。
[0079] 図 16に示すように、上述のデータベースには、エッチング装置が正常に動作してい たときの前述の半導体分析装置による種々の測定値が記録されている。図 16に示し た例は、前述の半導体分析装置による測定値の一例であり、その測定値の分布を示 して 、る。メンテナンスされたエッチング装置によってエッチングされたウェハーを前 述の半導体分析装置で測定し、その測定値を管理値として使用される標準の測定値 (正常値)と比較する。図 16に示したように、データベースに記録されているデータは コンピュータ画面上にグラフあるいは表の形式で表示される。
[0080] 図 17に示すように、ユーザーが容易にエッチング装置の状態を確認できるように、 正常状態と比較されるべきメンテナンス後の装置の測定値の頻度は、管理値として 使用される標準の測定値 (正常値)の頻度と共に画面に表示される。エッチング装置 の台数が複数の場合には、全てのエッチング装置にっ 、て頻度を同時に表示する 力 あるいは表示すべき装置を選択して比較表示させることができる。この例では、頻 度とともに、分布の中心値や、分布の大きさを示す標準偏差などの統計値が表示さ れている。
[0081] 図 18は、管理値の例を示している。この管理値は標準ウェハーを用いて取得する ことが望ましいが、メモリーなどのように、ほとんど同じ構造ものが大量且つ安定的に 生産されている場合には、量産用ウェハーを用いることができる。例えば、エッチング の程度はホールの疎密によって異なり、ホールの場所によっては同一の管理値を使 用できないことがある。そこで、ホールの疎密またはホールの場所に応じて適切な管 理値を設定する。
[0082] 図 19は、エッチング装置の状態を管理するためのプロセス評価量の測定値をトラッ キングするトラッキング装置の構成を示す。
エッチング装置等のプロセス処理装置はメンテナンスを行っても老朽ィ匕は避けられ ない。従って、通常のメンテナンスを行った後の装置の状態を全て記録し、過去のメ ンテナンスの履歴をトラッキング可能な状態にしておくことが非常に重要である。
[0083] 図 19に示す装置は、前述の半導体分析装置などの測定装置からエッチング装置 などの半導体プロセス処理装置の状態情報を入力するデータベース 181と、データ ベース 181に蓄積された状態情報をトレースするための解析処理を行う解析装置 18 2と、トレースされた状態情報を表示する表示装置 183とを備える。
[0084] データベース 181には、メンテナンス確認用のウェハーを用いて測定されたエッチ ング装置等のプロセス装置の状態情報が格納される。プロセス処理装置が複数台あ る場合には、それぞれの装置の状態情報をトラッキングすることが可能なように、各装 置状態情報には識別用の IDがつけられてデータベース 181に格納される。
[0085] 図 20は、メンテナンスの状態情報である前述の半導体分析装置による測定値とメン テナンス回数との関係をグラフに表示したものである。同図に示されるように、エッチ ング装置等のプロセス処理装置は、電極交換やチャンバ一内清掃などの通常メンテ ナンスを繰り返しても、老朽ィ匕により装置状態は初期状態には戻らない。図 20に示 す例では、 6回目のメンテナンスで、装置の状態が管理値の下限を超えている。この 管理値の下限は、通常のメンテナンスでは、装置が正常状態に戻らない限界値を示 し、この場合には装置のオーバーホールが必要となる。
[0086] 図 21は、上述のプロセス評価量の測定値を管理してメンテナンスを支援するため のメンテナンス支援装置の構成を示す。同図において、ホストコンピュータ 201は、ェ 場を管理する上位のホストコンピュータであり、工場全体を管理する管理棟などに配 置されている。測定装置 202は、前述の電子ビームによって誘起された基板電流を 利用してプロセス評価量を測定する半導体分析装置であり、工場の各現場に設置さ れている。データベース 203は、評価装置 202によって得られた各プロセス処理装置 の状態情報 (即ち、プロセス評価量の測定値)を格納するデータベースであり、上述 の測定装置 202に備えられている。このメンテナンス支援装置では、測定装置 202に より測定された上述のプロセス評価量の測定値 (各プロセス処理装置の状態に関す る情報)を、必要に応じて、工場を管理する上位のホストコンピュータにアップロード する。これにより、各半導体プロセス処理装置を制御する。
[0087] 通常、測定装置 202によって測定された各種のプロセス処理装置の状態情報 (即 ちプロセス評価量の測定値)は、測定装置 202が備えるローカルなデータベース 20 3に蓄積される力 必要に応じて通信回線を介してホストコンピュータ 201にアップ口 ードされる。
[0088] 上述の実施形態によれば、以下のような効果を得ることができる。
プロセス評価装置の評価結果は、画面に定量的に表示され、誰でも確認することが できる。そして、その評価結果を用いて容易にチャンバ一マッチングを実現できる。 上述のチャンバ一マッチングによれば、生産性が向上し、マッチングの程度が高い ほど、歩留りが向上する。号機間差 (機差)が消滅するので号機指定が無くなり、工場 の実行稼働率が向上する。
[0089] 半導体プロセス処理装置間の特性差を確認するための専用の評価用ウェハーを 用いるので、非常に精度良くチャンバ一マッチングを行うことができる。
半導体プロセス処理装置のメンテナンスの要否を定量的に判定できるので、容易 且つ安全に装置のメンテナンスを行うことができる。また、メンテナンスされた半導体 プロセス処理装置のチャンバ一のマッチング状態も良好に維持することができる。 メンテナンスの不良を防止することができるので、装置の実効稼働率を向上させるこ とがでさる。
[0090] メンテナンスの良否を的確に判定できるので、製品ウェハーに先行して投入される ダミーウェハーの枚数などを最適化することが可能になり、メンテナンス対象の半導 体プロセス処理装置をより早く立ち上げることができる。
半導体プロセス処理装置の全体的な劣化の程度も定量的に把握することができる ので、オーバーホール等が必要であるかどうかも容易に判断することができる。
メンテナンスのための専用のウェハーを用いるので、非常に精度良くメンテナンス の良否を判定することができる。
[0091] なお、上述の実施形態では、エッチングの場合を例として説明したが、洗浄、インプ ランテーシヨン、めっき、 CVD、熱処理、スパッターなど全てのプロセス処理装置につ いて本発明を適用できることは言うまでもない。
産業上の利用可能性
本発明は、半導体デバイス又はその製造工程での分析、製造、測定又は評価など に用いられる装置、並びに半導体デバイス製造方法に有用である。例えば、ウェハ 一などの半導体基板に電子ビーム又はイオンビームを照射する手法を用いる分析技 術、測定技術、評価技術、検査技術、および半導体デバイス製造装置および方法の 分野において、本発明を利用することができる。

Claims

請求の範囲
[1] 予め同等に処理された複数の所定の半導体基板を複数の半導体プロセス処理装 置のそれぞれに導入して同一のプロセス処理条件で処理させる第 1ステップと、 前記複数の半導体プロセス処理装置によって処理された複数の半導体基板のそ れぞれに電子ビームを照射し、前記半導体基板のプロセス評価量として前記電子ビ ームの照射により誘起された基板電流を測定する第 2ステップと、
前記複数の半導体プロセス処理装置の処理特性が互いに整合するように、前記プ ロセス評価量の測定値に基づき前記複数の半導体プロセス処理装置に適用される プロセス処理条件を変更する第 3ステップと、
を含むチャンバ一マッチング方法。
[2] 前記複数の所定の半導体基板は、前記複数の半導体プロセス処理装置が処理す べき工程の直前の工程まで予め同等に処理され、前記複数の半導体基板のそれぞ れには、プロセス評価用の同一のレイアウトパターンが形成されていることを特徴とす る請求項 1記載のチャンバ一マッチング方法。
[3] 前記レイアウトパターンは、ホール密度の高!、領域と、ホール密度の低 、領域とを 含むことを特徴とする請求項 2記載のチャンバ一マッチング方法。
[4] 前記第 3ステップでは、前記プロセス処理条件としてエッチング時間を変更すること を特徴とする請求項 1記載のチャンバ一マッチング方法。
[5] 前記第 3ステップでは、前記プロセス処理条件として基板温度を変更することを特 徴とする請求項 1記載のチャンバ一マッチング方法。
[6] 前記第 3ステップでは、前記プロセス処理条件としてプラズマパワーを変更すること を特徴とする請求項 1記載のチャンバ一マッチング方法。
[7] 複数の半導体プロセス処理装置によってそれぞれ処理された複数の半導体基板 に電子ビームを照射し、前記電子ビームの照射により誘起された基板電流を測定す ることにより前記複数の半導体基板に形成された各微細構造を解析する解析装置と 前記解析装置による解析結果を蓄積する情報蓄積手段と、
前記データベースに蓄積された前記解析結果を統計処理する情報処理手段と、 前記情報処理部により統計処理された前記解析結果を前記半導体プロセス処理 装置に対応づけて比較表示する情報表示手段と
を備えた半導体プロセス支援装置。
[8] 前記情報表示手段は、前記複数の半導体プロセス処理装置に適用されたプロセス 処理条件を前記解析結果と共に表示することを特徴とする請求項 7記載の半導体プ ロセス支援装置。
[9] 前記表示手段は、前記解析結果のヒストグラムを所定の標準ヒストグラムと比較表示 することを特徴とする請求項 7記載の半導体プロセス支援装置。
[10] 前記表示手段は、前記解析結果として得られるプロセス評価量の測定値の分布を プロセス処理条件と共に表示することを特徴とする請求項 7記載の半導体プロセス支 援装置。
[11] メンテナンスの対象である半導体プロセス処理装置に所定の半導体基板を導入し 、該半導体基板を所定のプロセス処理条件で前記半導体プロセス処理装置に処理 させる第 1ステップと、
前記半導体プロセス処理装置によって処理された前記半導体基板に電子ビームを 照射し、前記電子ビームの照射により誘起された基板電流を測定することにより前記 半導体基板に形成された微細構造を解析する第 2ステップと、
前記解析の結果に基づき前記半導体プロセス処理装置のメンテナンスの要否を判 定する第 3ステップと、
を含むメンテナンス方法。
[12] 前記第 2ステップにおける解析の結果を日時の関数として表示するステップを更に 含むことを特徴とする請求項 11記載のメンテナンス方法。
[13] 半導体プロセス処理装置をメンテナンスする第 1ステップと、
メンテナンス後の前記半導体プロセス処理装置にメンテナンス用の所定の半導体 基板を導入し、該半導体基板を所定のプロセス処理条件で前記半導体プロセス処 理装置に処理させる第 2ステップと、
前記半導体プロセス処理装置によって処理された前記半導体基板に電子ビームを 照射し、前記電子ビームの照射により誘起された基板電流を測定することにより前記 半導体基板に形成された微細構造を解析する第 3ステップと、
前記解析の結果を所定の管理値と比較することにより前記半導体プロセス処理装 置のメンテナンスの良否を判定する第 4ステップと、
を含むメンテナンス方法。
[14] 前記解析の結果の結果を所定の管理値と比較表示するステップを更に含む請求 項 13記載のメンテナンス方法。
[15] 前記管理値は、前記半導体基板上のレイアウトパターンごとに設けられたことを特 徴とする請求項 13記載のメンテナンス方法。
[16] 前記管理値は、前記半導体基板上の場所ごとに設けられたことを特徴とする請求 項 13記載のメンテナンス方法。
[17] 前記半導体プロセス処理装置のメンテナンス後に、前記解析結果をデータベース に蓄積し、該データベースを参照して前記半導体プロセス処理装置のメンテナンス に関する情報をトラッキングするステップを更に含むことを特徴とする請求項 13記載 のメンテナンス方法。
[18] 前記トラッキングにより得られた情報を日時の関数として表示することを特徴とする 請求項 17のメンテナンス方法。
[19] 電子ビームの照射により誘起される基板電流を利用してメンテナンス後の半導体プ ロセス処理装置の特性を評価する評価装置と、
前記評価装置によって得られた前記半導体プロセス処理装置の特性に関する評 価結果を蓄積するデータベースと、
前記半導体基板のプロセスに関与する各種の半導体プロセス処理装置を管理する ホストコンピュータと通信するための通信手段と
を備え、
前記評価装置は、前記データベースに蓄積された評価結果を、前記通信手段を介 して前記ホストコンピュータにアップロードするように構成されたメンテナンス支援装置
PCT/JP2005/017994 2005-09-29 2005-09-29 チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置 WO2007037012A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017994 WO2007037012A1 (ja) 2005-09-29 2005-09-29 チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017994 WO2007037012A1 (ja) 2005-09-29 2005-09-29 チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置

Publications (1)

Publication Number Publication Date
WO2007037012A1 true WO2007037012A1 (ja) 2007-04-05

Family

ID=37899452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017994 WO2007037012A1 (ja) 2005-09-29 2005-09-29 チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置

Country Status (1)

Country Link
WO (1) WO2007037012A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507253A (ja) * 2006-10-16 2010-03-04 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド インサイチュマスクを用いてイオン注入デバイス間で性能を一致させる技術
US9859175B2 (en) 2015-06-16 2018-01-02 Samsung Electronics Co., Ltd. Substrate processing system, method of managing the same and method of manufacturing semiconductor device with the same
CN107871683A (zh) * 2016-09-26 2018-04-03 株式会社日立国际电气 半导体器件的制造方法及衬底处理装置
JP2019021833A (ja) * 2017-07-20 2019-02-07 株式会社Kokusai Electric 基板処理システム、半導体装置の製造方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128812A (ja) * 1994-10-31 1996-05-21 Sanyo Electric Co Ltd 測長用モニター
JPH08250385A (ja) * 1995-03-14 1996-09-27 Hitachi Ltd 半導体生産方法及びそのシステム
JP2002025878A (ja) * 2000-07-07 2002-01-25 Tokyo Electron Ltd 処理装置の自動検査方法および自動復帰方法
JP2002176088A (ja) * 2000-12-08 2002-06-21 Nec Corp 半導体デバイス検査装置
JP2002270581A (ja) * 2001-03-07 2002-09-20 Hitachi Ltd プラズマ処理装置及び処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128812A (ja) * 1994-10-31 1996-05-21 Sanyo Electric Co Ltd 測長用モニター
JPH08250385A (ja) * 1995-03-14 1996-09-27 Hitachi Ltd 半導体生産方法及びそのシステム
JP2002025878A (ja) * 2000-07-07 2002-01-25 Tokyo Electron Ltd 処理装置の自動検査方法および自動復帰方法
JP2002176088A (ja) * 2000-12-08 2002-06-21 Nec Corp 半導体デバイス検査装置
JP2002270581A (ja) * 2001-03-07 2002-09-20 Hitachi Ltd プラズマ処理装置及び処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507253A (ja) * 2006-10-16 2010-03-04 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド インサイチュマスクを用いてイオン注入デバイス間で性能を一致させる技術
US9859175B2 (en) 2015-06-16 2018-01-02 Samsung Electronics Co., Ltd. Substrate processing system, method of managing the same and method of manufacturing semiconductor device with the same
CN107871683A (zh) * 2016-09-26 2018-04-03 株式会社日立国际电气 半导体器件的制造方法及衬底处理装置
JP2018056174A (ja) * 2016-09-26 2018-04-05 株式会社日立国際電気 記録媒体、プログラム、半導体装置の製造方法および基板処理装置。
US9978653B2 (en) 2016-09-26 2018-05-22 Hitachi Kokusai Electric, Inc. Method of manufacturing semiconductor device
CN107871683B (zh) * 2016-09-26 2022-06-21 株式会社国际电气 半导体器件的制造方法及衬底处理装置
JP2019021833A (ja) * 2017-07-20 2019-02-07 株式会社Kokusai Electric 基板処理システム、半導体装置の製造方法およびプログラム

Similar Documents

Publication Publication Date Title
US7289866B2 (en) Plasma processing method and apparatus
US6985215B2 (en) Plasma processing method and plasma processing apparatus
TWI514497B (zh) 機台狀況定性監測方法及錯誤偵測分類系統
US7580767B2 (en) Methods of and apparatuses for maintenance, diagnosis, and optimization of processes
US7469195B2 (en) Integrated stepwise statistical process control in a plasma processing system
US20050019961A1 (en) Method for automatic determination of semiconductor plasma chamber matching and source of fault by comprehensive plasma monitoring
CN108140588B (zh) 用于半导体设备的匹配腔室性能的方法
US6650423B1 (en) Method and apparatus for determining column dimensions using scatterometry
US20040181299A1 (en) Prediction method and apparatus of a processing result
US6365423B1 (en) Method of inspecting a depth of an opening of a dielectric material layer
TWI272675B (en) Plasma processing apparatus and plasma processing method
CN103137513A (zh) 集成电路制造设备状态监测系统和方法
US6553332B2 (en) Method for evaluating process chambers used for semiconductor manufacturing
WO2007037012A1 (ja) チャンバーマッチング方法、半導体プロセス支援装置、メンテナンス方法、メンテナンス支援装置
JP2006253331A (ja) 製造検査解析システム、解析装置、解析装置制御プログラム、解析装置制御プログラムを記録した記録媒体、および製造検査解析方法
KR20030061093A (ko) 코로나 전하를 이용한 집적 회로 소자의 콘택홀 모니터링방법
TW202248660A (zh) 用於半導體可靠性故障之z方向部分平均測試之缺陷導引統計異常值偵測之系統及方法
KR20180065004A (ko) 챔버 매칭 및 모니터링을 위한 방법 및 시스템
US7630064B2 (en) Prediction method and apparatus for substrate processing apparatus
US9612178B2 (en) Particle monitoring method and particle monitoring system
JP4781505B2 (ja) 処理装置の自動検査方法および自動復帰方法
US7262864B1 (en) Method and apparatus for determining grid dimensions using scatterometry
US6946303B2 (en) Electronically diagnosing a component in a process line using a substrate signature
US7137085B1 (en) Wafer level global bitmap characterization in integrated circuit technology development
JP4344674B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05787946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP