WO2007010998A1 - 特異的結合を利用した標的分子の高感度検出法、そのキット - Google Patents

特異的結合を利用した標的分子の高感度検出法、そのキット Download PDF

Info

Publication number
WO2007010998A1
WO2007010998A1 PCT/JP2006/314419 JP2006314419W WO2007010998A1 WO 2007010998 A1 WO2007010998 A1 WO 2007010998A1 JP 2006314419 W JP2006314419 W JP 2006314419W WO 2007010998 A1 WO2007010998 A1 WO 2007010998A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
chemical substance
label
dna
labeled
Prior art date
Application number
PCT/JP2006/314419
Other languages
English (en)
French (fr)
Inventor
Minjue Xie
Koichi Fukui
Masanori Horie
Yoshitaka Kageyama
Kazuko Matsumoto
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2007010998A1 publication Critical patent/WO2007010998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer

Definitions

  • the present invention relates to a measurement method using an oligonucleotide as a novel label, a labeling chemical, a labeling oligonucleotide, and a measurement kit therefor. More specifically, the present invention uses a oligonucleotide bound to a chemical substance as a label, and uses the oligonucleotide to cleave a nucleic acid using a nuclease, and more specifically uses a flap endonuclease. The present invention relates to a method for cleaving nucleic acids, and more particularly to a method for detection, identification or quantification by an invader method.
  • the present invention contains or may contain a target molecule containing a chemical substance (hereinafter referred to as a labeling chemical substance) to which an oligonucleotide as a label is bound.
  • a labeling chemical substance a chemical substance to which an oligonucleotide as a label is bound.
  • the target molecule in the sample is detected and identified by contacting the sample, forming a complex of the labeled chemical with the target molecule in the sample, and measuring the oligonucleotide in the complex by the invader method.
  • the present invention relates to a method for quantification, a labeled chemical substance, a labeled oligonucleotide, and a measurement kit therefor.
  • the antigen-antibody reaction is a highly specific reaction in which only the corresponding antigen and antibody selectively react, and the antigen-antibody reaction that occurs in vivo can be reproduced as it is in a test tube. It has been widely used for diagnosis and treatment. However, it is impossible to directly detect the behavior of chemical substances, especially the behavior of chemical substances in living organisms, and a label is used to observe the behavior of these chemical substances. I have been.
  • Labeling is a mark that can be measured by modifying a part of the chemical substance in order to obtain information on the chemical substance, such as detecting, identifying or quantifying the target chemical substance. Is to put on.
  • the first example in the biochemical field of labeled chemicals is said to be the 2004 Nove experiment. This is because the fatty acid whose terminal methyl group is replaced with a phenyl group is administered to a rabbit and prayed for urinary acetic acid. Is.
  • Radioisotopes can trace chemical substances without changing the chemical properties of chemical substances and are easy to detect, but their radioactivity is a major problem.
  • labeling for introducing a functional group is also performed.
  • a functional group a group having absorption in the ultraviolet or visible region, a fluorescent group, or the like is used.
  • these functional groups change the physical or chemical properties of chemical substances, and there are problems in in vivo applications where many non-biological substances are present.
  • labels are extremely important for measuring various behaviors of chemical substances, and a wide variety of labels have been developed.
  • radioimmunoassay RIA
  • EIA Enzyme immunoassay
  • FIA fluorescent immunoassay
  • the immuno PCR method can infinitely amplify in principle, but is not advantageous in terms of sensitivity. However, the operation is complicated, the quantitative determination is difficult, and the practicability is not sufficient as compared with the conventional ELISA method in which the variation in measured values is large.
  • RFLP Restriction Enzyme Fragment Length Polymorphism
  • direct sequence method ASO (Allele Specific Oligonucleotide) hybridization method
  • RNaseA cleavage Method such as DOL method, DOL (Dye-labeled Oligonucleotide Ligation) method, TaqMan PCR method, MALDI—TOFZMS method (Matrix Assisted Laser Desorpti on-time of Flight / Mass Spectrometry) method, DNA chip method, Invader method, etc. Forces that have been developed Many of these methods have required amplification by PCR.
  • the invader method requires not only the analyte DNA but also the signal probe and the invader oligo, and the label probe is not required for the signal probe and the invader oligo.
  • the flap probe is related only to the base sequence of the flap portion, and is not particularly related to the base of the flap portion, and is not affected by the base sequence of the sample DNA at all, and can be arbitrarily determined regardless of the sample. Since it is based on this base, it has the advantage that mass production can be performed and the cost of probe preparation can be greatly reduced!
  • Patent Document 1 Japanese Patent Laid-Open No. 3-231151
  • Patent Document 2 U.S. Pat.No. 5,665,539
  • Patent Document 3 Japanese Patent Publication No. 8-502413
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-504073
  • the present invention provides a label with higher sensitivity, stable measurement without variation in measurement, and excellent operability, a labeling method using the same, and an analysis method. is there.
  • the inventors of the present invention have been developing high sensitivity of the invader method, which is a method for detecting a genetic polymorphism. By applying this invader method, it is possible to label various substances. And found.
  • the invader method is a method developed to detect single nucleotide polymorphisms in the genome, and it exclusively detects single nucleotide polymorphisms in the sample DNA using invader oligos. Keep it.
  • the invader method is widely known as one of the SNP typing methods. For example, the “SNP gene polymorphism strategy” edited by Yusuke Nakamura (Nakayama Shoten Co., Ltd., 2000) has details on the method. Are listed.
  • Fig. 1 shows a schematic diagram of the nucleic acid single nucleotide polymorphism analysis method by the invader method.
  • the target DNA is determined to be SNP at the position of ⁇ N ''! is there.
  • a signal probe primary probe
  • an invader probe secondary probe
  • a fret probe FRET probe
  • Ncanorepro ⁇ Human body DNA has a complementary base sequence 5 'from the SNP position of the DNA, and further has a base sequence part called "flap".
  • the base sequence of this flap part is a base sequence complementary to the base sequence on the 3 ′ side of the fret probe.
  • the invader oligo has a complementary base sequence on the 3 ′ side of the sample DNA.
  • the base “N” of the sample DNA at the position of the SNP is one of the bases A, T, G, C of the single nucleotide polymorphism site
  • the base “N” of the signal probe is a base capable of forming a normal base pair with N
  • the base “N” of the invader probe is an arbitrary base.
  • the fret probe the flap part is connected to the 3 'side.
  • the 5 ′ side of the fret probe is designed to form a double strand in whole or in part.
  • the entire 5 ′ side is shown to form a double strand, but it is not always necessary to form a double strand, but for the sake of explanation, it will be explained according to FIG.
  • a luminescent dye “Ln” and a quencher “Q” are bonded to the 5 ′ end portion of the fret probe. When the quenching substance “Q” is present within a certain distance of the luminescent dye “Ln”, the luminescence of the luminescent dye is quenched and the luminescence cannot be observed.
  • the signal probe and invader oligo first bind to the sample DNA. At this time, the signal probe base “N” and the sample DNA base “N” The base “N” of the invader oligo is invader (intruder)
  • the cleaving enzyme cuts the 5 'end of the fret probe by partial force that is interrupted by the flap.
  • the luminescent dye “Ln” is bound to the 5 ′ side of the cut fret probe, and the luminescent dye “Ln” is separated from the quenching substance “Q” force by this cleavage. Ln ”light emission can be observed. This is the state shown at the bottom of Fig. 1.
  • the luminescent dye “Ln” is released from the quenching substance “Q” and exhibits the original light emission. If the base “NI” of the signal probe cannot form a normal base pair with the base “N” of the sample DNA, it will not be invadered, so cleavage by the cleavage enzyme will not occur. . Therefore, it is possible to determine by luminescence whether the base “N” of the sample DNA is a base capable of forming a normal base pair with the base “N” of the signal probe.
  • the invader method in the present invention is not intended to detect a single nucleotide polymorphism (SNP) of the subject DNA, and is used here in the following explanation.
  • SNP single nucleotide polymorphism
  • target DNA is used instead of “analyte DNA”.
  • the conventional invader method uses genomic DNA as an analyte, and the ability to detect single nucleotide polymorphisms in the genomic DNA.
  • analyte chemical substances such as antibodies and antigens
  • nucleic acids oligonucleotides
  • the nucleic acid can be detected and identified with high sensitivity without performing complicated PCR methods, and used as a labeling compound for chemical substances. Found that you can.
  • the first feature of the present invention is that the oligonucleotide is used as a label for the chemical substance, and a method of cleaving the nucleic acid using the oligonucleotide using a nuclease, preferably an invader method.
  • the second feature is to detect, identify, or quantify by the above.
  • the first feature of the present invention is to use an oligonucleotide as a label that is short enough not to apply the PCR method.
  • the oligonucleotide of the present invention is a signal in the invader method.
  • a probe primary probe
  • about 10 to 100 mer, preferably about 20 to 60 mer is sufficient, and the length of an oligonucleotide as a label in the conventional immuno PCR method is clear. Can be distinguished.
  • the oligonucleotide may be any of the signal probe (primary probe), the invader oligo (secondary probe), or the target DNA of the invader method in the above description.
  • the oligonucleotide is used in the invader method described above. It is used as a target DNA or signal probe (primary probe).
  • the second feature of the present invention is that the oligonucleotide is detected by a method of cleaving a nucleic acid using a nuclease, preferably a method of cleaving a nucleic acid using a flap endonuclease, more preferably an invader method.
  • a method of cleaving nucleic acid using a nuclease preferably a method of cleaving a nucleic acid using a flap endonuclease, more preferably an invader method.
  • the method is the same as the conventional invader method. It is different in that it is a method for assaying the presence or absence of an oligonucleotide as a label, and further its abundance, not to detect the complementarity of one base in DNA (target DNA).
  • the present invention uses an oligonucleotide bound to a chemical substance as a label, By using nucleotides to cleave nucleic acids using nucleases, and more specifically using flap endonucleases to cleave nucleic acids, and more specifically, the presence of a single base in the oligonucleotide
  • the present invention relates to a method for detecting, identifying or quantifying by a method. More specifically, in the present invention, a chemical substance to which an oligonucleotide as a label is bound (hereinafter referred to as a labeled chemical substance) is brought into contact with a sample containing or possibly containing a target molecule.
  • the present invention relates to a method for detecting, identifying or quantifying a target molecule in a sample, which comprises measuring the presence of one base in the oligonucleotide by an invader method.
  • the present invention also relates to a method for cleaving a nucleic acid by using an oligonucleotide as a label and cleaving the nucleic acid using a nuclease, more specifically using a flap endonuclease, in the immunoassay. More specifically, the present invention relates to a method for detecting, identifying or quantifying the presence of one base in the oligonucleotide by an invader method. That is, the present invention provides the use of a novel label in an immunoassay and a method for analyzing the same.
  • the present invention relates to a method for assaying (analyzing) various target molecules such as a binding assay or a competitive assay by using an oligonucleotide as a label and cleaving the nucleic acid using a nuclease. More specifically, a target molecule comprising a method of detecting, identifying or quantifying the presence of one base in the oligonucleotide by an invader method by a method of cleaving a nucleic acid using a flap nuclease. It relates to the method of analysis. That is, the present invention provides the use of a novel label in various types of assays and the analysis method thereof.
  • the present invention also relates to a chemical labeling agent that also has an oligonucleotide strength of 10 to: LOOmer, preferably 10 to 60 mer, 10 to 40 mer, more preferably 20 to 60 mer, and 10 to: LOOmer, preferably 10 ⁇ 60mer ⁇ 10-40mer ⁇ More preferably, it relates to the use of 20-60mer oligonucleotide as a label.
  • oligonucleotide When using it as the target DNA in the Vader method, one having an integral multiple of this length can be used.
  • the present invention relates to a labeled chemical substance in which an oligonucleotide of 10-: LOOmer, preferably 10-60 mer, 10-40 mer, more preferably 20-60 mer is bound to the chemical substance as a label.
  • the present invention provides a 10-: LOOmer, preferably 10-60 mer, 10-40 mer, more preferably 20-60 mer oligonucleotide bound to a chemical substance as a label.
  • a method of cleaving nucleic acid using a nuclease preferably a method of cleaving nucleic acid using a flap endonuclease, more preferably an invader method Relates to the measurement kit by
  • the present invention includes at least one oligonucleotide selected from the group force selected oligonucleotide consisting of a signal probe (primary probe), an invader oligo (secondary probe), a target DNA, and a fret probe in the invader method.
  • the present invention relates to a measurement kit by an invader method using an oligonucleotide as a label.
  • a method of detecting, identifying or quantifying a target molecule in a sample by using an oligonucleotide bound to a chemical substance as a label and cleaving a nucleic acid using a nuclease using the oligonucleotide.
  • a chemical substance to which an oligonucleotide as a label is bound (hereinafter referred to as a labeled chemical substance) is brought into contact with a sample containing or possibly containing a target molecule,
  • a labeled chemical substance A chemical substance to which an oligonucleotide as a label is bound
  • the method according to (1) above wherein a complex is formed between the labeled chemical substance and a target molecule in the sample, and the oligonucleotide in the complex is measured by a method of cleaving nucleic acid using a nuclease.
  • the method comprises the step of using an oligonucleotide as a label and measuring the presence of the oligonucleotide by a method of cleaving a nucleic acid using a nuclease (1) Or a method for detecting, identifying or quantifying a target molecule in a sample according to (2).
  • Oligonucleotide force The method according to any one of (1) to (3) above, which is a single-stranded DNA.
  • the method according to (5) above which is DNA having an oligonucleotide force of 10 to 100 mer.
  • oligonucleotide is a nucleic acid force-labeled oligonucleotide cleaved by a nuclease.
  • nucleic acid is a nucleic acid produced based on a labeled oligonucleotide that is cleaved by a nuclease.
  • nucleic acid force cleaved by nuclease The method according to any one of (1) to (13), wherein the nucleic acid is a nucleic acid bound to a luminescent substance and a quenching substance.
  • the rare earth fluorescent complex labeling agent is a labeling agent comprising Eu complex, Tb complex, Sm complex, or Dy complex.
  • Nuclease power The method according to any one of (1) to (16) above, which is a flap endonuclease.
  • Oligonucleotide force of labeling The method according to (18) above, which is a target DNA in the invader method.
  • Target DNA force The method according to (19) above, wherein the signal probe has one or more base sequences capable of hybridizing.
  • a chemical labeling agent comprising a LOOmer oligonucleotide.
  • a labeling agent for a chemical substance having an oligonucleotide ability characterized by having the oligonucleotide base sequence according to any one of (27) to (29) repeated twice or more. (32) The labeling agent according to (31), wherein the base sequence is repeated 2 to 10 times.
  • oligonucleotide is a 10-60mer oligonucleotide.
  • oligonucleotide is a 10-40mer oligonucleotide.
  • oligonucleotide is a single-stranded DNA.
  • oligonucleotide according to any one of (33) to (35) as a label for an oligonucleotide, wherein the oligonucleotide has the base sequence repeated twice or more.
  • the oligonucleotide is a single-stranded DNA. Labeled chemical substance.
  • the oligonucleotide characterized by having the base sequence of the oligonucleotide according to any one of (39) to (41) repeated twice or more is bound to a chemical substance as a label. Labeled chemical substance.
  • LOOmer oligonucleotide containing at least one kind of labeled chemical substance that is bound to the chemical substance as a label using an oligonucleotide as a label Nucleic acid using a nuclease Kit for measurement by cutting method.
  • the measurement kit according to any one of (46) to (48), wherein the oligonucleotide is a single-stranded DNA.
  • oligonucleotide sequence characterized by having the nucleotide sequence of the LOOmer oligonucleotide repeated twice or more, containing at least one kind of labeled chemical substance bound to the chemical substance as a label Using an oligonucleotide as a label A measurement kit by a method of cleaving nucleic acid using lyase.
  • the method of cleaving nucleic acid using a nuclease that uses an oligonucleotide as a label The method according to any one of (46) to (51), which is the method according to any one of (1) to (26) above Measurement kit.
  • the measurement kit according to any one of (46) to (52), wherein the labeled chemical substance is piotin.
  • An oligonucleotide comprising at least one oligonucleotide selected from the group consisting of a signal probe (primary probe), an invader oligo (s econdary probe), a target DNA, and a fret probe in the invader method.
  • a kit for measurement by the invader method used as a label.
  • the “method of cleaving a nucleic acid using a nuclease” in the present invention includes nucleic acids such as DNA, RNA, PNA, etc. More specifically, any method that can cleave at a specific position quenches the luminescent substance such as a fluorescent substance bound to the nucleic acid and the luminescence by the luminescent substance by cleaving the nucleic acid with a nuclease. In this method, the quenching substance (taentia) can be separated, and as a result of the separation, the emission of the luminescent substance can be observed or measured from the outside.
  • the nuclease in this method of the present invention is not particularly limited as long as it can cleave a nucleic acid, but it may be a deviation of endonuclease or exonuclease, and it may be a double-stranded nucleic acid. It may be an enzyme that acts on a triple strand or an enzyme that acts on a single-stranded nucleic acid. Further, it may be an enzyme that recognizes a higher order structure of a nucleic acid.
  • the nuclease in this method of the present invention can cleave a nucleic acid, and as a result, separates the light-emitting substance and the quenching substance described above (the light emission by the light-emitting substance is quenched by the quenching substance so that a distance is provided).
  • Examples include nucleases that can be cleaved.
  • restriction enzymes can be used as the nuclease in this method of the present invention.
  • a probe in which a light emitting substance and a quenching substance at both ends are bound to each other such as a Taqman probe
  • the intermediate site is cleaved with a restriction enzyme, etc. It is also possible to separate the substances and as a result observe the emission from the measuring system.
  • a simple method only one luminescent substance is released from the oligonucleotide as one label, and sufficient sensitivity may not be obtained.
  • a particularly preferred embodiment of the “method of cleaving a nucleic acid using a nuclease” of the present invention includes a method capable of generating a large number of flaps from one target DNA, such as the invader method. It will be. Such a method enables quantitative measurement at a high speed, with high sensitivity. However, it does not require a complicated operation like the PCR method and does not require a long nucleic acid like the PCR method. For example, 10 to: LOOmer, preferably 10 to 40 mer, relatively short nucleic acid of about 10 to 30 mer is used as a label. Even so, according to this method of the present invention, sufficient sensitivity can be obtained.
  • the length and base sequence are not particularly limited as long as they can be used, and DNA or RNA may be used as long as they can be hybridized to complementary sequences, but DNA is preferred.
  • the oligonucleotide of the present invention is not particularly limited in the length of the target DNA preferred by the target DNA or signal probe (primary probe) preferred in the invader method, but is used in the conventional Imuno PCR method.
  • oligonucleotides of 10 to 100 mer, preferably 10 to 60 mer, 10 to 40 mer, more preferably 20 to 40 mer are preferable.
  • the nucleotide sequence of the oligonucleotide of the present invention is not particularly limited, but when the oligonucleotide of the present invention is used as a signal probe, the flap portion is 5 to 50 mer, preferably 10 to 40 mer, more preferably 10 to 10 mer. It is designed to be about 20 mer, and the rest is designed to be complementary to the target DNA.
  • the invader oligo (secondary probe) is a sequence complementary to the rest of the target DNA, and further has one base as an invader.
  • FIG. 2 The relationship of such a signal probe (primary probe), invader oligo (secondary probe), target DNA, and fret probe in the present invention will be described as FIG. 2 based on a more specific base sequence.
  • the oligonucleotide as a label of the present invention hybridizes to the 5 ′ end side of the target DNA as a signal probe (primary probe), and the flap portion is left without being hybridized.
  • the invader secondary oligo hybridizes to the 3rd side of the target DNA, and one base enters the cleavage site and is cleaved, resulting in a flap.
  • This flap is a fret When hybridizing to the probe, similarly, one base invades and the fret probe labeling site (in this example, the BPTA—Tb 3+ binding site) is cleaved, and fluorescence is observed.
  • the oligonucleotide of the present invention is used as the target DNA in the invader method is described as an example, the present invention is not limited to this.
  • the nucleotide sequence of the oligonucleotide of the present invention is not particularly limited, but the oligonucleotide of the present invention is 10 to 200 mer, preferably 10 to 60 mer, more preferably 20 to 60 mer.
  • Integer oligonucleotides having the same sequence for example, 2 times, 3 times, and longer, can also be used.
  • a 10-: LOOOmer preferably a 10-500-mer oligonucleotide
  • the oligonucleotide having such a length is about the same length as the oligonucleotide used in the conventional immuno PCR method.
  • the oligonucleotide of the present invention has a clearly repeated nucleotide sequence or its complementary sequence. It is different in that it has a simple arrangement. Longer oligonucleotides such as long nucleotides such as lkb or more derived from living organisms can also be used.
  • the characteristics of the base sequence of the target DNA in the present invention are as follows (1) to (5).
  • a part of the structure itself does not form a double strand.
  • the target DNAs do not form dimers. There is no complementary sequence inside or between target DNAs.
  • the number of repeats of this repetitive sequence is preferably 1-10.
  • One unit consists of two adjacent blocks, each sequence is 10 to 100 bases, preferably 10 to 40 bases, and this unit is repeated with an appropriate space of 0 to 50 bases Has an array.
  • the number of repeats of this repetitive sequence is preferably 1-10.
  • a base sequence in which the above two blocks hybridize with the invader oligo and the signal probe and the Tm value of each region is about 50 to 65 ° C is preferable, but it is not limited to this range. Tm at the optimum temperature for the enzyme used Can be matched.
  • Invader oligos or signal probes can overlap correctly to form a triplex. It is preferred that the invader oligo or signal probe does not misanneal on the target DNA.
  • an arbitrary base sequence can be set, and the oligonucleotide of the present invention is not limited to a specific base sequence.
  • nucleotide sequence of the oligonucleotide of the present invention examples are shown below, but are not limited thereto.
  • an oligonucleotide having a target region that is repeated at two or more sites can be used.
  • an oligonucleotide having such a repeat one oligonucleotide as a label can be used. Therefore, multiple flaps can be obtained in a short time, and high-speed and high-sensitivity measurement is possible.
  • Oligonucleotides having such repetitions can be produced by various known methods. For example, a method for producing multi-target DNA having 6 to 10 repetitive sequences will be described based on specific examples.
  • oligonucleotides (1) to (3) are produced by an automatic synthesizer.
  • (1) It has a restriction enzyme Ndel recognition sequence at the 5 'end and a BamHI recognition sequence at the 3' end.
  • the underlined region is the complementary region to the invader oligo and signal probe, has two repeats, and the space between the targets is lOmer.
  • the underlined region is the complementary region to the invader oligo and signal probe, has two repeats, and the space between the targets is lOmer.
  • the underlined region is the complementary region to the invader oligo and signal probe, has two repeats, and the space between the targets is lOmer.
  • the synthetic oligonucleotide (1) and the expression vector pET 22b are cleaved with Ndel and BamHI, and the synthetic oligonucleotide (1) is ligated into the vector to obtain the synthetic oligonucleotide (1). Incorporate into the vector.
  • the vector containing the synthetic oligonucleotide (1) and the synthetic oligonucleotide (2) are cleaved with BamHI and Xhol, the synthetic oligonucleotide (2) is ligated, and the synthetic oligonucleotide (2) is incorporated into the vector. .
  • a piotin-labeled target can be produced by using a piotin-labeled primer.
  • a fluorescent material is preferred.
  • a fluorescent material for example, a fluorescent dye such as FAM (mono-5 (or 6) -carboxyfluorescene)
  • FAM mono-5 (or 6) -carboxyfluorescene
  • a rare earth fluorescent complex labeling agent as a luminescent dye in a fret probe for example, the following general formulas (1) to (6) as a ligand:
  • n represents an integer of 1 to 4
  • R represents an aryl group having a substituent
  • R ′ represents an amino group, a hydroxyl group, a carboxyl group, a sulfonic acid group, Or an isothiocyanate group
  • ligand represented by samarium (Sm), europium (Eu), terbium (Tb), or dysprosium (Dy).
  • Kakara consisting of rare earth elements earth light complex Rabenore agents force s preferred ⁇ (see JP 2003- 325200 Patent and Application No. 2005- 106860).
  • a fluorescent quencher label is preferred.
  • m represents an integer of 1 to 4, and either R or R is a carrier or a nucleic acid.
  • the chemical substance to be labeled in the present invention includes various chemical substances that can be labeled without any particular limitation.
  • the chemical substance of the present invention include, for example, proteins such as antigens, antibodies, biotin, and avidin, vitamins, hormones, lipids, carbohydrates, sugar chains, aromatic compounds, enzymes, nucleic acids such as abutama, and small molecules.
  • Examples include groups that also have a ligand or ligand receptor (excluding antibodies) force.
  • the term “low molecular ligand” as used herein refers to an organic compound such as a sugar chain, an aromatic compound, a redesignoside, an oligosaccharide, or a peptide having an amino acid number of 2 to: L0.
  • myc peptide, thyroxine, triode examples include thyronine, gandarioside G, cellobiose, and glycans terminated with sialic acid.
  • Ligand receptor such as antigens, antibodies, biotin,
  • small molecule ligands or receptors include, for example, insulin, insulin receptor, EGF, EGF receptor, HGF, HGF receptor.
  • hormones such as receptors, hormone receptors such as TSH and TSH receptors, receptors for cytodynamic or chemokines such as IL-8, receptors for low molecular weight ligands such as acetylcholine receptors and histamine receptors.
  • enzymes such as protein kinases, cAMP-dependent protein kinases, cGMP-dependent protein kinases, calmodulin-dependent phosphate enzymes, and tyrosine phosphate enzymes can be measured by the ligand-receptor reaction.
  • various lectins for various sugar chains and redesignosides can also be used as the chemical substance of the present invention. Examples of lectins include concananoline A for D-mannose bound to various proteins on cells, wheat germ agglutinin for di-N-acetylyl chitobiose, and kabutoga-derived sialic acid-binding lectin for sialic acid.
  • lectins include concananoline A for D-mannose bound to various proteins on cells, wheat germ agglutinin for di-N-acetylyl chitobiose, and kabutoga-derived sialic acid-binding lectin for sialic acid
  • Nucleic acids include DNA consisting of various deoxyribonucleic acids (dATP, dGTP, dTTP, dCTP, dUTP), RNA consisting of various ribonucleic acids (rATP, rGTP, rTTP, rCTP, rUTP), PNA, LNA and further these chimeras can be used as the chemical substance of the present invention.
  • a nucleic acid When a nucleic acid is used as the chemical substance of the present invention, it may be a continuous sequence with the oligonucleotide as the label of the present invention, and the whole labeling chemical may be a nucleic acid.
  • the chemical substance of the present invention may be immobilized on a carrier or fine particles.
  • the “bond” between the oligonucleotide as the label and the chemical substance may be a direct bond between the chemical substance and the oligonucleotide as the label, or both of them, such as a linker. It may be indirectly bonded through a group for bonding.
  • Such “bond” is preferably a chemical bond such as a covalent bond, but it is not limited to this, and even a physical bond such as adsorption is separated in the measurement system. Wow! If it's something!
  • the invader method in the present invention is not limited to the basic method exemplified above, but a method in which a flap is generated due to the presence of an invader base and a state that can be measured by this flap can be formed. If it is. That is, a triple chain part is formed in one part, preferably one base part in the base sequence, and this part is specifically resolved. It can be cleaved by structure-specific 5 'nuclease (hereinafter referred to as FEN as a specific enzyme), and the fret probe can be recognized by the cleaving (partially hybridizable) A method by which the oligonucleotide can be released. This method makes it possible to handle the oligonucleotide for labeling, such as target DNA, and the fret probe that is the target of the observation system completely, and separate the sensitivity of measurement and SZN ratio from the label. It becomes possible to consider.
  • FEN structure-specific 5 'nuclease
  • the complex in the present invention is a substance that is combined with a chemical substance (labeled chemical substance) to which the oligonucleotide of the present invention as a label is bound chemically or physically, for example, an antigen and an antibody. And a multimer of a protein such as an enzyme.
  • the immunoassay in the present invention may be a shift method such as a sandwich assay that is not particularly limited as long as it is an analysis method based on an antigen-antibody reaction using a label.
  • it may or may not use streptavidin / piotin system! /, But in order to have versatility, it is preferable to use it bound to piotin.
  • the assembly of the present invention is not limited to the above-described immunoassay, and includes various assemblies such as a binding assembly such as a ligand and a receptor, and a competitive assembly.
  • the sample in the present invention contains, or may contain, a substance that can be chemically or physically combined with the labeled chemical substance of the present invention to form a complex. Is all inclusive.
  • the label of the present invention includes a case where it is used as a tracer which is not limited to that used in the assembly. Therefore, the labeled chemical substance of the present invention includes a case where no complex is formed.
  • the method of the present invention can be used in the same manner as the conventional method by using the oligonucleotide of the present invention in place of the conventional label in the conventional method using a label such as an isotope or a fluorescent substance. . Specific examples of these will be described in more detail in examples described later.
  • a method of conjugating a chemical substance such as piotin with an oligonucleotide label of the invention Therefore, a technique such as a conventional DNA labeling method can be used as it is.
  • the conjugate of piotin and the oligonucleotide of the present invention is useful as a versatile labeling reagent and can be used in the same manner as the conventional assembly using the avidin-piotine system.
  • the force S showing an example of using the target DNA in the invader method as the oligonucleotide of the present invention S is not limited thereto, but the signal probe is not the oligonucleotide of the present invention.
  • Invader oligo can also be used as a label.
  • the triple chain partial force FEN by the Invader Oligo will cleave and a flap will be generated, but it is also possible to design such a triple chain part to provide not only one power point but also two or more power points. it can.
  • the basic invader method as shown in Fig. 3, one force point is cut by FEN, and one flap is generated.
  • the N sequence which is the complementary sequence portion of the target DNA and the signal probe, hybridizes to the target DNA, and further the complementary sequence portion of the invader oligo and the target DNA.
  • 'End force is also force to the base before N2 Hybridizes with target DNA. Then, the base N force S3 heavy chain part at the end of the invader oligo is formed and this binding is performed.
  • one oligonucleotide force of the present invention also generates one flap by FEN (see the lower side of FIG. 3).
  • FEN see the lower side of FIG. 3
  • one flap is generated from one labeled oligonucleotide.
  • target DNA More specifically, for example, as target DNA,
  • a flap (underlined part) can be generated.
  • flaps can be generated from a single labeled oligonucleotide. For example, it is not impossible to amplify the labeled oligonucleotide by PCR. However, it is difficult to perform quantification if the amplification by the PCR method is not assured and quantitativeness is not guaranteed. Furthermore, when amplifying by PCR, a length of at least about 100 bp is required, and a problem arises that a longer oligonucleotide must be used as a label.
  • One labeled oligonucleotide force A more convenient way to generate multiple flaps is to use a signal probe that generates two flaps. For example, as shown in Figure 4, from one signal probe and target DNA, FEN is used as the cleavage enzyme to cut the 5 'flap of the signal probe, and the 7th solution that cuts the 3' flap.
  • FEN is used as the cleavage enzyme to cut the 5 'flap of the signal probe, and the 7th solution that cuts the 3' flap.
  • Hef Helicase—associated Endonuclease for Fork-structured DNA, Pyrococcus iosus ( Komori et al. (2002) Genes Genet. Syst. 77: 227-24 1)
  • two flaps are generated. Can be made.
  • target DNA for example,
  • Hef is used as a cleavage enzyme for cleaving the 3 'flap, but two or more signal probes can be simply bound.
  • the target DNA can be designed so that a plurality of signal probe binding sites are repeated so that a plurality of signal probes can bind.
  • This is a simple iteration of the traditional invader method that produces the single flap described above.
  • the length of the oligonucleotide used as the label is increased by the number of repeats, but only FEN is used as the cleaving enzyme to cleave the 5 'flap, and multiple flaps at a time. And the sensitivity as a sign can be dramatically increased.
  • oligonucleotide of the present invention can be designed so that it can be used.
  • the method shown in FIG. 4 can be simply repeated to design as shown in FIG.
  • an oligonucleotide synthesized by repeating a sequence complementary to a signal probe is used as the target DNA, which has a site to which the signal probe binds and a site to which the invader oligo binds (Fig. 5).
  • the target DNA which has a site to which the signal probe binds and a site to which the invader oligo binds (Fig. 5).
  • Figure 7 In this method, the invader oligo is not used, and the binding portion of the signal probe with the target DNA also plays the role of the invader oligo.
  • target DNA for example, as target DNA,
  • the signal probe is used as an invader oligo for the adjacent signal probe.
  • a flap cannot be generated, but a flap is generated from the subsequent signal probe.
  • invader oligos can also be used in this method. By using such an invader oligo, it is possible to generate a flap even from the first signal probe.
  • the base sequence of the oligonucleotide as the label of the present invention, it is sufficient that the length is sufficient to generate a triple-stranded portion by an invader oligo or the like. Can be designed arbitrarily.
  • the oligonucleotide may be artificially produced by synthesis or may be natural.
  • the base sequences of signal probes and invader oligos may be designed so as to correspond to them.
  • the ability to use the oligonucleotide itself bound to the chemical substance as an oligonucleotide in the direct invader method is limited to this. is not.
  • the ability to use the oligonucleotide itself bound to the chemical substance as an oligonucleotide in the direct invader method is limited to this. is not.
  • by hybridization with DNA having a base sequence complementary to the oligonucleotide of the present invention bound to a chemical substance only the DNA hybridized with the labeled oligonucleotide is separated, and this is used as a signal in the invader method. It can also be used as a probe, target DNA or invader oligo.
  • a shorter DNA is used as an oligonucleotide as a label of the present invention, and includes a sequence that can hybridize with the oligonucleotide.
  • the second oligonucleotide which is hybridized with a signal probe, target DNA in Invader method, and DNA having sufficient length to be used as an invader oligo, is not hybridized in the measurement system. It is also possible to isolate the oligonucleotide, and then separate the second DNA that has been hybridized by separating the oligonucleotides, and analyze the resulting hybridized second oligonucleotide by an invader method.
  • oligonucleotides are used as labels, and that “nucleic acid can be used to nucleate nucleic acids.
  • a method of cleaving preferably a method of cleaving a nucleic acid using a flap endonuclease, and more preferably an analysis by an invader method. Even if improvements are made in other respects, all of these methods are considered embodiments of the present invention. Those skilled in the art can easily understand that they are included in the present invention.
  • the measurement kit of the present invention is an oligonucleotide having a length of 10 to: L00mer, preferably 10 to 60 mer, 10 to 40 mer, more preferably 20 to 40 mer, or an integer multiple of these.
  • the present invention relates to a measurement kit based on an invader method using an oligonucleotide as a label, which comprises at least one kind of labeled chemical substance bonded to a chemical substance as a label.
  • Examples of chemical substances labeled with the oligonucleotide of the present invention include proteins such as antibodies and receptors, various antigens, fluorescent substances, chemical substances containing radioactive isotopes, and specific substances such as piotin and avidin. Chemical substances that have common affinity.
  • piotin is a substance that is often used in the current Atsy system, and can be easily applied to the current Atsy system. However, it is not limited to this.
  • the measurement kit of the present invention contains at least one kind of chemical substance labeled with such an oligonucleotide of the present invention.
  • Substances necessary for measurement such as antibodies, antigens, noffer solutions, avidin, and various probes necessary for the analysis of the invader method can be contained.
  • the second embodiment of the measurement kit of the present invention contains at least a signal probe (primary probe), an invader oligo (secondary probe), and a Z or target DNA, and a Z or fret probe in the invader method.
  • Such measurement kits can be applied directly to genomic SNP analysis kits except for target DNA.
  • Power SNP analysis kits can analyze many types of target DNA in a short time.
  • the kit of the present invention is for detecting, identifying or quantifying the target DNA with the base sequence determined, and in that the target DNA is determined. It is fundamentally different.
  • this measurement kit of the present invention is a kit for detection, identification or quantification of a probe having a known base sequence, and is a measurement kit in which the DNA to be measured is specified.
  • This measurement kit of the present invention comprises a signal probe (primary probe), an invader oligo (sec ondary probe) and all three types of probes of target DNA. In this case, one of them, preferably the target DNA, is bound to the target chemical substance.
  • a signal probe primary probe
  • an invader oligo sec ondary probe
  • a combination of missing eg, a primary probe and a secondary probe, a secondary probe, and a target DNA.
  • a combination without an in-vader oligo may be used.
  • other necessary enzymes such as a cleavage enzyme such as FEN and Hef, a fret probe, and a buffer solution are used for specifically cleaving the triple chain. Things are included, but you can! /.
  • the force that requires the generation of a flap The fret probe for analyzing this is not necessarily essential. If there is another means for analyzing the generated flap, the fret probe is particularly necessary. There is no need to use. However, analysis methods using fret probes have been widely used as an invader method for SNP analysis, and analysis methods using fret probes have many economic advantages.
  • a fret probe has a luminescent substance and a quenching substance, and any luminescent substance and any quenching substance can be used as the fret probe of the present invention as long as it can be measured.
  • the oligonucleotide of the present invention is measured with a fret probe, the sensitivity and measurement range of the entire measurement system are largely dependent on the nature of the fret probe. Selection is important in a sense. High sensitivity and specificity! / Use of fret probes is particularly preferred.
  • a preferable fret probe uses a rare earth fluorescent complex labeling agent of a rare earth element such as samarium (Sm), europium (Eu), tenolebium (Tb), or dysprosium (Dy) as a luminescent substance.
  • a rare earth element such as samarium (Sm), europium (Eu), tenolebium (Tb), or dysprosium (Dy) as a luminescent substance.
  • a rare earth element such as samarium (Sm), europium (Eu), tenolebium (Tb), or dysprosium (Dy)
  • Eu tenolebium
  • Dy dysprosium
  • the present invention provides a novel concept when an oligonucleotide is used as a labeling substance in a measurement system such as Atsy. Imuno-Long as in the PCR method, it was known to use DNA as a label, but it requires a complicated and skillful operation called the PCR method. A long base length is necessary, and the label itself must be a very large molecular species. In contrast, the label of the present invention uses a shorter oligonucleotide, and the size of the label is small, and the influence on the characteristics of the target chemical is small. Measurement is possible without greatly changing the characteristics, and the measurement range is wide.
  • the method of the present invention by applying the “method of cleaving nucleic acid using nuclease”, preferably the invader method, it can be measured with extremely high sensitivity and the number of generated flaps can be determined. Increasing the number makes it possible to measure with higher sensitivity and further improve the measurement limit in the conventional measurement method.
  • the method of the present invention enables safe measurement without the need to use radioactive substances or highly toxic substances.
  • the method of the present invention measures the generated flaps, there is no need for complicated operations and operations that require skill, and a safe and reliable measurement result can be stably obtained by a simple method. it can.
  • the method of the present invention can apply the invader method as a conventional SNP analysis method, and can process a large amount of specimens on a plate and a chip.
  • FIG. 1 schematically shows an overview of the invader method.
  • FIG. 2 illustrates an overview of the invader method based on a more specific base sequence.
  • FIG. 3 schematically illustrates the generation of flaps in the method of the present invention.
  • FIG. 4 schematically shows a method for generating two flaps in the method of the present invention.
  • FIG. 5 shows complementation of an invader oligo and a signal probe in the method of the present invention.
  • An example of an invader method using a target with repeated target sequences is schematically shown.
  • FIG. 6 schematically shows an example of an invader method using a signal probe in which a flap is added to both ends in the method of the present invention.
  • FIG. 7 schematically shows an example of an invader method in which a complementary sequence with a signal probe is repeated when the signal probe itself also serves as an invader oligo in the method of the present invention.
  • FIG. 8 is a graph comparing the calibration curves of Usagi IgG by the method of the present invention (black circle in FIG. 8) and the conventional ELISA method (black square in FIG. 8). Is.
  • FIG. 9 is a graph showing a calibration curve in the direct assay method using rabbit IgG as an antigen according to the method of the present invention.
  • FIG. 10 shows a sandwich immunoassay method using human TNF-spleen as an antigen by the method of the present invention (black circle in FIG. 10) and the conventional ELISA method (black square in FIG. 10). The calibration curve at is shown graphically.
  • Figure 11 shows human TNF- ⁇ as an antigen by the method of the present invention using a rare earth fluorescent complex (black circle in Fig. 11) and the conventional enzyme measurement method (black square in Fig. 11).
  • Fig. 3 is a graph showing a calibration curve in the San German Chimno assay method.
  • FIG. 12 is a comparison of calibration curves for the affinity of lectin for ratatopherin saccharides according to the method of the present invention (black circle in FIG. 12) and the conventional enzyme measurement method (black square in FIG. 12). This is shown in the graph.
  • FIG. 13 is a graph showing the results of analyzing the expression level of actin protein in HT1080 cells by the method of the present invention.
  • FIG. 14 is a graph showing a calibration curve for the expression level of actin protein in HT1080 cells according to the method of the present invention.
  • FIG. 15 is a graph showing the results of performing receptor-one-ligand binding binding using laminin by the method of the present invention.
  • FIG. 16 is a graph showing the results of measuring the expression level of matrix metalloproteinase 2 (MMP2) in cells by the method of the present invention.
  • FIG. 17 is a graph showing the results of measuring the expression level of GAPDH (Glyceraldehyde Phosphate Dehydrogenase) in cells by the method of the present invention.
  • MMP2 matrix metalloproteinase 2
  • GAPDH Glyceraldehyde Phosphate Dehydrogenase
  • FIG. 18 is a graph showing the results of detection and identification of papillomavirus in cells by the method of the present invention.
  • FIG. 19 is a graph showing the results of quantitative detection of thrombin by thrombin aptamer conjugated with piotin.
  • FIG. 20 is a graph showing the results of the detection and quantification of thrombin using an abutama having the target sequence of the present invention bound to the 3 ′ end.
  • FIG. 21 is a graph showing the results of a detection sensitivity test using target DNA having two target regions of the present invention.
  • FIG. 22 is a graph showing the results of a test of detection sensitivity using target DNA in which the target region is repeated five times, which also serves as the signal probe force invader oligo of the present invention.
  • the labeled DNA used here is used as the target DNA in the invader analysis, and its sequence is
  • the 3 'fret probe (FRET probe) has FAM bound to the 5' end and DABCYL bound to the third base from the 5 'end as a quencher! / RU
  • the probe mix used was
  • FIG. 8 shows the fluorescence intensity of FAM, and the horizontal axis shows the concentration of added rabbit IgG (pgZmL).
  • the black circles in FIG. 8 show the results of Example 1 of the present invention, and the black squares show the results of the ELISA method described later.
  • the detection limit of rabbit IgG was 5 pgZmL
  • the detection range was 50000 pgZmL to 5 pgZmL
  • the average CV% was 3.
  • Comparative Example 1 In the method described in Example 1, instead of using an oligonucleotide as a label, a conventional enzyme labeling method (ELISA method) was used.
  • ELISA method enzyme labeling method
  • the detection limit was 449 pgZmL
  • the detection range was 50000 pgZ mL to 500 pgZmL
  • the average CV% was 9.
  • the detection sensitivity of the method of the present invention was increased by an order of magnitude over that of the enzyme measurement method, and it was possible to measure even at low concentrations with a large slope.
  • FIG. 9 shows the fluorescence intensity of FAM, and the horizontal axis shows the concentration of added rabbit IgG (pgZmL).
  • the detection limit of the rabbit IgG was 6 pgZmL
  • the detection range was from 500000 pgZmL to 6 pgZmL
  • the average C V% was 1.7.
  • the fluorescence intensity of FAM was measured with an excitation wavelength (Ex.) Of 485 nm and an emission wavelength (Em.) Of 530 nm by Chameleon) (manufactured by HIDEX).
  • FIG. 10 The results are shown graphically in FIG.
  • the vertical axis of FIG. 10 shows the fluorescence intensity of FAM, the horizontal axis indicates the concentration (pgZmL) of TNF alpha were added Caro.
  • the results of Example 3 are indicated by black circles in FIG.
  • the detection limit of TNF- ⁇ was 0.665 pgZmL
  • the detection range was 1 OOOpgZmL force and 0.665 pgZmL
  • the average CV% was 3.2.
  • Example 3 instead of using an oligonucleotide as a label, a conventional enzyme labeling method (ELISA method) was used.
  • ELISA method enzyme labeling method
  • streptavidin HRP was incubated with the antigen-antibody complex for 30 hours at room temperature, and then reacted with TMB for 30 minutes at room temperature. After preparing a stop solution, OD450nm was measured with Chameleon.
  • the detection limit was 26 pgZmL
  • the detection range was from 1OOOpgZmL to 26 pgZmL
  • the average CV% was 4.5.
  • the method of the present invention has an excellent sensitivity compared to the conventional enzyme measurement method (ELISA method).
  • DT BTA's Yu-Pim complex (Eu-DTBTA) is bound to the 5 'end as a fluorescent dye, and BHQ2 is used as a quencher on the fourth base from the 5' end.
  • the assembly was performed under the same procedure and conditions as described in Example 3 except that time-resolved fluorescence measurement was performed using a fret probe bound with (registered trademark).
  • the time-resolved fluorescence measurement was performed using a Chameleon (HIDEX) with an excitation wavelength (Ex.) Of 340 nm, an emission wavelength (Em.) Of 616 nm, a delay time of 100 ⁇ s, and a window time of 400 ⁇ s.
  • the fluorescence intensity was measured.
  • Fig. 11 The results are shown in Fig. 11 by black circles on the graph.
  • the vertical axis in Fig. 11 shows the fluorescence intensity of Eu-DTBTA, and the horizontal axis shows the concentration of TNF- ⁇ added (pgZmL).
  • the result is shown in Figure 11.
  • the detection limit of TNF- ⁇ was 1.9 pgZmL
  • the detection range was 1.OOpgZmL
  • the average CV% was 7.
  • Example 4 instead of using an oligonucleotide as a label, a conventional enzyme labeling method (ELISA method) was used.
  • ELISA method enzyme labeling method
  • the method of the present invention has excellent sensitivity as compared with the conventional enzyme measurement method (ELISA method).
  • Ratatofurin has the following sugar chain structure (Matsumoto et al., Journal of Biochemistry, 91 (1), 143-155, 1982)
  • OlnM pyotinylated DNA (target DNA) at room temperature for 30 minutes in the same manner as in Example 1. After washing, it was further washed 3 times with water. In the same manner as in Example 1, 50 mL of probe mix was added and reacted at 63 ° C. for 1 hour. The fluorescence intensity of FAM was measured with an excitation wavelength (Ex.) Of 485 nm and an emission wavelength (Em.) Of 530 nm by Chameleon (manufactured by HIDEX).
  • the results are shown graphically in FIG.
  • the vertical axis in FIG. 12 indicates the fluorescence intensity of FAM, and the horizontal axis indicates the concentration of ratatofurin added (pgZmL).
  • the black circles indicate the results of Example 5 of the present invention, and the black squares indicate the results of the ELISA method described later.
  • the detection limit was 7.3 pgZmL
  • the detection range was 10 pg / mL from lOOOOpgZmL force
  • the average CV% was 3.3.
  • ELISA method enzyme labeling method
  • pyotinylated LCA—rata Streptavidin-HRP was incubated with the topherin complex at 37 ° C for 1 hour, and then reacted with TMB at room temperature for 30 minutes. After adding Stop solution, OD450nm was measured with Chameleon.
  • the detection limit was 65 pgZmL
  • the detection range was from lOOOOpgZmL to ⁇ gZmL
  • the average CV% was 13.2.
  • sugar chain structures such as glycoproteins and glycolipids change in cancerous cells and various diseases.
  • lectins for diagnosis of cancer and liver diseases.
  • Western blotting is generally detected using a lectin column.
  • the antibody-lectin enzyme immunization method (Taniguchi et al., Biophysical Chemistry, 35 (3), 199-204) is a variant of ELISA.
  • a method for rapidly detecting a glycoprotein having a specific sugar chain in such a form has also been developed.
  • HT—1080 cells human fibrosarcoma
  • HT—1080 cells human fibrosarcoma
  • 5% formalin aqueous solution 0.55 ⁇ 105 cells / well of HT—1080 cells (human fibrosarcoma) were placed in a 96-well microplate and incubated in 5% formalin aqueous solution at room temperature for 15 minutes to perform cell coating.
  • the cell-coated wells were then washed with PBS buffer and incubated for 5 minutes in PBS buffer containing 0.01% Triton X-100. After washing with PBS buffer again, mouse anti-human actin, smooth muscle antibody (1:10) (UK—Serotec Ltd) and antibody-free negative control
  • the cells were incubated at room temperature for 2 hours.
  • piotinylated anti-mouse IgG (1: 100) was added and incubated at room temperature for 1 hour to form a pyotinylated antigen-antibody complex.
  • Example 2 InM piotinylated DNA (target DNA) at room temperature for 30 minutes. After washing this, it was further washed 3 times with water.
  • Example 2 In the same manner as in Example 1, 50 mL of probe mix was added and reacted at 63 ° C. for 25 minutes. Then, excitation wavelength (Ex.) 485 nm, emission wavelength (Em.) By Chameleon (HIDEX, Finland) The fluorescence intensity of FAM was measured at 530 nm.
  • the results are shown in the graph of FIG.
  • the vertical axis of FIG. 14 shows the expression intensity (fluorescence intensity) of actin protein, and the horizontal axis shows the number of cells (X 10 5 cells).
  • the fluorescence intensity was observed almost in proportion to the concentration of the actin protein, and it was confirmed that it could be used for quantitative measurement.
  • Apoptosis is a term that combines apo (off) and ptosis (falling), and is contrasted with mitosis, the symbol of ginger.
  • Apoptosis is a biological control mechanism that removes cells that are no longer needed in the body, and also has the meaning of biological defense that eliminates cells that have become abnormal due to mutation or injury. In other words, “live renewal” by the self-erase function of normal and abnormal cells is the essence of apoptosis. Not only in the field of morphogenesis but also in the medical field, the pathological mechanism, the biological significance of apoptosis in relation to diagnosis and treatment are discussed. In order to conduct research on apoptosis, it is important to establish a technique for accurately and sensitively detecting apoptosis, and the method of the present invention will be described as a method for simply detecting this.
  • lxlO 5 Zwell HT-1080 cells human fibrosarcoma
  • 96-well microplates incubated at 37 ° C in a carbon dioxide incubator, and 0 ⁇ and 75 ⁇ magnolol (Manufactured by Wako) was added and further incubated at 37 ° C in a carbon dioxide incubator.
  • discard the culture medium containing magnolol add 200 1 IX binding buffer (BioVision), add 5 ⁇ l biotinylated annexin V (BioVision), 5 ⁇ l propidium iodide (propidium iodide). (BioVision) and incubate for 5 minutes at room temperature in the dark Pate.
  • the cells were incubated with 5% honoremarin PBS solution at room temperature for 15 minutes to coat cells.
  • the cell-coated well was washed with PBS buffer, and then blocked by incubating in PBS buffer containing 1% BSA for 1 hour at room temperature.
  • Example 2 In the same manner as in Example 1, 50 mL of probe mix was added and reacted at 63 ° C. for 60 minutes. Then, excitation wavelength (Ex.) 485 nm, emission wavelength (Em) using a fluorescence plate reader (Chameleon; Finland, HIDEX) ) FAM fluorescence intensity was measured at 530 nm.
  • Apoptosis proceeds on the basis of nuclear chromatin condensation when apoptosis progresses as a cell death different from necrosis and the integrity of the plasma membrane is lost. And, DNA fragmentation of nucleosome (about 180 base pairs) by endonuclease activity characterizes apoptosis! /.
  • TdT terminal deoxynucleotidyl transferase
  • biotin-labeled deoxyuridine triphosphate is used at the double-stranded break of DNA
  • biotin-labeled deoxyuridine triphosphate is used.
  • dUT P deoxyuridine triphosphate
  • Piotin DNA target DNA was bound via avidin.
  • late apoptotic cells are detected by the method of the present invention.
  • TdT enzyme manufactured by Trevigen
  • labeling buffer positive or labeling buffer alone (negative, no enzyme)
  • hybridization was performed in a humidified box at 37 ° C for 1 hour.
  • it was immersed in a TdT stop solution (manufactured by Trevigen) for 5 minutes and washed once with PBS buffer for 5 minutes.
  • 50 1 of anti-BrdU (ant BrdU) manufactured by Trevigen was added, and hybridization was performed at 37 ° C. for 1 hour in a wet box. Further, the plate was washed 3 times for 5 minutes with PBS buffer containing 0.05% Tween20. After that, he surrounded the specimen with Dakopen and performed the following reaction.
  • the probe mix was added and reacted at 63 ° C for 90 minutes.
  • 201 reaction solutions were placed in a 384-well black microplate and excited with a fluorescence plate reader (Chameleon, HIDEX, Finland) at an excitation wavelength (Ex.) Of 485 nm and emission wavelength (Em.) Of 530 nm. The fluorescence intensity of was measured.
  • Receptor ⁇ Ligand Binding Binding
  • the present invention is carried out using a ligand molecule as a chemical substance. This enables application to cell receptor expression, measurement of its activity, ligand search for receptors (eg, orphan receptors), or receptor search for specific ligands.
  • laminin is one of cell adhesion factors and is known to act through a receptor on the cell surface (laminin receptor).
  • laminin receptor a receptor on the cell surface
  • YIGSR Tyr-lie-Gly-Ser-Arg
  • lxlO 5 / well HT—1080 cells human fibrosarcoma
  • 96-well microplates cultivated, and 0 and 5 gZWell of pyotinylated YIGSR peptide, respectively, and incubated at 37 ° C for 1 hour did.
  • the cells were incubated in 5% formalin in PBS for 15 minutes at room temperature to coat the cells.
  • the cell-coated wells were washed with PBS buffer, and then incubated in 1% BSA-containing PBS buffer for 1 hour at room temperature for blocking.
  • lOOOngZml of streptavidin was added and incubated at room temperature for 1 hour, and then buffer A (containing 0.05% Tween-20 and 0.05M Tris— After washing 3 times with HCl buffer (pH 7.8)), it was washed once with buffer B (0.05M Tris-HCl buffer (pH 7.8)). Next, it was reacted with 0. InM piotinated synthetic DNA at room temperature for 30 minutes. After washing the above buffer A 3 times and buffer B, it was further washed 3 times with water.
  • buffer A containing 0.05% Tween-20 and 0.05M Tris— After washing 3 times with HCl buffer (pH 7.8)
  • buffer B 0.05M Tris-HCl buffer (pH 7.8)
  • Example 2 In the same manner as in Example 1, 50 mL of probe mix was added and reacted at 63 ° C. for 60 minutes. Then, excitation wavelength (Ex.) 485 nm, emission wavelength (Em) using a fluorescence plate reader (Chameleon; Finland, HIDEX) ) FAM fluorescence intensity was measured at 530 nm.
  • FIG. 15 The results are shown in Fig. 15.
  • the vertical axis in FIG. 15 indicates the fluorescence intensity of FAM, and the horizontal axis indicates the presence or absence of the prepared pyotinylated YIGSR peptide.
  • negative control It was observed that the fluorescence intensity increased when 5 ⁇ g of piotinylated YIGSR peptide was added, compared to the case without Piotinylated YIGSR peptide, confirming that the receptor could be detected.
  • DNA or RNA having a sequence complementary to all or part of mRNA is disposed as a chemical substance. Thereby, measurement of gene expression pattern and expression level in cells can be performed by the method of the present invention.
  • MMPs Matrix metalloproteinases
  • MMP-2 or gelatinase A, 72-kDa gelatinase, or 72-kDa type
  • IV collagenase has been reported to be constitutively expressed in fibrosarcoma cells such as HT-1080 cells. Therefore, mRNA assembly is performed targeting MMP-2 mRNA.
  • Cell coating was performed by taking 1.1 ⁇ 10 5 cells of HT-1080 in each well of a 96-well plate and incubating in 5% formalin aqueous solution for 15 minutes. Next, this was washed with PBS buffer, soaked in Target Retrival Solution (manufactured by Dako) for 40 minutes and then treated with 0.2N HC1 for 20 minutes. Was activated. This was washed three times with DEPC water for 1 minute, dehydrated by treatment with 95% ethanol for 1 minute, 100% ethanol for 1 minute, and air-dried with cold air.
  • Biotinylated MMP2 and endogenous control GAPDH (Glyceraldehyde Phosphate Dehydrogenase) probe (sense and antisense, 2 ⁇ g / mL each) are diluted with RNA in situ hybridization solution. The mixture was added as 10 ⁇ L, covered with a hybrid slip hybridization cover (Hybrislip Hybridization cover), and allowed to hybridize at 37 ° C. for 1 hour. The cover was then removed in a 50-fold diluted Stringent wash solution warmed to 40 ° C and incubated for 20 minutes at 40 ° C. Then again in fresh cleaning solution And incubated at 40 ° C for 20 minutes.
  • TBS buffer 50 mM Tris-HC1, 159 mM NaCl, PH 7.6
  • buffer A 0.05M Tris-HC1 buffer (pH 7.8) containing 0.05% of Tween 20
  • buffer B Washed once with 0.05M Tris-HC1 buffer (pH 7.8) hereinafter, washing was performed in the same manner.
  • the result of MMP2 is shown in FIG. 16, and the result of GAPDH is shown in FIG.
  • the vertical axis of FIG. 16 and FIG. 17 shows the fluorescence intensity, and the left side of each figure shows the case of the sense strand, and the right side shows the case of the antisense strand.
  • a slide made by Dako with 1 to 2 copies of papilloma 16 virus-infected SiHa cells affixed to xylene for 5 minutes, 2 times, 100% ethanol for 1 minute, 2 times, 99% ethanol for 1 minute, 3 times, water In 1 minute, deparaffinize in 5 times in order.
  • Target Retrieval Solution manufactured by Dako
  • Dako Target Retrieval Solution
  • Put a positive probe with Piotin-labeled human HPV16 sequence (Dako) and a negative probe without HPV16 sequence (Dako) put on a cover glass and allow to hybridize at 37 ° C in a humidified box. It was.
  • FIG. 18 The results are shown in FIG.
  • the vertical axis of FIG. 18 shows the fluorescence intensity
  • the left side of FIG. 18 shows the negative case
  • the right side shows the positive case.
  • the quantification by the method of the present invention showed that the positive (positive) fluorescence intensity increased about 3 times or more compared to the negative (negative). Therefore, according to the method of the present invention, detection with higher sensitivity than in the conventional method is possible, and it is possible to detect DNA of copy virus, which is less in a slide smear.
  • Abutama is an antibody-like molecule composed of nucleic acid (single-stranded DNA or RNA) and specifically binds to the target molecule due to its three-dimensional structure. Since the nucleic acid is about 15 to 30 mer, it can be synthesized artificially with high reproducibility once the sequence is determined. In other words, it is an “artificial antibody made in a test tube”.
  • the chemical substance is replaced with abutama. Therefore, it is possible to speed up detection and improve reproducibility.
  • thrombin aptamer was used as the aptamer model.
  • Thrombin aptamer is a 15-mer long single-stranded DNA aptamer that specifically binds ⁇ -thrombin. Its sequence is known (Bock et al. (1992), Nature 355: 564-566), and data measured by ELISA using enzyme labeling have already been reported (Paborsky et al. (1993), J Biol Chem). 268: 20808-20811). Two types of abutama were prepared: (1) 5, labeled with piotin at the end, and (2) bound with the target sequence of the invader method of the present invention on the 3 ′ end. Was measured.
  • the underlined portion indicates the target sequence in the invader method of the present invention.
  • the detection sensitivity was compared using target DNA having multiple target regions (multi-target DNA).
  • target DNA having the following 91-mer base sequence was used as an example in which the space between target units is 5 mer.
  • Target DN A concentration
  • FIG. 21 the vertical axis shows the fluorescence intensity, and the horizontal axis shows from the left side the control (No Target) and the conventional target DNA with one target area (Mono). The case of target DNA (Multi) is shown.
  • the fluorescence sensitivity of FAM increased approximately 1.55 times at Invader Atsey by using two target areas.
  • the space between target units is Omer. As an example in which this is repeated 5 times, target DNA having the following 99-mer base sequence was used.
  • This signal probe also serves as an invader oligo. For the creation of the first flap, the next invader oligo,
  • Target DN A concentration
  • DMTr-dT-CPG dimethoxytrityl derivative
  • DMTr—dT— (0 P—OR) —dC—CPG). Repeat the above cycle and extend by one base in the 3 ' ⁇ 5' direction (5 ') DMTr—AGAAG GTGTC TGC GG GAGTC GATTT CATCA TCACG CAGCT TTTCT TTGAG G CT-CPG (3') DNA Got.
  • biotin phosphoramidite (1— Dimethoxytrityloxy— 2— (N— Diotinv 4— ammobutyl) — propy 3— u— (2— cyanoetnyl) — ( ⁇ , ⁇ — dusopropyl) — phosph oramidite) and react for 2 minutes. Thereafter, the mixture was reacted with 28% ammonia water at 55 ° C. for 5 hours, and desorbed from CPG. The obtained Pyotin DNA was purified by HPLC, and the value at 260 nm was measured with a spectrophotometer to confirm that it was a single peak at a retention time of 7.41 minutes. Finally, the remaining DMTr was removed, desalted with a column, and lyophilized to produce the biotinylated DNA (target DNA) of the present invention.
  • the present invention provides a method using a novel label that is safe, simple, highly sensitive, reliable, and has a wide measurement range, in order to measure the behavior of physiologically active substances and the like. It provides a new method.
  • the method of the present invention for example, the presence or quantification of physiologically active substances such as various antibodies and antigens can be carried out, and elucidation of the onset of a disease that is useful only for the diagnosis and treatment of the disease. It is extremely useful as a new label in various screening methods, and the present invention has industrial applicability.
  • SEQ ID NO: 1 is an example of an oligonucleotide as a label of the present invention.
  • SEQ ID NO: 2 is an example of a signal probe in the method of the present invention.
  • SEQ ID NO: 3 is an example of an invader oligo in the method of the present invention.
  • SEQ ID NO: 4 is an example of a fret probe in the method of the present invention.

Abstract

 本発明は、より高感度で、測定のバラツキもなく、安定した測定が可能で、かつ操作性の優れた標識、及びそれを用いた標識化方法、並びに、分析方法を提供する。本発明は、新規な標識としてのオリゴヌクレオチドを用いた測定方法、標識化学物質、及び標識用オリゴヌクレオチド、並びにそのための測定用キットに関する。より詳細には、本発明は、化学物質に結合したオリゴヌクレオチドを標識として使用し、当該オリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方法、より詳細にはフラップエンドヌクレアーゼを使用して核酸を切断する方法、さらに詳細にはインベーダー法により検出、同定又は定量する方法に関する。さらに詳細には、本発明は、標識としてのオリゴヌクレオチドが結合した化学物質(以下、標識化化学物質という。)を標的分子を含有するか、又は含有している可能性のある試料に接触させ、当該標識化化学物質と試料中の標的分子との複合体を形成させ、当該複合体におけるオリゴヌクレオチドをインベーダー法により測定することからなる、試料中の標的分子を検出、同定又は定量する方法、標識化学物質、及び標識用オリゴヌクレオチド、並びにそのための測定用キットに関する。

Description

特異的結合を利用した標的分子の高感度検出法、そのキット 技術分野
[0001] 本発明は、新規な標識としてのオリゴヌクレオチドを用いた測定方法、標識化学物 質、及び標識用オリゴヌクレオチド、並びにそのための測定用キットに関する。より詳 細には、本発明は、化学物質に結合したオリゴヌクレオチドを標識として使用し、当該 オリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方法、より詳細にはフラ ップエンドヌクレアーゼを使用して核酸を切断する方法、さらに詳細にはインべーダ 一法により検出、同定又は定量する方法に関する。さらに詳細には、本発明は、標識 としてのオリゴヌクレオチドが結合したィ匕学物質 (以下、標識ィ匕化学物質という。)を標 的分子を含有するか、又は含有している可能性のある試料に接触させ、当該標識ィ匕 化学物質と試料中の標的分子との複合体を形成させ、当該複合体におけるオリゴヌ クレオチドをインベーダー法により測定することからなる、試料中の標的分子を検出、 同定又は定量する方法、標識化学物質、及び標識用オリゴヌクレオチド、並びにそ のための測定用キットに関する。
背景技術
[0002] 多くの化学物質が個体の活動や維持に関わっており、特に生物体においてはタン ノ ク質を多くの化学物質が生命の成長や維持や活動に関わっている。これらの化学 物質の物理的又は化学的な挙動が少しづつではあるが解明されてきている。とりわ け、抗原と抗体や、リガンドと受容体のような特異的な相互関連性の解明が行われて きており、健康の維持だけでなぐ病気の診断や治療のためにこれらの特異的な相 互関連性が注目されてきて 、る。
とりわけ、抗原抗体反応は、対応する抗原と抗体のみが選択的に反応する極めて 特異性の高い反応であるだけでなぐ生体内で生ずる抗原抗体反応をそのまま試験 管内で再現することができることから、病気の診断や治療に広く利用されてきている。 し力しながら、化学物質の挙動、特に生命体内における化学物質の挙動を直接検 出することは不可能であり、これらの化学物質の挙動を観察するための標識ィヒが行 われてきた。
[0003] 標識化は、標的となる化学物質を検出、同定又は定量化するなどの各種の当該化 学物質に関する情報を得るために、当該化学物質の一部を改変して測定可能な目 印をつけることである。標識化した化学物質の生化学分野における最初の例は、 19 04年のノーブ (F.Knoop)の実験であると言われている。これは、脂肪酸の末端のメチ ル基をフ ニル基に代えた脂肪酸をゥサギに投与し、尿中のフ ニル酢酸などを分 祈して、脂肪酸の生体内における β酸ィ匕説を提唱したものである。
現在では、標識として重水素、 13cや14 C、 32Pなどの同位元素、特に放射性同位元 素が使用されている。放射性同位体は化学物質の化学的な特性を大きく変えること なぐ化学物質を追跡することが可能であり、また検出も容易であるが、放射性である ことが大きな問題となっている。
同位体の標識のほかに、官能基を導入する標識化も行われている。官能基として は、紫外や可視部に吸収を有する基や、蛍光性の基などが使用されている。しかし、 これらの官能基は化学物質の物理的又は化学的特性を変化させたり、また非生物系 のものが多ぐ生体内への適用には問題が生じている。
このように標識は化学物質の各種の挙動を測定するために極めて重要であり、多 種多様な標識が開発されてきている。例えば、抗原抗体反応を利用したィムノアッセ ィでは、放射性同位元素を用いたラジオィムノアッセィ (RIA)、酵素を用いたェンザ ィムィムノアッセィ (EIA)、蛍光物質を用いた蛍光ィムノアッセィ (FIA)などの標識ィ匕 ィムノアッセィがー般ィ匕してきて 、る。
[0004] 近年になって、標識として DNAなどの核酸を用いる方法も開発され、当該 DNAを PCR法により増幅して感度を上げることを試みたものである。この方法は、元々は D NAの 5'末端側に抗体を結合させて DNAを検出するために使用されていた抗体結 合型 DNA (特許文献 1参照)を、ィムノアツセィに適用したものであり、抗体に DNA を結合させこれを PCR法により増幅させて、当該抗体の検出感度の上昇試みたもの である(特許文献 2、及び非特許文献 1参照)。この方法は、現在ではィムノ PCR法 としてィムノアツセィの分野で使用されてきて 、る(特許文献 3及び 4参照)。
ィムノ PCR法は原理的には無限に増幅可能であり、感度的には有利な方法では あるが、操作が煩雑であり、また定量ィ匕が困難であり、測定値のバラツキが大きぐ従 来からの ELISA法に比べても実用性が十分なものではない。
[0005] 一方、ヒトゲノムの解析に伴い、遺伝子多型が注目され、 RFLP (制限酵素切断断 片長多型)法、ダイレクトシークェンス法、 ASO (Allele Specific Oligonucleotide)ハイ ブリダィゼーシヨン法、 RNaseA切断法、 DOL (Dye- labeled Oligonucleotide Ligatio n)法、 TaqMan PCR法、 MALDI—TOFZMS法(Matrix Assisted Laser Desorpti on-time of Flight/Mass Spectrometry)法、 DNAチップ法、インベーダー法などの各 種の方法が開発されてきた力 これらの方法の多くは PCR法による増幅を必要とする ものであった。この中で、インベーダー法は、被検体 DNAは勿論のこと、シグナルプ ローブもインベーダーオリゴにも標識ィ匕は必要でなぐ標識ィ匕を必要とするものはフ レットプローブのみである。そして、当該フレットプローブは、フラップ部分の塩基配列 だけと関わり、とりわけフラップ部分の塩基とも無関係であり、被検体 DNAの塩基配 列に全く影響されず、被検体と関係無く任意に決定できるフラップ部分の塩基に基 づくものであることから、大量生産ができ、プローブ作製コストを大幅に減少すること ができると!、う利点があった。
[0006] 特許文献 1 :特開平 3— 231151号公報
特許文献 2 :米国特許第 5, 665, 539号明細書
特許文献 3:特表平 8 - 502413号公報
特許文献 4:特開 2003 - 504073号公報
非特許文献 l : Lab. Clin. Pract., 20: 110-114; 2002
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、より高感度で、測定のバラツキもなぐ安定した測定が可能で、かつ操作 性の優れた標識、及びそれを用いた標識化方法、並びに、分析方法を提供するもの である。
課題を解決するための手段
[0008] 本発明者らは、遺伝子多型の検出法であるインベーダー法の高感度化の開発を行 つてきたが、このインベーダー法を応用することにより各種の物質の標識ィ匕ができるこ とを見出した。インベーダー法は、ゲノム中の 1塩基多型を検出するために開発され た方法であり、もっぱら被検体 DNA中の 1塩基の多型をインベーダーオリゴにより検 出するものであり、その概要を説明しておく。インベーダー法は、 SNPタイピング法の 1種として広く知られている方法であり、例えば、中村祐輔編集「SNP遺伝子多型の 戦略」(株式会社中山書店、 2000年)にも、その方法の詳細が記載されている。図 1 にインベーダー法による核酸 1塩基多型解析法の概略を模式図として示す。
この方法は、被検体 DNA (target DNA)の中に図 1に示されるように「N」の位置で SNPになって!/、る塩基が存在して!/、ることを判定する方法である。このためにシグナ ノレプローブ (primary probe)とインベーダープローブ (secondary probe)、及び検出用 のフレットプローブ(FRET probe) (蛍光共鳴エネルギー移動プローブ(FRET (Fluor escence Resonance Energy Transfer)フ—口 ~~ブ) )を用 ヽる。ンクナノレプロ ~~フ Ίま被恢 体 DNAの SNPの位置から 5 '側にお!、て相補的な塩基配列を有し、さらに「フラップ (flap)」と呼ばれる塩基配列部分を有している。このフラップの部分の塩基配列は、フ レットプローブの 3'側の塩基配列と相補的な塩基配列となっている。また、インべ一 ダーオリゴは被検体 DNAの 3 '側にお 、て相補的な塩基配列を有するものである。 S NPの位置(図 1中の「N」で示されている位置。)における被検体 DNAの塩基「N」は 1塩基多型部位の塩基、 A、 T、 G、 Cのひとつであり、シグナルプローブの塩基「N」 は Nと正常な塩基対を形成できる塩基であり、そして、インべーダ一プローブの塩基 「N」は任意な塩基である。フレットプローブは、 3'側にフラップ部分が結合するため
2
の 1本鎖部分を有するプローブであり、フレットプローブの 5'側はその全部又は一部 が 2本鎖を形成するようになっている。図 1では 5'側の全部が 2本鎖を形成するように 示されているが必ずしも全部が 2本鎖になる必要はないが、ここでは説明のために図 1に従って説明する。そして、フレットプローブの 5'側の末端部分には発光色素「Ln」 及び消光物質「Q」が結合されて 、る。消光物質「Q」が発光色素「Ln」の一定の距離 内に存在しているときは、発光色素の発光が消光され、発光を観察することはできな い。
インベーダー法では、まず、被検体 DNAにシグナルプローブ及びインベーダーォ リゴが結合するが、この際にシグナルプローブの塩基「N」と被検体 DNAの塩基「N 」との塩基対の間にインベーダーオリゴの塩基「N」がインベーダー (侵入者)のように
2
割り込んでくるようになる。このような状態を示して 、るのが図 1の最上段に示して!/、る 状態である。このような 3塩基がからんでいる状態に特異的に作用する解裂酵素 (str ucture-specific 5' nuclease)を作用させると、この解裂酵素はシグナルプローブを塩 基 」の位置で切断して、フラップ部分のみの断片を形成させる。そして、このフラ ップ部分はフレットプローブの 3'側に結合する。この状態を示しているのが、図 1の中 段である。このとき、フラップ部分の塩基「N」を含む先端部分力 フレットプローブの 2本鎖の部分に割り込むような状態になる。この状態は先程のインベーダーの状態と 同様であり、解裂酵素による特異的な切断位置になる。そして、当該解裂酵素により フレットプローブの 5'末端側がフラップ部分に割り込まれた部分力 切断される。切 断されたフレットプローブの 5'側には、発光色素「Ln」が結合されており、この切断に より発光色素「Ln」は消光物質「Q」力 離れることになり、その結果発光色素「Ln」の 発光を観察することができるようになる。このような状態を示しているのが図 1の最下 段に示している状態である。発光色素「Ln」は消光物質「Q」から開放され、本来の発 光を示すことになる。シグナルプローブの塩基「N Iが被検体 DNAの塩基「N」と正 常な塩基対を形成することができない場合には、インベーダーのような状態にならな いので、解裂酵素による切断は起こらない。したがって、被検体 DNAの塩基「N」が シグナルプローブの塩基「N」と正常な塩基対を形成することができる塩基であるか 否かを発光により判定することができることになる。
本発明におけるインベーダー法は、従来のインベーダー法とは異なり、被検体 DN Aの 1塩基多型(SNP)を検出することを目的とするものではないので、以下の説明で は、ここで使用した「被検体 DNA」の代わりに「ターゲット DNA」と 、う用語を使用す る。
このように、従来のインベーダー法は、被検体としてゲノム DNAを使用するもので あり、当該ゲノム DNA中の 1塩基多型を検出するものであった力 当該被検体として 抗体や抗原などの化学物質に結合させた DNAなどの核酸 (オリゴヌクレオチド)を用 いることにより、煩雑な PCR法を行うことなく高感度で当該核酸を検出'同定すること ができ、化学物質の標識ィ匕合物として利用することができることを見出した。 [0011] 即ち、本発明は、オリゴヌクレオチドをィ匕学物質の標識として使用することを第一の 特徴とし、さらに当該オリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方 法、好ましくはインベーダー法により検出、同定又は定量することを第二の特徴とす るものである。
本発明の第一の特徴点は、 PCR法を適用することができない程度の短いオリゴヌク レオチドを標識として使用することである。ィムノ PCRに関する米国特許第 56655 39号では、 2. 67kbの DNAを標識として、約 30merのプライマーを使用して 261bp のフラグメントを増幅している力 本発明のオリゴヌクレオチドは、インベーダー法にお けるシグナルプローブ(primary probe)として使用する場合には、約 10〜100mer、 好ましくは約 20〜60mer程度で十分であり、従来のィムノ PCR法における標識と してのオリゴヌクレオチドとは、その長さにおいて明確に区別できるものである。当該 オリゴヌクレオチドは、前記の説明におけるインベーダー法のシグナルプローブ(prim ary probe)、インベーダーオリゴ (secondary probe)、又はターゲット DNAのいずれの ものとしてもよいが、好ましくは当該オリゴヌクレオチドは前記したインベーダー法に おけるターゲット DNA又はシグナルプローブ(primary probe)として使用されるもので ある。
また、本発明の第二の特徴点は、当該オリゴヌクレオチドをヌクレアーゼを使用して 核酸を切断する方法、好ましくはフラップエンドヌクレアーゼを使用して核酸を切断す る方法、より好ましくはインベーダー法により検出、同定又は定量することである。本 発明の方法におけるヌクレアーゼを使用して核酸を切断する方法をインベーダー法 を例として説明すれば、方法としては従来のインベーダー法と方法としては同様であ る力 従来のインベーダー法のように被検体 DNA (target DNA)における 1塩基の相 補性を検出するためのものではなぐ標識としてのオリゴヌクレオチドの存在又は非存 在、さらにその存在量を検定する方法である点において相違するものである。
本発明のこれらの 2つの特徴点のいずれか又は両方を備えたものであれば、その 手段の如何を問わず本発明の範囲に包含されるものである。
[0012] 本発明をより具体的に説明する。
本発明は、化学物質に結合したオリゴヌクレオチドを標識として使用し、当該オリゴ ヌクレオチドをヌクレアーゼを使用して核酸を切断する方法により、より詳細にはフラ ップエンドヌクレアーゼを使用して核酸を切断する方法により、さらに詳細には当該ォ リゴヌクレオチド中の 1塩基の存在をインベーダー法により検出、同定又は定量する 方法に関する。より詳細には、本発明は、標識としてのオリゴヌクレオチドが結合した 化学物質 (以下、標識化化学物質という。)を標的分子を含有するか、又は含有して いる可能性のある試料に接触させ、当該標識化化学物質と試料中の標的分子との 複合体を形成させ、当該複合体におけるオリゴヌクレオチドをヌクレアーゼを使用して 核酸を切断する方法により、より詳細にはフラップエンドヌクレアーゼを使用して核酸 を切断する方法により、さらに詳細には、当該オリゴヌクレオチド中の 1塩基の存在を インベーダー法により測定することからなる、試料中の標的分子を検出、同定又は定 量する方法に関する。
また、本発明は、ィムノアッセィにおいて、標識としてオリゴヌクレオチドを使用し、当 該オリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方法により、より詳細 にはフラップエンドヌクレアーゼを使用して核酸を切断する方法により、さらに詳細に は、当該オリゴヌクレオチド中の 1塩基の存在をインベーダー法により検出、同定又 は定量する方法に関する。即ち、本発明は、ィムノアッセィにおける新規な標識の使 用、及びその解析方法を提供するものである。
さらに、本発明は、結合アツセィゃ競合アツセィなどの各種の標的分子をアツセィ( 分析)する方法において、標識としてオリゴヌクレオチドを使用し、当該オリゴヌクレオ チドをヌクレアーゼを使用して核酸を切断する方法により、より詳細にはフラップェン ドヌクレアーゼを使用して核酸を切断する方法により、さらに詳細には、当該オリゴヌ クレオチド中の 1塩基の存在をインベーダー法により検出、同定又は定量することか らなる標的分子をアツセィ (分析)する方法に関する。即ち、本発明は、各種のアツセ ィにおける新規な標識の使用、及びその解析方法を提供するものである。
また、本発明は、 10〜: LOOmer、好ましくは 10〜60mer、 10〜40mer、より好まし くは 20〜60merのオリゴヌクレオチド力もなる化学物質の標識剤に関する、及び 10 〜: LOOmer、好ましくは 10〜60merゝ 10〜40merゝより好ましくは 20〜60merのォ リゴヌクレオチドの標識としての使用(use)に関する。さらに、オリゴヌクレオチドをイン ベーダ一法におけるターゲット DNAとして使用する場合には、この整数倍の長さを 有するものを使用することができる。
さらに、本発明は、 10〜: LOOmer、好ましくは 10〜60mer、 10〜40mer、より好ま しくは 20〜60merのオリゴヌクレオチドが標識として化学物質に結合して 、る標識化 された化学物質に関する。
また、本発明は、 10〜: LOOmer、好ましくは 10〜60mer、 10〜40mer、より好まし くは 20〜60merのオリゴヌクレオチドが標識として化学物質に結合して 、る標識ィ匕さ れたィ匕学物質を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用する ヌクレアーゼを使用して核酸を切断する方法、好ましくはフラップエンドヌクレアーゼ を使用して核酸を切断する方法、より好ましくはインベーダー法による測定用キットに 関する。
さらに、本発明は、インベーダー法におけるシグナルプローブ(primary probe)、ィ ンベーダーオリゴ(secondary probe)、ターゲット DNA、及びフレットプローブからなる 群力 選ばれるオリゴヌクレオチドの少なくとも 1種のオリゴヌクレオチドを含有してな る、オリゴヌクレオチドを標識として使用するインベーダー法による測定用キットに関 する。
本発明の態様をより詳細に説明すれば、以下のとおりとなる。
(1)
化学物質に結合したオリゴヌクレオチドを標識として使用し、当該オリゴヌクレオチド を利用してヌクレアーゼを使用して核酸を切断する方法により、試料中の標的分子を 検出、同定又は定量する方法。
(2)
標識としてのオリゴヌクレオチドが結合したィ匕学物質 (以下、標識化化学物質と 、う 。)を、試料中に標的分子を含有するか、又は含有している可能性のある試料に接触 させ、当該標識化化学物質と試料中の標的分子との複合体を形成させ、当該複合 体におけるオリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方法により測 定することからなる、前記(1)に記載の試料中の標的分子を検出、同定又は定量す る方法。 (3)
試料中の標的分子を検出、同定又は定量する方法において、標識としてオリゴヌク レオチドを使用し、当該オリゴヌクレオチドの存在をヌクレアーゼを使用して核酸を切 断する方法により測定するからなる、前記(1)又は(2)に記載の試料中の標的分子を 検出、同定又は定量する方法。
(4)
オリゴヌクレオチド力 1本鎖の DNAである前記(1)〜(3)の 、ずれかに記載の方 法。
(5)
オリゴヌクレオチドが、 10〜1000merの DNAである前記(1)〜(4)のいずれかに 記載の方法。
(6)
オリゴヌクレオチド力 10〜100merの DNAである前記(5)に記載の方法。
(7)
オリゴヌクレオチド力 10〜60merの DNAである前記(5)に記載の方法。
(8)
オリゴヌクレオチド力 10〜40merの DNAである前記(5)に記載の方法。
(9)
化学物質が、タンパク質、ピオチン、アビジン、又は核酸である前記(1)〜(8)のい ずれかに記載の方法。
(10)
化学物質が、ピオチンである前記(9)に記載の方法。
(11)
標識のオリゴヌクレオチドが、化学物質に直接結合して 、る前記(1)〜(10)の 、ず れかに記載の方法。
(12)
ヌクレアーゼにより切断される核酸力 標識のオリゴヌクレオチドである前記(1)〜( 11)の 、ずれかに記載の方法。 (13)
ヌクレアーゼにより切断される核酸力 標識のオリゴヌクレオチドに基づいて生成さ れた核酸である前記(1)〜(11)の 、ずれかに記載の方法。
(14)
ヌクレアーゼにより切断される核酸力 発光物質及び消光物質が結合した核酸であ る前記(1)〜(13)のいずれかに記載の方法。
(15)
発光物質が、希土類蛍光錯体ラベル剤を有するものである前記(14)に記載の方 法。
(16)
希土類蛍光錯体ラベル剤が、 Eu錯体、 Tb錯体、 Sm錯体、又は Dy錯体力ゝらなるラ ベル剤である前記(15)に記載の方法。
(17)
ヌクレアーゼ力 フラップエンドヌクレアーゼである前記(1)〜(16)のいずれかに記 載の方法。
(18)
ヌクレアーゼを使用して核酸を切断する方法力 インベーダー法である前記(1)〜 ( 17)の 、ずれかに記載の方法。
(19)
標識のオリゴヌクレオチド力 インベーダー法におけるターゲット DNAである前記( 18)に記載の方法。
(20)
ターゲット DNA力 シグナルプローブがハイブリダィズし得る塩基配列を 1力所又は 2力所以上有するものである前記(19)に記載の方法。
(21)
シグナルプローブ力 2個のフラップを生成し得る塩基配列を有するものである前記 (19)又は(20)に記載の方法。
(22) シグナルプローブが、隣接するシグナルプローブのインベーダーオリゴとして機能 し得る塩基配列を有するものである前記(19)又は(20)に記載の方法。
(23)
試料中の標的分子を検出、同定又は定量する方法が、ィムノアッセィである前記(1 )〜(22)の 、ずれかに記載の方法。
(24)
ィムノアッセイカ サンドイッチアツセィである前記(23)に記載の方法。
(25)
試料中の標的分子を検出、同定又は定量する方法が、結合アツセィである前記(1 ;)〜(22)に記載の方法。
(26)
標識としてのオリゴヌクレオチドが結合したィ匕学物質力 ピオチンィ匕 DNAである前 記(23)〜(25)の!、ずれかに記載の方法。
(27)
10〜: LOOmerのオリゴヌクレオチドからなる化学物質の標識剤。
(28)
オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである前記(27)に記載の 標識剤。
(29)
オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである前記(27)に記載の 標識剤。
(30)
オリゴヌクレオチドが、 1本鎖の DNAである前記(27)〜(29)の!、ずれかに記載の 標識剤。
(31)
前記(27)〜(29)の 、ずれかに記載のオリゴヌクレオチドの塩基配列を 2回以上繰 り返して有していることを特徴とするオリゴヌクレオチド力 なる化学物質の標識剤。 (32) 塩基配列の繰り返しが 2回から 10回である前記(31)に記載の標識剤。
(33)
10〜100merのオリゴヌクレオチドの標識としての使用。
(34)
オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである前記(33)に記載の 使用。
(35)
オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである前記(33)に記載の 使用。
(36)
オリゴヌクレオチドが、 1本鎖の DNAである前記(33)〜(35)の!、ずれかに記載の 使用。
(37)
前記(33)〜(35)の 、ずれかに記載のオリゴヌクレオチドの塩基配列を 2回以上繰 り返して有していることを特徴とするオリゴヌクレオチドの標識としての使用。
(38)
塩基配列の繰り返しが 2回から 10回である前記(37)に記載の使用。
(39)
10〜: LOOmerのオリゴヌクレオチドが標識として化学物質に結合している標識ィ匕さ れた化学物質。
(40)
オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである前記(39)に記載の 標識化された化学物質。
(41)
オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである前記(39)に記載の 標識化された化学物質。
(42)
オリゴヌクレオチドが、 1本鎖の DNAである前記(39)〜(41)の!、ずれかに記載の 標識化された化学物質。
(43)
前記(39)〜 (41)の 、ずれかに記載のオリゴヌクレオチドの塩基配列を 2回以上繰 り返して有していることを特徴とするオリゴヌクレオチドが標識として化学物質に結合 して 、る標識化された化学物質。
(44)
塩基配列の繰り返しが 2回力も 10回である前記 (43)に記載の標識化された化学物 質。
(45)
化学物質が、ピオチンである前記(39)〜 (44)の 、ずれかに記載の標識化された 化学物質。
(46)
10〜: LOOmerのオリゴヌクレオチドが標識として化学物質に結合している標識ィ匕さ れたィ匕学物質を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用する ヌクレアーゼを使用して核酸を切断する方法による測定用キット。
(47)
オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである前記(46)に記載の 測定用キット。
(48)
オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである前記(46)に記載の 測定用キット。
(49)
オリゴヌクレオチドが、 1本鎖の DNAである前記(46)〜(48)の!、ずれかに記載の 測定用キット。
(50)
10〜: LOOmerのオリゴヌクレオチドの塩基配列を 2回以上繰り返して有していること を特徴とするオリゴヌクレオチドが標識として化学物質に結合している標識化された 化学物質を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用するヌク レアーゼを使用して核酸を切断する方法による測定用キット。
(51)
塩基配列の繰り返しが 2回から 10回である前記(50)に記載の測定用キット。
(52)
オリゴヌクレオチドを標識として使用するヌクレアーゼを使用して核酸を切断する方 法力 前記(1)〜(26)の 、ずれかに記載の方法である前記 (46)〜(51)の 、ずれ かに記載の測定用キット。
(53)
標識ィ匕されたィ匕学物質が、ピオチンである前記 (46)〜(52)の 、ずれかに記載の 測定用キット。
(54)
インベーダー法におけるシグナルプローブ(primary probe)、インベーダーオリゴ(s econdary probe)、ターゲット DNA、及びフレットプローブからなる群から選ばれるオリ ゴヌクレオチドの少なくとも 1種のオリゴヌクレオチドを含有してなる、オリゴヌクレオチ ドを標識として使用するインベーダー法による測定用キット。
(55)
標識化されたィ匕学物質が、ピオチンである前記 (54)に記載の測定用キット。
本発明における「ヌクレアーゼを使用して核酸を切断する方法」(以下では、本発明 の「核酸切断法」と言うこともある。)としては、ヌクレアーゼによる核酸、例えば、 DNA 、 RNA、 PNAなどを特定の位置で切断することができる方法であればよぐより詳細 には、ヌクレアーゼによる核酸の切断により、当該核酸中に結合されている蛍光物質 などの発光物質と、当該発光物質による発光を消光する消光物質 (タエンチヤー)と を分離することができ、当該分離の結果として発光物質による発光を外部から観察又 は測定することが可能な方法である。ヌクレアーゼによる核酸の切断により蛍光物質 などの発光物質による発光を外部から観察又は測定することが可能な方法における 、核酸としては、例えば、インベーダー法によるフレットプローブや、タックマン PCR法 におけるタックマンプローブなどが知られており、このようなプローブを本発明の方法 に使用することができる力 本発明の方法はこのようなプローブの使用に限定される ものではない。
本発明のこの方法におけるヌクレアーゼとしては、核酸を切断することができるもの であれば特に制限はな 、が、エンドヌクレア一ゼゃェキソヌクレア一ゼの 、ずれであ つてもよく、二本鎖の核酸に作用する酵素であっても、三本鎖に作用する酵素であつ ても、一本鎖の核酸に作用する酵素であってもよい。また、核酸の高次構造を認識す る酵素であってもよい。本発明のこの方法におけるヌクレアーゼは、核酸を切断する ことができ、その結果として前記した発光物質と消光物質を分離 (距離的な隔たりを 設けられるようして、発光物質による発光が消光物質により消光されない状態にする こと。)することができるものであればよいが、好ましくは本発明の標識として使用され るオリゴヌクレオチドを切断することなぐ発光物質と消光物質が結合している核酸を 選択的に切断することができるヌクレアーゼが挙げられる。
本発明のこの方法におけるヌクレアーゼとしては、例えば各種の制限酵素を使用す ることもできる。例えば、タックマンプローブのように両末端の発光物質と消光物質と がそれぞれ結合して ヽるプローブを用いて、その中間部位を制限酵素などで切断す ることにより、タックマンプローブ中の発光物質と消光物質を分離し、その結果、測定 系からの発光を観測することもできる。し力しながら、このような単純な方法では、ひと つの標識としてのオリゴヌクレオチドから、一つの発光物質が放出されるだけであり、 十分な感度が得られない場合がある。高速度で高感度な測定を行うためには、本発 明の標識として使用されるオリゴヌクレオチドを切断することなぐ発光物質と消光物 質が結合している核酸を選択的に切断することができる方法が好ましいことになる。こ のような方法では、一つの標識としてのオリゴヌクレオチドから多数の発光物質の放 出が可能となり、高感度な測定が可能となる。
したがって、本発明の「ヌクレアーゼを使用して核酸を切断する方法」の特に好まし い態様としては、インベーダー法のように、一つのターゲット DNAから多数のフラップ を生じさせることができる方法が挙げられることになる。このような方法により、高速度 で、高感度で、定量的な測定が可能となる。し力も、 PCR法のような煩雑な操作も必 要とせず、 PCR法のような長い核酸を必要とすることもない。例えば、 10〜: LOOmer 、好ましくは 10〜40mer、 10〜30mer程度の比較的短い核酸を標識として使用し たとしても、本発明のこの方法によれば、十分な感度を得ることが可能となる。
以下の説明においては、本発明の「ヌクレアーゼを使用して核酸を切断する方法」 として、インベーダー法による方法を例として説明する力 本発明の方法は、このよう な方法に限定されるものではな 、。
本発明におけるオリゴヌクレオチドとしては、インベーダー法における場合には、シ グナノレフ—口 ~~ブ (primary probe)、インへ ~~タ ~~オリゴ (secondary probe)、又 タ. ~~ ゲット DNAのいずれかに使用可能なものであれば、その長さ、塩基配列において特 に制限はなく、相補配列にお 、てハイブリダィズが可能であれば、 DNAでも RNAで あってもよいが、 DNAが好ましい。本発明のオリゴヌクレオチドは、インベーダー法に おけるターゲット DNA又はシグナルプローブ(primary probe)が好ましぐターゲット DNAが特に好ましぐその長さは特に制限はないが、従来のィムノー PCR法に使用 される核酸類との区別のためには、 10〜100mer、好ましくは 10〜60mer、 10〜40 mer、より好ましくは 20〜40merのオリゴヌクレオチドが好ましい。例えば、本発明の オリゴヌクレオチドをインベーダー法におけるターゲット DNAを例にして説明する力 本発明はこれに限定されるものではない。本発明オリゴヌクレオチドの塩基配列は特 に制限はな 、が、本発明のオリゴヌクレオチドをシグナルプローブとして使用する場 合には、フラップ部分が 5〜50mer、好ましくは 10〜40mer、より好ましくは 10〜20 mer程度となるように設計され、残りの部分がターゲット DNAと相補的な配列となるよ うに設計される。この場合にはインベーダーオリゴ(secondary probe)は、ターゲット D NAの残りの部分と相補的な配列であり、さらにインベーダーとしての 1塩基を有する ものである。
本発明におけるこのようなシグナルプローブ(primary probe)、インベーダーオリゴ( secondary probe)、ターゲット DNA、及びフレットプローブの関連性をより具体的な塩 基配列をもとにして図 2として説明する。この例では、本発明の標識としてのオリゴヌク レオチドは、シグナルプローブ(primary probe)として、ターゲット DNAの 5'末端側に ハイブリダィズし、フラップ部分がハイブリダィズせずに残される。そして、インべーダ 一オリゴ(secondary probe)がターゲット DNAの 3,側にハイブリダィズし、解裂箇所( Cleavage site)に 1塩基が浸入し、解裂され、フラップが生じる。このフラップがフレット プローブにハイブリダィズして、同様に 1塩基が浸入して、フレットプローブの標識サ イト (この例では、 BPTA— Tb3+結合サイト)が解裂し、蛍光が観察されること〖こなる。 また、本発明のオリゴヌクレオチドをインベーダー法におけるターゲット DNAとして 使用する場合を例にして説明するが、本発明はこれに限定されるものではない。この 場合も本発明オリゴヌクレオチドの塩基配列は特に制限はな ヽが、本発明のオリゴヌ クレオチドとしては、 10〜200mer、好ましくは 10〜60mer、より好ましくは 20〜60 merのオリゴヌクレオチド、又はこれを同じ配列を有する整数倍、例えば 2倍、 3倍、さ らにそれ以上の長さのオリゴヌクレオチドを使用することもできる。このような場合には 、本発明のオリゴヌクレオチドとしては、 10〜: LOOOmer、好ましくは 10〜500merの オリゴヌクレオチドを使用することもできる。このような長さのオリゴヌクレオチドは、従 来のィムノ PCR法で使用されて ヽるオリゴヌクレオチドと同程度の長さになる 1S 本 発明のオリゴヌクレオチドは明確な繰り返しの塩基配列、又はその相補的な配列を有 する点において相違するものである。また、さらに長いオリゴヌクレオチド、例えば生 体由来の lkb以上のような長いヌクレオチドを使用することもできる。
本発明におけるターゲット DNAの塩基配列の特徴を挙げれば、次の(1)〜(5)の ようになる。
(1)自分自身が構造の一部で二本鎖を形成しない。またターゲット DNA同士がダイ マーを形成しな 、。ターゲット DNAの内部やターゲット DNA間に相補的な配列がな い。
(2) 10〜: LOO塩基、好ましくは 10〜40塩基力もなる配列力 0〜50塩基の適当なス ペースを置いて反復した配列を有する。この反復配列の繰り返し数は 1〜10が好ま しい。
(3) 1ユニットが隣接した 2つのブロックの配列からなり、各々の配列が 10〜100塩基 、好ましくは 10〜40塩基であり、このユニットが 0〜50塩基の適当なスペースを置い て反復した配列を有する。この反復配列の繰り返し数は 1〜10が好ましい。
(4)上記 2つのブロックがインベーダーオリゴおよびシグナルプローブとのハイブリダ ィゼーシヨンし、各領域の Tm値がそれぞれ 50〜65°C程度となるような塩基配列が 好ましいが、この範囲に限定されるものではなぐ使用する酵素の至適温度に Tmを 合わせることができる。
(5)インベーダーオリゴまたはシグナルプローブが正しくオーバーラップし、三重鎖が 形成できる。インベーダーオリゴまたはシグナルプローブがターゲット DNA上にミス アニーリングしな 、ことが好まし 、。
このような特徴を備えていれば、任意の塩基配列を設定することができ、本発明の オリゴヌクレオチドは特定の塩基配列であるものに限定されるものではない。
本発明のオリゴヌクレオチドの塩基配列の例を次ぎに示しておくが、これに限定さ れるものではない。
ターゲット領域が 1力所の場合では、
(1) 5し AATCAAATCCAGTACCTGTGAATCAGGCT CCGGATTTGCTGAAGTGC AG- 3'
インベーダーオリゴ相補領域 シグナルプローブ相補領域
(Tm: 60°C) (Tm: 58°C)
(2) 5'— CAAGCAATGGATGATTTGATGCTGTCCC CCGGACGATATTGAACAAT GGTTCACTGAA-3'
インベーダーオリゴ相補領域 シグナルプローブ相補領域
(Tm: 61°C) (Tm: 61°C)
(3) 5'-GAATCGCACTATTGCCCATGATGACAATCG GTCCAGTAAGCGACTTG CAGGC-3'
インベーダーオリゴ相補領域 シグナルプローブ相補領域
(Tm: 63°C) (Tm: 62°C)
ターゲット領域が 2力所以上ある場合では、
(4)ターゲット単位間のスペースが Omerのものの例としては、
GCGGGAGTCGATTTCATCATCACGCAGCTTTTCTTTG-3' (86mer)
(5)ターゲット単位間のスペースが 5merのものの例としては、 (6)ターゲット単位間のスペースが lOmerのものの例としては、
mer)
(7)ターゲット単位間のスペースが 34merのものの例としては、
5,
CATCACGCAGCTTTTCTTTG-3 ' (120mer)
などが挙げられる。また、シグナルプローブ力 Sインベーダーオリゴの機能を備えている シグナルプローブを使用する場合の例としては、
(8)ターゲット配列に 5回の繰り返しを有する例として、
5,
; C
3' (99mer)
のものが挙げられる。
[0022] エタソヌクレアーゼ(Exonuclease)用のフレットプローブ(FRET probe)の例としては
5 ' - (FAM) - ACTCCCGCAGACAC- (Dabcyl)- 3 '
が挙げられ、これに対応するターゲット DNAの配列の例としては、
(下線部は、前記のフレットプローブとの相補領域を示している。 )
が挙げられる。また、上記の相補配列を 2〜5回繰り返したものも使用することができ る。
[0023] 本発明の方法では、ターゲット領域を 2力所以上繰り返して有するオリゴヌクレオチ ドを使用することができ、このような繰り返しを有するオリゴヌクレオチドを使用すること により、標識としての一つのオリゴヌクレオチドから複数のフラップを短時間で得ること ができ、高速度で高感度な測定が可能となる。このような繰り返しを有するオリゴヌク レオチドは、公知の各種の方法により製造することができる。 例えば、 6〜10個の繰り返し配列をもつマルチターゲット DNAの製造方法を具体 的に例に基づ!/、て説明する。
まず、以下の(1)〜(3)の 3種類のオリゴヌクレオチドを自動合成機により製造する。 (1) 5 '末端に制限酵素 Ndel認識配列、 3'末端に BamHI認識配列をもつ。
Figure imgf000022_0001
TTTCTTTGGGATCCCG-3' (117mer)
下線部はインベーダーオリゴおよびシグナルプローブとの相補領域であり、 2個の 繰り返しを有し、ターゲット間のスペースは lOmerである。
(2) 5 '末端に制限酵素 BamHI認識配列、 3,末端に Xhol認識配列をもつ。
Figure imgf000022_0002
TTGCTCGAGCGG-3' (113mer)
下線部はインベーダーオリゴおよびシグナルプローブとの相補領域であり、 2個の 繰り返しを有し、ターゲット間のスペースは lOmerである。
(3)両,末端に BamHI認識配列をもつ。
Figure imgf000022_0003
TTGGGATCCCG- 3' (112mer)
下線部はインベーダーオリゴおよびシグナルプローブとの相補領域であり、 2個の 繰り返しを有し、ターゲット間のスペースは lOmerである。
次に前記(1)の合成オリゴヌクレオチド、及び発現ベクター pET 22b(Merck)を、 Ndelおよび BamHIで切断し、ベクター中に合成オリゴヌクレオチド(1)をライゲーシ ヨンして、合成オリゴヌクレオチド(1)をベクター中に組み込む。合成オリゴヌクレオチ ド(1)が組み込まれたベクターと合成オリゴヌクレオチド(2)を、 BamHIおよび Xhol で切断し、合成オリゴヌクレオチド(2)をライゲーシヨンして、合成オリゴヌクレオチド( 2)をベクター中に組み込む。さらに、これを、 BamHIで切断し、切断箇所に合成オリ ゴヌクレオチド(3)をライゲーシヨンして、合成オリゴヌクレオチド(3)をベクター中に糸且 み込む。この操作により、 6力所のターゲット領域を有するオリゴヌクレオチドを製造す ることができることになるが、合成オリゴヌクレオチド (3)は、両末端の制限酵素サイト が同一のため、複数個が同時に入る可能性があり、ターゲット領域が 6力所以上のォ リゴヌクレオチドをこの方法により同時に製造することできる。ダイレクト PCRによる長 さから、ベクター内に入ったターゲット配列の繰り返し回数を推定できるので、いくつ かのクローンから目的の長さのオリゴヌクレオチドを取得することができる。
そして、ベクター上の配列にプライマーを設計して、ターゲット領域の PCRを行い、 続いて、片側のプライマーのみを用いた PCRを行い、 1本鎖 DNAとする。このとき、 ピオチン標識プライマーを用いれば、ピオチン標識ターゲットができる。
[0025] 本発明のインベーダー法におけるフレットプローブの発光物質としては、蛍光物質 が好ましぐこのような蛍光物質としては、例えば、 FAM (モノー 5 (又は 6)—カルボキ シフルオレセン)のような蛍光染料であってもよいが、検出感度を向上させるためには 、フレットプローブにおける発光色素として希土類蛍光錯体ラベル剤、例えば、配位 子として次の一般式(1)〜(6)
[0026] [化 1]
Figure imgf000023_0001
[0027] [化 2] 置¾002
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000025_0001
Figure imgf000026_0001
[0032] (式(1)〜(6)中、 nは 1〜4の整数を示し、 Rは置換基を有するァリール基を示し、 R' はァミノ基、水酸基、カルボキシル基、スルホン酸基、又はイソチオシァネート基を示 す。)で表される配位子のいずれ力 1種を含有する、サマリウム(Sm)、ユウ口ピウム( Eu)、テルビウム (Tb)、又はジスプロシウム(Dy)などカゝらなる希土類元素の希土類 光錯体ラベノレ剤力 s好まし ヽ(特開 2003— 325200号及び特願 2005— 106860 号参照)。また、フレットプローブにおける消光物質としては、蛍光クェンチヤ一ラベル 剤が好ましぐ例えば、次の一般式(7)〜(9)
[0033] [化 7]
Figure imgf000026_0002
[0035] [化 9]
Figure imgf000027_0001
[0036] (式(7)〜(9)中、 mは 1〜4の整数を表し、 R、 Rのいずれか一方は担体又は核酸
1 2
に固定するためのリンカ一基を表し、他方は水素原子又はアルキル基を表し、 Rは
3 担体又は核酸に固定するためのリンカ一基を表す。 )で表される蛍光クェンチヤーラ ベノレ剤の使用力 S好まし ヽ(特開 2003— 325200号及び特願 2005— 106860号参 照)。ここに、特開 2003— 325200号及び特願 2005— 106860号の記載を参照し て本明細書に取り込む。
[0037] 本発明における標識化される化学物質としては、特に制限はなぐ標識化が可能な 各種の化学物質が包含される。本発明の化学物質としては、例えば、抗原、抗体、ビ ォチン、アビジンなどのタンパク質、ビタミン、ホルモン、脂質、糖質、糖鎖、芳香族化 合物、酵素、アブタマ一などの核酸、低分子リガンドまたはリガンドレセプター (抗体 を除く)力もなる群などが挙げられる。ここで言う低分子リガンドとは、糖鎖、芳香族化 合物、ガンダリオシド、オリゴサッカライド、アミノ酸数が 2〜: L0のペプチドなどの有機 化合物等を指し、例えば、 mycペプチド、サイロキシン、トリョードサイロニン、ガンダリ オシド G 、セロビオース、シアル酸を末端に有する糖鎖などがある。リガンドレセプタ
M2
一とは、細胞あるいは細胞中、または細胞間に存在する特定のリガンドと特異的に結 合する物質を指し、例えば、セルロース結合蛋白質、シアル酸結合レクチン、アルブ ミンレセプターなどがある。低分子リガンドまたはレセプターの例をさらに挙げると、例 えば、インシュリン、インシュリンレセプター、 EGF、 EGFレセプター、 HGF、 HGFレ セプター、 TSH、 TSHレセプターなどのホルモンまたはホルモンレセプター、 IL— 8 などのサイト力インあるいはケモカインに対するレセプター、アセチルコリンレセプター 、ヒスタミンリセプターなどの低分子リガンドに対するレセプターなどがある。
また、プロテインキナーゼじ、 cAMP依存性プロテインキナーゼ、 cGMP依存性プ 口ティンキナーゼ、カルモジュリン依存性リン酸ィ匕酵素、チロシンリン酸ィ匕酵素などの 酵素もリガンドーレセプター反応により測定でき、本発明の化学物質として使用でき る。さらに、各種糖鎖、ガンダリオシドに対する種々のレクチンも、本発明の化学物質 として使用できる。レクチンの例としては、細胞上で種々の蛋白質と結合した D—マン ノースに対するコンカナノ リン A、ジ N ァセチルキトビオースに対する小麦胚凝 集素、シアル酸に対するカブトガ-由来シアル酸結合レクチンなどが挙げられる。 核酸としては、種々のデォキシリボ核酸(dATP、 dGTP、 dTTP、 dCTP、 dUTP) が連続した DNA、また、種々のリボ核酸 (rATP、 rGTP、 rTTP、 rCTP、 rUTP)が 連続した RNA、また、 PNAや LNA、更にはこれらのキメラ体を本発明の化学物質と して使用することができる。本発明の化学物質として核酸を使用する場合には、本発 明の標識としてのオリゴヌクレオチドと連続した配列となることがあり、標識ィ匕化学物 質の全体が核酸となる場合もある。
また、本発明の化学物質は、担体や微粒子などに固定化されているものであっても よい。
本発明における標識としてのオリゴヌクレオチドと化学物質との「結合」としては、化 学物質と標識としてのオリゴヌクレオチドが直接的に結合したものであってもよいし、 またリンカ一のような両者を結合させるための基を介して間接的に結合したものであ つてもよい。このような「結合」としては、共有結合などの化学結合が好ましいが、これ に限定されるものではなぐ吸着などの物理的な結合であってもよぐ両者が測定系 にお 、て分離されな!、ものであればよ!、。
本発明におけるインベーダー法としては、前記で例示してきた基本的な方法に限 定されるものではなぐインベーダー塩基の存在によりフラップが生じて、このフラップ により測定可能となる状態を形成することができる方法であればよい。即ち、塩基配 列中の 1部、好ましくは 1塩基部分に 3重鎖部分を形成させ、この部分を特異的な解 裂酵素(structure- specific 5' nuclease) (以下、具体的な酵素として FENと言うことも ある。)により解裂させることができ、当該解裂によりフレットプローブが認識できる(部 分的にハイブリダィズ可能な)オリゴヌクレオチドを遊離することができる方法を包含し ている。この方法により、ターゲット DNAなどの標識用のオリゴヌクレオチドと、観測系 の対象となるフレットプローブとを全く分離して取り扱うことが可能となり、測定の感度 や SZN比などを標識物とは分離して考慮することが可能となる。
本発明における複合体とは、標識としての本発明のオリゴヌクレオチドが結合した 化学物質 (標識化化学物質)と、化学的又は物理的に結合して一体となる物質であり 、例えば、抗原と抗体の結合体、リガンドと受容体との結合体、酵素などのタンパク質 の多量体などが例示される。
本発明におけるィムノアッセィとしては、標識を用いる抗原抗体反応に基づく分析 方法であれば特に制限はなぐサンドイッチアツセィなどの 、ずれの方法であっても よい。また、ストレプトアビジン一ピオチン系を使用するものであっても、使用しないも のであってもよ!/、が、汎用性をもたせるためにはピオチンに結合したものが好ま 、。 また、本発明のアツセィとしては、前記したィムノアツセィに限定されるものではなく 、リガンドと受容体などの結合アツセィゃ競合アツセィなどの各種のアツセィを包含す るものである。
したがって、本発明における試料としては、本発明の標識化化学物質と化学的又 は物理的に結合して複合体を形成し得る物質が含有されている、又は含有されてい る可能性があるものは全て包含している。
さらに、本発明の標識は、アツセィに使用されるものに限定されるものではなぐトレ ーサ一として使用される場合も包含するものである。したがって、本発明の標識化ィ匕 学物質は、複合体を形成しない場合も包含している。
本発明の方法は、従来の同位体や蛍光物質などの標識を使用する方法において 、従来の標識に代えて本発明のオリゴヌクレオチドを使用することにより、従来の方法 と同様に使用することができる。これらの具体的な例については、後述する実施例に おいてより詳細に説明する。
化学物質、例えばピオチンと本発明のオリゴヌクレオチド標識とを結合させる方法と しては、従来の DNAの標識ィ匕方法のような技術をそのまま使用することができる。特 にピオチンと本発明のオリゴヌクレオチドの結合体は、汎用性のある標識試薬として 有用であり、従来のアビジン ピオチン系を使用するアツセィ系と同様に使用するこ とがでさる。
後述する実施例においては、インベーダー法におけるターゲット DNAを本発明の オリゴヌクレオチドとして使用例を示している力 S、本発明の方法はこれに限定されるも のではなぐシグナルプローブを本発明のオリゴヌクレオチドとして使用することも可 能であり、またインベーダーオリゴを標識として使用することも可能である。
また、インベーダーオリゴによる 3重鎖部分力FENにより切断され、フラップが生じる ことになるのであるが、このような 3重鎖部分を 1力所だけでなく 2力所以上設けるよう に設計することもできる。例えば、基本的なインベーダー法では図 3に示されるように 、 1力所が FENにより切断され、 1個のフラップが生じる。図 3においては、ターゲット DNAとシグナルプローブとの相補的な配列部分である N力 3'末端までがターゲッ ト DNAとハイブリダィズし、さらに、インベーダーオリゴとターゲット DNAとの相補的な 配列部分である 5'末端力も N2の手前の塩基まで力 ターゲット DNAとハイブリダィ ズする。そして、インベーダーオリゴの末端の塩基 N力 S3重鎖部分を形成し、この結
2
果、本発明の 1個のオリゴヌクレオチド力も FENにより 1個のフラップが生じる(図 3の 下側を参照)。このような使用方法においては、原理的には、 1つの標識オリゴヌタレ ォチドから 1個のフラップが生じることになる。
より具体的には、例えば、ターゲット DNAとして、
5 -GTGTCTGCGGGAG-T-CGATTTCATCATCACGCAGCTTTTCTTTG-3' を用い、シグナルプローブとして、
5し AACGAGGCGCAC- ACTCCCGCAGACAC- 3'
を用い、インベーダーオリゴとして、
5 -CAAAGAAAAGCTGCGTGATGATGAAATCG-C-3'
を用いることにより、フラップ (下線部分)を生じさせることができる。
1つの標識オリゴヌクレオチドからさらに多数のフラップを生じさせることが可能であ る。例えば、標識オリゴヌクレオチドを PCR法などにより増幅することも不可能ではな いが、操作として煩雑になるだけでなぐ PCR法による増幅に定量性が担保されない 場合には、定量ィ匕が困難となる。さらに、 PCR法により増幅する場合には、最低 100 bp程度の長さが必要であり、より長いオリゴヌクレオチドを標識として用いなければな らないという問題が生じる。
[0041] 1つの標識オリゴヌクレオチド力 多数のフラップを生じさせるもっと簡便な方法とし ては、 2つのフラップが生じるシグナルプローブを使用する方法が挙げられる。例え ば、図 4に示すように、 1つのシグナルプローブとターゲット DNAから、シグナルプロ ーブの 5'側フラップを切断するための解裂酵素として FENを、 3'フラップを切断する 7こめの解裂酵秦として Hef (Helicase— associated Endonuclease for Fork-structured DNA, Pyrococcus iosus由来(Komori et al. (2002) Genes Genet. Syst. 77:227-24 1) )を用いることにより、 2つのフラップを生じさせることができる。このためには、ター ゲット DNAとして、例えば、
5'- GTTTCTTTTCGACGCACTACTACTT - TGAGGGCGTCTGTG - TTCATCAT CACGCAGCTTTTCTTTG-3 '
を用い、シグナルプローブとして、
5し AACGAGGCGCAC- ACTCCCGCAGACAC- AACGAGGCGCAC- 3' を用いることにより、 2個のフラップ(下線部分)を生じさせることができる。即ち、 1個の 標識オリゴヌクレオチドから、 2倍の標識ィ匕物を得ることができようになり、標識の感度 が増加することになる。
[0042] 前記した方法では、 3'フラップを切断するための解裂酵素として Hefを用いた方法 であるが、単純に 2個以上のシグナルプローブが結合するようにすることもできる。例 えば、図 5に示されるように、ターゲット DNAを複数のシグナルプローブが結合できる ように、シグナルプローブの結合部位が複数個繰り返す様に設計することもできる。こ れは前記した 1個のフラップを生じさせる従来にインベーダー法の単純な繰り返しで ある。この方法では、標識として使用されるオリゴヌクレオチドの長さは、その繰り返し の数だけ長くなるが、 5 '側フラップを切断するための解裂酵素として FENだけを用 ヽ て 1度に多数のフラップを得ることが可能となり、標識としての感度を飛躍的に高くす ることち可會 となる。 同様に、前記した 5 '側フラップを切断するための解裂酵素として FENを、 3'フラッ プを切断するための解裂酵素として Hefを用いて、 2つのフラップを同時に生じさせる 方法を、繰り返して使用できるように、本発明のオリゴヌクレオチドを設計することがで きる。例えば、前記した図 4の方法を単純に繰り返して、図 6に示すように設計するこ とちでさる。
[0043] さらに、図 5に示される単純な繰り返し方法においては、繰り返しの数だけのインべ ーダーオリゴが必要になる力 当該インベーダーオリゴを、省略することも可能である
。例えば、シグナルプローブと相補的な配列を繰り返して合成したオリゴヌクレオチド をターゲット DNAとして用いており、そこにはシグナルプローブが結合する部位とィ ンベーダーオリゴが結合する部位が設けられている(図 5参照)が、このとき、シグナ ルプローブの 3'末端側にさらに 1塩基を付加し、この部分が隣り合う相補配列と 3重 鎖を形成するようにする。即ち、シグナルプローブの結合部位をそのままインべーダ 一オリゴの結合部位として使用する。このようすを概念的に図 7に示す。この手法では インベーダーオリゴを用いず、シグナルプローブのターゲット DNAとの結合部分がィ ンベーダーオリゴの役割も果たすことになる。例えば、ターゲット DNAとして、
5し (GTGTCTGCGGGAGT) X n- CGATTTCATCATCACGCAGCTTTTCTTTG - 3'
(nは 2以上の整数を示す。 )
を用い、シグナルプローブとして、
5し AACGAGGCGCAC- ACTCCCGCAGACAC- C- 3'
を用いることにより、シグナルプローブを隣接するシグナルプローブのインベーダー オリゴとして使用する。この場合には最初のシグナルプローブにはインベーダーオリ ゴが存在していないので、フラップを生じさせることはできないが、それ以降のシグナ ルプローブからはフラップが生じることになる。
この方法において、さらにインベーダーオリゴを使用することもできることは当然であ る。このようなインベーダーオリゴを使用することにより、最初のシグナルプローブから もフラップを生じさせることができるよう〖こなる。
[0044] 本発明の標識としてオリゴヌクレオチドの塩基配列については、インベーダーオリゴ などにより 3重鎖の箇所を発生させることができる十分な長さがあればよぐその配列 は任意に設計することができる。そして、当該オリゴヌクレオチドは合成により人為的 に製造したものであってもよぐまた天然のものであってもよい。天然の生体由来のォ リゴヌクレオチドを本発明の標識オリゴヌクレオチドとして使用する場合には、シグナ ルプローブやインベーダーオリゴの塩基配列を、それに対応するように設計すればよ い。生体由来の比較的長いオリゴヌクレオチドを本発明の標識として利用する場合に は、対応するシグナルプローブやインベーダーオリゴを設計する部位が沢山有るの で、これらの適当な部位の 1力所以上を任意に選択することができる。前記した応用 例を適宜組み合わせて使用することもできる。
さらに、本発明の方法においては、化学物質に結合させたオリゴヌクレオチド自体 を直接インベーダー法におけるオリゴヌクレオチドとして、例えば、シグナルプローブ やターゲット DNAとして使用する方法について説明してきた力 これに限定されるも のではない。例えば、化学物質に結合した本発明の標識としてのオリゴヌクレオチド と相補的な塩基配列を有する DNAとハイブリダィズさせて、標識としたオリゴヌクレオ チドとハイブリダィズした DNAだけを分離し、これをインベーダー法におけるシグナ ルプローブやターゲット DNAやインベーダーオリゴとして使用することもできる。より 具体的には、例えば 10〜: LOOmer、好ましく 10〜50mer、より好ましくは 10〜20me r程度のより短い DNAを本発明の標識としてのオリゴヌクレオチドとし、当該オリゴヌク レオチドとハイブリダィズ可能な配列を含む第二のオリゴヌクレオチドであって、イン ベーダ一法におけるシグナルプローブやターゲット DNAやインベーダーオリゴとして 使用するに十分な長さを有する DNAとハイブリダィズさせ、測定系においてノ、イブリ ダイズしな 、第二のオリゴヌクレオチドを分離し、次 、でノヽイブリダィズした第二の DN Aを乖離させて分離し、得られたハイブリダィズした第二のオリゴヌクレオチドをインべ ーダ一法により解析することもできる。
これらの点以外に種々の点において改良をカ卩えることも可能である力 本発明の特 徴はオリゴヌクレオチドを標識として使用すること、そして、それを「ヌクレア一ゼを使 用して核酸を切断する方法」、好ましくはフラップエンドヌクレアーゼを使用して核酸 を切断する方法、より好ましくはインベーダー法により解析することである。その他の 点において改良を加えられたとしても、これらの方法は全て本発明の実施の態様とし て、本発明に包含されるものであることは当業者であれば容易に理解されることであ る。
本発明の測定用キットは、第一の態様においては、 10〜: L00mer、好ましくは 10〜 60mer、 10〜40mer、より好ましくは 20〜40mer、又はこれらの整数倍の長さを有 するオリゴヌクレオチドが標識として化学物質に結合している標識化されたィ匕学物質 を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用するインベーダー 法による測定用キットに関するものである。このような本発明のオリゴヌクレオチドで標 識化された化学物質としては、抗体や受容体などのタンパク質、各種の抗原、蛍光 物質、放射性同位体を含有する化学物質、ピオチンやアビジンのような特異的な親 和性を有する化学物質などが挙げられる。なかでも、ピオチンは現在のアツセィ系で よく使用されて 、る物質であり、現在使用されて 、るアツセィ系に容易に適用可能で あることから、本発明のオリゴヌクレオチドが結合したピオチンが特に好ましいが、これ に限定されるものではない。本発明の測定用キットは、このような本発明のオリゴヌク レオチドで標識ィ匕されたィ匕学物質の少なくとも 1種を含有するものであり、そのほかに
、測定に必要な物質、例えば、抗体、抗原、ノ ッファー溶液、アビジンなどや、インべ ーダ一法の解析に必要な各種のプローブを含有させることができる。
また、本発明の測定用キットの第二の態様は、少なくともインベーダー法におけるシ グナルプローブ (primary probe)、インベーダーオリゴ (secondary probe)、及び Z又 はターゲット DNA、及び Z又はフレットプローブを含有してなる、オリゴヌクレオチドを 標識として使用するインベーダー法による測定用キット。このような測定用キットは、タ 一ゲット DNAを除けばゲノムの SNP解析用のキットをそのまま適用することもできる 力 SNP解析用のキットは非常に沢山の種類の標的 DNAを短時間に解析するため のものであるが、本発明のキットは塩基配列の確定して 、るターゲット DNAを検出、 同定又は定量ィ匕するためのものであり、標的 DNAが確定されているものであるという 点において基本的に相違するものである。即ち、本発明のこの測定用キットは、既知 の塩基配列を有するプローブの検出、同定又は定量ィヒのためのキットであり、測定対 象とする DNAが特定されている測定用キットである。本発明のこの測定用キットは、 インベーダー法におけるシグナルプローブ (primary probe)、インベーダーオリゴ (sec ondary probe)、及びターゲット DNAの 3種類のプローブを全て含有していてもよい。 この場合には、それらのなかの 1種、好ましくはターゲット DNAを目的の化学物質に 結合させて使用することになる。また、すでに本発明のオリゴヌクレオチドが結合した 化学物質を使用する測定系においては、シグナルプローブ(primary probe)、インべ ーダーオリゴ(secondary probe)、及びターゲット DNAの 3種類のプローブのうちの 1 種が欠如したもの、例えば、シグナルプローブ(primary probe)、及びインベーダーォ ジゴ (secondary probe)の糸且み合わせ、インベーダー才ジゴ (secondary probe)、及び ターゲット DNAの組み合わせであってもよい。さらに、前記応用例のように、インべ一 ダーオリゴを使用する必要性の無い場合には、インベーダーオリゴの無い組み合わ せであってもよい。本発明の測定用キットのなかには前記したオリゴヌクレオチドのほ 力に、 3重鎖を特異的に解裂させるための FENや Hefのような解裂酵素、フレットプ ローブ、バッファー溶液などの他の必要なものが含有されて 、てもよ!/、。
本発明のインベーダー法による解析に当たっては、フラップの発生を必要としてい る力 これを解析するためのフレットプローブは必ずしも必須のものではなぐ発生し たフラップを解析する他の手段があれば特にフレットプローブを使用する必要性は無 い。しかしながら、フレットプローブを使用する解析法は SNPの解析用のインべーダ 一法として広く使用されてきており、フレットプローブを使用する解析方法が経済的に も利点が多い。
一般にフレットプローブは、発光物質と消光物質を有しており、本発明のフレットプ ローブとしては、測定可能である限りにおいて任意の発光物質と任意の消光物質が 使用可能である。本発明のオリゴヌクレオチドを標識として使用する方法においては 、当該オリゴヌクレオチドをフレットプローブにより測定するものであることから、測定系 全体の感度や測定レンジは、フレットプローブの性質によるところが大きぐフレットプ ローブの選択はある意味では重要である。感度や特異性の大き!/、フレットプローブの 使用が特に好ましい。好ましいフレットプローブとしては、発光物質として、前記した サマリウム(Sm)、ユウ口ピウム(Eu)、テノレビゥム(Tb)、又はジスプロシウム(Dy)など カゝらなる希土類元素の希土類蛍光錯体ラベル剤を用いるものが好ましぐ特にユウ口 ピウム (Eu)錯体を用いるものが好ま U、。 発明の効果
[0047] 本発明は、オリゴヌクレオチドをアツセィなどの測定系における標識物質として使用 すると 、う新規な概念を提供するものである。ィムノ― PCR法のように長 、DNAを標 識として使用することは知られていたが、 PCR法という煩雑で熟練を要する操作が必 要であるばかりでなぐ測定レンジがせまぐかつ PCRが可能な塩基の長さが必要で あり、標識自体が非常に大きな分子種とならざるを得な力つた。これに対して、本発 明の標識は、より短いオリゴヌクレオチドを使用するものであり、標識としての大きさも 小さぐ対象となる化学物質の特性に与える影響も小さぐ対象となる化学物質の特 性を大きく変化させること無く測定が可能であり、測定レンジも広いものとなる。
さらに、本発明の方法では、「ヌクレアーゼを使用して核酸を切断する方法」、好ま しくはインベーダー法を応用することにより、極めて高感度で測定することができ、か つ発生させるフラップの数を増加させることにより、さらに高感度の測定が可能となり、 従来測定法における測定限界をさらに改善することもできる。
また、本発明の方法は、放射性物質や毒性の高い物質を使用する必要が無ぐ安 全な測定が可能である。
さらに、本発明の方法は、発生するフラップを測定するものであるから、煩雑な操作 や熟練を必要とする操作は必要無く、簡便な手法で安全で確実な測定結果を安定し て得ることができる。
また、本発明の方法は、従来の SNP解析方法としてのインベーダー法を応用する ことができ、プレート及びチップ上で大量の検体を処理することも可能である。
図面の簡単な説明
[0048] [図 1]図 1は、インベーダー法の概要を模式的に示したものである。
[図 2]図 2は、インベーダー法の概要をより具体的な塩基配列に基づ 、て例示したも のである。
[図 3]図 3は、本発明の方法におけるフラップの生成を模式的に例示したものである。
[図 4]図 4は、本発明の方法における 2個のフラップを生成させる方法を模式的に示し たものである。
[図 5]図 5は、本発明の方法におけるインベーダーオリゴとシグナルプローブとの相補 的配列を繰り返したターゲットによるインベーダー法の例を模式的に示したものであ る。
[図 6]図 6は、本発明の方法における両端にフラップを付加したシグナルプローブによ るインベーダー法の例を模式的に示したものである。
[図 7]図 7は、本発明の方法におけるシグナルプローブ自身力インベーダーオリゴを 兼ねた場合のシグナルプローブとの相補的配列を繰り返すようにしたインベーダー 法の例を模式的に示したものである。
[図 8]図 8は、本発明の方法(図 8中の黒丸印)及び従来の ELISA法(図 8中の黒四 角印)による、ゥサギ IgGの検量線を比較してグラフで示したものである。
[図 9]図 9は、本発明の方法によるゥサギ IgGを抗原とした、直接アツセィ法における 検量線をグラフで示したものである。
[図 10]図 10は、本発明の方法(図 10中の黒丸印)及び従来の ELISA法(図 10中の 黒四角印)による、ヒト TNF—ひを抗原としたサンドイッチィムノアッセィ法における検 量線をグラフで示したものである。
圆 11]図 11は、希土類蛍光錯体を用いた本発明の方法 (図 11中の黒丸印)及び従 来の酵素測定法(図 11中の黒四角印)による、ヒト TNF— αを抗原としたサンドイツ チイムノアッセィ法における検量線をグラフで示したものである。
[図 12]図 12は、本発明の方法(図 12中の黒丸印)及び従来の酵素測定法(図 12中 の黒四角印)による、ラタトフエリン糖類に対するレクチンの親和性の検量線を比較し てグラフで示したものである。
[図 13]図 13は、本発明の方法による、 HT1080細胞におけるァクチンタンパク質の 発現量を解析した結果をグラフで示したものである。
[図 14]図 14は、本発明の方法による、 HT1080細胞におけるァクチンタンパク質の 発現量の検量線をグラフで示したものである。
[図 15]図 15は、本発明の方法により、ラミニンを用いたレセプタ一一リガンド 'バイン デイング ·アツセィを行った結果を示すグラフである。
[図 16]図 16は、本発明の方法により、細胞のマトリックスメタ口プロティナーゼ(Matrix metalloproteinase) 2 (MMP2)の発現量を測定した結果を示すグラフである。 [図 17]図 17は、本発明の方法により、細胞の GAPDH (Glyceraldehyde Phosphate D ehydrogenase)の発現量を測定した結果を示すグラフである。
[図 18]図 18は、本発明の方法により、細胞中のパピローマウィルスの検出、同定を行 つた結果を示すグラフである。
[図 19]図 19は、ピオチンを結合したトロンビンァプタマ一によるトロンビンの検出'定 量を行った結果を示すグラフである。
[図 20]図 20は、 3'末端側に本発明のターゲット配列を結合したアブタマ一によるトロ ンビンの検出'定量を行った結果を示すグラフである。
[図 21]図 21は、本発明のターゲット領域が 2力所あるターゲット DNAによる検出感度 の試験を行った結果を示すグラフである。
[図 22]図 22は、本発明のシグナルプローブ力 インベーダーオリゴを兼ねるものであ つて、ターゲット領域が 5回繰り返されるターゲット DNAによる検出感度の試験を行つ た結果を示すグラフである。
[0049] 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例によ り何ら限定されるものではない。
実施例 1
[0050] ゥサギ IgG (Rabbit IgG)を抗原としたサンドイッチィムノアッセィ
抗ゥサギ IgG抗体を固相化した後、非特異反応を防ぐために、 1%BSA及び 0. 2 %グリシンでブロッキングした。これに、ゥサギ IgGを 0. 005pg/mL〜50000pg/ mLのそれぞれの濃度で反応させた後、ピオチン標識した抗ゥサギ IgG抗体でサンド イッチし、ピオチン化 DNA (ターゲット DNA)をアビジンを介して結合させた。これを 1 0回洗浄した後、 50mlの後述するプローブミックスを入れ、 63°Cで 1時間反応させ、 FAMの蛍光強度を測定した。
ここで使用した標識 DNAはインベーダー法による解析ではターゲット DNAとして 用いられるものであり、その配列は、
5 -AAGGA GAAGG TGTCT GCGGG AGTCG ATTTC ATCAT CACGC AGCT T TTCTT TG-3'
であった。 また、プローブミックスにおけるシグナルプローブ(primary probe)、インベーダーォ リゴ(secondary probe)、及びフレットプローブ(FRET probe)の配列は、
ング "ノレプロ ~~フ (primary probeノ:
5 -AACGA GGCGC AC ACT CCCGC AGACA C- 3'
インべ ~~ダ ~~オリゴ (secondary probe):
5 -CAAAG AAAAG CTGCG TGATG ATGAA ATCGC- 3'
フレットプローブ(FRET probe):
5 -GCTTG TCTCG GTTTT TCCGA GACAA GCGTG CGCCT CGTT— 3' フレットプローブ(FRET probe)は、 5'末端側に FAMが結合し、 5'末端から 3番目 の塩基に消光物質として DABCYLが結合して!/、る。
使用したプローブミックスは、
Figure imgf000039_0001
FAMフレットプローブ 125nM
シグナノレプローブ 125nM
インベーダーオリゴ 50nM
MgCl 7. 5mM
2
Figure imgf000039_0002
トリス— HCl (pH7. 4) lOmM
ッウィーン 20 0. 05%
力もなるものであった。
結果を図 8にグラフで示す。図 8の縦軸は FAMの蛍光強度を示し、横軸は添加し たゥサギ IgGの濃度 (pgZmL)を示す。図 8中の黒丸印が本発明の実施例 1の結果 を示し、黒四角印は後述する ELISA法の結果を示す。この結果、図 8に示すようにゥ サギ IgGの検出限界が 5pgZmLで、検出範囲は 50000pgZmLから 5pgZmLまで 、平均 CV%は 3であつた。
なお、検出限界は、ネガティブコントロール (NC)の蛍光強度にその時の標準偏差 (n = 4)の 3倍を加えた値が検量線と一致する時の濃度とした。
比較例 1 実施例 1に記載した方法において、標識としてオリゴヌクレオチドを使用するに代え て、従来の酵素標識法 (ELISA法)で行った。
この結果を実施例 1の本発明の方法と比較して図 8に黒四角印で示す。この結果、 酵素測定法 (ELISA法)では検出限界が 449pgZmLで、検出範囲は 50000pgZ mL力ら 500pgZmLまで、平均 CV%は 9であった。
本発明の方法が酵素測定法より検出感度は 1桁上げ、傾きが大きくて低濃度にも 測定できることが分力つた。
実施例 2
[0052] ゥサギ IgGを抗原とした、直接アツセィ
0. 05pgZmL〜500000pgZmLの各濃度のゥサギ IgGを固相化した後、非特異 反応を防ぐために、 1%BSA及び 0. 2%グリシンでブロッキングした。ピオチン標識 抗ゥサギ IgG抗体を反応させた後,ピオチンィ匕 DNA (ターゲット DNA)をアビジンを 介して結合させた。その後、実施例 1と同様に、 10回洗浄後、 50mlのプローブミック スを入れ、 63°Cで 30分時間を反応させ、 FAMの蛍光強度を測定した。
結果を図 9にグラフで示す。図 9の縦軸は FAMの蛍光強度を示し、横軸は添加し たゥサギ IgGの濃度 (pgZmL)を示す。この結果、図 9に示すようにゥサギ IgGの検 出限界が 6pgZmLで、検出範囲は 500000pgZmL力ら 6pgZmLまでで、平均 C V%は 1. 7であった。
実施例 3
[0053] ヒト TNF— αを抗原としたサンドイッチィムノアッセィ
TNF- α抗体で固相化したマイクロプレートに希釈した各濃度の TNF— αおよび ピオチン化 TNF— α抗体を室温で 2時間インキュベートし、抗原 抗体複合体を形 成させた。 lOOngZmlのストレプトアビジンを加え、室温で 1時間インキュベートした 後、バッファー A(0. 05% Tween— 20を含有する 0. 05M Tris— HCレ ッファー (pH7. 8) )で 3回洗浄後、バッファー B (0. 05M Tris—HClバッファー(pH7. 8) ) で 1回洗浄した(以下、洗浄は同様に行った。 ) o実施例 1と同様に、 0. InMのビォ チンィ匕 DNA (ターゲット DNA)をアビジンを介して結合させた。洗浄した後、さらに水 で 3回洗浄し、プローブミックス 50mLを入れ、 63°Cで 1時間反応させた。カメレオン( Chameleon) (HIDEX製)により励起波長(Ex. ) 485nmで、発光波長(Em. ) 530n mで FAMの蛍光強度を測定した。
結果を図 10にグラフで示す。図 10の縦軸は FAMの蛍光強度を示し、横軸は添カロ した TNF αの濃度 (pgZmL)を示す。実施例 3の結果を図 10の黒丸印で示す。 この結果、図 10に示すように TNF— αの検出限界が 0. 65pgZmL、検出範囲は 1 OOOpgZmL力ら 0. 65pgZmLまで、平均 CV%は 3. 2であった。
[0054] 比較例 2
実施例 3に記載した方法において、標識としてオリゴヌクレオチドを使用するに代え て、従来の酵素標識法 (ELISA法)で行った。酵素測定では抗原 抗体複合体複 合体にストレプトアビジン HRPをカ卩ぇ室温で 30時間ンキュペートした後、 TMBと 室温で 30分反応した。停止溶液(Stop solution)をカ卩えた後、カメレオン(Chameleon )で OD450nmを測定した。
この結果を実施例 3の本発明の方法と比較して図 10に黒四角印で示す。この結果 、酵素測定法 (ELISA法)では検出限界が 26pgZmLで、検出範囲は lOOOpgZm Lから 26pgZmLまで、平均 CV%は 4. 5であった。
この結果、本発明の方法は従来の酵素測定法 (ELISA法)に比較して、優れた感 度を有するものであることが分力つた。
実施例 4
[0055] 蛍光色素として希土類蛍光錯体を用いた実験
実施例 1に記載の FAMフレットプローブの代わりに、 5 '末端に蛍光色素として DT BTAのユウ口ピム錯体 (Eu—DTBTA)を結合し、 5'末端から 4番目の塩基に消光物 質として BHQ2 (登録商標)を結合したフレットプローブを用いて時間分解蛍光測定し た以外は、実施例 3に記載の内容と同様の手順、条件でアツセィを実施した。時間分 解蛍光測定は、カメレオン (Chameleon) (HIDEX製)により励起波長(Ex. ) 340nm で、発光波長(Em. ) 616nm、遅延時間 100 μ s、ウィンドウ時間 400 μ sで Eu—DT BTAの蛍光強度を測定した。
結果を図 11にグラフの黒丸印で示す。図 11の縦軸は Eu— DTBTAの蛍光強度を 示し、横軸は添加した TNF— αの濃度 (pgZmL)を示す。この結果、図 11に示すよ うに TNF— αの検出限界が検出限界が 1. 9pgZmLであり、検出範囲は lOOOpgZ mL力ら 1. 9pgZmLまで、平均 CV%は 7であった。
[0056] 比較例 3
実施例 4に記載した方法において、標識としてオリゴヌクレオチドを使用するに代え て、従来の酵素標識法 (ELISA法)で行った。
この結果を実施例 4の本発明の方法と比較して図 11に黒四角印で示す。この結果 、酵素測定法 (ELISA法)では検出限界が 20pgZmLで、検出範囲は lOOOpgZm Lから 20pgZmLまで、平均 CV%は 4. 5であった。
この結果、本発明の方法は、従来の酵素測定法 (ELISA法)に比較して、優れた 感度を有するものであることがわ力つた。
実施例 5
[0057] 糖タンパク質糖鎖とレクチンとの結合アツセィとその定量法
糖タンパク質のモデルとして、牛乳由来ラタトフヱリンを用いた。ラタトフヱリンは、次 に示す糖鎖構造(Matsumotoら、 Journal of Biochemistry, 91(1), 143- 155, 1982)を持 ち、
[0058] [化 10]
Figure imgf000042_0001
3
Fucar l
[0059] これはレンズマメレクチン (LCA)が認識する次に示す、
[0060] [化 11] LCA
Figure imgf000043_0001
[0061] 糖鎖構造 (谷口ら、生物物理化学、 35(3), 199-204, 1991)と一致することから、 LC Aを用いた本発明の方法によるラタトフエリンの結合アツセィを試みた。
96穴フルォロヌンクモジュールマイクロプレート(Nunc製)に 0. 05M炭酸バッファ 一 (PH9. 3)で希釈した各濃度のラタトフエリン (和光製)を 1ゥエル当たり 100 1で 4 °Cでー晚コーティングした。バッファー A (0. 05% Tween— 20を含有する 0. 05M
Tris—HClバッファー(pH7. 8) )で 3回洗浄した後、バッファー B (0. 05M Tris —HQバッファー (pH7. 8) )で 1回洗浄した(以下、洗浄は同様に行った。 ) 0 1%B SA (sigma製)で室温で、 1時間インキュベートしブロッキングを行い、洗浄した後、 5 μ gZmlのピオチン化 LCAと室温で 1時間インキュベートし、ピオチン化 LCA—ラタ トフエリン複合体を形成させた。 lOOngZmlのストレプトアビジンをカ卩え、 37°Cで 1時 間インキュベートした後、実施例 1と同様にして、 0. OlnMのピオチン化 DNA (ター ゲット DNA)と室温で 30分反応した。洗浄した後、さらに水で 3回洗浄した。実施例 1 と同様に、プローブミックス 50mLを入れ、 63°Cで 1時間反応させた。カメレオン(Cha meleon) (HIDEX製)により励起波長(Ex. ) 485nm、発光波長(Em. ) 530nmで F AMの蛍光強度を測定した。
結果を図 12にグラフで示す。図 12の縦軸は FAMの蛍光強度を示し、横軸は添カロ したラタトフヱリンの濃度 (pgZmL)を示す。黒丸印が本発明の実施例 5の結果を示 し、黒四角印は後述する ELISA法の結果を示す。この結果、図 12に示すように検出 限界が 7. 3pgZmL、検出範囲は lOOOOpgZmL力ら 7. 3pg/mLまで、平均 CV %は 3. 3であった。
[0062] 比較例 4
実施例 5に記載した方法において、標識としてオリゴヌクレオチドを使用するに代え て、従来の酵素標識法 (ELISA法)で行った。酵素測定ではピオチン化 LCA—ラタ トフエリン複合体にストレプトアビジン一 HRPをカ卩ぇ 37°Cで 1時間インキュベートした 後、 TMBと室温で 30分反応した。停止溶液 (Stop solution)を加えた後、カメレオン( Chameleon)で OD450nmを測定した。
この結果を実施例 5の本発明の方法と比較して図 12に黒四角印で示す。この結果 、酵素測定法では検出限界が 65pgZmLで、検出範囲は lOOOOpgZmLから ΙΟΟρ gZmLまで、平均 CV%は 13. 2であった。
本発明の方法が、酵素測定法より検出感度は 1桁上げ、ばらつきも少ないことが分 かった。
[0063] 実施例 5に記載した方法の応用例としては、癌化した細胞や、種々の疾患時には 糖タンパク質や糖脂質などの糖鎖構造が変化することが知られて 、る。この糖鎖の変 化をレクチンを用いて検出し、癌や肝疾患の診断に用いる報告がすでになされて ヽ る。従来技術として、ウェスタンプロット法ゃレクチンカラムによる検出が一般的である 力 抗体-レクチン酵素免疫法 (谷口ら、生物物理化学、 35(3), 199-204)として、いわ ば ELISAの変法のような形で迅速に特定の糖鎖をもつ糖たんぱく質を検出する方法 も開発されている。今回、検出法としてレクチンと Invader法を組み合わせることにより 、抗体-レクチン酵素免疫法よりも高感度に、ウェスタンプロット法よりも容易に(ウェス タンプロットではおおよそ 6〜7時間の工程が必要である力 本法では 5時間程度であ る)多検体を同時に扱い、迅速に診断を行う事ができる。また、生化学実験などでも、 迅速に従来よりも微量の糖鎖の検出を行う事ができる。
実施例 6
[0064] 本発明の方法による細胞タンパクの発現アツセィ
(1) HT— 1080細胞によるァクチンタンパク質の発現の検出
0. 55 X 105個/ゥエルの HT— 1080細胞 (human fibrosarcoma)を、 96穴マイクロ プレートに入れ、 5%ホルマリン水溶液中、室温で 15分間インキュベートして、細胞コ 一ティングした。次に細胞コーティングしたゥエルを PBSバッファーで洗浄した後、 0. 01% Triton X— 100を含有する PBSバッファーで 5分間インキュベートした。再 度 PBSバッファーで洗浄した後、マウス抗ヒトァクチン平滑筋(mouse anti-human acti n, smooth muscle)抗体(1: 10) (UK— Serotec Ltd)及び抗体なし陰性コントロー ルを室温で 2時間インキュベートした。
再度 PBSバッファーで洗浄後、ピオチン化抗マウス IgG (1 : 100)を加え、室温で 1 時間インキュベートして、ピオチン化抗原 抗体複合体を形成させた。
得られたピオチン化抗原 抗体複合体を本発明の方法により検出する為に、 100 OngZmlのストレプトアビジンをカ卩え、室温で 1時間インキュベートした後、バッファー A (0. 05% Tween— 20を含有する 0. 05M Tris—HClバッファー(pH7. 8) )で 3回洗浄後、バッファー B (0. 05M Tris—HClバッファー(pH7. 8) )で 1回洗浄し た (以下、洗浄は同様に行った。 ) o
次に、実施例 1と同様にして、 0. InMのピオチン化 DNA (ターゲット DNA)と室温 で 30分反応させた。これを洗浄した後、さらに水で 3回洗浄した。
実施例 1と同様にして、プローブミックス 50mLを入れ、 63°Cで 25分反応させた後、 カメレオン(Chameleon) (フィンランド、 HIDEX製)により励起波長(Ex. ) 485nm、 発光波長(Em. ) 530nmで FAMの蛍光強度を測定した。
結果を図 13にグラフで示す。図 13の縦軸は FAMの蛍光強度を示し、横軸は添カロ したピオチン化抗マウス IgGを添カ卩した場合(Positive)と、添加しな!、場合 (Negative )を示す。この結果、本発明の方法による定量では、陰性コントロールに比べて、陽性 コントロールの HT 1080細胞質に発現したァクチンタンパク質が入って!/、る細胞の 蛍光強度が上昇していることが認められた。
(2) HT— 1080細胞によるァクチンタンパク質の定量法
細胞数 0. 55 X 105{@, 0. 275 X 105{@, 0. 1375 X 105個、及ひ Ό. 034 X 105個 Ζゥエルの細胞(ΗΤ 1080)を 96穴マイクロプレートに入れ、それぞれを 5%ホル マリン水溶液中で、室温で 30分間インキュベートして、細胞コーティングした後、前記 (1)に記載したと同様に行ってタンパク質の定量ィ匕を試みた。
結果を図 14のグラフで示す。図 14の縦軸はァクチンタンパク質の発現強度 (蛍光 強度)を示し、横軸は細胞数(X 105細胞 Ζゥエル)を示す。この結果、図 14に示され るように、本発明のこの方法では、蛍光強度はァクチンタンパク質の濃度にほぼ比例 して観測され、定量測定にも使えることが確認された。
実施例 7 本発明の方法によるアポトーシスの検出
アポトーシス apoptosisは、 apo (off、離れる)と ptosis (falling、落ちる)を合成した術語 で、〃生〃の象徴である mitosis (有糸分裂)に対比させられている。アポトーシスは、生 体の中で不要となった細胞を除去する生体制御機構であり、突然変異や傷害を受け て異常となった細胞を排除する生体防御の意義も兼ね備えている。すなわち、正常 · 異常細胞の自己消去機能による"生の更新"がアポトーシスの本質といえる。形態発 生学の領域のみならず、医学の分野においても、病態の成立機序、診断や治療に 関するアポトーシスの生物学的意義が論じられている。アポトーシスに関する研究を 行うためには、アポトーシスを正確かつ鋭敏に検出する手技の確立が重要であり、こ れを簡便に検出する方法として本発明の方法を説明する。
(1)早期アポトーシスの検出
アポトーシスの初期段階では、細胞膜の完全性は保たれているが、膜のリン脂質の 非対称性が失われる。それに伴い、細胞膜の内側に局在する陰性荷電リン脂質のホ スファチジルセリンが細胞表面に露出する。 Ca2+依存性のりん脂質結合タンパクで あるァネキシン V (Annexin V)力 ホスファチジルセリンに選択的に結合することを利 用してアポトーシスを検出する。本発明では、ピオチン化ァネキシン Vを用いて, ビ ォチンィ匕合成 DNA (ターゲット DNA)をアビジンを介して結合させる。これを実施例 1と同様にして、本発明の方法により早期アポトーシス細胞を検出する。
実施例 6で用いた HT— 1080 細胞にマグノロール(Magnolol)を投与することでァ ポトーシスが誘導された報告(Biol Pharm Bull 2002;25, 1546-1549 Ikeda K et al)力 S あること力 、 HT— 1080細胞を用いて早期アポトーシスの検出を以下の手順で行つ た。
lxlO5個 Zゥエルの HT— 1080細胞(human fibrosarcoma)を、 96穴マイクロプレ ートに入れ、炭酸ガス培養器にて 37°Cでー晚インキュベートし、 0 μ Μ及び 75 μ Μ のマグノロール (Wako製)を入れ、さらに、炭酸ガス培養器にて 37°Cでー晚インキュ ペートした。次にマグノロールを含む培養液を捨て、 200 1 I X結合バッファー (Bi oVision製)を入れ、さらに 5 μ 1のビォチン化ァネキシン V (BioVision製)、 5 μ 1のヨウ 素化プロビジゥム(propidium iodide) (BioVision製)を加え、暗室室温で 5分インキュ ペートした。次に I X結合バッファーで一回洗浄した後、 5%ホノレマリン PBS溶液、室 温で 15分インキュベートし、細胞コーティングした。次に細胞コーティングしたゥエル を PBSバッファーで洗浄した後、 1%BSA含有 PBSバッファ一中、室温で 1時間イン キュペートしブロッキングを行った。
固定ィ匕されたピオチンィ匕ァネキシン Vを本発明の方法により検出する為に、 1000η gZmlのストレプトアビジンをカ卩え、室温で 1時間インキュベートした後、バッファー A ( 0. 05% Tween— 20含有 0. 05M Tris—HClバッファー(pH7. 8) )で 3回洗浄 後、バッファー B (0. 05M Tris-HCl バッファー(pH7. 8) )で 1回洗浄した。 次に、実施例 1と同様にして、 0. InMのピオチン化 DNA (ターゲット DNA)と室温 で 30分反応した。これを上記と同様にバッファー Aで 3回洗浄後、ノ ッファー Bで 1回 洗浄した後、さらに水で 3回洗浄した。
実施例 1と同様にして、プローブミックス 50mLを入れ、 63°Cで 60分反応させた後、 蛍光プレートリーダー(カメレオン;フィンランド、 HIDEX社製)により励起波長(Ex. ) 485nm、発光波長(Em. ) 530nmで FAMの蛍光強度を測定した。
その蛍光強度測定の結果、マグノロールを入れな力つた陰性 (0 M)と比べて、マ グノロールを入れた陽性 (75 μ Μ)の蛍光強度が上昇して ヽることを確認し、早期ァ ポトーシス細胞を検出できることが確認された。
(2)後期アポトーシスの検出
アポトーシスは、ネクローシス(necrosis)と異なる細胞死としてアポトーシスが進行す ると、原形質膜の完全性が失われ、核のクロマチンの凝縮 (margination)に基づいて 行われる。そして、エンドヌクレアーゼ活性によるヌクレオソーム(約 180塩基対)単位 の DNA断片化がアポトーシスを特徴づけて!/、る。
この方法では、 DN Aの二本鎖切断端(double-stranded break)に末端デォキシヌク レオチンノレトフンスフエフーゼ(terminal deoxynucleotidyl transferase) (TdT)を用 ヽ てビォチン標識化デォキシゥリジントリホスフェイト(deoxyuridine triphosphate) (dUT P)を付加させ、ピオチンィ匕 DNA (ターゲット DNA)をアビジンを介して結合させた。 これを実施例 1と同様にして、本発明の方法によって後期アポトーシス細胞を検出す る。 6 μ mラット胸腺 (後期アポトーシスを含む陽性コントロール)スライド (Trevigen製)を キシレンに 5分間、 2回: 100%エタノール 1分間、 2回: 99%エタノールに 1分間、 3 回:水で 1分間、 5回の順で脱パラフィン '親水化した。次にプロテイン K (Protein K) に常温に 20分間浸した後、水で 2分間、 2回洗浄した。次にクェンチング溶液 (Trevi gen製)に 5分間浸した後、 PBSバッファーで 1分間した後、 TdTラベリングバッファー (Trevigen製)に常温で 5分間浸漬した。次に 50 μ 1の TdT酵素 (Trevigen製)とラベリ ングバッファー(陽性)、又はラベリングバッファーのみ(陰性、酵素なし)を入れ、湿潤 箱中で 37°C1時間ハイブリダィゼーシヨンした。次に、 TdT停止液 (Trevigen製)中に 5分間浸漬し、 PBSバッファーで 5分間、 1回洗浄した。次に、 50 1の抗 BrdU (antト BrdU) (Trevigen製)を入れ、湿潤箱中で 37°Cで 1時間ハイブリダィゼーシヨンした。 更に 0. 05%Tween20を含有する PBSバッファーで 5分間、 3回洗浄した。その後、 ダコペンで標本の周囲を囲み、次の反応を行った。
得られた断片化 DNAとピオチン標識ィ匕デォキシゥリジントリホスフェイト複合体を本 発明のインベーダー法により検出する為に、 lOOOngZmlのストレプトアビジンをカロ え、室温で 1時間インキュベートした後、バッファー A(0. 05%Tween— 20を含有す る 0. 05M Tris—HClバッファー(pH7. 8) )で 3回洗浄後、バッファー B (0. 05M Tris-HCl バッファー(pH7. 8) )で 1回洗浄した。次に 0. InMのピオチン化合成 DNAと室温で 30分間反応した。上記バッファー Aで 3回洗浄後、ノッファー Bで 1回 洗浄した後、さらに水で 3回洗浄した。次にプローブミックスを入れ、 63°Cで 90分間 反応させた。次に 20 1の反応液を、 384穴の黒色マイクロプレートに入れ、蛍光プ レートリーダー(カメレオン;フィンランド、 HIDEX社製)により励起波長(Ex. ) 485n m、発光波長(Em. ) 530nmで FAMの蛍光強度を測定した。
その蛍光強度測定の結果、末端デォキシヌクレオチジルトランスフ ラーゼ (termin al deoxynucleotidyl transferase) (TdT)を入れなかった陰性と比べて、 TdTを入れた 陽性の蛍光強度が上昇していることを確認し、後期アポトーシス細胞を検出できるこ とが確認された。
実施例 8
レセプタ^——リガンド ·バインディング ·アツセィ 本発明の方法において、化学物質としてリガンド分子を用いて、本発明を行う。これ により、細胞のレセプター発現、その活性の測定、レセプター(例えばォーファンレセ プター)のリガンド探索、または特定のリガンドに対するレセプター探索等への応用が 可能となる。
例えば、ラミニンは、細胞接着因子の一つであり、細胞表面にあるレセプター(ラミ ニンレセプター)を介して作用を示すことが知られている。これまでの研究により、ラミ ニンのアミノ酸配列のうち、 j8鎖 929— 933番目に当たる Tyr— lie— Gly— Ser— Ar g (YIGSR)配列力 ラミニンレセプターとの結合を与えることが報告されている。実際 、この配列のみの 5アミノ酸のペプチドでも、レセプターと結合しラミニンの作用を阻害 することが報告されている。そこで、本配列を持つリガンドをプローブとして、レセプタ 一一リガンド ·バインディング ·アツセィを行う。
lxlO5個/ゥエルの HT— 1080細胞 (human fibrosarcoma)を、 96穴マイクロプレ ートに入れ、ー晚培養し、それぞれ 0、 5 gZWellのピオチン化 YIGSRペプチドを 入れ、 37°Cで 1時間インキュベートした。 PBSバッファー 3回洗浄した後、 5%ホルマ リン PBS溶液中、室温で 15分インキュベートし、細胞コーティングした。次に細胞コー ティングしたゥエルを PBS バッファー洗浄した後、 1%BSA含有 PBSバッファ一中 で、室温 1時間インキュベートしブロッキングを行った。
レセプタ一—リガンド複合体を本発明の方法で検出するために、 lOOOngZmlのス トレプトアビジンを加え、室温で 1時間インキュベートした後、バッファー A(0. 05% Tween— 20含有 0. 05M Tris—HClバッファー(pH7. 8) )で 3回洗浄後、バッフ ァー B (0. 05M Tris—HClバッファー(pH7. 8) )で 1回洗浄した。次に 0. InMの ピオチン化合成 DNAと室温で 30分反応した。上記バッファー A3回洗浄およびバッ ファー B洗浄後、さらに水で 3回洗浄した。
実施例 1と同様にして、プローブミックス 50mLを入れ、 63°Cで 60分反応させた後、 蛍光プレートリーダー(カメレオン;フィンランド、 HIDEX社製)により励起波長(Ex. ) 485nm、発光波長(Em. ) 530nmで FAMの蛍光強度を測定した。
その結果を図 15に示す。図 15の縦軸は FAMの蛍光強度を示し、横軸は調製した ピオチン化 YIGSRペプチドの有無を示す。図 15に示すように、ネガティブコントロー ルのピオチン化 YIGSRペプチドなしと比較して、 5 μ gのピオチン化 YIGSRペプチド を入れたものの蛍光強度が増大することが観察され、レセプターの検出が可能である ことが確認された。
実施例 9
mRNAアツセィ
本発明の方法にぉ 、て、化学物質として mRNAの全部又は一部に相補的な配列 を持つ DNA (又は RNA)を配する。これにより、細胞での遺伝子発現パターンおよ び発現量の測定を本発明の方法により行うことができる。
例えば、マトリックスメタ口プロティナーゼ(Matrix metalloproteinase) (MMP)類はコ ラーゲンなどの細胞外マトリックスの分解を行う酵素である。本酵素類は、ガン細胞の 浸潤 '転移の関係しており、ガン細胞で高度に発現していることが知られている。特に 、 MMP-2 (または、ゼラチナーゼ A、 72-kDaゼラチナーゼ、または 72-kDa type
IVコラゲナーゼ)は、 HT- 1080細胞等の繊維肉腫細胞で構成的に発現しているこ とが報告されている。そこで、 MMP- 2の mRNAをターゲットとして mRNAアツセィを 行う。
96穴プレートの各ゥエルに細胞 HT- 1080を 1. 1 X 105個を取り、 5%ホルマリン水 溶液中で 15分インキュベートして、細胞コーティングを行った。次いで、これを PBS バッファーで洗浄した後、 95°Cに温めたターゲットレトリーバルソルーシヨン(Target R etrieval Solution) (Dako社製)の 40分間浸し、次いで 0. 2N HC1で 20分処理して ターゲット遺伝子を賦活ィ匕した。これを DEPC水で 1分間、 3回洗浄した後、 95%ェ タノールで 1分間、 100%エタノールで 1分間処理して脱水し、冷風で風乾した。 ビォチン化 MMP2、及び内因性コントロール GAPDH (Glyceraldehyde Phosphate Dehydrogenase)プローブ(センス及びアンチセンス、各々 2 μ g/mL)を、 RNAイン サイチュウハイブリダィゼーシヨン(RNA in- situ Hybridization)溶液で希釈して 10 μ Lとして添カ卩し、ハイブリスリップハイブリダィゼーシヨンカバー(Hybrislip Hybridizatio n cover)でカバーして 37°Cで 1晚ハイブリダィゼーシヨンさせた。次いで、 40°Cに温 めた 50倍に希釈したストリンジヱント洗浄溶液(Stringent wash solution)中でカバー をはずした後、 20分間 40°Cでインキュベートした。その後、再度、新鮮な洗浄溶液中 で、 20分間 40°Cでインキュベーションした。
次いで、室温で TBSバッファー (50mM Tris- HC1, 159mM NaCl, PH 7.6)に 5分間浸 した。 lOOOngZmLのストレプトアビジンをカ卩え、室温で 1時間インキュベートした後 、バッファー A (0. 05%のッウィーン 20を含有する 0.05M Tris- HC1バッファー (pH 7.8))で 3回洗浄した後、バッファー B (0.05M Tris- HC1 buffer (pH7.8))で 1回洗浄し た (以下洗浄は同様に行った)。
次いで、 0. InMのピオチン化 DNA (ターゲット DNA)と室温で 30分反応させた後 、洗浄し、さらに水で 3回洗浄した。
次いで、実施例 1と同様にしてプローブミックス 50mLを添カ卩して、 63°Cで 60分反 応させた。次いで、カメレオン(Chameleon (HIDEX製))により励起波長(Ex.) 485nm、 発光波長(Em.) 530nmで FAMの蛍光強度を測定した。
MMP2の結果を図 16に、 GAPDHの結果を図 17にそれぞれ示す。図 16及び図 1 7の縦軸は蛍光強度を示し、それぞれの図の左側はセンス鎖の場合を、右側はアン チセンス鎖の場合を示す。この結果、図 16及び図 17に示すように、本発明の方法の 定量では、センスと比べて、アンチセンス (mRNAに相補的な)プローブを加えた細 胞の蛍光強度が 1. 5倍または 2倍上昇していることが示された。
実施例 10
本発明の方法による細胞内の DNAを抽出することなぐ細胞内の特異的 DNAの 検出
細胞の DNAを抽出せず、本発明のピオチンィ匕プローブを用いて、細胞内の特異 的 DNAの発現の検出、同定を試みた。以下の実験例では、特異的 DNAとして、細 胞内のシングルコピーのウィルスの DNAの検出、同定を行つた。
パピローマ 16ウィルスが、 1〜2コピー感染した SiHa細胞を貼付したスライド(Dako 製)をキシレンに 5分間、 2回, 100% エタノール 1分間、 2回, 99%エタノールに 1 分間、 3回,水で 1分間、 5回の順で脱パラフィン '親水化した。
次いで、 95°Cで、ターゲットリトリーバル溶液(Target Retrieval Solution) (Dako製)に 40分間浸した後、漬けたまま常温に 20分間、放置し、ターゲット遺伝子を賦活ィ匕した 。水で 1分間、 5回洗浄した後、常温に風乾し、ダコペンで標本の周囲を囲った。 ピオチン標識ヒト HPV16配列がある陽性プローブ(Dako製)、及び HPV16配列を 含まない陰性プローブ (Dako製)を入れ、カバーグラスをかけ、湿潤箱中で 37°Cで一 晚ハイブリダィゼーシヨンさせた。
次いで、 TBST(Dako製)中に 10分間浸し、カバーガラスをはずした後、 55°Cに温 め、 50倍希釈ストリンギヱント洗浄溶液(Stringent wash solution) (Dako製)〖こ 30分、 55°Cでインキュベートした。
TBSTに室温で 5分間浸した。 lOOOngZmLのストレプトアビジンを加え、室温で 1 時間インキュベートした後、バッファー A (0. 05%のッウィーン 20を含む 0. 05M Tri s-HClバッファー (pH7.8))で 3回洗浄した後、バッファー B (0. 05M Tris-HClバッフ ァー (PH7.8))で 1回洗浄した (以下、洗浄は同様に行った。 )0 0. InMのピオチンィ匕 合成 DNAと室温で 30分間反応させた。洗浄した後、さらに水で 3回洗浄した。図 19 に示したように、実施例 1と同様にプローブミックス試薬を入れ、 63°Cで 90分間反応 させた。次に 20mLの反応液を、 384穴の黒色マイクロプレートに入れ、蛍光プレート リーダー(カメレオン;フィンランド、 HIDEX社製)により励起波長(Ex. ) 485nm、発 光波長(Em. ) 530nmで FAMの蛍光強度を測定した。
結果を図 18に示す。図 18の縦軸は蛍光強度を示し、図 18の左側はネガティブの 場合を、右側はポジティブの場合を示す。この結果、図 18に示されるように、本発明 の方法による定量化では、陰性 (ネガティブ)に比べて、陽性 (ポジティブ)の蛍光強 度は約 3倍以上に上昇することが示された。このことから、本発明の方法によれば、従 来法より高感度な検出が可能となり、スライド塗抹標物に少な 、コピーウィルスの DN Aを検出することができる。
実施例 11
ァプタマ一による測定
アブタマ一は、核酸 (一本鎖 DNAまたは RNA)で構成される抗体様分子で、立体構 造によりターゲットとなる分子と特異的に結合する。 15〜30mer程度の核酸であるため 、一度配列が決定されれば人工的に、高い再現性で合成することができる。いわば「 試験管内でできる人工抗体」といえる。
前記してきた本発明の方法において、化学物質をアブタマ一に置き換えることによ り、検出の迅速化、再現性の向上を図ることが可能となる。
この実験では、ァプタマ一のモデルとして、トロンビンァプタマ一を用いた。トロンビ ンァプタマ一は長さ 15merの 1本鎖 DNAァプタマ一で、 α—トロンビンと特異的に 結合する。その配列は公知であり(Bock et al. (1992), Nature 355:564-566)、酵素標 識による ELISAによる測定のデータもすでに報告されている(Paborsky et al. (1993) , J Biol Chem. 268:20808-20811)。これに、(1) 5,末端にピオチン標識したもの、 (2 ) 3'末端側に本発明のインベーダー法のターゲット配列を結合したもの、の 2種類の アブタマ一を作製し、それぞれの親和性の測定を行った。
[0073] (1)ピオチンを結合したトロンビンァプタマ一(5,- Biotin- GGTTGGTGTGGTTGG- 3, )によるトロンビンの検出
96穴マイクロプレートにセレクションバッファー(20mM Tris—アセテート(pH7. 4 ) , 140mM NaCl, 5mM KCl, ImM CaCl , ImM MgCl )中に溶解した a
2 2
—トロンビンを、それぞれ 0. 25、 2. 5、 25、 250、及び 2500nMの濃度でコーティン グし、 1%BSAによりブロッキングを行った後、 500nMのピオチン標識ァプタマ一と 3 7°Cで 1時間インキュベートした。 0. 05%Tween 20を含むセレクションバッファで 3 回洗浄した後、 30 gZmlのストレプトアビジンと室温で 1時間インキュベートした。 3 回の洗浄の後、 50nMのピオチン結合ターゲット DNAと室温で 30分反応させた。さ らに 3回の洗浄を行い、 PH FENを含む 50 1のプローブミックスを注ぎ、 63°C、 1 時間インベーダー反応を行った後、 FAMの蛍光を測定した。
結果を図 19にグラフで示す。この結果、 a—トロンビン濃度が 2. 5nM以上で、濃 度に比例して FAM蛍光強度の増加が見られ、抗体の代わりにアブタマ一を用いた 場合にも正しく標的物質を検出できることが示された。
[0074] (2)3,末端側に本発明のインベーダー法のターゲット配列を結合したアブタマ一によ るトロンビンの検出
5 ' -GGTTGGTGTGGTTGG GTGTCTGCGGGAGTCGATTTCATCATCACGCA GCTTTTCTTTG-3'
Thrombin aptamer target酉己歹 [J
(下線部は、本発明のインベーダー法におけるターゲット配列であることを示す。 ) 96穴マイクロプレートにセレクションバッファ中に溶解した α トロンビンを、それぞ れ 0. 25、 2. 5、 25、 250、及び 2500ηΜの濃度でコーティングし、 1%BSAによりブ ロッキングを行った後、 500nMのターゲット配列融合ァプタマ一と 37°Cで 1時間イン キュペートした。 0. 05%Tween20を含むセレクションバッファで 3回洗浄した後、 P H FENを含む 50 μ 1のプローブミックスを注ぎ、 63°C、 1時間反応を行った後、 FA Mの蛍光を測定した。
結果を図 20にグラフで示す。その結果、 ひトロンビン濃度が 2. 5nM以上で、濃度 に比例して FAM蛍光強度の増加が見られ、抗体の代わりにァプタマ一を用いた場 合にも正しく標的物質を検出できることが示された。本方法は、ターゲット配列に直接 ァプタマ一配列を融合した一本鎖 DNAを使用して 、るため、ピオチン アビジンを 用いた方法よりもより迅速簡便に測定を行う事ができる。また、アブタマ一融合ターゲ ットの合成も、ピオチン結合抗体あるいはピオチン結合アブタマ一に比べ容易である 実施例 12
マルチターゲット DNAによる感度試験
ターゲット領域を複数箇所有するターゲット DNA (マルチターゲット DNA)を用いて 、検出感度を比較した。
(1)ターゲット領域が 2力所あるターゲット DNAによる試験
ターゲット単位間のスペースが 5merのものの例として、次の 91merの塩基配列を 有するターゲット DNAを使用した。
シグナルプローブとして、
5 -AACGA GGCGC AC ACT CCCGC AGACA C- 3'
を使用し、インベーダーオリゴとしては、
5 -CAAAG AAAAG CTGCG TGATG ATGAA ATCGC- 3'
を使用した。
比較として、ターゲット領域が 1力所である従来のターゲット DNAを使用して、それ ぞれインベーダー法による蛍光感度を比較した。実験条件は次のとおりであった。 ターゲット DN Aの濃度 : ΙΟρΜ
tRNA : 50ng
フレットプローブ(FAM): 125nM
シグナノレプローブ : 250nM
インベーダーオリゴ : 50nM
FEN (PHFEN) : 40ng
反応条件 : 63°C、 60分
試行回数 : 3回
結果を図 21に示す。図 21の縦軸は蛍光強度を示し、横軸は、左側から、コントロー ル(No Target)、ターゲット領域が 1力所である従来のターゲット DNAの場合(Mono )、ターゲット領域を 2力所有するターゲット DNAの場合 (Multi)をそれぞれ示す。 この結果、ターゲット領域を 2力所にすることにより、インベーダーアツセィでは F AM の蛍光感度は、約 1. 55倍に増加した。
(2)シグナルプローブ力 インベーダーオリゴを兼ねるものであって、ターゲット領域 力 回繰り返されるターゲット DNAによる試験
ターゲット単位間のスペースは Omerであり、これが 5回繰り返される例として、次の 9 9merの塩基配列を有するターゲット DNAを使用した。
Figure imgf000055_0001
3' (99merJ
シグナルプローブとして、
5 -AACGA GGCGC AC ACT CCCGC AGACA CC- 3'
を使用した。このシグナルプローブはインベーダーオリゴを兼ねている力 最初のフラ ップの作成のために、次のインベーダーオリゴ、
5 -CAAAG AAAAG CTGCG TGATG ATGAA ATCGC- 3'
を使用した。
比較として、ターゲット領域が 1力所である従来のターゲット DNAを使用して、それ ぞれインベーダー法による蛍光感度を比較した。実験条件は次のとおりであった。 ターゲット DN Aの濃度 : ΙΟρΜ
tRNA : 50ng
フレットプローブ(FAM): 125nM
シグナノレプローブ : 250nM
インベーダーオリゴ : 50nM
FEN (PHFEN) : 40ng
反応条件 : 63°C、 60分
試行回数 : 3回
結果を図 22に示す。図 22の縦軸は蛍光強度を示し、横軸は、左側から、コントロー ル(No Target)、ターゲット領域が 1力所である従来のターゲット DNAの場合(Mo no)、ターゲット領域を 2力所有するターゲット DNAの場合 (Multi)をそれぞれ示す この結果、ターゲット領域を 2力所にすることにより、インベーダーアツセィでは F AM の蛍光感度は、約 1. 5倍に増加した。
実施例 13
ビォチン化 DNA (ターゲット DNA)の製造
自動合成装置 (ABI394)を用いて、固相法により合成した。
まず、 CPG (controlled pore glass)の多孔質ガラスビーズの固相担体に、デォキシ チミジンが結合したジメトキシトリチル体 (DMTr— dT—CPG)出発物質とした。 3%ト リクロロ酢酸 (TCA)を 6秒流し、 5秒待つと!、うサイクルを 5回行うことで DMTr基をは ずした。ついでシトシンホスホロアミダイトを反応させ、つぎに Iで酸ィ匕してリン酸トリエ
2
ステル(DMTr— dT— (0 = P— OR)—dC— CPG)とした。 以上のサイクルを繰り 返し、 3'→5 'の方向に 1塩基ずつ延長し(5 ' ) DMTr— AGAAG GTGTC TGC GG GAGTC GATTT CATCA TCACG CAGCT TTTCT TTGAG G CT-CPG (3 ' )塩基配列を有する DNAを得た。
さらに、ビォチンホスホロア^タイド (Biotin phosphoramidite (1— Dimethoxytrityloxy— 2— (N— Diotinvト 4— ammobutyl)— propyト 3— u— (2— cyanoetnyl)— (Ν,Ν— dusopropyl)— phosph oramidite)をカ卩え、 2分間反応させ。その後、 28%アンモニア水で 55°C, 5時間反応 させ、 CPGより脱離させた。得られたピオチンィ匕 DNAは HPLCで精製し、分光光度 計で 260nmの値を測定することにより保持時間 7. 41分でシングルピークであること を確認した。最後に、残った DMTrを外し、カラムで脱塩して凍結乾燥して、本発明 のビォチン化 DNA (ターゲット DNA)を製造した。
産業上の利用可能性
[0078] 本発明は、安全で、簡便で、高感度で、確実で、かつ測定レンジの広い新規な標 識を用いた方法を提供するものであり、生理活性物質などの挙動を測定するための 新規な手法を提供するものである。本発明の方法により、例えば、各種の抗体ゃ抗 原などの生理活性物質の存在、定量ィ匕などを行うことができ、病気の診断や治療に 有用なだけでなぐ病気の発症原因の解明や、各種のスクリーニング方法における新 規な標識として極めて有用なものであり、本発明は産業上の利用可能性を有するも のである。
配列表フリーテキスト
[0079] 配列番号 1:本発明の標識としてのオリゴヌクレオチドの例である。
配列番号 2:本発明の方法におけるシグナルプローブの例である。
配列番号 3 :本発明の方法におけるインベーダーオリゴの例である。
配列番号 4 :本発明の方法におけるフレットプローブの例である。

Claims

請求の範囲
[I] 化学物質に結合したオリゴヌクレオチドを標識として使用し、当該オリゴヌクレオチド を利用してヌクレアーゼを使用して核酸を切断する方法により、試料中の標的分子を 検出、同定又は定量する方法。
[2] 標識としてのオリゴヌクレオチドが結合したィ匕学物質 (以下、標識化化学物質と!/、う 。)を、試料中に標的分子を含有するか、又は含有している可能性のある試料に接触 させ、当該標識化化学物質と試料中の標的分子との複合体を形成させ、当該複合 体におけるオリゴヌクレオチドをヌクレアーゼを使用して核酸を切断する方法により測 定することからなる、特許請求の範囲第 1項に記載の試料中の標的分子を検出、同 定又は定量する方法。
[3] 試料中の標的分子を検出、同定又は定量する方法において、標識としてオリゴヌク レオチドを使用し、当該オリゴヌクレオチドの存在をヌクレアーゼを使用して核酸を切 断する方法により測定するからなる、特許請求の範囲第 1項又は第 2項に記載の試 料中の標的分子を検出、同定又は定量する方法。
[4] オリゴヌクレオチドが、 1本鎖の DNAである特許請求の範囲第 1項〜第 3項のいず れかに記載の方法。
[5] オリゴヌクレオチド力 10〜1000merの DNAである特許請求の範囲第 1項〜第 4 項の 、ずれかに記載の方法。
[6] オリゴヌクレオチドが、 10〜: LOOmerの DNAである特許請求の範囲第 5項に記載 の方法。
[7] オリゴヌクレオチド力 10〜60merの DNAである特許請求の範囲第 5項に記載の 方法。
[8] オリゴヌクレオチド力 10〜40merの DNAである特許請求の範囲第 5項に記載の 方法。
[9] 化学物質が、タンパク質、ピオチン、アビジン、又は核酸である特許請求の範囲第 1 項〜第 8項の 、ずれかに記載の方法。
[10] 化学物質が、ピオチンである特許請求の範囲第 9項に記載の方法。
[II] 標識のオリゴヌクレオチドが、化学物質に直接結合している特許請求の範囲第 1項 〜第 10項のいずれかに記載の方法。
[12] ヌクレアーゼにより切断される核酸力 標識のオリゴヌクレオチドである特許請求の 範囲第 1項〜第 11項のいずれかに記載の方法。
[13] ヌクレアーゼにより切断される核酸力 標識のオリゴヌクレオチドに基づいて生成さ れた核酸である特許請求の範囲第 1項〜第 11項の!/、ずれかに記載の方法。
[14] ヌクレアーゼにより切断される核酸力 発光物質及び消光物質が結合した核酸であ る特許請求の範囲第 1項〜第 13項のいずれかに記載の方法。
[15] 発光物質が、希土類蛍光錯体ラベル剤を有するものである特許請求の範囲第 14 項に記載の方法。
[16] 希土類蛍光錯体ラベル剤が、 Eu錯体、 Tb錯体、 Sm錯体、又は Dy錯体力ゝらなるラ ベル剤である特許請求の範囲第 15項に記載の方法。
[17] ヌクレアーゼ力 フラップエンドヌクレアーゼである特許請求の範囲第 1項〜第 16項 のいずれかに記載の方法。
[18] ヌクレアーゼを使用して核酸を切断する方法力 インベーダー法である特許請求の 範囲第 1項〜第 17項のいずれかに記載の方法。
[19] 標識のオリゴヌクレオチド力 インベーダー法におけるターゲット DNAである特許請 求の範囲第 18項に記載の方法。
[20] ターゲット DNA力 シグナルプローブがハイブリダィズし得る塩基配列を 1力所又は
2力所以上有するものである特許請求の範囲第 19項に記載の方法。
[21] シグナルプローブ力 2個のフラップを生成し得る塩基配列を有するものである特許 請求の範囲第 19項又は第 20項に記載の方法。
[22] シグナルプローブが、隣接するシグナルプローブのインベーダーオリゴとして機能 し得る塩基配列を有するものである特許請求の範囲第 19項又は第 20項に記載の方 法。
[23] 試料中の標的分子を検出、同定又は定量する方法が、ィムノアッセィである特許請 求の範囲第 1項〜第 22項のいずれかに記載の方法。
[24] ィムノアッセイカ サンドイッチアツセィである特許請求の範囲第 23項に記載の方 法。
[25] 試料中の標的分子を検出、同定又は定量する方法が、結合アツセィである特許請 求の範囲第 1項〜第 22項に記載の方法。
[26] 標識としてのオリゴヌクレオチドが結合したィ匕学物質力 ピオチン化 DNAである特 許請求の範囲第 23項〜第 25項のいずれかに記載の方法。
[27] 10〜: LOOmerのオリゴヌクレオチドからなる化学物質の標識剤。
[28] オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである特許請求の範囲第 2
7項に記載の標識剤。
[29] オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである特許請求の範囲第 2 7項に記載の標識剤。
[30] オリゴヌクレオチドが、 1本鎖の DNAである特許請求の範囲第 27項〜第 29項のい ずれかに記載の標識剤。
[31] 特許請求の範囲第 27項〜第 29項のいずれかに記載のオリゴヌクレオチドの塩基 配列を 2回以上繰り返して有していることを特徴とするオリゴヌクレオチド力 なる化学 物質の標識剤。
[32] 塩基配列の繰り返しが 2回力も 10回である特許請求の範囲第 31項に記載の標識 剤。
[33] 10〜100merのオリゴヌクレオチドの標識としての使用。
[34] オリゴヌクレオチドが、 10〜60merのオリゴヌクレオチドである特許請求の範囲第 3 3項に記載の使用。
[35] オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである特許請求の範囲第 3 3項に記載の使用。
[36] オリゴヌクレオチドが、 1本鎖の DNAである特許請求の範囲第 33項〜第 35項のい ずれかに記載の使用。
[37] 特許請求の範囲第 33項〜第 35項の 、ずれかに記載のオリゴヌクレオチドの塩基 配列を 2回以上繰り返して有していることを特徴とするオリゴヌクレオチドの標識として の使用。
[38] 塩基配列の繰り返しが 2回から 10回である特許請求の範囲第 37項に記載の使用。
[39] 10〜: LOOmerのオリゴヌクレオチドが標識として化学物質に結合している標識ィ匕さ れた化学物質。
[40] オリゴヌクレオチド力 10〜60merのオリゴヌクレオチドである特許請求の範囲第 3
9項に記載の標識化された化学物質。
[41] オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである特許請求の範囲第 3
9項に記載の標識化された化学物質。
[42] オリゴヌクレオチドが、 1本鎖の DNAである特許請求の範囲第 39項〜第 41項のい ずれかに記載の標識化された化学物質。
[43] 特許請求の範囲第 39項〜第 41項の 、ずれかに記載のオリゴヌクレオチドの塩基 配列を 2回以上繰り返して有していることを特徴とするオリゴヌクレオチドが標識として 化学物質に結合して!/ヽる標識化された化学物質。
[44] 塩基配列の繰り返しが 2回力も 10回である特許請求の範囲第 43項に記載の標識 化された化学物質。
[45] 化学物質が、ピオチンである特許請求の範囲第 39項〜第 44項の 、ずれかに記載 の標識化された化学物質。
[46] 10〜: LOOmerのオリゴヌクレオチドが標識として化学物質に結合している標識ィ匕さ れたィ匕学物質を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用する ヌクレアーゼを使用して核酸を切断する方法による測定用キット。
[47] オリゴヌクレオチド力 10〜60merのオリゴヌクレオチドである特許請求の範囲第 4
6項に記載の測定用キット。
[48] オリゴヌクレオチドが、 10〜40merのオリゴヌクレオチドである特許請求の範囲第 4
6項に記載の測定用キット。
[49] オリゴヌクレオチドが、 1本鎖の DNAである特許請求の範囲第 46項〜第 48項のい ずれかに記載の測定用キット。
[50] 10〜: LOOmerのオリゴヌクレオチドの塩基配列を 2回以上繰り返して有していること を特徴とするオリゴヌクレオチドが標識として化学物質に結合している標識化された 化学物質を少なくとも 1種含有してなる、オリゴヌクレオチドを標識として使用するヌク レアーゼを使用して核酸を切断する方法による測定用キット。
[51] 塩基配列の繰り返しが 2回から 10回である特許請求の範囲第 50項に記載の測定 用キット。
[52] オリゴヌクレオチドを標識として使用するヌクレアーゼを使用して核酸を切断する方 法力 特許請求の範囲第 1項〜第 26項の 、ずれかに記載の方法である特許請求の 範囲第 46項〜第 51項のいずれかに記載の測定用キット。
[53] 標識化されたィ匕学物質が、ピオチンである特許請求の範囲第 46項〜第 52項の 、 ずれかに記載の測定用キット。
[54] インベーダー法におけるシグナルプローブ(primary probe)、インベーダーオリゴ(s econdary probe)、ターゲット DNA、及びフレットプローブからなる群から選ばれるオリ ゴヌクレオチドの少なくとも 1種のオリゴヌクレオチドを含有してなる、オリゴヌクレオチ ドを標識として使用するインベーダー法による測定用キット。
[55] 標識化されたィ匕学物質が、ピオチンである特許請求の範囲第 54項に記載の測定 用キット。
PCT/JP2006/314419 2005-07-20 2006-07-20 特異的結合を利用した標的分子の高感度検出法、そのキット WO2007010998A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-210667 2005-07-20
JP2005210667A JP2007020526A (ja) 2005-07-20 2005-07-20 特異的結合を利用した標的分子の高感度検出法、そのキット

Publications (1)

Publication Number Publication Date
WO2007010998A1 true WO2007010998A1 (ja) 2007-01-25

Family

ID=37668870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314419 WO2007010998A1 (ja) 2005-07-20 2006-07-20 特異的結合を利用した標的分子の高感度検出法、そのキット

Country Status (2)

Country Link
JP (1) JP2007020526A (ja)
WO (1) WO2007010998A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520449B2 (ja) * 2007-03-06 2014-06-11 株式会社ビー・エム・エル 核酸の検出方法
JP5131095B2 (ja) * 2008-09-01 2013-01-30 富士レビオ株式会社 免疫測定法
CN108291910B (zh) 2015-10-07 2019-11-05 塞尔玛生物技术有限责任公司 用于数字计数的流动系统和方法
WO2024029511A1 (ja) * 2022-08-01 2024-02-08 Toppanホールディングス株式会社 評価方法、複合体及びキット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231151A (ja) * 1990-02-07 1991-10-15 Takara Shuzo Co Ltd Dnaの検出方法
US20040214176A1 (en) * 2003-04-22 2004-10-28 Osborne James C. Multiplexed DNA assays using structure-specific endonucleases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231151A (ja) * 1990-02-07 1991-10-15 Takara Shuzo Co Ltd Dnaの検出方法
US20040214176A1 (en) * 2003-04-22 2004-10-28 Osborne James C. Multiplexed DNA assays using structure-specific endonucleases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE N.: "Seitainai Biryo Busshitsu no Kokando Kenshutsuho no Kaihatsu to Rinsho Oyo", LAB. CLIN. PRACT., vol. 20, no. 2, 2002, pages 110 - 114, XP003007608 *

Also Published As

Publication number Publication date
JP2007020526A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
US20240003892A1 (en) Heterogeneous single cell profiling using molecular barcoding
US10745743B2 (en) Methods of using inductively coupled plasma mass spectroscopy systems for analyzing a cellular sample
JP6144654B2 (ja) 試験試料の多重化分析
JP5537034B2 (ja) ナノレポーターならびにその作製方法および使用方法
EP0963443B1 (en) Releasable nonvolatile mass-label molecules
US20060234261A1 (en) Colorimetric readout of hybridization chain reaction
TW200406584A (en) Molecular constructs and methods of use for detection of biochemical reactions
KR20040083411A (ko) 생체 분자의 검출 및 정량을 위한 바이오센싱 플랫폼
AU2003295683A1 (en) Caged sensors, regulators and compounds and uses thereof
JP2007501003A (ja) 非切断条件下で核酸を分析するための配列特異的エンドヌクレアーゼの使用に関連した方法および組成物
JP2013500725A (ja) アッセイツールおよびその使用方法
CZ20023749A3 (cs) Způsob detekce a pár sond tvořených nukleovou kyselinou
WO2007010998A1 (ja) 特異的結合を利用した標的分子の高感度検出法、そのキット
JP2010099090A (ja) 核酸ベースのシグナルトランスデューサーを含む立体構造的に敏感なプローブを有する標的検出システム
WO2006104979A2 (en) Method for detecting a target analyte
MXPA04002766A (es) APT??MEROS QUE CONTIENEN SECUENCIAS DE áCIDOS NUCLEICOS O ANáLOGOS DE áCIDOS NUCLEICOS UNIDOS HOMOLOGAMENTE, O EN COMPLEJOS NUEVOS.
US20220170074A1 (en) Detection assay for protein-polynucleotide conjugates
Glass et al. Enzyme-mediated individual nanoparticle release assay
JP2009518018A (ja) 心血管系疾患を診断及び処置する方法
US20040121331A1 (en) Methods of amplifying signals in multiplexed protein analysis
KR20200093466A (ko) Dna 메틸화 저해 약물 스크리닝 방법
Wang et al. Conjugated polyelectrolyte amplified fluorescent assays with probe functionalized silica nanoparticles for chemical and biological sensing
US20030198973A1 (en) Chimeric fusion molecule for analyte detection and quantitation
JP2010207181A (ja) ジンクフィンガーを用いた新規標識方法及び被検物質の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781374

Country of ref document: EP

Kind code of ref document: A1