WO2007010769A1 - 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007010769A1
WO2007010769A1 PCT/JP2006/313649 JP2006313649W WO2007010769A1 WO 2007010769 A1 WO2007010769 A1 WO 2007010769A1 JP 2006313649 W JP2006313649 W JP 2006313649W WO 2007010769 A1 WO2007010769 A1 WO 2007010769A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
cleaning
substrate
layer
producing
Prior art date
Application number
PCT/JP2006/313649
Other languages
English (en)
French (fr)
Inventor
Masaaki Murayama
Yousuke Takashima
Nobuhiko Takashima
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007525948A priority Critical patent/JPWO2007010769A1/ja
Publication of WO2007010769A1 publication Critical patent/WO2007010769A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present invention relates to a method for producing an organic electoluminescence device (hereinafter also referred to as an organic EL device). Specifically, the present invention relates to a method for cleaning an electrode film-forming substrate (organic electoluminescence substrate) for forming an organic EL element.
  • This organic EL device is a current-driven type that emits light by flowing a very thin thin film of fluorescent organic material between the first electrode (hereinafter also referred to as the anode) and the second electrode (hereinafter also referred to as the cathode). It is a light emitting element.
  • the organic material is an insulator, but by making the organic layer very thin, current can be injected and it can be driven as an organic EL device. It can be driven at a low voltage of 1 OV or less, and it is possible to obtain high-efficiency light emission.
  • the organic layer is very thin, so that the surface of the electrode is roughened by foreign matter such as dust (fine dust) that is immediately affected by the smoothness of the organic electoluminescence substrate. Affected by dust (fine dust)
  • the roughness of the electrode surface due to the foreign matter causes current leakage between the first electrode and the second electrode, and if there is a current in the reverse direction, that is, leakage current, organic matter such as crosstalk and luminance unevenness is generated.
  • the display quality of the EL element is degraded, and further, energy consumption that does not contribute to light emission such as heat generation of a defective element occurs, resulting in a decrease in luminous efficiency.
  • the surface roughness of the hole injection electrode on the side in contact with the organic compound layer is defined as 5. Onm or less, the maximum roughness is 55 nm or less, and the diameter of the foreign matter adhering to the surface is defined as 3 m or less (for example, (See Patent Document 1).
  • the total number of defects such as foreign matter, protrusions, holes, holes, etc. of 1 m or more in the film, at the interface between the film and the electrode, and on the electrode surface is expressed as a conversion value per lm 2. It is defined as 100 or less (for example, see Patent Document 2).
  • a single-layer or multi-layer organic layer constituting the element is formed on the surface of the transparent conductive film of the transparent conductive substrate that has been cleaned so that the contact angle of water is less than 25 ° (for example, , See Patent Document 5).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-75660
  • Patent Document 2 JP-A-6-124785
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-362912
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-95388
  • Patent Document 5 Japanese Patent Laid-Open No. 7-220873
  • the organic EL element is affected by the roughness of the electrode surface, and if a leakage current due to the roughness of the electrode surface is generated, the display quality of the organic EL element is degraded. Therefore, it is necessary to remove foreign substances and suppress the roughness of the electrode surface.
  • cleaning using a cleaning solvent that is, wet cleaning, is known.
  • Patent Documents 1 and 2 do not mention the surface roughness of the electrode, the force defined for the foreign matter adhering to the electrode surface, and means for solving it.
  • the organic luminescence substrate that meets the conditions is sampled and checked for quality, but many organic luminescence substrates may be defective. In addition, it may reduce production efficiency by cleaning or eliminating defective products again.
  • Patent Document 3 the pinhole of the protective layer is eliminated by forming the film thickness from the surface of the first electrode to the outer surface of the protective film to be larger than the size of the foreign matter existing on the first electrode. It is possible to prevent moisture and oxygen from entering the organic layer, but it is difficult to suppress leakage due to a short circuit between the electrodes. In addition, no measures have been taken to remove foreign matter.
  • Patent Document 4 the leakage current is suppressed, but the portion with the high resistance is no light emission, and the light emission area is reduced. In addition, since the leak prevention layer is added, the production process increases and becomes complicated, causing a decrease in productivity.
  • Patent Document 5 it is difficult to detect the presence or absence of foreign matter by the method of detecting the contamination state of the surface of the organic electroluminescence substrate with the contact angle of water.
  • the present invention has been made in view of the above situation, and can be mixed in a cleaning solvent used for cleaning an organic electoluminescence substrate in a wet cleaning process in manufacturing an organic EL element. Management and monitoring of the number of foreign particles! To provide a method for manufacturing an organic EL device capable of suppressing leakage current due to a short circuit between electrodes by improving the cleaning performance of the organic-electric-luminescence substrate. With the goal.
  • an object of the present invention is to provide a method of manufacturing an organic EL element that can improve the production efficiency by eliminating defective cleaning products of the organic electroluminescence substrate at an early stage based on the result.
  • a second electrode is formed with at least one light emitting layer comprising a first electrode and an organic substance on a substrate.
  • a method for producing an organic electoluminescence device comprising: a particle number measurement step for measuring the number of particles; and a particle number analysis step for analyzing the number of particles.
  • the wet cleaning step includes a calculation step of determining whether the wet cleaning step is finished or whether the cleanliness of the organic-electric-luminescence substrate is good or not from the analysis data obtained by the particle number analysis step (1 ) For producing an organic electrium luminescence element.
  • a second electrode is formed with at least one light emitting layer comprising a first electrode and an organic substance on a substrate.
  • the wet cleaning step supplies and cleans a cleaning solvent having a predetermined number of foreign particles having a particle size equal to or larger than a predetermined number per unit volume by a flowing water supply method. Production method.
  • the number of foreign particles having a predetermined particle size or more specified in advance is equivalent to a unit volume.
  • a cleaning solvent having a predetermined number of particles or less is supplied and washed using a flowing water supply method. (1) or (2).
  • the flowing water supply method of the wet cleaning process is a flowing water shower method (
  • the method for producing an organic electoluminescence device according to (3) or (4), wherein the flowing water supply method in the wet cleaning step is a flowing water shower method to which ultrasonic vibration is applied.
  • the drying is performed by a spin drying method.
  • a method for manufacturing a luminescence element is a spin drying method.
  • Device manufacturing method any one of (10) to (16), wherein the time from the last step of the wet cleaning to the start of film formation of the organic layer is within 20 hours.
  • organic electroluminescent luminescent element manufacturing method characterized by the manufacturing method of the organic electroluminescent luminescent element characterized by the above-mentioned.
  • the foreign matter remaining on the electrode surface of the organic electroluminescence substrate after the cleaning of the organic electroluminescence substrate is mixed into the cleaning solvent for the wet cleaning.
  • the main factor is the re-adhesion of spilling foreign matter, so the number of particles of foreign matter (hereinafter also referred to as particles) mixed in the cleaning solvent is measured by the particle number measuring means (hereinafter referred to as liquid particle counter or LPC).
  • LPC liquid particle counter
  • the number of particles of foreign matters mixed in the cleaning solvent is specified in advance, and a cleaning solvent having a low number of foreign particles equal to or less than the above specification is used for cleaning, so that the surface of the electrode in the organic electoluminescence substrate The foreign matter can be efficiently removed, and stable foreign matter removal performance can be secured, and the foreign matter particles can be prevented from reattaching to the electrode surface.
  • FIG. 1 is a schematic diagram of a cleaning process of a stored water ultrasonic cleaning bath method.
  • FIG. 2 is a schematic diagram of a cleaning process using a flowing water supply cleaning bathtub method.
  • FIG. 3 is a schematic diagram of a cleaning process using a flowing water supply cleaning bath system in which a cleaning solvent circulation system is used.
  • FIG. 4 is a schematic diagram of a cleaning process using a running water supply shower method.
  • FIG. 5 is a schematic diagram of a washing process using a flowing water supply shower system with a washing solvent circulation method.
  • FIG. 7 is a schematic diagram showing a layer structure of a passive matrix full-color organic EL element.
  • FIG. 8 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 9 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 10 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 11 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 12 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 13 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time.
  • FIG. 7 shows a layer structure of a nosed matrix type full-color organic EL element (FIG. 7 (a)) and an arrow A in FIG. 7 (a) as an example of the organic EL element according to the present invention.
  • FIG. 7B a front view as viewed from the direction
  • the organic EL device according to the present invention is not limited to this.
  • the full-color organic EL device 900 has an anode 902, a hole transport layer 903, and light emission on the support 1.
  • a layer 904, an electron transport layer 905, and a cathode 906 are formed in a pattern, and these layers are sealed with a support 1, a barrier film 907, and an adhesive layer 908.
  • Anode Z anode buffer layer (hereinafter also referred to as hole injection layer) Z hole transport layer Z light emitting layer unit Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
  • the light emitting layer unit has at least one light emitting layer having a light emission maximum wavelength in the range of 430 nm to 480 nm, 510 nm to 550 nm, and 600 nm to 640 nm, respectively.
  • the light emitting layer unit uses a laminate of each color light emitting layer or a mixed material of each color light emitting material. -Achieved by Jung.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO. IDIXO (In O—ZnO) etc.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. m or more), the pattern may be formed through a mask of a desired shape when the electrode material is deposited or sputtered.
  • a wet film-forming method such as a printing method or a coating method is used. You can also.
  • the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • the cathode a material having a low work function (less than 4 eV) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum -Um (Al O)
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ . ⁇ 5 m, preferably 50 nm to 200 nm.
  • the anode or the cathode of the organic EL element is transparent or semi-transparent to improve the emission luminance.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the anode.
  • An organic EL device that transmits light emitted from both cathodes can be fabricated.
  • the organic electoluminescence substrate of the present invention is a substrate in which the above-mentioned cathode or cathode is formed on a support described later.
  • the first electrode may be either an anode or a cathode.
  • the performance of the organic EL element is improved between the support and the first electrode.
  • a known technique for example, a layer having a lower refractive index than that of the support, may be provided.
  • An injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. It may be allowed.
  • the injection layer refers to a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrial front line June 30, 1998) Chapter 2 “Electrode Materials” (pages 123-166) of “Part 2” of “T-'s”) describes in detail the hole injection layer (anode buffer layer) and electron injection layer (cathode). Buffer layer).
  • anode buffer layer hole injection layer
  • JP-A-9-45479 JP-A-9 260062
  • JP-A-8-288069 JP-A-8-288069
  • a phthalocyanine buffer layer typified by copper phthalocyanine
  • an oxide buffer layer typified by vanadium oxide
  • a polymer buffer using a conductive polymer such as polyarine (emeraldine) or polythiophene
  • a conductive polymer such as polyarine (emeraldine) or polythiophene
  • cathode buffer layer (electron injection layer) Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by titanium or aluminum, one alkali metal compound buffer typified by lithium fluoride, one alkaline earth metal compound buffer typified by magnesium fluoride, or one of aluminum oxide
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material.
  • Blocking layer hole blocking layer, electron blocking layer >>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and has a hole blocking material force that has an extremely low ability to transport holes while having a function of transporting electrons, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer of the organic EL element is provided adjacent to the light emitting layer.
  • the light emitting layer whose emission maximum wavelength is the shortest is the closest to the anode among all the light emitting layers. It is preferable that a hole blocking layer is additionally provided between the shortest wave light emitting layer and the light emitting layer next to the anode next to the shortest wave light emitting layer. Further, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more with respect to the host compound of the shortest wave emitting layer. Better ,.
  • the ion potential is defined by the energy required to emit an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level, and can be obtained by, for example, the following method. it can.
  • Gaussian98 (Gaussia n98, Revision A. 11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.)
  • the ionic potential can be obtained by rounding off the second decimal place of the value (eV unit conversion value) calculated by structural optimization using B3LYPZ6-31G * as the first step.
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ionization potential can also be obtained by a direct measurement method using photoelectron spectroscopy.
  • Examples of the measurement method using photoelectron spectroscopy include a method using a low energy electron spectrometer “Model AC-1” (manufactured by Riken Keiki Co., Ltd.). It is also possible to use a measurement method by ultraviolet photoelectron spectroscopy.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is a mechanism for transporting holes.
  • the ability to transport electrons while having the capability is a material force that is extremely small, and the probability of recombination of electrons and holes can be improved by blocking electrons while transporting holes.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 ⁇ ! ⁇ LOOnm, more preferably 5nm ⁇ 30nm.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL device of the present invention preferably contains the following host compound and phosphorescent compound (also known as a phosphorescent compound).
  • the host compound is a compound contained in the light emitting layer, the mass ratio of which is 20% or more, and at room temperature (25 ° C).
  • the phosphorescence quantum yield of phosphorescence emission is defined as a compound with less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • known host compounds may be used alone or in combination of two or more.
  • a plurality of types of host compounds it is possible to adjust the movement of electric charges, and the organic EL device can be made highly efficient.
  • a plurality of phosphorescent compounds it is possible to mix different light emission, thereby obtaining an arbitrary emission color.
  • White light emission is possible by adjusting the type of phosphorescent compound and the amount of doping, and can also be applied to lighting and knocklight.
  • the present invention has a plurality of light emitting layers, and it is a film that is homogeneous throughout the organic layer that 50% by mass or more of the host compound in each layer is the same compound. It is preferable because the properties are easy to obtain, and the phosphorescence emission energy of the compound is 2.9 eV or more, which is advantageous for efficiently suppressing energy transfer from the dopant and obtaining high luminance. This is preferable.
  • a material used for the light emitting layer (hereinafter referred to as a light emitting material), it is preferable to contain a phosphorescent compound as well as the above host compound. As a result, an organic EL element with higher luminous efficiency can be obtained.
  • the phosphorescent compound according to the present invention is a compound in which luminescence with an excited triplet force is observed, and is a compound that emits phosphorescence at room temperature (25 ° C). A compound having a rate of 0.01 or more at 25 ° C.
  • the phosphorescence quantum yield is preferably 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of 4th edition, Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescent compound used in the present invention achieves the above phosphorescence quantum yield in any solvent. Just do it.
  • the energy transfer type is to obtain light emission of phosphorescent compound power by transferring energy to the phosphorescent compound, and the other is phosphorescent compound that becomes a carrier trap.
  • a carrier trap type in which recombination of carriers occurs on a compound and light emission with a phosphorescent compound power is obtained. In either case, the energy of the excited state of the phosphorescent compound is the energy of the host compound. It must be lower than the energy in the excited state.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent compound used in the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound. Or a platinum compound (platinum complex compound) or a rare earth complex, and most preferred is an iridium compound.
  • the phosphorescent maximum wavelength of the phosphorescent compound is not particularly limited.
  • a central metal, a ligand, a ligand substituent, and the like are selected. By doing so, the emission wavelength obtained can be changed.
  • the light-emitting layer can be formed by forming the above compound by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the emission layer has a maximum emission wavelength of 430 ⁇ each! ⁇ 480nm, 510 ⁇ It is preferable to include at least three layers having different emission spectra in the range of m to 550 nm and 600 nm to 640 nm. If it is 3 layers or more, there is no restriction in particular. When there are more than four layers, there may be a plurality of layers having the same emission spectrum.
  • a layer having an emission maximum wavelength in the range of 430 nm to 480 nm is referred to as a blue light emitting layer
  • a layer in the range of 510 nm to 550 nm is referred to as a green light emitting layer
  • a layer in the range of 600 nm to 640 nm is referred to as a red light emitting layer.
  • the total thickness of the light emitting layer is not particularly limited, but is usually 2 ⁇ ! ⁇ 5 ⁇ m, preferably 2 ⁇ ! ⁇
  • each light emitting layer is preferably selected in the range of 2 nm to 100 nm, and more preferably in the range of 2 nm to 20 nm.
  • the film thickness relationship of the blue, green, and red light-emitting layers is not particularly limited, but the blue light-emitting layer (the sum of the plurality of layers) is preferably the thickest among the three light-emitting layers.
  • a plurality of light-emitting compounds may be mixed in each light-emitting layer within the range in which the maximum wavelength is maintained.
  • a blue light emitting compound having a maximum wavelength of 430 nm to 480 nm and a green light emitting compound having the same wavelength of 51 Onm to 550 nm may be mixed in the blue light emitting layer.
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either injection or transport of holes, electron barrier properties! /, Or deviation, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, virazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. It is.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N' —tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenylmethane; N, N ' —Diphenyl N, N
  • No. 5,061,569 having two condensed aromatic rings in the molecule for example, 4, 4 ′ bis [N- (1-naphthyl) N ferroamino ] Bif-roll (NPD), three tri-flammin units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', A "— Tris [? ⁇ — (3-methylphenol) N phenolamino] triphenylamine (MTD ATA) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • Inorganic compounds such as P-type-Si and p-type-SiC can also be used as the hole injection material and hole transport material.
  • the hole transport layer is formed by thin-filming the hole transport material by a known method such as a vacuum deposition method, a spin cost method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin cost method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin cost method, a casting method, a printing method including an ink jet method, or an LB method.
  • a known method such as a vacuum deposition method, a spin cost method, a casting method, a printing method including an ink jet method, or an LB method.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Strength S can be raised.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • An electron transport layer may be provided as a single layer or multiple layers.
  • an electron transport material also serving as a hole blocking material
  • Any material can be selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the electrode to the light-emitting layer.
  • Examples include fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, strength rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5 , 7—jib Mouth 8 quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type—Si, n-type—SiC, etc.
  • These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin cost method, a cast method, a printing method including an ink jet method, or an LB method. Can be formed.
  • the film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 ⁇ ! ⁇ 200nm.
  • the electron transport layer may have a single layer structure that can be one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities can be used.
  • examples thereof include JP-A-4 297076, JP-A-10-270172, JP-A 2000-196 140, JP-A 2001-102175, Appl. Phys., 95, 5773 (2004) 3 ⁇ 4. As described in the above.
  • the support that can be used in the organic EL element is not particularly limited in the type of glass, plastic, and the like, and may be transparent or opaque.
  • the support include a glass plate, a polymer plate and a resin film.
  • the shape of the support may be a single sheet or a continuous strip.
  • the support is preferably transparent.
  • the transparent support preferably used include glass, quartz, and a transparent resin film.
  • Examples of the glass plate include soda lime glass, glass containing norstrontium, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz glass. I can make it.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cell mouth diacetate, cellulose triacetate, cellulose acetate butyrate, and cell mouth.
  • CAP Cell Port—Sucetate Tophthalate—HTAC
  • Cellulose Nitrate etc.
  • Cellulose Esters or Their Derivatives Polysalt Polyvinylidene, Polyvinyl Alcohol, Polyethylene Vinyl Alcohol, Syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, Polyetherketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylate, Aaton (trade name, manufactured by JSR) or Abel (trade name, manufactured by Mitsui Chemicals) ⁇ And cycloolefin-based rosin.
  • the surface of the resin film is a noble film having a water vapor permeability of 0.01 gZm 2 ZdayZatm or less, which may be formed with an inorganic film, an organic film, or a hybrid film of both.
  • the oxygen permeability 10- 3 mlZm 2 / day or less is preferably a high barrier film follows the water vapor transmission rate 10- 5 g / m 2 / day .
  • the material for forming the NORA film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure Power capable of using plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method, etc. Particularly preferred is an atmospheric pressure plasma polymerization method as described in JP-A-04-68143.
  • Examples of the opaque support include metal plates such as aluminum and stainless steel, film opaque opaque resin substrates, and the like.
  • sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support with an adhesive.
  • the sealing member may have a concave plate shape or a flat plate shape as long as it is disposed so as to cover the display region of the organic EL element. Further, transparency and electrical insulation are not particularly limited.
  • a glass plate, a polymer plate 'film, a metal plate' film and the like can be mentioned.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include a polystrength bond, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and a tantalum group force selected from one or more metals or alloy forces.
  • a polymer film and a metal film can be preferably used because the support has flexibility and the device can be thinned. Furthermore, polymer - films, oxygen permeability 10- 3 mlZ m 2 / day or less, preferred that at the less water vapor permeability 10- 5 g / m 2 / day ,.
  • adhesives such as photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2 cyanoacrylates are used.
  • adhesives such as photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2 cyanoacrylates are used.
  • heat- and chemical-curing types such as epoxy type can be mentioned.
  • hot-melt type polyamide, polyester and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the adhesive can be hardened up to a room temperature force of 80 ° C. In addition, even if the desiccant is dispersed in the adhesive Good.
  • the adhesive may be applied to the sealing portion by using a commercially available dispenser or printing like a screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support to form a sealing film.
  • the material for forming the film may be any material as long as it has a function of suppressing the intrusion of an element such as moisture or oxygen that causes deterioration of the element, such as silicon oxide, silicon dioxide, silicon nitride, or the like. Can be used.
  • the method for forming these films is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is used. It is also possible to inject. A vacuum can also be used. Also, a hygroscopic compound can be enclosed inside.
  • Examples of hygroscopic compounds include metal acids (for example, acid sodium, acid potassium, acid calcium, barium oxide, magnesium oxide, acid aluminum, etc.), sulfates (Eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, iodide) Barium, magnesium iodide, etc.), perchloric acids (for example, barium perchlorate, magnesium perchlorate, etc.), and the like, and sulfates, metal halides, and perchloric acids are preferably anhydrous salts.
  • metal acids for example, acid sodium, acid potassium, acid calcium, barium oxide, magnesium oxide, acid aluminum, etc.
  • sulfates Eg, sodium sulfate, calcium sulfate, magnesium sulfate,
  • Organic-electric-luminescence elements emit light inside a layer that has a higher refractive index than air (refractive index is about 1.7 to 2.1), and about 15% to 20% of the light generated in the light-emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and is extracted outside the device. This is because light cannot be totally reflected between the transparent electrode or the light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side surface direction of the device.
  • a method for improving the light extraction efficiency for example, a method of forming concaves and convexes on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Patent No. 477 4435) ), A method for improving the efficiency by giving the light condensing property to the substrate (for example, JP-A-63-314795), a method for forming a reflective surface on the side surface of the element (for example, JP-A-1-220394) No.), a method for forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, JP-A-62-172691), and between the substrate and the light emitter.
  • a method of introducing a flat layer having a lower refractive index than the substrate for example, Japanese Patent Laid-Open No. 2001-202827, diffracting between the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside)
  • a method of forming a lattice for example, JP-A-11-283751.
  • the low refractive index layer examples include air-mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferred that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the thickness of the low-refractive index medium is about the wavelength of light, and the electric light oozed out by evanescent light. This is because the effect of the low refractive index layer is diminished when the magnetic wave enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • light that cannot be emitted due to total internal reflection, etc. is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). And trying to extract light outside.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction can be obtained. It is not diffracted and the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but the vicinity of the organic light emitting layer where light is generated is located. desirable.
  • the period of the diffraction grating is preferably about 1Z2 to about 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a square, or a eucam lattice.
  • the organic-electric-luminescence element of the present invention When used for a surface light source, it is processed so as to provide, for example, a structure on a microlens array on the light extraction side of the substrate, or combined with a so-called condensing sheet. Thereby, the brightness
  • a quadrangular pyramid with a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is 10 / zm ⁇ : LOO / zm is preferred That's right. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes thick, which is not preferable.
  • the condensing sheet for example, an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Corporation can be used.
  • the shape of the prism sheet may be, for example, a substrate with stripes with a vertex angle of 90 degrees and a pitch of 50 111, a shape with rounded vertex angles, and a random pitch. It may be a changed shape or other shapes.
  • a light diffusing plate film may be used in combination with the light collecting sheet.
  • a diffusion film “Light Up” manufactured by Kimoto Co., Ltd.
  • the example of the layer configuration of the organic EL element has been described in the preferred specific example of the layer configuration of the organic EL element described above, but in this embodiment, an electrode material such as ITO (indium tin oxide) is formed on the substrate. Etc. and patterning by photoetching, etc., the wet cleaning process of the electrode surface of the organic electroluminescence substrate formed with the first electrode (anode) and the organic layer deposition after wet cleaning explain.
  • ITO indium tin oxide
  • each embodiment is preferably used in the final process of the wet cleaning process.
  • FIG. 1 is a schematic diagram of a first embodiment of a water storage type cleaning process in which an organic electoluminescence substrate is placed in an ultrasonic cleaning bath in which a cleaning solvent is stored and cleaned.
  • the organic electoluminescence substrate 1 is placed in a cleaning bath 21 having an ultrasonic generator 21A and immersed in a cleaning solvent 22 for ultrasonic cleaning.
  • a predetermined number of foreign particles having a predetermined particle size or more are set to a predetermined number per unit volume.
  • the cleaning solvent 22 having the number of children or less is stored.
  • the foreign matter may be mixed in the cleaning solvent before cleaning, but most of the foreign matter is mixed when cleaning the organic-electric-luminescence substrate.
  • the number of particles of 0.5 m or more is preferably 1500 Zml or less. Foreign particles with a particle size of less than 0.5 ⁇ m are difficult to manage. By managing the number of foreign particles with a particle size of 0.5 ⁇ m or more, management of foreign particles with a particle size of less than 0.5 ⁇ m can be omitted. If the number of particles with a particle size of 0.5 ⁇ m or more exceeds 1500 Zml, leakage current is likely to occur when driving the organic EL device.
  • the type of cleaning solvent to be used is not particularly limited, but ultrapure water or isopropyl alcohol (IPA) is preferred!
  • the organic electroluminescent mouth luminescence substrate 1 is cleaned with the cleaning solvent 22 given ultrasonic vibration by the ultrasonic generator 21A.
  • the number of foreign particles mixed in the cleaning solvent in the cleaning bath is measured by a LPC (particle number measuring means) 51 at predetermined intervals.
  • the predetermined time interval can be appropriately set according to the specifications of the cleaning process. In this embodiment, it is every 10 seconds.
  • the analysis unit 52 which is a particle number analysis means, analyzes the number of particles per unit volume, and the analysis data is sent to the calculation unit 53, which is a calculation means.
  • the cleanliness of the printed circuit board hereinafter the same).
  • the substrate cleanliness level is determined by any of the following methods.
  • the computing unit 53 determines whether the substrate cleanliness is good or not based on a change in analysis data for a predetermined number of samples in the analysis data for each predetermined time and a particle number determination reference value that is input in advance.
  • the number of samples of analysis data can be set as appropriate. In this embodiment, the determination is performed using data of 4 samples. The determination is performed in one of the following two ways.
  • the substrate cleanliness is set to “good” when the number of particles in the analysis data for each predetermined time is less than the particle number criterion and no change in the analysis data is recognized. Make a decision. In addition, if the analysis data exceeds the criterion value, cleaning is terminated. The substrate cleaning degree is “No”.
  • FIG. 8 is a conceptual diagram showing the relationship between the analysis data (number of foreign particles) in decision 1 and the cleaning time.
  • the substrate cleanliness is “good” when the number of samples is less than the particle count criterion value and no change in the analysis data is observed in the predetermined number of samples before the end of the predetermined time cleaning. If it is determined, the substrate cleanliness is judged as “No”. If the analysis data exceeds the criterion value, the cleaning is completed even before the end of the predetermined time cleaning, and the substrate cleaning level is set to “No”.
  • FIG. 9 is a conceptual diagram showing the relationship between the analysis data (the number of foreign particles) in the determination 2 and the cleaning time.
  • the determination 1) is effective when the analysis data is equal to or less than the particle number determination reference value, so that the substrate can be cleaned until the substrate cleanliness is "good” and there is no cleaning time limitation.
  • the organic electroluminescence substrate that has been cleaned is put into the next process.
  • the determination 2) is effective when there is a cleaning time limit due to the relationship of the organic EL element production line.
  • Organic-electric luminescence substrates with a substrate cleaning level of “good” are put into the next process.
  • Organic EL luminescence substrates with a substrate cleaning level of “No” are excluded from the OLED device production line capabilities. In this way, defective organic electoluminescence substrates determined to have a substrate cleaning level of “No” can be eliminated at an early stage of the process, so that production efficiency can be improved. The defective organic electoluminescence substrate can be re-cleaned and put into the organic EL device production line.
  • the determination result is sent to the control unit 54, and the result is displayed on a display means (not shown) and the ultrasonic generator 21A is turned on / off.
  • FIG. 2 is a schematic diagram of Embodiment 2 of a cleaning process in which an organic electoluminescence substrate is placed in a cleaning bath and cleaning is performed by supplying a cleaning solvent using a flowing water supply method.
  • the organic-elect mouth luminescence substrate 1 is placed in the cleaning bath 21 and immersed in the cleaning solvent 22, and the cleaning solvent 22 is supplied from the cleaning solvent reservoir 23 to the cleaning bath 21 by the supply pump P1. Wash the substrate 1 with the running water supply method. In the washing tub 21, the number of foreign particles having a predetermined particle size or more defined in advance is not more than a predetermined number of particles per unit volume. Purified solvent 22 is supplied.
  • the number of particles of 0.5 m or more is preferably 1500 Zml or less. Foreign particles with a particle size of less than 0.5 ⁇ m are difficult to manage. By managing the number of foreign particles with a particle size of 0.5 ⁇ m or more, management of foreign particles with a particle size of less than 0.5 ⁇ m can be omitted. If the number of particles with a particle size of 0.5 ⁇ m or more exceeds 1500 Zml, leakage current is likely to occur when driving the organic EL device.
  • the type of cleaning solvent to be used is not particularly limited, but ultrapure water or isopropyl alcohol (IPA) is preferred!
  • the cleaning solvent 22 supplied to the cleaning bath 21 cleans the organic electoluminescence substrate 1, and the cleaning solvent overflowing from the cleaning bath 21 is discharged out of the cleaning bath due to overflow.
  • the number of particles of the cleaning solvent in the cleaning bath 21 is measured every predetermined time by an LPC (particle number measuring means) 51.
  • the predetermined time interval can be appropriately set according to the specifications of the cleaning process. In this embodiment, it is every 10 seconds.
  • the analysis unit 52 which is a particle number analysis means, analyzes the number of particles per unit volume, and the analysis data is sent to the calculation unit 53, which is a calculation means, to determine substrate cleanliness. .
  • the substrate cleanliness level is determined by any of the following methods.
  • the calculation unit 53 performs determination based on the previously input particle number determination reference value and the analysis data in order to determine the quality of the substrate cleanliness.
  • the determination method 1) is performed in one of the following two ways.
  • FIG. 10 is a conceptual diagram showing the relationship between the analysis data (the number of foreign particles) in the determination 11 and the cleaning time.
  • FIG. 11 is a conceptual diagram showing the relationship between analysis data (the number of foreign particles) and cleaning time in the determination method 12).
  • the computing unit 53 determines whether the substrate cleanliness is good or not from the change in the analysis data for a predetermined number of samples of the analysis data every predetermined time.
  • the number of samples of analysis data can be set as appropriate. In the present embodiment, the determination is performed using data of four samples.
  • the determination method 2) is performed in one of the following two ways.
  • FIG. 12 is a conceptual diagram showing the relationship between the analysis data (the number of foreign particles) in the determination 21 and the cleaning time.
  • FIG. 13 is a conceptual diagram showing the relationship between the analysis data (the number of foreign particles) and the cleaning time in the determination method 2-2).
  • the determination method 1 1) and the determination method 2-1) can be performed until the substrate cleanliness is “good”, and are effective when there is no cleaning time restriction.
  • the cleaned organic electroluminescent substrate is put into the next process.
  • the determination method 1 2) and the determination method 2-2) are effective in the case where there is a cleaning time limitation due to the relationship with the organic EL element production line.
  • Organic electoric luminescence substrates with a substrate cleanliness of “good” are put into the next process.
  • Organic electrification substrate with a substrate cleanliness of “No” is excluded from the OLED device production line.
  • the production efficiency can be improved.
  • the defective organic-electric-luminescence substrate can be rewashed separately and put into the organic EL element production line.
  • the determination result is sent to the control unit 54, and the result is displayed on a display means (not shown). In addition, on / off control of the supply pump and the ultrasonic generator described below is performed.
  • FIG. 3 is a schematic diagram of Embodiment 3 of a cleaning process in which an organic electoric luminescence substrate is placed in a cleaning bath, cleaning solvent is supplied by a flowing water supply system, and cleaning is performed by circulating the cleaning solvent.
  • the difference from Embodiment 2 is that the cleaning solvent is recycled and reused so that the cleaning solvent is used efficiently.
  • the cleaning solvent 22 supplied to the cleaning bath 21 cleans the organic electroluminescence substrate 1, is discharged from the cleaning bath 21 by the circulation pump P2, and is sent again to the supply path for cleaning. It is supplied to the tub 21 and circulates. It is preferable to use a filter 24 that removes foreign matters in the circulation path, and to keep the number of foreign particles having a predetermined particle size or more in a cleaning solvent below a predetermined number per unit volume.
  • the cleaning solvent discharged from the cleaning bath 21 by the circulation pump P2 is not sent directly to the supply path, but is temporarily stored in the cleaning solvent storage container 23 as shown by the one-dot chain line in FIG. You may supply.
  • the second embodiment is the same as the second embodiment.
  • FIG. 4 is a schematic diagram of Embodiment 4 of a cleaning process in which a cleaning solvent is supplied by a flowing water shower method to perform cleaning.
  • the organic-elect mouth luminescence substrate 1 is held by a substrate holding means (not shown) of the cleaning tank 31, and the cleaning solvent 22 is supplied from the cleaning solvent water storage container 23 by the supply pump P1 via the shutter nozzle 32. Then, the organic electroluminescent mouth luminescence substrate 1 is supplied to the cleaning surface of the organic electroluminescent mouth luminescence substrate 1 by a flowing water shower method, and the organic electroluminescent mouth luminescence substrate 1 is cleaned.
  • the state of the supplied cleaning solvent 22 is the same as that described in Embodiment 2.
  • the organic-elect mouth luminescence substrate 1 is always held above the uppermost liquid surface of the cleaning tank 31 so as not to contact the cleaning solvent stored in the cleaning tank 31.
  • the washing solvent for washing the organic electoluminescence substrate by the flowing water shower method is
  • washing tank 31 Then, it falls into the washing tank 31 and is stored.
  • the washing solvent overflowing from the washing tank 31 is discharged out of the washing tank due to overflow.
  • the number of particles of the cleaning solvent in the cleaning tank 31 is measured every predetermined time by an LPC (particle number measuring means) 51.
  • the interval of the predetermined time can be appropriately set according to the specifications of the cleaning process. In this embodiment, it is every 10 seconds.
  • the analysis unit 52 which is a particle number analysis means, analyzes the number of particles per unit volume, and the analysis data is sent to the calculation unit 53 to determine the substrate cleanliness.
  • Substrate cleanliness determination, application of the determination method, and each processing of the substrate after determination are in accordance with those described in the second embodiment.
  • the determination result is sent to the control unit 54, and the result is displayed on a display means (not shown) and the on-off control of the supply pump and the ultrasonic generator described below is performed.
  • An ultrasonic generator 32A is attached to the shower nozzle 32, and ultrasonic vibration is added to the shower of the cleaning solvent, thereby enabling more efficient cleaning, improving the cleanliness and shortening the cleaning time. Can be achieved.
  • FIG. 5 is a schematic diagram of Embodiment 5 of a cleaning process in which a cleaning solvent is supplied by a flowing water shower method to clean the organic electoluminescence substrate 1 and the cleaning solvent is circulated for cleaning.
  • the difference from Embodiment 4 is that the cleaning solvent is recycled and reused, and the cleaning solvent is used efficiently.
  • the cleaning solvent 22 supplied through the shower nozzle 32 cleans the organic electroluminescent substrate 1, is discharged from the cleaning tank 31 by the circulation pump P2, and is sent to the supply path again. Is supplied through the shower nozzle 32 and circulates. It is preferable to use a filter 24 for removing foreign substances in the circulation path, and to maintain the number of foreign particles having a predetermined particle size or more in a cleaning solvent at a predetermined number or less per unit volume.
  • the wet cleaning process according to any one of Embodiments 1 to 5 is used as the final wet cleaning process.
  • the organic electroluminescence substrate after the wet cleaning is completed is dried and dry cleaned, and an organic layer is formed.
  • Fig. 6 is a schematic diagram showing the process from the final wet cleaning to the organic layer deposition.
  • a spin drying method a hot air drying method or an air knife drying method is preferably used.
  • UV ozone cleaning or oxygen plasma cleaning is preferably used.
  • the wet cleaning before the final cleaning is possible with the cleanliness of the general room level.
  • the atmosphere in which the substrate is moved until the organic layer is formed is controlled to a cleanliness class of 1000 or less according to the JISB9920 standard.
  • the time from the final cleaning to the start of film formation of the organic layer is within 20 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、有機エレクトロルミネッセンス素子において、基板電極表面に付着した異物の除去を効果的に行うとともに、不良基板を早い段階で排除し、異物に起因するリーク電流の発生を防止する有機エレクトロルミネッセンス素子の製造を提供する。  有機エレクトロルミネッセンス素子の製造におけるウェット洗浄工程において、洗浄溶媒に混入している異物の粒子数の管理及び監視を行い、洗浄性能の向上を図るとともに洗浄溶媒の異物粒子数の検査監視を行い清浄度を判断し、その結果に基づき洗浄不良品を早い段階で排除する。

Description

明 細 書
有機エレクト口ルミネッセンス素子の製造方法及び有機エレクト口ルミネッ センス素子
技術分野
[0001] 有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも言う)の製造方法に関す る。詳しくは、有機 EL素子を形成する電極成膜基板 (有機エレクト口ルミネッセンス基 板)の洗浄方法に関する。
背景技術
[0002] 近年、フラットディスプレイなどの表示装置や、電子写真複写機、プリンターなどの 光源に有機 EL素子の使用が検討されている。
[0003] この有機 EL素子は蛍光性有機物の非常に薄い薄膜を第一電極 (以下、陽極とも 言う)と第二電極 (以下、陰極とも言う)ではさみ電流を流すことで発光する電流駆動 型発光素子である。通常、有機物は絶縁体であるが有機層の膜厚を非常に薄くする ことにより電流注入が可能となり有機 EL素子として駆動する事が可能となる。そして 1 OV以下の低電圧で駆動することが可能であり、これにより高効率な発光を得ることも 可能なため将来のディスプレイとして注目を浴びて ヽる。
[0004] 特に最近にお 、ては従来の励起一重項を用いる有機 EL素子の効率を遙かにしの ぐ励起三重項を用いるリン光発光有機 EL素子が S. R. Forrest等により見い出され ている(Appl. Phys. Lett. (1999) , 75 (1) , 4— 6)。さらに C. Adachi等が報告 (J . Appl. Phys. , 90, 5048 (2001) )して!/ヽるよう【こ 601m/W【こも及ぶ視感度効率 を出すまでに及び、このような素子はディスプレイのみならず、照明への応用が期待 される。
[0005] 有機 EL素子においては、有機層は非常に薄いため有機エレクト口ルミネッセンス 基板の平滑性の影響を受けやすぐ電極表面に付着したゴミ (微細な塵)等の異物に よる電極表面の粗さに影響される。
[0006] 前記異物による電極表面の粗さは、第一電極と第二電極間の電流のリーク発生の 原因となり、逆方向への電流即ちリーク電流があるとクロストークや輝度ムラ等の有機 EL素子の表示品質の低下を招き、更には不良な素子の発熱等発光に寄与しないェ ネルギー消費が発生し、発光効率が低下する。
[0007] 更に、有機層の成膜において、前記異物による電極表面の粗さに起因する突起に より陰となる未蒸着部分や薄膜部が原因となり、電極ショートあるいは薄膜ィ匕部分の 電流集中による絶縁破壊により電極ショートが生ずると 、う問題がある。
[0008] 上記問題に関し、下記のような技術が開示されている。
[0009] 正孔注入電極の有機化合物層に接する側の表面粗さを 5. Onm以下、最大粗さを 55nm以下に、また表面に付着した異物の直径を 3 m以下に規定する(例えば、特 許文献 1参照)。
[0010] 有機 EL素子基板において、フィルム内、フィルムと電極との界面および電極表面 における 1 m以上の異物、突起物、穴、空孔などの欠陥の合計数を lm2当たりの換 算値で 100個以下に規定する(例えば、特許文献 2参照)。
[0011] 有機 EL層と対応する第 1電極上の異物が存在しない部分における該第 1電極の表 面力も保護膜の外面までの膜厚が、前記第 1電極上に存在する異物の大きさより大 きく形成する (例えば、特許文献 3参照)。
[0012] 有機層の一層に温度上昇に伴い高抵抗ィヒするリーク防止層を設けることにより、有 機層中のある一力所への電流の集中を防ぎ有機 EL素子の破壊を防止する(例えば
、特許文献 4参照)。
[0013] 水の接触角が 25° 未満となるように洗浄処理された、透明導電性基材の透明導電 膜の表面に、素子を構成する単層または複層の有機層を形成する (例えば、特許文 献 5参照)。
特許文献 1:特開 2002— 75660号公報
特許文献 2:特開平 6 - 124785号公報
特許文献 3:特開 2004 - 362912号公報
特許文献 4:特開 2004— 95388号公報
特許文献 5:特開平 7— 220873号公報
発明の開示
発明が解決しょうとする課題 [0014] 有機 EL素子は前述のように電極表面の粗さに影響され、前記電極表面の粗さに 起因するリーク電流が発生すると有機 EL素子の表示品質の低下を招く。従って、異 物を除去し、前記電極表面の粗さを抑制することが必要となる。前記電極表面の異 物除去の方法としては洗浄溶媒を用いた洗浄即ちウエット洗浄等が知られている。
[0015] し力しながら、前記ウエット洗浄において、有機エレクト口ルミネッセンス基板の洗浄 後に電極表面に残存する異物は、洗浄溶媒に存在する異物の再付着が要因ともな つている。
[0016] これに対し、特許文献 1及び 2では、電極の表面粗さ、電極表面に付着した異物に ついて定義している力 それを解決するための手段については言及していない。条 件を満たす有機エレクト口ルミネッセンス基板を抜き取り検査により良否を選別するが 、多くの有機エレクト口ルミネッセンス基板が不良品になる可能性もある。また、不良 品を再度洗浄する、あるいは排除する等生産効率を低下させる要因になる。
[0017] 特許文献 3では、第 1電極の表面から保護膜の外面までの膜厚を、前記第 1電極上 に存在する異物の大きさより大きく形成することにより、保護層のピンホールをなくす ことは可能で、水分及び酸素が有機層へ侵入することを防止することは可能であるが 、電極間のショートによるリークを抑制することは困難である。また、異物除去の対策 に至っていない。
[0018] 特許文献 4では、リーク電流は抑制されるが、高抵抗ィ匕した部分は未発光となり、発 光面積が小さくなる。また、リーク防止層を付設するため生産工程が増加し複雑となり 生産性低下の要因となる。
[0019] 特許文献 5では、水の接触角で有機エレクト口ルミネッセンス基板の表面の汚染状 態を検出する方法では、異物付着の有無を検出することは困難である。
[0020] 本発明は、上記状況に鑑みなされたもので、有機 EL素子の製造におけるウエット 洗浄工程にお!ヽて、有機エレクト口ルミネッセンス基板を洗浄する際の洗浄溶媒に混 入して ヽる異物の粒子数の管理及び監視を行!ヽ、有機エレクト口ルミネッセンス基板 の洗浄性能の向上を図ることにより電極間のショートによるリーク電流を抑制すること ができる有機 EL素子の製造方法を提供することを目的とする。
[0021] また、前記洗浄溶媒に混入して!/ヽる異物の粒子数の検査監視を行!ヽ清浄度を判 断し、その結果に基づき、有機エレクト口ルミネッセンス基板の洗浄不良品を早い段 階で排除することにより生産効率の向上を図ることができる有機 EL素子の製造方法 を提供することを目的とする。
課題を解決するための手段
上記目的は、下記の構成により達成される。
(1)
基板上に少なくとも第一電極と有機物質カゝらなる発光層の一層以上と第二電極を成 膜してなる有機エレクト口ルミネッセンス素子の製造方法において、
前記基板上に第一電極を成膜してなる有機エレクト口ルミネッセンス基板を洗浄溶媒 を用いて洗浄を行うウエット洗浄工程を具備するとともに、前記洗浄工程は前記洗浄 溶媒に混入している異物の粒子数を測定する粒子数測定工程と前記粒子数を分析 する粒子数分析工程とを有することを特徴とする有機エレクト口ルミネッセンス素子の 製造方法。
(2)
前記ウエット洗浄工程は、前記粒子数分析工程により得られる分析データから、前記 ウエット洗浄工程の終了、または有機エレクト口ルミネッセンス基板の清浄度の良否を 判定する演算工程を有することを特徴とする(1)に記載の有機エレクト口ルミネッセン ス素子の製造方法。
(3)
基板上に少なくとも第一電極と有機物質カゝらなる発光層の一層以上と第二電極を成 膜してなる有機エレクト口ルミネッセンス素子の製造方法において、
前記基板上に第一電極を成膜してなる有機エレクト口ルミネッセンス基板を洗浄溶媒 を用いて洗浄を行うウエット洗浄工程を具備するとともに、
前記ウエット洗浄工程は予め規定した所定粒子サイズ以上の異物の粒子数が単位 容量当たり所定の粒子数以下である洗浄溶媒を流水供給方式で供給し洗浄すること を特徴とする有機エレクト口ルミネッセンス素子の製造方法。
(4)
前記洗浄工程は、予め規定した所定粒子サイズ以上の異物の粒子数が単位容量当 たり所定の粒子数以下である洗浄溶媒を流水供給方式で供給し洗浄することを特徴 とする(1)または(2)に記載の有機エレクト口ルミネッセンス素子の製造方法。
(5)
前記ウエット洗浄工程の流水供給方式が、超音波浴槽オーバーフロー方式であるこ とを特徴とする(3)または (4)に記載の有機エレクト口ルミネッセンス素子の製造方法
(6)
前記ウエット洗浄工程の流水供給方式が、流水シャワー方式であることを特徴とする(
3)または (4)に記載の有機エレクト口ルミネッセンス素子の製造方法。
(7)
前記ウエット洗浄工程の流水供給方式が、超音波振動を付与した流水シャワー方式 であることを特徴とする(3)または (4)に記載の有機エレクト口ルミネッセンス素子の製 造方法。
(8)
前記洗浄溶媒は、超純水であることを特徴とする(1)乃至(7)の何れか 1項に記載の 有機エレクト口ルミネッセンス素子の製造方法。
(9)
前記洗浄溶媒は、イソプロピルアルコールであることを特徴とする(1)乃至(7)の何れ 力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
(10)
前記ウエット洗浄工程は、該ウエット洗浄工程の最終工程であることを特徴とする(1) 乃至(9)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
(11)
前記ウエット洗浄工程で洗浄を行った有機エレクト口ルミネッセンス基板に乾燥及びド ライ洗浄を行い、その後有機層を成膜することを特徴とする(10)に記載の有機エレ タトロルミネッセンス素子の製造方法。
(12)
前記乾燥は、スピン乾燥法であることを特徴とする(11)に記載の有機エレクト口ルミ ネッセンス素子の製造方法。
(13)
前記乾燥は、熱風乾燥法であることを特徴とする(11)に記載の有機エレクトロルミネ ッセンス素子の製造方法。
(14)
前記乾燥は、エアナイフ乾燥法であることを特徴とする(11)に記載の有機エレクト口 ルミネッセンス素子の製造方法。
(15)
前記ドライ洗浄は、 UVオゾン洗浄であることを特徴とする(11)乃至(14)の何れか 1 項に記載の有機エレクト口ルミネッセンス素子の製造方法。
(16)
前記ドライ洗浄は、酸素プラズマ洗浄であることを特徴とする(11)乃至(14)の何れ 力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
(17)
前記ウエット洗浄の最終工程後から前記有機層の成膜開始までの基板移動環境雰 囲気が、 JISB9920規格で清浄度クラス 1000以下で管理されることを特徴とする(1 0)乃至(16)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。 (18)
前記ウエット洗浄の最終工程後から前記有機層の成膜開始までの時間が、 20時間 以内であることを特徴とする(10)乃至(16)の何れ力 1項に記載の有機エレクト口ルミ ネッセンス素子の製造方法。
(19)
(1)乃至(18)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法で 製造することを特徴とする有機エレクト口ルミネッセンス素子。
発明の効果
上記構成により、有機 EL素子の製造における有機エレクト口ルミネッセンス基板の ウエット洗浄において、有機エレクト口ルミネッセンス基板の洗浄後に有機エレクトロル ミネッセンス基板の電極表面に残存する異物は、ウエット洗浄の洗浄溶媒に混入して ヽる異物の再付着が主な要因であるため、洗浄溶媒に混入して!/ヽる異物の粒子数( 以下、パーティクルとも言う)を粒子数測定手段(以下、リキッドパーティクルカウンタま たは LPCとも言う)で監視し分析することにより、有機エレクト口ルミネッセンス基板に おける電極表面の清浄度を判断することが可能である。これにより、有機エレクトロル ミネッセンス基板における電極表面の洗浄工程の終了あるいは所定時間の洗浄にお ける清浄度の良否を判断することができ、良品な有機エレクト口ルミネッセンス基板の みを次工程に送り、不良品を排除することができる。
[0024] また、予め、洗浄溶媒に混入している異物の粒子数を規定し、前記規定以下の低 異物粒子数の洗浄溶媒を洗浄に使用することにより、有機エレクト口ルミネッセンス基 板における電極表面の異物を効率よく除去することができるとともに安定した異物除 去性能を確保でき、異物粒子が前記電極表面に再付着するのを抑制することができ る。
[0025] 更に、ウエット洗浄の最終工程後から有機層成膜開始までの有機エレクト口ルミネッ センス基板の移動環境雰囲気、時間を規定することにより、有機エレクト口ルミネッセ ンス基板への異物の付着を防止し、ウエット洗浄終了後の有機エレクト口ルミネッセン ス基板の清浄度を有機層成膜開始まで維持できる。
[0026] 上記により、駆動時にリーク電流の発生が無い安定した品質で、かつ生産効率の 良!、有機 EL素子の製造ができる。
図面の簡単な説明
[0027] [図 1]貯水超音波洗浄浴槽方式の洗浄工程の模式図である。
[図 2]流水供給洗浄浴槽方式の洗浄工程の模式図である。
[図 3]洗浄溶媒循環式とした流水供給洗浄浴槽方式の洗浄工程の模式図である。
[図 4]流水供給シャワー方式の洗浄工程の模式図である。
[図 5]洗浄溶媒循環式とした流水供給シャワー方式の洗浄工程の模式図である。
[図 6]最終ウエット洗浄力 有機層成膜までの工程略図である。
[図 7]パッシブマトリックスのフルカラー有機 EL素子の層構成を示す模式図である。
[図 8]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
[図 9]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。 [図 10]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
[図 11]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
[図 12]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
[図 13]分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
符号の説明
[0028] 1 有機エレクト口ルミネッセンス基板
21 洗浄浴槽
21A 超音波発生装置
22 洗浄溶媒
23 洗浄溶媒貯水容器
24 フイノレター
31 洗浄槽
32 シャワーノズル
32A 超音波発生装置
51 粒子数測定手段 (LPC)
52 分析部
53 演算部
54 制御部
P1 供給ポンプ
P2 循環ポンプ
発明を実施するための最良の形態
[0029] 以下に本発明に係る有機 EL素子の構成層と一般構成及び有機 EL素子の製造方 法の形態について順次説明する。
[0030] なお、図 7に、本発明に係る有機 EL素子の一例として、ノッシブマトリックス方式の フルカラー有機 EL素子の層構成(図 7 (a) )、及び図 7 (a)の矢示 A方向から見た正 面図(図 7 (b) )を示したが、本発明に係る有機 EL素子はこれに限定されるものでは ない。
[0031] フルカラー有機 EL素子 900は、支持体 1上に、陽極 902、正孔輸送層 903、発光 層 904、電子輸送層 905、陰極 906をそれぞれパターン様に形成し、支持体 1、バリ ァフィルム 907及び接着層 908でこれらの各層を封入した構成となっている。
[0032] <有機 EL素子の構成層と一般構成 >
本発明に係る有機 EL素子の層構成の好ましい具体例を下記に示すが、以下の形 態に限定されるものではない。
(1)陽極 Z発光層ユニット Z電子輸送層 Z陰極
(2)陽極 Z正孔輸送層 Z発光層ユニット Z電子輸送層 Z陰極
(3)陽極 Z正孔輸送層 Z発光層ユニット Z正孔阻止層 Z電子輸送層 Z陰極
(4)陽極 Z正孔輸送層 Z発光層ユニット Z正孔阻止層 Z電子輸送層 Z陰極バッフ ァ一層(以下、電子注入層とも言う) Z陰極
(5)陽極 Z陽極バッファ—層(以下、正孔注入層とも言う) Z正孔輸送層 Z発光層ュ ニット Z正孔阻止層 Z電子輸送層 Z陰極バッファ—層 Z陰極
ここで、発光層ユニットには、発光極大波長が各々 430nm〜480nm、 510nm〜5 50nm、 600nm〜640nmの範囲にある少なくとも何れ力 1層の発光層を有する。
[0033] 発光層ユニットは、白色バックライト(以下、白色 BLとも言う)用途の場合では各色 発光層の積層、もしくは各色発光材料の混合材料を使用することで、フルカラーの場 合は各色をバタ -ユングすることで達成される。
[0034] 《陽極》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド (ITO ) , SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O— ZnO)等
2 2 3 非晶質で透明導電膜を作製可能な材料を用いてもょ ヽ。陽極はこれらの電極物質を 蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望 の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場合 は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマ スクを介してバタ—ンを形成してもよい。あるいは、有機導電性ィ匕合物のように塗布 可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用い ることもできる。この陽極より発光を取り出す場合には、透過率を 10%より大きくするこ とが望ましぐまた陽極としてのシート抵抗は数百 Ω Ζ口以下が好ましい。更に膜厚 は材料にもよるが、通常 10nm〜1000nm、好ましくは 10nm〜200nmの範囲で選 ばれる。
[0035] 《陰極》
一方、陰極としては、仕事関数の小さい (4eV未満)金属 (電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。 このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム合金、マグネシ ゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Z アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ- ゥム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が挙 げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子注 入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、 例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム
Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al o )
2 3混合物、リチウム Zァ ルミ-ゥム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着や スパッタリング等の方法により薄膜を形成させることにより、作製することができる。ま た、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 5 m、好ましくは 50nm〜200nmの範囲で選ばれる。なお、発光した光を透過させるた め、有機 EL素子の陽極または陰極のいずれか一方力 透明または半透明であれば 発光輝度が向上し好都合である。
[0036] また、陰極に上記金属を Inn!〜 20nmの膜厚で作製した後に、陽極の説明で挙げ た導電性透明材料をその上に作製することで、透明または半透明の陰極を作製する ことができ、これを応用することで陽極と陰極の両方が発光した光を透過する有機 EL 素子を作製することができる。
[0037] 本発明の有機エレクト口ルミネッセンス基板とは、後記する支持体に上記のような陽 極または陰極を成膜したものである。請求の範囲で!/、う第一電極とは陽極または陰 極のいずれでもよい。また、支持体と第一電極の間に、有機 EL素子の性能を向上さ せるために、公知の技術、例えば、支持体よりも屈折率の低い物質力 なる層、を設 けてもよい。
[0038] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。
[0039] 《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発 光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在さ せてもよい。
[0040] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日ェヌ 'ティ— 'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0041] 陽極バッファ—層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0042] 陰極バッファ—層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ—層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 mの範囲が好ましい。
[0043] 《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如ぐ有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線(1998年 11月 30日ェヌ'ティ— ·エス社発行) 」の 237頁等に記載されている正孔阻止(ホ—ルブロック)層がある。
[0044] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料力 なり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
[0045] 一般に有機 EL素子の正孔阻止層は、発光層に隣接して設けられて 、ることが好ま しい。
[0046] また、複数の発光色の異なる発光層を有する場合にはその発光極大波長が最も短 波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、 前記最短波発光層と、該最短波発光層の次に陽極に近い発光層との間に正孔阻止 層を追加して設けることが好ましい。更に、該位置に設けられる正孔阻止層に含有さ れる化合物の 50質量%以上が、前記最短波発光層のホスト化合物に対し、そのィォ ン化ポテンシャルが 0. 3eV以上大き 、ことが好まし 、。
[0047] イオンィ匕ポテンシャルは、化合物の HOMO (最高被占分子軌道)レベルにある電 子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すよう な方法により求めることができる。
(1)米国 Gaussian社製の分子軌道計算用ソフトウェアである Gaussian98 (Gaussia n98, Revision A. 11. 4, M. J. Frisch, et al, Gaussian, Inc. , Pittsburgh PA, 2002. )を用い、キ一ヮ一ドとして B3LYPZ6— 31G *を用いて構造最適化を 行うことにより算出した値 (eV単位換算値)の小数点第 2位を四捨五入した値としてィ オンィ匕ポテンシャルを求めることができる。この計算値が有効な背景には、この手法 で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもで きる。光電子分光法による測定方法としては、例えば、低エネルギー電子分光装置「 Model AC— 1」(理研計器社製)を用いる方法が挙げられる。また、紫外光電子分 光法による測定方法を用いることも可能である。
[0048] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明 に係る正孔阻止層、電子輸送層の膜厚としては好ましくは 3ηπ!〜 lOOnmで有り、更 に好ましくは 5nm〜30nmである。
[0049] 《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電 子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であって も発光層と隣接層との界面であってもよい。
[0050] (ホストイ匕合物)
本発明の有機 EL素子の発光層には、以下に示すホストイ匕合物とリン光性ィ匕合物(リ ン光発光性化合物とも 、う)が含有されることが好ま 、。
[0051] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物の内で、そ の層中での質量比が 20%以上であり、かつ室温(25°C)においてリン光発光のリン 光量子収率が、 0. 1未満の化合物と定義される。好ましくはリン光量子収率が 0. 01 未満である。
[0052] ホストイ匕合物としては、公知のホストイ匕合物を単独で用いてもよぐまたは複数種併 用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整すること が可能であり、有機 EL素子を高効率ィ匕することができる。また、リン光性化合物を複 数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を 得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が可 能であり、照明、ノックライトへの応用もできる。
[0053] これらの公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ 発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま 、。
[0054] 公知のホストイ匕合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0055] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等力挙 げられる。
[0056] 本発明にお 、ては、複数の発光層を有するが、これら各層のホストイ匕合物の 50質 量%以上が同一の化合物であることが、有機層全体に渡って均質な膜性状を得や すいことから好ましぐ更には該化合物の燐光発光エネルギーが 2. 9eV以上である ことが、ド—パントからのエネルギ—移動を効率的に抑制し、高輝度を得る上で有利 となることから好ましい。
[0057] (リン光性化合物(リン光発光性化合物) )
発光層に使用される材料 (以下、発光材料という)としては、上記のホストイ匕合物を含 有すると同時に、リン光性ィ匕合物を含有することが好ましい。これにより、より発光効 率の高 、有機 EL素子とすることができる。
[0058] 本発明に係るリン光性ィ匕合物は、励起三重項力もの発光が観測される化合物であ り、室温(25°C)にてリン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物である。リン光量子収率は好ましくは 0. 1以上である。上記リン 光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に記載 の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定で きるが、本発明に用いられるリン光性ィ匕合物は、任意の溶媒のいずれかにおいて上 記リン光量子収率が達成されればよい。
[0059] リン光性ィ匕合物の発光は原理としては 2種挙げられ、一つはキャリアが輸送されるホ ストィ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、この エネルギーをリン光性ィ匕合物に移動させることでリン光性ィ匕合物力 の発光を得ると いうエネルギー移動型、もう一つはリン光性ィ匕合物がキャリアトラップとなり、リン光性 化合物上でキャリアの再結合が起こりリン光性ィ匕合物力もの発光が得られるというキ ャリアトラップ型であるが、いずれの場合においても、リン光性化合物の励起状態の エネルギーはホストイ匕合物の励起状態のエネルギーよりも低 、ことが条件である。
[0060] リン光性ィ匕合物は、有機 EL素子の発光層に使用される公知のものの中から適宜選 択して用いることができる。
[0061] 本発明で用いられるリン光性ィ匕合物としては、好ましくは元素の周期表で 8族〜 10 族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、ォスミゥ ム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も 好まし 、のはイリジウム化合物である。
[0062] 以下に、リン光性化合物の具体例を示すが、本発明はこれらに限定されない。これ らの化合物は、例えば、 Inorg. Chem. 40卷、 1704〜1711に記載の方法等により 合成できる。
[0063] [化 1]
lr-1 lr-2
Figure imgf000018_0001
]
Figure imgf000019_0001
[0065] [化 3] H oooijoIdoEda)
Figure imgf000020_0001
[9^ ] [8900]
Figure imgf000020_0002
ε—
[S^ ] 900]
Figure imgf000020_0003
ε-Pd Z-Pd V→d
剛 [9900]
Figure imgf000020_0004
t9£U/900Zdr/lDd 1 69L010/L001 ΟΛΧ [0069] [化 7]
Figure imgf000021_0001
[0070] 本発明においては、リン光性ィ匕合物のリン光発光極大波長としては特に制限される ものではなぐ原理的には中心金属、配位子、配位子の置換基等を選択することで 得られる発光波長を変化させることができる。
[0071] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を C
IE色度座標に当てはめたときの色で決定される。
[0072] 本発明で言うところの白色素子とは、 2度視野角正面輝度を前記方法により測定し た際に、 lOOOCdZm2での CIE1931表色系における色度が X=0. 33±0. 77、 Y
=0. 33±0. 77の領域内にあることを!ヽぅ。
[0073] 発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、 LB法、 インクジェット法等の公知の薄膜ィ匕法により製膜して形成することができる。
[0074] 白色パネルにおいては、発光層は発光極大波長が各々 430ηπ!〜 480nm、 510η m〜550nm、 600nm〜640nmの範囲にある発光スペクトルの異なる少なくとも 3層 以上の層を含むことが好ましい。 3層以上であれば、特に制限はない。 4層より多い場 合には、同一の発光スペクトルを有する層が複数層あってもよい。発光極大波長が 4 30nm〜480nmにある層を青発光層、 510nm〜550nmにある層を緑発光層、 600 nm〜640nmの範囲にある層を赤発光層と、以下称する。
[0075] 発光層の膜厚の総和は特に制限はないが、通常 2ηπ!〜 5 μ m、好ましくは 2ηπ!〜
200nmの範囲で選ばれる。本発明においては、更に 10nm〜20nmの範囲にある のが好ましい。薄すぎると膜の均質性が得られにくい。またこれより厚いと発光を得る のに高電圧を要するため好ましくない。膜厚を 20nm以下にすると電圧面のみならず 、駆動電流に対する発光色の安定性が向上する効果があり好ましい。
[0076] 個々の発光層の膜厚は、好ましくは 2nm〜100nmの範囲で選ばれ、 2nm〜20n mの範囲にあるのが更に好ましい。青、緑、赤の各発光層の膜厚の関係については 、特に制限はないが、 3発光層中、青発光層(複数層ある場合はその総和)が最も厚 いことが好ましい。
[0077] また、前記の極大波長を維持する範囲において、各発光層には複数の発光性ィ匕 合物を混合してもよい。例えば、青発光層に、極大波長 430nm〜480nmの青発光 性化合物と、同 51 Onm〜 550nmの緑発光性ィ匕合物を混合して用いてもよい。
[0078] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。
[0079] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0080] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好ましい。
[0081] 芳香族第 3級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' —ジアミノジフエ-ルエーテル; 4, 4' —ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスタ一バ一スト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0082] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 P型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0083] また、特開平 11— 251067号公報、 J. Huang et. al.著 (Applied Physics L etters 80 (2002) , p. 139)に記載されているような所謂 p型正孔輸送材料を用い ることもできる。本発明においては、より高効率の有機 EL素子が得られることから、こ れらの材料を用いることが好まし 、。
[0084] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコ ト法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5nm〜200nmである。この正孔輸送層は上記材料の 1種または 2種以上力もなる一層構造であってもよ 、。
[0085] また、不純物をド―プした p性の高い正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、特開 2000— 196140号公報、特開 2001— 102 175号公報、 J. Appl. Phys. , 95, 5773 (2004)などに記載されたもの力 S挙げ、られ る。
[0086] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ とがでさる。
[0087] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体 にお 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘 導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、 電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、 またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0088] また、 8 キノリノ一ル誘導体の金属錯体、例えば、トリス(8 キノリノ一ル)アルミ- ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノ一ル)アルミニウム、トリス(5, 7—ジブ 口モー 8 キノリノール)アルミニウム、トリス(2—メチル 8 キノリノール)アルミ-ゥ ム、トリス(5—メチル 8—キノリノ一ル)アルミニウム、ビス(8—キノリノ一ル)亜鉛 (Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフ リ—もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiC等の無機半 導体も電子輸送材料として用いることができる。
[0089] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコ ト法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5ηπ!〜 200nmである。電子輸送層は上記材料の 1種 または 2種以上力もなる一層構造であってもよ 、。
[0090] また、不純物をドープした n性の高い電子輸送層を用いることもできる。その例とし ては、特開平 4 297076号公報、特開平 10— 270172号公報、特開 2000— 196 140号公報、特開 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004) ¾ どに記載されたものが挙げられる。
[0091] 《支持体》
一般に、有機 EL素子に用いることのできる支持体としては、ガラス、プラスチック等 の種類には特に限定はなぐまた、透明であっても不透明であってもよい。前記支持 体としては、ガラス板、ポリマー板'榭脂フイルム等が挙げられる。前記支持体の形状 は、枚葉シートあるいは連続帯状シートでもよい。
[0092] 支持体側から光を取り出す場合には、支持体は透明であることが好ま 、。好ましく 用いられる透明な支持体としては、ガラス、石英、透明榭脂フィルムを挙げることがで きる。
[0093] ガラス板としては、ソーダ石灰ガラス、ノ リウムストロンチウム含有ガラス、鉛ガラス、 アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英ガラス等を挙 げることができる。
[0094] ポリマー板としてはポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエー テルサルファイド及びポリサルフォン等を挙げることができる。
[0095] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレ一ト(PET)、ポリエチレンナ フタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セル口 ースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セル口 —スァセテ—トプロビオネ—ト(CAP)、セル口—スァセテ—トフタレ— HTAC)、セル ロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩ィ匕ビ -リデ ン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジォタクティックポリス チレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケト ン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ-レンスルフイド、ポリスルホン 類、ポリエ—テルイミド、ポリェ―テルケトンイミド、ポリアミド、フッ素榭脂、ナイロン、ポ リメチルメタタリレート、アクリル或いはポリアリレート類、ァ一トン(商品名 JSR社製)或 いはアベル (商品名三井化学社製) ヽつたシクロォレフィン系榭脂等を挙げられる。 榭脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜 が形成されていてもよぐ水蒸気透過度が 0. 01gZm2ZdayZatm以下のノ リア性 フィルムであることが好ましぐ更には、酸素透過度 10— 3mlZm2/day以下、水蒸気 透過度 10— 5g/m2/day以下の高バリア性フィルムであることが好ましい。
[0096] ノ リア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸 入を抑制する機能を有する材料であればよい。例えば、酸化珪素、二酸化珪素、窒 化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層 と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の 積層順については特に制限はないが、両者を交互に複数回積層させることが好まし い。
[0097] バリア膜の形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる力 特開 20 04— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。
[0098] 不透明な支持体の例としては、例えばアルミニウム、ステンレス等の金属板'フィル ムゃ不透明榭脂基板等が挙げられる。
[0099] 《封止手段》
本発明に用いられる封止手段としては、例えば封止部材と、電極、支持体とを接着 剤で接着する方法を挙げることができる。
[0100] 一般に、封止部材としては、有機 EL素子の表示領域を覆うように配置されておれ ばよぐ凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に問わない。
[0101] 具体的には、ガラス板、ポリマ—板'フィルム、金属板'フィルム等が挙げられる。ガ ラス板としては、特にソ一ダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス 、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げる ことができる。また、ポリマ一板としては、ポリ力一ボネ一ト、アクリル、ポリエチレンテレ フタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板 としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チ タン、モリブテン、シリコン、ゲルマニウムおよびタンタル力 なる群力 選ばれる一種 以上の金属または合金力もなるものが挙げられる。本発明においては、支持体が可 とう性を有する事と素子を薄膜ィ匕できるということからポリマ—フィルム、金属フィルム を好ましく使用することができる。更には、ポリマ—フィルムは、酸素透過度 10— 3mlZ m2/day以下、水蒸気透過度 10— 5g/m2/day以下のであることが好ま 、。
[0102] 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビニル基を有する光硬化および熱硬化型接着剤、 2 シァノアクリル酸エステルな どの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱および 化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエ ステル、ポリオレフインを挙げることができる。また、カチオン硬化タイプの紫外線硬化 型エポキシ榭脂接着剤を挙げることができる。
[0103] なお、有機 EL素子が熱処理により劣化する場合があるので、室温力 80°Cまでに 接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいても よい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリ -ン印刷のように印刷してもよ 、。
[0104] また、有機層を挟み支持体と対向する側の電極の外側に、該電極と有機層を被覆 し、支持体と接する形で無機物、有機物の層を形成し封止膜とすることも好適にでき る。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたらす ものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸ィ匕 珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれ ら無機層と有機材料カゝらなる層の積層構造を持たせることが好ましい。これらの膜の 形成方法については、特に限定はなぐ例えば、真空蒸着法、スパッタリング法、反 応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレ ティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる。
[0105] 封止部材と有機 EL素子の表示領域との間隙には、気相および液相では、窒素、ァ ルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注 入することも可能である。また、真空とすることも可能である。また、内部に吸湿性ィ匕 合物を封入することもできる。
[0106] 吸湿性ィ匕合物としては例えば金属酸ィ匕物(例えば、酸ィ匕ナトリウム、酸ィ匕カリウム、 酸ィ匕カルシウム、酸化バリウム、酸化マグネシウム、酸ィ匕アルミニウム等)、硫酸塩 (例 えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハ ロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タン タル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素 酸類 (例えば過塩素酸バリウム、過塩素酸マグネシウム等)等があげられ、硫酸塩、 金属ハロゲンィ匕物および過塩素酸類においては無水塩が好適に用いられる。
[0107] 《光取出し加工》
有機エレクト口ルミネッセンス素子は、空気よりも屈折率の高い (屈折率が 1. 7〜2. 1程度)層の内部で発光し、発光層で発生した光のうち 15%から 20%程度の光しか 取り出せないことが一般的に言われている。これは、臨界角以上の角度 Θで界面 (透 明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことが できないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光 が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためで ある。
[0108] この光の取り出しの効率を向上させる手法としては、例えば、透明基板の表面に凹 凸を形成し、透明基板と空気界面での全反射を防ぐ方法 (例えば、米国特許第 477 4435明細書)、基板に集光性を持たせることにより効率を向上させる方法 (例えば、 特開昭 63— 314795号公報)、素子の側面等に反射面を形成する方法 (例えば、特 開平 1— 220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入 し、反射防止膜を形成する方法 (例えば、特開昭 62— 172691号公報)、基板と発 光体の間に基板よりも低屈折率を持つ平坦層を導入する方法 (例えば、特開 2001 — 202827号公報)、基板、透明電極層や発光層のいずれかの層間 (含む、基板と 外界間)に回折格子を形成する方法 (例えば、特開平 11— 283751号公報)などが ある。
[0109] これらの方法を本発明の有機エレクト口ルミネッセンス素子と組み合わせて用いるこ とができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方 法、あるいは基板、透明電極層や発光層のいずれかの層間 (含む、基板と外界間) に回折格子を形成する方法を好適に用いることができる。
[0110] これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子 を得ることができる。
[0111] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が 高くなる。
[0112] 低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシウム、フッ 素系ポリマーなどが挙げられる。透明基板の屈折率は一般に 1. 5〜1. 7程度である ので、低屈折率層は、屈折率がおよそ 1. 5以下であることが好ましい。またさらに 1. 35以下であることが好まし 、。
[0113] また、低屈折率媒質の厚みは、媒質中の波長の 2倍以上となるのが望ましい。これ は、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電 磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
[0114] 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光 取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が 1次の回 折や、 2次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特 定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間 での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中( 透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取 り出そうとするものである。
[0115] 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは 、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分 布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り 出し効率が上がる。
[0116] 回折格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中( 透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近 傍が望ましい。
[0117] このとき、回折格子の周期は、媒質中の光の波長の約 1Z2〜3倍程度が好ましい
[0118] 回折格子の配列は、正方形のラチス状、三角形のラチス状、ノ、ユカムラチス状など 、 2次元的に配列が繰り返されることが好ましい。
[0119] 《集光シート》
本発明の有機エレクト口ルミネッセンス素子を面光源用に使用する場合は、基板の 光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、ある いは、所謂集光シートと組み合わせることにより、特定方向、例えば素子発光面に対 し正面方向に集光することにより、特定方向上の輝度を高めることができる。
[0120] マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30 μ mでその頂 角が 90度となるような四角錐を 2次元に配列する。一辺は 10 /z m〜: LOO /z mが好ま しい。これより小さくなると回折の効果が発生して色付ぐ大きすぎると厚みが厚くなり 好ましくない。
[0121] 集光シ―トとしては、例えば液晶表示装置の LEDバックライトで実用化されているも のを用いることが可能である。このようなシ一トとして例えば、住友スリ一ェム社製輝度 上昇フィルム(BEF)などを用いることができる。プリズムシ一トの形状としては、例え ば基材に頂角 90度、ピッチ 50 111の 状のストライプが形成されたものであってもよ いし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状 であっても良い。
[0122] また、発光素子からの光放射角を制御するために光拡散板'フィルムを、集光シ— トと併用してもよい。例えば、拡散フィルム「ライトアップ」((株)きもと製)などを用いる ことができる。
[0123] く本発明に係る有機 EL素子の製造方法の実施の形態 >
次に本発明に係る有機 EL素子の製造方法の実施の形態について説明する。本発 明は、以下の実施の形態に限定されるものではない。
[0124] 有機 EL素子の層構成の例は、前述の有機 EL素子の層構成の好ましい具体例に 記述したが、本実施の形態では、基板上に電極物質、例えば ITO (インジウムチンォ キシド)等を成膜しフォトエッチングでパター-ングを行うことにより第一電極(陽極)を 形成した有機エレクト口ルミネッセンス基板の電極表面のウエット洗浄工程及びゥエツ ト洗浄後の有機層成膜にっ 、て説明する。
[0125] 以下に、本発明に係るウエット洗浄工程の実施の形態について、図を参照して説明 する。また、各実施の形態は、ウエット洗浄工程の最終工程で用いられることが好まし い。
(実施の形態 1)
図 1は、洗浄溶媒を貯水した超音波洗浄浴槽に有機エレクト口ルミネッセンス基板 を入れ洗浄する貯水式洗浄工程の実施形態 1の模式図である。
[0126] 図 1に示すように、有機エレクト口ルミネッセンス基板 1を、超音波発生装置 21Aを 有する洗浄浴槽 21に入れ、洗浄溶媒 22に浸漬し超音波洗浄を行う。洗浄浴槽 21に は、予め規定した所定粒子サイズ以上の異物の粒子数が単位容量当たり所定の粒 子数以下である洗浄溶媒 22が貯水される。
[0127] 異物は洗浄する前の洗浄溶媒に混入している場合もあるが、異物のほとんどは、有 機エレクト口ルミネッセンス基板の洗浄の際に混入してくるものである。
[0128] 前記洗浄溶媒に混入して!/ヽる異物の粒子サイズ及び粒子数としては、 0. 5 m以 上の粒子数の個数が 1500個 Zml以下が好ましい。粒子サイズが 0. 5 μ m未満の 異物は管理することが困難である。粒子サイズが 0. 5 μ m以上の異物の粒子数を管 理することで、粒子サイズが 0. 5 μ m未満の異物の管理を省くことができる。粒子サイ ズが 0. 5 μ m以上の異物の粒子数が 1500個 Zmlを超えると有機 EL素子の駆動時 にリーク電流が発生しやすくなる。
[0129] 本発明においては、使用する洗浄溶媒の種類は、特に限定するものではないが、 超純水あるいはイソプロピルアルコール (IPA)が好まし!/、。
[0130] 有機エレクト口ルミネッセンス基板 1は、超音波発生装置 21Aにより超音波振動を与 えられた洗浄溶媒 22により洗浄される。
[0131] 洗浄浴槽中の洗浄溶媒に混入している異物の粒子数は、 LPC (粒子数計測手段) 51により所定時間毎に計測される。前記所定時間の間隔は、洗浄工程の仕様により 適宜設定が可能である。本実施形態では、 10秒毎としている。計測されたデータを 基に、粒子数分析手段である分析部 52で単位容量当たりの粒子数に分析し、分析 データは、演算手段である演算部 53に送られ基板清浄度 (有機エレクト口ルミネッセ ンス基板の清浄度、以下同じ)の判定が行われる。
[0132] 前記基板清浄度の判定は、以下の何れかの方法で行われる。
[0133] 演算部 53では、所定時間毎の分析データにおける、所定サンプル数の分析デー タ変化及び予め入力されている粒子数判定基準値から基板清浄度の良否の判定を 行う。分析データのサンプル数は適宜設定が可能である。本実施の形態では、 4サン プルのデータで判定を行っている。前記判定は、以下の 2通りの何れかで行われる。
[0134] 判定 1)
所定時間毎の分析データの所定サンプル数にぉ 、て、粒子数判定基準値以下の粒 子数でかつ分析データの変化が認められなくなったときに基板清浄度「良」とし、洗 浄終了の判定を行う。また、分析データが判定基準値を超えた場合は洗浄を終了し 、基板洗浄度「否」とする。図 8は、判定 1における分析データ (異物粒子数)と洗浄時 間の関係を表す概念図である。
[0135] 判定 2)
予め定めた所定時間洗浄終了前の所定サンプル数において、粒子数判定基準値 以下の粒子数でかつ分析データにデータの変化が認められないときに基板清浄度「 良」とし、データの変化が認められるときに基板清浄度「否」と判定を行う。また、分析 データが判定基準値を超えた場合は所定時間洗浄終了前でも洗浄を終了し、基板 洗浄度「否」とする。図 9は、判定 2における分析データ (異物粒子数)と洗浄時間の 関係を表す概念図である。
[0136] 前記判定 1)は、分析データが粒子数判定基準値以下の場合、基板清浄度「良」と なるまで洗浄することができ、洗浄の時間的制約が無い場合に有効である。洗浄が 終了した有機エレクト口ルミネッセンス基板は、次工程に投入される。
[0137] また、前記判定 2)は有機 EL素子製造ラインの関係から洗浄の時間的制約がある 場合に有効である。基板洗浄度「良」の有機エレクト口ルミネッセンス基板は、次工程 に投入される。基板洗浄度「否」の有機エレクト口ルミネッセンス基板は、有機 EL素子 製造ライン力 排除される。このように基板洗浄度「否」と判定された不良有機エレクト 口ルミネッセンス基板を工程の早い段階で排除できるため、生産効率の向上を図るこ とができる。前記不良有機エレクト口ルミネッセンス基板は、別途再洗浄を行い有機 E L素子製造ラインに投入することができる
前記判定結果は制御部 54に送られ、図示しない表示手段等に結果を表示するとと もに超音波発生装置 21 Aのオン オフ等の制御を行う。
(実施の形態 2)
図 2は、洗浄浴槽に有機エレクト口ルミネッセンス基板を入れ、洗浄溶媒を流水供 給方式で供給し洗浄を行う洗浄工程の実施形態 2の模式図である。
[0138] 図 2に示すように、有機エレクト口ルミネッセンス基板 1を洗浄浴槽 21に入れ洗浄溶 媒 22に浸漬し、洗浄溶媒 22を洗浄溶媒貯水容器 23より供給ポンプ P1で洗浄浴槽 21に供給し、流水供給方式で基板 1を洗浄する。洗浄浴槽 21には、予め規定した 所定粒子サイズ以上の異物の粒子数が単位容量当たり所定の粒子数以下である洗 浄溶媒 22が供給される。
[0139] 前記洗浄溶媒に混入して!/ヽる異物の粒子サイズ及び粒子数としては、 0. 5 m以 上の粒子数の個数が 1500個 Zml以下が好ましい。粒子サイズが 0. 5 μ m未満の 異物は管理することが困難である。粒子サイズが 0. 5 μ m以上の異物の粒子数を管 理することで、粒子サイズが 0. 5 μ m未満の異物の管理を省くことができる。粒子サイ ズが 0. 5 μ m以上の異物の粒子数が 1500個 Zmlを超えると有機 EL素子の駆動時 にリーク電流が発生しやすくなる。
[0140] 使用する洗浄溶媒の種類は、特に限定するものではないが、超純水あるいはイソプ 口ピルアルコール(IPA)が好まし!/、。
[0141] 洗浄浴槽 21に供給された洗浄溶媒 22は、有機エレクト口ルミネッセンス基板 1を洗 浄し洗浄浴槽 21から溢れた洗浄溶媒はオーバーフローにより洗浄浴槽外へ排出さ れる。
[0142] 洗浄浴槽 21中の洗浄溶媒の粒子数は、 LPC (粒子数計測手段) 51により所定時 間毎に計測される。前記所定時間の間隔は、洗浄工程の仕様により適宜設定が可 能である。本実施形態では、 10秒毎としている。計測されたデータを基に粒子数分 析手段である分析部 52で単位容量当たりの粒子数に分析し、分析データは、演算 手段である演算部 53に送られ基板清浄度の判定が行われる。
[0143] 前記基板清浄度の判定は、以下の何れかの方法で行われる。
[0144] 判定方法 1)
演算部 53では、基板清浄度の良否判定のため、予め入力されている粒子数判定基 準値と前記分析データに基づき判定を行う。前記判定方法 1)は、以下の 2通りの何 れかで行われる。
[0145] 判定方法 1 1)
前記分析データの粒子数が前記粒子数判定基準値以下となったとき基板清浄度「 良」とし、洗浄終了の判定を行う。図 10は、判定 11における分析データ (異物粒子数 )と洗浄時間の関係を表す概念図である。
[0146] 判定方法 1 2)
予め定めた所定時間洗浄終了時の前記分析データの粒子数が前記粒子数判定基 準値以下の場合は基板清浄度「良」と判定し、前記粒子数判定基準値を超える場合 は基板清浄度「否」と判定を行う。図 11は、判定方法 1 2)における分析データ (異 物粒子数)と洗浄時間の関係を表す概念図である。
[0147] 判定方法 2)
演算部 53では、所定時間毎の分析データの所定サンプル数において、分析データ の変化から基板清浄度の良否判定を行う。分析データのサンプル数は適宜設定が 可能である。本実施の形態では、 4サンプルのデータで判定を行っている。前記判定 方法 2)は、以下の 2通りの何れかで行われる。
[0148] 判定方法 2— 1)
所定時間毎の分析データの所定サンプル数にぉ 、て、データの変化が認められなく なったときに基板清浄度「良」とし、洗浄終了の判定を行う。図 12は、判定 21におけ る分析データ (異物粒子数)と洗浄時間の関係を表す概念図である。
[0149] 判定方法 2— 2)
予め定めた所定時間洗浄終了前の所定サンプル数の分析データにデータの変化が 認められな 、ときに基板清浄度「良」とし、データの変化が認められるときに基板清浄 度「否」と判定を行う。図 13は、判定方法 2— 2)における分析データ (異物粒子数)と 洗浄時間の関係を表す概念図である。
[0150] 前記判定方法 1 1)および、判定方法 2— 1)は、基板清浄度「良」となるまで洗浄 することができ、洗浄の時間的制約が無い場合に有効である。洗浄終了した有機ェ レクト口ルミネッセンス基板は、次工程に投入される。
[0151] また、前記判定方法 1 2)および、判定方法 2— 2)は有機 EL素子製造ラインの関 係から洗浄の時間的制約がある場合に有効である。基板洗浄度「良」の有機エレクト 口ルミネッセンス基板は、次工程に投入される。基板洗浄度「否」の有機エレクト口ルミ ネッセンス基板は、有機 EL素子製造ラインカゝら排除される。このように基板洗浄度「 否」と判定された不良有機エレクト口ルミネッセンス基板を工程の早 、段階で排除で きるため、生産効率の向上を図ることができる。前記不良有機エレクト口ルミネッセン ス基板は、別途再洗浄を行 、有機 EL素子製造ラインに投入することができる。
[0152] 前記判定結果は制御部 54に送られ、図示しない表示手段等に結果を表示するとと もに供給ポンプ及び以下に説明する超音波発生装置等のオン オフ制御等を行う。
[0153] 前記洗浄浴槽 21に超音波発生装置 21Aを付設し洗浄浴槽を超音波洗浄浴槽とし 、洗浄溶媒に超音波振動を付加することにより、より効率的な洗浄が可能になり、清 浄度の向上及び洗浄時間の短縮を図ることができる。
(実施の形態 3)
図 3は、洗浄浴槽に有機エレクト口ルミネッセンス基板を入れ、洗浄溶媒を流水供給 方式で供給し、かつ洗浄溶媒を循環して洗浄を行う洗浄工程の実施形態 3の模式図 である。前記実施形態 2との相違は、洗浄溶媒を循環式とし再使用を行い、洗浄溶 媒の効率的使用を図るものである。
[0154] 図 3に示すように、洗浄浴槽 21に供給された洗浄溶媒 22は、有機エレクトロルミネ ッセンス基板 1を洗浄し洗浄浴槽 21から循環ポンプ P2により排出され、再び供給経 路に送られ洗浄浴槽 21に供給され循環する。循環経路に異物を除去するフィルター 24を用い、洗浄溶媒を予め規定した所定粒子サイズ以上の異物の粒子数が単位容 量当たり所定の粒子数以下に維持することが好ましい。
[0155] また、洗浄浴槽 21から循環ポンプ P2により排出された洗浄溶媒を直接供給経路に 送らず、図 3の一点鎖線内に示すように洗浄溶媒貯水容器 23に一旦貯水し供給ポ ンプ P1で供給しても良い。
[0156] 上記相違点以外は、実施形態 2と同じである。
(実施の形態 4)
図 4は、洗浄溶媒を流水シャワー方式で供給し洗浄を行う洗浄工程の実施形態 4 の模式図である。
[0157] 図 4に示すように、有機エレクト口ルミネッセンス基板 1を洗浄槽 31の図示しない基 板保持手段で保持し、洗浄溶媒 22を洗浄溶媒貯水容器 23より供給ポンプ P1でシャ ヮーノズル 32を介して、有機エレクト口ルミネッセンス基板 1の洗浄面に流水シャワー 方式で供給し、有機エレクト口ルミネッセンス基板 1を洗浄する。供給する洗浄溶媒 2 2の様態については実施の形態 2の記載に準ずる。
[0158] 有機エレクト口ルミネッセンス基板 1は、洗浄槽 31に溜められた洗浄溶媒と接しない よう、洗浄槽 31の最上液面より常に上部に保持される。 [0159] 前記流水シャワー方式で有機エレクト口ルミネッセンス基板を洗浄した洗浄溶媒は
、洗浄槽 31に落下し溜められる。洗浄槽 31から溢れた洗浄溶媒はオーバーフロー により洗浄槽外へ排出される。
[0160] 洗浄槽 31中の洗浄溶媒の粒子数は、 LPC (粒子数計測手段) 51により所定時間 毎に計測される。前記所定時間の間隔は、洗浄工程の仕様により適宜設定が可能で ある。本実施形態では、 10秒毎としている。計測されたデータを基に粒子数分析手 段である分析部 52で単位容量当たりの粒子数に分析し、分析データは、演算部 53 に送られ基板清浄度の判定が行われる。
[0161] 基板清浄度判定、判定方法の適用及び判定後の基板の各処理につ!、ては、前記 実施形態 2の記載に準ずる。
[0162] 前記判定結果は制御部 54に送られ、図示しない表示手段等に結果を表示するとと もに供給ポンプ及び以下に説明する超音波発生装置等のオン オフ制御等を行う。
[0163] 前記シャワーノズル 32に超音波発生装置 32Aを付設し、洗浄溶媒のシャワーに超 音波振動を付加することにより、より効率的な洗浄が可能になり、清浄度の向上及び 洗浄時間の短縮を図ることができる。
(実施の形態 5)
図 5は、洗浄溶媒を流水シャワー方式で供給し有機エレクト口ルミネッセンス基板 1の 洗浄を行 ヽ、かつ洗浄溶媒を循環して洗浄を行う洗浄工程の実施形態 5の模式図で ある。前記実施形態 4との相違は、洗浄溶媒を循環式とし再使用を行い、洗浄溶媒 の効率的使用を図るものである。
[0164] 図 5に示すように、シャワーノズル 32を介して供給された洗浄溶媒 22は、有機エレ タトロルミネッセンス基板 1を洗浄し洗浄槽 31から循環ポンプ P2により排出され、再 び供給経路に送られシャワーノズル 32を介して供給され循環する。循環経路に異物 を除去するフィルター 24を用い、洗浄溶媒を予め規定した所定粒子サイズ以上の異 物の粒子数が単位容量当たり所定の粒子数以下に維持することが好ましい。
[0165] また、洗浄槽 31から循環ポンプ P2により排出された洗浄溶媒を直接供給経路に送 らず、図 5の一点鎖線内に示すように洗浄溶媒貯水容器 23に一旦貯水し供給ボン プ P1で供給しても良い。 [0166] 上記相違点以外は、実施形態 4と同じである。
[0167] 前記実施の形態 1乃至 5の何れかのウエット洗浄工程を最終ウエット洗浄工程として ウエット洗浄が終了した有機エレクト口ルミネッセンス基板は乾燥、ドライ洗浄を経て有 機層が成膜される。
[0168] 図 6は、最終ウエット洗浄カゝら有機層成膜までを示した模式図である。
[0169] 乾燥は、スピン乾燥法、熱風乾燥法またはエアナイフ乾燥法が好ましく用いられる。
ドライ洗浄は、 UVオゾン洗浄、または酸素プラズマ洗浄が好ましく用いられる。
[0170] 図 6に示すように、最終洗浄前のウエット洗浄は一般室レベルの清浄度で可能であ る。しかし、最終洗浄後は有機エレクト口ルミネッセンス基板の清浄度を維持するため 、有機層成膜までの基板移動環境雰囲気が JISB9920規格で清浄度クラス 1000以 下で管理されることが好ましい。また、最終洗浄後の基板清浄度の経時的劣化を防 止するため、最終洗浄後から有機層成膜開始までの時間を 20時間以内とすることが 好ましい。

Claims

請求の範囲
[1] 基板上に少なくとも第一電極と有機物質カゝらなる発光層の一層以上と第二電極を成 膜してなる有機エレクト口ルミネッセンス素子の製造方法において、
前記基板上に第一電極を成膜してなる有機エレクト口ルミネッセンス基板を洗浄溶媒 を用いて洗浄を行うウエット洗浄工程を具備するとともに、前記ウエット洗浄工程は前 記洗浄溶媒に混入している異物の粒子数を測定する粒子数測定工程と前記粒子数 を分析する粒子数分析工程とを有することを特徴とする有機エレクト口ルミネッセンス 素子の製造方法。
[2] 前記ゥヱット洗浄工程は、前記粒子数分析工程により得られる分析データから、前記 ウエット洗浄工程の終了、または有機エレクト口ルミネッセンス基板の清浄度の良否を 判定する演算工程を有することを特徴とする請求の範囲第 1項に記載の有機エレ外 口ルミネッセンス素子の製造方法。
[3] 基板上に少なくとも第一電極と有機物質カゝらなる発光層の一層以上と第二電極を成 膜してなる有機エレクト口ルミネッセンス素子の製造方法において、
前記基板上に第一電極を成膜してなる有機エレクト口ルミネッセンス基板を洗浄溶媒 を用いて洗浄を行うウエット洗浄工程を具備するとともに、
前記ウエット洗浄工程は、予め規定した所定粒子サイズ以上の異物の粒子数が単位 容量当たり所定の粒子数以下である洗浄溶媒を流水供給方式で供給し洗浄すること を特徴とする有機エレクト口ルミネッセンス素子の製造方法。
[4] 前記ウエット洗浄工程は、予め規定した所定粒子サイズ以上の異物の粒子数が単位 容量当たり所定の粒子数以下である洗浄溶媒を流水供給方式で供給し洗浄すること を特徴とする請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素 子の製造方法。
[5] 前記ウエット洗浄工程の流水供給方式が、超音波浴槽オーバーフロー方式であるこ とを特徴とする請求の範囲第 3項または第 4項に記載の有機エレクト口ルミネッセンス 素子の製造方法。
[6] 前記ウエット洗浄工程の流水供給方式が、流水シャワー方式であることを特徴とする 請求の範囲第 3項または第 4項に記載の有機エレクト口ルミネッセンス素子の製造方 法。
[7] 前記ウエット洗浄工程の流水供給方式が、超音波振動を付与した流水シャワー方式 であることを特徴とする請求の範囲第 3項または第 4項に記載の有機エレクトロルミネ ッセンス素子の製造方法。
[8] 前記洗浄溶媒は、超純水であることを特徴とする請求の範囲第 1項乃至第 7項の何 れカ 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[9] 前記洗浄溶媒は、イソプロピルアルコールであることを特徴とする請求の範囲第 1項 乃至第 7項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[10] 前記ウエット洗浄工程は、該ウエット洗浄工程の最終工程であることを特徴とする請求 の範囲第 1項乃至第 9項の何れ力 1項に記載の有機エレクト口ルミネッセンス素子の 製造方法。
[11] 前記ゥヱット洗浄工程で洗浄を行った前記有機エレクト口ルミネッセンス基板に乾燥 及びドライ洗浄を行い、その後有機層を成膜することを特徴とする請求の範囲第 10 項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[12] 前記乾燥は、スピン乾燥法であることを特徴とする請求の範囲第 11項に記載の有機 エレクト口ルミネッセンス素子の製造方法。
[13] 前記乾燥は、熱風乾燥法であることを特徴とする請求の範囲第 11項に記載の有機 エレクト口ルミネッセンス素子の製造方法。
[14] 前記乾燥は、エアナイフ乾燥法であることを特徴とする請求の範囲第 11項に記載の 有機エレクト口ルミネッセンス素子の製造方法。
[15] 前記ドライ洗浄は、 UVオゾン洗浄であることを特徴とする請求の範囲第 11項乃至第 14項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[16] 前記ドライ洗浄は、酸素プラズマ洗浄であることを特徴とする請求の範囲第 11項乃 至第 14項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[17] 前記ウエット洗浄の最終工程後から前記有機層の成膜開始までの基板移動環境雰 囲気が、 JISB9920規格で清浄度クラス 1000以下で管理されることを特徴とする請 求の範囲第 10項乃至第 16項の何れ力 1項に記載の有機エレクト口ルミネッセンス素 子の製造方法。
[18] 前記ウエット洗浄の最終工程後から前記有機層の成膜開始までの時間が、 20時間 以内であることを特徴とする請求の範囲第 10項乃至第 16項の何れか 1項に記載の 有機エレクト口ルミネッセンス素子の製造方法。
[19] 請求の範囲第 1項乃至第 18項の何れか 1項に記載の有機エレクト口ルミネッセンス素 子の製造方法で製造することを特徴とする有機エレクト口ルミネッセンス素子。
PCT/JP2006/313649 2005-07-22 2006-07-10 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 WO2007010769A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007525948A JPWO2007010769A1 (ja) 2005-07-22 2006-07-10 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-212353 2005-07-22
JP2005212353 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007010769A1 true WO2007010769A1 (ja) 2007-01-25

Family

ID=37668651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313649 WO2007010769A1 (ja) 2005-07-22 2006-07-10 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2007010769A1 (ja)
WO (1) WO2007010769A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318036A (ja) * 1991-04-16 1992-11-09 Seiko Epson Corp 洗浄方法
JPH1140365A (ja) * 1997-07-16 1999-02-12 Tdk Corp 有機el素子およびその製造方法
JP2000074436A (ja) * 1998-08-28 2000-03-14 Sony Corp クリーンルーム
JP2000130441A (ja) * 1998-10-26 2000-05-12 Nsk Ltd 転がり軸受
JP2001185363A (ja) * 1999-12-28 2001-07-06 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法とその素子を用いた表示パネル
JP2001341827A (ja) * 2000-05-31 2001-12-11 Canon Inc 枚葉式洗浄機および枚葉式洗浄機に用いられるローラーコンベア用の中間軸受け
JP2003257655A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2003257675A (ja) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2003257656A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2004041883A (ja) * 2002-07-10 2004-02-12 Konica Minolta Holdings Inc 基板洗浄方法、有機el素子からなるフルカラーディスプレイパネルの製造方法および有機el素子からなるフルカラーディスプレイパネル
JP2005158561A (ja) * 2003-11-27 2005-06-16 Fuji Xerox Co Ltd 有機電界発光素子
JP2005185973A (ja) * 2003-12-25 2005-07-14 Fuji Electric Holdings Co Ltd 洗浄中のハードディスク基板に付着するパーティクル数推定方法およびパーティクル数評価装置
JP2005197027A (ja) * 2004-01-05 2005-07-21 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318036A (ja) * 1991-04-16 1992-11-09 Seiko Epson Corp 洗浄方法
JPH1140365A (ja) * 1997-07-16 1999-02-12 Tdk Corp 有機el素子およびその製造方法
JP2000074436A (ja) * 1998-08-28 2000-03-14 Sony Corp クリーンルーム
JP2000130441A (ja) * 1998-10-26 2000-05-12 Nsk Ltd 転がり軸受
JP2001185363A (ja) * 1999-12-28 2001-07-06 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法とその素子を用いた表示パネル
JP2001341827A (ja) * 2000-05-31 2001-12-11 Canon Inc 枚葉式洗浄機および枚葉式洗浄機に用いられるローラーコンベア用の中間軸受け
JP2003257655A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2003257656A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2003257675A (ja) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2004041883A (ja) * 2002-07-10 2004-02-12 Konica Minolta Holdings Inc 基板洗浄方法、有機el素子からなるフルカラーディスプレイパネルの製造方法および有機el素子からなるフルカラーディスプレイパネル
JP2005158561A (ja) * 2003-11-27 2005-06-16 Fuji Xerox Co Ltd 有機電界発光素子
JP2005185973A (ja) * 2003-12-25 2005-07-14 Fuji Electric Holdings Co Ltd 洗浄中のハードディスク基板に付着するパーティクル数推定方法およびパーティクル数評価装置
JP2005197027A (ja) * 2004-01-05 2005-07-21 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器

Also Published As

Publication number Publication date
JPWO2007010769A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2006100868A1 (ja) 有機化合物層の形成方法、有機el素子の製造方法、有機el素子
WO2012029750A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP5168762B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007059188A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007119420A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の発光色度安定化方法、照明装置及び電子ディスプレイ装置
JP5589852B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2007207469A (ja) 積層体の製造方法、積層体、有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2007012357A (ja) 有機エレクトロルミネッセンスパネルの製造方法及び有機エレクトロルミネッセンスパネル
JP2007012358A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法
JP5862665B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2012063656A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2006302814A (ja) 有機エレクトロルミネッセンス層の形成方法及び有機エレクトロルミネッセンス素子
WO2007086216A1 (ja) 有機エレクトロルミネッセンス素子
WO2014104102A1 (ja) 有機エレクトロルミネッセンス素子製造方法及び有機エレクトロルミネッセンス素子
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2006092964A1 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス照明装置
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2008016648A (ja) 有機エレクトロルミネッセンス素子、照明装置、ディスプレイ装置および有機エレクトロルミネッセンス素子の製造方法
WO2010084816A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5152331B2 (ja) 有機エレクトロルミネセンス素子およびその製造方法
WO2007010769A1 (ja) 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525948

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780921

Country of ref document: EP

Kind code of ref document: A1