WO2007007728A1 - 津波情報提供方法および津波情報提供システム - Google Patents

津波情報提供方法および津波情報提供システム Download PDF

Info

Publication number
WO2007007728A1
WO2007007728A1 PCT/JP2006/313708 JP2006313708W WO2007007728A1 WO 2007007728 A1 WO2007007728 A1 WO 2007007728A1 JP 2006313708 W JP2006313708 W JP 2006313708W WO 2007007728 A1 WO2007007728 A1 WO 2007007728A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsunami
response function
sea level
period
height
Prior art date
Application number
PCT/JP2006/313708
Other languages
English (en)
French (fr)
Inventor
Toshihiko Nagai
Nobuo Moritani
Hiroaki Izumi
Yukihiro Terada
Original Assignee
Port And Airport Research Institute
Coastal Development Institute Of Technology
Japan Weather Association
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Port And Airport Research Institute, Coastal Development Institute Of Technology, Japan Weather Association, Hitachi Zosen Corporation filed Critical Port And Airport Research Institute
Publication of WO2007007728A1 publication Critical patent/WO2007007728A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • G01C13/004Measuring the movement of open water vertical movement
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Definitions

  • the present invention relates to a tsunami information providing method and a tsunami information providing system that can provide tsunami information obtained by measuring sea surface displacement to a corresponding area for disaster prevention.
  • a GPS tsunami meter that detects a tsunami by installing a GPS receiver on a buoy has been proposed as a device for detecting a tsunami by extracting a tsunami component of sea surface displacement (for example, JP
  • this GPS tsunami meter is installed in the sea as far away as possible from the coast where high-precision measurement technology can be applied, and the tsunami is detected at the earliest possible time to make the residents safe. Considered to be able to evacuate.
  • the purpose of detecting tsunamis is to issue tsunami warning information such as evacuation advisories to coastal areas, and to evacuate residents safely.
  • tsunami warning information such as evacuation advisories to coastal areas, and to evacuate residents safely.
  • no specific proposal has been made on what kind of tsunami warning information should be transmitted.
  • an object of the present invention is to provide a tsunami information providing method and a tsunami information providing system that can provide optimum tsunami warning information promptly and stepwise when a tsunami is detected.
  • a tsunami information providing method includes:
  • a wave height data force at a 90-degree phase of the frequency component also includes a second recognition step for recognizing the magnitude of the tsunami,
  • the tsunami information providing method according to claim 2 is the second recognition step of the tsunami information providing method according to claim 1! /,
  • the 0 degree force also recognizes the arrival time up to the 90 degree phase, predicts the tsunami cycle based on the arrival time,
  • This is a method of outputting the prediction period of this tsunami as tsunami information.
  • the tsunami information providing method according to claim 3 is the tsunami information providing method according to claim 2,
  • the tsunami information providing method according to claim 4 is an offshore sea surface measuring instrument for measurement based on the tsunami prediction period obtained in the second recognition step of the tsunami information providing method according to claim 2.
  • Submarine topographic force prepared for each tsunami cycle and the medium force of the response function for determining the wave height Select the optimal response function and select the selected response function Using the sea level displacement prediction step to predict the tsunami height on the coastline,
  • the predicted height is output as tsunami information at the time of prediction at this sea level displacement prediction step.
  • the tsunami information providing method is an offshore sea surface measuring instrument for measurement based on the tsunami prediction cycle obtained in the second recognition step of the tsunami information providing method according to claim 2.
  • Submarine topographic force prepared for each tsunami cycle and the medium force of the response function for determining the wave height Select the optimal response function and select the selected response function Using a sea level displacement prediction step to predict the height of the tsunami, which is the maximum sea level displacement along the coastline,
  • the measured height of the tsunami obtained with the coastline sea level measuring instrument installed near the coastline is compared with the predicted height obtained in the sea level displacement prediction step, and the response function selected above is calculated based on the comparison result. This is a correction method.
  • the tsunami information providing method according to claim 6 is an offshore sea surface measuring instrument for measurement based on the tsunami prediction period obtained in the second recognition step of the tsunami information providing method according to claim 2.
  • Submarine topographic force prepared for each tsunami cycle and the medium force of the response function for determining the wave height Select the optimal response function and select the selected response function Using a sea level displacement prediction step to predict the height of the tsunami, which is the maximum sea level displacement along the coastline,
  • the response Change to function In addition to detecting the tsunami measurement period, which is the arrival time from 0 degrees to 360 degrees phase, if there is a tsunami period response function close to this measurement period in addition to the selected response function, the response Change to function
  • the measured height of the tsunami obtained by the intermediate sea level measuring instrument installed at the midpoint between the coastline and the offshore sea level measuring instrument was compared with the predicted height obtained in the sea level displacement prediction step. This is a method of correcting the selected response function based on the above.
  • a tsunami information providing system includes:
  • the tsunami analysis center for analyzing the tsunami by inputting the sea surface displacement data of the offshore sea level measuring instrument and the coastline sea level measuring instrument, and for receiving the tsunami information obtained at this tsunami analysis center and distributing it to information utilization organizations
  • the frequency component extraction unit that extracts the frequency component of the wave from the sea surface displacement data is compared with the wave height extracted by the frequency component extraction unit and a preset threshold value, and the wave height exceeds the threshold value.
  • a wave height comparison unit that outputs tsunami information indicating that a tsunami has been detected,
  • this wave height comparison unit determines a tsunami, input its frequency component and 1Z4 period detector for detecting the value and calculating the tsunami magnitude as well as the absolute value of the wave height and detecting the arrival time from 0 to 90 degrees phase to obtain the predicted period of the tsunami, and this 1Z4 period detector Response function selection that selects the response function to obtain the seafloor topographic force wave height that is provided in advance according to the installation position of the offshore sea level measuring instrument and according to multiple tsunami periods And
  • the maximum sea level displacement on the coastline due to the tsunami is obtained to predict the height of the tsunami, and the predicted sea level displacement is output as this tsunami information.
  • the frequency component force is further provided with a tsunami period detection unit that detects an actual measurement period of a tsunami that is an arrival time from 0 to 360 degrees.
  • a tsunami information providing system according to claim 8 is provided in the tsunami analysis center of the tsunami information providing system according to claim 7,
  • the first recognition step can promptly provide information on the occurrence of a tsunami to a tsunami information utilization organization such as a disaster prevention organization, so that residents can be evacuated early.
  • the second recognition step can predict the magnitude of the tsunami early in the 90-degree phase
  • the tsunami information utilization organization should refer to the hazard map to what level of evacuation. It is possible to get an indication of such as early. In other words, it is possible to issue appropriate tsunami warning information promptly and in stages to residents from tsunami information utilization organizations.
  • the tsunami cycle is predicted based on the arrival time up to the 90-degree phase in the second recognition step, so that the entire cycle (one cycle) is measured. It is possible to obtain the tsunami information with high accuracy by finding the arrival time of the tsunami on the shoreline more quickly than in the case of tsunami.
  • the height of the tsunami on the coastline is predicted using a response function that can obtain the wave height according to the seafloor topography, and the predicted height is output as tsunami information. Because of this, tsunami information utilization organizations such as disaster prevention organizations can obtain information to give more specific evacuation instructions against the hazard map.
  • the response function used according to the prediction cycle is changed to the optimum response function based on the actual measurement cycle, so the prediction accuracy of the next tsunami is improved.
  • the response function was corrected based on the measured height of the tsunami obtained with the coastline sea level measuring instrument, so the prediction accuracy of the tsunami height could be improved by learning the response function. Can do.
  • the waveform tends to collapse when the wave height at the coastline is used. Force The height of the beautiful waveform at the intermediate position between the coastline and offshore measured by the intermediate sea level measuring instrument. Since the response function is corrected using, the accuracy of predicting the tsunami magnitude by the response function can be further improved.
  • the occurrence of a tsunami can be detected quickly from the height of the frequency component of the sea surface displacement data from the offshore sea level measuring instrument installed offshore.
  • the tsunami magnitude and overall cycle are predicted based on the wave height and its arrival time in the 90-degree phase, and these tsunami information is provided to tsunami information utilization organizations such as disaster prevention agencies via the data distribution center. Therefore, it is possible to issue appropriate tsunami warning information to residents in a prompt and step-by-step manner.
  • the response function is corrected based on the height of the tsunami measured by the coastline sea level measuring instrument or intermediate sea level measuring instrument. Therefore, we can accurately predict the height of the next tsunami, It can be provided to tsunami information utilization organizations such as Seki, and therefore accurate tsunami warning information can be issued to the residents.
  • FIG. 1 is a diagram showing a schematic configuration of a tsunami information providing system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an offshore sea level measuring instrument in the system.
  • FIG. 3 is a block diagram showing a schematic configuration of a tsunami analysis center in the system.
  • FIG. 4 is a block diagram showing the configuration of the tsunami analysis center.
  • FIG. 5 Waveform diagrams explaining the detection points of the wave height in the system.
  • (A) shows the case of a push wave
  • (b) shows the case of a pulling wave.
  • this tsunami information provision system includes offshore sea surface displacement force Tsunami measurement system 1 for detecting the occurrence of tsunamis, and the wave height (sea level) installed on the coast.
  • the coastline sea level measuring instrument (also called on-site observation equipment) 2 to improve the accuracy of tsunami detection using this tsunami measurement system 1 and further the sea state information (wave information (wave height, (Including wave direction) and supply them to the tsunami measurement system 1 to use the wave oceanographic analysis system 3 that is also used to improve tsunami detection accuracy and the information obtained by these systems 1 and 3
  • public disaster prevention organizations that are information utilization organizations, such as the Japan Meteorological Agency 5, local governments 6, or to the Internet public website (more precisely, a public server) 7.
  • the local government 6 will issue various tsunami warning information, such as evacuation advisories and evacuation instructions, to residents based on
  • the wave oceanographic analysis system 3 includes a coastal observation device 11 such as a sea state meter that measures tide level, wave height, and direction, a wave height meter that measures wave height, and the measurement measured by the coastal observation device 11. It is composed of a wave sea state analysis center (also called a wave sea state analysis device) 13 that receives data via the land base station 12 and performs a predetermined analysis.
  • a coastal observation device 11 such as a sea state meter that measures tide level, wave height, and direction
  • a wave height meter that measures wave height
  • the wave oceanographic analysis system 3 includes a coastal observation device 11 such as a sea state meter that measures wave level, wave height, and direction, a wave height meter that measures wave height, and the measurement measured by the coastal observation device 11. It is composed of a wave sea state analysis center (also called a wave sea state analysis device) 13 that receives data via the land base station 12 and performs a predetermined analysis.
  • the seafloor-type ultrasonic sea level displacement meter or water pressure gauge that can measure the waves in front of the quay in the vicinity of the coastline, or the air installed from the air toward the sea surface.
  • a launching ultrasonic tide gauge an overtopping meter that measures waves over the quay in the vicinity of the coastline (overtopping) (power is connected to multiple electrodes arranged above and below, and the electricity flowing when the waves touch is detected. Measuring height) is used.
  • a tide tide gauge that records the vertical fluctuation of the float in the well is installed at the tide gauge station in the main port near the coastline, and this measurement data can also be used.
  • These measurement data that is, the height data (time-series data) of the waves that actually arrived near the coastline are passed to the tsunami measurement system 1 and the wave oceanographic analysis system 3 for analysis accuracy in each system. Is improved.
  • the tsunami measurement system 1 is measured by the offshore sea level measuring instrument 21 installed in the offshore where the coastline force is relatively far away (for example, the sea area more than 50 km from the coast) and the offshore sea level measuring instrument 21. It is composed of a tsunami analysis center (also called a tsunami analysis device) 23 that receives the sea level displacement data via the land base station 22 and performs a predetermined analysis (the location of this tsunami analysis center is It can be installed anywhere, for example in a base station or data distribution center).
  • a tsunami analysis center also called a tsunami analysis device
  • the offshore sea level measuring instrument 21 for example, a GPS tsunami meter is used.
  • the GPS tsunami meter includes a buoy (floating body) 21a moored offshore in a predetermined sea area, a GPS receiver 21b mounted on the buoy 21a, and a GPS receiver 21b.
  • Wireless communication device 2 lc for transmitting the time-series measurement data received in this way to land base station 22.
  • the measurement data of this GPS tsunami meter is three-dimensional coordinate position data.
  • this data force is also calculated as the amount of sea surface displacement relative to the average sea level at that time, and this sea surface displacement data is transmitted to the base station 22. Is done.
  • the three-dimensional coordinate position data may be transmitted to the base station 22, and the sea level displacement amount may be obtained by the base station 22. Further, as shown in FIG.
  • the tsunami analysis center 23 has a data receiving unit (for example, a wireless communication device, etc.) that receives sea surface displacement data (hereinafter referred to as measurement data) transmitted from the base station 22. 31), the data analysis unit 32 that inputs the measurement data received by the data reception unit 31 and extracts the frequency component of the tsunami, and the data analysis unit 32 Tsunami information output unit that inputs a specified frequency component (for example, waveform data) and outputs predetermined tsunami information, that is, stepped tsunami information, to the data distribution center 4 (output equipment according to the data transmission form is used) 33.
  • a data receiving unit for example, a wireless communication device, etc.
  • measurement data sea surface displacement data transmitted from the base station 22. 31
  • the data analysis unit 32 that inputs the measurement data received by the data reception unit 31 and extracts the frequency component of the tsunami
  • Tsunami information output unit that inputs a specified frequency component (for example, waveform data) and outputs predetermined tsunami information, that is, stepped tsunami information, to the data distribution center
  • the data analysis unit 32 includes a frequency component extraction unit 41 that extracts the frequency component of the tsunami from the measurement data, and an average sea level (for example, from the extracted frequency component data)
  • the sea surface displacement amount for the tsunami (moving average value of one cycle of data) is determined, and the absolute value of the sea surface displacement amount (wave height data) is set in advance to determine whether it is a tsunami.
  • the wave height comparison unit 42 to compare with the threshold value, and when the wave height comparison unit 42 determines that a tsunami exceeds the threshold value, the time-series height data of the frequency component is input to detect the 90-degree phase value, and the maximum The absolute value of the sea level displacement at the extreme value (maximum value or minimum value) that is the amplitude value [In the case of a push wave as shown in Fig.
  • the 1Z4 period detector 43 for detecting the arrival time from 0 to 90 degrees phase (1Z4 period) and multiplying by 4 to predict the total period (1 period) of the tsunami to obtain the predicted period, and this 1Z4 Input the predicted cycle obtained by the cycle detector 43 and select the response function provided in advance according to the installation position of the offshore sea level measuring instrument 21 related to the measurement and for each tsunami cycle and arrival direction (Specifically, the response function related to the tsunami period closest to the predicted period and direction of arrival is selected from the database)
  • the response function selection unit 44, the response function selected by the response function selection unit 44, and the above Based on the sea level displacement in the 90 degree phase, the maximum sea level displacement on the coastline due to the tsunami, that is, the sea level displacement forecasting unit 45 for predicting the tsunami height, and the frequency component force in the 0 to 360 degree phase ( 1 cycle), ie the tsunami
  • the tsunami cycle detector (which can be said to
  • response function change instruction unit 47 that outputs an instruction, and the predicted tsunami height predicted by the sea level displacement prediction unit 45 and the measured data from the coastline sea level measuring instrument 2 are input and compared with each other.
  • a response function correcting unit 48 having a so-called learning function for correcting the response function itself is configured.
  • the sea level displacement (wave height) relative to the average sea level after the tsunami is determined is called the tsunami height
  • this response function correction unit 48 performs correction, for example, at the predicted point
  • the ratio of the measured tsunami height to the predicted tsunami height (for example, the measurement data of the coastline sea level measuring instrument 2 as the predicted point is also obtained) is compared with a preset threshold value, The response function is multiplied by the above ratio to correct the response function.
  • the tsunami information (first report) indicating that the tsunami occurred is output from the wave height comparison unit 42 via the tsunami information output unit 33 to the data distribution center 4, and the tsunami information is output from the 1Z4 period detection unit 43.
  • the output of the tsunami magnitude and its predicted period and the predicted height of the tsunami based on the response function are output to the data distribution center 4 via the output unit 33 as tsunami information (second report), and the tsunami period detector 46
  • the tsunami measurement period is output from the tsunami information output unit 33 to the data distribution center 4 as tsunami information (third report).
  • the predetermined threshold value in the wave height comparing unit 42 for example, the following values are adopted.
  • the deviation is 65cm, and when the water depth is 20m Deviation 55cm is the threshold value, when the water depth is 50m, the deviation 45cm is the threshold value, when the water depth is 100m, the deviation 35cm is the threshold value, and when the water depth is 200m, the deviation 30cm is the threshold value. .
  • the response function is a coefficient for obtaining the other tsunami height by inputting one tsunami height between two points.
  • the tsunami is affected by the shape of the seabed. It is also influenced by the direction of arrival and the tsunami cycle. For this reason, the response function prepared in advance is obtained by simulation for each tsunami arrival direction and tsunami period.
  • the response function is the setting of offshore sea level measuring instrument 21 and coastline sea level measuring instrument 2.
  • the response function corresponding to the offshore sea level measuring instrument 21 is f e
  • the sea level height in the coastline sea level measurement 2 is obtained by substituting the sea level height in the offshore sea level measuring instrument 21.
  • an intermediate sea level instrument is installed in the middle of both sea level instruments 21 and 2, and the response function of this intermediate sea level instrument to coastline sea level instrument 2 is f.
  • the frequency component extracted by the frequency component extraction unit 41 is input to the wave height comparison unit 42, where the sea level displacement is compared with the threshold value according to the water depth at the location where the offshore sea level measuring instrument 21 is installed. If it exceeds the threshold, it is determined (recognized) as a tsunami (first recognition step), and the fact that a tsunami has occurred is output to the data distribution center 4 as the first report.
  • the data distribution center 4 distributes the tsunami information to the Japan Meteorological Agency 5, the local government 6, the public website 7, etc., and the tsunami warning information corresponding to the power of each related department such as To be emitted.
  • the frequency component is input to the 1Z4 period detection unit 43, where the absolute value (maximum amplitude value) of the extreme value of the waveform of the sea level displacement at the 90-degree phase is detected (recognized).
  • the arrival time from 0 to 90 degrees and the tsunami height at the 90 degrees phase are detected (recognized), and the arrival time is multiplied by 4 to obtain the predicted tsunami period.
  • the predicted period is input to the response function selection unit 44, where it is determined according to the sea area where the offshore sea level instrument 21 is installed and according to a plurality of tsunami periods and directions of arrival.
  • the seafloor topographic force prepared for each point
  • the optimum response function is selected from the multiple response functions for determining the wave height at other points. Specifically, the response function with the tsunami cycle closest to the prediction cycle is selected, and the one with the closest arrival direction is selected, but the arrival direction is At the clear stage, the response function that predicts the highest tsunami height at another point is selected.
  • the response function selected by the response function selection unit 44 is input to the sea level displacement prediction unit 45, where the response function and the tsunami height at the offshore sea level measurement position in the 90-degree phase are calculated. Then, the maximum sea level displacement, that is, the height of the tsunami when the tsunami reaches the coastline, which is the predicted point (other points) by the response function, is accurately predicted (second recognition step).
  • the frequency component is input to the tsunami period detection unit 46, where the tsunami measurement period, which is the arrival time from 0 to 360 degrees phase, is detected. (Third recognition step).
  • the actual measurement period and the predicted period are input to the response function change instruction unit 47 and are currently used! /, Closer to the actual measurement period than the tsunami period of the response function! It is determined whether or not a response function exists in the database. If there is, a change instruction is output to the response function selection unit 44 so as to use the response function. Of course, if the arrival direction is already divided, it is selected appropriately according to the arrival direction (response function selection step).
  • the predicted magnitude of the tsunami and the height of the tsunami actually measured by the coastline sea level measuring instrument 2 are input to the response function correction unit 48, where the ratio between the two is obtained, The ratio is compared with a preset threshold value. If the ratio is equal to or greater than the threshold value, the response function is multiplied by the ratio to perform correction (response function correction step).
  • the first report based on the threshold value indicates that the tsunami size is not divided, but the occurrence of the tsunami is detected immediately and the data disclosure center Since the information is distributed to the Japan Meteorological Agency and local governments, these information utilization organizations can provide tsunami warning information such as evacuation advisories to residents at an early stage. Thereby, residents can be evacuated safely.
  • the predicted magnitude of the tsunami based on the 90-degree phase value can be distributed, so local governments issuing evacuation advisories etc., based on this predicted magnitude, hazard maps of autonomous regions, etc. It is possible to easily determine how much evacuation should be performed using.
  • one period is predicted based on the time of 1Z4 period that is 90 degrees phase, and an appropriate response function is selected based on the predicted period, and the wave height at 90 degrees phase is selected for this response function. Since the height at the coastline is predicted by inputting, tsunami warning information can be issued promptly and appropriately.
  • the second and third waves are said to be larger than the first tsunami, and if the first wave alarm is issued promptly and appropriately, the second and third waves It can deal more effectively with three tsunamis.
  • the response function is prepared as a database. However, since there is no component force whether or not the force is actually appropriate, the response function itself is corrected when it is determined that it is not appropriate (learning). Like to do. Therefore, it is possible to make the tsunami warning information more appropriate because the accuracy is improved when predicting the arrival time of the tsunami on the coastline from the second wave and the height of the tsunami.
  • the first report shows that a tsunami wave that is judged to be a tsunami has arrived
  • the second report shows that the tsunami peak or valley Since it has passed and the time of 1Z4 period is divided, it is possible to predict the magnitude of the tsunami and the arrival time of the next tsunami, such as the second and third waves, and use the response function
  • the height of the tsunami at other points can be predicted.
  • the third report shows the tsunami measurement period, if necessary, the response function can be corrected to improve the prediction accuracy of the tsunami height at other points.
  • the GPS tsunami meter is used as the offshore sea level measuring instrument in the above-described embodiment, for example, a seafloor type ultrasonic displacement measuring instrument or the like can be used.
  • this ultrasonic displacement measuring instrument it is already a component of Naufus (Nationwide Ocean Wave Information Network for Ports and HArbourS) already built in Japan.
  • Naufus Nemwide Ocean Wave Information Network for Ports and HArbourS
  • the measurement data can be received via the public network.
  • This Naufus was constructed as a seafloor-type wave meter network in shallow coastal areas (up to a depth of about 50 m), and intermittently used for ocean state measurements and wave height measurements, such as wave direction spectral observation and offshore. The tide level is being observed.
  • wave sensors installed on the sea floor use pressure sensors (hydraulic gauges) or ultrasonic sensors, and ultrasonic sensors using the Doppler effect are known.
  • the seafloor-type supersonic displacement measuring instrument emits sensor-force ultrasonic waves installed on the seabed toward the sea surface, receives reflected waves, and measures sea surface fluctuations. On land, data transmission through submarine cables or sonic communication through seawater is performed.
  • this Naufus is a combination of the above-described wave oceanographic analysis system and data distribution center. It has an integrated function as part of it.
  • the correction of the response function is performed by the ratio of the measurement data set between two points. Since there are a plurality of measuring instruments, a line segment connecting the two points is as much as possible in the arrival direction. It is desirable to compare between instruments that are close together. For example, as shown by the broken line in Fig. 1, it is measured by an intermediate sea level measuring instrument 51 installed in the vicinity of the coast between the coast line and the offshore sea level measuring instrument (for example, the middle part up to 50 km of coastline force). You can use the height of the wave. In this case, first, the response function f of the offshore sea level measuring instrument 21 corresponding to the intermediate sea level measuring instrument 51 is used.
  • the wave height at the intermediate sea level measuring instrument 51 is obtained, and then the wave height at the coast line sea level measuring instrument 2 is obtained using the response function f of the intermediate sea level measuring instrument 51 corresponding to the coast line sea level measuring instrument 2.
  • the intermediate sea level measuring instrument 51 the above-mentioned seafloor-type ultrasonic sea level displacement meter or GPS tsunami measuring instrument may be used, and as shown by a one-dot chain line in FIG.
  • the seafloor-type ultrasonic sea level displacement meter the one installed in Naufus (coastal observation equipment 11) may be used. Therefore, as data for correcting the response function, the data measured by the coastal observation instrument 11 or the intermediate sea level measuring instrument 51 can be used in addition to the coastline sea level measuring instrument 2.
  • the direction of arrival of the tsunami may be determined separately from the determined epicenter since the installation positions of the measuring instruments 11, 21, 51 are known. Also, use the wave direction obtained by measuring instruments 11, 51 that can measure the wave direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Hydrology & Water Resources (AREA)
  • Computing Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 沖合海面計測器(21)により計測された海面変位データを津波解析センター(23)に送り、ここで波の周波数成分を抽出し、この抽出された周波数成分における波の高さが所定の閾値を超えたときに津波であると判断し、周波数成分の90度位相における波高から津波の大きさを予測し、これら判断および予測時点で、津波の発生および津波の大きさを津波情報として出力するようになし、さらに90度位相までの到達時間から津波の周期を予測し、この予測周期を津波情報として出力するようになし、そして上記出力された津波情報をデータ配信センター4を介して避難対象地域の自治体(6)などに提供するもので、住民に、迅速に且つ段階的に最適な津波警戒情報を発することができる。

Description

明 細 書
津波情報提供方法および津波情報提供システム
技術分野
[0001] 本発明は、海面の変位を計測して得られた津波情報を防災用として該当地域に提 供し得る津波情報提供方法および津波情報提供システムに関する。
背景技術
[0002] 最近、海面の変位量力 津波成分を抽出して津波を検知する装置として、 GPS受 信器をブイに搭載して津波を検知する GPS津波計が提案されている (例えば、特開
2001— 147263および特開 2001— 281323参照)。
[0003] そして、この GPS津波計にっ 、ては、高精度計測技術が適用可能な沿岸からでき るだけ遠方の海域に設置しておき、津波をできるだけ早い時点で検知して、住民を 安全に避難させ得るように考慮されて ヽる。
発明の開示
発明が解決しょうとする課題
[0004] ところで、津波を検知する目的は、沿岸地域への避難勧告などの津波警戒情報を 発し、住民を安全に避難させることにあるが、津波が検知された場合、住民に、どの 時期に且つどのような津波警戒情報を発信すべきかの具体的な提案がなされていな い。
[0005] そこで、本発明は、津波を検知した場合、迅速に且つ段階的に最適な津波警戒 情報を提供し得る津波情報提供方法および津波情報提供システムを提供することを 目的とする。
課題を解決するための手段
[0006] 上記課題を解決するため、本発明の請求項 1に係る津波情報提供方法は、
沖合いに設置された沖合海面計測器により計測された海面変位データ力 波の周 波数成分を抽出するステップと、
この抽出された周波数成分における波の高さの絶対値が所定の閾値を超えたとき に津波であると認識する第 1認識ステップと、 上記周波数成分の 90度位相における波高データ力も津波の大きさを認識する第 2 認識ステップとを具備し、
且つ上記第 1および第 2認識ステップの各認識時点にて、津波の発生および津波 の大きさを津波情報として出力する方法である。
[0007] また、請求項 2に係る津波情報提供方法は、請求項 1に記載の津波情報提供方法 の第 2認識ステップにお!/、て、
0度力も 90度位相までの到達時間を認識するとともに、当該到達時間に基づき津 波の周期を予測し、
この津波の予測周期を津波情報として出力する方法である。
[0008] また、請求項 3に係る津波情報提供方法は、請求項 2に記載の津波情報提供方法 において、
0度から 360度位相までの到達時間を認識する第 3認識ステップを具備し、 且つ当該第 3認識ステップの認識時点にて、その到達時間である津波の実測周期 を津波情報として出力する方法である。
[0009] また、請求項 4に係る津波情報提供方法は、請求項 2に記載の津波情報提供方法 の第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での津波の高さを予測する海面変位量 予測ステップを具備し、
且つこの海面変位量予測ステップによる予測時点にて、その予測高さを津波情報 として出力する方法である。
[0010] また、請求項 5に係る津波情報提供方法は、請求項 2に記載の津波情報提供方法 の第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での最大海面変位量である津波の高さ を予測する海面変位量予測ステップを具備し、 さらに 0度から 360度位相までの到達時間である津波の実測周期を検出するととも に、上記選択された応答関数以外にこの実測周期に近い津波周期の応答関数が存 在する場合には当該応答関数に変更し、
且つ海岸線付近に設置された海岸線海面計測器で得られた津波の実測高さと上 記海面変位量予測ステップで得られた予測高さとを比較し、この比較結果に基づき 上記選択された応答関数を補正する方法である。
[0011] また、請求項 6に係る津波情報提供方法は、請求項 2に記載の津波情報提供方法 の第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での最大海面変位量である津波の高さ を予測する海面変位量予測ステップを具備し、
さらに 0度から 360度位相までの到達時間である津波の実測周期を検出するととも に、上記選択された応答関数以外にこの実測周期に近い津波周期の応答関数が存 在する場合には当該応答関数に変更し、
且つ海岸線と沖合海面計測器との中間位置に設置された中間海面計測器にて得 られた津波の実測高さと上記海面変位量予測ステップで得られた予測高さとを比較 し、この比較結果に基づき上記選択された応答関数を補正する方法である。
[0012] さらに、本発明の請求項 7に係る津波情報提供システムは、
沖合海面計測器および海岸線海面計測器力 の海面変位データを入力して津波 を解析するための津波解析センターと、この津波解析センターで得られた津波情報 を受け取り情報活用機関などに配信するためのデータ配信センターとが具備され、 上記津波解析センターに、
上記海面変位データから波の周波数成分を抽出する周波数成分抽出部と、 この周波数成分抽出部で抽出された波の高さと予め設定された閾値とを比較する とともに、波の高さが閾値を超えている場合に、津波を検知した旨の津波情報を出力 する波高比較部と、
この波高比較部で津波と判断された場合にその周波数成分を入力して 90度位相 値を検出し、その波高の絶対値力も津波の大きさを求めるとともに 0〜90度位相まで の到達時間を検出して津波の予測周期を求めるための 1Z4周期検出部と、 この 1Z4周期検出部で検出された予測周期を入力して予め沖合海面計測器の設 置位置に応じて且つ複数の津波周期に応じて設けられて海底地形力 波高を求め るための応答関数を選択する応答関数選択部と、
この応答関数選択部で選択された応答関数に基づき当該津波による海岸線での 最大海面変位量を求めて津波の高さを予測するとともにこの予測高さを津波情報と して出力する海面変位量予測部と、
上記周波数成分力もさらに 0〜360度位相までの到達時間である津波の実測周期 を検出する津波周期検出部とが具備されたものである。
[0013] また、請求項 8に係る津波情報提供システムは、請求項 7に記載の津波情報提供シ ステムの津波解析センターに、
津波周期検出部で検出された実測周期と 1Z4周期検出部で求められた予測周期 とを入力して選択された応答関数以外に上記実測周期に近い津波周期の応答関数 が存在する場合には当該応答関数に変更の指示を出力する応答関数変更指示部と 海面変位量予測部で得られた津波の予測高さと海岸線海面計測器で得られた津 波の実測高さとを入力して両者を比較するとともにこの比較結果に応じて応答関数を 補正する応答関数補正部とが、
さらに具備されたものである。
発明の効果
[0014] 上記請求項 1の構成によると、第 1認識ステップにより津波発生の情報をいち早く防 災機関などの津波情報活用機関に提供し得るので、住民を早期に避難させることが できる。また、第 2認識ステップにより、 90度位相における早い時期に、津波の大きさ を予測することができるので、津波情報活用機関は、ハザードマップを参照して、ど の程度の避難を行えばよいかなどの目安を早期に得ることができる。すなわち、津波 の情報活用機関などから、住民に、迅速且つ段階的に適切な津波警戒情報を発す ることがでさる。 [0015] また、上記請求項 2の構成によると、第 2認識ステップにおける 90度位相までの到 達時間にて津波周期を予測するようにしているので、全体周期(1周期分)を計測す る場合よりも、迅速に、津波の海岸線への到達時刻を求めて、精度が良い津波情報 を提供することができる。
[0016] また、請求項 4の構成によると、海底地形に応じて波高を求め得る応答関数を用い て海岸線での津波の高さを予測するとともに、この予測高さを津波情報として出力す るようにしたので、防災機関などの津波情報活用機関ではハザードマップと照らし合 わせてさらに具体的な避難指示を行うための情報を得ることができる。
[0017] また、請求項 5の構成によると、予測周期に応じて用いた応答関数を、実測周期に 基づき最適な応答関数に変更するようにしたので、次に到来する津波の予測精度を 向上させることができるとともに、海岸線海面計測器にて求められた津波の実測高さ に基づき応答関数を補正するようにしたので、応答関数の学習により、津波の高さの 予測精度の向上を図ることができる。
[0018] また、請求項 6の構成によると、海岸線での波高を用いると波形が崩れがちである 力 中間海面計測器により計測された海岸線と沖合との中間位置における綺麗な波 形の高さを用いて応答関数を補正するようにしたので、応答関数による津波の大きさ の予測精度の一層の向上を図ることができる。
[0019] さらに、請求項 7および請求項 8の構成によると、沖合いに設置された沖合海面計 測器から海面変位データの周波数成分の高さから迅速に津波の発生を検知するとと もに、 90度位相における波の高さおよびその到達時間により、津波の大きさおよび全 体周期を予測し、これらの津波情報をデータ配信センターを介して防災機関などの 津波情報活用機関に提供するようにしたので、住民に、迅速且つ段階的に適切な津 波警戒情報を発することができる。
[0020] また、予測周期に基づき応答関数を用いて海岸線での津波の高さを予測するよう にしているので、より、精度の良い津波警戒情報を提供することができる。
[0021] し力も、津波の実測周期に基づき応答関数を適正なものに変更するとともに、海岸 線海面計測器または中間海面計測器で計測された津波の高さに基づき応答関数を 補正するようにしているので、次に到来する津波の高さを精度良く予測して、防災機 関などの津波情報活用機関に提供することができ、したがって精度の良い津波警戒 情報を住民に発することができる。
図面の簡単な説明
[0022] [図 1]本発明の実施の形態に係る津波情報提供システムの概略構成を示す図である
[図 2]同システムにおける沖合海面計測器の概略構成を示す図である。
[図 3]同システムにおける津波解析センターの概略構成を示すブロック図である。
[図 4]同津波解析センターの構成を示すブロック図である。
[図 5]同システムでの波高の検出箇所を説明する波形図で、 (a)は押し波の場合を示 し、(b)は引き波の場合を示す。
発明を実施するための最良の形態
[0023] 以下、本発明の実施の形態に係る津波情報提供方法および津波情報提供システ ムを、図面に基づき説明する。
[0024] まず、津波情報提供システムの全体構成にっ 、て説明する。
[0025] この津波情報提供システムは、図 1に示すように、沖合 、の海面変位力 津波の発 生を検知するための津波計測システム 1と、海岸に設置されて波の高さ (海面)を計 測してこの津波計測システム 1による津波の検知精度の向上を図るための海岸線海 面計測器 (オンサイト観測機器ともいう) 2と、さらには沿岸における海象情報 (波浪情 報 (波高、波向)も含む)を得るとともにこれらを津波計測システム 1に供給してやはり 津波の検知精度の向上に利用される波浪海象解析システム 3と、これら各システム 1 , 3により得られた情報を、情報活用機関である公的防災機関、例えば気象庁 5、自 治体 6に、またはインターネットの公開用ホームページ(正確には、公開用サーバで ある) 7に配信するためのデータ配信センター 4とから構成されている。勿論、少なくも と、自治体 6からは、これらの情報に基づき、住民に津波発生による避難勧告、避難 指示などの各種の津波警戒情報が発せられる。
[0026] 以下、津波情報提供システムについて説明するが、まず、波浪情報を提供する波 浪海象解析システム 3について説明し、次に、海岸線海面計測器 2および本発明の 要旨となる津波計測システム 3について説明する。 [0027] 上記波浪海象解析システム 3は、潮位、波高、波向などを計測する海象計、波浪高 さを計測する波高計などの沿岸観測機器 11と、この沿岸観測機器 11で計測された 計測データを陸上の基地局 12を介して受け取り、所定の解析を行う波浪海象解析セ ンター (波浪海象解析装置とも言える) 13とから構成されている。
[0028] 上記海岸線海面計測器 2としては、海岸線近傍のうち岸壁前面の波を計測し得る 海底設置型の超音波式海面変位計や水圧計、または空中から海面に向けて設置さ れた空中発射型超音波式潮位計、海岸線近傍のうち岸壁を乗り越えた波 (越波)を 計測する越波計 (上下に配した複数の電極に電源が接続され、波が触れることにより 流れる電気を検出して高さを計測するもの)が用いられる。また、海岸線近傍のうち主 要港湾に設けられた検潮所には、井戸内のフロートの上下変動を記録するフース型 検潮器が設置されており、この計測データを用いることもできる。これらの計測データ 、すなわち実際に海岸線近傍に到達した波の高さデータ(時系列のデータ)が、上記 津波計測システム 1と波浪海象解析システム 3とに渡されて、各システムでの解析精 度の向上が図られる。
[0029] 次に、上記津波計測システム 1は、海岸線力 比較的遠い沖合い (例えば、海岸か ら 50km以遠の海域)に設置された沖合海面計測器 21と、この沖合海面計測器 21 で計測された海面変位データを陸上の基地局 22を介して受け取り、所定の解析を 行う津波解析センター (津波解析装置とも言える) 23とから構成されて 、る(この津波 解析センターについては、その設置場所はどこにあってもよぐ例えば基地局、デー タ配信センターなどに設置してもよ 、)。
[0030] 上記沖合海面計測器 21としては、例えば GPS津波計が用いられる。
[0031] この GPS津波計は、図 2に示すように、所定海域の沖合いに係留されたブイ (浮体 ) 21aと、このブイ 21aに搭載された GPS受信機 21bと、この GPS受信機 21bにて受 信された時系列の計測データを陸上の基地局 22に送信するための無線通信装置 2 lcとから構成されている。この GPS津波計での計測データは、三次元座標位置デー タであるが、ここで、このデータ力もその時々の平均海面に対する海面変位量が求め られて、この海面変位データが基地局 22に送信される。なお、三次元座標位置デー タを基地局 22に送信し、この基地局 22で海面変位量を求めるようにしてもよい。 [0032] また、上記津波解析センター 23には、図 3に示すように、基地局 22から送信された 海面変位データ(以下、計測データという)を受信するデータ受信部(例えば、無線 通信装置、データのバッファ部など力もなる) 31と、このデータ受信部 31にて受信さ れた計測データを入力して津波の周波数成分を取り出すデータ解析部 32と、このデ ータ解析部 32で取り出された周波数成分 (例えば、波形データ)を入力して所定の 津波情報、すなわち段階的な津波情報をデータ配信センター 4に出力する津波情報 出力部 (データの送信形態に応じた出力機器が用いられる) 33とが具備されている。
[0033] そして、上記データ解析部 32は、図 4に示すように、計測データから津波の周波数 成分を抽出する周波数成分抽出部 41と、この抽出された周波数成分データから平 均海面 (例えば、津波 1周期程度のデータの移動平均値)に対する海面変位量が求 められ、この海面変位量の高さの絶対値 (波の高さデータ)と津波かどうかの判断を 行うために予め設定された閾値と比較する波高比較部 42と、この波高比較部 42で 閾値を超えて津波と判断された場合にその周波数成分の時系列高さデータを入力し て 90度位相値を検出し、最大振幅値である極値 (極大値または極小値)での海面変 位量の絶対値 [図 5の(a)に示すように押し波の場合には波の頂上、(b)に示すよう に引き波の場合には波の谷底の位置を示す]から津波の大きさ(規模)を求めるととも に 0〜90度位相まで(1Z4周期分)の到達時間を検出し 4倍して津波の全体周期(1 周期)を予測して予測周期を得るための 1Z4周期検出部 43と、この 1Z4周期検出 部 43で求められた予測周期を入力して予め計測に係る沖合海面計測器 21の設置 位置に応じて且つ複数の津波周期および到来方向ごとに応じて設けられている応答 関数を選択する (具体的には、予測周期と到来方向に最も近い津波周期に係る応答 関数がデータベースの中から選択される)応答関数選択部 44と、この応答関数選択 部 44で選択された応答関数と上記 90度位相における上記海面変位量に基づき当 該津波による海岸線での最大海面変位量、つまり津波高さを予測する海面変位量予 測部 45と、上記周波数成分力もさらに 0〜360度位相まで(1周期)の到達時間すな わち津波の実測周期を検出する津波周期検出部(1周期検出部とも言える) 46と、こ の津波周期検出部 46で検出された津波の実測周期および上記 1Z4周期検出部 4 3で求められた予測周期を入力して比較するとともにこの比較結果に基づき現在選 択されて 、る応答関数が適正である力否かが判断され、そして現在の応答関数よりも 実測周期に近い津波周期の応答関数が存在すると判断された場合には、この応答 関数に変更する指示を出力する応答関数変更指示部 47と、上記海面変位量予測 部 45で予測された予測津波高さと海岸線海面計測器 2からの計測データを入力して 両者を比較するとともにこの比較結果に基づき応答関数そのものを補正するための、 所謂、学習機能を有する応答関数補正部 48とから構成されている。なお、津波と判 断された後の平均海面に対する海面変位量 (波の高さ)を津波高さと呼ぶものとし、こ の応答関数補正部 48にて補正を行う場合には、例えば予測地点における予測津波 高さに対する実測津波高さ (例えば予測地点としての海岸線海面計測器 2の計測デ 一タカも求めたもの)の比が、予め設定された閾値と比較されて、閾値以上の場合に 、応答関数に上記比が乗算され、当該応答関数が補正される。
[0034] そして、上記波高比較部 42から津波情報出力部 33を介して津波が発生した旨の 津波情報 (第 1報)がデータ配信センター 4に出力され、また 1Z4周期検出部 43から 津波情報出力部 33を介して津波の大きさおよびその予測周期並びに応答関数に基 づく津波の予測高さが津波情報 (第 2報)としてデータ配信センター 4に出力され、さ らに津波周期検出部 46から津波情報出力部 33を介して津波の実測周期が津波情 報 (第 3報)としてデータ配信センター 4に出力される。
[0035] ところで、上記波高比較部 42における所定の閾値としては、例えば下記のような値 が採用される。
[0036] 津波を計測するための沖合海面計測器の設置場所での深さ (以下、水深と!/、う)が 10mの場合には偏差 65cmが閾値とされ、水深が 20mの場合には偏差 55cmが閾 値とされ、水深が 50mの場合には偏差 45cmが閾値とされ、水深が 100mの場合に は偏差 35cmが閾値とされ、水深が 200mの場合には偏差 30cmが閾値とされる。
[0037] また、応答関数とは、ある 2点間の一方の津波高さの入力により、他方の津波高さを 求めるための係数であり、津波は海底の形状の影響を受けることから、津波の到来方 向と津波の周期の影響も受ける。このため、事前に用意される応答関数は、津波の 到来方向および津波周期別にシミュレーションして求められる。
[0038] ここでは、応答関数の 2点間とは、沖合海面計測器 21と海岸線海面計測器 2の設 置地点であり、例えば沖合海面計測器 21に対応する応答関数を feとすれば、この沖 合海面計測器 21における海面高さを代入することにより、海岸線海面計測 2での海 面高さを予測することができる。例えば、両海面計測器 21, 2の途中に中間海面計 測器を設置し、この中間海面計測器の海岸線海面計測器 2に対する応答関数を f と
a し、また沖合海面計測器 21の中間海面計測器に対する応答関数を f とし、さらに各
b
海面計測器が一直線上に存在すると仮定すれば、 f =f x f の関係が成立する。
c b a
[0039] 次に、上記津波情報提供システムにおける津波情報の提供方法を概略的に説明 する。
[0040] すなわち、基地局 22を介して沖合海面計測器 21からの計測データ (海面変位デ ータである)が津波解析センター 23に入力されている状態で、例えば津波が到来し た場合、この計測データから周波数成分抽出部 41で周波数成分が抽出される (周波 数成分抽出ステップ)。
[0041] この周波数成分抽出部 41で抽出された周波数成分は波高比較部 42に入力され、 ここで、海面変位量と沖合海面計測器 21の設置場所での水深に応じた閾値とが比 較され、閾値を超えて 、る場合には津波であると判断 (認識)されて (第 1認識ステツ プ)、津波が発生した旨が第 1報としてデータ配信センター 4に出力される。
[0042] そして、このデータ配信センター 4から、気象庁 5、自治体 6、公開用ホームページ 7 などにその津波情報が配信され、それぞれの関係部所力 例えばノ、ザードマップに 応じた津波警戒情報が住民に発せられる。
[0043] 次に、周波数成分が 1Z4周期検出部 43に入力され、ここで、 90度位相における 海面変位量の波形の極値の絶対値 (最大振幅値)力 津波の大きさが検出 (認識)さ れるとともに、 0〜90度位相までの到達時間と 90度位相における津波高さが検出(認 識)され、そしてこの到達時間が 4倍されることにより津波の予測周期が求められる。
[0044] 次に、この予測周期が応答関数選択部 44に入力されて、ここで、当該沖合海面計 測器 21が設置された海域に応じて且つ複数の津波周期と到来方向に応じてそれぞ れ準備されている海底地形力 他点の波高を求めるための複数の応答関数の中か ら最適な応答関数が選択される。具体的には、予測周期に最も近い津波周期の応 答関数が選択され、さらに到来方向が最も近いものが選択されるが、到来方向が不 明な段階では他点での津波高さを最も高く予測する応答関数が選択される。
[0045] そして、上記応答関数選択部 44で選択された応答関数が海面変位量予測部 45に 入力されて、ここで、応答関数と上記 90度位相における沖合海面計測位置での津波 高さから、応答関数による予測地点 (他点)である海岸線に津波が到達した場合の最 大海面変位量、すなわち津波の高さが精度良く予測される (第 2認識ステップ)。
[0046] この第 2認識ステップで求められた沖合海面計測位置での津波の大きさ、津波の予 測周期および海岸線での津波の予測高さが、第 2報として、データ配信センター 4を 介して、気象庁 5、自治体 6、公開用ホームページ 7に配信される。
[0047] 勿論、第 2報においても、それが配信された時点に応じて、各関係部所から住民に 、避難などの最も適切な津波警戒情報が発せられる。
[0048] 次に、 90度位相値が検出された後、津波周期検出部 46に周波数成分が入力され て、ここで、 0〜360度位相までの到達時間である津波の実測周期が検出される(第 3認識ステップ)。
[0049] そして、この実測周期と上記予測周期とが応答関数変更指示部 47に入力されて、 現在用いられて!/、る応答関数の津波周期よりも実測周期により近!、津波周期を有す る応答関数がそのデータベースに存在するか否かが判断され、存在する場合には、 その応答関数を用いるように変更指示が応答関数選択部 44に出力される。勿論、到 来方向も既に分力つていれば、到来方向により適切に選択される (応答関数選択ス テツプ)。
[0050] また、上記津波周期検出部 46で検出された津波の実測周期に基づき変更した応 答関数から求めた海岸線での津波の予測高さが求められると (第 3認識ステップ)、こ の実測周期と予測高さ (第 2報での津波の予測高さに対する修正値として)が第 3報 としてデータ配信センター 4を介して、気象庁 5、自治体 6、公開用ホームページ 7に 配信される。なお、第 3報では、津波の予測高さを配信せずに実測周期だけを配信 するようにして、この実測周期に基づき変更した応答関数を、次に到来する津波から 用いるようにしてもよい。
[0051] さらに、上記津波の予測大きさおよび海岸線海面計測器 2にて実測された津波の 高さが応答関数補正部 48に入力され、ここで、両者の比が求められるとともに、この 比と予め設定されている閾値とが比較され、閾値以上である場合には、応答関数に 上記比が乗算されて補正が行われる (応答関数補正ステップ)。
[0052] なお、応答関数が変更または補正された場合には、次に到来する津波による海岸 線での津波高さの検知に適用される。
[0053] 上述した津波情報提供システムおよび津波情報提供方法によると、閾値に基づく 第 1報により、津波の大きさは分力もないが、津波の発生をいち早く検知してデータ 公開センターを介して、気象庁、自治体などに配信するようにしているので、これら情 報活用機関は、住民に対する避難勧告などの津波警戒情報を早期に提供すること ができる。これにより、住民を安全に避難させることができる。
[0054] また、第 2報では、 90度位相値による津波の予測大きさを配信することができるため 、避難勧告などを発する自治体は、この予測大きさに基づき、自治区域のハザードマ ップなどを用いて、どの程度の避難にすべきかの判断を容易に行うことができる。
[0055] すなわち、自治体などから、住民に、迅速且つ段階的に適切な津波警戒情報を発 することができる。
[0056] 詳しく説明すると、沖合海面計測器での計測データに基づき沿岸での津波の高さ を精度良く予測する場合には、応答関数を用いるのが望ましいが、この応答関数は 津波周期により異なり、津波を 1周期分計測しょうとすると津波が沿岸に近づいてしま い、迅速に、津波警戒情報を発することができなくなる場合が生じる。
[0057] そのため、 90度位相である 1Z4周期の時間に基づき 1周期分を予測するとともに、 この予測周期に基づき適切な応答関数を選択し、そしてこの応答関数に 90度位相 における波の高さを入力して海岸線での高さを予測するようにしたので、迅速に且つ 適切な津波警戒情報を発することができる。
[0058] 特に、津波の第 1波よりも第 2波、第 3波の規模のほうが大きいと言われており、第 1 波に対する警報が迅速に且つ適切に発せられれば、第 2波や第 3波の津波に対して も、より、効果的に対処することができる。
[0059] また、 90度位相(1Z4周期分)における波の高さを用いて津波の大きさを予測して いるため、 1周期分の計測に比べて正確さは劣るが、応答関数を用いることにより、で きるだけ予測が正確になるように考慮されて 、る。 [0060] また、応答関数はデータベースとして準備されて 、るが、実際に適正なもの力否か が分力もないため、適正でないと判断された場合には、応答関数そのものを補正 (学 習)するようにしている。したがって、第 2波以降の津波の海岸線への到達時刻およ び津波の高さなどを予測する場合にその精度が向上するため、津波警戒情報を、よ り適正なものにすることができる。
[0061] 上記システムを簡単に説明すれば、第 1報により、津波と判断される高さの波が到 来していることが分かるとともに、第 2報により、津波の山部または谷部が通過したこと およびその 1Z4周期の時間が分力るため、津波の大きさおよび第 2波、第 3波など 続けて来る次の津波の到来時刻を予測することができ、また応答関数を用いることに より、他点での津波の高さを予測することができる。さらに、第 3報により、津波の実測 周期が分かるので、必要であれば、応答関数を補正して他点での津波の高さの予測 精度を高めることができる。
[0062] ところで、上記実施の形態にお!、ては、沖合海面計測器として、 GPS津波計を用 いたが、例えば海底設置型の超音波式変位計測器などが用いることもできる。この超 音波式変位計測器力もの計測データを用いる場合には、既に、 日本で構築されてい るナウファス(全国港湾海洋波浪情報網: NOWPHAS : Nationwide Ocean Wave infor mation network for Ports and HArbourS)の構成機器として設置されている計測器を 用いるとともに、公開用ネットワークを介してその計測データを受け取ることもできる。
[0063] このナウファスは、沿岸浅海域 (水深 50m程度まで)における海底設置式波浪計ネ ットワークとして構築され、断続的に、海象計測、波高計測として波浪の方向スぺタト ル観測や沖合での潮位観測を行っているものである。また、海底に設置される波浪 計は圧力センサ (水圧計)または超音波センサが用いられており、この超音波センサ としては、ドップラー効果を利用したものが知られている。
[0064] なお、海底設置型の超音式変位計測器は、海底に設置したセンサ力 超音波を海 面に向けて発射し、反射波を受信して海面の変動を計測するものであり、陸上とは海 底ケーブルを介してのデータ伝送または海水を媒介しての音波通信によるデータ伝 送が行われるものである。
[0065] なお、このナウファスは、上述した波浪海象解析システムとデータ配信センターとを 一体化した機能を、その一部として有するものである。
[0066] また、沖合海面計測器として、 GPS津波計を用いる代わりに、上述したナウファスで 設置されている海底設置型超音波式変位計測器力 の計測データを利用して津波 を検知することちできる。
[0067] また、応答関数の補正は、上述したように、設定した 2点間の計測データの比で行う 力 各計測器は複数あるため、できるだけ、 2点を結ぶ線分が、到来方向に近い計測 器同士で比較するのが望ましい。例えば、図 1の破線で示すように、海岸線と沖合海 面計測器との間の沿岸近傍 (例えば、海岸線力 50kmまでの間の中間部)に設置さ れた中間海面計測器 51により計測された波の高さを用いるようにしてもよ 、。この場 合、まず、中間海面計測器 51に対応する沖合海面計測器 21の応答関数 f を用いて
b
、中間海面計測器 51での波高を求め、次に海岸線海面計測器 2に対応する中間海 面計測器 51の応答関数 f を用いて海岸線海面計測器 2での波高が求められ、最終
a
的には、 f =f X f f
c b aの関係から、すなわち f
aと bとの値から海岸線での津波高さが求め られる。
[0068] このように中間海面計測器 51による波の高さを用いることにより、海岸線まで津波 が到達すると波が崩れて応答関数の補正が難しくなるが、海岸線力 離れると波形も 綺麗になるため、補正のための比較が容易となる。
[0069] なお、この中間海面計測器 51としては、上述した海底設置型超音波式海面変位計 または GPS津波計測器を用いてもよぐまた、図 1の一点鎖線にて示すように、この海 底設置型超音波式海面変位計にっ 、ては、ナウファスで設置されて 、るもの (沿岸 観測機器 11)を利用してもよい。したがって、応答関数を補正する際のデータとして は、海岸線海面計測器 2以外に、沿岸観測機器 11または中間海面計測器 51での計 測データを用いることができる。
[0070] また、上述の説明において、津波の到来方向は、各計測器 11, 21, 51の設置位 置が既知であることから、別途、求められた震源地から求めるようにしてもよぐまた波 向を計測可能な計測器 11, 51にて求められた波向を用いてもょ 、。

Claims

請求の範囲
[1] 沖合いに設置された沖合海面計測器により計測された海面変位データ力 波の周 波数成分を抽出するステップと、
この抽出された周波数成分における波の高さの絶対値が所定の閾値を超えたとき に津波であると認識する第 1認識ステップと、
上記周波数成分の 90度位相における波高データ力も津波の大きさを認識する第 2 認識ステップとを具備し、
且つ上記第 1および第 2認識ステップの各認識時点にて、津波の発生および津波 の大きさを津波情報として出力することを特徴とする津波情報提供方法。
[2] 第 2認識ステップにおいて、 0度から 90度位相までの到達時間を認識するとともに、 当該到達時間に基づき津波の周期を予測し、
この津波の予測周期を津波情報として出力することを特徴とする請求項 1に記載の 津波情報提供方法。
[3] 0度から 360度位相までの到達時間を認識する第 3認識ステップを具備し、
且つ当該第 3認識ステップの認識時点にて、その到達時間である津波の実測周期 を津波情報として出力することを特徴とする請求項 2に記載の津波情報提供方法。
[4] 第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での津波の高さを予測する海面変位量 予測ステップを具備し、
且つこの海面変位量予測ステップによる予測時点にて、その予測高さを津波情報 として出力することを特徴とする請求項 2に記載の津波情報提供方法。
[5] 第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での最大海面変位量である津波の高さ を予測する海面変位量予測ステップを具備し、 さらに 0度から 360度位相までの到達時間である津波の実測周期を検出するととも に、上記選択された応答関数以外にこの実測周期に近い津波周期の応答関数が存 在する場合には当該応答関数に変更し、
且つ海岸線付近に設置された海岸線海面計測器で得られた津波の実測高さと上 記海面変位量予測ステップで得られた予測高さとを比較し、この比較結果に基づき 上記選択された応答関数を補正することを特徴とする請求項 2に記載の津波情報提 供方法。
[6] 第 2認識ステップで求められた津波の予測周期に基づき、計測に係る沖合海面計 測器の設置位置に応じて且つ複数の津波周期に応じてそれぞれ準備されている海 底地形力 波高を求めるための応答関数の中力 最適な応答関数を選択するととも に、この選択された応答関数を用いて海岸線での最大海面変位量である津波の高さ を予測する海面変位量予測ステップを具備し、
さらに 0度から 360度位相までの到達時間である津波の実測周期を検出するととも に、上記選択された応答関数以外にこの実測周期に近い津波周期の応答関数が存 在する場合には当該応答関数に変更し、
且つ海岸線と沖合海面計測器との中間位置に設置された中間海面計測器にて得 られた津波の実測高さと上記海面変位量予測ステップで得られた予測高さとを比較 し、この比較結果に基づき上記選択された応答関数を補正することを特徴とする請 求項 2に記載の津波情報提供方法。
[7] 沖合海面計測器および海岸線海面計測器力 の海面変位データを入力して津波 を解析するための津波解析センターと、この津波解析センターで得られた津波情報 を受け取り情報活用機関などに配信するためのデータ配信センターとが具備され、 上記津波解析センターに、
上記海面変位データから波の周波数成分を抽出する周波数成分抽出部と、この周 波数成分抽出部で抽出された波の高さと予め設定された閾値とを比較するとともに、 波の高さが閾値を超えている場合に、津波を検知した旨の津波情報を出力する波高 比較部と、
この波高比較部で津波と判断された場合にその周波数成分を入力して 90度位相 値を検出し、その波高の絶対値力も津波の大きさを求めるとともに 0〜90度位相まで の到達時間を検出して津波の予測周期を求めるための 1Z4周期検出部と、 この 1Z4周期検出部で検出された予測周期を入力して予め計測に係る沖合海面 計測器の設置位置に応じて且つ複数の津波周期に応じて設けられて海底地形から 波高を求めるための応答関数を選択する応答関数選択部と、
この応答関数選択部で選択された応答関数に基づき当該津波による海岸線での 最大海面変位量を求めて津波の高さを予測するとともにこの予測高さを津波情報と して出力する海面変位量予測部と、
上記周波数成分力もさらに 0〜360度位相までの到達時間である津波の実測周期 を検出する津波周期検出部とが具備されたことを特徴とする津波情報提供システム。 津波解析センターに、
津波周期検出部で検出された実測周期と 1Z4周期検出部で求められた予測周期 とを入力して選択された応答関数以外に上記実測周期に近い津波周期の応答関数 が存在する場合には当該応答関数に変更の指示を出力する応答関数変更指示部と 海面変位量予測部で得られた津波の予測高さと海岸線海面計測器で得られた津 波の実測高さとを入力して両者を比較するとともにこの比較結果に応じて応答関数を 補正する応答関数補正部とが、
さらに具備されたことを特徴とする請求項 7に記載の津波情報提供システム。
PCT/JP2006/313708 2005-07-08 2006-07-10 津波情報提供方法および津波情報提供システム WO2007007728A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005199489A JP4780285B2 (ja) 2005-07-08 2005-07-08 津波情報提供方法および津波情報提供システム
JP2005-199489 2005-07-08

Publications (1)

Publication Number Publication Date
WO2007007728A1 true WO2007007728A1 (ja) 2007-01-18

Family

ID=37637117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313708 WO2007007728A1 (ja) 2005-07-08 2006-07-10 津波情報提供方法および津波情報提供システム

Country Status (2)

Country Link
JP (1) JP4780285B2 (ja)
WO (1) WO2007007728A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089316A (ja) * 2006-09-29 2008-04-17 Kyoto Univ 津波波源推定方法及び津波波高予測方法並びにその関連技術
CN104036123A (zh) * 2014-05-29 2014-09-10 河海大学 一种基于再分析数据的海浪有效波高的短期趋势预测方法
CN104050514A (zh) * 2014-05-29 2014-09-17 河海大学 一种基于再分析数据的海浪有效波高的长期趋势预测方法
WO2017046373A1 (fr) * 2015-09-17 2017-03-23 Dcns Procédé et dispositif d'amélioration de la sécurité de plateforme maritime
CN110926432A (zh) * 2019-11-12 2020-03-27 西北工业大学 一种基于无人艇惯导和气象仪信息的海况等级估计方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124205A1 (en) * 2008-05-22 2009-11-25 The European Community, represented by the European Commission Tsunami warning system and method for providing tsunami warnings
DE102010011186B4 (de) * 2010-03-12 2014-09-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Visualisierung von räumlich verteilten Informationen in einem Frühwarnsystem
JP5924469B2 (ja) * 2011-07-13 2016-05-25 株式会社藤縄地震研究所 津波監視システム
JP5862108B2 (ja) * 2011-08-19 2016-02-16 日本電気株式会社 津波高さ予測システム、津波高さ予測装置、津波高さ予測方法、及びプログラム
JP2014190934A (ja) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp 津波検知システム
DE112014002638T5 (de) * 2013-05-31 2016-03-17 Mitsubishi Electric Corporation Tsunami-überwachungssystem
KR101473888B1 (ko) 2013-12-27 2014-12-18 인하대학교 산학협력단 이상파랑 전파방향 분석방법
JP6307353B2 (ja) * 2014-05-30 2018-04-04 大成建設株式会社 流況計算システムおよび濁り拡散計算システム
JP6437883B2 (ja) * 2015-06-02 2018-12-12 公益財団法人鉄道総合技術研究所 津波伝播特性を利用した沿岸の早期津波予測方法
WO2017141614A1 (ja) * 2016-02-19 2017-08-24 古野電気株式会社 津波観測装置、津波観測システム、津波観測方法
JP7265915B2 (ja) * 2019-04-10 2023-04-27 中部電力株式会社 津波高及び津波到達時間予測システム
CN111626599A (zh) * 2020-05-22 2020-09-04 广东省突发事件预警信息发布中心(广东省人工影响天气中心) 一种气象灾害风险研判方法及系统
KR102511140B1 (ko) * 2022-05-24 2023-03-20 대한민국 월파 감지 장비를 이용한 월파 예측 방법 및 시스템
KR102511141B1 (ko) * 2022-05-24 2023-03-20 대한민국 월파 감지를 통한 시각신호 전달 방법 및 시스템
CN115542397B (zh) * 2022-10-08 2023-03-31 国家海洋环境预报中心 一种基于svm的海啸危险分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (ja) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho 津波・海象監視予測装置
JPH09145366A (ja) * 1995-11-29 1997-06-06 Denshi Kogyo Kk 電波式潮位・波高測定装置
JPH10122860A (ja) * 1996-10-17 1998-05-15 Kaijo Corp 津波計
JPH1164051A (ja) * 1997-08-13 1999-03-05 Kaijo Corp 津波観測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (ja) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho 津波・海象監視予測装置
JPH09145366A (ja) * 1995-11-29 1997-06-06 Denshi Kogyo Kk 電波式潮位・波高測定装置
JPH10122860A (ja) * 1996-10-17 1998-05-15 Kaijo Corp 津波計
JPH1164051A (ja) * 1997-08-13 1999-03-05 Kaijo Corp 津波観測装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089316A (ja) * 2006-09-29 2008-04-17 Kyoto Univ 津波波源推定方法及び津波波高予測方法並びにその関連技術
CN104036123A (zh) * 2014-05-29 2014-09-10 河海大学 一种基于再分析数据的海浪有效波高的短期趋势预测方法
CN104050514A (zh) * 2014-05-29 2014-09-17 河海大学 一种基于再分析数据的海浪有效波高的长期趋势预测方法
CN104036123B (zh) * 2014-05-29 2017-05-03 河海大学 一种基于再分析数据的海浪有效波高的短期趋势预测方法
CN104050514B (zh) * 2014-05-29 2017-06-09 河海大学 一种基于再分析数据的海浪有效波高的长期趋势预测方法
WO2017046373A1 (fr) * 2015-09-17 2017-03-23 Dcns Procédé et dispositif d'amélioration de la sécurité de plateforme maritime
FR3041449A1 (fr) * 2015-09-17 2017-03-24 Dcns Procede et dispositif d'amelioration de la securite de plateforme maritime
US10417895B2 (en) 2015-09-17 2019-09-17 Naval Group Method and device for improving maritime platform safety
CN110926432A (zh) * 2019-11-12 2020-03-27 西北工业大学 一种基于无人艇惯导和气象仪信息的海况等级估计方法

Also Published As

Publication number Publication date
JP4780285B2 (ja) 2011-09-28
JP2007018291A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4780285B2 (ja) 津波情報提供方法および津波情報提供システム
US8195395B2 (en) System for monitoring, determining, and reporting directional spectra of ocean surface waves in near real-time from a moored buoy
KR101658197B1 (ko) 연안 이상현상 경보 발생방법
CN101833081A (zh) 深海海底应答器绝对位置的精确标校方法
JP2006170920A (ja) 潮位監視システム,潮位監視システム用の海上ブイ及び地上局装置、潮位監視方法、潮位監視プログラム
JP3803177B2 (ja) 津波検知システム
CN105651265A (zh) 基于波浪压力的跨海桥梁海域的波浪要素及潮位测量方法
KR102082263B1 (ko) 수중위치 추정 시스템 및 방법
JP5455663B2 (ja) 海面変位計測システム
KR20180043890A (ko) 해저기준점 설정을 통한 해저지각변이 모니터링 시스템
CN111735437A (zh) 一种基于Jason-1和CryoSat-2卫星数据的海底地貌解译方法
CN116029231A (zh) 一种基于遥感数据的对特定海域的内波数据进行计算监测分析可视化系统的方法
JP5737754B2 (ja) 津波検出システムおよび津波検出方法
CN113865538B (zh) 海上三维地震电缆状态在线测控管理方法及系统
CN113218372B (zh) 一种海底基准点位置标校系统及方法
CN101846738B (zh) 基于界面反射极性判别的虚元定位方法
JP2014160044A (ja) 津波予測システム及び津波予測方法
CN104698439B (zh) 一种实时检测软体排沉放位置的方法
Kawai et al. 2010 Chilean Tsunami Observed on Japanese Coast by NOWPHAS GPS Buoys, Seabed Wave Gauges and Coastal Tide Gauges
JP4830269B2 (ja) 係留センサ測位方法および装置
RU108154U1 (ru) Система обеспечения безопасности эксплуатации судна
CN102540257B (zh) 地震信号接收设备的定位方法
CN118566963B (zh) 一种基于双位置校准切换的深海auv快速组合导航方法
KR200426753Y1 (ko) 선박용 파고측정 시스템
Nagai et al. Offshore tsunami monitoring network design using GPS buoys and coastal on-site sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780930

Country of ref document: EP

Kind code of ref document: A1