WO2007007723A1 - 液浸露光用基板、露光方法及びデバイス製造方法 - Google Patents

液浸露光用基板、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
WO2007007723A1
WO2007007723A1 PCT/JP2006/313701 JP2006313701W WO2007007723A1 WO 2007007723 A1 WO2007007723 A1 WO 2007007723A1 JP 2006313701 W JP2006313701 W JP 2006313701W WO 2007007723 A1 WO2007007723 A1 WO 2007007723A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
back surface
region
liquid
exposure
Prior art date
Application number
PCT/JP2006/313701
Other languages
English (en)
French (fr)
Inventor
Tomoharu Fujiwara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2007007723A1 publication Critical patent/WO2007007723A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight

Definitions

  • the present invention relates to an immersion exposure substrate to which exposure light is irradiated through a liquid, an exposure method, and a device manufacturing method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-235249
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-289127
  • the area wetted by the liquid on the back surface of the substrate may be enlarged depending on the state of the back surface of the substrate. For example, if the back surface of the substrate gets wet, the substrate holder may not be able to hold the substrate satisfactorily.
  • the liquid when unloading the substrate with a predetermined transport system, the liquid may adhere to the transport system that holds the back of the wet substrate, or the liquid may scatter in the transport path. There is also a habit of expanding.
  • the present invention has been made in view of such circumstances, and provides an immersion exposure substrate, an exposure method, and a device manufacturing method capable of suppressing the expansion of a wet region on the back surface of the substrate. For the purpose.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • parenthesized symbols attached to each element are examples of that element. However, it does not limit each element.
  • the immersion exposure substrate is irradiated with the exposure light (EL) through the liquid (LQ) while being held by the substrate holder (4) having the peripheral wall (31).
  • P comprising a back surface (Pb) held by the substrate holder and a front surface (Pa) irradiated with the exposure light (EL) and supplied with a liquid, and held by the substrate holder.
  • a substrate (P) is provided in which the predetermined region (A3) on the back surface facing the top surface (3 1 A) of the peripheral wall is flat.
  • the predetermined area facing the upper surface of the peripheral wall provided in the substrate holder is flattened out of the back surface of the substrate, so that the liquid spreads on the back surface of the substrate. Can be suppressed.
  • an immersion region (LR) of the liquid (LQ) is formed on the surface (Pa) of the substrate (P) of the above aspect, and the substrate is interposed via the liquid (LQ).
  • An exposure method is provided in which the substrate (P) is exposed by irradiating the exposure light (EL) onto the (P).
  • the substrate can be exposed satisfactorily.
  • an exposure method for exposing a substrate (P) through a liquid (LQ), wherein a film (Rg) is formed on a surface (Pa) of the substrate Supplying liquid (LQ) onto the surface of the substrate (P) while holding at least a part of the predetermined region (A3) polished on the back surface (P b) of the substrate (P), and
  • An exposure method is provided that includes exposing a substrate (P) through a liquid (LQ).
  • the predetermined region on the back surface of the substrate that contacts the substrate holder is polished, so that the back surface of the substrate can be supplied even if liquid is supplied onto the substrate held by the substrate holder. In this way, wetting and spreading of liquid can be suppressed.
  • the substrate can be satisfactorily exposed, and a device having desired performance can be manufactured.
  • the spread of liquid on the back surface of the substrate can be suppressed, and the substrate can be exposed satisfactorily.
  • FIG. 1 (A) to (C) are views for explaining a substrate according to a first embodiment.
  • FIG. 2 is a schematic view showing a state where the substrate is polished.
  • FIG. 3 is a schematic block diagram that shows one embodiment of an exposure apparatus.
  • FIG. 4 is a diagram for explaining a substrate holder.
  • FIG. 5 is an enlarged view of a main part for explaining the substrate holder.
  • FIG. 6 (A) and (B) are views for explaining a substrate according to a second embodiment.
  • FIG. 7 is a flowchart for explaining an example of a microdevice manufacturing process. Explanation of symbols
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane!
  • the direction perpendicular to the X-axis direction is the Y-axis direction, and the direction perpendicular to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and 0Z directions, respectively.
  • FIG. 1 (A) is a view of the substrate P according to the present embodiment as viewed from the back side
  • FIG. 1 (B) is a view of the substrate P as viewed from the front side
  • FIG. 1 (C) is a cross-sectional view of the substrate P.
  • a disk-shaped substrate P includes a base material W and a first HRg formed on the upper surface Wa of the base material W.
  • the substrate W includes a semiconductor wafer
  • the first HRg includes a film of a photosensitive material (photoresist) coated on a part of the upper surface Wa of the substrate W.
  • the substrate W is a silicon substrate having an outer diameter of 12 inches and a thickness of 0.775 mm.
  • the first film Rg has a predetermined area in most of the regions other than the peripheral region Ew of the upper surface Wa of the substrate W. It is formed with a thickness (for example, about 200 nm). On the other hand, no film is formed on the lower surface Wb opposite to the upper surface Wa of the substrate W.
  • the photosensitive material is applied on the substrate W by a predetermined coating method such as spin coating, for example. The photosensitive material applied to the peripheral edge of the substrate W easily peels off. To do.
  • an edge rinse process which is a process for removing the peripheral area Ew on the upper surface Wa and the photosensitive material on the side surface Wc, is performed.
  • the first film Rg is formed in a region other than the peripheral region Ew of the upper surface W a of the substrate W.
  • the surface Pa of the substrate P is irradiated with the exposure light EL through the liquid LQ.
  • the surface Pa of the substrate P is the upper surface Wa of the base material W or the surface (exposed surface) of the outermost layer (uppermost layer) of the films formed on the upper surface Wa. Therefore, in the present embodiment, the surface Pa of the substrate P includes the surface of the first film Rg and the peripheral region Ew of the upper surface Wa of the base material W.
  • the back surface Pb of the substrate P is a surface opposite to the surface Pa of the substrate P. Therefore, in the present embodiment, the back surface Pb of the substrate P includes the lower surface Wb of the base material W.
  • a stamp 60 is formed on the back surface Pb of the substrate P (the lower surface Wb of the base material W).
  • This stamp 60 is used for, for example, management of the processing process of the substrate P.
  • the stamp 60 is formed in the first region A1 having the first width HI from the edge of the back surface Pb of the back surface Pb of the substrate P.
  • the substrate P is substantially circular in a plan view
  • the first region A1 is an annular region at the peripheral edge of the back surface Pb of the substrate P. The annular region is coaxial with the substrate center.
  • the inscription 60 is an identifier including characters and symbols formed by a laser beam or the like for identifying the substrate P, for example, and is formed in a concave or convex shape on the first area A1 of the back surface Pb of the substrate P.
  • the predetermined region A3 inside the first region A1 is flat.
  • the predetermined region A3 of the back surface Pb of the substrate P is a region facing the upper surface 31A of the peripheral wall portion 31 provided in the substrate holder 4 that holds the back surface Pb of the substrate P.
  • the predetermined area A3 of the back surface Pb of the substrate P has a size and shape corresponding to the upper surface 31A of the peripheral wall portion 31 of the substrate holder 4.
  • the predetermined area A3 is an annular area having a predetermined width and coaxial with the substrate. is there
  • the predetermined area A3 of the back surface Pb of the substrate P is a polished surface (polished). Therefore, it has good flatness.
  • the edge force of the back surface Pb of the substrate P including the predetermined region A3 is the polished surface of the second region A2 having the second width H2. That is, in the present embodiment, the first region A1 of the back surface Pb of the substrate P is also a polished surface, and the stamp 60 is formed in the first region A1 that is the polished surface.
  • a silicon substrate (Ueno) having an outer diameter of 12 inches has a width HI of 1.0 to 3. Omm, a width H3 of 0.1 to 0.5 mm, and a width H2 of 1. Can be 1mm or more. Note that the widths Hl, H2, and H3 can be set within the above range even for a silicon substrate (Ueno) with an outer diameter of 8 inches.
  • the upper surface Wa of the substrate W is also a polished surface that has been subjected to a polishing process (mirror force check), and is substantially flat.
  • the lHRg is formed on the upper surface Wa of the polished substrate W.
  • a CMP apparatus 100 As shown in the schematic diagram of FIG. 2 can be used, for example.
  • the CMP apparatus 100 holds the polishing pad 101 and also holds the first rotation mechanism 102 that rotates the held polishing pad 101 and the substrate W, and rotates the held substrate W.
  • the polishing pad 101 and the substrate W are supplied while the slurry is supplied in a state where the polishing target surface (the upper surface Wa or the lower surface Wb) of the substrate W and the polishing pad 101 are in contact with each other.
  • the surface to be polished of the substrate W is polished by rotating at least one side.
  • polishing apparatus shown in FIG. 2 is an example, and an apparatus having an arbitrary configuration can be used as long as the substrate W can be polished.
  • the exposure apparatus EX includes a mask stage 3 that can move while holding the mask M, a substrate holder 4 that holds the back surface Pb of the substrate P, a substrate stage 5 that can move the substrate holder 4, and a mask stage.
  • the illumination optical system IL that illuminates the mask M held by 3 with the exposure light EL
  • the projection optical system PL that projects the pattern image of the mask M illuminated with the exposure light EL onto the substrate P
  • the exposure apparatus And a control device 7 for controlling the overall operation of EX.
  • the exposure apparatus EX of the present embodiment has an effect that the exposure wavelength is substantially shortened to improve the resolution.
  • it is an immersion exposure apparatus to which an immersion method is applied in order to substantially increase the depth of focus.
  • the exposure apparatus EX includes an immersion mechanism 1 that fills the optical path space K of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ.
  • the exposure apparatus EX uses the liquid immersion mechanism 1 to fill the optical path space K of the exposure light EL with the liquid LQ at least while the pattern image of the mask M is exposed on the substrate P.
  • the exposure apparatus EX irradiates the surface Pa of the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ filled in the optical path space K. Expose to P.
  • the exposure apparatus EX of the present embodiment has a liquid LQ force filled in the optical path space.
  • the exposure apparatus EX is larger than the projection area AR in a part of the surface Pa of the substrate P including the projection area AR of the projection optical system PL and is larger than the projection area AR.
  • a local immersion method is used in which a liquid immersion region LR smaller than P is locally formed.
  • exposure apparatus EX a scanning exposure apparatus (so-called scanning stepper) that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction.
  • the X-axis direction is the synchronous movement direction (scanning direction) of the mask M and the substrate P
  • the Y-axis direction is the non-scanning direction.
  • the substrate here includes a substrate coated with a photosensitive material (photoresist) on a base material W such as a semiconductor wafer as described with reference to FIG. 1, and the mask is projected onto the substrate in a reduced scale. It includes a reticle on which a device pattern is formed.
  • the illumination optical system IL illuminates a predetermined illumination area on the mask M with exposure light EL having a uniform illuminance distribution.
  • the exposure light EL that also emits IL force includes, for example, bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) that also emit mercury lamp force (DUV light).
  • ArF excimer laser light wavelength 193nm
  • F laser light wavelength 193nm
  • Vacuum ultraviolet light such as light (wavelength 157 nm) is used.
  • ArF excimer laser light is used.
  • pure water is used as the liquid LQ.
  • Pure water is not only ArF excimer laser light, but also, for example, far ultraviolet light (DUV light) such as emission lines emitted from mercury lamps (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) Can also be transmitted.
  • a liquid LQ other than water may be used.
  • the mask stage 3 holds the mask M by the driving of the mask stage driving device 3D. In the state, it can move in the X axis, Y axis, and ⁇ ⁇ direction.
  • the position information of mask stage 3 (and hence mask ⁇ ) is measured by laser interferometer 3L.
  • the laser interferometer 3L measures the position information of the mask stage 3 using a moving mirror 3mm fixed on the mask stage 3.
  • the control device 7 drives the mask stage driving device 3D based on the measurement result of the laser interferometer 3L, and controls the position of the mask rod held by the mask stage 3 !.
  • Projection optical system PL projects the pattern image of mask M onto substrate P at a predetermined projection magnification.
  • Projection optical system PL has a plurality of optical elements, and these optical elements are held by lens barrel PK.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8, or the like.
  • the projection optical system PL may be either a unity magnification system or an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form either an inverted image or an erect image. In the present embodiment, among the plurality of optical elements of the projection optical system PL, only the final optical element FL closest to the image plane of the projection optical system PL is in contact with the liquid LQ in the optical path space K.
  • the substrate stage 5 is movable on the base member 6 while holding the substrate holder 4 that holds the back surface Pb of the substrate P.
  • the substrate stage 5 is driven by the substrate stage driving device 5D and holds the substrate holder 4, and has six degrees of freedom in the X axis, Y axis, Z axis, 0 ⁇ , ⁇ ⁇ , ⁇ ⁇ ⁇ direction. Can be moved to.
  • the position information of the substrate holder 4 (and thus the substrate ⁇ ) on the substrate stage 5 is measured by the laser interferometer 4L.
  • the laser interferometer 4L measures the positional information of the substrate holder 4 on the substrate stage 5 with respect to the X-axis, ⁇ -axis, and ⁇ - ⁇ directions using the moving mirror 4 ⁇ fixed to the substrate holder 4.
  • the surface position information (position information about the axis, ⁇ X, and ⁇ direction) of the surface of the substrate ⁇ held by the substrate holder 4 is detected by a focus leveling detection system (not shown).
  • the control device 7 drives the substrate stage drive device 5D based on the measurement result of the laser interferometer 4L and the detection result of the focus / leveling detection system, and is held by the substrate holder 4 on the substrate stage 5.
  • the position of the board ⁇ to be controlled is controlled.
  • the liquid immersion mechanism 1 is provided at the position Pa facing the surface Pa of the substrate P held by the substrate holder 4 on the substrate stage 5 and the surface Pa of the substrate P.
  • the optical path space K between the final optical element FL of the projection optical system PL through which the exposure light EL passes is filled with the liquid LQ.
  • the liquid immersion mechanism 1 is provided in the vicinity of the optical path space ⁇ , and includes a nozzle member 70 having a supply port 12 for supplying the liquid LQ to the optical path space ⁇ ⁇ and a recovery port 22 for recovering the liquid LQ, a supply pipe 13, And a liquid supply device 11 for supplying the liquid LQ via the supply port 12 of the nozzle member 70, and a liquid recovery device 21 for collecting the liquid LQ via the recovery port 22 and the recovery pipe 23 of the nozzle member 70.
  • the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed on the lower surface 70 ⁇ of the nozzle member 70.
  • a flow path connecting the supply port 12 and the supply pipe 13 and a flow path connecting the recovery port 22 and the recovery pipe 23 are formed inside the nozzle member 70.
  • the operations of the liquid supply device 11 and the liquid recovery device 21 are controlled by the control device 7.
  • the liquid supply device 11 can deliver clean and temperature-adjusted liquid LQ, and the liquid recovery device 21 including a vacuum system can recover the liquid LQ.
  • the control device 7 controls the liquid immersion mechanism 1 to perform the liquid supply operation by the liquid supply device 11 and the liquid recovery operation by the liquid recovery device 21 in parallel, so that the optical path space ⁇ is filled with the liquid LQ.
  • a liquid LQ immersion area LR is locally formed in a part of the surface Pa of the ridge.
  • FIG. 4 the substrate holder 4 that holds the substrate P will be described with reference to FIGS. 4 and 5.
  • FIG. 4 the substrate holder 4 that holds the substrate P will be described with reference to FIGS. 4 and 5.
  • the substrate holder 4 has a recess 4R and a holding mechanism PH that is provided inside the recess 4R and holds the back surface Pb of the substrate P. Hold as possible.
  • the upper surface 4F of the substrate holder 4 other than the recess 4R is a flat surface that is substantially the same height (level) as the surface Pa of the substrate P held by the holding mechanism PH of the substrate holder 4. .
  • a support surface 4B that faces the + Z direction and is substantially parallel to the XY plane.
  • the holding mechanism PH is formed on the support surface 4B and supports the back surface Pb of the substrate P (support member) 30 and is formed on the support surface 4B and faces the back surface Pb of the substrate P.
  • a peripheral wall portion (annular member) 31 provided in an annular shape so as to surround the.
  • the support portion 30 is configured by a plurality of convex members (support pins) provided inside the peripheral wall portion 31.
  • the peripheral wall portion 31 is formed in a substantially annular shape in plan view according to the shape of the substrate P, and the upper surface 31 A of the peripheral wall portion 31 is a predetermined region set in the peripheral portion of the back surface Pb of the substrate P. It is provided to face A3.
  • a first space VI surrounded by the back surface Pb of the substrate P, the peripheral wall portion 31 and the support surface 4B is formed on the back surface Pb side of the substrate P held by the holding mechanism PH of the substrate holder 4.
  • a suction port 33 is formed inside the peripheral wall 31 of the support surface 4B.
  • the suction port 33 is for sucking and holding the substrate P, and is provided at each of a plurality of predetermined positions other than the support portion 30 on the support surface 4B inside the peripheral wall portion 31.
  • Each of the suction ports 33 is connected to a vacuum system (not shown).
  • the control device 7 drives the vacuum system and sucks the gas (air) inside the first space VI surrounded by the base plate P, the peripheral wall 31 and the support surface 4B, and makes the first space VI negative pressure. By doing so, the back surface Pb of the substrate P is sucked and held by the support portion 30. Further, the substrate P can be removed from the holding mechanism PH of the substrate holder 4 by releasing the suction operation by the vacuum system.
  • the holding mechanism PH of the substrate holder 4 in the present embodiment constitutes a so-called pin chuck mechanism.
  • the upper surface 31A of the peripheral wall portion 31 is provided at substantially the same height as the upper surface of the convex member of the support portion 30, and the back surface Pb of the substrate P is adsorbed by the support portion 30.
  • the predetermined area A3 of the back surface Pb of the substrate P and the upper surface 31A of the peripheral wall portion 31 are in close contact with each other.
  • the holding mechanism PH is disposed inside the recess 4R of the substrate holder 4, and the upper surface 4F of the substrate holder 4 is disposed around the substrate P held by the holding mechanism PH.
  • the A predetermined gap of about 0.1 to 1. Omm is provided between the side surface Pc of the substrate P held by the holding mechanism PH and the inner side surface 4C of the concave portion 4R disposed outside the substrate P. G1 is formed.
  • the substrate holder 4 includes a suction port 52 for sucking the fluid in the second space V2 surrounded by the peripheral wall portion 31, the inner surface 4C, the support surface 4B, and the first region A1 of the lower surface Pb of the substrate P. Yes.
  • the suction port 52 is provided on the support surface 4B between the peripheral wall portion 31 and the inner side surface 4C of the substrate holder 4. .
  • the suction port 52 is provided at each of a plurality of predetermined positions along the peripheral wall portion 31.
  • a suction device 51 is connected to the suction port 52 via a flow path 53. The suction device 51 can suck the fluid in the second space V2 through the suction port 52.
  • the fluid in the second space V2 includes the gas in the second space V2 and the liquid LQ that has entered the second space V2.
  • the suction device 51 can suck the gas and suck and collect the liquid LQ.
  • the suction device 51 includes a vacuum system such as a vacuum pump, a gas-liquid separator that separates the collected liquid LQ and gas, and a tank that stores the collected liquid LQ. The suction operation of the suction device 51 is controlled by the control device 7.
  • the control device 7 loads (loads) the substrate P into the substrate holder 4 using a transport system (not shown), and then the substrate holder 4 By making the first space VI surrounded by the peripheral wall portion 31 negative pressure, the back surface Pb of the substrate P is sucked and held by the support portion 30.
  • the control device 7 uses the liquid immersion mechanism 1 to form the liquid LQ liquid immersion region LR on the surface Pa of the substrate P held by the substrate holder 4.
  • the control device 7 irradiates the surface Pa of the substrate P with the exposure light EL through the liquid LQ in the liquid immersion region LR.
  • the liquid LQ immersion region LR is formed on the gap G1.
  • the gap G1 between the substrate P held by the holding mechanism PH of the substrate holder 4 and the surrounding upper surface 4F (inner surface 4C) is set to about 0.1 to 1. Omm.
  • the surface tension of the liquid prevents the liquid LQ from entering the gap G1.
  • the gap G1 is reduced, and the upper surface 4F and the inner surface 4C of the substrate holder 4 are made liquid repellent.
  • the liquid LQ may enter the second space V2 of the substrate holder 4 through the gap G1 formed around the substrate P.
  • the marking 60 on the back surface Pb of the substrate P is formed in the first region A1 other than the predetermined region A3 on the back surface Pb of the substrate P, and a predetermined region on the back surface Pb of the substrate P. Since A3 is a polished surface (flat surface) that has been polished (mirror-finished), the first space VI surrounded by the peripheral wall 31 is set to a negative pressure, so that the predetermined area A3 on the back surface Pb of the substrate P and the substrate The upper surface 31A of the peripheral wall 31 of the holder 4 can be brought into close contact.
  • the liquid LQ flows between the predetermined area A3 on the back surface Pb of the substrate P and the upper surface 31A of the peripheral wall 31 from the first space VI side. Can be suppressed. Therefore, the spread of the liquid LQ on the back surface Pb of the substrate P can be suppressed, and the wide area of the back surface Pb of the substrate P can be prevented from getting wet.
  • the control device 7 After the immersion exposure processing of the substrate P is completed, that is, after the irradiation of the exposure light EL is stopped, the control device 7 removes the immersion region LR from the substrate P and the substrate holder 4, and With the substrate P held on the substrate holder 4, the suction device 51 starts to be driven. When the irradiation of the exposure light EL is stopped, the control device 7 drives the suction device 51 so that the suction device 51 sucks the fluid in the second space V2 through the suction port 52. . When the suction device 51 is driven, the gas around the suction port 52 (that is, the gas in the second space V2) is sucked into the suction port 52.
  • the suction device 51 sucks the gas in the second space V2 through the suction port 52
  • the gap G1 between the side surface Pc of the substrate P and the inner side surface 4C of the substrate holder 4 is A gas flow directed from the external space to the second space V2
  • the second space V2 between the side surface of the peripheral wall portion 31 and the inner surface 4C of the substrate holder 4 has a directional force on the suction port 52.
  • a gas stream is generated.
  • the liquid LQ enters the second space V2 through the gap G1, or the liquid LQ adheres to the first region A1 of the back surface Pb of the substrate P that overhangs outside the peripheral wall 31.
  • the control device 7 After collecting the liquid LQ, the control device 7 unloads the substrate P after the exposure process from the substrate holder 4 using a transport system (not shown).
  • the predetermined area A3 facing the upper surface 31A of the peripheral wall 31 of the substrate holder 4 is flattened on the back surface Pb of the substrate P, the first space VI surrounded by the peripheral wall 31 is eliminated.
  • the substrate P is attracted and held by making the negative pressure, the first region A3 of the back surface Pb of the substrate P and the upper surface 31A of the peripheral wall portion 31 can be brought into close contact with each other. Therefore, even if the liquid LQ enters the second space V2 through the gap G1, it suppresses the liquid LQ from entering the first space VI, that is, wetting and spreading on the back surface Pb of the substrate P. Can do.
  • the edge force of the back surface Pb of the substrate P including the predetermined region A3 is the second surface A2 of the second width H2 is the polishing surface, and the second width H2 is the first width HI. It is larger than the sum of the width and H3. That is, at least the region inside the peripheral wall portion 31 of the back surface Pb of the substrate P is a polished surface. This ensures that the upper surface 31A of the peripheral wall portion 31 of the substrate holder 4 and the polishing surface (flat surface) of the rear surface Pb of the substrate P face each other, and the upper surface 31A of the peripheral wall portion 31 and the rear surface Pb of the substrate P are in close contact with each other. Can do. Further, the entire surface of the back surface Pb of the substrate P (the lower surface Wb of the base material W) can be a polished surface.
  • the predetermined region A3 facing the upper surface 31A of the peripheral wall 31 of the substrate holder 4 and the first region A1 outside thereof may be used as the polished surface of the back surface Pb of the substrate P.
  • only the predetermined area A3 may be a polished surface, and the first area A1 may not be polished.
  • the inscription 60 is formed on the first region A1 outside the predetermined region A3 facing the upper surface 31A of the peripheral wall portion 31 of the substrate holder 4 in the back surface Pb of the substrate P.
  • the formed force may be formed in a region inside the predetermined region A3. That is, the stamp 60 may be provided on the inner side of the peripheral wall portion 31 when the substrate holder 4 holds the back surface Pb of the substrate P.
  • the stamp 60 may be formed in a region other than the predetermined region A3 facing the upper surface 31A of the peripheral wall portion 31 provided in the substrate holder 4 on the back surface Pb of the substrate P.
  • the stamp 60 is formed on the back surface Pb of the substrate P.
  • the stamp 60 may be omitted.
  • the uneven portion of the back surface Pb of the substrate P can be eliminated or reduced.
  • the indentation 60 has been described as an example of the concave portion or the convex portion formed on the back surface Pb of the substrate P, but the indentation 60 is used as the concave portion or the convex portion of the back surface Pb of the substrate P.
  • the back surface Pb of the substrate P is not polished, the back surface Pb of the substrate P may become a rough surface (so-called satin) as shown in FIG. 6 (A).
  • the back surface Pb of the substrate P may become a rough surface. If the predetermined area A3 facing the upper surface 31A of the peripheral wall 31 of the substrate holder 4 in the back surface Pb of the substrate P is a rough surface (textured), the liquid LQ force that has entered the second space V2 through the gap G1 There is a possibility of entering the first space VI from between the upper surface 31A of the peripheral wall portion 31 of the substrate holder 4 and the predetermined region A3 of the rear surface Pb of the substrate P. As shown in FIG.
  • the rough surface (satin surface) region is polished and flattened so that the upper surface 31A of the peripheral wall 31 of the substrate holder 4 and the back surface Pb of the substrate P are in close contact with each other.
  • the inconvenience of liquid LQ entering the first space VI can be prevented.
  • the entire area of the back surface Pb of the substrate P may be polished to form a polished surface V, and the edge force of the back surface Pb of the substrate P including the predetermined region A3 is also the second width H2.
  • the second region A2 may be polished to be a polished surface, or only the predetermined region A3 and the first region A1 outside thereof may be polished to be the polished surface, and only the predetermined region A3 may be polished. It may be a polished surface.
  • the upper surface 31A of the 1S peripheral wall portion 31 that is polishing the back surface Pb of the substrate P and the back surface Pb of the substrate P face each other.
  • the liquid LQ in the second space V2 can be prevented from entering the first space VI from between the upper surface 31A of the peripheral wall 31 and the back surface Pb of the substrate P. If the back surface Pb of the substrate P is flat, the polishing process for the back surface Pb of the substrate P may be omitted.
  • the back surface Pb of the substrate P is a base material (semiconductor wafer) W
  • a predetermined material film may be formed on the back surface Wb of the substrate W.
  • the surface (exposed surface) of the material film becomes the back surface Pb of the substrate P.
  • the surface (exposed surface) of the material film of the surface layer (re-lower layer) becomes the back surface b of the substrate P.
  • the substrate holder 4 holds the back surface Pb of the substrate P by flattening at least a predetermined region A3 facing the upper surface 31A of the peripheral wall 31 of the substrate holder 4 in the surface (exposed surface) of the material film. In this case, it is possible to prevent the liquid LQ from entering the back surface Pb of the substrate P.
  • a material film for example, a liquid repellent film can be used.
  • a fluorine-based resin material such as polytetrafluoroethylene (Teflon (registered trademark)
  • an acrylic resin material a silicon-based resin material, or the like
  • HMDS hexamethyldisilazane
  • the liquid repellent film formed of these materials can be provided not only on the substrate P but also on the upper surface 4F and the inner surface 4C of the substrate holder 4 as described above.
  • the predetermined area A3 It is desirable to omit a process in which irregularities such as scratches may be formed. In addition, it is desirable to exclude the substrate P in which irregularities such as scratches have occurred in the predetermined area A3 due to an unexpected accident before being carried into the exposure apparatus EX from the exposure processing in the exposure apparatus EX.
  • an inspection device for inspecting whether or not the predetermined area A3 of the back surface Pb of the substrate P is flat is provided inside or outside the exposure apparatus EX. May be.
  • the back surface Pb of the substrate P is irradiated with detection light and the light from the back surface Pb is received, so that irregularities such as scratches are engraved on the predetermined area A3.
  • An inspection device for inspecting whether or not the film is formed, that is, whether or not the unevenness of the predetermined area A3 is acceptable can be used.
  • the exposure apparatus EX can remove a substrate P that has unacceptable irregularities in the predetermined area A3 of the substrate Pb, that is, the substrate P that is likely to cause the liquid LQ to enter the inside of the peripheral wall 31. Exposure processing power at can be reliably excluded.
  • the surface Pa of the substrate P is used as the first HR that also serves as a photosensitive material.
  • the surface (exposed surface) of the material film becomes the surface Pa of the substrate P.
  • a protective film called a top coat film is provided so as to cover the first HRg which also serves as the photosensitive material, the surface of the top coat film becomes the surface Pa of the substrate P.
  • the topcoat film has a function of protecting the photosensitive material from the liquid LQ and a function of adjusting the contact angle with the liquid LQ in order to improve the recoverability of the liquid LQ.
  • a topcoat film can be provided so that the contact angle of the liquid LQ is 90 ° or more.
  • An example of such a top coat film is “TSP-3A” manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • TSP-3A manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • an antireflection film is provided so as to cover the first HRg and the topcoat film that also serve as the photosensitive material, the surface (exposed surface) of the antireflection film becomes the surface of the substrate P.
  • the force described for the case where the surface of the base material W is the surface of the silicon substrate for the sake of simplicity.
  • the surface (base) of the base material W is made of SiO or the like.
  • Oxidized film may be used.
  • the surface (base) of the substrate w was generated by the previous process.
  • An oxide film such as SiO, an insulating film such as SiO or SiNx, a metal conductive film such as Cu or Al—Si, a
  • it may be a semiconductor film such as morphous Si or a mixture thereof. Therefore, after the edge rinse treatment, these film surfaces may become the surface of the substrate P in the peripheral region of the substrate P.
  • the substrate P with a flattened region facing the upper surface of the peripheral wall of the substrate holder 4 is used!
  • the position of the peripheral wall of the substrate holder 4 may be adjusted according to (or a position where there is unevenness such as a stamp).
  • the substrate holder 4 may be exchanged according to the position of the flat portion of the substrate P so that the flat portion of the back surface Pb of the substrate P and the upper surface of the peripheral wall of the substrate holder 4 face each other.
  • pure water is used as the liquid LQ in the present embodiment.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effects on the environment, and the impurity content is extremely low, so it is expected to clean the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. it can.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL.
  • ArF excimer laser light wavelength 193 nm
  • the substrate P on which the substrate P, lZn, that is, the wavelength is shortened to about 134 nm, and high resolution can be obtained.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be increased further, and the resolution is improved in this respect as well.
  • an optical element FL is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL such as aberration (spherical aberration, coma aberration, etc.) are adjusted by this optical element. It can be carried out.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass having a parallel plane plate force is attached to the surface of the substrate P. It may be configured to fill liquid LQ in a wet state.
  • the optical path space on the image plane side of the optical element at the tip is filled with the liquid, but as disclosed in International Publication No. 2004Z019128, the tip optical system. It is possible to adopt a projection optical system that fills the optical path space on the object plane side of the optical element with liquid.
  • the liquid LQ of the present embodiment may be water, or a liquid other than water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not transmit water. So
  • liquid LQ for example, perfluorinated polyether (PFPE) and F laser light can be transmitted.
  • PFPE perfluorinated polyether
  • F laser light can be transmitted.
  • the liquid LQ is stable against the photoresist applied to the projection optical system PL or the substrate P having a high refractive index as much as possible with respect to the exposure light EL and the photoresist applied to the surface of the substrate P (for example, Cedar). Oil) can also be used.
  • the liquid LQ may have a refractive index of about 1.6 to 1.8. Furthermore, even if the optical element FL is formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more). Good.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus.
  • Reticle masters synthetic quartz, silicon wafers are applied.
  • the exposure apparatus EX includes a step-and-scan scanning exposure apparatus (in addition to scanning steno, mask M It can also be applied to a step-and-repeat projection exposure apparatus (Stenno, in which the pattern of the mask M is collectively exposed while the substrate P is stationary and the substrate P is moved stepwise.
  • a projection optical system for example, a refraction-type projection optical system that does not include a reflecting element at a 1Z8 reduction magnification is used.
  • step-and-repeat exposure a reduced image of the first pattern was transferred onto the substrate P using the projection optical system while the first pattern and the substrate P were almost stationary. Thereafter, with the second pattern and the substrate P substantially stationary, the image of the second pattern may be partially overlapped with the first pattern and collectively exposed on the substrate P using the projection optical system. . (Static batch exposure system).
  • the stitch type exposure apparatus can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially transferred on the substrate P and transferred sequentially.
  • an exposure apparatus that locally fills the liquid between the projection optical system and the substrate is employed.
  • the present invention is disclosed in JP-A-6-124873, As disclosed in JP-A-10-303114, US Pat. No. 5,825,043, etc., a liquid is supplied to the surface of the substrate, and the substrate is exposed while the entire surface of the substrate is immersed. It can also be applied to immersion exposure equipment.
  • the present invention relates to JP-A-10-163099 and JP-A-10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6,590,634), Table 2000-505958 (corresponding US Pat. No. 5,969,441)
  • the present invention can also be applied to a twin-stage type exposure apparatus having a plurality of substrate stages.
  • Japanese Patent Laid-Open No. 11-135400 is disclosed in Japanese Patent Laid-Open No. 2000-164504.
  • the present invention can also be applied to an exposure apparatus including a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which various photoelectric sensors are mounted.
  • the exposure apparatus provided with the projection optical system PL has been described as an example.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. Even when the projection optical system PL is not used in this way, the exposure light is irradiated onto the substrate via an optical member such as a lens, and a liquid immersion region is formed in a predetermined space between the optical member and the substrate. It is formed.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can be widely applied to an exposure apparatus for manufacturing an image sensor (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask.
  • CCD image sensor
  • MEMS micromachine
  • DNA chip a reticle or a mask.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • spatial light modulator spatial light modulator
  • an exposure apparatus (lithography system) that exposes a line 'and' space pattern on a substrate P by forming interference fringes on the substrate P. )
  • a projection optical system two mask patterns are synthesized on a substrate via a projection optical system
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on a substrate almost simultaneously by one scanning exposure.
  • the exposure apparatus EX is configured to perform various mechanical subsystems including the respective constituent elements recited in the claims of the present application with a predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to maintain the degree. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and the step 202 described above.
  • a substrate suitable for immersion exposure can be provided, and a reduction in device productivity can be suppressed.
  • the present invention will contribute to the development of high-tech industry and IT technology including Japan's semiconductor industry.

Abstract

 基板Pは、基板ホルダに保持される裏面Pbを有し、基板ホルダに保持された状態でその表面Paに露光光が照射される。基板Pの裏面Pbのうち基板ホルダに設けられた周壁の上面と対向する領域A3は平坦である。領域A3は周壁の上面と密着することができるために、基板の裏面側に液体が浸入することが抑制される。

Description

明 細 書
液浸露光用基板、露光方法及びデバイス製造方法
技術分野
[0001] 本発明は、液体を介して露光光が照射される液浸露光用基板、露光方法及びデバ イス製造方法に関する。
背景技術
[0002] マイクロデバイスを製造するための基板の情報を識別するために、例えば下記特許 文献 1に開示されているような、基板の裏面に文字や記号等を識別子として刻印する 技術が案出されている。また、マイクロデバイスの製造工程の一つであるフォトリソグ ラフイエ程で用いられる露光装置において、下記特許文献 2に開示されているような 、液体を介して基板を露光する液浸法が案出されている。
特許文献 1:特開 2004— 235249号公報
特許文献 2:特開 2004 - 289127号公報
発明の開示
発明が解決しょうとする課題
[0003] 基板の裏面を基板ホルダで保持した状態で、その基板を液浸露光する場合、基板 の裏面の状態によっては、基板裏面の液体で濡れた領域が拡大する可能性がある。 例えば基板の裏面が濡れると、基板ホルダで基板を良好に保持できなくなる虞があ る。あるいは、所定の搬送系を用いて基板ホルダ力も基板を搬出(アンロード)する際 、濡れた基板の裏面を保持した搬送系に液体が付着したり、搬送経路に液体が飛散 する等、被害が拡大する虡もある。
[0004] 本発明はこのような事情に鑑みてなされたものであって、基板の裏面の濡れた領域 の拡がりを抑制することができる液浸露光用基板、露光方法及びデバイス製造方法 を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、周壁(31)を有する基板ホルダ (4)により保持され つつ液体 (LQ)を介して露光光 (EL)が照射される液浸露光用基板 (P)であって、前 記基板ホルダに保持される裏面 (Pb)と、前記露光光 (EL)が照射され且つ液体が供 給される表面 (Pa)とを備え、前記基板ホルダに保持されたときに前記周壁の上面(3 1 A)と対向する前記裏面の所定領域 (A3)が平坦である基板 (P)が提供される。
[0007] 本発明の第 1の態様によれば、基板の裏面のうち、基板ホルダに設けられた周壁の 上面と対向する所定領域を平坦にすることで、基板の裏面での液体の濡れ拡がりを 抑制できる。
[0008] 本発明の第 2の態様に従えば、上記態様の基板 (P)の表面 (Pa)に液体 (LQ)の液 浸領域 (LR)を形成し、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基 板 (P)を露光する露光方法が提供される。
[0009] 本発明の第 2の態様によれば、基板の裏面での液体の濡れ拡がりを抑制できるの で、基板を良好に露光することができる。
[0010] 本発明の第 3の態様に従えば、液体 (LQ)を介して基板 (P)を露光する露光方法 であって、前記基板の表面 (Pa)に膜 (Rg)を形成することと、前記基板 (P)の裏面 (P b)の研磨された所定領域 (A3)の少なくとも一部を保持しながら、基板 (P)の表面上 に液体 (LQ)を供給することと、前記液体 (LQ)を介して基板 (P)を露光することを含 む露光方法が提供される。
[0011] 本発明の第 3の態様によれば、基板ホルダと接触する基板裏面の所定領域を研磨 して ヽるので、基板ホルダに保持された基板上に液体が供給されても基板の裏面で の液体の濡れ拡がりを抑制できる。
[0012] 本発明の第 4の態様に従えば、第 2または第 3の態様の露光方法を用いるデバイス 製造方法が提供される。本発明の第 4の態様によれば、基板を良好に露光すること ができ、所望の性能を有するデバイスを製造することができる。
発明の効果
[0013] 本発明によれば、基板の裏面での液体の拡がりを抑制でき、基板を良好に露光す ることがでさる。 図面の簡単な説明
[0014] [図 1] (A)〜 (C)は第 1実施形態に係る基板を説明するための図である。
[図 2]基板を研磨処理して ヽる様子を示す模式図である。
[図 3]露光装置の一実施形態を示す概略構成図である。
[図 4]基板ホルダを説明するための図である。
[図 5]基板ホルダを説明するための要部拡大図である。
[図 6] (A)及び (B)は第 2実施形態に係る基板を説明するための図である。
[図 7]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である。 符号の説明
[0015] 1…液浸機構、 4…基板ホルダ、 30…支持部、 31· ··周壁部、 31A…上面、 60· ··刻 印(凹凸部)、 Α1· ··第 1領域、 Α2· ··第 2領域、 A3· ··所定領域、 EL…露光光、 LQ— 液体、 Ρ· ··基板、 Pa…表面、 Pb…裏面、 ΡΗ· ··保持機構、 VI· ··第 1空間
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。
[0017] <第 1実施形態 >
第 1実施形態について説明する。図 1 (A)は本実施形態に係る基板 Pを裏面側から 見た図、図 1 (B)は基板 Pを表面側力も見た図、図 1 (C)は基板 Pの断面図である。図 1において、円盤状の基板 Pは、基材 Wと、その基材 Wの上面 Waに形成された第 1 HRgとを備えている。本実施形態においては、基材 Wは半導体ウェハを含み、第 1 HRgは基材 Wの上面 Waの一部に被覆された感光材 (フォトレジスト)の膜を含む。 基材 Wは、この実施形態では、外径 12インチ、厚さ 0. 775mmのシリコン基板を用 いた。第 1膜 Rgは、基材 Wの上面 Waの周縁領域 Ew以外の大部分の領域に所定の 厚さ(例えば 200nm程度)で形成されている。一方、基材 Wの上面 Waと反対側の下 面 Wbには膜が形成されていない。感光材は、例えばスピンコート法等の所定の塗布 方法によって基材 W上に塗布される力 その基材 Wの周縁部に塗布された感光材は 剥離し易ぐ剥離した感光材は異物として作用する。そこで、基材 W上に所定の塗布 方法で感光材を塗布した後、上面 Waの周縁領域 Ewや側面 Wcの感光材を除去す る処理であるエッジリンス処理が行われる。これにより、第 1膜 Rgは、基材 Wの上面 W aの周縁領域 Ew以外の領域に形成される。
[0018] 後述するように、基板 Pの表面 Paには液体 LQを介して露光光 ELが照射される。こ こで、基板 Pの表面 Paとは、基材 Wの上面 Wa、あるいはその上面 Waに形成された 膜のうち、その最表層(最上層)の表面 (露出面)を言う。したがって、本実施形態に おいては、基板 Pの表面 Paとは、第 1膜 Rgの表面及び基材 Wの上面 Waの周縁領域 Ewを含む。一方、基板 Pの裏面 Pbとは、基板 Pの表面 Paと反対側の面を言う。した がって、本実施形態においては、基板 Pの裏面 Pbとは、基材 Wの下面 Wbを含む。
[0019] 図 1 (A)及び図 1 (C)に示すように、基板 Pの裏面 Pb (基材 Wの下面 Wb)には刻印 60が形成されている。この刻印 60は、例えば基板 Pの処理工程の管理等に用いられ る。刻印 60は、基板 Pの裏面 Pbのうち、その裏面 Pbのエッジから第 1の幅 HIの第 1 領域 A1に形成されている。本実施形態においては、基板 Pは平面視においてほぼ 円形状であり、第 1領域 A1は基板 Pの裏面 Pbの周縁部の円環状の領域である。円 環状の領域は基板中心と同軸である。刻印 60は、例えば基板 Pを識別するためにレ 一ザビーム等によって形成された文字や記号等を含む識別子であり、基板 Pの裏面 Pbの第 1領域 A1に凹状又は凸状に形成されて 、る。
[0020] 基板 Pの裏面 Pbのうち、第 1領域 A1よりも内側の所定領域 A3は平坦である。後述 するように、基板 Pの裏面 Pbの所定領域 A3は、この基板 Pの裏面 Pbを保持する基板 ホルダ 4に設けられた周壁部 31の上面 31Aと対向する領域となっている。基板 Pの 裏面 Pbの所定領域 A3は基板ホルダ 4の周壁部 31の上面 31Aに応じた大きさ及び 形状を有しており、本実施形態では所定幅で且つ基板と同軸の円環状の領域である
[0021] 基板 Pの裏面 Pbの所定領域 A3は、研磨処理 (鏡面加工)された研磨面となってお り、良好な平坦度を有している。また、本実施形態においては、所定領域 A3を含む 基板 Pの裏面 Pbのエッジ力 第 2の幅 H2の第 2領域 A2が研磨処理された研磨面と なっている。すなわち、本実施形態においては、基板 Pの裏面 Pbの第 1領域 A1も研 磨処理された研磨面となっており、その研磨面である第 1領域 A1に刻印 60が形成さ れている。例えば、この実施形態のように外径 12インチのシリコン基材 (ウエノ、)では 、幅 HIは 1. 0〜3. Omm、幅 H3は、 0. 1〜0. 5mm,幅 H2は、 1. 1mm以上にし 得る。なお、外径 8インチのシリコン基板(ウエノ、)でも、幅 Hl、 H2、 H3を上記範囲 に設定し得る。
[0022] また、本実施形態にぉ ヽては、基材 Wの上面 Waも研磨処理 (鏡面力卩ェ)された研 磨面となっており、ほぼ平坦である。そして、その研磨処理された基材 Wの上面 Wa に第 lHRgが形成されている。
[0023] 基材 Wの上面 Wa又は下面 Wbを研磨処理する場合には、例えば図 2の模式図に 示すような、 CMP装置 (化学的機械的研磨装置) 100を用いることができる。 CMP装 置 100は、研磨パッド 101を保持するとともに、その保持した研磨パッド 101を回転す る第 1回転機構 102と、基材 Wを保持するとともに、その保持した基材 Wを回転する 第 2回転機構 103とを有し、基材 Wの研磨対象面(上面 Wa又は下面 Wb)と研磨パッ ド 101とを接触させた状態で、スラリーを供給しつつ、研磨パッド 101と基材 Wとの少 なくとも一方を回転することによって、基材 Wの研磨対象面を研磨する。
[0024] なお、図 2に示した研磨装置は一例であって、基材 Wを研磨処理することができる のであれば任意の構成を有する装置を用いることができる。
[0025] 次に、上述の基板 Pを露光するための露光装置 EXの一例について図 3を参照しな 力 説明する。図 3において、露光装置 EXは、マスク Mを保持して移動可能なマスク ステージ 3と、基板 Pの裏面 Pbを保持する基板ホルダ 4と、基板ホルダ 4を移動可能 な基板ステージ 5と、マスクステージ 3に保持されて ヽるマスク Mを露光光 ELで照明 する照明光学系 ILと、露光光 ELで照明されたマスク Mのパターン像を基板 P上に投 影する投影光学系 PLと、露光装置 EX全体の動作を制御する制御装置 7とを備えて いる。
[0026] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置である。露 光装置 EXは、投影光学系 PLの像面側の露光光 ELの光路空間 Kを液体 LQで満た す液浸機構 1を備えている。露光装置 EXは、少なくともマスク Mのパターン像を基板 Pに露光している間、液浸機構 1を用いて、露光光 ELの光路空間 Kを液体 LQで満 たす。露光装置 EXは、投影光学系 PLと光路空間 Kに満たされた液体 LQとを介して マスク Mを通過した露光光 ELを基板 Pの表面 Paに照射することによって、マスク Mの パターン像を基板 Pに露光する。また、本実施形態の露光装置 EXは、光路空間 に 満たされた液体 LQ力 投影光学系 PLの投影領域 ARを含む基板 Pの表面 Paの一 部の領域に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液浸領域 LRを局所的 に形成する局所液浸方式を採用して 、る。
[0027] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、 X軸 方向をマスク Mと基板 Pとの同期移動方向(走査方向)、 Y軸方向を非走査方向とす る。なお、ここでいう基板は、図 1を参照して説明したような、半導体ウェハ等の基材 W上に感光材 (フォトレジスト)を塗布したものを含み、マスクは基板上に縮小投影さ れるデバイスパターンを形成されたレチクルを含む。
[0028] 照明光学系 ILは、マスク M上の所定の照明領域を均一な照度分布の露光光 ELで 照明するものである。照明光学系 IL力も射出される露光光 ELとしては、例えば水銀 ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm )等の遠紫外光(DUV光)や、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ
2 光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本実施形態にお!、 ては ArFエキシマレーザ光が用いられる。
[0029] 本実施形態においては、液体 LQとして純水を用いる。純水は、 ArFエキシマレー ザ光のみならず、例えば、水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrF エキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。なお、 液体 LQとして、水以外のものを用いてもよい。
[0030] マスクステージ 3は、マスクステージ駆動装置 3Dの駆動により、マスク Mを保持した 状態で、 X軸、 Y軸、及び θ Ζ方向に移動可能である。マスクステージ 3 (ひいてはマ スク Μ)の位置情報はレーザ干渉計 3Lによって計測される。レーザ干渉計 3Lはマス クステージ 3上に固設された移動鏡 3Κを用いてマスクステージ 3の位置情報を計測 する。制御装置 7は、レーザ干渉計 3Lの計測結果に基づいてマスクステージ駆動装 置 3Dを駆動し、マスクステージ 3に保持されて!、るマスク Μの位置制御を行う。
[0031] 投影光学系 PLは、マスク Mのパターン像を所定の投影倍率で基板 Pに投影する。
投影光学系 PLは、複数の光学素子を有しており、それら光学素子は鏡筒 PKで保持 されている。本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系である。なお、投影光学系 PLは等倍系及び拡大系のいずれでもよ い。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含ま ない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであって もよい。また、投影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。本実 施形態においては、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの像 面に最も近い最終光学素子 FLのみが光路空間 Kの液体 LQと接触する。
[0032] 基板ステージ 5は、基板 Pの裏面 Pbを保持する基板ホルダ 4を保持した状態で、ベ 一ス部材 6上で移動可能である。基板ステージ 5は、基板ステージ駆動装置 5Dの駆 動により、基板ホルダ 4を保持した状態で、 X軸、 Y軸、 Z軸、 0 Χ、 Θ Υ、ΑΧ θ Ζ方 向の 6自由度の方向に移動可能である。基板ステージ 5上の基板ホルダ 4 (ひいては 基板 Ρ)の位置情報はレーザ干渉計 4Lによって計測される。レーザ干渉計 4Lは基板 ホルダ 4に固設された移動鏡 4Κを用いて基板ステージ 5上の基板ホルダ 4の X軸、 Υ 軸、及び θ Ζ方向に関する位置情報を計測する。また、基板ホルダ 4に保持されてい る基板 Ρの表面の面位置情報 (Ζ軸、 Θ X、及び θ Υ方向に関する位置情報)は、不 図示のフォーカス'レべリング検出系によって検出される。制御装置 7は、レーザ干渉 計 4Lの計測結果及びフォーカス'レべリング検出系の検出結果に基づいて基板ステ ージ駆動装置 5Dを駆動し、基板ステージ 5上の基板ホルダ 4に保持されて ヽる基板 Ρの位置制御を行う。
[0033] 次に、液浸機構 1について説明する。液浸機構 1は、基板ステージ 5上の基板ホル ダ 4に保持された基板 Ρの表面 Paと、その基板 Pの表面 Paと対向する位置に設けら れ、露光光 ELが通過する投影光学系 PLの最終光学素子 FLとの間の光路空間 Kを 液体 LQで満たす。液浸機構 1は、光路空間 Κの近傍に設けられ、光路空間 Κに対し て液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22を有するノズル部 材 70と、供給管 13、及びノズル部材 70の供給口 12を介して液体 LQを供給する液 体供給装置 11と、ノズル部材 70の回収口 22、及び回収管 23を介して液体 LQを回 収する液体回収装置 21とを備えている。本実施形態においては、液体 LQを供給す る供給口 12及び液体 LQを回収する回収口 22はノズル部材 70の下面 70Αに形成さ れている。また、ノズル部材 70の内部には、供給口 12と供給管 13とを接続する流路 、及び回収口 22と回収管 23とを接続する流路が形成されている。液体供給装置 11 及び液体回収装置 21の動作は制御装置 7に制御される。液体供給装置 11は清浄 で温度調整された液体 LQを送出可能であり、真空系等を含む液体回収装置 21は 液体 LQを回収可能である。制御装置 7は、液浸機構 1を制御して、液体供給装置 11 による液体供給動作と液体回収装置 21による液体回収動作とを並行して行うことで、 光路空間 Κを液体 LQで満たし、基板 Ρの表面 Paの一部の領域に液体 LQの液浸領 域 LRを局所的に形成する。
[0034] 次に、基板 Pを保持する基板ホルダ 4について図 4及び図 5を参照して説明する。
図 4及び図 5において、基板ホルダ 4は、凹部 4Rと、凹部 4Rの内側に設けられ、基 板 Pの裏面 Pbを保持する保持機構 PHとを有しており、基板 Pを着脱 (交換)可能に 保持する。また、基板ホルダ 4のうち凹部 4R以外の上面 4Fは、基板ホルダ 4の保持 機構 PHに保持された基板 Pの表面 Paとほぼ同じ高さ(面一)になるような平坦面とな つている。なお、基板ホルダ 4の保持機構 PHに保持された基板 Pの表面 Paと基板ホ ルダ 4の上面 4Fとの間に段差があってもよ!、。
[0035] 基板ホルダ 4の凹部 4Rの内側には、 +Z方向を向き、 XY平面とほぼ平行な支持面 4Bが設けられている。保持機構 PHは、支持面 4B上に形成され、基板 Pの裏面 Pbを 支持する支持部 (支持部材) 30と、支持面 4B上に形成され、基板 Pの裏面 Pbと対向 し、支持部 30を囲むように環状に設けられた周壁部(環状部材) 31とを備えている。 支持部 30は、周壁部 31の内側に設けられた複数の凸状部材 (支持ピン)によって構 成されている。 [0036] 周壁部 31は、基板 Pの形状に応じて平面視略円環状に形成されており、その周壁 部 31の上面 31 Aは、基板 Pの裏面 Pbの周縁部に設定された所定領域 A3と対向す るように設けられている。そして、基板ホルダ 4の保持機構 PHに保持された基板 Pの 裏面 Pb側には、基板 Pの裏面 Pbと周壁部 31と支持面 4Bとで囲まれた第 1空間 VI が形成される。
[0037] 支持面 4Bのうち周壁部 31の内側には吸引口 33が形成されている。吸引口 33は 基板 Pを吸着保持するためのものであって、周壁部 31の内側において支持面 4Bの うち支持部 30以外の複数の所定位置のそれぞれに設けられている。吸引口 33のそ れぞれは、不図示の真空系に接続されている。制御装置 7は、真空系を駆動し、基 板 Pと周壁部 31と支持面 4Bとで囲まれた第 1空間 VI内部のガス (空気)を吸引して この第 1空間 VIを負圧にすることによって、基板 Pの裏面 Pbを支持部 30で吸着保持 する。また、真空系による吸引動作を解除することにより、基板ホルダ 4の保持機構 P Hより基板 Pを外すことができる。本実施形態における基板ホルダ 4の保持機構 PHは 、所謂ピンチャック機構を構成している。
[0038] また、本実施形態においては、周壁部 31の上面 31Aは、支持部 30の凸状部材の 上面とほぼ同じ高さに設けられており、基板 Pの裏面 Pbを支持部 30で吸着保持した とき、基板 Pの裏面 Pbの所定領域 A3と周壁部 31の上面 31Aとは密着する。
[0039] また、基板ホルダ 4の保持機構 PHで基板 Pの裏面 Pbを保持したとき、基板 Pの裏 面 Pbのうち、所定領域 A3の外側の第 1領域 A1は、周壁部 31よりも外側に配置され る。
[0040] 上述のように、保持機構 PHは、基板ホルダ 4の凹部 4Rの内側に配置されており、 保持機構 PHに保持された基板 Pの周囲には、基板ホルダ 4の上面 4Fが配置される 。そして、保持機構 PHに保持された基板 Pの側面 Pcと、その基板 Pの外側に配置さ れた凹部 4Rの内側面 4Cとの間には、 0. 1〜1. Omm程度の所定のギャップ G1が 形成される。
[0041] 基板ホルダ 4は、周壁部 31と内側面 4Cと支持面 4Bと基板 Pの下面 Pbの第 1領域 A1とで囲まれた第 2空間 V2の流体を吸引する吸引口 52を備えている。吸引口 52は 、基板ホルダ 4のうち、周壁部 31と内側面 4Cとの間の支持面 4B上に設けられている 。また、吸引口 52は、周壁部 31に沿った複数の所定位置のそれぞれに設けられて いる。吸引口 52には、流路 53を介して吸引装置 51が接続されている。吸引装置 51 は、吸引口 52を介して第 2空間 V2の流体を吸引可能である。第 2空間 V2の流体は 、第 2空間 V2の気体、及び第 2空間 V2に浸入した液体 LQを含み、吸引装置 51は、 気体を吸引可能であるとともに、液体 LQを吸引回収可能である。吸引装置 51は、真 空ポンプ等の真空系、回収された液体 LQと気体とを分離する気液分離器、及び回 収した液体 LQを収容するタンク等を備えて 、る。吸引装置 51の吸引動作は制御装 置 7により制御される。
[0042] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について 説明する。
[0043] 基板ホルダ 4に保持された基板 Pを液浸露光するために、制御装置 7は、不図示の 搬送系を用いて基板 Pを基板ホルダ 4に搬入 (ロード)した後、基板ホルダ 4の周壁部 31で囲まれた第 1空間 VIを負圧にすることによって基板 Pの裏面 Pbを支持部 30で 吸着保持する。次いで、制御装置 7は、液浸機構 1を用いて、基板ホルダ 4に保持さ れた状態の基板 Pの表面 Paに液体 LQの液浸領域 LRを形成する。そして、制御装 置 7は、基板ホルダ 4で基板 Pの裏面 Pbを保持した状態で、液浸領域 LRの液体 LQ を介して基板 Pの表面 Paに露光光 ELを照射する。
[0044] 例えば基板 Pの表面 Paの周縁領域を液浸露光するとき、投影光学系 PLの像面側 に形成された液浸領域 LRの一部が基板 Pの外側に形成される状態が生じ、その状 態においては、ギャップ G1の上に液体 LQの液浸領域 LRが形成される。その場合、 基板ホルダ 4の保持機構 PHで保持された基板 Pとその周囲の上面 4F (内側面 4C) とのギャップ G1は、 0. 1〜1. Omm程度に設定されているので、液体 LQの表面張 力によって、ギャップ G1に液体 LQが浸入することが抑制されている。また、基板ホル ダ 4の上面 4Fや内側面 4Cに撥液性を付与しておくことにより、ギャップ G1に液体 L Qが浸入することをより確実に抑制することができる。したがって、基板 Pの表面 Paの 周縁領域を露光する場合にも、投影光学系 PLの下に液体 LQを保持することができ る。
[0045] このように、ギャップ G1を小さくしたり、基板ホルダ 4の上面 4Fや内側面 4Cを撥液 性にするなどして、ギャップ G1からの液体 LQの浸入を抑制するようにしている力 基 板ホルダ 4 (基板ステージ 5)の移動や液浸領域 LRを形成して 、る液体 LQの圧力変 ィ匕などに起因して、基板 Pの周囲に形成されているギャップ G1を介して、基板ホルダ 4の第 2空間 V2に液体 LQが浸入する可能性がある。
[0046] 本実施形態においては、基板 Pの裏面 Pbの刻印 60は、基板 Pの裏面 Pbのうち所 定領域 A3以外の第 1領域 A1に形成されており、基板 Pの裏面 Pbの所定領域 A3は 研磨処理 (鏡面加工)された研磨面 (平坦面)であるため、周壁部 31で囲まれた第 1 空間 VIを負圧にすることによって、基板 Pの裏面 Pbの所定領域 A3と基板ホルダ 4の 周壁部 31の上面 31Aとを密着させることができる。したがって、ギャップ G1を介して 第 2空間 V2に液体 LQが浸入したとしても、その液体 LQが、基板 Pの裏面 Pbの所定 領域 A3と周壁部 31の上面 31Aとの間から第 1空間 VI側に移動することを抑制する ことができる。したがって、基板 Pの裏面 Pbでの液体 LQの拡がりを抑制することがで き、基板 Pの裏面 Pbの広範囲が濡れることを防止することができる。
[0047] 基板 Pの液浸露光処理が終了後、すなわち、露光光 ELの照射を停止した後、制御 装置 7は、液浸領域 LRを基板 P上及び基板ホルダ 4上カゝら取り除くとともに、基板ホ ルダ 4に基板 Pを保持した状態で、吸引装置 51の駆動を開始する。制御装置 7は、 露光光 ELの照射が停止されているときに、吸引装置 51を駆動することによって、そ の吸引装置 51により、吸引口 52を介して、第 2空間 V2の流体を吸引する。吸引装置 51が駆動されると、吸引口 52の周囲の気体 (すなわち第 2空間 V2の気体)は、吸引 口 52に吸引される。すなわち、吸引装置 51が吸引口 52を介して、第 2空間 V2の気 体を吸引することによって、基板 Pの側面 Pcと基板ホルダ 4の内側面 4Cとの間のギヤ ップ G1には、外部空間から第 2空間 V2へ向力う気体の流れが生成されるとともに、 周壁部 31の側面と基板ホルダ 4の内側面 4Cとの間の第 2空間 V2には、吸引口 52 に向力う気体の流れが生成される。これにより、仮にギャップ G1を介して第 2空間 V2 に液体 LQが浸入したり、あるいは、基板 Pの裏面 Pbのうち、周壁部 31よりも外側に オーバーハングした第 1領域 A1に液体 LQが付着しても、上述の気体の流れによつ て液体 LQを吸引口 52まで移動することができ、その吸引口 52を介して液体 LQを吸 引装置 51によって吸弓 I回収することができる。 [0048] そして、液体 LQの回収を行った後、制御装置 7は、不図示の搬送系を用いて、露 光処理後の基板 Pを基板ホルダ 4より搬出(アンロード)する。
[0049] 以上説明したように、基板 Pの裏面 Pbのうち、基板ホルダ 4の周壁部 31の上面 31A と対向する所定領域 A3を平坦にしたので、周壁部 31で囲まれた第 1空間 VIを負圧 にすることによって基板 Pを吸着保持した際、基板 Pの裏面 Pbの第 1領域 A3と周壁 部 31の上面 31Aとを密着させることができる。したがって、仮に、ギャップ G1を介して 第 2空間 V2に液体 LQが浸入したとしても、その液体 LQが第 1空間 VIへ浸入、すな わち基板 Pの裏面 Pbで濡れ拡がることを抑制することができる。
[0050] また、本実施形態では、所定領域 A3を含む基板 Pの裏面 Pbのエッジ力も第 2の幅 H2の第 2領域 A2が研磨面であり、第 2の幅 H2は第 1の幅 HIと幅 H3との和よりも大 きくなつている。すなわち、基板 Pの裏面 Pbのうち、少なくとも周壁部 31の内側の領 域まで研磨面となっている。これにより、基板ホルダ 4の周壁部 31の上面 31Aと基板 Pの裏面 Pbの研磨面(平坦面)とを確実に対向させ、周壁部 31の上面 31Aと基板 P の裏面 Pbとを密着させることができる。また、基板 Pの裏面 Pb (基材 Wの下面 Wb)の 全域を研磨処理された研磨面とすることもできる。
[0051] あるいは、基板 Pの裏面 Pbのうち、基板ホルダ 4の周壁部 31の上面 31Aと対向す る所定領域 A3及びその外側の第 1領域 A1のみを研磨処理された研磨面としてもよ い。あるいは、所定領域 A3のみを研磨処理された研磨面とし、第 1領域 A1は研磨処 理されていなくてもよい。
[0052] なお、本実施形態にぉ 、ては、刻印 60は、基板 Pの裏面 Pbのうち、基板ホルダ 4の 周壁部 31の上面 31Aと対向する所定領域 A3の外側の第 1領域 A1に形成されてい る力 所定領域 A3の内側の領域に形成されてもよい。すなわち、刻印 60は、基板ホ ルダ 4で基板 Pの裏面 Pbを保持したとき、周壁部 31よりも内側に設けられてもよい。 刻印 60は、基板 Pの裏面 Pbのうち、基板ホルダ 4に設けられた周壁部 31の上面 31 Aと対向する所定領域 A3以外の領域に形成されて ヽればよ ヽ。
[0053] なお、上述の実施形態においては、基板 Pの裏面 Pbに刻印 60を形成しているが、 刻印 60を設けないようにすることもできる。刻印 60を設けないことにより、基板 Pの裏 面 Pbの凹凸部を無くす、あるいは減らすことができるので、基板 Pの裏面 Pbを基板ホ ルダ 4で保持したとき、基板 Pの裏面 Pb側に液体 LQが浸入することをより確実に抑 ff¾することができる。
[0054] <第 2実施形態 >
次に、第 2実施形態について図 6を参照しながら説明する。以下の説明において、 上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説 明を簡略もしくは省略する。上述の第 1実施形態においては、基板 Pの裏面 Pbに形 成される凹部又は凸部として、刻印 60を例にして説明したが、基板 Pの裏面 Pbの凹 部又は凸部として、刻印 60以外のものもある。例えば、基板 Pの裏面 Pbに研磨処理 を施さないことで、図 6 (A)に示すように、基板 Pの裏面 Pbが粗面 (いわゆる梨地)と なる可能性がある。あるいは、基板 Pの裏面 Pbに所定の処理を施すことによって、基 板 Pの裏面 Pbが粗面となる可能性もある。基板 Pの裏面 Pbのうち、基板ホルダ 4の周 壁部 31の上面 31Aと対向する所定領域 A3が粗面 (梨地)の場合、ギャップ G1を介 して第 2空間 V2に浸入した液体 LQ力 基板ホルダ 4の周壁部 31の上面 31Aと基板 Pの裏面 Pbの所定領域 A3との間から第 1空間 VIに入り込む可能性がある。図 6 (B) に示すように、その粗面 (梨地)の領域を研磨処理して平坦にすることで、基板ホルダ 4の周壁部 31の上面 31Aと基板 Pの裏面 Pbとを密着させ、第 1空間 VI側に液体 LQ が入り込む不都合を防止できる。
[0055] 第 2実施形態においても、基板 Pの裏面 Pbの全域を研磨処理して研磨面としてもよ V、し、所定領域 A3を含む基板 Pの裏面 Pbのエッジ力も第 2の幅 H2の第 2領域 A2を 研磨処理して研磨面としてもよいし、所定領域 A3及びその外側の第 1領域 A1のみ を研磨処理して研磨面としてもょ 、し、所定領域 A3のみを研磨処理して研磨面とし てもよい。
[0056] なお、上述の第 1、第 2実施形態においては、基板 Pの裏面 Pbを研磨処理している 1S 周壁部 31の上面 31Aと基板 Pの裏面 Pbとを対向させた状態で、第 1空間 VIを 負圧にしたとき、第 2空間 V2の液体 LQが周壁部 31の上面 31Aと基板 Pの裏面 Pbと の間から第 1空間 VIに浸入することを阻止することができる程度に、基板 Pの裏面 Pb が平坦であるならば、基板 Pの裏面 Pbに対する研磨処理を省略してもよ 、。
[0057] なお、上述の各実施形態においては、基板 Pの裏面 Pbは基材(半導体ウェハ) W の裏面 Wbであるが、基材 Wの裏面 Wbに所定の材料膜が形成されてもよい。この場 合、その材料膜の表面 (露出面)が基板 Pの裏面 Pbとなる。また、基材 Wの裏面 Wb に複数の材料膜が積層される場合、その再表層(再下層)の材料膜の表面 (露出面) が基板 Pの裏面 bとなる。そして、その材料膜の表面 (露出面)のうち、少なくとも基板 ホルダ 4の周壁部 31の上面 31Aと対向する所定領域 A3を平坦にすることにより、基 板ホルダ 4で基板 Pの裏面 Pbを保持したとき、基板 Pの裏面 Pb側への液体 LQの浸 入を抑制することができる。そのような材料膜として、例えば、撥液性膜を用いること ができる。撥液性膜としては、例えば、ポリ四フッ化工チレン (テフロン (登録商標))等 のフッ素系榭脂材料、アクリル系榭脂材料、シリコン系榭脂材料等を用い得る。ある いは、半導体製造工程で用いられることがある HMDS (へキサメチルジシラザン)を 撥液性膜として用い得る。これらの材料で形成される撥液性膜は、基板 Pのみならず 、前述のように基板ホルダ 4の上面 4Fや内側面 4Cに設け得る。
[0058] なお、上述の実施形態においては、基板 Pbの所定領域 A3に刻印などの凹凸がな い基板 Pを用いる場合について説明したが、露光装置 EXに搬入される前に、所定領 域 A3にキズなどの凹凸が形成される可能性がある工程を省いておくことが望ましい。 また、露光装置 EXに搬入される前に、不慮の事故等により、所定領域 A3にキズなど の凹凸が発生してしまった基板 Pは、露光装置 EXでの露光処理から除外することが 望ましい。
[0059] また、基板ホルダ 4に保持される前に、基板 Pの裏面 Pbの所定領域 A3が平坦にな つている力否かを検査するための検査装置を露光装置 EXの内部又は外部に設けて もよい。例えば、基板 Pを基板ホルダ 4に保持する前に、基板 Pの裏面 Pbに検出光を 照射して、その裏面 Pbからの光を受光することによって、所定領域 A3に刻印ゃキズ などの凹凸が形成されていないかどうか、すなわち所定領域 A3の凹凸が許容できる か否かを検査する検査装置を用いることができる。このような検査装置を設けておくこ とによって、基板 Pbの所定領域 A3に許容できない凹凸がある基板 P、すなわち周壁 部 31の内側への液体 LQの侵入を起こしそうな基板 Pを露光装置 EXでの露光処理 力 確実に除外することができる。
[0060] また、上述の各実施形態においては、基板 Pの表面 Paを、感光材カもなる第 1HR gの表面として説明したが、この第 lHRgの上に他の材料膜が形成された場合、その 材料膜の表面 (露出面)が基板 Pの表面 Paとなる。例えば、感光材カもなる第 lHRg を覆うように、トップコート膜と呼ばれる保護膜が設けられた場合、そのトップコート膜 の表面が、基板 Pの表面 Paとなる。なお、トップコート膜は、感光材を液体 LQから保 護する機能と、液体 LQの回収性を向上するために液体 LQとの接触角を調整する機 能とを有している。例えば、液体 LQの接触角は、 90° 以上になるようなトップコート 膜を設け得る。そのようなトップコート膜として、東京応化工業株式会社製「TSP— 3 A」が挙げられる。また、感光材カもなる第 lHRgやトップコート膜を覆うように、反射 防止膜が設けられた場合、その反射防止膜の表面 (露出面)が基板 Pの表面となる。
[0061] また、上述の実施形態においては、説明を簡単にするために、基材 Wの表面がシリ コン基板の表面である場合について説明した力 基材 Wの表面(下地)が SiO等の
2 酸ィ匕膜の場合もある。また、基材 wの表面(下地)が、前のプロセスまでに生成された
SiO等の酸ィ匕膜、 SiOや SiNx等の絶縁膜、 Cuや Al— Siなどの金属'導体膜、ァ
2 2
モルファス Siなどの半導体膜である場合やこれらが混合する場合もある。したがって 、エッジリンス処理をした後、基板 Pの周縁領域においては、これらの膜表面が基板 P の表面となる場合もある。
[0062] また、上述の実施形態においては、基板ホルダ 4の周壁の上面と対向する領域を 平坦化した基板 Pを用いるようにして!/ヽるが、基板 Pの裏面 Pbの平坦部の位置 (ある いは刻印などの凹凸がある位置)に応じて、基板ホルダ 4の周壁の位置を調整しても よい。例えば、基板 Pの裏面 Pbの平坦部と基板ホルダ 4の周壁の上面とが対向する ように、基板 Pの平坦部の位置に応じて基板ホルダ 4を交換するようにしてもょ 、。
[0063] 上述したように、本実施形態における液体 LQは純水を用いた。純水は、半導体製 造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光学素子( レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がな いとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PL の先端面に設けられている光学素子の表面を洗浄する作用も期待できる。
[0064] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0065] 本実施形態では、投影光学系 PLの先端に光学素子 FLが取り付けられており、こ の光学素子により投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等) の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子として は、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるい は露光光 ELを透過可能な平行平面板であってもよい。
[0066] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0067] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
[0068] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子の物体面側の光路空間も液体で満たす投影光学系を採 用することちでさる。
[0069] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。また、液体 LQとしては、その他に も、露光光 ELに対する透過性があってできるだけ屈折率が高ぐ投影光学系 PLや 基板 P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を 用いることも可能である。
[0070] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、 石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で光学素子 FLを形成しても よい。
[0071] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。
[0072] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツノ の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ にも適用することができる。この場合、投影光学系、例えば、 1Z8縮小倍率で反 射素子を含まない屈折型投影光学系が用いられる。
[0073] さらに、ステップ'アンド'リピート方式の露光において、第 1パターンと基板 Pとをほ ぼ静止した状態で、投影光学系を用いて第 1パターンの縮小像を基板 P上に転写し た後、第 2パターンと基板 Pとをほぼ静止した状態で、投影光学系を用いて、第 2バタ 一ンの像を第 1パターンと部分的に重ねて基板 P上に一括露光してもよい。(ステイツ チ方式の一括露光装置)。また、ステイッチ方式の露光装置としては、基板 P上で少 なくとも 2つのパターンを部分的に重ねて転写し、基板 Pを順次移動させるステップ · アンド ·ステイッチ方式の露光装置にも適用できる。
[0074] また、上述の実施形態においては、投影光学系と基板との間に局所的に液体を満 たす露光装置を採用しているが、本発明は、特開平 6— 124873号公報、特開平 10 — 303114号公報、米国特許第 5, 825, 043号などに開示されているような、基板 の表面に液体を供給して、基板表面全体を液浸した状態で基板の露光を行う液浸 露光装置にも適用可能である。また、本発明は、特開平 10— 163099号公報、特開 平 10— 214783号公報(対応米国特許 6, 341, 007、 6, 400, 441、 6, 549, 269 及び 6, 590,634)、特表 2000— 505958号公報(対応米国特許 5, 969, 441) ¾ どに開示されているような複数の基板ステージを備えたツインステージ型の露光装置 にも適用できる。
[0075] 更に、特開平 11— 135400号公報ゃ特開 2000— 164504号公報に開示されて ヽるように、基板を保持する基板ステージと基準マークが形成された基準部材ゃ各 種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用する ことができる。
[0076] 上記実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明してきたが 、投影光学系 PLを用いない露光装置及び露光方法に本発明を適用することができ る。このように投影光学系 PLを用いない場合であっても、露光光はレンズなどの光学 部材を介して基板に照射され、そのような光学部材と基板との間の所定空間に液浸 領域が形成される。
[0077] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチ ップ、レチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
[0078] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro -mirror Device)などを含 む)を用いてもよい。
[0079] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露 光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。さらに、例 えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に開示されて いるように、 2つのマスクのパターンを、投影光学系を介して基板上で合成し、 1回の 走査露光によって基板上の 1つのショット領域をほぼ同時に二重露光する露光装置 にも本発明を適用することができる。
[0080] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
[0081] 半導体デバイス等のマイクロデバイスは、図 7に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、前述した研磨プロセスを含むデバイスの基材である基板を製造 するステップ 203、基板に成膜し、前述した実施形態の露光装置 EXによりマスクの パターンを基板に露光し、露光した基板を現像する基板処理 (露光処理)ステップ 20 4、デバイス組み立てステップ (ダイシング工程、ボンディング工程、ノ ッケージ工程な どの加工プロセスを含む) 205、検査ステップ 206等を経て製造される。
産業上の利用可能性
[0082] 本発明によれば、液浸露光に好適な基板を提供することができ、デバイスの生産性 の低下を抑制することができる。特に、基板の裏面における液体の濡れ広がりに伴う 不都合を未然に防止して、高密度な回路パターンを有するデバイスを高 、スループ ットで生産することができる。このため、本発明は、我国の半導体産業を含むハイテク 産業及び IT技術の発展に貢献するであろう。

Claims

請求の範囲
[I] 周壁を有する基板ホルダにより保持されつつ液体を介して露光光が照射される液 浸露光用基板であって、
前記基板ホルダに保持される裏面と、
前記露光光が照射され且つ液体が供給される表面とを備え、
前記基板ホルダに保持されたときに前記周壁の上面と対向する前記裏面の所定領 域が平坦である基板。
[2] 前記基板ホルダは前記周壁の内側に前記裏面を支持する支持部を有し、
前記周壁で囲まれた空間が負圧にされることによって前記支持部に保持される請 求項 1記載の基板。
[3] 前記裏面に凹凸部を有し、
前記凹凸部は、前記裏面のうち前記所定領域以外の領域に形成される請求項 1記 載の基板。
[4] 前記凹凸部は、前記裏面のエッジ力 第 1の幅の第 1領域に形成される請求項 1記 載の基板。
[5] 前記凹凸部は刻印を含む請求項 3記載の基板。
[6] 前記所定領域は研磨処理された研磨面である請求項 1記載の基板。
[7] 前記所定領域を含む前記裏面のエッジから第 2の幅の第 2領域が研磨面である請 求項 6記載の基板。
[8] 前記基板の裏面が粗面であり、前記所定領域のみが研磨処理されている請求項 1 記載の基板。
[9] 前記基板が円盤状であり、前記所定領域が基板の所定半径領域に位置する環状 領域である請求項 1記載の基板。
[10] 請求項 1記載の基板の表面に液体の液浸領域を形成し、
前記液体を介して前記基板上に露光光を照射して前記基板を露光する露光方法。
[II] 請求項 10規定の露光方法により基板を露光することと、
露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
[12] 液体を介して基板を露光する露光方法であって、
前記基板の表面に膜を形成することと、
前記基板の裏面の研磨された所定領域の少なくとも一部を保持しながら、基板の 表面上に液体を供給することと、
前記液体を介して基板を露光することを含む露光方法。
[13] 前記基板が円盤状であり、基板の前記所定領域が環状領域であり、環状領域を環 状部材で支持しつつ環状領域と環状部材で形成される空間を減圧することによって 環状領域を環状部材で密着させる請求項 12記載の露光方法。
[14] 環状領域と環状部材で形成される空間において、基板の裏面を複数の支持部材 で支持する請求項 13記載の露光方法。
[15] 前記基板が、周壁を有する基板ホルダにより保持され、基板の裏面の周壁の上面 と対向する領域が研磨されている請求項 12記載の露光方法。
[16] さらに、前記基板ホルダは前記周壁の内側に前記裏面を支持する支持部を有する 請求項 15記載の露光方法。
[17] さらに、前記裏面の所定領域とは異なる領域に凹凸部が形成されている請求項 12 記載の露光方法。
[18] 前記基板の表面に液体を供給する前に、前記所定領域の状態を検査することを含 む請求項 12記載の露光方法。
[19] 前記所定領域の凹凸が許容範囲か否かを検査する請求項 18記載の露光方法。
[20] 請求項 12規定の露光方法により基板を露光することと、
露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
PCT/JP2006/313701 2005-07-08 2006-07-10 液浸露光用基板、露光方法及びデバイス製造方法 WO2007007723A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005200195 2005-07-08
JP2005-200195 2005-07-08

Publications (1)

Publication Number Publication Date
WO2007007723A1 true WO2007007723A1 (ja) 2007-01-18

Family

ID=37637112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313701 WO2007007723A1 (ja) 2005-07-08 2006-07-10 液浸露光用基板、露光方法及びデバイス製造方法

Country Status (1)

Country Link
WO (1) WO2007007723A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139196B2 (en) 2017-10-12 2021-10-05 Asml Netherlands B.V. Substrate holder for use in a lithographic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349795A (ja) * 1993-06-08 1994-12-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの製造方法
JPH0757980A (ja) * 1993-08-17 1995-03-03 Nippon Steel Corp 半導体ウエハの使用方法及び半導体装置の製造方法
WO2005057636A1 (ja) * 2003-12-15 2005-06-23 Nikon Corporation ステージ装置、露光装置、及び露光方法
WO2005059977A1 (ja) * 2003-12-16 2005-06-30 Nikon Corporation ステージ装置、露光装置、及び露光方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349795A (ja) * 1993-06-08 1994-12-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの製造方法
JPH0757980A (ja) * 1993-08-17 1995-03-03 Nippon Steel Corp 半導体ウエハの使用方法及び半導体装置の製造方法
WO2005057636A1 (ja) * 2003-12-15 2005-06-23 Nikon Corporation ステージ装置、露光装置、及び露光方法
WO2005059977A1 (ja) * 2003-12-16 2005-06-30 Nikon Corporation ステージ装置、露光装置、及び露光方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139196B2 (en) 2017-10-12 2021-10-05 Asml Netherlands B.V. Substrate holder for use in a lithographic apparatus
US11749556B2 (en) 2017-10-12 2023-09-05 Asml Netherlands B.V. Substrate holder for use in a lithographic apparatus

Similar Documents

Publication Publication Date Title
US20180292759A1 (en) Substrate holding device, exposure apparatus, and device manufacturing method
JP4844186B2 (ja) プレート部材、基板保持装置、露光装置及び露光方法、並びにデバイス製造方法
JP5029611B2 (ja) クリーニング用部材、クリーニング方法、露光装置、並びにデバイス製造方法
JP5287946B2 (ja) 露光装置
EP1783823A1 (en) Exposure method and method for producing device
WO2006064851A1 (ja) 基板保持装置、露光装置、及びデバイス製造方法
WO2006030910A1 (ja) 露光用基板、露光方法及びデバイス製造方法
WO2006077859A1 (ja) 液体除去装置、露光装置、及びデバイス製造方法
JPWO2007083592A1 (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
JP5278034B2 (ja) 基板保持装置、露光装置、露光方法、デバイス製造方法
JP4752320B2 (ja) 基板保持装置及び露光装置、基板保持方法、露光方法、並びにデバイス製造方法
WO2010050240A1 (ja) 露光装置、露光方法、及びデバイス製造方法
JP4544303B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2009021498A (ja) 露光装置、液浸システム、及びデバイス製造方法
WO2006134910A1 (ja) 光学素子、光学素子保持装置、露光装置、及びデバイス製造方法
JPWO2007000995A1 (ja) 露光装置及び方法、並びにデバイス製造方法
JP5045008B2 (ja) 液浸露光用基板、露光方法及びデバイス製造方法
WO2007007723A1 (ja) 液浸露光用基板、露光方法及びデバイス製造方法
JP2009212132A (ja) 基板、基板の処理方法及び処理装置、基板の処理システム、露光方法及び露光装置、並びにデバイス製造方法
JPWO2006041091A1 (ja) 露光装置のメンテナンス方法、露光装置、デバイス製造方法、液浸露光装置のメンテナンス用の液体回収部材
JP2010109270A (ja) 確認方法、メンテナンス方法、及びデバイス製造方法
JP2009044089A (ja) 露光方法、デバイス製造方法、及びデバイス製造システム
WO2007029828A1 (ja) 解析方法、露光方法及びデバイス製造方法
JP2009182110A (ja) 露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780923

Country of ref document: EP

Kind code of ref document: A1