WO2007007698A1 - 電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料 - Google Patents

電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料 Download PDF

Info

Publication number
WO2007007698A1
WO2007007698A1 PCT/JP2006/313650 JP2006313650W WO2007007698A1 WO 2007007698 A1 WO2007007698 A1 WO 2007007698A1 JP 2006313650 W JP2006313650 W JP 2006313650W WO 2007007698 A1 WO2007007698 A1 WO 2007007698A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
shielding material
wave shielding
silver
silver halide
Prior art date
Application number
PCT/JP2006/313650
Other languages
English (en)
French (fr)
Inventor
Takeshi Habu
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007524637A priority Critical patent/JPWO2007007698A1/ja
Publication of WO2007007698A1 publication Critical patent/WO2007007698A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/58Processes for obtaining metallic images by vapour deposition or physical development
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means

Definitions

  • Electromagnetic wave shielding material manufacturing method thereof, and electromagnetic wave shielding material for plasma display panel
  • the present invention relates to an electromagnetic wave shielding material having near-infrared absorptivity and visible light permeability used for the front surface of a plasma display panel (PDP), a manufacturing method thereof, and an electromagnetic wave shielding material for a plasma display panel.
  • PDP plasma display panel
  • EMI electromagnetic interference
  • a plasma display panel (hereinafter abbreviated as PDP) is based on the principle that a rare gas is put into a plasma state to emit ultraviolet light, and this phosphor emits phosphors. .
  • PDP plasma display panel
  • near infrared rays are also emitted at this time, and in order to cause a malfunction of an operation element such as a remote controller, shielding of near infrared rays is also required at the same time as electromagnetic wave shielding ability.
  • the electromagnetic wave shielding ability can be expressed simply by the surface resistance value.
  • For translucent electromagnetic wave shielding materials for PDP 10 ⁇ or less is required, and for consumer plasma televisions using PDP, 2 ⁇ It is more necessary to make the mouth or lower, and it is desirable to have extremely high conductivity (less than 0.2 ⁇ mouth).
  • the required level regarding the shielding rate against near infrared rays is required to be 60% or more, preferably 80% or more, and further higher shielding properties are desired.
  • a plurality of transparent substrates are combined for the purpose of imparting mechanical strength, a conductive layer for the purpose of shielding electromagnetic waves, a near-infrared absorbing layer for shielding near-infrared rays, and an anti-reflection of external light.
  • both electromagnetic wave shielding using a metal mesh having openings and shielding using a near infrared absorbing dye are compatible.
  • the method power to make has been proposed so far. For example, when a near-infrared absorbing film is applied to a glass plate baked with a metal mesh having a high aperture ratio, the manufacturing method for the baking of the metal mesh is complicated, and skill is required for production. There was a problem that it took a long time.
  • the developed silver obtained is a metallic silver
  • a silver mesh can be produced depending on the production method.
  • a photosensitive material having a layer containing halogenated silver particles is exposed and developed in a mesh-like image form
  • conductive metal silver portions assembled in a silver particle cache shape are formed. Since the binder is clogged between the silver particles, the conductivity is hindered. Therefore, the force that needs to reduce the binder alone does not improve the conductivity.
  • a method for improving conductivity by performing a plating treatment is described (for example, see Patent Documents 1 and 2;).
  • the plating process requires the preparation of a plating solution, resulting in the generation of harmful waste liquid containing heavy metals.
  • Patent Documents 1 and 2 it is mentioned that the near-infrared rays that cause malfunction of the wireless electronic device generated from the PDP are shielded.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-221564
  • Patent Document 2 JP-A-2004-221565
  • the present invention has been made in view of such circumstances, and an object of the present invention is an electromagnetic wave shielding material having a high electromagnetic wave shielding property and a high near-infrared shielding property at the same time. It is an object of the present invention to provide a manufacturing method and an electromagnetic wave shielding material for a plasma display panel in a simple and quick process.
  • [0014] Exposing and developing a silver halide photographic light-sensitive material having at least one near-infrared absorbing layer on a support and having a silver halide emulsion layer containing a silver halide silver grain.
  • a method for producing an electromagnetic wave shielding material comprising forming an image of metallic silver particles by further applying pressure treatment or heat treatment, and making the metallic silver particle image an image having increased continuity.
  • An electromagnetic wave shielding material produced by the method for producing an electromagnetic wave shielding material according to any one of 1 to 8 above, wherein the surface resistance is 10 ⁇ or less at the Z port or an average visible light transmittance. It is 0% or more, and has a conductive metal part and a near infrared absorption layer. Electromagnetic wave shielding material.
  • a translucent material that satisfies the performances of high transmittance and high conductivity (electromagnetic wave shielding ability) at the same time, shields near infrared rays, and prevents malfunction of near-infrared wireless electronic devices.
  • An electromagnetic wave shielding material, a manufacturing method thereof that can be produced without producing harmful mess treatment waste liquid, and an electromagnetic wave shielding material for a plasma display panel can be provided.
  • photosensitive material the silver halide silver photographic material according to the present invention
  • the silver halide silver halide emulsion layer can contain a binder, an activator and the like of silver halide grains.
  • halogenated silver particles used in the present invention include inorganic halogenated silver particles such as silver bromide and organic silver particles such as silver behenate. It is preferable to use non-organic halogen silver.
  • silver halide silver preferably used in the present invention for example, silver halide mainly composed of AgCl, AgBr, and Agl is preferably used. In order to obtain metallic silver having good conductivity, fine particles with high sensitivity are used. Halogenated silver mainly composed of AgBr containing preferred iodine is preferably used. When a large amount of iodine is contained, the sensitivity is high and the particles can be made fine.
  • the average grain size of the silver halide is preferably 1 to: LOOOnm (: m) in terms of the equivalent sphere diameter, and more preferably 1 to 50 nm, more preferably 1 to LOONm.
  • the sphere equivalent diameter of silver halide grains is the diameter of grains having the same volume and a spherical shape.
  • various shapes such as a spherical shape, a cubic shape, a flat plate shape (hexagonal flat plate shape, triangular flat plate shape, quadrangular flat plate shape, etc.), octahedral shape, tetrahedral shape, etc. It can be in any shape.
  • tabular grains having an aspect ratio of 2 or more, 4 or more, 8 or more, and 16 or less can be preferably used.
  • the particle size distribution may be wide or narrow, but a narrow distribution is preferable in order to obtain high conductivity and increase the aperture ratio.
  • the monodispersity known in the photographic industry is preferably 100 or less, and more preferably 30 or less. From the standpoint of facilitating the flow of electricity, the larger the contact area between the generated particles, the better the shape of the particles.Thus, the flat and the larger the aspect ratio, the better, but the higher the aspect ratio, the less the concentration. There is an optimal aspect ratio.
  • the halogenated silver used in the present invention may further contain other elements.
  • metal ions such as rhodium ions, ruthenium ions, and iridium ions are preferably used because the difference between the exposed portion and the unexposed portion tends to occur clearly when a metallic silver image is formed.
  • Transition metal ions represented by rhodium ions and iridium ions can also be compounds having various ligands.
  • Examples of such a ligand include cyanide ions, halogen ions, thiocyanate ions, nitrosyl ions, water, and hydroxide ions.
  • Specific examples of the compound include potassium bromate rhodate and potassium iridate.
  • Pd ions, Pt ions, Pd metals, or silver halides containing Pt metals can also be preferably used.
  • Pd and Pt are evenly distributed in the halogenated silver grains! However, it is preferable to contain them in the vicinity of the surface layer of the halogenated silver grains.
  • the content of Pd ions or Pd metal contained in the silver halide 1 X 10- 6 ⁇ 0 number of moles of silver of silver halide. 1 mole Z mol Ag is preferred 0.01 to 0.3 mol Z mol Ag is more preferred.
  • chemical sensitization performed in a photographic emulsion can be performed. Chemical sensitization includes, for example, noble metal sensitization such as gold, palladium and platinum sensitization, chalcogen sensitization such as sensitization with inorganic or organic compounds, and reduction sensitization such as sodium chloride tin and hydrazine. Can be used.
  • Chemically sensitized halogen silver halide grains can be spectrally sensitized.
  • the sensitizing dye is adsorbed on the surface of the silver halide grains, it has been found that the characteristics of the developed silver formed during the development process are suitable for an electromagnetic shielding material.
  • the wavelength region to be spectrally sensitized can be arbitrarily determined in accordance with the method for exposing the halogen silver halide grains. In the present invention, it is particularly preferable to spectrally sensitize to the near infrared region.
  • Preferable spectral sensitizing dyes include cyanine, carbocyanine, dicarboyanine, complex cyanine, hemisyanine, styryl dye, merocyanine, complex merocyanine, holopolar monochromator, and the like. Can be used alone or in combination.
  • Particularly useful dyes are cyanine dyes, merocyanine dyes, and complex merocyanine dyes.
  • any of the nuclei commonly used in cyanine dyes can be used as the basic heterocyclic ring nucleus.
  • the merocyanine dye or the complex merocyanine dye includes, as nuclei having a ketomethylene structure, a pyrazoline-5-one nucleus, a thiohydantoin nucleus, a 2 thoxazolidine 2,4 dione nucleus, a thiazolidine 2,4 dione nucleus, a rhodanine.
  • 5- to 6-membered heterocycle nuclei such as nuclei and thiobarbituric acid nuclei can be applied.
  • the sensitizing dye is a near-infrared sensitizing dye. These dyes can be referred to JP-A-2000-347343, JP-A-2004-037711 and JP-A-2005-134710. Preferred examples Shown below.
  • sensitizing dyes may be used alone or in combination.
  • sensitizing dyes is often used for the purpose of supersensitization.
  • sensitizing dyes in a silver halide silver emulsion, they may be dispersed directly in the emulsion, or water, methanol, propanol, methyl mouthsolve, 2, 2, 3, It may be dissolved in a solvent such as 3-tetrafluoropropanol alone or in a mixed solvent and added to the L agent.
  • a solvent such as 3-tetrafluoropropanol alone or in a mixed solvent and added to the L agent.
  • an acid or a base is allowed to coexist to form an aqueous solution, or US Pat. No. 3,822,135, No. 4, 006, 025, etc.
  • a method for enhancing the silver halide grains there is a method of increasing the silver chloride content and narrowing the particle size distribution.
  • a hydrazine compound is used. It is known to use a tetrazolium compound as a contrast enhancer.
  • a hydrazine compound is a compound having one NHNH group, and a typical one is represented by the following general formula.
  • each T represents an optionally substituted aryl group or heterocyclic group.
  • the aryl group represented by T includes a benzene ring or a naphthalene ring, and this ring may have a substituent.
  • a linear or branched alkyl group preferably having a carbon number of 1 To 20 methyl group, ethyl group, isopropyl group, n-dodecyl group, etc.
  • alkoxy group preferably methoxy group having 2 to 21 carbon atoms, ethoxy group etc.
  • aliphatic isylamino group preferably 2 to 21 carbon atoms
  • aromatic isylamino groups and the like.
  • substituted or unsubstituted aromatic rings such as those described above are CO NH—, —O—, — SO NH—, — NHCONH—, — CH CHN
  • V represents a hydrogen atom, an alkyl group which may be substituted (for example, a methyl group, an ethyl group, a ptyl group, a trifluoromethyl group, etc.), an aryl group (for example, a phenyl group, a naphthyl group), a heterocyclic group (for example, , Pyridyl group, piperidyl group, pyrrolidyl group, fulleryl group, thiophene group, pyrrole group, etc.).
  • an alkyl group which may be substituted for example, a methyl group, an ethyl group, a ptyl group, a trifluoromethyl group, etc.
  • an aryl group for example, a phenyl group, a naphthyl group
  • a heterocyclic group for example, Pyridyl group, piperidyl group, pyrrolidyl group, fulleryl group, thiophene
  • the hydrazine compound can be synthesized with reference to the description in US Pat. No. 4,269,929. Hydrazine compounds are contained in the emulsion layer or in the hydrophilic colloid layer adjacent to the emulsion layer.
  • hydrophilic colloid layer Furthermore, it can be contained in another hydrophilic colloid layer.
  • the hydrazine compound is particularly preferably one having a sulfonamidophenol group as the T group and a trifluoromethyl group as the V group.
  • the oxalyl group bonded to hydrazine is particularly preferably an optionally substituted piperidylamino group. Specific examples of tetrazolium compounds are shown below.
  • JP-B-5-58175 can be used with reference to the description in JP-B-5-58175, and in some cases can also be used in combination with hydrazine compounds.
  • a representative amine compound can be represented by the following general formula containing at least one nitrogen atom.
  • R, Q, Z and W each represents an alkyl group having 2 to 30 carbon atoms which may be substituted. Further, these alkyl group chains may be bonded by a heteroatom such as nitrogen, sulfur or oxygen. R and Z, or Q and W may form a saturated and unsaturated ring with each other.
  • L represents a divalent linking group. This linking group may contain a hetero atom such as sulfur, oxygen, and nitrogen. The linking group of L can have 1 to 200 carbon atoms, 1 to 30 sulfur atoms, 1 to 20 nitrogen atoms and 1 to 40 oxygen atoms. Flower ,. Specific examples of these amine compounds are shown below.
  • the molecule has at least one piperidine ring or pyrrolidine ring, at least one thioether bond, and at least two ether bonds.
  • Pyridinium compounds and phosphonium compounds are used in addition to amine compounds as compounds that promote the reducing action of hydrazine. Since the um-compound has a positive charge, it is adsorbed to the halogenated silver particles charged to a negative charge and promotes electron injection from the developing agent during development, thereby promoting high contrast. It is thought to do.
  • pyridinium compounds For preferred pyridinium compounds, reference can be made to the bispyridium compounds described in JP-A-5-53231 and JP-A-6-242534. Particularly preferred pyridi-um compounds are those in which a bispyridium body is formed by linking at the 1- or 4-position of the pyridium. As salts, halogen ions such as chlorine ions and bromine ions are preferred, but also tetrafluoroboron ions, perchlorate ions, etc., but chlorine ions or boron tetrafluoride ions are preferred. ,. Preferred examples of bispyridium compounds are shown below.
  • Hydrazine compounds act to increase the density of high-concentration parts, but the contrast of the legs is insufficient, so as an attempt to improve this, a technology that uses an oxidized form of the developing agent produced during development is used. I can think of it.
  • the presence of a redox compound that reacts with the oxidized oxidant of the developing agent increases the sharpness of the image by releasing an inhibitor that suppresses the strength of the compound. Oxidation of the developing agent occurs as the development progresses, so the particle reduction rate is related. If a development nucleus having a high reduction rate is formed with a chemical sensitizer, this effect can be enhanced, and thus a good chemical sensitizer is required.
  • the compound according to the present invention is used, a remarkable effect can be obtained when the redox compound is used.
  • the redox compound has hydroquinones, catechols, naphthohydroquinones, aminophenols, virazolidones, hydrazines, reductones, etc. as redox groups.
  • a preferred redox compound is a compound having an NHNH group as a redox group, and a compound represented by the following general formula is representative.
  • T and V each represent a group having the same meaning as the hydrazine compound.
  • PUG represents a photographically useful group, for example, 5-troindazole, 4-troindazole, 1-phenoltetrazole, 1- (3-sulfophenyl) tetrazole, 5-trobenstriazole, 4--trobe Nzotriazole, 5--troimidazole, 4--troimidazole and the like.
  • These development-inhibiting compounds are directly linked to the CO moiety of T—NHNH—CO via a heteroatom such as ⁇ or S, or each group such as alkylene, phenylene, aralkylene, and aryl represented by (Time).
  • a compound in which a development inhibitory group such as triazole, indazole, imidazole, thiazole or thiadiaol is introduced into a compound having a ballast group or a quinone compound with a throat can be used.
  • Hidorajini ⁇ was Amini ⁇ thereof, pyrid - ⁇ beam compounds, Tetorazoriumu compound and TOLEDO box compound
  • Sig especially 1 preferred is to 1 X 10- 6 ⁇ 5 X 10- 2 molar content per mole of silver halide X 10- 4 ⁇ 2 X 10- 2 mol is preferred.
  • Hardening by adjusting the amount of applied force of these compounds It is easy to make the toning degree 0 6 or more.
  • can be further adjusted by the monodispersity of the emulsion, the amount of rhodium used, chemical sensitization, and the like.
  • is the density difference with respect to the difference between the exposure amounts giving the densities of 0.1 and 3.0.
  • halogenated emulsion layer or other hydrophilic colloid layer of the light-sensitive material are used after being added to the halogenated emulsion layer or other hydrophilic colloid layer of the light-sensitive material. If it is water-soluble, add it to an aqueous solution, and if it is water-insoluble, add it to a halogenated silver emulsion solution or hydrophilic colloid solution as a solution of an organic solvent miscible with water, such as alcohols, esters, and ketones. Good. If it is not soluble in these organic solvents, it can be added as fine particles having a size of 0.01 to 10 / ⁇ ⁇ by a ball mill, sand mill, jet mill or the like. As the fine particle dispersion method, a technique of solid dispersion of a dye as a photographic additive can be preferably applied.
  • the photosensitive material can be provided with a near-infrared absorbing layer.
  • a near-infrared absorbing layer it is common to provide an adhesive layer, an antistatic layer, a near infrared dye-containing layer, and a protective layer on the support.
  • an adhesive layer After applying a salty vinylidene copolymer styrene-glycidyl acrylate copolymer at a thickness of 0.1 to 1 / ⁇ ⁇ on a corona-discharged support as an adhesive layer, indium was used as an antistatic layer.
  • a gelatin layer, an acrylic or metathalyl polymer layer, or a non-acrylic polymer layer containing fine particles of 0.01 to 1 / ⁇ ⁇ of acid and tin pentoxide and vanadium pentoxide having an average particle diameter doped with phosphorus can be applied.
  • styrene sulfonic acid and maleic acid copolymer can be formed by forming a film with the aforementioned aziridine or a carbonyl active type crosslinking agent.
  • a dye layer is provided on these antistatic layers to form a near infrared absorption layer.
  • the near-infrared absorption layer is composed of colloidal silica, and further, colloidal silica, which is coated with metatalylate, acrylate polymer, or non-acrylate polymer such as styrene polymer or acrylamide. It can contain a filler, an anti-adhesive silica methyl methacrylate matting agent, a silicon-based slip agent or a release agent for controlling transportability.
  • the knocking dye a benzylidene dye or a oxonole dye is used. These alkali-soluble or degradable dyes can also be fixed as fine particles.
  • the concentration for preventing halation is preferably 0.1 to 2.0 at each photosensitive wavelength.
  • the antistatic agent used in the near-infrared absorbing layer can also be used on the emulsion layer side.
  • the antistatic agent used in the near-infrared absorbing layer can also be used on the emulsion layer side.
  • they can be added to one or both layers, or used as an antihalation layer, an inhibitor releasing layer or a timing layer under the emulsion.
  • the photosensitive material can be dried by applying a drying theory in chemical engineering.
  • the method of giving humidity during drying varies depending on the characteristics of the photosensitive material, and must be selected as appropriate. Fast drying is a color that often degrades performance by raising the fog or degrading shelf life.
  • the halogen silver photographic light-sensitive material according to the present invention is preferably dried at a relative humidity of 20% or less at 30 ° C to 90 ° C within 10 seconds to 2 minutes, and more preferably at 35 ° C to 50 ° C. It is preferable to dry within 30 to 50 seconds at a temperature not higher than ° C. Especially regarding the setting of temperature and humidity, constant rate drying and reduced rate drying should be preferably controlled! /.
  • Constant rate drying is a process in which the surface force of the film dries while moisture evaporates. During this process, the surface temperature is constant, so it is called constant rate drying. In this next process, the internal force of the film evaporates and dries, so the wet bulb temperature force The process that approaches the surface temperature of the film, that is, the dry bulb temperature, and finally becomes the same, is called reduced rate drying. .
  • the drying of the gelatin film contains 300 to 400 times the amount of gelatin, and this is the boundary between constant rate drying and reduced rate drying. Drying conditions with a water content of 300 times or less have an important meaning as drying conditions for the reduced rate drying part. The higher the temperature, the lower the humidity, and the higher the humidity, the higher the productivity, so the productivity will improve, so there will be little fluctuation in the photographic performance of this part, or the performance will not deteriorate!
  • the curling of the support can be improved by heat treatment.
  • heat-treat at a temperature of 30 ° C or higher and 90 ° C or lower for 1 hour to 10 days.
  • heat treatment is performed at a temperature of 35 ° C. or higher and 50 ° C. or lower for 60 hours to 5 days.
  • the near-infrared electronic device Malfunctions can be prevented.
  • near-infrared absorbers include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, immonium, dimonium, anthraquinone, dithiol metal complex, naphthoquinone, indophenol , Azo, triallylmeta And the like.
  • the PDP optical filter requires near-infrared absorptivity mainly for heat ray absorption and prevention of noise in electronic equipment.
  • a metal complex system an amino system, a phthalocyanine system, a naphthalocyanine system, and a dim-um system, which are preferred for dyes having a near-infrared absorption ability with a maximum absorption wavelength of 750 to 1100 nm, are particularly preferable.
  • a metal complex system an amino system, a phthalocyanine system, a naphthalocyanine system, and a dim-um system, which are preferred for dyes having a near-infrared absorption ability with a maximum absorption wavelength of 750 to 1100 nm, are particularly preferable. Good.
  • the absorption maximum of a nickel dithiol complex compound or a fluorinated phthalocyanine compound is 700 to 900 nm, and in practical use, usually in a longer wavelength region than the above compounds.
  • An effective near-infrared absorption effect can be obtained by using in combination with an aminium-based compound having an absorption maximum, particularly a diimonium-based compound. (JP-A-10-283939, JP-A-11 73115, JP-A-11 231106, etc.).
  • the color tone correction layer contains a dye having near-infrared absorption ability
  • any one of the above-mentioned dyes may be contained, or two or more kinds may be contained.
  • an ultraviolet ray absorbing dye it is preferable to use an ultraviolet ray absorbing dye.
  • S triazine compounds, cyclic imino ester compounds and the like can be preferably used. Of these, benzophenone compounds, benzotriazole compounds, and cyclic imino ester compounds are preferred. As what is blended with the polyester, a cyclic imino ester compound is particularly preferable. A good example is
  • UV- 1 2- (2 Hydroxy 1,3,5 Di-one ⁇ -Tamil) 2 ⁇ Benzotriazole (UV— 2): 5 Black mouth 2— (2 Hydroxy 3 Tertiary butyl 5 Methylphenol) 1 2 ⁇ — Benzotria Zonole
  • UV-14 2, 4 Bis (2,4 dimethylphenol) 1 6- [2 Hydroxy 4- (3- Noninoreoxy * —2 Hydroxypropyloxy) 5 ⁇ -Cuminorefinole] — s Triazine (* Indicates a mixture of octyloxy, noroxy and decyloxy groups.)
  • UV-18 2- (3,5 di-tert-butyl-2-hydroxyphenol) 2 ⁇ benzotriazolene.
  • the above-mentioned dye is preferably added to a dye layer by using a micronizer described later and having an average particle diameter of 0.01 to LOm, and the optical density is the maximum wavelength.
  • 0.05 force is preferably used in the range of 3.0 concentration.
  • the binder has the purpose of uniformly dispersing the silver halide silver particles and assisting the adhesion between the silver halide grain-containing layer and the support. Can be used.
  • binder examples include gelatin, polybulal alcohol (PVA), and derivatives thereof.
  • PVA polybulal alcohol
  • examples thereof include conductors, polyvinylpyrrolidone (PVP), polysaccharides such as starch, cellulose and its derivatives, polyethylene oxide, polyvinylamine, polyacrylic acid and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
  • the content of the binder contained in the silver halide grain-containing layer according to the present invention is not particularly limited, and can be appropriately determined as long as dispersibility and adhesion can be exhibited.
  • the binder content in the silver halide silver particle-containing layer is preferably 0.2 to 100 in terms of Ag / binder mass ratio, more preferably 0.3 to 30, and more preferably 0.5 to 15. It is even better to be ⁇ . If Ag is contained in the layer containing the silver halide grains in a mass ratio of 0.5 or more with respect to the binder, it is possible to obtain high electrical conductivity immediately after the metal particles are brought into contact with each other in the heat and pressure treatment. Preferred because.
  • a plastic film, a plastic plate, glass or the like can be used as the support.
  • the raw material for plastic films and plastic plates include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), bur resin such as polyethylene (PE), polypropylene (PP) and polystyrene, polycarbonate ( PC), triacetyl cellulose (TAC) and the like can be used.
  • the plastic film is preferably PET, PEN, or TAC.
  • the electromagnetic shielding material for a display requires transparency, it is desirable that the support has high transparency.
  • the transmittance of the plastic film or plastic plate in the entire visible light region is preferably 70 to 100%, more preferably 80 to 100%, and further preferably 90 to: LOO%.
  • the plastic film and the plastic plate that have been colored to such an extent that the object of the present invention is not hindered can be used.
  • the solvent used for preparing the coating solution for the halogenated silver emulsion layer according to the present invention is not particularly limited, and examples thereof include water, organic solvents (for example, alcohols such as methanol and ethanol, Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof
  • organic solvents for example, alcohols such as methanol and ethanol, Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, etc.
  • Harogeni ⁇ emulsion layer The content of the solvent used in Harogeni ⁇ emulsion layer according to the present invention, Harogeni ⁇ particles contained in the silver-containing layer, 30 to 90 mass relative to the total weight of the Noinda Chancellor 0/0 The range of 40 to 80% by mass is more preferable.
  • the halogenated silver emulsion layer provided on the support is exposed.
  • the exposure can be performed using electromagnetic waves.
  • the electromagnetic wave include light such as visible light and ultraviolet light, radiation such as electron beam and X-ray, and ultraviolet light or near infrared light is preferable.
  • a light source having a narrow wavelength distribution or a light source having a wavelength distribution may be used for exposure.
  • a red luminescent material for example, one or more of a red luminescent material, a green luminescent material, and a blue luminescent material may be used in combination.
  • the spectral region is not limited to the above-mentioned red, green, and blue, and phosphors that emit light in the yellow, orange, purple, or infrared region are also used.
  • mercury lamp g-line, mercury lamp i-line, etc. which are also preferred for ultraviolet lamps, are used.
  • the exposure can be performed using various laser beams.
  • the exposure in the present invention is performed by using a gas laser, a light emitting diode, a semiconductor laser, a semiconductor laser, or a second harmonic light emitting source (SHG) that combines a solid state laser using a semiconductor laser as an excitation light source and a nonlinear optical crystal.
  • a scanning exposure method using monochromatic high-density light such as KrF excimer laser, ArF excimer laser, or F 2 laser can also be used.
  • the exposure is preferably performed using a semiconductor laser, a semiconductor laser, or a second harmonic generation light source (SHG) that combines a solid-state laser and a nonlinear optical crystal.
  • SHG second harmonic generation light source
  • exposure is preferably performed using a semiconductor laser.
  • an ultraviolet semiconductor laser specifically, an ultraviolet semiconductor laser, a blue semiconductor laser, a green semiconductor laser, a red semiconductor laser, a near infrared laser, and the like are preferably used.
  • a method for exposing a silver halide grain-containing layer to an image is a surface exposure using a photomask. It may be performed by light or by scanning exposure with a laser beam. In this case, exposure methods such as surface contact exposure, near field exposure, reduced projection exposure, and reflection projection exposure may be used, such as condensing exposure using a lens or reflection exposure using a reflecting mirror.
  • the output of the laser may be an amount suitable for sensitizing silver halide, so it may be at a level of z / zW to 5W.
  • development processing is further performed.
  • the development processing can be performed by a normal development processing technique used for a halogen silver-silver particle photographic film, photographic paper, a printing plate-making film, a photomask emulsion mask, and the like.
  • the developer is not particularly limited, but it is preferable to use a PQ developer, MQ developer, MAA developer or the like.
  • a metal silver part preferably an image-like metal silver part, is formed by performing the exposure and development processes described above, and a light-transmitting part described later is formed.
  • the development processing in the present invention can include a fixing processing performed for the purpose of removing the unexposed portion of the silver halide silver grains to increase the transparency and stabilize the halogen silver halide photosensitive material.
  • a fixing process technique used for a halogen silver-silver particle photographic film, photographic paper, a printing plate-making film, a photomask emulsion mask, or the like can be used.
  • an unexposed portion that is not subjected to near-infrared exposure has substantially no silver and silver halide, but has substantially silver and silver halide as referred to in the present invention. “No” means that the optical density of the unexposed area after the development processing is 0.3 or less.
  • the developer composition used in the present invention has, as a developing agent, for example, hydroquinones such as rhodium, iduloquinone, sodium quinonesulfonate, chlorohydroquinone, 1-phenyl-1-3-azolidone, 1-phenyl. 1,4,4-dimethyl-1,3-virazolidone, 1-phenyl 4 methyl 4, hydroxymethyl 3, virazolidone, 1 phenyl 4 methyl 1-virazolidone, such as 3-virazolidone, and superadditive development such as N-methylparaaminophenol sulfate Can be used in combination with the main drug.
  • hydroquinones such as rhodium, iduloquinone, sodium quinonesulfonate, chlorohydroquinone, 1-phenyl-1-3-azolidone, 1-phenyl. 1,4,4-dimethyl-1,3-virazolidone, 1-phenyl 4 methyl 4, hydroxymethyl 3, virazolidone, 1 phenyl 4
  • a reductone compound such as ascorbic acid or isoascorbic acid in combination with the superadditive developing agent without using hydroquinone.
  • sodium sulfite salt or potassium sulfite salt, sodium carbonate salt or potassium carbonate salt as a buffering agent, diethanolamine, triethanolamine, jetylaminopropanediol or the like as a development accelerator may be included. it can.
  • the developer can be adjusted to a pH in the range of 9 to 12 with an alkaline agent such as sodium hydroxide or potassium hydroxide.
  • the pH is generally in the range of 10 ⁇ 0.5, which has good storage stability, but can be ⁇ 11 ⁇ 0.5 for rapid processing.
  • the development processing can be carried out under processing conditions of 20 to 40 ° C. and 1 to 90 seconds.
  • the replenishing amount of the developer or the fixer can be set within a range of 5 to 216 ml per lm 2 or less. Reducing the replenishment amount is particularly effective by reducing the amount of halogen silver halide grains used by emulsion sensitization technology, and can be achieved in combination with the above development acceleration technology.
  • the developer used in the development treatment can contain an image quality improver for the purpose of improving the image quality.
  • the image quality improver include nitrogen-containing heterocyclic compounds such as 1-ferro-5-mercaptotetrazole and 5-methylbenzotriazole.
  • the gradation after development processing in the present invention is not particularly limited, but is preferably more than 4.0.
  • the conductivity of the conductive metal portion can be increased while keeping the transparency of the light transmissive portion high.
  • means for setting the gradation to 3.0 or more include the aforementioned doping of rhodium ions and iridium ions.
  • sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate, or the like can be used as a fixing agent.
  • Aluminum sulfate, chromium sulfate, or the like can be used as a hardener for fixing.
  • sodium sulfite, potassium sulfite, ascorbic acid, erythorbic acid and the like described in the developing composition can be used, and in addition, citrate, oxalic acid and the like can be used.
  • N-methyl-isothiazol-3-one, N-methyl-isothiazol-5-chloro-3-one, N-methyl-isothiazole — 4, 5-Dichloro-3-one, 2-Nitroe 2-Bromou 3-hydroxypropanol, 2 —Methyl-4-chlorophenol, peroxyhydrogen, etc. can be used.
  • the conductive metal part is formed by supporting the metal metal part formed on the metal silver part by pressurizing the metal silver part formed by the exposure and development processes described above. Is done. During pressurization, the plate is pressed on the surface with the plate, the electromagnetic wave shielding material of the present invention is passed between the roll and the roll, the pressure is applied, and the plate is rolled. Combined pressurization with pressurization can be used.
  • the pressure can be arbitrarily selected from the range of lkPa to 100 MPa, preferably 10 kPa to 100 MPa, more preferably 50 kPa to 100 MPa.
  • heating is preferably performed in the range of 40 ° C to 300 ° C.
  • the heating time is adjusted in relation to the temperature, and it can be made longer at a high temperature and short at a low temperature.
  • the heating method in the case of a roll-up roll, there are a method of heating the roll to a predetermined temperature in advance and a method of heating in a heating chamber such as an autoclave chamber.
  • a method of laminating a plurality of samples of a predetermined size and heating them at a time is preferable because of its high productivity.
  • a thermoplastic material alone or in combination for the binder.
  • a polymer with a glass transition point of 40 ° C or less should be used in combination.
  • a single homopolymer or a multicomponent copolymer of two or more components can be used.
  • natural wax such as carbauna wax, chain-extended artificial tuss, or rosins may be used.
  • Laser heating may be employed as a heating method.
  • the type of laser light it is possible to appropriately select and use the amount of silver to be irradiated with the laser light and the relationship with the welding agent.
  • Laser light such as a conductor laser can be used. More preferred as a laser
  • YAG neodymium 3+ laser (laser beam wavelength: 1060 nm) and semiconductor laser (laser beam wavelength: 500-1000 nm) can be mentioned.
  • Laser light output is 5 ⁇ 1 ooow is preferred.
  • the laser may be a continuous wavelength or a pulse wave. Heating can be adjusted by controlling the width of the pulse wave, making it easy to find the optimum conditions. If the laser output exceeds 1000 W, abrasion occurs and volatile evaporation tends to occur, which is not preferable.
  • a near-infrared absorbing dye is used as a preferred embodiment of the present invention, 800 ⁇ ! It is preferred to use a near infrared semiconductor laser in the range of ⁇ 1 OOOnm.
  • the conductive metal portion preferably has a line width of 20 ⁇ m or less and a line interval of 50 m or more.
  • the conductive metal part may have a part with a line width wider than 20 m for purposes such as ground connection.
  • the line width of the conductive metal part is preferably less than 18 ⁇ m, more preferably less than 15 m, and more preferably less than 14 m. It is even more preferred that it is less than 10 m, and even more preferred that it is less than 10 m.
  • the conductive metal part of the present invention has an aperture ratio of preferably 85% or more, more preferably 90% or more, and more preferably 95% or more in terms of visible light transmittance. Is most preferred.
  • the aperture ratio is the percentage of the mesh without fine lines. For example, the aperture ratio of a square mesh with a line width of 10 ⁇ m and a pitch of 200 ⁇ m is 90%.
  • the “light transmissive part” in the present invention means a part having transparency other than the conductive metal part in the light transmissive electromagnetic wave shielding material.
  • the average visible light transmittance in the light transmissive part is 90% or more, preferably the transmittance indicated by the average value of the transmittance in the wavelength region of 400 to 750 nm, excluding the contribution of light absorption and reflection of the support. 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
  • the thickness of the support in the translucent electromagnetic wave shielding material of the present invention is more preferably 30 to 150 m, preferably 5 to 200 ⁇ m. If it is in the range of 5 to 200 m, the desired visible light transmittance can be obtained, and handling can be easily performed.
  • the thickness of the conductive metal portion provided on the support is determined by the halogen coating applied on the support. It can be appropriately determined according to the coating thickness of the silver particle-containing layer coating material.
  • the thickness of the conductive metal part is preferably 30 m or less, more preferably 20 m or less, and even more preferably 0.01 to 9 / zm. Most preferably m.
  • the thickness of the conductive metal portion is preferable for use as an electromagnetic wave shielding material for a display because the viewing angle of the display increases as the thickness decreases.
  • the thickness of the layer made of the conductive metal carried by the conductive metal portion is less than 9 ⁇ m.
  • the thickness is preferably not less than 0.1 m and less than 5 ⁇ m. More preferred is 0.1 m or more and less than 3 ⁇ m.
  • a functional layer having functionality may be separately provided.
  • This functional layer can have various specifications for each application.
  • anti-reflection layers with anti-reflective function with adjusted refractive index and film thickness non-glare layer or anti-glare layer (both have glare-preventing function) specific
  • a layer with a color tone adjustment function that absorbs visible light in the wavelength range an antifouling layer with a function that easily removes dirt such as fingerprints, a hard-coating layer that is hard to scratch, a layer with an impact absorption function, and a glass breakage
  • These functional layers may be provided on the opposite side of the halogen-containing silver particle-containing layer and the support, or may be provided on the same side.
  • These functional films may be bonded to a transparent substrate such as a glass plate or an acrylic resin plate separately from the plasma display panel main body which may be directly bonded to the PDP.
  • These functional films can be called optical filters (or simply filters).
  • the antireflection layer provided with the antireflection function suppresses the reflection of external light and suppresses the decrease in contrast, so that the metal oxide, fluoride, halide, boride, carbide, nitride, sulfate
  • a method of laminating inorganic materials such as materials in a single layer or multiple layers by a vacuum deposition method, sputtering method, ion plating method, ion beam assist method, etc., a single layer of a resin having a different refractive index such as acrylic resin, fluorine resin, etc.
  • a film that has been subjected to anti-reflection treatment can be attached to the filter.
  • a film that has been treated with nogrea treatment or antiglare treatment may be pasted on the filter. it can. Further, if necessary, a coating layer can be provided.
  • a layer having a color tone adjustment function that absorbs visible light in a specific wavelength range has a characteristic that a PDP emits blue but emits red although there are few phosphors other than blue.
  • a PDP emits blue but emits red although there are few phosphors other than blue.
  • the portion that should be displayed in blue is displayed in a color in which purple is strong, and as a countermeasure against this, it is a layer that corrects colored light and contains a dye that absorbs light at around 595 nm.
  • Specific examples of the dye that absorbs the specific wavelength include, for example, azo series, condensed azo series, phthalocyanine series, anthraquinone series, indigo series, perylene series, dioxazine series, quinacridone series, methine.
  • organic pigments organic dyes, and inorganic pigments such as those based on organic, isoindolinone, quinophthalone, pyrrole, thioindigo, and metal complexes.
  • phthalocyanine-based and anthraquinone-based dyes are particularly preferable because of their good weather resistance.
  • the mass ratio of AgZ gelatin was 10/1, and alkali-treated low molecular weight gelatin having an average molecular weight of 40,000 was used as the gelatin type.
  • the emulsion was added to the potassium and potassium chloride Ili Jiumu acid hydrobromic rhodate concentration of 10-7 (mol Z mol silver), doped with silver bromide particles with Rh and Ir ions .
  • each sensitizing dye listed in Table 1 was added to 1 mole of silver halide silver. per 10- 4 mol was added, and spectrally sensitized. Then, as shown in Table 1, hydrazine or tetrazolium compound, accelerator amin compound or pyridine compound was added as a thickening agent. In addition, rosin and carbauna wax are each 0.
  • lg / m 2 specific examples are shown in Table 1) are each solid-dispersed to an average particle size of lOOnm or less. And a gelatin layer (attachment amount: lg / m 2 ) and a protective layer (attachment amount of gelatin layer: lg / m 2 , including a silica matting agent having an average particle diameter of 3 m) were previously provided. Next, the sample was dried to prepare Sample A of Example 1 of JP-A-2004-221564 as a sample number 100 as a comparison with the silver halide photosensitive materials of Sample Nos. 101 to 118 shown in Table 1. .
  • the line width and the surface resistance value of the conductive metal part of the sample having the conductive metal part and the light transmissive part obtained as described above were measured.
  • the electromagnetic wave attenuation effect was measured by the electromagnetic wave shielding measurement method (KEC method) by the Kansai Electronics Industry Promotion Center, and the electric field wave attenuation effect (dB) at 100 MHz was compared.
  • the surface resistance value was measured using a digital multimeter 7541 manufactured by Yokogawa Electric. In the present invention, the metal wire mesh is protected with a protective film! Therefore, the resistance value was measured from the protective film. Resistance was measured in a room at 23 ° C and 50% relative humidity. Table 1 shows the contents of the fabricated sample, and Table 2 shows the evaluated performance results.
  • the surface resistance is the same, and both have the same level of light transmittance and conductivity ( It can be seen that it has electromagnetic wave shielding ability.
  • the sample having the configuration defined in the present invention is surprisingly capable of shielding electromagnetic waves by being subjected to pressure treatment or calo-heat treatment which does not require complicated plating treatment as in the comparative example. I was able to improve. Further, when the near-infrared absorptivity is measured, it can be seen that the present invention has a sufficient absorptive capacity to prevent malfunction.
  • Example 1 In order to obtain higher electrical conductivity, the following experiment was conducted while changing the mass ratio of the high-resin and AgZ gelatin.
  • Example 1 the amount of gelatin in Sample 107 was changed, and the AgZ gelatin content ratio was changed from 0.2 to: LOO, and the line width of the fine metal wire forming the mesh was 10 m. ⁇ 309 were made.
  • pressurize 500kPa The surface resistance was measured by the same method as in Example 1. Further, the near-infrared absorption ability was measured in the same manner as in Example 1. Shimadzu FTIR-8300 was used as the near infrared absorption spectrometer. Table 3 summarizes the contents and performance results of sample preparation.
  • the AgZ gelatin ratio is preferably 10 or more.
  • Example 1 the heat treatment promoted the contact of silver particles with a heat ray pulsed infrared laser.
  • An experiment was conducted to heat the fine drawing wire with an infrared pulsed semiconductor laser (wavelength: 10 msec) with a wavelength of 800 to 870 nm and an output of 15 W and 50 W to promote particle indirect contact.
  • the samples used were sample numbers 107 and 111 of Example 1, and laser heating was used instead of pressurization or heating, and pressurization was not particularly performed.
  • Table 4 shows the contents and results of the prepared samples.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 本発明は、高い電磁波遮蔽性と高い近赤外遮蔽性とを同時に有する電磁波遮蔽材料であって、細線状画像の形成が容易であり、しかも迅速に簡便な工程で製造できる方法を提供する。この電磁波遮蔽材料は、支持体上に近赤外線吸収層を少なくとも1層有し、かつ、近赤外線増感されたハロゲン化銀粒子を含有するハロゲン化銀乳剤層を有するハロゲン化銀写真感光材料を近赤外露光し、現像処理することにより金属銀粒子の画像を形成し、さらに加圧又は加熱の処理をすることにより該金属銀粒子を連続性が増した画像とすることを特徴とする。

Description

明 細 書
電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁 波遮蔽材料
技術分野
[0001] 本発明は、プラズマディスプレイパネル (PDP)の前面に使用する近赤外線吸収性 及び可視光透過性を有する電磁波遮蔽材料とその製造方法及びプラズマディスプ レイパネル用電磁波遮蔽材料に関する。
背景技術
[0002] 近年、電子機器の使用増大のために電磁波障害(以下、 EMIと略記する)を低減 する必要性が高まっている。 EMIは、電子、電気機器の誤動作、障害の原因になる ほか、人体に対しても害を与えることが指摘されている。このため、電子機器では、電 磁波放出の強さを規格又は規制内に抑えることが要求されて 、る。
[0003] 特に、プラズマ表示パネル (以下、 PDPと略記する)は、希ガスをプラズマ状態にし て紫外線を放射させこの光線で蛍光体を発光させる原理に基づくため、原理的に電 磁波を発生する。又、このとき近赤外線も放射されるので、リモコン等の操作素子の 誤動作を引き起こすため、電磁波遮蔽能と同時に近赤外線の遮蔽も求められている 。電磁波遮蔽能は、簡便には表面抵抗値で表すことができ、 PDP用の透光性電磁 波遮蔽材料では、 10 ΩΖ口以下が要求され、 PDPを用いた民生用プラズマテレビ においては、 2 ΩΖ口以下とする必要性が高ぐより望ましくは 0. 2 ΩΖ口以下という 極めて高!ヽ導電性が要求されて!ヽる。
[0004] また、近赤外線に対する遮蔽率に関する要求レベルは、 60%以上、好ましくは 80 %以上が要求されており、更により高い遮蔽性が望まれている。
[0005] 更に、 PDPの機能を向上させるため、近赤外線吸収の他に薄膜ガラス製の PDP本 体に対する機械的強度の付与、外光の反射防止、色調補正が求められている。
[0006] このために機械的強度を付与する目的で複数の透明基板を合わせたり、電磁波遮 蔽目的で導電性層、近赤外線遮蔽のために近赤外線吸収層、外光の反射防止のた めに反射防止層、色調補正目的で、可視光領域に吸収のある色素を含有した層が 組み合わされて使用される。
[0007] 上記問題のうち、特に電磁波防止と近赤外吸収の課題を解決するために、開口部 を有する金属メッシュを利用した電磁波遮蔽性と近赤外吸収染料を使用した遮蔽性 とを両立させる方法力これまで提案されている。例えば、開口率の高い金属メッシュ を焼き付けた硝子板に近赤外線吸収フィルムを貼付して作製すると 、う方法は、金 属メッシュの焼き付けの製造工程が煩雑で、生産に熟練度が要求され又工程時間が 長くかかるという問題点があった。
[0008] 一方、ハロゲンィ匕銀粒子力 得られる現像銀は金属銀であることから、製法次第で は銀のメッシュを作製することが可能である。例えば、ハロゲンィ匕銀粒子を含む層を 有する感光材料をメッシュ状の画像様に露光して現像処理すれば、銀粒子カ ッシ ュ状に集合した導電性金属銀部が形成される。銀粒子間はバインダーが詰まってい るので導電性を阻害するので、バインダーを少なくする必要がある力 それのみでは 導電性が向上しない。そのために、メツキ処理をして導電性を向上させる方法が記載 されている(例えば、特許文献 1、 2参照。;)。しかし、メツキ処理工程はメツキ液を調製 する必要があり、重金属を含む有害な廃液が発生するという問題があった。
[0009] し力も、特許文献 1、 2には、 PDPから発生する無線電子機器の誤動作を引き起こ す近赤外線を遮蔽することにつ ヽては言及されて ヽな ヽ。
[0010] このように、電子表示機器の発する電磁波や近赤外線を同時に遮蔽する方法とし て、ハロゲンィ匕銀粒子力も製造する方法は、全く知られていな力つた。
特許文献 1 :特開 2004— 221564号公報
特許文献 2 :特開 2004— 221565号公報
発明の開示
発明が解決しょうとする課題
[0011] 上記のように、ハロゲンィ匕銀粒子を利用する方法では、粒子であるが故に粒子形状 を小さくしてもバインダーを少なくしても導電性のパターン線としての機能が不充分で あり、メツキ処理等の工程が必要で煩雑であつたのである。
[0012] 本発明は、かかる事情に鑑みなされたものであり、本発明の目的は、高い電磁波遮 蔽性と高 、近赤外遮蔽性とを同時に有する電磁波遮蔽材料であって、細線状画像 の形成が容易であり、しカゝも迅速に簡便な工程で製造方法と、プラズマディスプレイ パネル用電磁波遮蔽材料を提供することにある。
課題を解決するための手段
[0013] 本発明の上記目的は、下記構成により達成された。
[0014] 1.支持体上に近赤外線吸収層を少なくとも 1層有し、かつ、ハロゲンィ匕銀粒子を含 有するハロゲン化銀乳剤層を有するハロゲン化銀写真感光材料を露光し、現像処理 することにより金属銀粒子の画像を形成し、さらに加圧処理又は加熱処理を施して、 該金属銀粒子の画像を、連続性が増した画像とすることを特徴とする電磁波遮蔽材 料の製造方法。
[0015] 2.前記ハロゲン化銀粒子が近赤外増感されており、前記ハロゲン化銀写真感光材 料に近赤外露光を施すことを特徴とする前記 1に記載の電磁波遮蔽材料の製造方 法。
[0016] 3.前記近赤外線吸収層を、前記ハロゲン化銀乳剤層の下層又は支持体の反対側 に設けることを特徴とする前記 1また 2に記載の電磁波遮蔽材料の製造方法。
[0017] 4.前記近赤外吸収層の近赤外吸収強度は、現像処理により変化しないことを特徴 とする前記 1乃至 3のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[0018] 5.前記近赤外露光がされない未露光部は、実質的に銀及びハロゲンィ匕銀を有し な 、ことを特徴とする前記 2乃至 4の 、ずれか 1項に記載の電磁波遮蔽材料の製造 方法。
[0019] 6.前記加圧処理の圧力が、 lkPa以上、 lOOMPa以下であることを特徴とする前 記 1乃至 5のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[0020] 7.前記加熱処理の温度が、 40°C以上、 300°C以下であることを特徴とする前記 1 乃至 6のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[0021] 8.前記加熱処理を施す加熱手段が、レーザ加熱手段であることを特徴とする前記 1乃至 7のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[0022] 9.前記 1乃至 8のいずれか 1項に記載の電磁波遮蔽材料の製造方法で製造され た電磁波遮蔽材料であって、表面抵抗が 10 Ω Z口以下または平均可視光透過率 力^ 0%以上であり、かつ、導電性金属部及び近赤外吸収層を有することを特徴とす る電磁波遮蔽材料。
[0023] 10.前記 9に記載の電磁波遮蔽材料を用いることを特徴とするプラズマディスプレ ィパネル用電磁波遮蔽材料。
発明の効果
[0024] 本発明により、高 ヽ透過率と高 ヽ導電性 (電磁波遮蔽能)の性能を同時に満たし、 かつ、近赤外線を遮蔽し、近赤外線の無線電子機器の誤動作を回避する透光性の 電磁波遮蔽材料と、有害なメツキ処理廃液を出すことなく生産できるその製造方法と 、プラズマディスプレイパネル用電磁波遮蔽材料を提供することができる。
発明を実施するための最良の形態
[0025] 本発明を更に詳しく説明する。
[0026] まず、本発明に係るハロゲンィ匕銀感光材料 (以下、単に感光材料とも!、う)につ!/、て 説明する。
[0027] 本発明において、ハロゲンィ匕銀乳剤層は、ハロゲン化銀粒子のほ力 バインダー、 活性剤等を含有することができる。
[0028] 本発明で用いられるハロゲンィ匕銀粒子としては、臭化銀などの無機ハロゲンィ匕銀粒 子及びべヘン酸銀などの有機銀粒子が挙げられるが、導電性金属銀を得やす!、無 機ハロゲンィ匕銀を用いることが好まし 、。
[0029] 本発明で好ましく用いられるハロゲンィ匕銀は、例えば、 AgCl、 AgBr, Aglを主体と したハロゲン化銀が好ましく用いられ、導電性のよい金属銀を得るためには、感度の 高い微粒子が好ましぐ沃素を含む AgBrを主体としたハロゲンィ匕銀が好ましく用いら れる。沃素を多く含むようにすると感度も高く微粒子にすることができる。
[0030] ノ、ロゲン化銀粒子が現像され金属銀粒子になると粒子から粒子へと電気が流れて V、くには接触面積ができるだけ大きくなる必要がある。そのためには粒子サイズが小 さい程よいが、小さい粒子は凝集して大きな塊状になりやすぐ接触面積は逆に少な くなつてしまうので最適な粒子径が存在する。ハロゲン化銀の平均粒子サイズは、球 相当径で 1〜: LOOOnm (: m)であることが好ましぐ 1〜: LOOnmであることがより好 ましぐ l〜50nmであることがさらに好ましい。尚、ハロゲン化銀粒子の球相当径とは 、粒子形状が球形の同じ体積を有する粒子の直径である。 [0031] ハロゲン化銀粒子の形状は特に限定されず、例えば、球状、立方体状、平板状 (6 角平板状、三角形平板状、 4角形平板状など)、八面体状、 14面体状など様々な形 状であることができる。感度を高くするためにアスペクト比が 2以上や 4以上、更に 8以 上であって 16以下であるような平板粒子も好ましく使用することができる。粒子サイズ の分布は、広くても狭くてもよいが、高い導電性を得て開口率を大きくするには、狭い 分布が好ましい。写真業界で知られる単分散度で 100以下、更には 30以下が好まし い。粒子の形状は、電気が流れ易くするための観点からは、生成した粒子間の接触 面積が大きい程よいのであるので、扁平でアスペクト比が大きい程よいが、アスペクト 比を大きくすると濃度が出にくくなるので、最適なアスペクト比が存在する。
[0032] 本発明で用いられるハロゲンィ匕銀は、さらに他の元素を含有していてもよい。例え ば、写真乳剤において、硬調な乳剤を得るために用いられる金属イオンをドープする ことも有用である。特に、ロジウムイオン、ルテニウムイオンやイリジウムイオンなどの 遷移金属イオンは、金属銀像の生成の際に露光部と未露光部の差が明確に生じや すくなるため好ましく用いられる。ロジウムイオン、イリジウムイオンに代表される遷移 金属イオンは、各種の配位子を有する化合物であることもできる。そのような配位子と しては、例えば、シアン化物イオンやハロゲンイオン、チオシアナ一トイオン、ニトロシ ルイオン、水、水酸ィ匕物イオンなどを挙げることができる。具体的な化合物の例として は、臭化ロジウム酸カリウムやイリジウム酸カリウムなどが挙げられる。
[0033] 本発明にお 、て、ハロゲンィ匕銀に含有されるロジウム化合物又はイリジウム化合物 の含有率は、ハロゲン化銀の銀のモル数に対して、 1 X 10— ω〜1 X 10— 2モル/モル Agであることが好ましぐ 1 X 10— 9〜1 X 10— 3モル Zモル Agであることがさらに好まし い。
[0034] その他、本発明では、 Pdイオン、 Ptイオン Pd金属又は Pt金属を含有するハロゲン 化銀も好ましく用いることができる。 Pdや Ptははハロゲンィ匕銀粒子内に均一に分布し て!、てもよ 、が、ハロゲンィ匕銀粒子の表層近傍に含有させることが好ま U、。
[0035] 本発明にお!/、て、ハロゲン化銀に含まれる Pdイオン又は Pd金属の含有率は、ハロ ゲン化銀の銀のモル数に対して 1 X 10— 6〜0. 1モル Zモル Agであることが好ましぐ 0. 01〜0. 3モル Zモル Agであることがさらに好ましい。 [0036] 本発明では、さらに感度を向上させるため、写真乳剤で行われる化学増感を施すこ ともできる。化学増感としては、例えば、金、パラジウム、白金増感などの貴金属増感 、無機ィォゥ、または有機ィォゥ化合物によるィォゥ増感などのカルコゲン増感、塩ィ匕 錫、ヒドラジン等還元増感等を利用することができる。
[0037] 化学増感されたハロゲンィ匕銀粒子を分光増感することができる。増感色素がハロゲ ン化銀粒子表面に吸着して ヽること〖こよって、現像処理時に形成される現像銀の特 性が、電磁波遮蔽材料に適していることを見出したものである。分光増感される波長 領域は、ハロゲンィ匕銀粒子を露光する方法似合わせて任意に決定することができる 1S 本発明においては、特に、近赤外領域に分光増感することが好ましい。好ましい 分光増感色素としては、シァニン、カルボシァニン、ジカルボシァニン、複合シァニン 、へミシァニン、スチリール色素、メロシアニン、複合メロシアニン、ホロポーラ一色素 等を挙げることができ、当業界で用いられている分光増感色素を単用或いは併用し て使用することができる。
[0038] 特に有用な色素は、シァニン色素、メロシアニン色素、及び複合メロシアニン色素 である。これらの色素類には、その塩基性異節環核として、シァニン色素類に通常利 用される核の何れをも通用できる。すなわち、ピロリン核、ォキサゾリン核、チアゾリン 核、ピロール核、ォキサゾール核、チアゾール核、セレナゾール核、イミダゾール核、 テトラゾール核、ピリジン核及びこれらの核に脂環式炭化水素環が融合した核;及び これらの核に芳香族炭化水素環が融合した核、即ち、インドレニン核、ベンズインドレ ニン核、インドール核、ベンズォキサゾール核、ナフトォキサゾール核、ベンゾチアゾ ール核、ナフトチアゾール核、ベンゾセレナゾール核、ベンズイミダゾール核、キノリ ン核などである。これらの核は、炭素原子上で置換されてもよい。
[0039] メロシアニン色素又は複合メロシアニン色素には、ケトメチレン構造を有する核とし て、ピラゾリンー5 オン核、チォヒダントイン核、 2 チォォキサゾリジン 2, 4 ジ オン核、チアゾリジン 2, 4 ジオン核、ローダニン核、チォバルビツール酸核など の 5から 6員異節環核を適用することができる。特に好ま U、増感色素は近赤外増感 色素である。これらの色素は特開 2000— 347343号公報、特開 2004— 037711号 公報及び特開 2005— 134710号公報を参考にすることができる。好ましい具体例を 下記に示す。
[0040] [化 1]
Figure imgf000008_0001
[0041] [化 2] I Θ I
OH
CHj
Figure imgf000009_0001
[0042] これらの増感色素は単独に用いても良いが、それらの組み合わせを用いても良い。
増感色素の組み合わせは特に、強色増感の目的でしばしば用いられる。
[0043] これらの増感色素をハロゲンィ匕銀乳剤中に含有せしめるには、それらを直接乳剤 中に分散してもよいし、あるいは水、メタノール、プロパノール、メチルセ口ソルブ、 2, 2, 3, 3—テトラフルォロプロパノール等の溶媒の単独もしくは混合溶媒に溶解して 孚 L剤へ添カロしてもよい。また、特公昭 44— 23389号、同 44— 27555号、同 57— 22 089号等に記載の様に酸又は塩基を共存させて水溶液としたり、米国特許第 3, 82 2, 135号、同 4, 006, 025号等【こ記載の様【こド、デシノレベンゼンスノレホン酸ナ卜リク ム等の界面活性剤を共存させて水溶液或いはコロイド分散物としたものを乳剤へ添 カロしてもよい。又、フエノキシエタノール等の実質上水と非混和性の溶媒に溶解した 後、水又は親水性コロイド分散したものを乳剤に添加してもよい。特開昭 53— 1027 33号、同 58— 105141号に記載の様に親水性コロイド中に直接分散させ、その分 散物を乳剤に添加してもよ ヽ。
[0044] ハロゲン化銀粒子を硬調化する方法として、塩化銀含有量を高くして粒径の分布を 狭くする方法等があるが、製版用では更に硬調にするために、ヒドラジンィ匕合物ゃテ トラゾリゥム化合物を硬調化剤として使用することが知られている。ヒドラジンィ匕合物は 、 一 NHNH 基を有する化合物であり、代表的なものを下記一般式で示す。
[0045] T NHNHCO V、 T NHNHCOCO V
式中、 Tは各々置換されてもよいァリール基、ヘテロ環基を表す。 Tで表されるァリ 一ル基はベンゼン環やナフタレン環を含むもので、この環は置換基を有してもよく、 好ましい置換基として直鎖、分岐のアルキル基 (好ましくは炭素数 1〜20のメチル基 、ェチル基、イソプロピル基、 n—ドデシル基等)、アルコキシ基 (好ましくは炭素数 2 〜21のメトキシ基、エトキシ基等)、脂肪族ァシルァミノ基 (好ましくは炭素数 2〜21の アルキル基を持つ、ァセチルァミノ基、ヘプチルァミノ基等)、芳香族ァシルァミノ基 等が挙げられ、これらの他に例えば上記の様な置換又は未置換の芳香族環が CO NH—、— O—、 -SO NH—、— NHCONH—、— CH CHN—、等の連結基で結
2 2
合しているものも含む。 Vは水素原子、置換されてもよいアルキル基 (例えば、メチル 基、ェチル基、プチル、トリフロロメチル基等)、ァリール基 (例えば、フエ-ル基、ナフ チル基)、ヘテロ環基 (例えば、ピリジル基、ピペリジル基、ピロリジル基、フラ-ル基、 チォフェン基、ピロール基等)を表す。
[0046] ヒドラジンィ匕合物は、米国特許第 4, 269, 929号の記載を参考にして合成すること ができる。ヒドラジンィ匕合物は乳剤層中、又は乳剤層に隣接する親水性コロイド層中
、更には他の親水性コロイド層中に含有せしめることができる。
[0047] 特に好ま 、ヒドラジンの化合物を下記に挙げる。
(H 1 ): 1 トリフロロメチルカルボ-ル 2— {〔4— (3— n—ブチルウレイド)フエ- ル〕 }ヒドラジン
(H 2) : l トリフロロメチルカルボ-ルー2—{4ー〔2—(2, 4—ジー 61:1;—ぺンチ ルフエノキシ)ブチルアミド〕フエ-ル}ヒドラジン
(H— 3) : 1— (2, 2, 6, 6—テトラメチルピペリジル一 4 アミノーォキザリル)一 2— { 4一〔2— (2, 4ージ—tert ペンチルフエノキシ)ブチルアミド〕フエ-ル}ヒドラジン (H-4) : 1 - (2, 2, 6, 6—テ卜ラメチルピペリジル— 4 ァミノ—ォキザリル)— 2— { 4一〔2— (2, 4ージ tert ペンチルフエノキシ)ブチルアミド〕フエ-ルスルホンアミ ドフエ-ル}ヒドラジン
(H— 5) : 1— (2, 2, 6, 6—テトラメチルピペリジル一 4 アミノーォキザリル)一 2— { 4—〔3— (4—クロ口フエ-ルー 4—フエ-ルー 3—チア一ブタンアミド)ベンゼンスル ホンアミド〕フエ-ル}ヒドラジン
(H— 6) : 1— (2, 2, 6, 6—テ卜ラメチルピペリジル— 4 ァミノ—ォキザリル)— 2—〔 4— (3—チア一 6, 9, 12, 15—テトラオキサトリコサンアミド)ベンゼンスルホンアミド〕 フ ニルヒドラジン
(H— 7) : 1—(1ーメチレンカルボ-ルピリジ-ゥム)ー2—〔4ー(3 チア 6, 9, 12 , 15—テトラオキサトリコサンアミド)ベンゼンスルホンアミド〕フエニルヒドラジンクロライ ド、
ヒドラジンィ匕合物は、 T基としてスルホンアミドフエ-ル基、 V基としてトリフロロメチル 基が置換されているものが特に好ましい。またヒドラジンに結合するォキザリル基には 、置換されてもよいピペリジルァミノ基が特に好ましい。テトラゾリゥム化合物の具体例 を下記に示す。
(T- 1) : 2, 3 -ジ (P -メチルフヱ-ル)一 5—フエ-ルテトラゾリゥムクロリド
(T- ■2) : 2, 3 -ジ (P - -ェチルフエ-ル)一 5 フエ-ルテトラゾリゥムクロリド
(T- ■3) : 2, 3, 5 トリ —P メチルフエ-ルテトラゾリゥムクロリド
(T- ■4) : 2, 3ージフヱ-ニル一 5— (p—メトキシフエ-ル)テトラゾリゥムクロリド
(T- ■5) : 2, 3 —ジ(0—メチルフヱ-ル)一 5—フエ-ルテトラゾリゥムクロリド
(T- ■6) : 2, 3, 5 トリ —P—メトキシフエニルテトラゾリゥムクロリド
(T- ■7) : 2, 3 —ジ(0—メチルフヱ-ル)一 5—フエ-ルテトラゾリゥムクロリド
(T- ■8) : 2, 3 —ジ(m_ -メチルフヱ-ル)一 5—フエ-ルテトラゾリゥムクロリド
(T— ■9) : 2, 3, 5 トリ -p—エトキシメチルフエ-ルテトラゾリゥムクロリド
これらは特公平 5— 58175の記載を参考に使用することができ、場合によってはヒ ドラジンィ匕合物と併用することもできる。
硬調化剤としてヒドラジンを使用するときに、ヒドラジンの還元作用を強化するため にアミンィ匕合物又はピリジンィ匕合物が使用される。代表的なアミンィ匕合物は少なくとも 一つの窒素原子を含む下記一般式で表すことができる。
R— N (Z)— Q 又は R— N (Z)— L N (W)— Q
式中、 R、 Q、 Z、 Wはそれぞれ炭素数 2〜30の置換されてもよいアルキル基を表す 。又これらのアルキル基鎖は窒素、硫黄、酸素等のへテロ原子で結合されてもよい。 Rと Z、或いは Qと Wは互いに飽和及び不飽和の環を形成してもよい。 Lは 2価の連結 基を表す。この連結基の中には、硫黄、酸素、窒素等のへテロ原子が含まれてもよい 。 Lの連結基の中の炭素数は 1から 200まで可能であり、硫黄原子は 1から 30まで、 窒素原子は 1から 20まで、酸素原子は 1から 40までである力 特に限定されるもので はな 、。これらのアミンィ匕合物の具体例を下記に示す。
(A- 1):ジェチルァミノエタノール
(A- 2):ジメチルァミノ一 1
(A— 3) : 2 プロパンジオール
( A— 4): 5 アミノー 1 ペンタノール
(A- 5):ジェチルァミン
(A-6):メチルァミン
(A— 7):トリェチルァミン
(A-8):ジプロピルアミン
( A— 9): 3 ジメチルァミノ 1 プロパノール
(A— 10) : 1—ジメチルァミノ一 2—プロパノール
(A- 11) :ビス(ジメチルアミノテトラエトキシ)チォエーテル
(A- 12):ビス(ジェチルァミノペンタエトキシ)チォエーテル
(A— 13):ビス(ピペリジノテトラエトキシ)チォエーテル
(A- 14):ビス(ピベリジノエトキシェチル)チォエーテル
(A— 15):ビス(二ペコチンジエトキシ)チォエーテノレ
(A- 16):ビス(ジシァノエチノレアミノジエトキシ)エーテノレ
(A- 17):ビス(ジエトキシェチノレアミノテトラエトキシ)エーテノレ
(A— 18): 5 ジブチルアミノエチルカルバモイルペンゾトリアゾール (A- 19) : 5 モルホリノェチルカルバモイルペンゾトリアゾール
(A- 20) : 5- (2 メチルイミダゾールー 2 エチレン)力ルバモイルベンゾトリァゾー ル
(A- 21): 5 ジメチルアミノエチルゥレイレンべンゾトリアゾール
(A- 22): 5 ジェチルアミノエチルゥレイレンべンゾトリアゾール
(A— 23): 1 ジェチノレアミノ 2—(6 ァミノプリン)ェタン
(A- 24): 1—(ジメチルアミノエチル) 5 メルカプトテトラゾール
(A- 25): 1ーピベリジノエチル 5 メルカプトテトラゾール
(A- 26): 1ージメチルアミノー 5 メルカプトテトラゾール
(A- 27): 2 メルカプト 5 ジメチルアミノエチルチオチアジアゾール
(A— 28) : 1—メルカプト一 2 モルホリノエタン
アミンィ匕合物としては、分子中にピぺリジン環又はピロリジン環が少なくとも 1個、チ ォエーテル結合が少なくとも 1個、エーテル結合が少なくとも 2個あることが特に好ま しい。
[0050] ヒドラジンの還元作用を促進する化合物としてピリジニゥム化合物やホスホニゥム化 合物がアミンィ匕合物の他に使用される。ォ -ゥム化合物は、正電荷を帯びているため 、負電荷に帯電しているハロゲンィ匕銀粒子に吸着して、現像時の現像主薬からの電 子注入を促進することにより硬調化を促進するものと考えられている。
[0051] 好ましいピリジ-ゥム化合物は、特開平 5— 53231号、同 6— 242534号明細書の ビスピリジ-ゥム化合物を参照することができる。特に好まし 、ピリジ -ゥム化合物は、 ピリジ-ゥムの 1位又は 4位で連結してビスピリジ-ゥム体を形成しているものである。 塩としては、ハロゲンァ-オンとして、塩素イオンや臭素イオン等が好ましぐ他に 4フ ッ化ほう素イオン、過塩素酸イオン等が挙げられるが塩素イオン又は 4フッ化ほう素ィ オンが好ま 、。下記に好ま 、ビスピリジ-ゥム化合物を示す。
(P- 1) : 1, 1' —ジメチル一 4, 4' —ビビリジ-ゥムジクロライド
(P- 2) : 1, \' ージベンジルー 4, 4' ビビリジ-ゥムジクロライド
(P- 3) : 1, \' ージへプチルー 4, 4' —ビビリジ-ゥムジクロライド
(P-4) : 1, 1' —ジ一 n—ォクチル一 4, 4' —ビビリジ-ゥムジクロライド (p-■5) :4, 4' ジメチルー 1, 1' - -ビビリジニゥムジクロライド
(p- -6) :4, 4, ージベンジルー 1, \' ビビリジニゥムジクロライド
(p- ■7) :4, 4' ージヘプチノレー 1, \' ビビリジニゥムジクロライド
(p- -8) :4, 4' ージー n—ォクチルー 1, 1' ビビリジニゥムジクロライド
(p- - 9) :ビス(4, 4' ージァセトアミド- - 1, 1' ーテトラメチレンピリジ-ゥム)ジクロラ イド
ヒドラジンィ匕合物は高濃度部の硬調化に作用するが、脚部の硬調化が不十分であ るため、これを改良する試みとして、現像時に生成する現像主薬の酸化体を利用す る技術が考えられて ヽる。現像主薬の酸化体と反応するレドックス化合物を存在させ て、この化合物力 脚部を抑制する抑制剤を放出させることにより画像の鮮明性を高 めるのである。現像主薬の酸化体の発生は、現像の進行により発生するので、粒子 の還元速度が関係してくる。化学増感剤で還元速度の早い現像核を形成しておくと 、この効果を高めることができるので、良い化学増感剤が求められる。本発明に係る 化合物を使用するとレドックス化合物を使用する際に、顕著な効果を挙げることがで きる。
[0052] レドックス化合物は、レドックス基としてハイドロキノン類、カテコール類、ナフトハイド ロキノン類、ァミノフエノール類、ビラゾリドン類、ヒドラジン類、レダクトン類等を有する 。好ましいレドックス化合物はレドックス基として NHNH 基を有する化合物であり 、次の一般式で示すものが代表的である。
[0053] T NHNHCO V— (Time) n PUG
T-NHNHCOCO-V- (Time) n— PUG
式中、 T及び Vはそれぞれ前記ヒドラジンィ匕合物と同義の基を表す。 PUGは写真 有用性基を表し、例えば、 5 -トロインダゾール、 4 -トロインダゾール、 1 フエ- ルテトラゾール、 1— (3—スルホフエ-ル)テトラゾール、 5 -トロべンズトリアゾール 、 4— -トロべンゾトリァゾール、 5— -トロイミダゾール、 4— -トロイミダゾール等が挙 げられる。これらの現像抑制化合物は、 T— NHNH— CO の CO部位に Νや S等の ヘテロ原子を介して直接、又は (Time)で表されるアルキレン、フエ二レン、ァラルキ レン、ァリール等の各基を介して更に Nや Sのへテロ原子を介して接続することができ る。その他に、バラスト基がついたノ、イド口キノンィ匕合物にトリァゾール、インダゾール 、イミダゾール、チアゾール、チアジアオールなどの現像抑制基を導入したものも使 用できる。例えば、 2- (ドデシルエチレンオキサイド)チォプロピオン酸アミドー 5— ( 5 二トロインダゾールー 2—ィル)ハイドロキノン、 2— (ステアリルアミド) - 5- (1 - フエ-ルテトラゾール一 5 チォ)ハイドロキノン、 2— (2, 4 ジ一 t—アミルフエノプロ ピオン酸アミド)—5— (5 -トロトリァゾール— 2—ィル)ハイドロキノン、 2 ドデシル チォー 5—(2 メルカプトチォチアジアゾールー 5 チォ)ハイドロキノン等が挙げら れる。尚、 nは 1又は 0を表す。レドックス化合物は、米国特許第 4, 269, 929号の記 載を参考にして合成することができる。特に好ましいレドックス化合物を下記に挙げる
(R— 1): 1— (4 -トロインダゾール— 2—ィル—カルボ-ル) 2— {〔4— (3— n— ブチルウレイド)フエ-ル〕 }ヒドラジン
(R— 2): 1— (5 -トロインダゾールー 2—ィル—カルボ-ル)—2— {4—〔2— (2,
4—ジ一 tertペンチルフエノキシ)ブチルアミド〕フエ-ル}ヒドラジン
(R— 3): 1— (4 -トロトリァゾール— 2—ィル—カルボ-ル)—2— {4—〔2— (2, 4
—ジ一 tert—ペンチルフエノキシ)ブチルアミド〕フエ-ル}ヒドラジン
(R— 4) : 1— (4 -トロイミダゾールー 2—ィルーカルボ-ル)ー2—{4一〔2— (2, 4
—ジ— tert—ペンチルフエノキシ)ブチルアミド〕フエ-ルスルホンアミドフエ-ル}ヒド ラジン
(R—5): 1—(1 スルホフエ-ルテトラゾールー 4ーメチルォキサゾール) 2—〔3 - (1—フエ-ル一 / —p クロ口フエ-ルメタンチォグリシンアミドフエ-ル)スルホ ンアミドフエ二ル〕ヒドラジン
(R— 6): 1— (4 -トロインダゾールー 2—ィル—カルボ-ル) 2— {〔4— (オタチ ルーテトラエチレンオキサイド) チォ グリシンアミドフエ-ル スルホンアミドフエ- ル〕 }ヒドラジン。
ヒドラジンィ匕合物、アミンィ匕合物、ピリジ-ゥム化合物、テトラゾリゥム化合物及びレド ックス化合物はハロゲン化銀 1モル当たり 1 X 10— 6〜5 X 10— 2モル含有するのが好ま しぐ特に 1 X 10— 4〜2 X 10— 2モルが好ましい。これらの化合物の添力卩量を調節して硬 調化度 0を 6以上にすることは容易である。 γは更に乳剤の単分散性、ロジウムの使 用量、化学増感等によって調節することができる。ここに、 γは濃度 0. 1と 3. 0を与え るそれぞれの露光量の差に対する濃度差とする。
[0055] これらの化合物は感光材料のハロゲンィ匕乳剤層又は他の親水性コロイド層に添カロ して使用する。水溶性の場合には水溶液にして、水不溶性の場合にはアルコール類 、エステル類、ケトン類等の水に混和しうる有機溶媒の溶液としてハロゲンィ匕銀乳剤 溶液又は親水性コロイド溶液に添加すればよい。又、これらの有機溶媒に溶けないと きには、ボールミル、サンドミル、ジェットミル等で 0. 01〜10 /ζ πιの大きさの微粒子に して添加することができる。微粒子分散の方法は、写真添加剤である染料の固体分 散の技術を好ましく応用することができる。
[0056] 感光材料には、近赤外吸収層を設けることができる。近赤外吸収層を設けるに際し ては、支持体上に接着層 Ζ帯電防止層 Ζ近赤外染料含有層 Ζ保護層を設けるのが 一般的である。接着層としてコロナ放電した支持体上に塩ィ匕ビユリデン共重合体ゃス チレンーグリシジルアタリレート共重合体を 0. 1〜1 /ζ πιの厚さで塗布した後、帯電防 止層としてインジウムやリンをドープした平均粒子径 0. 01〜1 /ζ πιの酸ィ匕錫、 5酸化 バナジウムの微粒子を含むゼラチン層やアクリル又はメタタリルポリマー層或いは非 アクリルポリマー層を塗布することができる。又、スチレンスルホン酸とマレイン酸共重 合体を前述したアジリジンやカルボニル活性型の架橋剤で造膜して設けることができ る。これら帯電防止層の上に染料層を設けて近赤外吸収層とする。近赤外吸収層中 には、コロイダルシリカ更にはコロイダルシリカの表面をメタタリレートやアタリレートポ リマー又はスチレンポリマーやアクリルアミド等の非アタリレートポリマー等で被覆した 複合コロイダルシリカで、寸法安定のための無機又は複合充填物や接着防止のシリ カゃメタクリル酸メチルマット剤、搬送性の制御のためのシリコン系滑り剤或いは剥離 剤等を含有させることができる。ノ ッキング染料としては、ベンジリデン染料ゃォキソノ ール染料が使用される。これらアルカリ可溶性或いは分解性染料を微粒子にして固 定しておくこともできる。ハレーション防止のための濃度としては、各感光性波長で 0. 1〜2. 0の濃度であることが好ましい。
[0057] 近赤外吸収層に使用した帯電防止剤は、乳剤層側にも使用する事ができ、乳剤上 層の保護層や保護層が 2層ある場合には何れかの層に又は両層に添加したり、乳剤 下層のハレーション防止層や抑制剤放出層又はタイミング層等に使用することができ る。
[0058] 感光材料は、化学工学における乾燥理論を適用して乾燥する事ができる。乾燥す るときの湿度の与え方は、感光材料の特性により異なるので適宜選択する必要があ る。早い乾燥は、しばしばかぶりを高くしたり保存性を劣化したりして性能を劣化させ るカゝらである。本発明に係るハロゲンィ匕銀写真感光材料は、相対湿度 20%以下で 3 0°C以上 90°C以下で 10秒から 2分以内に乾燥するのが好ましぐ更には 35°C以上 5 0°C以下で 30秒から 50秒以内に乾燥するのが好ましい。特に温度湿度の設定に関 しては恒率乾燥と減率乾燥を好ましく制御するのがよ!/、。恒率乾燥はフィルムの表面 力 水分が蒸発しながら乾燥していくプロセスで、このプロセスの間は表面温度が一 定であるので恒率乾燥と呼ばれる。この次のプロセスは、フィルムの内部力 水分が 蒸発して乾燥していくので湿球温度力 フィルムの表面温度、即ち乾球温度に近づ き、最後に同じになるプロセスを減率乾燥と呼ぶ。ゼラチン膜の乾燥は水分がゼラチ ン質量の 300から 400倍含まれて 、る点が恒率乾燥と減率乾燥の境になって 、る。 3 00倍以下の水分量の乾燥条件は減率乾燥部分の乾燥条件として重要な意味をもつ て 、る。この減率乾燥部分を高 、温度と低 、湿度で乾燥ができるほど生産性は向上 するのでこの部分の写真性能の変動が少な 、か、性能が劣化しな!、のがよ!/、。
[0059] 感光材料は、塗布乾燥されて後、加熱処理をすることにより、支持体の巻き癖を改 良することができる。巻き癖を改良するには、 30°C以上 90°C以下の温度で 1時間か ら 10日間加熱処理する。特に好ましくは、 35°C以上 50°C以下の温度で 60時間から 5日間加熱処理する。
[0060] 乳剤層と支持体との間に近赤外線吸収染料層を設けること、或いは、乳剤層とは支 持体の反対側に近赤外線吸収染料層を設けることにより、近赤外線による電子機器 の誤動作を防止することができる。
[0061] 近赤外線吸収剤の具体例としては、ポリメチン系、フタロシアニン系、ナフタロシア ニン系、金属錯体系、アミニゥム系、ィモニゥム系、ジィモニゥム系、アンスラキノン系 、ジチオール金属錯体系、ナフトキノン系、インドフエノール系、ァゾ系、トリアリルメタ ン系の化合物などが挙げられる。 PDP用光学フィルタで近赤外線吸収能が要求され るのは、主として熱線吸収や電子機器のノイズ防止である。このためには、最大吸収 波長が 750〜1100nmである近赤外線吸収能を有する色素が好ましぐ金属錯体系 、アミ-ゥム系、フタロシアニン系、ナフタロシアニン系、ジィモ -ゥム系が特に好まし い。
[0062] 従来知られて!/、るニッケルジチオール錯体系化合物またはフッ素化フタロシアニン 系化合物の吸収極大は、 700〜900nmであり、実用化するに当たっては、通常、上 記化合物よりも長波長域に吸収極大を有するアミ二ゥム系化合物、特にはジインモニ ゥム系化合物と組み合わせて用いることにより、有効な近赤外線吸収効果を得ること ができる。(特開平 10— 283939号公報、特開平 11 73115号公報、特開平 11 231106号公報等)。その他に、特開平 9— 230931号公報のビス(1—チォ— 2 フ エノレート)ニッケルーテトラブチルォユウム塩錯体、特開平 10— 307540号公報の ビス(1ーチォ 2—ナフトレート)ニッケルーテトラブチルアンモ-ゥム塩錯体等を挙 げることができる。
[0063] ジィモ二ゥム系化合物として具体的な化合物を下記に示す。
(IR- 1): N, N, N' , N' —テトラキス(4 ジ一 n—ブチルァミノフエ-ル)一 1, 4 -ベンゾキノン ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR- 2): N, N, N' , N' —テトラキス(4 ジ一 n—ブチルァミノフエ-ル)一 1, 4 ベンゾキノン ビス(ィモ -ゥム ·過塩素酸)
(IR- 3): N, N, N' , N' —テトラキス(4 ジ一アミルァミノフエ-ル)一 1, 4 ベ ンゾキノン一ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR-4): N, N, N' , N' —テトラキス(4 ジ一 n—プロピルアミノフエ-ル)一 1, 4
-ベンゾキノン ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR— 5) :N, N, N' , N' —テトラキス(4 ジ一 n—へキシルァミノフエ-ル)一 1,
4 -ベンゾキノン ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR-6): N, N, Ν' , N' —テトラキス(4 ジ一 iso プロピルアミノフエ-ル)一 1,
4 -ベンゾキノン ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR- 7): N, N, Ν' , N' —テトラキス(4 ジ一 η—ペンチルァミノフエ-ル)一 1, 4 -ベンゾキノン ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
(IR-8): N, N, N' , N' —テトラキス(4 ジ一メチルァミノフエ-ル)一 1, 4 ベ ンゾキノン一ビス(ィモ -ゥム ·へキサフルォロアンチモン酸)
なお、近赤外線吸収能を有する色素を、色調補正層に含有させる場合、上記の色 素のうちいずれか 1種類を含有させてもよいし、 2種以上を含有させてもよい。近赤外 線吸収染料の経時劣化を避けるために紫外線吸収染料を使用することが好まし 、 紫外線吸収剤としては、公知の紫外線吸収剤、例えばサリチル酸系化合物、ベン ゾフエノン系化合物、ベンゾトリアゾール系化合物、 S トリアジン系化合物、環状イミ ノエステル系化合物などを好ましく使用することができる。これらの中、ベンゾフエノン 系化合物、ベンゾトリアゾール系化合物、環状ィミノエステル系化合物が好ましい。ポ リエステルに配合するものとしては、特に環状イミノエステル系化合物が好ましい。好 ましい具体例としては、
(UV- 1) : 2- (2 ヒドロキシ一 3, 5 ジ一 α—タミル) 2Η ベンゾトリアゾール (UV— 2) : 5 クロ口 2— (2 ヒドロキシ 3 第三 ブチル 5 メチルフエ-ル )一 2Η—べンゾトリァゾーノレ
(UV— 3) : 5 クロ口 2— (2 ヒドロキシ 3, 5 ジ—第三 ブチルフエ-ル) 2 Η ベンゾトリァゾーノレ
(UV— 4) : 5 クロ口一 2— (2 ヒドロキシ一 3, 5 ジ α クミノレフエ-ノレ) 2Η 一べンゾトリァゾーノレ
(UV— 5) : 5 クロ口一 2— (2 ヒドロキシ一 3— α タミル 5 第三ォクチルフエ 二ノレ) 2Η—ベンゾトリァゾーノレ
(UV—6) : 2—〔3 第三ブチルー 2 ヒドロキシ 5—(2 イソォクチルォキシカル ボニルェチル)フエ-ル〕 5 クロ口一 2Η ベンゾトリアゾール
(UV— 7): 5 トリフルォロメチル 2— (2 ヒドロキシ一 3— α—タミル 5 第三ォ クチルフエ-ル) 2Η—ベンゾトリアゾール
(UV— 8) : 5 トリフルォロメチル— 2— (2 ヒドロキシ— 5 第三ォクチルフエ-ル) 2Η—ベンゾトリァゾーノレ
(UV— 9) : 5 トリフルォロメチル— 2— (2 ヒドロキシ— 3, 5 ジ—第三ォクチルフ ェニノレ) - 2H-ベンゾトリァゾーノレ
(UV— 10) : 3—メチルー(5 トリフルォロメチル— 2H ベンゾトリアゾル— 2—ィル )— 5—第三ブチノレ 4—ヒドロキシヒドロシンナメート
(UV - 11) : 5 -ブチルスルホ -ル 2— ( 2 ヒドロキシ - 3 - a -タミル 5 第三 ォクチルフエ-ル) 2H—ベンゾトリアゾール
(UV - 12) : 5 -トリフルォロメチル 2— ( 2 ヒドロキシ一 3— α—タミル一 5 第三 ブチルフエ-ル)— 2Η—ベンゾトリアゾール
(UV- 13) : 2, 4 ビス(4 ビフエ-ルイル) 6— (2 ヒドロキシ一 4—ォクチルォ キシカルボ-ルェチリデンォキシフエ-ル) s トリァジン
(UV- 14) : 2, 4 ビス(2, 4 ジメチルフエ-ル)一 6— [2 ヒドロキシ一 4— (3— ノニノレオキシ *—2 ヒドロキシプロピルォキシ) 5 α—クミノレフエ二ノレ]— s トリ ァジン(*はォクチルォキシ基、ノ-ルォキシ基およびデシルォキシ基の混合物を示 す。)
(UV- 15) : 2, 4, 6 トリス(2 ヒドロキシ一 4—イソォクチルォキシカルボ-ルイソ プロピリデンォキシフエ-ル)—s—トリァジン
(UV- 16):ヒドロキシフエ-ルー 2Η ベンゾトリアゾール
(UV- 17) : 2- (2 ヒドロキシ一 5—メチルフエ-ル) 2Η ベンゾトリアゾール
(UV- 18) : 2- (3, 5 ジ—第三ブチル—2 ヒドロキシフエ-ル) 2Η ベンゾト リアゾーノレ等である。
[0064] 上記染料は、後述する微粒子化装置で平均粒子径 0. 01〜: LO μ mの微粒子にし て染料層に固定ィ匕するのが好ましぐ添加量としては光学濃度が、極大波長で 0. 05 力も 3. 0濃度の範囲で使用するのが好ましい。
[0065] 本発明に係るハロゲン化銀粒子含有層にお 、て、バインダーは、ハロゲンィ匕銀粒 子を均一に分散させ、かつハロゲンィ匕銀粒子含有層と支持体との密着を補助する目 的で用いることができる。本発明においては、非水溶性ポリマー及び水溶性ポリマー の 、ずれもノインダーとして用いることができる力 水溶性ポリマーを用いることが好 ましい。
[0066] バインダーとしては、例えば、ゼラチン、ポリビュルアルコール(PVA)およびその誘 導体、ポリビニルピロリドン (PVP)、澱粉等の多糖類、セルロース及びその誘導体、 ポリエチレンオキサイド、ポリビニルァミン、ポリアクリル酸等が挙げられる。これらは、 官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。
[0067] 本発明に係るハロゲン化銀粒子含有層中に含有されるバインダーの含有量は、特 に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。ハロ ゲンィヒ銀粒子含有層中のバインダーの含有量は、 Ag/バインダー質量比で 0. 2〜 100であることが好ましぐ 0. 3〜30であることがより好ましぐ 0. 5〜 15であることが さらに好ま ヽ。ハロゲンィ匕銀粒子含有層中に Agをバインダーに対して質量比で 0. 5以上含有すれば、加熱加圧処理において金属粒子同士が互いに接触しやすぐ 高 、導電性を得ることが可能であるため好ま 、。
[0068] 本発明では、支持体として、プラスチックフィルム、プラスチック板、ガラスなどを用 いることができる。プラスチックフィルム及びプラスチック板の原料としては、例えば、 ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエス テル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレンなどのビュル系榭脂、 ポリカーボネート(PC)、トリアセチルセルロース (TAC)などを用いることができる。
[0069] 透明性、耐熱性、取り扱いやすさ及び価格の点から、上記プラスチックフィルムは P ET、 PEN, TACであることが好ましい。
[0070] ディスプレイ用の電磁波遮蔽材では透明性が要求されるため、支持体の透明性は 高!、ことが望ま U、。この場合におけるプラスチックフィルム又はプラスチック板の全 可視光域での透過率は、好ましくは 70〜100%であり、より好ましくは 80〜100%で あり、さらに好ましくは 90〜: LOO%である。また、本発明では、色調調節剤として前記 プラスチックフィルム及びプラスチック板を本発明の目的を妨げない程度に着色した ちのを用いることちでさる。
[0071] 本発明に係るハロゲンィ匕銀乳剤層の塗布液作製のために用いられる溶媒は、特に 限定されるものではないが、例えば、水、有機溶媒 (例えば、メタノール、エタノール などのアルコール類、アセトン、メチルェチルケトン、メチルイソブチルケトンなどのケ トン類、ホルムアミドなどのアミド類、ジメチルスルホキシドなどのスルホキシド類、酢酸 ェチルなどのエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を 挙げることができる。
[0072] 本発明に係るハロゲンィ匕銀乳剤層に用いられる溶媒の含有量は、前記銀含有層に 含まれるハロゲンィ匕銀粒子、ノインダ一等の合計の質量に対して 30〜90質量0 /0の 範囲であることが好ましぐ 40〜80質量%の範囲であることがより好ましい。
[0073] 本発明では、支持体上に設けられたハロゲンィ匕銀乳剤層の露光を行う。露光は、 電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線などの 光、電子線、 X線などの放射線等が挙げられるが、紫外線または近赤外線が好まし い。さらに露光には波長分布を有する光源を利用してもよぐ波長分布の狭い光源を 用いてもよい。
[0074] 可視光線は必要に応じてスペクトル領域に発光を示す各種発光体が用いられる。
例えば、赤色発光体、緑色発光体、青色発光体のいずれか 1種又は 2種以上が混合 されて用いられる。スペクトル領域は、上記の赤色、緑色及び青色に限定されず、黄 色、橙色、紫色或いは赤外領域に発光する蛍光体も用いられる。また、紫外線ランプ も好ましぐ水銀ランプの g線、水銀ランプの i線等も利用される。
[0075] また本発明では、露光は種々のレーザービームを用いて行うことができる。例えば、 本発明における露光は、ガスレーザー、発光ダイオード、半導体レーザー、半導体レ 一ザ一又は半導体レーザーを励起光源に用いた固体レーザーと非線形光学結晶を 組合わせた第二高調波発光光源 (SHG)等の単色高密度光を用いた走査露光方式 を好ましく用いることができ、さらに KrFエキシマレーザー、 ArFエキシマレーザー、 F 2レーザー等も用いることができる。システムをコンパクトで、迅速なものにするために
、露光は、半導体レーザー、半導体レーザーあるいは固体レーザーと非線形光学結 晶を組合わせた第二高調波発生光源 (SHG)を用いて行うことが好ま 、。特にコン パクトで、迅速、さらに寿命が長ぐ安定性が高い装置を設計するためには、露光は 半導体レーザーを用いて行うことが好まし 、。
[0076] レーザー光源としては、具体的には、紫外半導体レーザー、青色半導体レーザー 、緑色半導体レーザー、赤色半導体レーザー、近赤外レーザなどが好ましく用いら れる。
[0077] ハロゲン化銀粒子含有層を画像状に露光する方法は、フォトマスクを利用した面露 光で行ってもよいし、レーザービームによる走査露光で行ってもよい。この際、レンズ を用いた集光式露光でも反射鏡を用いた反射式露光でもよぐ面々接触露光、近接 場露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。レー ザの出力は、ハロゲン化銀を感光させるのに適した量であればよいので/ z W〜5Wレ ベルでよい。
[0078] 本発明では、ハロゲンィ匕銀乳剤層を露光した後、さらに現像処理が行われる。現像 処理は、ハロゲンィ匕銀粒子写真フィルムや印画紙、印刷製版用フィルム、フォトマスク 用ェマルジヨンマスク等に用いられる通常の現像処理の技術を用いることができる。 現像液については特に限定はしないが、 PQ現像液、 MQ現像液、 MAA現像液等 を用いることが好ましい。本発明では、上記の露光及び現像処理を行うことにより金 属銀部、好ましくは画像状金属銀部が形成されると共に、後述する光透過性部が形 成される。
[0079] 本発明における現像処理は、未露光部分のハロゲンィ匕銀粒子を除去して、透過性 を高め、ハロゲンィ匕銀感光材料の安定化させる目的で行われる定着処理を含むこと ができる。本発明における定着処理は、ハロゲンィ匕銀粒子写真フィルムや印画紙、 印刷製版用フィルム、フォトマスク用ェマルジョンマスク等に用いられる定着処理の技 術を用いることができる。
[0080] 本発明においては、近赤外露光がされない未露光部は、実質的に銀及びハロゲン 化銀を有しないことが好ましいが、本発明でいう実質的に銀及びハロゲン化銀を有し ないとは、現像処理後の未露光部領域の光学濃度が、 0. 3以下であることをいう。
[0081] 本発明に用いる現像液組成物は、現像主薬として、例えば、ノ、イドロキノン、ハイド 口キノンスルホン酸ナトリウム、クロルハイドロキノン等のハイドロキノン類の他に、 1 フエニル一 3—ビラゾリドン、 1—フエニル一 4, 4 ジメチル一 3—ビラゾリドン、 1—フ ェニル 4 メチル 4 ヒドロキシメチル 3 ビラゾリドン、 1 フエニル 4 メチ ル一 3—ビラゾリドン等のビラゾリドン類及び N—メチルパラアミノフエノール硫酸塩等 の超加成性現像主薬と併用することができる。又、ハイドロキノンを使用しないでァス コルビン酸やイソァスコルビン酸などレダクトン類ィ匕合物を上記超加成性現像主薬と 併用することが好ましい。 [0082] 保恒剤として亜硫酸ナトリウム塩や亜硫酸カリウム塩、緩衝剤として炭酸ナトリウム塩 や炭酸カリウム塩、現像促進剤としてジエタノールァミン、トリエタノールァミン、ジェ チルァミノプロパンジオール等を含むことができる。
[0083] 現像液は水酸ィ匕ナトリウム、水酸ィ匕カリウム等のアルカリ剤で pHを 9〜12の範囲に 調節することができる。 pHは一般的には、保存性が良い 10±0. 5の範囲とされるが 、迅速処理用として ρΗ11 ±0. 5とすることもできる。現像処理は、 20〜40°C、 1〜9 0秒の処理条件で実施することができる。また現像促進剤や増感剤を使用して現像 液や定着液の補充量をそれぞれ lm2当たり 5〜216mlの範囲或いはこれ以下にす ることができる。補充量低減は、乳剤の増感技術によりハロゲンィ匕銀粒子の使用量を 低減することが特に効果的であり、上記現像促進技術と併用して達成することができ る。
[0084] 現像処理で用いられる現像液は、画質を向上させる目的で、画質向上剤を含有す ることができる。画質向上剤としては、例えば、 1—フエ-ルー 5—メルカプトテトラゾー ル、 5—メチルベンゾトリアゾールなどの含窒素へテロ環化合物を挙げることができる
[0085] 本発明における現像処理後の階調は、特に限定されるものではないが、 4. 0を超 えることが好ましい。現像処理後の階調が 3. 0を超えると、光透過性部の透明性を高 く保ったまま、導電性金属部の導電性を高めることができる。階調を 3. 0以上にする 手段としては、例えば、前述のロジウムイオン、イリジウムイオンのドープが挙げられる
[0086] 本発明に使用する定着液は、定着剤としてチォ硫酸ナトリウム、チォ硫酸カリウム、 チォ硫酸アンモ-ゥム等を使用することができる。定着時の硬膜剤として硫酸アルミ ゥム、硫酸クロミゥム等を使用することができる。定着剤の保恒剤としては、現像組成 物で述べた亜硫酸ナトリウム、亜硫酸カリウム、ァスコルビン酸、エリソルビン酸等を使 用することができ、その他にクェン酸、蓚酸等を使用することができる。
[0087] 本発明に使用する水洗水には、防黴剤として N—メチルーイソチアゾールー 3—ォ ン、 N—メチルーイソチアゾールー 5—クロロー 3—オン、 N—メチルーイソチアゾール —4, 5—ジクロロー 3—オン、 2—二トロー 2—ブロムー3—ヒドロキシプロパノール, 2 —メチルー 4—クロ口フエノール、過酸ィ匕水素等を使用することができる。
[0088] 次に、本発明における導電性金属部について説明する。
[0089] 本発明では、導電性金属部は、前述した露光及び現像処理により形成された金属 銀部を加圧処理することにより前記金属銀部に導電性金属粒子を担持させること〖こ より形成される。加圧に際しては、プレート上でプレートで加圧する面一面加圧や口 ールとロールの間に本発明の電磁波遮蔽材料を通過させながら加圧させる-ップロ ール加圧や、プレート上をロールで加圧する組み合わせた加圧を採用することがで きる。加圧の大きさは lkPa〜100MPaの範囲で任意に可能である力 好ましくは 10 kPa〜100MPaの範囲、より好ましくは、 50kPa〜100MPaである。加圧が lkPaより 少ないと粒子同士の接触の効果が得られないし、 lOOMPa以上では、面を平滑に保 つことができにくぐヘイズが上昇するので好ましくない。また、加圧に際して加熱する と効果的になるので、 40°C〜300°Cの範囲で加熱することが好ましい。加熱の時間 は温度との関係で調節されて、高い温度では、短ぐ低温では長くというようにするこ とができる。加熱の方法は、 -ップロールの場合には、ロールを予め所定の温度に加 熱しておく方法やオートクレープ室のような加熱室内で加熱する方法がある。所定の 大きさの試料を複数枚枚葉積層して一度に加熱する方法は、生産性が高いので好 適である。加熱の効果を高めるためには、バインダーに熱可塑性の素材を単独また は併用することが好ましい。硝子転移点が 40°C以下のポリマーを併用するとよい。そ のようなポリマーとしては、単独のホモポリマー、 2成分以上の多成分のコポリマーを 使用できる。また、カルバウナワックスのような天然のワックスや鎖延長した人工のヮッ タス或 、はロジン類等を使用しても良 、。
[0090] 又加熱の方法としてレーザ加熱を採用しても良い。レーザー光の種類としては、レ 一ザ一光を照射させる銀の付き量、溶着剤等との関係力 適宜選定して用いることが できる。例えば、ネオジムレーザー、 YAGレーザー、ルビーレーザー、ヘリウムーネ オンレーザー、クリプトンレーザー、ァノレゴンレーザー、 Hレーザー、 Nレーザー、半
2 2
導体レーザー等のレーザー光をあげることができる。より好まし 、レーザーとしては、
YAG:ネオジム 3+レーザー(レーザー光の波長: 1060nm)や半導体レーザー(レー ザ一光の波長: 500〜1000nm)をあげることができる。レーザー光の出力は、 5〜1 ooowであることが好ましい。レーザは連続波長でも良いし、パルス波でもよい。パル ス波の幅を制御すると加温の調節が可能であり、最適条件を求め易い。レーザの出 力が 1000Wを超えるとアブレーシヨンがおこり、揮発蒸散が発生し易いので好ましく ない。
[0091] 本発明の好ましい態様として近赤外吸収色素を使用している場合は、 800ηπ!〜 1 OOOnmの範囲の近赤外半導体レーザを使用するのが好ましい。
[0092] 透光性電磁波遮蔽材料の用途にお!、て、上記導電性金属部の線幅は 20 μ m以 下、線間隔は 50 m以上であることが好ましい。また、導電性金属部は、アース接続 などの目的においては、線幅は 20 mより広い部分を有していてもよい。またこのパ ターン線画像を目立たせなくする観点からは、導電性金属部の線幅は 18 μ m未満 であることが好ましぐ 15 m未満であることがより好ましぐ 14 m未満であることが さらに好ましぐ 10 m未満であることがさらにより好ましぐ 未満であることが最 も好ましい。
[0093] 本発明における導電性金属部は、可視光透過率の点から開口率は 85%以上であ ることが好ましぐ 90%以上であることがさらに好ましぐ 95%以上であることが最も好 ましい。開口率とは、メッシュをなす細線のない部分が全体に占める割合であり、例え ば、線幅 10 μ m、ピッチ 200 μ mの正方形の格子状メッシュの開口率は、 90%であ る。
[0094] 本発明における「光透過性部」とは、透光性電磁波遮蔽材料のうち導電性金属部 以外の透明性を有する部分を意味する。光透過性部における平均可視光透過率は 、支持体の光吸収及び反射の寄与を除 、た 400〜750nmの波長領域における透 過率の平均値で示される透過率が 90%以上、好ましくは 95%以上、さらに好ましく は 97%以上であり、さらにより好ましくは 98%以上であり、最も好ましくは 99%以上 である。
[0095] 本発明の透光性電磁波遮蔽材料における支持体の厚さは、 5〜200 μ mであるこ とが好ましぐ 30〜 150 mであることがさらに好ましい。 5〜200 mの範囲であれ ば所望の可視光の透過率が得られ、かつ取り扱!/、も容易である。
[0096] 支持体上に設けられる導電性金属部の厚さは、支持体上に塗布されるハロゲンィ匕 銀粒子含有層用塗料の塗布厚みに応じて適宜決定することができる。導電性金属 部の厚さは、 30 m以下であることが好ましぐ 20 m以下であることがより好ましぐ 0. 01〜9 /z mであることがさらに好ましぐ 0. 05〜5 mであることが最も好ましい。
[0097] 導電性金属部の厚さは、ディスプレイの電磁波遮蔽材の用途としては、薄いほどデ イスプレイの視野角が広がるため好ましい。さらに、導電性配線材料の用途としては、 高密度化の要請力 薄膜ィ匕が要求される。このような観点から、導電性金属部に担 持された導電性金属からなる層の厚さは、 9 μ m未満であることが好ましぐ 0. 1 m 以上 5 μ m未満であることがより好ましぐ 0. 1 m以上 3 μ m未満であることがさらに 好ましい。
[0098] 本発明では、必要に応じて、別途、機能性を有する機能層を設けていてもよい。こ の機能層は、用途ごとに種々の仕様とすることができる。例えば、ディスプレイ用電磁 波遮蔽材用途としては、屈折率や膜厚を調整した反射防止機能を付与した反射防 止層や、ノングレアー層またはアンチグレアー層(共にぎらつき防止機能を有する)特 定の波長域の可視光を吸収する色調調節機能をもった層、指紋などの汚れを除去し やすい機能を有した防汚層、傷のつき難いハードコート層、衝撃吸収機能を有する 層、ガラス破損時のガラス飛散防止機能を有する層などを設けることができる。これら の機能層は、ハロゲンィ匕銀粒子含有層と支持体とを挟んで反対側の面に設けてもよ ぐさらに同一面側に設けてもよい。
[0099] これらの機能性膜は PDPに直接貼合してもよぐプラズマディスプレイパネル本体と は別に、ガラス板やアクリル榭脂板などの透明基板に貼合してもよい。これらの機能 性膜を光学フィルター(または単にフィルター)と呼ぶことができる。
[0100] 反射防止機能を付与した反射防止層は、外光の反射を抑えてコントラストの低下を 抑えるために、金属酸化物、フッ化物、ケィ化物、ホウ化物、炭化物、窒化物、硫ィ匕 物等の無機物を、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ ームアシスト法等で単層あるいは多層に積層させる方法、アクリル榭脂、フッ素榭脂 等の屈折率の異なる榭脂を単層あるいは多層に積層させる方法等がある。また、反 射防止処理を施したフィルムを該フィルター上に張り付けることもできる。また、ノング レア処理またはアンチグレア処理をしたフィルムを該フィルター上に張り付けることも できる。更に必要で有ればノ、ードコート層を設けることもできる。
[0101] 特定の波長域の可視光を吸収する色調調節機能をもった層は、 PDPが青色を発 光する蛍光体が青色以外に僅かであるが赤色を発光する特性を有しているため、青 色に表示されるべき部分が紫が力つた色で表示されるという問題があり、この対策とし て発色光の補正を行う層であり、 595nm付近の光を吸収する色素を含有する。この ような特定波長を吸収する色素としては、具体的には例えば、ァゾ系、縮合ァゾ系、 フタロシア-ン系、アンスラキノン系、インジゴ系、ペリレン系、ジォキサジン系、キナク リドン系、メチン系、イソインドリノン系、キノフタロン系、ピロール系、チォインジゴ系、 金属錯体系などの周知の有機顔料および有機染料、無機顔料が挙げられる。これら の中でも、耐候性が良好であることから、フタロシアニン系、アンスラキノン系色素が 特に好ましい。
実施例
[0102] 以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の 実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を 逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す 具体例により限定的に解釈されるべきものではない。
[0103] 実施例 1
水媒体中の AglOOgに対してゼラチン 10gを含む、球相当径平均 0. 044 /z mの沃 臭化銀粒子 (沃度含有率 = 2. 5モル%)を含有する乳剤を調製した。この際、 AgZ ゼラチン質量比は 10/1とし、ゼラチン種としては平均分子量 4万のアルカリ処理低 分子量ゼラチンを用いた。また、この乳剤中には臭化ロジウム酸カリウム及び塩化イリ ジゥム酸カリウムを濃度が 10— 7 (モル Zモル銀)になるように添加し、臭化銀粒子に Rh イオンと Irイオンをドープした。この乳剤に、塩化パラジウム酸ナトリウムを添加し、更 に塩ィ匕金酸とチォ硫酸ナトリウムを用いて金硫黄増感を行った後、表 1に記載の各増 感色素をハロゲンィ匕銀 1モル当たり 10—4モル添加し、分光増感した。次いで、表 1に 記載のように硬調化剤としてヒドラジン又はテトラゾリゥム化合物、促進剤のァミン化合 物又はピリジン化合物をそれぞれ添加した。更に、加圧時に銀粒子接触を促進する ために、ロジンとカルバウナワックスをそれぞれ 0.
Figure imgf000028_0001
ビュルスルホン系のゼラ チン硬膜剤をゼラチン lg当たり 0. 1モル添加し、銀の塗布量が 10g/m2 (ゼラチン 付き量 lg/m2)となるようにポリエチレンテレフタレート(PET)上に塗布した。 PETは 塗布前にあら力じめ両面にコロナ放電処理(lOOmwZm2)を施し親水化処理したも のを用い、一方の面には、具体例に示されたィモニゥム赤外吸収染料 (付き量: 0. 1 gZm2、具体例を表 1に示す)及び紫外線吸収染料 (付き量: 0. lg/m2,具体例を 表 1に示す)を、それぞれ平均粒子径として lOOnm以下に固体分散させて含有する ゼラチン層 (付き量: lg/m2)と、保護層 (ゼラチン層付き量: lg/m2、平均粒子径 3 mのシリカマット剤を含む)とを予め設けた。次いで、乾燥して、表 1に示す試料番 号 101〜118のハロゲン化銀感光材料と比較として特開 2004— 221564号公報の 実施例 1のサンプル Aを作製し、これを試料番号 100とした。
[0104] [ィ匕 3] 一般式 (34)
Figure imgf000029_0001
[0105] 得られた、試料番号 100〜118をライン Zスペース = 5 m/195 μ mの現像銀像 を与えうる格子状の描画パターンを与えるために、 LD励起固体レーザー(532nm) 及びイメージセッタを用いた近赤外半導体レーザ露光(810nm)により、下記の現像 液を用いて 25°Cで 45秒間現像し、さらに定着液を用いて現像処理を行った後、純 水でリンスした。
[0106] (現像液組成)
ハイドロキノン 30g
1—フエニル一 3, 3—ジメチルピラゾリドン 1. 5g
臭化カリウム 3. Og
亜硫酸ナトリウム 50g
水酸化カリウム 30g
硼酸 10g
N—n—ブチルジェタノールァミン 15g 水を加えて 1Lとし、 pHは 10. 20に調節した。
(定着液組成)
チォ硫酸アンモ-ゥム 72. 5%水溶液 240ml 亜流酸ナトリウム 17g
酢酸ナトリウム · 3水塩 6. 5g
硼酸 6. Og
クェン酸ナトリウム · 2水塩 2. Og
酢酸 90%水溶液 13. 6ml
硫酸 50%水溶液 4. 7g
硫酸アルミニウム (A1203換算含量が 8. 1%WZVの水溶液) 26. 5g 水を加えて 1Lとし、 pHを 5. 0に調節した。
[0108] 現像後に、表 1に記載の条件で、 0. lkPa〜100MPaの加圧処理と 35°C〜300°C の加熱処理 (表 1に記載の加熱時間)を、オートクレープ中で行った。
[0109] このようにして得られた、導電性金属部と光透過性部とを有するサンプルの導電性 金属部の線幅と表面抵抗値を測定した。電磁波減衰効果は関西電子工業振興セン ターによる電磁波遮蔽測定法 (KEC法)により、電磁波減衰効果を測定し、 100MH zにおける電界波減衰効果 (dB)を比較した。表面抵抗値は横川電機製デジタルマ ルチメーター 7541を用い抵抗値を測定した。本発明では、金属線のメッシュの上に 保護膜で保護されて!、るのでこの保護膜上から抵抗値を測定した。抵抗値の測定は 23°C相対湿度 50%の部屋で行った。作製試料の内容を表 1に、評価した性能結果 を表 2に示す。
[0110] [表 1] ^
Figure imgf000031_0001
性能結果
試料
表面抵抗 平均可視光 近赤外吸収 備 考 ( Ω/Π) 透過率(%) (800〜; LOOOnm)
100 0.06 87 0 比較例
101 120 87 80 比較例 (低加圧)
102 15 87 80 本発明
103 0.1 87 80 本発明
104 0.2 68 0 比較例
105 100 87 80 比較例 (低加圧)
106 10 87 80 本発明
107 0.1 88 80 本発明
108 0.06 89 80 本発明
109 0.05 90 80 本発明
110 0.04 91 80 本発明
111 0.05 88 80 本発明
112 0.05 88 80 本発明
113 0.05 88 80 本発明
114 0.05 88 80 本発明
115 0.05 88 80 本発明
116 0.05 88 80 本発明
117 0.05 88 80 本発明
118 0.05 88 80 本発明
[0112] 比較例の透光性導電材料 (試料番号 100)と、本発明のサンプル試料番号 101〜 118を比べると、表面抵抗は同等であり、どちらも同じレベルの光透過性と導電性( 電磁波遮蔽能)を有していることが分かる。し力しながら、本発明で規定する構成から なる試料は、比較例のような煩雑なメツキ処理を行う必要が無ぐ加圧処理またはカロ 熱処理を施すことにより、驚くべきほどに電磁波遮蔽能を向上することができた。また 、近赤外吸収能を測定すると、本発明では誤動作を起こさないのに充分な吸収能力 のあることが分力ゝる。
[0113] 実施例 2
より高い導電性を得るために、高レ、 AgZゼラチン質量比を変化させて、以下の実 験を行った。実施例 1における試料 107のゼラチン量を変更して、 AgZゼラチン質 量比が 0. 2〜: LOOと変ィ匕させて、メッシュをなす金属細線の線幅は 10 mである本 発明サンプル 301〜309を作製した。現像処理後に、 500kPaの加圧処理を行い、 実施例 1と同様の方法により表面抵抗を測定した。また、実施例 1と同様に近赤外吸 収能を測定した。近赤外吸収分光計は、島津 FTIR— 8300を使用した。試料作製の 内容と性能結果をまとめて表 3に示す。
[0114] [表 3]
Figure imgf000033_0001
[0115] 本発明では、 AgZノインダー(ゼラチン)質量比を大きくすることにより、より高い導 電性が得られることが分かる。また透光性の点でも AgZノインダー質量比を大きくす ることが好ましぐ 10 Ω Ζ口以下の導電性が要求される PDP用としては、 AgZゼラ チン比は 10以上が好ましい。
[0116] 実施例 3
実施例 1と同様に実験を行った力 ここでは加熱処理を熱線パルス赤外レーザで銀 粒子の接触を促進した。波長 800〜870nm、出力 15W及び 50Wの赤外パルス半 導体レーザ (フランクフルト社、パルス波幅 10msec)で描画細線を加熱し、粒子間接 触を促進する実験を行った。試料は、実施例 1の試料番号 107及び 111を使用し、 加圧又は加熱の代わりにレーザ加熱し、加圧は特に行わなカゝつた。作製した試料の 内容と結果を表 4に示す。
[0117] [表 4] 〔¾31¾8¾0118131¾^^¾。 1¾^¾\8¾〜レ,
Figure imgf000034_0001

Claims

請求の範囲
[1] 支持体上に近赤外線吸収層を少なくとも 1層有し、かつ、ハロゲン化銀粒子を含有 するハロゲン化銀乳剤層を有するハロゲン化銀写真感光材料を露光し、現像処理す ることにより金属銀粒子の画像を形成し、さらに加圧処理又は加熱処理を施して、該 金属銀粒子の画像を、連続性が増した画像とすることを特徴とする電磁波遮蔽材料 の製造方法。
[2] 前記ハロゲン化銀粒子が近赤外増感されており、前記ハロゲンィ匕銀写真感光材料 に近赤外露光を施すことを特徴とする請求の範囲第 1項に記載の電磁波遮蔽材料 の製造方法。
[3] 前記近赤外線吸収層を、前記ハロゲン化銀乳剤層の下層又は支持体の反対側に 設けることを特徴とする請求の範囲第 1項また第 2項に記載の電磁波遮蔽材料の製 造方法。
[4] 前記近赤外吸収層の近赤外吸収強度は、現像処理により変化しないことを特徴と する請求の範囲第 1項乃至第 3項のいずれか 1項に記載の電磁波遮蔽材料の製造 方法。
[5] 前記近赤外露光がされない未露光部は、実質的に銀及びハロゲンィ匕銀を有しない ことを特徴とする請求の範囲第 2項乃至第 4項のいずれか 1項に記載の電磁波遮蔽 材料の製造方法。
[6] 前記加圧処理の圧力が、 lkPa以上、 lOOMPa以下であることを特徴とする請求の 範囲第 1項乃至第 5項のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[7] 前記加熱処理の温度が、 40°C以上、 300°C以下であることを特徴とする請求の範 囲第 1項乃至第 6項のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[8] 前記加熱処理を施す加熱手段が、レーザ加熱手段であることを特徴とする請求の 範囲第 1項乃至第 7項のいずれか 1項に記載の電磁波遮蔽材料の製造方法。
[9] 請求の範囲第 1項乃至第 8項のいずれか 1項に記載の電磁波遮蔽材料の製造方 法で製造された電磁波遮蔽材料であって、表面抵抗が 10ΩΖ口以下または平均可 視光透過率が 90%以上であり、かつ、導電性金属部及び近赤外吸収層を有するこ とを特徴とする電磁波遮蔽材料。 請求の範囲第 9項に記載の電磁波遮蔽材料を用いることを特徴とするプラズマディ スプレイパネル用電磁波遮蔽材料。
PCT/JP2006/313650 2005-07-13 2006-07-10 電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料 WO2007007698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524637A JPWO2007007698A1 (ja) 2005-07-13 2006-07-10 電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005204218 2005-07-13
JP2005-204218 2005-07-13

Publications (1)

Publication Number Publication Date
WO2007007698A1 true WO2007007698A1 (ja) 2007-01-18

Family

ID=37637088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313650 WO2007007698A1 (ja) 2005-07-13 2006-07-10 電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料

Country Status (3)

Country Link
US (1) US20070015094A1 (ja)
JP (1) JPWO2007007698A1 (ja)
WO (1) WO2007007698A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251874A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp ハロゲン化銀感光材料、導電膜及びその製造方法
JP2009004726A (ja) * 2006-09-28 2009-01-08 Fujifilm Corp 導電膜の製造方法及び透明導電性フイルム
JP2012253817A (ja) * 2006-01-24 2012-12-20 ▲ホア▼▲ウェイ▼技術有限公司 モバイルネットワークに基づくエンドツーエンド通信での認証の方法、システム、および認証センタ
JP2013012604A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性フイルムの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909420A (zh) * 2005-09-30 2010-12-08 富士胶片株式会社 导电薄膜的生产方法和用于导电薄膜生产的感光材料
KR100730195B1 (ko) * 2005-12-31 2007-06-19 삼성에스디아이 주식회사 필름형 필터 및 이를 구비하는 플라즈마 디스플레이 장치
US20070176153A1 (en) * 2006-01-31 2007-08-02 Konica Minolta Medical & Graphic, Inc. Electromagnetic wave shielding film, method of manufacturing the same, electromagnetic wave shielding film for plasma display panel, and optical film
DE112007001519B4 (de) * 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Verfahren zum Herstellen eines leitfähigen Materials
US20080032039A1 (en) * 2006-08-07 2008-02-07 Toppan Printing Co., Ltd. Method of manufacturing organic electroluminescence device
JP5207728B2 (ja) * 2006-12-21 2013-06-12 富士フイルム株式会社 導電膜およびその製造方法
JP5192713B2 (ja) * 2007-03-30 2013-05-08 富士フイルム株式会社 導電膜及びその製造方法
US9498382B2 (en) * 2013-10-29 2016-11-22 Oberon Company Div Paramount Corp. Grey compounded infrared absorbing faceshield

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007810A1 (ja) * 2002-07-12 2004-01-22 Fujimori Kogyo Co., Ltd. 電磁波シールド材およびその製造方法
JP2004221564A (ja) * 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法及び透光性電磁波シールド膜
JP2004221565A (ja) * 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜およびその製造方法
JP2006228836A (ja) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いた光学フィルター

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424581A (en) * 1966-01-25 1969-01-28 Polaroid Corp Photographic emulsion of silver halide and derivatized gelatin capable of conducting electrical current
US3647456A (en) * 1968-12-23 1972-03-07 Ibm Method of making conductive silver images and emulsion therefor
JPS538492B2 (ja) * 1974-08-01 1978-03-29
US7537800B2 (en) * 2002-12-27 2009-05-26 Fujifilm Corporation Method for producing light-transmitting electromagnetic wave-shielding film, light-transmitting electromagnetic wave-shielding film and plasma display panel using the shielding film
US20060008745A1 (en) * 2004-06-23 2006-01-12 Fuji Photo Film Co., Ltd. Translucent electromagnetic shield film, producing method therefor and emulsifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007810A1 (ja) * 2002-07-12 2004-01-22 Fujimori Kogyo Co., Ltd. 電磁波シールド材およびその製造方法
JP2004221564A (ja) * 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法及び透光性電磁波シールド膜
JP2004221565A (ja) * 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜およびその製造方法
JP2006228836A (ja) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いた光学フィルター

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253817A (ja) * 2006-01-24 2012-12-20 ▲ホア▼▲ウェイ▼技術有限公司 モバイルネットワークに基づくエンドツーエンド通信での認証の方法、システム、および認証センタ
JP2009004726A (ja) * 2006-09-28 2009-01-08 Fujifilm Corp 導電膜の製造方法及び透明導電性フイルム
JP2008251874A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp ハロゲン化銀感光材料、導電膜及びその製造方法
JP2013012604A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性フイルムの製造方法

Also Published As

Publication number Publication date
US20070015094A1 (en) 2007-01-18
JPWO2007007698A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007007698A1 (ja) 電磁波遮蔽材料、その製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料
US7404915B2 (en) Electromagnetic wave shielding material, method of manufacturing the same and electromagnetic wave shielding material for plasma display panel
JP2007081389A (ja) 電磁波遮蔽材料
JPH0619049A (ja) ハロゲン化銀写真感光材料
JP2012146548A (ja) 透明導電膜の製造方法及び透明導電膜
JP2009038078A (ja) 電磁波シールドフィルム及びプラズマディスプレイパネル
JP2009016526A (ja) 透明電磁波遮蔽フィルム及びその作製方法
JP2009010001A (ja) 電磁波遮蔽フィルムの製造方法及び電磁波遮蔽フィルム
JP5131268B2 (ja) 導電性金属パターンを有する透明フィルム及びその製造方法
JP2008218784A (ja) 電磁波遮蔽材料用感光材料及び電磁波遮蔽材料の製造方法
JP2008282840A (ja) 透光性導電性薄膜の製造方法及び製造装置、それにより得られる透光性導電性薄膜
JP2009021334A (ja) 透明電磁波遮蔽フィルム及びその作製方法
WO2007102393A1 (ja) 電磁波遮蔽フィルムの製造方法、及び電磁波遮蔽フィルム
JP2009004213A (ja) 光透過性導電膜の製造方法、光透過性導電膜及び光透過性電磁波シールド膜
JP2008277676A (ja) 透明電磁波遮断フィルムその製造方法及びプラズマディスプレイパネル
JP2007287960A (ja) 電磁波遮断材料及び電磁波遮断材料の作製方法
JP2008283029A (ja) 電磁波遮蔽フィルムの製造方法及び電磁波遮蔽フィルム
JP2008270405A (ja) 透明電磁波遮断フィルム、その製造方法、及びそれ用いたプラズマディスプレイパネル
WO2007088807A1 (ja) 電磁波シールド膜、電磁波シールド膜の製造方法、プラズマディスプレイパネル用電磁波シールド膜、プラズマディスプレイパネル用光学フィルムおよびハロゲン化銀写真感光材料
JPH0284637A (ja) 反射型カラー感光材料とそのカラー画像形成法
JP2009117277A (ja) 透光性導電性薄膜、その製造方法及び透明電磁波遮蔽フィルム
JP2008091387A (ja) 電磁波遮蔽フィルムの製造方法及び電磁波遮蔽フィルム
US20120237872A1 (en) Black and white silver halide photosensitive material
JPH09281630A (ja) ハロゲン化銀写真感光材料
JP2008084912A (ja) 電磁波遮蔽フィルム、その製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524637

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768012

Country of ref document: EP

Kind code of ref document: A1