WO2007000964A1 - マルチチャネル伝送システム、送信装置および送信方法 - Google Patents

マルチチャネル伝送システム、送信装置および送信方法 Download PDF

Info

Publication number
WO2007000964A1
WO2007000964A1 PCT/JP2006/312704 JP2006312704W WO2007000964A1 WO 2007000964 A1 WO2007000964 A1 WO 2007000964A1 JP 2006312704 W JP2006312704 W JP 2006312704W WO 2007000964 A1 WO2007000964 A1 WO 2007000964A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading code
spreading
matrix
transmission
multiplexing
Prior art date
Application number
PCT/JP2006/312704
Other languages
English (en)
French (fr)
Inventor
Toshinori Suzuki
Original Assignee
Kddi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi Corporation filed Critical Kddi Corporation
Priority to JP2007523925A priority Critical patent/JP4870076B2/ja
Priority to US11/922,868 priority patent/US20090129443A1/en
Publication of WO2007000964A1 publication Critical patent/WO2007000964A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • Multi-channel transmission system transmission apparatus and transmission method
  • the present invention relates to a multi-channel transmission system, a transmission device, and a transmission method.
  • a multi-channel transmission system that multiplex-transmits signals using a plurality of sub-channels
  • a multi-carrier transmission system that configures sub-channels by frequency division of a carrier
  • OFDM Orthogonal Frequency Division Multiplexing
  • MC-CDM Multi Carrier-Code Division Multiplexing
  • OFCDM Orthogonal Frequency and Code Division Multiplexing
  • the OFDM scheme frequency-multiplexes signals with orthogonal subcarriers and does not spread information using orthogonal codes.
  • signals spread in the frequency direction with orthogonal codes are frequency-multiplexed with subcarriers.
  • the OFCDM system is a type of MC-CDM system that spreads information in the frequency direction or time direction with orthogonal codes and frequency-multiplexes signals with orthogonal subcarriers.
  • the method of spreading in the frequency direction using an orthogonal code can generally obtain a frequency diversity effect, and can receive modulation symbols. It has the feature that
  • MC-CDM orthogonal code
  • OFCDM spreading in the frequency direction can generally obtain a frequency diversity effect, and can receive modulation symbols. It has the feature that
  • intersymbol interference occurs and reception characteristics deteriorate.
  • D. Garg and F. Adachi “Diversit y— coding— orthogonality trade— off for coded MC— CDMA with high level modulationj, IEICE Trans. Commun., Vol. E88- B, No. 1, pp. 76- 83, Jan. 2005.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to stabilize transmission quality by making it possible to adjust the diversity effect and intersymbol interference.
  • An object is to provide a multi-channel transmission system, a transmission apparatus, and a transmission method.
  • the multi-channel transmission system sets the adjustment parameter from a row vector or a column vector in a spreading code matrix having a trigonometric function force having the adjustment parameter as an argument.
  • a spreading code generating means for generating a spreading code using the value; a signal multiplexing means for performing spreading and multiplexing processing of information using the spreading code; and
  • a transmission device having a transmission means arranged in a channel and transmitting; a reception means for receiving signals of a plurality of subchannels transmitted from the transmission device; and the same as the transmission device for the received signals.
  • a signal division means for performing signal division processing using the same spreading code.
  • the spreading code matrix is an orthogonal matrix.
  • the spreading code matrix is a rotation matrix
  • the adjustment parameter is a rotation angle thereof.
  • the transmission means arranges the spread and multiplexed signals when the signals after spreading and multiplexing are arranged in a plurality of subchannels.
  • the carriers are arranged as far apart as possible on the frequency axis.
  • the transmitting apparatus uses a set value of the adjustment parameter from a row vector or a column vector in a diffusion code matrix composed of a trigonometric function having the adjustment parameter as an argument.
  • a spreading code generating means for generating a spreading code, a signal multiplexing means for spreading and multiplexing information using the spreading code, and a signal after the spreading and multiplexing processing are arranged in a plurality of subchannels. And transmitting means for transmitting.
  • the transmission apparatus is characterized in that the spreading code matrix is an orthogonal matrix.
  • the spreading code matrix is a rotation matrix
  • the adjustment parameter is a rotation angle thereof.
  • the transmitting unit when the transmission unit arranges the signal after the spreading and multiplexing processing in a plurality of subchannels, transmits the pair of spread subcarriers on the frequency axis. It is characterized by being arranged as far as possible.
  • the transmission method uses the setting value of the adjustment parameter from the process of setting the adjustment parameter and the row vector or column vector in the spreading code matrix having the trigonometric function force having the adjustment parameter as an argument.
  • a process of generating a spreading code, a process of spreading and multiplexing information using the spreading code, and a signal after spreading and multiplexing are arranged and transmitted in a plurality of subchannels. And a process.
  • the transmission method according to the present invention is characterized in that the spreading code matrix is an orthogonal matrix.
  • the spreading code matrix is a rotation matrix
  • the adjustment parameter is a rotation angle thereof.
  • a pair of spread subcarriers are It is characterized by being arranged as far as possible.
  • FIG. 1 is a block diagram of a multi-channel transmission system according to an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram when two subchannels are formed by time division.
  • FIG. 2B is an explanatory diagram when two subchannels are formed by frequency division.
  • FIG. 2C is an explanatory diagram when two subchannels are formed by space division.
  • FIG. 3 is a block diagram showing an embodiment of a multi-channel transmission system according to the present invention.
  • FIG. 4 is a coordinate diagram for explaining the relationship between reference signal points 501 to 504 of the QPSK system and a reception point R.
  • FIG. 5 is an explanatory diagram for explaining a subcarrier arrangement method according to the present invention.
  • a spreading code matrix R is generated.
  • the spreading factor is "2 N " (where N is an integer of 1 or more
  • N is expressed by equation (1).
  • the row vector or column vector of the spreading code matrix R is set as a spreading code. Illustration
  • the spreading codes V and V are given by equation (4) from the row vector of the spreading code matrix R in equation (2) above.
  • the above-described spreading code matrix R is an orthogonal matrix, and its row vectors are orthogonal vectors.
  • the obtained spreading code is an orthogonal code.
  • the spreading code matrix R represented by the above equation (2) is a rotation matrix, and the adjustment parameter p is the rotation angle.
  • the non-diffusion force can also be handled up to spreading by Walsh codes.
  • spreading code matrix R is represented by various mathematical formulas based on the characteristics of trigonometric functions.
  • a spreading code may be generated from a matrix generated by these operations alone or in combination.
  • FIG. 1 is a block diagram of a multi-channel transmission system according to an embodiment of the present invention.
  • the transmitter 1 includes a spreading code generator 11 and a signal multiplexer 12.
  • the set adjustment parameter p is input to the spread code generator 11.
  • the spread code generation unit 11 performs the calculation of equation (4) using the input adjustment parameter p, and spread codes V, V
  • Modulation symbols b and b after output from the modulator are input to the signal multiplexing unit 12.
  • the modulation symbols output from the modulator are divided into two systems, one of which is modulation symbol b and the other is modulation symbol b.
  • the signal multiplexing unit 12 spreads the modulation symbols b and b with spreading codes v and V. Furthermore, diffusion
  • the subsequent signal is multiplexed.
  • the calculation of equation (6) is performed.
  • c and c are subchannel signals.
  • the subchannel is formed by any one or a combination of time division, space division, and frequency division.
  • Figure 2A illustrates the case where two subchannels are formed by time division
  • Figure 2B illustrates the case where two subchannels are formed using frequency division
  • Figure 2C illustrates the case where two subchannels are formed using spatial division.
  • Each is sent.
  • the transmitted subchannel signals c and c are transmitted through the respective channels.
  • the subchannel signals c ′ and c ′ arrive at the receiver 2 and are received.
  • the receiver 2 includes a spreading code generation unit 11 and a signal division unit 13.
  • the spread code generation unit 11 of the receiver 2 is the same as the spread code generation unit 11 of the transmitter 1 and performs the calculation of the expression (4) using the adjustment parameter p having the same value as that of the transmitter 1.
  • the signal division unit 13 performs spreading codes V, V on the received subchannel signals c ', c'.
  • [0048] is a demodulated symbol when the received signal strength of each subchannel is a and a, respectively.
  • the target modulation symbol is received.
  • the target modulation symbol is half the difference in received signal strength “(one a + a) Z2 ”(that is, intersymbol interference occurs).
  • modulation symbols b and b are transmitted to the same user.
  • modulation methods include amplitude shift keying (ASK), phase shift keying (PSK), frequency shift keying (FSK), and quadrature amplitude modulation.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • FSK frequency shift keying
  • quadrature amplitude modulation amplitude shift keying
  • Various digital modulation schemes such as (QAM: Quadrature Amplitude Modulation) can be used.
  • the multichannel transmission system having a spreading factor of 2 and a multiplexing number of 2 has been described as an example.
  • the present invention has an arbitrary spreading factor of “2 N ”.
  • any combination of multiples “M” (where M and N are integers greater than or equal to 1 and M ⁇ 2 N ).
  • the diver is set according to the setting of N adjustment parameters p, p, ..., p.
  • the diversity effect and the intersymbol interference can be adjusted according to the set value of the adjustment parameter. This makes it possible to stabilize transmission quality.
  • FIG. 3 is an example of a multi-channel transmission system according to the present invention.
  • This embodiment is an MC-CDM system with a spreading factor of 2 N and a multiplexing number of M.
  • a transmitter 100 includes a spreading code generation unit 101, a modulator 102, a signal multiplexing unit 103, a serial Z parallel conversion unit 104, an inverse fast Fourier transform unit 105, and a parallel Z serial conversion. Part 106 and guard interval insertion part 107.
  • spreading code generation section 101 uses N adjustment parameters p, ⁇ , ⁇ , ⁇ that have been input, based on the above equation (1)
  • N spreading codes V, V, ..., V the actual use is
  • Modulator 102 assigns transmission data sequence a to any one of M modulation symbols b to b.
  • the signal multiplexing unit 103 uses M spreading codes V, V,...
  • Serial Z / parallel converter 104 converts each subchannel signal into parallel data.
  • the inverse fast Fourier transform unit 105 performs an inverse fast Fourier transform process on the parallel data to convert the frequency domain signal into a time domain signal.
  • the parallel Z serial conversion unit 106 converts the parallel data output from the inverse fast Fourier transform unit 105 into serial data. This serial data is transmitted by a guard interval insertion unit 107 with a guard interval inserted. A pilot signal is also inserted into the transmission signal.
  • a receiver 200 includes a guard interval removal unit 201, a serial Z parallel conversion unit 202, a fast Fourier transform unit 203, a parallel Z serial conversion unit 204, a channel estimation (channel (CH) estimation), phase correction unit 205, equalizer 206, signal division unit 207, and demodulator 208.
  • the same M spreading codes V 1, V 2,..., V as used in the transmitter 100 are prepared.
  • a spread code generator 101 is provided and
  • Or may be received from the transmitter 100.
  • the receiver 200 receives the signal transmitted from the transmitter 100.
  • the received signal is converted into parallel data by the serial Z parallel conversion unit 202 after the guard interval is removed by the guard interval removal unit 201.
  • the fast Fourier transform unit 203 performs fast Fourier transform processing on the parallel data, and performs time domain to frequency domain Convert to signal. As a result, the signal is converted into a sub-channel signal.
  • the normal Z serial conversion unit 204 converts the parallel data output from the fast Fourier transform unit 203 into serial data.
  • the CH estimation 'phase correction unit 205 estimates the amount of phase changed on the subchannel signal power transmission path after the output of the parallel Z serial conversion unit 204, corrects the phase of the estimation result force subchannel signal, and The amplitude value of the corresponding transmission line is obtained.
  • the equalizer 206 performs signal equalization processing of 2 N subchannel signals!:, R,.
  • MMSE Minimum Mean Squared Error
  • the signal division unit 207 applies the 2 N subchannel signals c ′ ′ after signal equalization,.
  • the demodulator 208 demodulates the M demodulated symbols b 'to b' to generate a received data sequence a '.
  • the spreading code matrix T when the spreading factor is 4 can be expressed by equation (12).
  • equation (13) the row vectors (that is, spread codes) are orthogonal regardless of the values of angles p, q, and r.
  • equation (13) becomes a unit matrix, and a normal OFDM signal that is not spread is obtained.
  • the angles p, q, and r are set so as to be shifted from 0, each transmitted bit is spread on each subcarrier by an amount corresponding to the shifted amount, and as a result, the diversity effect increases. Intersymbol interference also increases.
  • one of the characteristic effects of the present invention is that it can be applied flexibly even when the spreading factor is not a power of 2 by the spreading code matrix having trigonometric force. . This effect can never be obtained with the prior art using Walsh codes defined only as powers of 2.
  • the trigonometric function force is also configured. Therefore, if all the angles of the trigonometric function are set to 0 by the adjustment parameter, the matrix becomes a diagonal matrix and becomes non-spreading. Can do. Furthermore, if the angle of the trigonometric function is shifted from 0 by the adjustment parameter, the diversity effect and the non-symbol interference can be freely adjusted, and a desired balance can be realized.
  • the QPSK symbol is represented by a complex number bn.
  • One bit is assigned to each of the real part (I channel) and imaginary part (Q channel) of the complex number bn.
  • the spreading code of the present invention when the spreading factor is 2, as shown in the above equation (6), two QPSK symbols bl and b2 are allocated to subcarriers cl and c2.
  • the real part of X is represented by Re (x) and the imaginary part is represented by Im (x)
  • the real parts Re (cl) and Re (c2) of subcarriers cl and c2 and the imaginary parts Im (cl) and Im ( c2) is expressed by the following equation.
  • Re (cl) Re (bl) cos (pl) -Re (b2) sin (pl)
  • Im (cl) Im (bl) cos (pl) -Im (b2) sin (pl)
  • Re (c2) Re (bl) sin (pl) + Re (b2) cos (pl)
  • Im (c2) Im (bl) sin (pl) + Im (b2) cos (pl)
  • a received signal affected by Re (bl) is considered.
  • the subcarrier signals affected by Re (bl) are Re (cl) and Re (c2), these two may be considered simultaneously.
  • figure 4 will be used for explanation.
  • FIG. 4 is a coordinate diagram for explaining the relationship between the reference signal points 501 to 504 of the QPSK system and the reception point R.
  • the reception strengths of subcarriers cl and c2 are al and a2.
  • the rotation angle ⁇ (in radians) is ⁇ / 4.
  • the received intensities al and a2 are different values depending on the frequency selectivity. In Fig. 4, “a2> al” is assumed.
  • the two bits that affect Re (cl) and Re (c2) are Re (bl) and Re (b2). Therefore, there is a signal point that may be transmitted (referred to as a reference signal point).
  • a reference signal point has four reference signal points 501-504.
  • the received intensity al and a2 can be known on the receiving side by performing channel estimation.
  • the received values of Re (cl) and Re (c2) are indicated by reception point R. At this time, if there is no noise, the reception point R should match any of the four reference signal points 501 to 504, but usually does not match any of the reference signal points 501 to 504 due to noise.
  • each distance between the reception point R and the four reference signal points 501 to 504 is measured, and it is considered that the closest reference signal point is transmitted. That is, four distances need to be calculated to demodulate Re (bl).
  • Re (b2) is also affected by Re (cl) and Re (c2), and Re (b2) is determined by the same distance calculation. That is, 2 bits can be demodulated by 4 distance calculations. Furthermore, the same applies even if the rotation angle (in radians) is other than ⁇ / 4.
  • Re (cl) and Re (c2) are the two bits Re (b2) and Im (b2). That is, there are 8 reference signal points (3 bits). Therefore, when using complex spreading codes, Re (bl) is restored. In order to adjust, it is necessary to calculate 8 distances from the receiving point.
  • the subcarrier signal affected by Re (b2) affects not only Re (cl) and Re (c2) but also Im (cl) and Im (c2). Re (b2) cannot be properly tuned by just eight distance calculations.
  • the demodulation calculation process can be simplified as compared with the case where the complex spreading code is used. This makes it possible to improve the efficiency of the receiver.
  • the characteristic feature of the present invention is that it does not require a control band or function, and is suitable for communication requiring low delay and communication in a high-speed mobile environment. .
  • the subband adaptive allocation method does not function effectively in an environment where the transmission path changes during the control delay, for example, in a high-speed mobile environment. Furthermore, a new transmission line is required to report the measurement results from the receiving side to the transmitting side. In addition, when user multiplexing is not performed, subbands that are not used are idle, and the frequency cannot be used effectively.
  • the present invention by utilizing the diversity effect, an extra control band or function is not required, so that the transmission system can be simplified.
  • the present invention is suitable for communication requiring a low delay and communication in a high-speed moving environment.
  • a pair of spread subcarriers may be arranged as far apart as possible on the frequency axis. desirable.
  • a pair of subcarriers is a subcarrier in which the same modulation symbol is spread, and is, for example, cl and c2 in equation (6). In cl and c2, the same modulation symbols bl and b2 are spread.
  • FIG. 5 is an explanatory diagram for explaining a subcarrier arrangement method according to the present invention.
  • the distance between the pair of subcarriers cl and c2 on the frequency axis be at least about the reciprocal of the delay width ⁇ of the transmission line.
  • the reception effect of subcarriers close to each other on the frequency axis is similar, so that even if they are transmitted with great effort, no diversity effect can be expected.
  • the delay spread in urban areas is about 1 microsecond and indoors is about 0.1 microsecond or less.
  • the distance between the pair of subcarriers on the frequency axis is about 1 MHz or more when communication in urban areas is assumed, and 10 MHz or more when communication in indoors is assumed. It is.
  • the present invention is not limited to a transmission form, and can be applied to either a wireless or wired system.
  • the present invention can be applied to various digital signal transmission systems such as digital communication systems and broadcasting systems such as digital broadcasting.
  • the present invention can be applied to a transmission apparatus or the like that can achieve stabilization of transmission quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

 本発明の送信機1は、調整パラメータを引数とする三角関数から成る拡散符号行列内の行ベクトル或いは列ベクトルから、前記調整パラメータの設定値を用いて拡散符号を生成する拡散符号生成部11と、該拡散符号を用いた情報の拡散及び多重化の処理を行う信号多重部12とを備え、該拡散及び多重化の処理後の信号を複数のサブチャネルに配置して送信する。

Description

明 細 書
マルチチャネル伝送システム、送信装置および送信方法
技術分野
[0001] 本発明は、マルチチャネル伝送システム、送信装置および送信方法に関する。
本願は、 2005年 6月 27日に日本国特許庁に出願された特願 2005— 186571号 に基づく優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、複数のサブチャネルを用いて信号を多重伝送するマルチチャネル伝送シス テムとして、例えば、搬送波(キャリア)の周波数分割によりサブチャネルを構成する マルチキャリア伝送システムがあり、 OFDM (Orthogonal Frequency Division Multipl exing)方式、 MC— CDM (Multi Carrier-Code Division Multiplexing)方式および O FCDM (Orthogonal Frequency and Code Division Multiplexing)方式などが知られ ている。
[0003] OFDM方式は直交するサブキャリアで信号を周波数多重するものであり、直交符 号を用いた情報の拡散は行わな 、。 MC CDM方式は直交符号で周波数方向に 拡散した信号をサブキャリアで周波数多重する。 OFCDM方式は、 MC— CDM方 式の一種であり、直交符号で周波数方向もしくは時間方向に情報を拡散すると共に 直交するサブキャリアで信号を周波数多重する。
[0004] これらの方式のうち、直交符号を用いて周波数方向に拡散する方式 (MC— CDM 、周波数方向に拡散する OFCDM)は、一般に周波数ダイバーシチ効果を得ること ができ、変調シンボルの受信特性力 いという特長を持つ。し力しながら、無線伝送 路の周波数選択性によって符号間の直交性が損なわれると、符号間干渉が発生し て受信特性が劣化するという問題がある。例えば、 D. Garg and F. Adachi,「Diversit y— coding— orthogonality trade— off for coded MC— CDMA with high level modulationj , IEICE Trans. Commun.,vol.E88- B, No. 1, pp. 76-83, Jan. 2005.を参照されたい。
[0005] 一方、直交符号を用いて時間方向に拡散する方式(時間方向に拡散する OFCD M)や拡散を行わな!/、OFDM方式は、符号間干渉の影響をあまり受けな 、が周波 数ダイバーシチ効果を得られな 、。
[0006] 上述した従来のマルチチャネル伝送システムでは、周波数方向の拡散によって周 波数ダイバーシチ効果を得る場合には符号間干渉の問題があり、一方、周波数方向 の拡散を行わな 、場合には周波数ダイバーシチ効果が得られな 、と 、う、二者択一 的な伝送品質となっている。このため、伝送路の状態の変化によって伝送品質が不 安定となりやす 、と 、う問題がある。
発明の開示
[0007] 本発明は、このような事情を考慮してなされたもので、その目的は、ダイバーシチ効 果と符号間干渉とを調整可能とすることにより、伝送品質の安定ィ匕を図ることのできる マルチチャネル伝送システム、送信装置および送信方法を提供することにある。
[0008] 上記の課題を解決するために、本発明に係るマルチチャネル伝送システムは、調 整パラメータを引数とする三角関数力 成る拡散符号行列内の行ベクトル或いは列 ベクトルから、前記調整パラメータの設定値を用いて拡散符号を生成する拡散符号 生成手段と、前記拡散符号を用いた情報の拡散及び多重化の処理を行う信号多重 手段と、前記拡散及び多重化の処理後の信号を複数のサブチャネルに配置して送 信する送信手段と、を有する送信装置と、前記送信装置から送信された複数のサブ チャネルの信号を受信する受信手段と、該受信した信号に対して前記送信装置と同 じ拡散符号を用いた信号分割処理を行う信号分割手段と、を有する受信装置と、を 備えたことを特徴とする。
[0009] 本発明に係るマルチチャネル伝送システムにおいては、前記拡散符号行列は直交 行列であることを特徴とする。
[0010] 本発明に係るマルチチャネル伝送システムにおいては、前記拡散符号行列は回転 行列であり、前記調整パラメータはその回転角であることを特徴とする。
[0011] 本発明に係るマルチチャネル伝送システムにお ヽては、前記送信手段は、前記拡 散及び多重化の処理後の信号を複数のサブチャネルに配置するときに、拡散した一 対のサブキャリアを周波数軸上で、できるだけ離して配置することを特徴とする。
[0012] 本発明に係る送信装置は、調整パラメータを引数とする三角関数から成る拡散符 号行列内の行ベクトル或 、は列ベクトルから、前記調整パラメータの設定値を用いて 拡散符号を生成する拡散符号生成手段と、前記拡散符号を用いた情報の拡散及び 多重化の処理を行う信号多重手段と、前記拡散及び多重化の処理後の信号を複数 のサブチャネルに配置して送信する送信手段と、を備えたことを特徴とする。
[0013] 本発明に係る送信装置にお!ヽては、前記拡散符号行列は直交行列であることを特 徴とする。
[0014] 本発明に係る送信装置においては、前記拡散符号行列は回転行列であり、前記調 整パラメータはその回転角であることを特徴とする。
[0015] 本発明に係る送信装置においては、前記送信手段は、前記拡散及び多重化の処 理後の信号を複数のサブチャネルに配置するときに、拡散した一対のサブキャリアを 周波数軸上で、できるだけ離して配置することを特徴とする。
[0016] 本発明に係る送信方法は、調整パラメータを設定する過程と、調整パラメータを引 数とする三角関数力 成る拡散符号行列内の行ベクトル或いは列ベクトルから、前記 調整パラメータの設定値を用いて拡散符号を生成する過程と、前記拡散符号を用い た情報の拡散及び多重化の処理を行う過程と、前記拡散及び多重化の処理後の信 号を複数のサブチャネルに配置して送信する過程と、を含むことを特徴とする。
[0017] 本発明に係る送信方法にお!ヽては、前記拡散符号行列は直交行列であることを特 徴とする。
[0018] 本発明に係る送信方法にお!ヽては、前記拡散符号行列は回転行列であり、前記調 整パラメータはその回転角であることを特徴とする。
[0019] 本発明に係る送信方法にお!、ては、前記拡散及び多重化の処理後の信号を複数 のサブチャネルに配置するときに、拡散した一対のサブキャリアを周波数軸上で、で きるだけ離して配置することを特徴とする。
[0020] 本発明によれば、調整パラメータの設定値によって、ダイバーシチ効果と符号間干 渉とを調整することができる。これにより、伝送品質の安定ィ匕を図ることが可能となる。 図面の簡単な説明
[0021] [図 1]本発明の一実施形態に係るマルチチャネル伝送システムのブロック図である。
[図 2A]は時間分割によって 2つのサブチャネルを形成する場合の説明図である。
[図 2B]は周波数分割によって 2つのサブチャネルを形成する場合の説明図である。 [図 2C]は空間分割によって 2つのサブチャネルを形成する場合の説明図である。
[図 3]本発明に係るマルチチャネル伝送システムの一実施例を示すブロック図である
[図 4]QPSK方式の基準信号点 501〜504と受信点 Rの関係を説明するための座標 図である。
[図 5]本発明に係るサブキャリア配置方法を説明するための説明図である。
符号の説明
[0022] 1, 100…送信機、 2, 200…受信機、
11, 101…拡散符号生成部、 12, 103…信号多重部、
13, 207…信号分割部、 102…変調器、
105…逆高速フーリエ変換部、 208…復調器
発明を実施するための最良の形態
[0023] 以下、図面を参照し、本発明の一実施形態について説明する。
[0024] 初めに、本発明に係る拡散符号の生成方法を説明する。
まず、拡散符号行列 Rを生成する。拡散率が「2N」の場合 (但し、 Nは 1以上の整
N
数)の拡散符号行列 R
Nは(1)式で表される。
[0025] [数 1]
Figure imgf000006_0001
[0026] 但し、 p は、調整パラメータである。調整パラメータの範囲(単位はラジアン)は、 q
N
Χ π /4≤ρ ≤ (q+ 1) X π Z4、である (但し、 qは整数)。拡散率が 2Nの場合、調
N
整パラメータは N個「p、 p、 · · ·、 p」である。
1 2 N
[0027] 拡散符号行列 Rの具体例として、(2)式は「N= 1」の場合 (つまり、拡散率が 2の
N
場合)の拡散符号行列 Rを表している。(3)式は「N = 2」の場合 (つまり、拡散率が 4 の場合)の拡散符号行列 Rを表している。そして、拡散率が 2の場合 (N= l)の(2)
2
式では、調整パラメータは 1個「p」である。拡散率力 の場合 (N = 2)の(3)式では、 調整パラメータは 2個「p、p」である。 [0028] [数 2] cos(p,) sin(^)
R (2)
-sin^) cos ( )
[0029] [数 3] cos(p2 ) R, sin(p2 )
R
-R, sin 2 ) R, cos(p2)
f cos ( ) cos 2 ) sin(^, ) cos(j¾ ) cos( >,)sin(p2) sin(/?,)sin(/?2)
-sin^^cos^) cos(_p,)cos(p,―) -sin( ,)sin(/?2) cos^^sinC^)
-COSOXA)
Figure imgf000007_0001
一 sin /^cos ^) cosi ^cos^)
(3)
[0030] 次いで、拡散符号行列 Rの行ベクトルもしくは列ベクトルを拡散符号とする。例え
N
ば、拡散率が 2の場合 (N=l)、上記(2)式の拡散符号行列 Rの行ベクトルより、そ の拡散符号 V、 Vは (4)式となる。
1 2
[0031] [数 4]
Vi
Figure imgf000007_0002
sinO )
v2 -(-sin( ,), cos(p,)) (4)
[0032] 上述した拡散符号行列 R は直交行列であり、その行ベクトル同士は直交ベクトル
N
である。同様に列ベクトル同士は直交ベクトルである。従って、得られる拡散符号は 直交符号となる。
[0033] また、上記(2)式で表される拡散符号行列 Rは、回転行列であり、調整パラメータ p はその回転角である。
[0034] 本発明に係る拡散符号は、調整パラメータによって拡散の程度を制御することが可 能なものである。例えば、拡散率が 2の場合 (Ν=1)、 Γρ =0」ならば、上記 (4)式よ り、
V =(1, 0)、
V =(0, 1)、
2
となり、信号の拡散は行われない。
また、拡散率が 2の場合 (Ν=1)、 Γρ =πΖ4」ならば、上記 (4)式より、 v = (1/ 2, 1/ 2)、
v = {- l/ 2, 1Z 2)、
2
となり、均等の比率で信号の拡散が行われる。これは、ウオルシュ (Walsh)符号に相 当する。
つまり、非拡散力もウオルシュ符号による拡散まで対応することができる。
[0035] なお、上記した拡散符号行列 Rは、三角関数の特徴に基づいた各種の数式上の
N
変形を行うことができる。例えば、 pl→「pl + π」とおけば、上記(2)式は(5)式のよう に変形することができる。同様に、「sin(X+ 7u /2) = cos(x)」などの関係を用いれば、全 て単一の三角関数 (例えばサイン関数のみ、もしくはコサイン関数のみ)で構成するこ とも可能である。
[0036] [数 5]
Figure imgf000008_0001
[0037] また、拡散符号行列 Rを定数倍する操作や拡散符号行列 R の列ベクトルあるい
N N
は行ベクトルを入れ替える操作を施してもよい。これらの操作の単独、或いは組み合 わせによって生成された行列から、拡散符号を生成してもよ 、。
[0038] 以下、上記 (4)式で表される拡散率が 2の場合 (N= l)の拡散符号 V、 Vを例に挙
1 2 げて、本発明の一実施形態に係るマルチチャネル伝送システムを説明する。
[0039] 図 1は、本発明の一実施形態に係るマルチチャネル伝送システムのブロック図であ る。
図 1において、送信機 1は、拡散符号生成部 11と信号多重部 12とを有する。
拡散符号生成部 11には、設定された調整パラメータ pを入力する。拡散符号生成 部 11は、入力された調整パラメータ pを用いて (4)式の演算を行い、拡散符号 V、 V
1 1 2 を生成する。
[0040] 信号多重部 12には、変調器出力後の変調シンボル b、 bを入力する。本実施形態
1 2
では、変調器から出力された変調シンボルを 2系統に分け、そのうちの一系統を変調 シンボル b、もう一方の系統を変調シンボル bとする。 信号多重部 12は、変調シンボル b、 bを拡散符号 v、 Vで拡散する。さらに、拡散
1 2 1 2
後の信号の多重化を行う。その拡散及び多重化の処理では、(6)式の演算を行う。
[0041] 園 i c, , c2 ) - \^b + v2b2 = ί bx cos( , )一 b2 sin(p1 ), >, sin(pl ) + L cos(p] ))
…(6 )
[0042] 但し、 c、 cは、サブチャネル信号である。
1 2
なお、(4)式の拡散符号 V、 Vを用いる場合には、本マルチチャネル伝送システム
1 2
は少なくとも 2つのサブチャネルを用意する必要がある力 本実施形態では 2つのサ ブチャネルのみを用いる場合で説明する。サブチャネルは、時間分割、空間分割お よび周波数分割のうち、いずれか単独、或いは複数の組み合わせによって形成され る。
図 2Aは時間分割によって 2つのサブチャネルを形成する場合、図 2Bは周波数分 割によつて 2つのサブチャネルを形成する場合、図 2Cは空間分割によって 2つのサ ブチャネルを形成する場合、の説明図である。
[0043] 上記 (6)式の演算により生成されたサブチャネル信号 c、 cは、送信機 1からそれ
1 2
ぞれ送信される。送信されたサブチャネル信号 c、 cは、それぞれのチャネルを介し
1 2
サブチャネル信号 c'、 c'として受信機 2に到達し受信される。
1 2
[0044] 受信機 2は、拡散符号生成部 11と信号分割部 13とを有する。
受信機 2の拡散符号生成部 11は、送信機 1の拡散符号生成部 11と同じものであり 、送信機 1と同じ値の調整パラメータ pを用いて (4)式の演算を行い、拡散符号 V、 V
2を生成する。
[0045] 信号分割部 13は、受信されたサブチャネル信号 c'、 c'に対して、拡散符号 V、 V
1 2 1 2 を用いた信号分割操作を行い、復調シンボル b'、 b'を得る。この信号分割処理では
1 2
、(7)式の演算を行う。
[0046] [数 7] み 1 = V , · (c;, c 2' )
= v2 · (£:;, c2' ) · · · ( 7 ) [0047] 上記 (6)、(7)式から、サブチャネルの受信信号が送信信号と同じ、つまり「 」、「c' =b'」ならば、復調シンボルは変調シンボルと同じ、つまり「b' =b」、「b' =
2 2 1 1 2 b」になる。
2
[0048] :で、各サブチャネルの受信信号強度をそれぞれ a、 aとしたときの復調シンボル
2
b'、 b'を上記(6)、(7)式力 求めてみると、(8)式になる。なお、簡単のため、背景
2
雑音の影響は省いている。
b = (a Xcos (p ) +a Xsin (p ) Xb
+ (— a +a ) X sin (p ) Xcos(p ) Xb
1 2 1 1 2
b, = (— a +a ) X sin (p ) Xcos(p ) Xb
2 1 2 1 1 1
+ (a X sin2 (p ) +a Xcos2(p )) Xb
1 1 2 1 2
•••(8)
[0049] 上記 (8)式力も示されるように、本実施形態の拡散符号 V、 Vによれば、調整パラメ
1 2
ータ Pの設定値によって、ダイバーシチ効果と符号間干渉とを調整することができる
。以下に具体的に説明する。
まず、調整パラメータ pの
1 範囲(単位はラジアン)は、 qX π Z4≤p ≤ (q+ 1) X π
N
/4、である力 (但し、 qは整数)、 q = 0とすると、 0≤Ρι≤ π/4、となる。そして、 「ρ =0」とした場合には、
b' =a Xb、 b' =a Xb、
1 1 1 2 2 2
となり、変調シンボル b'と b'はお互い干渉しあうことはない。し力し、各サブチャネル
1 2
の受信信号強度 a、 aの変動が、そのまま変調シンボル b'、 b'のレベルに影響を与
1 2 1 2
える。
[0050] 一方、「ρ =π/4」とした場合には、
b' =(a +a ) Xb /2+ (i +a ) Xb Z2、
1 1 2 1 1 2 2
b' = (i +a ) Xb Z2+ (a +a ) Xb Z2、
2 1 2 1 1 2 2
となる。この場合は、個々のサブチャネルの受信信号強度 a、 aが平均された強度「(
1 2
a +a )Z2」で目的の変調シンボルが受信されるので、復調シンボルのレベル変動
1 2
は、上記「p =0」とした場合に比べて緩和される(つまり、ダイバーシチ効果が得られ る)。しかし、目的としない変調シンボルが、受信信号強度の差分の半分「(一 a +a ) Z2」のレベルで混入する(つまり、符号間干渉が発生する)。
[0051] そして、「0<Ρι< π /4」とした場合には、上記「 ェニ。」とした場合と「ρι = π /4」 とした場合との間の特性に、ダイバーシチ効果と符号間干渉とを調整することができ る。特に、サブチャネル間の伝送品質にばらつきがある場合には、その調整効果が 顕著となる。
[0052] なお、上述した実施形態では、変調シンボル b、 bは、同一のユーザに送信する変
1 2
調シンボルとして説明した力 それぞれ異なるユーザに送信する変調シンボルであつ てもよい。
[0053] また、変調方式としては、振幅偏移変調 (ASK: Amplitude Shift Keying)、位相偏移 変調(PSK: Phase Shift Keying)、周波数偏移変調(FSK: Frequency Shift Keying)及 び直交振幅変調 (QAM: Quadrature Amplitude Modulation)などの各種のデジタノレ 変調方式が利用可能である。
[0054] また、上述した実施形態では、拡散率が 2であり、且つ、多重数が 2であるマルチチ ャネル伝送システムを例に挙げて説明したが、本発明は任意の拡散率「2N」と任意の 多重数「M」の組み合わせに対して適用可能である(但し、 M、 Nは 1以上の整数、且 つ、 M≤2N)。その場合、 N個の調整パラメータ p、 p、 · · ·、 pの設定により、ダイバ
1 2 N
ーシチ効果と符号間干渉とを調整することができる。
[0055] 上述したように本実施形態によれば、調整パラメータの設定値によって、ダイバーシ チ効果と符号間干渉とを調整することができる。これにより、伝送品質の安定化を図 ることが可能となる。
実施例
[0056] 図 3は、本発明に係るマルチチャネル伝送システムの一実施例である。この実施例 は、 MC— CDM方式のシステムであり、その拡散率は 2N、多重数は Mである。
[0057] 図 3において、送信機 100は、拡散符号生成部 101と、変調器 102と、信号多重部 103と、シリアル Zパラレル変換部 104と、逆高速フーリエ変換部 105と、パラレル Z シリアル変換部 106と、ガードインターバル揷入部 107とを有する。
[0058] 図 3の送信機 100において、拡散符号生成部 101は、入力された N個の調整パラメ ータ p、ρ、 · ' ·、ρを用いて、上記(1)式に基づいた Ν個の拡散符号 ν、ν、 · ' ·、ν を生成する。それら N個の拡散符号 V、 V、 · · ·、 Vのうち、実際に使用するのは、
N 1 2 N
多重数が Mであるので、 M個である。このため、 N個の拡散符号 V、 V、 · · ·、 Vの中
1 2 N 力も M個を任意に選択する。ここでは、 M個の拡散符号 V、 V、 · · ·、 V が選択され
1 2 M
たとする。
[0059] 変調器 102は、送信データ系列 aを M個の変調シンボル b〜b のいずれかにマツ
1 M
ビングする。信号多重部 103は、 M個の拡散符号 V、 V、 · · ·、 V を用いて、 M個の
1 2 M
変調シンボル b〜b の拡散及び多重化の処理を行う。この拡散及び多重化の処理
1 M
では、(9)式の演算を行う。これにより、 2N個のサブチャネルの信号が得られる。
[0060] [数 8] c2 , · · · , c2w ) = v161 + v262 +— + vM6M . . · ( 9 )
[0061] シリアル Zパラレル変換部 104は、各サブチャネルの信号をパラレルデータに変換 する。逆高速フーリエ変換部 105は、そのパラレルデータに対して逆高速フーリエ変 換処理を施し、周波数領域から時間領域の信号に変換する。パラレル Zシリアル変 換部 106は、逆高速フーリエ変換部 105出力後のパラレルデータをシリアルデータ に変換する。このシリアルデータは、ガードインターバル揷入部 107でガードインター バルが挿入されてカゝら送信される。なお、送信信号にはパイロット信号も挿入される。
[0062] 図 3において、受信機 200は、ガードインターバル除去部 201と、シリアル Zパラレ ル変換部 202と、高速フーリエ変換部 203と、パラレル Zシリアル変換部 204と、伝 送路推定 (チャネル (CH)推定),位相補正部 205と、等化器 206と、信号分割部 20 7と、復調器 208とを有する。
[0063] 図 3の受信機 200においては、送信機 100で用いられたのと同じ M個の拡散符号 V 、 V、 · · ·、 V が用意される。送信機 100と同様に拡散符号生成部 101を備えて生
1 2 M
成してもよぐ或いは、送信機 100から受け取ってもよい。
[0064] 受信機 200は、送信機 100から送信された信号を受信する。その受信信号は、ガ ードインターバル除去部 201でガードインターバルが除去されてから、シリアル Zパ ラレル変換部 202でパラレルデータに変換される。高速フーリエ変換部 203は、その パラレルデータに対して高速フーリエ変換処理を施し、時間領域から周波数領域の 信号に変換する。これにより、サブチャネルの信号に変換される。ノ ラレル Zシリアル 変換部 204は、高速フーリエ変換部 203出力後のパラレルデータをシリアルデータ に変換する。
[0065] CH推定'位相補正部 205は、パラレル Zシリアル変換部 204出力後のサブチヤネ ル信号力 伝送路上で変化した位相量を推定し、その推定結果力 サブチャネル信 号の位相を補正すると共に、対応する伝送路の振幅値を求める。等化器 206は、位 相補正された 2N個のサブチャネル信号!:、 r、 ···の信号等化処理を伝送路の振幅
1 2
値を用いて行う。信号等化処理では、例えば MMSE (Minimum Mean Squared Error )手法が利用できる。
[0066] 信号分割部 207は、信号等化後の 2N個のサブチャネル信号 c' '、 ···に対して
1 2
、 M個の拡散符号 V、 V、 · · ·、 V を用いた信号分割操作を行い、 M個の復調シンポ
1 2 M
ル 〜b' を得る。この信号分割処理では、(10)式の演算を行う。
1 M
[0067] [数 9] =v ( , , …, )、 m=l,2,...,M • • • (10)
[0068] 復調器 208は、その M個の復調シンボル b'〜b' を復調して受信データ系列 a'を
1 M
得る。
[0069] 次に、本発明に係る他の実施例を説明する。
[0070] 拡散符号行列において拡散率と同数分のパラメータを導入することにより、きめ細 力べ信号点を決定することができる。例えば、(11)式の回転直交行列を用いるとき、 拡散率が 4の場合の拡散符号行列 Tは、(12)式で表すことができる。
4
[0071] [数 10] cos(p) sm^p)
- sin(p) cos(p )J
[0072] [数 11] T2 (p2 )sin p4 ) 、
Figure imgf000013_0001
T2 (p2 +pi-pl )cos (p4 ) }
• • • (1 2) [0073] また、拡散率が 2のべき乗ではない場合にも、三角関数力も成る拡散符号行列を構 成することができる。その一例として、拡散率が 3である場合の拡散符号行列は、 (13 )式で表される。
[0074] [数 12] cos[pj cos[r] - sin[pj sinia] sin[r] cos[q] sin[p] cos[r] sin[p] sin[q] + cos[p] sin[r] -cos[r] sm[p] ~ cos[p] sin[q] sin[r] cos[p] cos[q] cos[p] cos[r] sin[q】—sin[p] sin[r] -cos[q] sin[r] — sin[q] cos[q] cos[r]
, • • ( 1 3 )
[0075] (13)式においては、角度 p、 q、 rの値によらず、各行ベクトル (つまり拡散符号)は 直交している。ここで、角度 p、 q、 rを「p = 0、 q = 0、 r = 0」に設定すれば、(13)式は 単位行列となり、拡散しない通常の OFDM信号が得られる。角度 p、 q、 rを 0からずら して設定すれば、ずらした量に応じた分だけ、各送信ビットが各サブキャリアに拡散さ れることになり、その結果として、ダイバーシチ効果が大きくなる一方、符号間干渉も 増える。このトレードオフの関係においてダイバーシチ効果と符号間干渉の最適なバ ランスを実現するように、角度 p、(!、 rの値を設定することで、良好な通信を実現するこ とがでさる。
[0076] このように、三角関数力 成る拡散符号行列によって、拡散率が 2のべき乗ではな い場合にも柔軟に適用することができる点は、本発明の特徴的な効果の一つである 。この効果は、 2のべき乗でのみ定義されるウオルシュ符号を用いた従来技術では、 決して得られない。
[0077] また、(14)式に示されるような複素拡散符号では、非拡散である通常の OFDM信 号を得ることができないので、符号間干渉の調整範囲は極めて狭い範囲に限定され る。
[0078] [数 13]
Figure imgf000014_0001
[0079] (14)式の場合、拡散行列の各要素の大きさが一定値「1/ 2」であるために、角度 をどのように設定しても対角行列にはならない。従って、通常の OFDM信号を得るこ とはできない。このため、複素拡散符号では、符号間干渉の調整範囲は極めて狭い 範囲に限定される。なお、(14)式では、角度(単位はラジアン)が π /4と 5 π /4に固 定されているが、それらの角度を変化させたとしても、同様に対角行列にはならない ので、通常の OFDM信号を得ることはできない。
[0080] しかし、本発明に係る拡散符号行列によれば、三角関数力も構成されるので、調整 パラメータにより三角関数の角度を全て 0に設定すれば、対角行列となって非拡散と することができる。さらには、調整パラメータにより三角関数の角度を 0からずらしてい けば、ダイバーシチ効果と符号間干渉のノ ンスを自由に調節でき、所望のバランス を実現することができる。
[0081] また、複素拡散符号を用いる場合、同じ拡散率であっても、本発明に係る拡散符号 を用いる場合に比べて、復調演算処理が複雑になる。この点について、以下に説明 する。ここでは、変調方式の一例として QPSK (Quadrature Phase Shift Keying, Quadr i— Phase Shift Keying)方式を用 ヽる。
[0082] QPSKシンボルを複素数 bnで表す。複素数 bnの実数部(Iチャネル)と虚数部(Qチヤ ネル)に、それぞれ 1ビットずつが割り当てられる。本発明に係る拡散符号によれば、 拡散率が 2の場合、上記(6)式に示されるように、 2つの QPSKシンボル bl、 b2はサブ キャリア cl、 c2に割り当てられる。ここで Xの実数部を Re(x)、虚数部を Im(x)で表すと、 サブキャリア cl、 c2の実数部 Re(cl)、 Re(c2)と虚数部 Im(cl)、 Im(c2)はそれぞれ次式で 表される。
[0083] Re(cl) = Re(bl)cos(pl) -Re(b2)sin(pl)
Im(cl) = Im(bl)cos(pl)-Im(b2)sin(pl)
Re(c2) = Re(bl)sin(pl) + Re(b2)cos(pl)
Im(c2) = Im(bl)sin(pl) + Im(b2)cos(pl)
[0084] ここで、 Re(bl)に割当てられたビットを復調するためには、 Re(bl)が影響を与える受 信信号を考慮する。具体的には、 Re(bl)が影響を与えるサブキャリアの信号は Re(cl) と Re(c2)であるので、この 2つを同時に考慮すればよい。分かりやすくするために、図 4を用いて説明する。
図 4は、 QPSK方式の基準信号点 501〜504と受信点 Rの関係を説明するための座 標図である。サブキャリア cl、 c2の受信強度を al、 a2とする。説明を簡単にするために 、回転角 Θ (単位はラジアン)を π /4とする。また、一般的に受信強度 alと a2は周波 数選択性によって異なる値となる力 図 4では「a2 > al」としている。
[0085] Re(cl)と Re(c2)に影響を与えるビットは、 Re(bl)と Re(b2)の 2ビットであるので、送信す る可能性のある信号点(基準信号点と呼ぶ)としては、 4つの基準信号点 501〜504 がある。受信強度 alと a2はチャネル推定を行うなどして受信側で知ることができる。図 4では、 Re(cl)と Re(c2)の受信した値を受信点 Rで示している。このとき、雑音がなけ れば、受信点 Rは 4つの基準信号点 501〜504のいずれかに一致するはずであるが 、通常は雑音によりいずれの基準信号点 501〜504にも一致しない。
[0086] そこで、一般的な最適な復調方法として、受信点 Rと 4つの基準信号点 501〜504 の間のそれぞれの距離を測り、最も近い基準信号点を送信したものと見なしている。 すなわち、 Re(bl)を復調するために、 4つの距離を計算する必要がある。なお、この 例の場合は、 Re(b2)が影響を与えるサブキャリア信号も Re(cl)と Re(c2)であるから、同 じ距離計算によって Re(b2)も定まることになる。すなわち、 4つの距離計算で 2ビットを 復調することができる。さらには、回転角(単位はラジアン)が π /4以外であっても同 様である。
[0087] これに対して、複素拡散符号を用いる場合には、変調シンボルとサブキャリアの対 応関係は( 15)式で表される。
[0088] [数 14]
(Cl
Figure imgf000016_0001
[0089] ここで、 Re(bl)を復調するためには Re(cl)と Re(c2)を考慮する必要がある力 複素拡 散符号を用いる場合には、(15)式の関係から、そのサブキャリアの信号 Re(cl)と Re(c 2)に影響を与える他のビットは、 Re(b2)と Im(b2)の 2ビットである。すなわち、基準信号 点は 8個(3ビット)存在する。このため、複素拡散符号を用いる場合には、 Re(bl)を復 調するために、受信点と 8つの距離を計算する必要がある。しかも、 Re(b2)が影響を 与えるサブキャリア信号は、 Re(cl)と Re(c2)だけではなぐ Im(cl)及び Im(c2)にも影響 を与えるので、上述の Re(bl)復調時の 8つの距離計算だけでは、 Re(b2)を適切に復 調することはできない。
[0090] このように、本発明に係る拡散符号によれば、複素拡散符号を用いる場合に比べて 、復調演算処理を簡単にすることができる。これにより、受信機の効率向上を図ること が可能になる。
[0091] 次に、本発明に係る一つの技術的特徴について説明する。
本発明においては、上述のように、ダイバーシチ効果と符号間干渉の所望のバラン スを実現することができる。これにより、マルチキャリア伝送システムにおける伝送品 質の安定ィ匕を図ることができるという非常に優れた効果が得られる。ここで、特に、本 発明の特徴的な点は、制御用のバンドや機能を必要とせず、さらには低遅延が要求 される通信や、高速移動環境での通信に適して 、ることである。
[0092] 従来技術として、マルチキャリア伝送システムの伝送品質の安定ィヒのために、ダイ バーシチ効果によらず、サブバンドの適応割り当てを行う方法が知られている。この 方法は、通信に使用できるバンド (複数のサブバンド)の受信状態を測定し、良好な サブバンドを適応的に選択して、そのサブバンドを通信に用いるものである。しかしな がら、この方法では、通信開始までに時間が力かる等の問題がある。つまり、通信の 開始までには、複数のサブバンドを受信側で測定し、その測定結果を送信側に報告 し、その報告に基づいて使用するサブバンドを決定する必要があるので、その測定、 報告及びサブバンド決定に要する時間が制御遅延となり、通信の開始が遅れる。さら に、その制御遅延の間に伝送路の状態が変化する環境下、例えば高速移動環境下 では、そのサブバンド適応割り当てによる方法は有効に機能しない。さらには、受信 側から送信側に測定結果を報告するための新たな伝送路が必要となる。また、ユー ザ多重をしない場合は、使用しないサブバンドは遊んだ状態となり、周波数の有効活 用が図れない。
[0093] し力しながら、本発明によれば、ダイバーシチ効果を活用することによって、余計な 制御用のバンドや機能を必要としないので、伝送システムの簡略ィ匕が可能である。さ らには余計な制御遅延も発生しないことから、本発明は、低遅延が要求される通信や 、高速移動環境下での通信に用いて好適である。
[0094] なお、マルチキャリア伝送システムにお 、て、本発明によるダイバーシチ効果を効 果的に得るためには、拡散した一対のサブキャリアを、周波数軸上で、できるだけ離 して配置することが望ましい。ここで、一対のサブキャリアとは、同一の変調シンボル が拡散されているサブキャリアのことであり、例えば(6)式では clと c2である。その clと c2には、同一の変調シンボル bl及び b2が拡散されている。
[0095] 図 5は、本発明に係るサブキャリア配置方法を説明するための説明図である。図 5 に示すように、一対のサブキャリア cl、 c2の周波数軸上の間隔は、伝送路の遅延広 σの逆数程度以上にすることが望ましい。その理由は、周波数軸上で近くにある サブキャリア同士の受信状態は似ているため、せっかく拡散して送信しても、ダイバ ーシチ効果が期待できないからである。一般に、市街地の遅延広がりは 1マイクロ秒 程度、室内では 0. 1マイクロ秒程度以下といわれている。このため、一対のサブキヤ リアの周波数軸上の間隔は、市街地での通信が想定される場合は 1MHz程度以上 とし、室内での通信が想定される場合は 10MHz以上とすることが好ましぐ効果的で ある。
[0096] 以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの 実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲の設計変更等も 含まれる。
例えば、本発明は、伝送形態に限定されず、無線或いは有線のいずれのシステム にも適用可能である。また、デジタル通信システムやデジタル放送等の放送システム など、各種のデジタル信号伝送システムに適用可能である。
産業上の利用可能性
[0097] 本発明は、伝送品質の安定化達成することのできる送信装置等に適用することが できる。

Claims

請求の範囲
[1] 調整パラメータを引数とする三角関数力 成る拡散符号行列内の行ベクトル或いは 列ベクトルから、前記調整パラメータの設定値を用いて拡散符号を生成する拡散符 号生成手段と、
前記拡散符号を用いた情報の拡散及び多重化の処理を行う信号多重手段と、 前記拡散及び多重化の処理後の信号を複数のサブチャネルに配置して送信する 送信手段と、を有する送信装置と、
前記送信装置から送信された複数のサブチャネルの信号を受信する受信手段と、 該受信した信号に対して前記送信装置と同じ拡散符号を用いた信号分割処理を 行う信号分割手段と、を有する受信装置と、
を備えたことを特徴とするマルチチャネル伝送システム。
[2] 前記拡散符号行列は直交行列であることを特徴とする請求項 1に記載のマルチチ ャネル伝送システム。
[3] 前記拡散符号行列は回転行列であり、前記調整パラメータはその回転角であること を特徴とする請求項 1又は請求項 2に記載のマルチチャネル伝送システム。
[4] 前記送信手段は、前記拡散及び多重化の処理後の信号を複数のサブチャネルに 配置するときに、拡散した一対のサブキャリアを周波数軸上で、できるだけ離して配 置することを特徴とする請求項 1から請求項 3のいずれかの項に記載のマルチチヤネ ル伝送システム。
[5] 調整パラメータを引数とする三角関数力 成る拡散符号行列内の行ベクトル或いは 列ベクトルから、前記調整パラメータの設定値を用いて拡散符号を生成する拡散符 号生成手段と、
前記拡散符号を用いた情報の拡散及び多重化の処理を行う信号多重手段と、 前記拡散及び多重化の処理後の信号を複数のサブチャネルに配置して送信する 送信手段と、
を備えたことを特徴とする送信装置。
[6] 前記拡散符号行列は直交行列であることを特徴とする請求項 5に記載の送信装置
[7] 前記拡散符号行列は回転行列であり、前記調整パラメータはその回転角であること を特徴とする請求項 5又は請求項 6に記載の送信装置。
[8] 前記送信手段は、前記拡散及び多重化の処理後の信号を複数のサブチャネルに 配置するときに、拡散した一対のサブキャリアを周波数軸上で、できるだけ離して配 置することを特徴とする請求項 5から請求項 7のいずれかの項に記載の送信装置。
[9] 調整パラメータを設定する過程と、
調整パラメータを引数とする三角関数力 成る拡散符号行列内の行ベクトル或いは 列ベクトルから、前記調整パラメータの設定値を用いて拡散符号を生成する過程と、 前記拡散符号を用いた情報の拡散及び多重化の処理を行う過程と、
前記拡散及び多重化の処理後の信号を複数のサブチャネルに配置して送信する 過程と、
を含むことを特徴とする送信方法。
[10] 前記拡散符号行列は直交行列であることを特徴とする請求項 9に記載の送信方法
[11] 前記拡散符号行列は回転行列であり、前記調整パラメータはその回転角であること を特徴とする請求項 9又は請求項 10に記載の送信方法。
[12] 前記拡散及び多重化の処理後の信号を複数のサブチャネルに配置するときに、拡 散した一対のサブキャリアを周波数軸上で、できるだけ離して配置することを特徴と する請求項 9から請求項 11のいずれかの項に記載の送信方法。
PCT/JP2006/312704 2005-06-27 2006-06-26 マルチチャネル伝送システム、送信装置および送信方法 WO2007000964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007523925A JP4870076B2 (ja) 2005-06-27 2006-06-26 マルチチャネル伝送システム、送信装置および送信方法
US11/922,868 US20090129443A1 (en) 2005-06-27 2006-06-26 Multi-Channel Transmission System, Transmitting Apparatus and Transmitting Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005186571 2005-06-27
JP2005-186571 2005-06-27

Publications (1)

Publication Number Publication Date
WO2007000964A1 true WO2007000964A1 (ja) 2007-01-04

Family

ID=37595215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312704 WO2007000964A1 (ja) 2005-06-27 2006-06-26 マルチチャネル伝送システム、送信装置および送信方法

Country Status (3)

Country Link
US (1) US20090129443A1 (ja)
JP (1) JP4870076B2 (ja)
WO (1) WO2007000964A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698255B2 (ja) * 2009-11-30 2015-04-08 エスティー‐エリクソン、ソシエテ、アノニム 直交ベクトルを用いたデータ交換装置
JP2012060633A (ja) * 2010-08-11 2012-03-22 Kddi Corp 回転直交符号化によるスペクトラムアグリゲーション用の送信機、受信機、方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168751A (ja) * 1988-09-01 1990-06-28 Mitsubishi Electric Corp 直交系列発生方式
WO2000013360A1 (fr) * 1998-08-28 2000-03-09 Matsushita Electric Industrial Co., Ltd. Dispositif de communication et procede de commande de puissance de crete
JP2002505042A (ja) * 1995-08-25 2002-02-12 テレーヨン・コミュニケーション・システムズ デジタルデータ伝送のための機器と方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488629A (en) * 1993-02-17 1996-01-30 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for spread spectrum communications
US6680928B1 (en) * 1997-07-22 2004-01-20 Ericsson Inc. Communications system and method for multi-carrier orthogonal coding
JP3825179B2 (ja) * 1998-07-17 2006-09-20 富士通株式会社 相関器
JP2001156749A (ja) * 1999-09-17 2001-06-08 Hitachi Kokusai Electric Inc Cdma移動局装置
JP3631086B2 (ja) * 2000-02-23 2005-03-23 株式会社エヌ・ティ・ティ・ドコモ マルチキャリアcdma無線伝送方法及び装置
JP3548148B2 (ja) * 2001-09-27 2004-07-28 松下電器産業株式会社 Ofdm送信装置及びofdm送信方法
US7301893B2 (en) * 2001-11-21 2007-11-27 Texas Instruments Incorporated Linear space-time block code with block STTD structure
WO2003061170A1 (fr) * 2002-01-10 2003-07-24 Fujitsu Limited Procede de multiplexage de pilote dans un systeme ofdm et procede de reception ofdm
WO2004021616A1 (ja) * 2002-08-28 2004-03-11 Fujitsu Limited 送受信装置及び送受信方法
JP3669991B2 (ja) * 2003-02-18 2005-07-13 三星電子株式会社 無線送受信機及び無線送受信方法並びにそのプログラム
GB2411556B (en) * 2004-02-27 2006-03-29 Toshiba Res Europ Ltd Communications system, method and device
GB2411555A (en) * 2004-02-27 2005-08-31 Toshiba Res Europ Ltd CDMA system with 2D spreading where the spreading codes/factors depend upon the number of active users
ATE333724T1 (de) * 2004-04-08 2006-08-15 Mitsubishi Electric Inf Tech Verfahren zur übertragung von optimalverteilten informationen in einem mimo telekommunikationssystem
US7526708B2 (en) * 2005-01-03 2009-04-28 Nokia Corporation Adaptive retransmission for frequency spreading

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168751A (ja) * 1988-09-01 1990-06-28 Mitsubishi Electric Corp 直交系列発生方式
JP2002505042A (ja) * 1995-08-25 2002-02-12 テレーヨン・コミュニケーション・システムズ デジタルデータ伝送のための機器と方法
WO2000013360A1 (fr) * 1998-08-28 2000-03-09 Matsushita Electric Industrial Co., Ltd. Dispositif de communication et procede de commande de puissance de crete

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARG D. AND ADACHI F.: "Diversity-coding-orthogonality tradeoff for coded MC-CDMA with high level modulation", COMMUNICATIONS SYSTEMS, 2004. ICCS 2004 THE NINTH INTERNATIONAL CONFERENCE, 6 September 2004 (2004-09-06), pages 650 - 654, XP010743418 *
YANG L.-L. AND HANZO L.: "Performance of generalized multicarrier DS-CDMA using various chip waveforms", COMMUNICATIONS, IEEE TRANSACTIONS, vol. 51, no. 5, May 2003 (2003-05-01), pages 748 - 752, XP011096773 *

Also Published As

Publication number Publication date
JP4870076B2 (ja) 2012-02-08
JPWO2007000964A1 (ja) 2009-01-22
US20090129443A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
EP1585246B1 (en) Apparatus and method for broadband wireless communication
US7269782B2 (en) Orthogonal frequency division multiplexing/modulation communication system for improving ability of data transmission and method thereof
CN102227897B (zh) 生成带有不同带宽和重叠频谱的正交参考信号的方法
CN101232484B (zh) 信号传输方法、装置及通信系统
US7751304B2 (en) Apparatus and method for transmitting/receiving pilot code pattern for identification of base station in communication system using orthogonal frequency division multiplexing scheme
JP3987858B2 (ja) 無線通信システム、無線送信装置、無線受信装置及び無線通信方法
US20050084000A1 (en) Method and apparatus for transmission and reception within an OFDM communication system
US20140064208A1 (en) Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
KR20050102332A (ko) 복수의 송신 안테나들을 사용하는 다중셀 직교 주파수분할 다중 방식 통신시스템에서 채널 추정 장치 및 방법
WO2004008671A1 (ja) 通信方法およびそれを用いた送信装置と受信装置
KR20090124968A (ko) 주파수 노칭을 갖는 멀티캐리어 시스템에서 개선된 파일럿 할당
US20090154584A1 (en) Apparatus and method for communication in variable bands
JP2001148678A (ja) マルチキャリア通信装置
JP2004120730A (ja) 通信方法およびそれを用いた送信装置と受信装置
WO2007000964A1 (ja) マルチチャネル伝送システム、送信装置および送信方法
KR20100004051A (ko) 순환 부캐리어 천이를 이용한 송신 안테나 다이버시티 전송 방법 및 장치
JP4490831B2 (ja) 無線通信システム、無線通信装置及び無線通信方法
JP4498381B2 (ja) 無線通信方法、無線送信装置及び無線受信装置
KR100705500B1 (ko) 버스트 모드 ofdm/tdd 시스템의 적응형 변조 및코딩 방식에 대한 정보 송신 및 수신 방법 및 장치
CN101119351A (zh) 正交频分复用信号收发方法及装置
JP4657891B2 (ja) マルチキャリア伝送システムおよびマルチキャリア伝送方法
KR101100208B1 (ko) 다수의 반송파를 이용하여 데이터를 전송하는 장치 및 방법
JP2009218718A (ja) 送信機および受信機
JP3906116B2 (ja) 受信装置、および通信システム
JP4637721B2 (ja) 多元接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523925

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11922868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767321

Country of ref document: EP

Kind code of ref document: A1