WO2007000214A1 - Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören - Google Patents

Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören Download PDF

Info

Publication number
WO2007000214A1
WO2007000214A1 PCT/EP2006/004705 EP2006004705W WO2007000214A1 WO 2007000214 A1 WO2007000214 A1 WO 2007000214A1 EP 2006004705 W EP2006004705 W EP 2006004705W WO 2007000214 A1 WO2007000214 A1 WO 2007000214A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraxinus
hair
olea
syringa
jasminum
Prior art date
Application number
PCT/EP2006/004705
Other languages
English (en)
French (fr)
Inventor
Klaus Rudolf SCHRÖDER
Melanie Giesen
Daniela Kessler-Becker
Marianne Waldmann-Laue
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP06753698A priority Critical patent/EP1901707A1/de
Publication of WO2007000214A1 publication Critical patent/WO2007000214A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the present invention relates to an agent for the treatment of the hair or the skin, containing at least one extract from plants belonging to the family of the Oleaceae. Furthermore, the invention relates to the use of one or more such extracts for the treatment of the hair or the skin.
  • the small leaves are greyish green on top and silvery shiny and gray colored on the underside. They are narrow and run pointedly forward (lancet-like). At the bottom, they have small hairs, called star hairs or star-shaped dandruff, which protect the tree from dehydration by catching water escaping from the stomata and adding it to the leaf again.
  • olive From a fruit after fertilization the fruit is formed: olive. It is a core fruit with a hard core surrounded by soft pulp. The color of the unripe olives is green, that of the ripe black or violet / brown. The most productive is the tree after about 20 years. The average composition of an olive is: water 50%, oil 22%, sugar 19.1%, cellulose 5.8%, proteins 1, 6%. The olive is a Mediterranean stone fruit. It is raw because of their bitterness not edible, but after repeated immersion in water, in which the Bitter substances are flushed out, edible. Black olives are fully matured green (olive) olives. The olive tree is used in several ways:
  • olive oil is pressed from it, the healthiest known edible oil. It is used for frying and cooking and also in cosmetics. Industrially, the olives for the oil are either picked by hand or shaken down with the machine, chopped, mixed with water and hydraulically pressed, partly (depending on the purpose) also extracted with chemical solvents or thermal processes. On the other hand, top qualities for the kitchen are obtained with gentler methods, preferably the drip method, in which only the weight of the fruit is pressed without further pressure on the fruit. Then the oil is separated from the water in the centrifuge.
  • the oil is healthy because of the high content of monounsaturated fatty acids and has a positive effect on the cardiovascular system and lipid metabolism and reduces the risk of diabetes or cancer.
  • the human skin with its appendages is a very complex organ composed of a variety of different cell types. Every living cell of this organ is able to respond to signals of its internal and external environment. These reactions of the cells are realized by an orderly regulation on gene and protein level, so that the metabolism of skin cells and their appendages is not static but very dynamic. However, the reactions of the skin and / or its appendages to environmental changes should not be considered as reactions of isolated isolated cells. Rather, each cell is integrated into a complex communication network. This network includes e.g. the communication between cells of the epidermis and cells of the dermis. At the communication between the cells of the skin and / or their appendages, signal molecules, e.g. Interleukins, growth factors (e.g., KGF, EGF or FGF), etc. are involved.
  • signal molecules e.g. Interleukins, growth factors (e.g., KGF, EGF or FGF), etc. are involved.
  • the aging process is a fundamental biological process found in almost all living organisms. Accordingly, the human skin is affected by this phenomenon. Skin aging is a progressive process leading to a loss of skin homeostasis. It is influenced by endogenous and exogenous factors. While the endogenous aspects as a "genetically controlled program" are responsible for the exogenous factors environmental influences such as UV light.
  • the skin of old age differs in different points from youthful skin. These are not only externally visible changes, effects of aging are to be detected at the cellular level, molecular genetic level and protein level. It has various biological characteristics, as shown by biopsied specimens (US Patent 6,630,516,).
  • skin aging is characterized by a reduction in metabolic activity and by a 30-50% reduction in epidermal and dermal renewal rates. Histologically, the basal membrane (dermal-epidermal junction) flattened, resulting in a decreased nutrient transfer into the epidermis empties. Stratum corneum, epidermis and dermis are thinner in old age, associated with a decrease and structural change of the components of the extracellular matrix. The number of epidermal Langerhans cells and mast cells decreases, which contributes to a higher sensitivity. The aging skin is characterized by a reduced sebum production and a reduced sweating capacity.
  • the human organism is constantly exposed to oxidative processes. Endogenous, natural metabolic processes in every cell are an important source of oxidatively active substances. Mitochondria, as well as enzymatic processes, produce reactive oxygen species (ROS) 1 such as superoxide, hydroperoxides and hydroxy radicals. Exogenous environmental factors such as smoke, smog, UV radiation, but also nutrition are a major cause of oxidative stress. Against these sources protects the organism by a number of systemic antioxidants. He sometimes produces it himself, sometimes they have to be taken in as essential vitamins with food. The antioxidants protect macromolecules (structural proteins, lipid membranes, DNA) from damage or destruction by reactive oxygen species.
  • ROS reactive oxygen species
  • Adenosine triphosphate is a key molecule in the energy balance of living cells, as it is the source of cellular responses. This energy requires the skin and its appendages for biochemical syntheses and transport processes so that metabolic processes and cellular structures can be optimally maintained and renewed, e.g. during repair processes or in the hair cycle.
  • ATP is produced in the mitochondria.
  • the electron transport on the inner membrane causes superoxide radicals, which are converted into peroxides by dismutation and subsequently react to hydroxyl radicals.
  • radicals are constantly being produced which, by their reactivity, damage proteins and nucleic acids of the mitochondria, and thus impair their function themselves. The performance of mitochondria in gaining energy in old age therefore decreases significantly.
  • the present invention therefore relates to an agent for the treatment of the hair or the skin, containing an extract of plants belonging to the family of the Oleaceae.
  • the plants belonging to the family Oleaceae are selected from plants of the genera Abeliophyllum, Chionanthus, Comoranthus, Dimetra, Fontanesia, Forestiera, Forsythia, Fraxinus, Haenianthus, Hesperelaea, Jasminum, Ligustrum, Menodora, Myxopyrum, Nestegis, Noronhia, Noteiaea. Nyctanthes, Olea, Osmanthus, Phillyrea, Picconia, Priogymnanthus, Schrebera and Syringa, especially among plants of the genus Olea.
  • Preferred plants are the plants belonging to the family of Oleaceae selected from plants of the species or subspecies Abeliophyllum distichum, Abeliophyllum distichum f. eburneum, Abeliophyllum distichum f. lilacinum, Chionanthus filiformis, Chionanthus ramiflorus, Chionanthus retusus, Chionanthus virginicus, Comoranthus madagascariensis, Comoranthus minor, Dimetra craibiana, Fontanesia phillyreoides, Fontanesia phillyreoides subsp.
  • fortunei forestiera acuminata, forestiera eggersiana, forestiera neo-mexicana, forestiera segregata, forestiera segregata var. pinetorum, forsythia europaea, forsythia giraldiana, forsythia japonica, forsythia japonica var. saxatilis, forsythia nakaii, forsythia ovata, forsythia suspensa, forsythia viridissima, forsythia koridis var. koreana, forsythia x intermedia, forsythia sp.
  • Fraxinus americana Fraxinus angustifolia, Fraxinus anomala, Fraxinus biltmoreana, Fraxinus chinensis, Fraxinus chinensis var. Rhynchophylla, Fraxinus cuspidata, Fraxinus cuspidata var. Macropetala, Fraxinus dipetala, Fraxinus excelsior, Fraxinus excelsior var.
  • Subintegerrima Fraxinus platypoda, Fraxinus quadrangulata, Fraxinus rynchophylla, Fraxinus syriaca, Fraxinus texensis, Fraxinus diminous, Fraxinus xanthoxyloides, Fraxinus xanthoxyloides var. dimorpha, Haenianthus incrassatus, Haenianthus salicifolius, Haenianthus salicifolius var.
  • the extract from plants belonging to the family Oleaceae is obtained from the leaves of the plants, in particular by an extraction method described in EP-B-0 730 830, to which reference is hereby made in its entirety.
  • the agent according to the invention very particularly preferably contains an extract which has a high content of antioxidants, in particular of oleuropein.
  • the content of oleuropein in the extract is preferably in the range from 10 to 30% by weight, in particular from 15 to 28% by weight, particularly preferably from 18 to 26% by weight.
  • Such an extract is for example from the company Emil Flachsmann AG, Rütiwisstrasse, 8820 Wädenswil, Switzerland, http://www.flachsmann.ch. available under article number 0085943.
  • the agent according to the invention may contain further active ingredients, in particular L-camitine and / or creatine.
  • various effects of skin aging can be influenced by the broad spectrum of action of the extract from Olea europaea with only one extract.
  • the antioxidant properties of the extract protect the skin from oxidative environmental influences.
  • the stimulation of collagen synthesis leads to an increased build-up of connective tissue, the structure of which decreases with age, thus promoting the firmness of the skin.
  • the extract from Olea europaea has antioxidant properties against the formation of hydroxy radicals. Compared with superoxides, it has better properties than the water-soluble standard substance vitamin C.
  • the extract from Olea europaea has only a very low cytotoxicity.
  • the treatment of the hair or the skin with the composition according to the invention is intended in particular to effects that are selected by revitalizing hair, stimulating the hair Energy metabolism in hair follicles, activation of hair follicles, promotion or enhancement of hair growth, hair thickening, treatment of hair loss and influencing keratin synthesis, maintenance or promotion of homeostasis of the hair follicle or treatment of pathological conditions of the hair follicle; Treatment of pathological conditions of the skin, such as atopic dermatitis, sunburn, psoriasis, scleroderma, ichtyosis, atopic dermatitis, acne, seborrhoea, lupus erythematosus, rosacea, melanoma, basalioma, skin carcinoma, skin sarcoma.
  • pathological conditions of the skin such as atopic dermatitis, sunburn, psoriasis, scleroderma, ichtyosis,
  • Keratin production is particularly coupled to the growth phase of the hair (anagen), in the regression phase (catagen) there is a significant decrease in keratin production.
  • the hair keratins also play a role in various genetic diseases, such as monilethrix. Due to pure point mutation in the keratin genes hHb1 and hHb ⁇ Monilethrix leads to an irregular, brittle hair structure. In addition, there is a disturbed anchoring of the hair shaft in the follicle. Since the hair structure depends essentially on the composition of the hair keratins, it is possible to influence the hair structure by influencing the composition of these specific proteins on a biological level.
  • the amount of ATP in the treated follicles can be significantly increased compared to a placebo formulation.
  • the treatment with an agent according to the invention in a rinse-off formulation likewise leads to a significant increase in the ATP content in plucked hair follicles.
  • the biologically active part of the hair is provided significantly more ATP as an energy source for biochemical syntheses and transport processes, so that metabolic processes and cellular structures can be optimally maintained and renewed.
  • composition according to the invention may additionally comprise protein hydrolysates, preferably cationized protein hydrolysates, wherein the underlying protein hydrolyzate is derived from the animal, for example from collagen, milk or keratin, from the plant, for example from wheat, maize, rice, potatoes, soya or almonds, from marine life forms, from fish collagen or algae, or biotechnologically derived protein hydrolysates.
  • the protein hydrolyzates on which the cationic derivatives are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • cationic protein hydrolyzates are to be understood as meaning quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolyzates or amino acids is often carried out using quaternary ammonium salts such as N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolysates may also be further derivatized.
  • the cationic protein hydrolysates and derivatives those listed under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300, Washington, DC 20036-4702) and cited: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed SiC, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Coco
  • the agent is preferably rinsed out after an exposure time of 10 seconds to 60 hours. This Rinsing can be done with pure water or a commercially available shampoo. Action times of 1 to 15 minutes have proven sufficient in most cases.
  • composition according to the invention may additionally contain in addition a further cosmetic active ingredient which is selected from monomers, oligomers and polymers of amino acids, NC 2 -C 24 -acylamino acids and / or the esters and / or the physiologically tolerable metal salts of these substances, as well as mixtures of these active substances ,
  • the monomers of the amino acids and / or the NC 2 -C 24 -acylamino acids are selected from alanine, arginine, asparagine, aspartic acid, canavanine, citrulline, cysteine, cystine, desmosine, glutamine, glutamic acid, glycine, histidine, homophenylalanine, hydroxylysine, hydroxyproline, Isodesmosin, isoleucine, leucine, lysine, methionine, methylnorleucine, ornithine, phenylalanine, proline, pyroglutamic acid, sarcosine, serine, threonine, thyroxine, tryptophan, tyrosine, valine, zinc pyroglutamate, sodium octanoylglutamate, sodium decanoylglutamate, sodium lauroylglutamate, sodium myristoylglutamate, sodium cetoylgluta
  • the C 2 -C 24 -acyl radical with which the said amino acids are derivatized on the amino group is selected from an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl- , Undecanoyl, lauroyl, tridecanoyl, myristoyl, pentadecanoyl, cetoyl, palmitoyl, stearoyl, elaidoyl, arachidoyl or behenoyl radical.
  • C 8 -C 18 acyl radicals are also referred to as cocoyl radical and are also preferred substituents.
  • the physiologically acceptable salts of the inventively preferred active ingredients containing acid groups and can form salts are selected from the ammonium, alkali metal, magnesium, calcium, aluminum, zinc and manganese salts. Preferred are the sodium, potassium, magnesium, aluminum, zinc and manganese salts.
  • amino acid oligomers are peptides having 2 to 30, preferably 2 to 15, amino acids.
  • the oligomers of the amino acids and / or the NC 2 -C 24 -acylamino acids are preferably selected from di-, tri-, tetra-, penta-, hexa- or pentadecapeptides which may be N-acylated and / or esterified.
  • amino acid oligomers stimulate collagen synthesis or are able to recruit cells of the immune system, such as mast cells and macrophages, which then induce, or are capable of, repair processes in the tissue, eg collagen synthesis, via the release of growth factors To bind the sequence Arg-Phe-Lys in thrombospondin I (TSP-1) and thus to release active TGF-ß (tissue growth factor), which induces the synthesis of collagen in dermal fibroblasts.
  • TSP-1 thrombospondin I
  • TGF-ß tissue growth factor
  • N-acylated and / or esterified dipeptides are acetyl-citrullyl-arginine (eg Exsy-algins of exsymol), Tyr-Arg (dipeptide-1), Val-Trp (dipeptide-2), Asn Phe, Asp-Phe, N-palmitoyl-.beta.-Ala-His, N-acetyl-Tyr-Arg-hexyldecylester (e.g. Calmosensins from Sederma), carnosine ( ⁇ -Ala-His) and N-palmitoyl-Pro-Arg.
  • acetyl-citrullyl-arginine eg Exsy-algins of exsymol
  • Tyr-Arg dipeptide-1
  • Val-Trp dipeptide-2
  • Asn Phe Asp-Phe
  • N-palmitoyl-.beta.-Ala-His N-acetyl-Ty
  • N-acylated and / or esterified tripeptides are Gly-His-Lys, z. B. under the name "Omega-CH activator" by the company GfN or in acylated form (N-palmitoyl-Gly-His-Lys) under the name Biopeptide CL is available from Sederma, but (in acylated form) also a component
  • the tri-peptide Gly-His-Lys can also be used as a copper salt (Cu 2+ ) and as such can be obtained from ProCyte Corporation, and analogs of Gly-His-Lys can be used
  • the substitution of Gly the following are suitable according to the invention: Ala, Leu and He
  • the inventively preferred amino acids which can replace His or Lys include a side chain with a nitrogen atom which is predominantly charged at pH 6, e.g.
  • Pro, Lys, Arg, His, desmosine and isodesmosine Lys is particularly preferably replaced by Arg, Orn, or citrulline
  • Another preferred tripeptide according to the invention is Gly-His-Arg (INCI name: tripotide-3) and its derivative N-myristoyl-Gly-His-Arg, the z.
  • N-acylated and / or esterified tetrapeptides are selected from Rigin and Rigin-based tetrapeptides and ALAMCAT tetrapeptides.
  • Rigin has the sequence Gly-Gln-Pro-Arg.
  • Rigin-based tetrapeptides include the Rigin analogs and Rigin derivatives, in particular the invention particularly preferred N-palmitoyl-Gly-Gln-Pro-Arg, z. B. is available under the name Eyeliss of Sederma, but also forms part of the product Matrixyl 3000 of Sederma.
  • the Rigin analogs include those in which the four amino acids are rearranged and / or in which a maximum of two amino acids are substituted to Rigin, z.
  • the sequence Ala-Gln-Thr-Arg.
  • at least one of the amino acids of the sequence has a Pro or Arg, and more preferably, the Tetrapeptide includes both Pro and Arg, and their order and position may vary.
  • the substituting amino acids can be selected from any amino acid defined below.
  • Particularly preferred rigin-based tetrapetides include: Xaa-Xbb-Arg-Xcc, Xaa-Xbb-Xcc-Pro, Xaa-Xbb-Pro-Arg, Xaa-Xbb-Pro-Xcc, Xaa-Xbb-Xcc-Arg, where Xaa , Xbb and Xcc may be the same or different amino acids and wherein Xaa is selected from Gly and the amino acids which may substitute Gly, Xbb is selected from GIn and the amino acids which can substitute for GIn, Xcc is selected from Pro or Arg and the Amino acids that can substitute Pro and Arg.
  • the preferred amino acids that can replace GIy include an aliphatic side chain, e.g. B. ⁇ -Ala, Ala, VaI, Leu, Pro, Sarcosine (Sar) and Isoleucine (He).
  • the preferred amino acids that can replace GIn include a side chain having an amino group predominantly uncharged at neutral pH (pH 6-7), eg, Asn, Lys, Orn, 5-hydroxyproline, citrulline, and canavanine.
  • the preferred amino acids which can replace Arg include a side chain having a nitrogen atom predominantly charged at pH 6, e.g. Pro, Lys, His, Desmosin and Isodesmosin.
  • ALAMCAT tetrapeptides are tetrapeptides containing at least one amino acid with an aliphatic side chain, e.g. B. ⁇ -Ala, Ala, VaI, Leu, Pro, sarcosine (Sar) and isoleucine (He). Furthermore, ALAMCAT tetrapeptides contain at least one amino acid having a side chain with an amino group predominantly uncharged at neutral pH (pH 6-7), eg GIn, Asn, Lys, Orn, 5-hydroxyproline, citrulline and canavanine.
  • ALAMCAT tetrapeptides include at least one amino acid having a side chain with a nitrogen atom predominantly charged at pH 6, e.g. Arg, Pro, Lys, His, Desmosin and Isodesmosin.
  • ALAMCAT tetrapeptides may contain any amino acid; however, preferably the fourth amino acid is also selected from the three abovementioned groups.
  • N-acylated and / or esterified pentapeptides which are preferred according to the invention are selected from Lys-Thr-Thr-Lys-Ser and its N-acylated derivatives, particularly preferably N-palmitoyl-Lys-Thr-Thr-Lys-Ser, which can be obtained under the Name Matrixyl is available from the company Sederma, furthermore N-palmitoyl-Tyr-Gly-Gly-Phe-Met, Val-Val-Arg-Pro-Pro, N-palmitoyl-Tyr-Gly-Gly-Phe-Leu, Gly- Pro-Phe-Pro-Leu and N-benzyloxycarbonyl-Gly-Pro-Phe-Pro-Leu (the latter two are serine proteinase inhibitors for desquamation inhibition).
  • N-acylated and / or esterified hexapeptides are VaI-Gly-Val-Ala-Pro-Gly and its N-acylated derivatives, particularly preferably N-palmitoyl-Val-Gly-Val-Ala-Pro-Gly Acetyl-Hexapeptide-3 (Argireline from Lipotec), Hexapeptide-4 (e.g., Collasyn 6KS from Therapeutic Peptide Inc. (TPI)), Hexapeptide-5 (e.g.
  • Collasyn 6VY from TPI myristoyl hexapep tide-5 (eg Collasyn 614VY from TPI), myristoyl hexapeptide-6 (eg Collasyn 614VG from TPI), hexapeptide-8 (eg Collasyn 6KS from TPI), myristoyl hexapeptide-8 (eg Collasyn Lipo-6KS from TPI), hexapeptide-9 (eg Collaxyl from Vincience) and hexapeptide-10 (eg Collaxyl from Vincienc or Seriseline from Lipotec), Ala-Arg-His-Leu-Phe-Trp (hexapeptide-1), acetyl hexapeptide-1 (e.g., modulene from Vincience), acetyl glutamyl hexapeptide-1 (e.g., SNAP-7 from Centerchem) , Hexapeptide-2 (e
  • hexapeptide-4 e.g., Collasyn 6KS from Therapeutic Peptide Inc. (TPI)
  • hexapeptide-5 e.g., Collasyn 6VY from TPI
  • myristoyl hexapep tide-5 e.g Collasyn 614VY from TPI
  • myristoyl hexapeptide-6 eg Collasyn 614VG from TPI
  • Ala-Arg-His-methylnorleucine homophenylalanine Trp hexapeptide- 7
  • hexapeptide-8 eg Collasyn 6KS from TPI
  • myristoyl hexapeptide-8 eg Collasyn Lipo-6KS from TPI
  • hexapeptide-9 eg Collaxyl from Vincience
  • hexapeptide-10 eg, Collaxyl from Vincience
  • hexapeptide-10 eg, Colla
  • An inventively preferred pentadecapeptide is z.
  • Vinci 01 by Vincience Pentadecapeptide-1.
  • Another preferred optional amino acid oligomer is the peptide derivative L-glutamylaminoethyl-indole (glistin from exsymol).
  • Particularly preferred according to the invention is the combination of N-palmitoyl-Gly-His-Lys and N-palmitoyl-Gly-Gln-Pro-Arg, as obtainable, for example, in the raw material Matrixyl 3000 from Sederma.
  • the composition according to the invention particularly preferably contains further agents for promoting collagen synthesis, in particular Matrixyl TM and Matrixyl TM 3000.
  • Matrixyl TM and Matrixyl TM 3000 available, for example, from Sederma, are mixtures of modified peptides derived from the so-called matrikines.
  • Matrikines are peptide fragments of up to 20 amino acids resulting from the proteolysis of matrix proteins such as collagen or elastin. These fragments act as autocrine and paracrine messengers and affect cell proliferation and connective tissue neoplasm.
  • Matrixyl TM and Matrixyl TM 3000 lead to increased collagen synthesis in in vitro studies (in the case of Matrixyl TM 3000 + 258% collagen type I). In vivo, both peptide combinations show a reduction in wrinkles both in depth and number. In vitro tests showed that the enhancement of Collagen I synthesis with Matrixyl® is three times greater than with Vitamin C; and at collagen IV over 50% larger.
  • the agent according to the invention at a temperature of 20 to 55 0 C, in particular from 35 to 40 0 C, apply.
  • composition according to the invention is applied to the hair, there are no fundamental restrictions.
  • the agent according to the invention particularly preferably comprises further agents for altering or nuancing the color of the hair of the head: apart from the hair-bleaching agents which cause an oxidative lightening of the hair by degradation of natural hair dyes, essentially three types of hair dye are used in the field of hair coloring significant:
  • oxidation colorants For permanent, intensive colorations with corresponding fastness properties, so-called oxidation colorants are used. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components. The developer components form the actual dyes under the influence of oxidizing agents or of atmospheric oxygen with one another or with coupling with one or more coupler components.
  • dyeing or tinting agents which contain so-called direct drawers as a coloring component. This is Dye molecules that grow directly on the hair and do not require an oxidative process to form the color. These dyes include, for example, the henna already known from antiquity for coloring body and hair. These dyeings are generally much more sensitive to shampooing than the oxidative dyeings, so that a much more undesirable change in shade or even a visible "discoloration" occurs much faster.
  • composition of the usable dyeing or tinting agent is not subject to any principal
  • developer-type oxidation dye precursors there are usually primary aromatic amines having another para or ortho position free or substituted hydroxy or amino group, diaminopyridine derivatives, heterocyclic hydrazones, 4-aminopyrazole derivatives and 2,4,5,6-tetraaminopyrimidine and its derivatives used.
  • Suitable developer components are, for example, p-phenylenediamine, p-toluenediamine, p-aminophenol, o-aminophenol, 1- (2'-hydroxyethyl) -2,5-diaminobenzene, N, N-bis (2-hydroxyethyl) -p - phenylenediamine, 2- (2,5-diaminophenoxy) ethanol, 4-amino-3-methylphenol, 2,4,5,6-tetra-aminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4-hydroxy -2,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine, 2-dimethylamino-4,5,6-triaminopyrimidine, 2-hydroxymethylamino-4-amino-phenol, bis (4-aminophenyl) amine, 4-amino-3-fluorophenol, 2-aminomethyl-4-amino
  • Particularly advantageous developer components are p-phenylenediamine, p-toluenediamine, p-aminophenol, 1- (2'-hydroxyethyl) -2,5-diaminobenzene, 4-amino-3-methylphenol, 2-aminomethyl-4-aminophenol, 2,4 , 5,6-tetraaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine.
  • coupler type oxidation dye precursors m-phenylenediamine derivatives, naphthols, resorcin and resorcinol derivatives, pyrazolones and m-aminophenol derivatives are usually used.
  • coupler components are m-aminophenol and its derivatives such as 5-amino-2-methylphenol, 5- (3
  • Di- or trihydroxybenzene derivatives such as, for example, resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-
  • Chlororesorcinol 4-chlororesorcinol, pyrogallol and 1,2,4-trihydroxybenzene
  • Pyridine derivatives such as 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino-6-methoxypyridine, 2,6-dihydroxy-3,4 dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine and 3,5-diamino-2,6-dimethoxypyridine,
  • Naphthalene derivatives such as 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 1, 7
  • Morpholine derivatives such as 6-hydroxybenzomorpholine and 6-aminobenzomorpholine,
  • Indole derivatives such as 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole,
  • Methylenedioxybenzene derivatives such as 1-hydroxy-3,4-methylenedioxybenzene, 1-
  • Coupler components are 1-naphthol, 1, 5, 2,7- and 1, 7-dihydroxynaphthalene, 3-aminophenol, 5-amino-2-methylphenol, 2-amino-3-hydroxypyridine, resorcinol, 4- Chlororesorcinol, 2-chloro-6-methyl-3-aminophenol, 2-methyl resorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol and 2,6-dihydroxy-3,4-dimethylpyridine.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • Particularly suitable substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 and Basic Brown 17 known compounds as well as 1, 4-bis- ( ⁇ - hydroxyethyl) amino-2-nitrobenzene, 4-amino-2-nitrodiphenylamine-2'-carboxylic acid, 6-nitro-1,2,3,4-tetrahydroquinoxaline, hydroxyethyl-2-nitro-toluidine, picramic acid, 2-amino 6-chloro-4-nitrophenol, 4-ethylamino-3-nitrobenzo
  • Direct dyes found in nature include, for example, henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, sawnwood, madder root, catechu, sedre and alcano root.
  • the oxidation dye precursors or the direct dyes it is not necessary for the oxidation dye precursors or the direct dyes to be in each case homogeneous compounds. Rather, in the hair dye, due to the manufacturing process for the individual dyes, in minor amounts, other components may be included, as far as they do not adversely affect the Dyeing or other reasons, such. As toxicological, must be excluded.
  • indoles and indolines and their physiologically acceptable salts are used as precursors of naturally-analogous dyes.
  • such indoles and indolines are used which have at least one hydroxyl or amino group, preferably as a substituent on the six-membered ring.
  • These groups may carry further substituents, e.g. B. in the form of a Etherification or esterification of the hydroxy group or alkylation of the amino group.
  • Particularly advantageous properties have 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline, 5,6-dihydroxyindoline-2-carboxylic acid, 6-hydroxyindoline, 6-aminoindoline and 4-aminoindoline and 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N- Propyl 5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, 6-hydroxyindole, 6-aminoindole and 4-aminoindole.
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially 5, 6-dihydroxyindoline and also N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole and especially the 5,6-dihydroxyindole. dihydroxyindole.
  • indoline and indole derivatives in the colorants used in the process according to the invention both as free bases and in the form of their physiologically acceptable salts with inorganic or organic acids, eg.
  • hydrochlorides, sulfates and hydrobromides are used as the hydrochlorides.
  • amino acids are aminocarboxylic acids, in particular ⁇ -aminocarboxylic acids and ⁇ -aminocarboxylic acids.
  • Arginine, lysine, ornithine and histidine are again particularly preferred among the ⁇ -aminocarboxylic acids.
  • a very particularly preferred amino acid is arginine, especially in free form, but also used as the hydrochloride.
  • Hair dyes especially if the dyeing is oxidative, be it with atmospheric oxygen or other oxidizing agents such as hydrogen peroxide, are usually weakly acidic to alkaline, d. H. adjusted to pH values in the range of about 5 to 11.
  • the colorants contain alkalizing agents, usually alkali metal or alkaline earth metal hydroxides, ammonia or organic amines.
  • Preferred alkalizing agents are monoethanolamine, monoisopropanolamine, 2-amino-2-methyl-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2 -methylbutanol and triethanolamine and alkali and alkaline earth metal hydroxides.
  • monoethanolamine, triethanolamine and 2-amino-2-methyl-propanol and 2-amino-2-methyl-1, 3-propanediol are preferred within the scope of this group.
  • ⁇ -amino acids such as ⁇ -aminocaproic acid as an alkalizing agent is also possible.
  • oxidizing agents in particular hydrogen peroxide or its addition of Products are used on urea, melamine or sodium borate.
  • oxidation with atmospheric oxygen as the sole oxidant may be preferred.
  • enzymes the enzymes being used both for the production of oxidizing per-compounds and for enhancing the effect of a small amount of oxidizing agents present.
  • the enzymes enzyme class 1: oxidoreductases
  • Oxidases such as tyrosinase and laccase but also glucose oxidase, uricase or pyruvate oxidase are preferred. Furthermore, the procedure is called to increase the effect of small amounts (eg, 1% and less, based on the total agent) of hydrogen peroxide by peroxidases.
  • the preparation of the oxidizing agent is then mixed with the preparation with the dye precursors immediately prior to dyeing the hair.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the range of 6 to 10. Particularly preferred is the use of the hair dye in a weakly alkaline medium.
  • the application temperatures may range between 15 and 40 ° C., preferably at the temperature of the scalp. After a contact time of about 5 to 45, especially 15 to 30, minutes, the hair dye is removed by rinsing of the hair to be dyed.
  • the Nach Warren with a shampoo is omitted if a strong surfactant-containing carrier, eg. As a dyeing shampoo was used.
  • the preparation with the dye precursors can be applied to the hair without prior mixing with the oxidation component. After an exposure time of 20 to 30 minutes, the oxidation component is then applied, if appropriate after an intermediate rinse. After a further exposure time of 10 to 20 minutes is then rinsed and nachshampooniert if desired.
  • the corresponding agent is adjusted to a pH of about 4 to 7.
  • an air oxidation is initially desired, wherein the applied agent preferably has a pH of 7 to 10.
  • the use of acidified peroxydisulfate solutions may be preferred as the oxidizing agent.
  • the formation of the coloration can be supported and increased by adding certain metal ions to the agent.
  • metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ .
  • Particularly suitable are Zn 2+ , Cu 2+ and Mn 2+ .
  • the metal ions can in principle be used in the form of any physiologically acceptable salt.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • emulsions such as W / O, O / W, PIT emulsions (known as phase inversion emulsions, PIT), microemulsions and multiple emulsions, gels, sprays , Aerosols and foam aerosols.
  • alcoholic component while lower alkanols and polyols such as propylene glycol and glycerol are used. Ethanol and isopropanol are preferred alcohols. Water and alcohol may be present in the aqueous alcoholic base in a weight ratio of 1:10 to 10: 1.
  • Water and aqueous-alcoholic mixtures which contain up to 50% by weight, in particular up to 25% by weight, of alcohol, based on the mixture of alcohol / water, may be preferred bases according to the invention.
  • the pH of these preparations can in principle be between 2 and 11. It is preferably between 2 and 7, with values of 3 to 5 being particularly preferred.
  • acids are used as acids.
  • By-acids are understood to mean those acids which are absorbed as part of the usual food intake and have positive effects on the human organism. Eat acids are, for example, acetic acid, lactic acid, tartaric acid, citric acid, malic acid, ascorbic acid and gluconic acid.
  • citric acid and lactic acid are particularly preferred.
  • Preferred bases are ammonia, alkali hydroxides, triethanolamine and N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine.
  • the agent may in principle contain all other known to those skilled in such cosmetic means components.
  • auxiliaries and additives are, for example, nonionic surfactants such as, for example, alkylphenol polyglycol ethers, fatty acid poly glycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, in particular ethoxylated castor oil, alk (en) yl oligoglucosides, fatty acid N-alkylglucamides, polyol fatty acid esters, sugar esters, sorbitan esters and Polysorbate.
  • nonionic surfactants contain polyglycol ether chains, they may have a conventional or narrow homolog distribution.
  • anionic surfactants in particular alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 C atoms in the alkyl group and up to 12 glycol ether groups in the molecule, soaps and sulfosuccinic acid mono- and dialkyl esters having 8 to 18 C atoms in the alkyl group and sulfosuccinic monoalkylpolyoxyethyl esters with 8 to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, zwitterionic surfactants, in particular the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinates, for example the cocoalkyl dimethylammonium glycinate, N acyl aminopropyl-N, N-dimethylammonium glycinates, for example the Kokosacylaminopropyl- dimethylammoniumg
  • N-alkyltaurines N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group
  • nonionic polymers such as vinylpyrrolidone / inyl acrylate copolymers
  • Thickeners such as agar-agar, guar gum, alginates, xanthan gum, gum arabic,
  • Derivatives such as amylose, amylopectin and dextrins, clays such. B. bentonite or fully synthetic
  • Hydrocolloids such as polyvinyl alcohol,
  • Structural agents such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins, and silicone oils,
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, symmetrical and unsymmetrical, linear and branched dialkyl ethers having a total of from 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as di-n-octyl ether , Di-n-decyl ether, di-n-nonyl ether, di-n-undecyl ether and di-n-dodecyl ether, n-hexyl n-octyl ether, n-octyl n-decyl ether, n-decyl n-undecyl ether, n Undecyl-n-dodecyl ether and n-
  • Fatty alcohols in particular linear and / or saturated fatty alcohols having 8 to 30 carbon atoms, and monoesters of fatty acids with alcohols having 6 to 24 carbon atoms, fiber structure-improving agents, in particular mono-, di- and oligosaccharides, such as glucose, galactose, fructose , Fructose and lactose, conditioning agents such as paraffin oils, vegetable oils, eg. Sunflower oil, orange oil,
  • Anti-dandruff agents such as Piroctone Olamine, Zinc Omadine and Climbazole,
  • Light stabilizers in particular derivatized benzophenones, cinnamic acid derivatives and triazines, -
  • Other substances for adjusting the pH such as ⁇ - and ß-hydroxycarboxylic acids
  • Active ingredients such as allantoin and bisabolol,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers,
  • Fats and waxes such as spermaceti, beeswax, montan wax and paraffins,
  • Swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates,
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers, pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate, pigments,
  • Reducing agents such as B. thioglycolic acid and its derivatives, thiolactic acid, cysteamine,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • composition of the invention may also contain surfactants. These may be anionic, ampholytic, zwitterionic or nonionic surfactants as well as cationic surfactants.
  • a combination of anionic and nonionic surfactants or a combination of anionic and amphoteric surfactants is used.
  • anionic and nonionic surfactants or a combination of anionic and amphoteric surfactants is used.
  • the skilled person can also largely or completely dispense with the use of surfactants.
  • Suitable anionic surfactants in compositions according to the invention are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 10 to 22 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule. Nonionic surfactants contain as hydrophilic group z. A polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether groups. Such compounds are, for example
  • Alkylphenols having 8 to 15 C atoms in the alkyl group having 8 to 15 C atoms in the alkyl group
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) x . These connections are identified by the following parameters.
  • the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
  • these compounds are prepared starting from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • R 1 consists essentially of C 8 and C 10 alkyl groups, essentially of C 12 and C 14 alkyl groups, essentially of C 8 to C 16 alkyl groups or essentially of C 12 - to C 16 alkyl groups.
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides.
  • sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • the alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • this substance class as a further constituent of the preparations according to the invention in the event that an effect of the perfume oil on the hair which exceeds the duration of the hair treatment is desired.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • zwitterionic surfactants can be used, in particular as cosurfactants.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one -COO 9 or -SOa ⁇ 'group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammoniumglycinates, for example cocoacylaminopropyldimethylammonium glycinate, and Alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known under the INCI name Cocamidopropyl Betaine.
  • ampholytic surfactants are to be understood as meaning those surface-active compounds which, apart from a C 8 -C 18 -alkyl or acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SO 3 H group and which are capable of forming internal salts are.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12-18 -acylsarcosine.
  • the cationic surfactants used are, in particular, those of the quaternary ammonium compound type, the esterquats and the amidoamines.
  • Preferred quaternary ammonium compounds are ammonium halides, especially chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, and the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • Another object of the present invention is the use of extracts from plants belonging to the family of Oleaceae, to revitalize hair, stimulation of energy metabolism in hair follicles, activation of hair follicles, promotion or enhancement of hair growth, hair thickening, treatment of hair loss and influencing the Keratin synthesis, hair conditioning, maintenance or promotion of homeostasis of the hair follicle or treatment of pathological conditions of the hair follicle; Treatment of pathological conditions of the skin, such as atopic dermatitis, sunburn, psoriasis, scleroderma, ichtyosis, atopic dermatitis, acne, seborrhoea, lupus erythematosus, rosacea, melanoma, basalioma, skin carcinoma or skin sarcoma.
  • pathological conditions of the skin such as atopic dermatitis, sunburn, psoriasis, scleroderma, ichtyo
  • the extract according to the invention for the vitalization of hair, stimulation of energy metabolism in hair follicles, activation of hair follicles and hair thickening.
  • Another object of the present invention is a method for revitalizing hair, stimulation of energy metabolism in hair follicles, activation of hair follicles, promotion or enhancement of hair growth, hair thickening, treatment of hair loss and influencing the keratin synthesis, hair conditioning, maintenance or promotion of the homeostasis of the hair follicle or Treatment of pathological conditions of the hair follicle; Treatment of pathological conditions of the skin, such as atopic dermatitis, sunburn, psoriasis, scleroderma, ichtyosis, atopic dermatitis, acne, seborrhoea, lupus erythematosus, rosacea, melanoma, basalioma, skin carcinoma or skin sarcoma, characterized in that an inventive agent on the hair or applying the skin.
  • pathological conditions of the skin such as atopic dermatitis, sunburn, psoriasis, scleroderma, icht
  • the extract of leaves of Olea europaea is an ethanolic extract. In the special case, it is an extract of 80% ethanol, which was obtained in a patented process (EP-B-0 730 830) from Flachsmann (article number 0085943).
  • the patented process has a particularly gentle effect on contained antioxidants such as oleuropein. Accordingly, the extract contains high amounts of oleuropein (18-26%).
  • the concentration (in ⁇ g / ml) at which the lipid peroxidation was reduced by 50% was determined in comparison with the determination without addition of plant extract. That the lower the indicated concentration of LDL50, the higher the antioxidative capacity of the investigated Olea europaea extract.
  • the reference substances used were the antioxidants Lipochroman-6, Trolox, BHT, tocopherol and methyl catechol.
  • the antioxidant potential with respect to superoxides is determined with the aid of chemiluminescence methods and measured with a measuring instrument from Jenanalytics.
  • V max is reached at a later time t Prob ⁇ .
  • the extract from Olea europaea has antioxidant properties against the formation of hydroxy radicals. It has slightly better properties compared to superoxides than the water-soluble standard substance vitamin C (Table 1)
  • fibroblasts were first sown on a matrix consisting of collagen, chitosan and glucosaminoglucan. After a 28-day cultivation period of the
  • Fibroblasts were started with systemic treatment.
  • the treatment was carried out by adding the test substances or the positive control to the medium. Treatment was done every two days, i. three times within 6 days.
  • the measuring method is based on the particularly high content of proline and hydroxyproline in
  • Collagen synthesis by fibroblasts in the skin model For the last 24 hours of culture, 5 ⁇ Ci / ml of 3H-proline was added. At the end of the test, this was present in the matrix Collagen specifically degraded collagen, precipitated the remaining protein and the incorporated activity in the supernatant (collagen) and in the precipitate (non-collagen proteins) measured. By determining the incorporated radioactivity in the collagen compared to the non-collagenous proteins, the percentage of collagen in the total protein can be determined.
  • the extract from Olea europaea increased the collagen synthesis of the fibroblasts dose-dependent compared to the untreated control to a maximum of 148%.
  • the positive control vitamin C at a concentration of 44 ⁇ g / ml induced collagen synthesis to 144%.
  • the extract from Olea europaea thus shows a comparable biological effect. (Table 2)
  • the vitality of the was tested by a dye test, the MTT test.
  • the MTT test provides information about cell proliferation and cytotoxicity. In the test, the metabolic activity of living cells is determined. The exact performance of the assay is described in J. Immunol. Methods 65, 55, 1983 (T. Mosmann), which is incorporated herein by reference.
  • the tetrazolium salt 3- [4,5-dimethylthiazol-2-yl] -2,5-diphenyltetrazolium bromide (MIT) is enzymatically reduced in living cells and converted to a blue, water-insoluble formazan salt. This formazan salt is extracted and quantified photometrically. The color intensity of the formazan salt solution can be correlated with the number of living cells or with the vitality of a tissue in the examined sample.
  • Table 3 Vitality of cell cultures as a function of different concentrations of Olea europaea extract (% [standard deviation])
  • an MTT50 value of about 2900 ⁇ g / ml can be determined. This value shows a very low cytotoxicity of the Olea europaea extract (Table 3).
  • NHEK normal human epidermal keratinocytes
  • dermal papilla cells by an extract according to the invention.
  • the extract according to the invention was tested in vitro on normal human epidermal keratinocytes (NHEK) and on dermal papilla cells for its stimulating effect on intracellular ATP synthesis.
  • the intracellular ATP content is measured by bioluminometric measurements with a luciferase assay. For this, the cell cultures are disrupted by means of an extraction buffer and the cell lysate is treated with a commercially available luciferase reagent. The resulting bioluminescent light is detected by means of a luminescence meter and is directly proportional to the amount of ATP present in the lysate.
  • the tests were carried out with dilute solutions of various extracts.
  • the extracts were diluted with the nutrient medium solution used for culturing the keratinocytes or dermal papilla cells (KGM nutrient medium from Cell Systems or Chang D Medium from Irvine Scientific) and homogenized.
  • the test solutions contained the extracts in different concentrations.
  • the experiments were carried out on normal human epidermal keratinocytes (NHEK P 135 from Cell Systems). These are primary keratinocytes. After culturing the cells in the KGM culture medium, the cells were seeded in 96-well microtiter plates with a density of approximately 2000 cells per well. After three days, the culture medium was exchanged for the various extract-containing test solutions.
  • NHEK P 135 normal human epidermal keratinocytes
  • the lysis buffer consisted of an aqueous solution of 10 mM TRIS (2-amino-2-hydroxymethyl-1,3-propanediol), 1 mM EDTA, 100 mM NaCl, 5 mM M9C12 and 1% by weight Nonidet P 40 ( ethoxylated fatty alcohol, Shell).
  • the ATP determinations were made using the ATPLite TM -m assay (Packard).
  • the test principle of this assay is based on the fact that Photinus pyralis luciferase catalyzes a reaction in which D-luciferin is converted to oxyluciferin in the presence of ATP. In this reaction, green light is emitted which can be measured with a luminometer. The emitted bioluminescent light is proportional to the amount of ATP present.
  • ATP content in keratinocytes 50 ⁇ l of the cell lysate were pipetted into a black luminometer microtiter plate, admixed with 50 ⁇ l luciferase reagent from the ATPLite TM -m assay kit and, after a further 10 min incubation in the dark, inserted into the luminometer, which detects the occurring bioluminescence at room temperature.
  • the calibration of the luminometer was carried out by bioluminescence measurements with ATP.
  • the standard solutions were in the concentration range from 1, 6 - 10-9 to 1, 0 - 10 - 6 mol ATP / I.
  • the equation of the calibration line was used to calculate the ATP concentration in the cell lysates.
  • ATP activity in dermal papilla cells are precultured in a suitable manner to obtain their specific properties, as described in DE10162814, and transferred to a 48-well cell culture dish.
  • the olive leaf extract was treated for 6 hours against an untreated control.
  • the cells were lysed for 5 min on a shaker with in each case 100 ⁇ l / well of a lysis buffer contained in the test kit.
  • the cells were then incubated for a further 5 min with in each case 100 .mu.l / well with the supplied substrate solution on the shaker and then transferred to the reaction mixture in a black microtiter plate. After an incubation time of 10 min in the dark, the luminescence was measured.
  • the hair structure is essentially dependent on the composition of specific hair-specific structural proteins, the hair keratins. By influencing the composition of these specific proteins, it is possible to influence the hair structure on a biological level.
  • the expression of various hair keratins in the organotypic model can be examined by means of a quantitative real-time PCR method.
  • the RNA is first isolated from the organotypic models using the RNeasy Mini Kit from Qiagen and transcribed into cDNA by means of reverse transcription.
  • the subsequent PCR reaction which is carried out with the aid of gene-specific primers for the respective hair keratins and which serves to amplify the desired gene segments, the formation of the PCR products is detected online via a fluorescence signal.
  • the fluorescence signal is proportional to the amount of the PCR product formed. The stronger the expression of a particular gene, the greater the amount of PCR product produced and the higher the fluorescence signal.
  • the untreated control is set equal to 1 and the expression of the genes to be determined referred to (x-fold expression). Values greater than or equal to 1.8 times the expression of the untreated control are classified as significant.
  • organotypic models with different concentrations of leaf extract from Olea europea were systemically treated for 6 h and 24 h.
  • the leaf extract from Olea europea increased the gene expression of hair keratins hHa3-l and hHa4 in the organotypic model compared to the untreated control after 24 hours of application by a maximum of 5.6. (Table 6)
  • Polydimethylsiloxane (INCI name: dimethicone) (DOW CORNING) 11 dimethylaminoethyl methacrylate-vinylpyrrolidone copolymer, with diethylsi active substance in water; INCI name: Polyquaternium-11) (GAF) 12 3-iodo-2-propynyl-n-butylcarbamate (INCI name: iodopropynyl butylcarbamate) (MILKER & GREENING)
  • Salary about 20-24% Salcare SC 96

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Mittel zur Behandlung des Haares oder der Haut, enthaltend mindestens einen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören. Weiterhin betrifft die Erfindung die Verwendung eines oder mehrerer solcher Extrakte zur Behandlung des Haares oder der Haut.

Description

Mittel zur Behandlung des Haares oder der Haut, das einen Extrakt aus Pflanzen enthält, die der Familie der Oleaceae angehören
Beschreibung:
Die vorliegende Erfindung betrifft ein Mittel zur Behandlung des Haares oder der Haut, enthaltend mindestens einen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören. Weiterhin betrifft die Erfindung die Verwendung eines oder mehrerer solcher Extrakte zur Behandlung des Haares oder der Haut.
Die Oleaceae (Ölbaum-Gewächse) sind eine mittelgroße, fast weltweit verbreitete Familie, mit (je nach Abgrenzung) etwa 20-30 Gattungen und ca. 400-700 Arten. Sie sind eine der basalen Gruppen innerhalb der abgeleiteten Ordnung Lamiales (= Scrophulariales). Die meisten Oleaceae sind Bäume oder Sträucher, wenngleich die größte Gattung, Jasminum, auch eine Vielzahl spreizklimmender bis windender Formen einschließt. Zu den wirtschaftlich bedeutsamsten Vertretern der Oleaceae gehört der echte Ölbaum, oder auch Olivenbaum, Olea europaea.
Abhängig vom Verbreitungsgebiet blühen Olivenbäume von Ende April bis Anfang Juni. Die vierzähligen Blüten bestehen aus vier Kronblättern und vier Kelchblättern, die die Staubgefäße und den Stempel umgeben und stehen an Rispen, die zwischen 10 und 40 Blüten tragen. Wird der Baum durch Trockenheit oder Nährstoffmangel etwa sechs Wochen vor der Blüte gestresst, vermindert sich der Ertrag, weil die Blütenzahl vermindert wird und Blüten nicht zum Fruchten kommen. Die meisten Sorten sind selbstbefruchtend, wobei Fremdbestäubung meist den Ertrag steigert. Einige Sorten sind jedoch auf Fremdbestäubung angewiesen und brauchen ein genetisch verschiedenes Exemplar zur Bestäubung. Die Blüte wird über den Wind bestäubt. Der Olivenbaum ist eine immergrüne Pflanze, das heißt, er verliert zu keiner Jahreszeit sein Laub. Die kleinen Blätter sind oberseits graugrün und an der Unterseite silbrig glänzend und grau gefärbt. Sie sind schmal und laufen spitz nach vorne zu (lanzettenartig). An der Unterseite haben sie kleine Härchen, so genannte Sternhaare oder sternförmige Schuppenhaare, die den Baum vor dem Austrocknen schützen, indem sie aus den Spaltöffnungen austretendes Wasser wieder einfangen und dem Blatt erneut zufügen.
Aus der Blüte bildet sich nach der Befruchtung die Frucht: die Olive. Dabei handelt es sich um eine Kernfrucht, bei der ein harter Kern von weichem Fruchtfleisch umgeben ist. Die Farbe der unreifen Oliven ist grün, die der reifen schwarz oder violett/braun. Am ertragreichsten ist der Baum nach ca. 20 Jahren. Die durchschnittliche Zusammensetzung einer Olive ist: Wasser 50%, Öl 22%, Zucker 19,1%, Zellulose 5,8%, Proteine 1 ,6%. Die Olive ist eine mediterrane Steinfrucht. Sie ist wegen ihrer Bitterkeit roh nicht genießbar, aber nach mehrmaligem Einlegen in Wasser, bei dem die Bitterstoffe ausgeschwemmt werden, essbar. Schwarze Oliven sind voll ausgereifte grüne (olivgrüne) Oliven. Der Olivenbaum wird in mehrfacher Weise genutzt:
• Ökonomisch bedeutsam ist vor allem die Frucht, die Olive, die weiterverarbeitet werden kann und als Lebensmittel genutzt wird. Direkt vom Baum ist die Olive jedoch wegen ihrer Bitterkeit kaum genießbar. Sie wird in eine Salzlake eingelegt, die ihr die Bitterstoffe entzieht, in der mediterranen Küche wird sie häufig in Brot, Ragouts, Salaten und Saucen verwendet.
• Ebenso wird aus ihr das Olivenöl gepresst, das gesündeste bekannte Speiseöl. Es wird zum Braten und Kochen und auch in der Kosmetik verwendet. Industriell werden die Oliven für das Öl entweder von Hand gepflückt oder mit der Maschine herabgeschüttelt, gehackt, mit Wasser gemischt und hydraulisch gepresst, teils (je nach Zweck) auch mit chemischen Lösungsmitteln oder thermischen Verfahren extrahiert. Top-Qualitäten für die Küche hingegen werden mit schonenderen Verfahren gewonnen, vorzugsweise dem Tropf- Verfahren, bei dem nur das Eigengewicht der Früchte ohne weiteren Druck die Frucht presst. Anschließend wird das Öl vom Wasser in der Zentrifuge getrennt.
• Wegen seines Holzes, das zu Möbeln oder Gebrauchgegenständen weiterverarbeitet wird.
• Als medizinische Pflanze, speziell wegen seiner Blätter, die einen beruhigenden und schlaffördernden Effekt haben und das Immunsystem stärken sowie den Cholesterinspiegel senken. Das Öl ist gesund wegen des hohen Anteils an einfach ungesättigten Fettsäuren und wirkt sich positiv auf das Herzkreislaufsystem und den Fettstoffwechsel aus und verringert die Gefahr von Diabetes oder Krebs.
Die menschliche Haut mit Ihren Anhangsgebilden ist ein sehr komplex aufgebautes Organ, welches aus einer Vielzahl verschiedener Zelltypen besteht. Jede lebende Zelle dieses Organs ist in der Lage auf Signale ihrer inneren und äußeren Umwelt, zu reagieren. Diese Reaktionen der Zellen werden durch eine geordnete Regulation auf Gen- und Proteinebene realisiert, so dass der Metabolismus von Zellen der Haut und Ihrer Anhangsgebilde nicht statisch sondern sehr dynamisch ist. Die Reaktionen der Haut und/oder ihrer Anhangsgebilde auf Veränderungen der Umgebung dürfen jedoch nicht als Reaktionen einzelner, isolierter Zellen betrachtet werden. Vielmehr ist jede Zelle in ein komplexes Kommunikationsnetzwerk eingebunden. Dieses Netzwerk beinhaltet z.B. die Kommunikation zwischen Zellen der Epidermis und Zellen der Dermis. An der Kommunikation zwischen den Zellen der Haut und/oder ihrer Anhangsgebilde sind Signalmoleküle wie z.B. Interleukine, Wachstumsfaktoren (z.B. KGF, EGF oder FGF) usw. beteiligt.
Der Alterungsprozess ist ein grundlegender biologischer Prozess, der bei nahezu allen lebenden Organismen zu finden ist. Dementsprechend ist auch die menschliche Haut von diesem Phänomen betroffen. Die Hautalterung stellt sich als progressiver Vorgang dar, der zu einem Verlust der Hauthomöostase führt. Er wird von endogenen und exogenen Faktoren beeinflusst. Während die endogenen Aspekte als „genetisch gesteuertes Programm" ablaufen, sind für die exogenen Faktoren Umwelteinflüsse wie beispielsweise UV-Licht verantwortlich.
Die Haut im Alter unterscheidet sich in verschiedenen Punkten von jugendlicher Haut. Dies sind nicht nur äußerlich sichtbare Veränderungen, Effekte der Alterung sind auf zellulärer Ebene, molekulargenetischer Ebene und Proteinebene nachzuweisen. Sie weist verschiedene biologische Charakteristika auf, wie aus biopsiertem Untersuchungsmaterial hervorgeht (US Patent 6,630,516,).
Auf Zellebene stellt sich die Hautalterung durch einen Verringerung der Stoffwechselaktivität und durch eine Reduzierung der epidermalen und dermalen Erneuerungsrate um 30 - 50 % dar. Histologisch kommt es zu einer Abflachung der Basalmembran (dermal-epidermal junction), was in einem verschlechterten Nährstofftransfer in die Epidermis mündet. Stratum corneum, Epidermis und Dermis sind im Alter dünner, verbunden mit einer Abnahme und Strukturänderung der Bestandteile der extrazellulären Matrix. Die Zahl der epidermalen Langerhans-Zellen und Mastzellen sinkt, was zu einer höheren Empfindlichkeit beiträgt. Die Altershaut zeichnet sich durch eine verminderte Sebumproduktion sowie eine reduziertes Schwitzvermögen aus. Die Veränderung dieser morphometrischen Parameter mit zunehmendem Alter ist begleitet von Änderungen biochemischer und molekularbiologischer Parameter in der Haut. Beispielhaft seien Enzymaktivitäten genannt, die im Zusammenhang mit dem Umbau der extrazellulären Matrix der Dermis zu sehen sind. Sie steigen im Alter bis auf des doppelte ihrer Aktivität an. Dieser Effekt ist u.a. auf eine vermehrte Expression der Kollagenase auf molekularbiologischer Ebene zurückzuführen und als ursächlich für die Veränderungen der extrazellulären Matrix anzusehen. Er könnte durch eine vermehrte Produktion von Bindegewebsmaterial aufgefangen werden. Tatsächlich beobachtet man aber einen Rückgang der Produktion von Bindegewebsmaterial in der Gruppe mit den ältesten Probanden um mehr als 50%. Der Rückbildung des Bindegewebes im Alter wird somit nicht entgegengesteuert.
All diese Veränderungen in der Hautstruktur und Hautphysiologie führen zu einem trockenen, faltigen und schlaffen, teilweise hyperpigmentiertem Erscheinungsbild.
Der menschliche Organismus ist ständig oxidativen Prozessen ausgesetzt. Endogen sind natürliche Stoffwechselvorgänge in jeder Zelle eine wichtige Quelle oxidativ wirksamer Substanzen. Mitochondrien, aber auch enzymatische Vorgänge produzieren reaktive Sauerstoffspezies (ROS)1 wie Superoxide, Hydroperoxide und Hydroxyradikale. Exogen stellen Umwelteinflüsse wie Rauch, Smog, UV-Strahlung, aber auch die Ernährung eine entscheidende Ursache oxidativer Belastung dar. Gegen diese Quellen schützt sich der Organismus durch eine Reihe systemischer Antioxidantien. Teilweise produziert er diese selbst, teilweise müssen sie als essentielle Vitamine mit der Nahrung aufgenommen werden. Die Antioxidantien schützen Makromoleküle (Strukturproteine, Lipidmembranen, DNA) vor der Schädigung oder Zerstörung durch reaktive Sauerstoffspezies.
Im ungestressten Organismus besteht eine festes Gleichgewicht zwischen produzierten Oxidantien und schützenden Antioxidantien. Unter bestimmten Voraussetzung kann dieses Gleichgewicht allerdings gestört werden (Rauch, UV-Strahlung). Ein Organ, eine Zelle verarmt an Antioxidantien, die oxidativen Prozesse gewinnen die Oberhand und schädigen Makromoleküle. Photoaging ist eine der bekannten Auswirkung einer solchen Imbalance zwischen Oxidantien und Antioxidantien in der menschlichen Haut.
Das Adenosintriphosphat (ATP) ist ein zentrales Molekül des Energiehaushalts lebender Zellen, da es die Energiequelle zellulärer Reaktionen darstellt. Diese Energie benötigen die Haut und ihre Anhangsgebilde für biochemische Synthesen und Transportvorgänge, so dass Stoffwechselvorgänge und zelluläre Strukturen optimal aufrecht erhalten zu können und zu erneuern, z.B. bei Reparaturprozessen oder im Haarzyklus.
Innerhalb einer Zelle wird ATP in den Mitochondrien produziert. Dabei entstehen durch den Elektronentransport an der inneren Membran Superoxidradikale, die durch Dismutation zu Peroxiden umgewandelt werden und im weiteren Verlauf zu Hydroxylradikalen reagieren können. Im Verlauf des Lebens einer Zelle werden somit ständig Radikale produziert, die durch ihre Reaktivität Proteine und Nukleinsäuren der Mitochondrien schädigen, und somit ihre Funktion selbst beeinträchtigen. Die Leistungsfähigkeit der Mitochondrien bei der Gewinnung von Energie im Alter nimmt daher deutlich ab.
Es ist bekannt, aus den Früchten des Olivenbaumes gewonnenes Olivenöl in kosmetischen Mitteln einzusetzen.
Bislang nicht bekannt ist jedoch die Bereitstellung und Verwendung eines gut verträglichen Extraktes aus Blättern von Pflanzen, die der Familie der Oleaceae angehören, der geeignet ist, antioxidative Eigenschaften, Stimulation der ATP-Produktion in Keratinocyten und dermalen Papillenzellen bei gleichzeitigem Schutz vor oxidativen Schäden, und Förderung der Kollagensynthese zu kombinieren, und auf diese Weise eine wichtige Ursache belasteter Haut oder Altershaut zu bekämpfen sowie die Energieproduktion in der Haarwurzel anzuregen.
Die vorliegende Erfindung betrifft daher ein Mittel zur Behandlung des Haares oder der Haut, enthaltend einen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören.
Vorzugsweise sind die Pflanzen, die der Familie der Oleaceae angehören ausgewählt unter Pflanzen der Genera Abeliophyllum, Chionanthus, Comoranthus, Dimetra, Fontanesia, Forestiera, Forsythia, Fraxinus, Haenianthus, Hesperelaea, Jasminum, Ligustrum, Menodora, Myxopyrum, Nestegis, Noronhia, Noteiaea, Nyctanthes, Olea, Osmanthus, Phillyrea, Picconia, Priogymnanthus, Schrebera und Syringa, insbesondere unter Pflanzen des Genus Olea.
Bevorzugtermaßen sind die Pflanzen, die der Familie der Oleaceae angehören ausgewählt unter Pflanzen der Species bzw. Subspecies Abeliophyllum distichum, Abeliophyllum distichum f. eburneum, Abeliophyllum distichum f. lilacinum, Chionanthus filiformis, Chionanthus ramiflorus, Chionanthus retusus, Chionanthus virginicus, Comoranthus madagascariensis, Comoranthus minor, Dimetra craibiana, Fontanesia phillyreoides, Fontanesia phillyreoides subsp. fortunei, Forestiera acuminata, Forestiera eggersiana, Forestiera neo-mexicana, Forestiera segregata, Forestiera segregata var. pinetorum, Forsythia europaea, Forsythia giraldiana, Forsythia japonica, Forsythia japonica var. saxatilis, Forsythia nakaii, Forsythia ovata , Forsythia suspensa, Forsythia viridissima, Forsythia viridissima var. koreana, Forsythia x intermedia, Forsythia sp. Reeves 11 , Fraxinus americana , Fraxinus angustifolia, Fraxinus anomala , Fraxinus biltmoreana, Fraxinus chinensis, Fraxinus chinensis var. rhynchophylla, Fraxinus cuspidata , Fraxinus cuspidata var. macropetala, Fraxinus dipetala, Fraxinus excelsior , Fraxinus excelsior var. diversifolia, Fraxinus greggii, Fraxinus latifolia , Fraxinus longicuspis, Fraxinus mandshurica , Fraxinus nigra , Fraxinus ornus , Fraxinus oxyphylla, Fraxinus pallisae, Fraxinus pennsylvanica , Fraxinus pennsylvanica var. aucubaefolia , Fraxinus pennsylvanica var. subintegerrima , Fraxinus platypoda, Fraxinus quadrangulata , Fraxinus rynchophylla, Fraxinus syriaca, Fraxinus texensis, Fraxinus tomentosa, Fraxinus velutina , Fraxinus xanthoxyloides, Fraxinus xanthoxyloides var. dimorpha, Haenianthus incrassatus, Haenianthus salicifolius, Haenianthus salicifolius var. obovatus, Hesperelaea palmeri, Jasminum abyssinicum, Jasminum attenuatum, Jasminum elegans, Jasminum floribundum, Jasminum fluminense, Jasminum fruticans, Jasminum humile , Jasminum lanceolarium, Jasminum leratii, Jasminum mesnyi , Jasminum multiflorum , Jasminum nervosum, Jasminum nitidum, Jasminum nudiflorum , Jasminum odoratissimum , Jasminum officinale , Jasminum polyanthum , Jasminum sinense, Jasminum suavissimum, Ligustrum acutissimum, Ligustrum compactum, Ligustrum ibota, Ligustrum japonicum, Ligustrum massalongianum, Ligustrum obtusifolium, Ligustrum ovalifolium, Ligustrum sempervirens, Ligustrum sinense, Ligustrum vulgäre , Menodora africana, Menodora integrifolia, Menodora scabra, Myxopyrum nervosum, Myxopyrum smilacifolium, Myxopyrum smilacifolium var. confertum, Nestegis apetala, Nestegis cunninghamii, Nestegis lanceolata, Nestegis sandwicensis, Noronhia emarginata, Noteiaea longifolia, Noteiaea microcarpa, Noteiaea punctata, Nyctanthes aculeata, Nyctanthes arbor-tristis , Olea brachiata, Olea capensis, Olea capensis subsp. macrocarpa, Olea cerasiformis, Olea europaea , Olea europaea subsp. cerasiformis, Olea europaea subsp. cuspidata, Olea europaea subsp. europaea, Olea europaea subsp. guanchica, Olea europaea subsp. laperrinei, Olea europaea subsp. maroccana, Olea lancea, Olea paniculata, Osmanthus americanus, Osmanthus fragrans, Osmanthus heterophyllus, Osmanthus insularis, Osmanthus rigidus, Osmanthus sp. Reeves 12, Phillyrea angustifolia, Phillyrea latifolia, Phillyrea media, Picconia excelsa, Priogymnanthus apertus, Priogymnanthus hasslerianus, Schrebera alata, Schrebera mazoensis, Syringa amurensis, Syringa emodi , Syringa julianae, Syringa komarowii, Syringa meyeri, Syringa microphylla, Syringa microphylla x Syringa meyeri, Syringa oblata, Syringa patula, Syringa pekinensis, Syringa pinnatifolia, Syringa pubescens, Syringa reflexa, Syringa reticulata , Syringa tigerstedtii, Syringa villosa , Syringa vulgarii, Syringa wolfii und Syringa yunnanensis, insbesondere unter Pflanzen der Species bzw. Subspecies Olea brachiata, Olea capensis, Olea capensis subsp. macrocarpa, Olea cerasiformis, Olea europaea , Olea europaea subsp. cerasiformis, Olea europaea subsp. cuspidata, Olea europaea subsp. europaea, Olea europaea subsp. guanchica, Olea europaea subsp. laperrinei, Olea europaea subsp. maroccana, Olea lancea, Olea paniculata und besonders bevorzugt unter Pflanzen der Species Olea europaea.
Besonders bevorzugt wird der Extrakt aus Pflanzen, die der Familie der Oleaceae angehören, aus den Blättern der Pflanzen gewonnen, insbesondere durch ein Extraktionsverfahren, das in der EP- B-O 730 830 beschrieben wird, worauf hiermit in vollem Umfang Bezug genommen wird.
Ganz besonders bevorzugt enthält das erfindungsgemäße Mittel einen Extrakt, der einen hohen Gehalt an Antioxidantien, insbesondere an Oleuropein aufweist.
Vorzugsweise liegt der Gehalt an Oleuropein in dem Extrakt im Bereich von 10 bis 30 Gew-%, insbesondere 15 bis 28 Gew-%, besonders bevorzugt 18 bis 26 Gew-%. Ein solcher Extrakt ist beispielsweise von der Firma Emil Flachsmann AG, Rütiwisstrasse, 8820 Wädenswil, Schweiz, http://www.flachsmann.ch. unter der Artikelnummer 0085943 erhältlich.
Das erfindungsgemäße Mittel kann weitere Wirkstoffe, insbesondere L-Camitin und/oder Creatin enthalten.
Vorteilhafterweise können durch das breite Wirkungsspektrum des Extraktes aus Olea europaea mit nur einem Extrakt verschiedene Effekte der Hautalterung beeinflusst werden.
Die antioxidativen Eigenschaften des Extraktes schützen die Haut vor oxidativen Umwelteinflüssen.
Die Stimulierung der Kollagensynthese führt zu einem verstärkten Aufbau des Bindegewebes, dessen Struktur mit dem Alter abnimmt, und fördert somit die Festigkeit der Haut.
Durch die Stimulation der ATP-Produktion erhält die Haut und ihre Anhangsgebilde die Energie, die sie zum Beispiel zum Aufbau neuer Strukturen benötigen.
Der Extrakt aus Olea europaea weist antioxidative Eigenschaften gegen die Bildung von Hydroxyradikalen auf. Gegenüber Superoxiden hat er bessere Eigenschaften als die wasserlösliche Standardsubstanz Vitamin C.
Der Extrakt aus Olea europaea weist nur eine sehr geringe Zytotoxizität auf.
Die Behandlung des Haares oder der Haut mit dem erfindungsgemäßen Mittel bezweckt insbesondere Wirkungen, die ausgewählt sind unter Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln, Förderung oder Verstärkung des Haarwuchses, Haarverdickung, Behandlung von Haarausfall und Beeinflussung der Keratinsynthese, Aufrechterhaltung oder Förderung der Homeostase des Haarfollikels bzw. Behandlung pathologischer Zustände des Haarfollikels; Behandlung pathologischer Zustände der Haut, wie Neurodermitis, Sonnenbrand, Psoriasis, Sklerodermie, Ichtyosis, atopische Dermatitis, Akne, Seborrhoe, Lupus erythematodes, Rosacea, Melanoma, Basalioma, Hautkarzinom, Hautsarkom.
Hierbei ist insbesondere die Beeinflußung der Keratinsynthese hervorzuheben, da Haarkeratine eine wichtige Rolle beim Haarwachstum spielen, sie sind als zelluläre Strukturproteine am Aufbau von Haaren und Nägeln beteiligt. Bislang wurden 16 Gene der humanen Haarkeratinfamilie identifiziert (hHa1 , hHa2, hHa3-l, hHa3-ll, hHa4, hHa5, hHa6, hHa7, hHaδ, hHb1 , hHb2, hHb3, hHb4, hHb5, hHbδ, K6irs). Die Keratinproduktion ist insbesondere an die Wachstumsphase des Haares (Anagen) gekoppelt, in der Regressionsphase (Katagen) findet man eine signifikante Abnahme der Keratinproduktion. Daneben spielen die Haarkeratine auch eine Rolle bei verschiedenen genetisch bedingten Krankheiten, wie zum Beispiel Monilethrix. Monilethrix führt, bedingt durch reine Punktmutation in den Keratingenen hHb1 und hHbθ zu einer unregelmäßigen, brüchigen Haarstruktur. Darüber hinaus liegt eine gestörte Verankerung des Haarschafts im Follikel vor. Da die Haarstruktur im Wesentlichen von der Zusammensetzung der Haarkeratine abhängt, kann durch die Beeinflussung der Zusammensetzung dieser spezifischen Proteine auf biologischer Ebene Einfluss auf die Haarstruktur genommen werden.
Durch die Behandlung von Kopfhaar mit einem erfindungsgemäßen Mittel zur Behandlung des Haares oder der Haut, beispielsweise einem Haartonic mit geeigneter Formulierung, kann die ATP- Menge in den behandelten Follikeln signifikant im Vergleich zur einer Placeboformulierung erhöht werden. Die Behandlung mit einem erfindungsgemäßen Mittel in einer Rinse-off Formulierung führt ebenso zu einer signifikanten Erhöhung des ATP-Gehalts in gezupften Haarfollikeln. Damit wird dem biologisch aktiven Teil des Haares signifikant mehr ATP als Energielieferant für biochemische Synthesen und Transportvorgänge zur Verfügung gestellt, so dass Stoffwechselvorgänge und zelluläre Strukturen optimal aufrecht erhalten und erneuert werden können.
Das erfindungsgemäße Mittel kann zusätzlich Proteinhydrolysate umfassen, vorzugsweise kationisierte Proteinhydrolysate, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quatemisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3- chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed SiIk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl SiIk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed SiIk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed SiIk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed SiIk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quatemium-79 Hydrolyzed SiIk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Obwohl das erfindungsgemäße Mittel prinzipiell auf dem Haar verbleiben kann, wird das Mittel vorzugsweise nach einer Einwirkzeit von 10 Sekunden bis 60 Stunden ausgespült. Dieses Ausspülen kann mit reinem Wasser oder einem marktüblichen Shampoo erfolgen. Einwirkzeiten von 1 bis 15 Minuten haben sich in den meisten Fällen als ausreichend erwiesen.
Das erfindungsgemäße Mittel kann weiterhin zusätzlich einen weiteren kosmetischen Wirkstoff enthalten, der ausgewählt ist aus Monomeren, Oligomeren und Polymeren von Aminosäuren, N-C2-C24-Acylaminosäuren und/oder den Estern und/oder den physiologisch verträglichen Metallsalzen dieser Substanzen, sowie Mischungen dieser Wirkstoffe.
Die Monomere der Aminosäuren und/oder der N-C2-C24-Acylaminosäuren sind ausgewählt aus Alanin, Arginin, Asparagin, Asparaginsäure, Canavanin, Citrullin, Cystein, Cystin, Desmosin, Glutamin, Glutaminsäure, Glycin, Histidin, Homophenylalanin, Hydroxylysin, Hydroxyprolin, Isodesmosin, Isoleucin, Leucin, Lysin, Methionin, Methylnorleucin, Ornithin, Phenylalanin, Prolin, Pyroglutaminsäure, Sarcosin, Serin, Threonin, Thyroxin, Tryptophan, Tyrosin, Valin, Zinkpyro- glutamat, Natriumoctanoylglutamat, Natriumdecanoylglutamat, Natriumlauroylglutamat, Natriummyristoylglutamat, Natriumcetoylglutamat und Natriumstearoylglutamat. Besonders bevorzugt sind Lysin, Serin, Zink- und Natriumpyroglutamat und Natriumlauroylglutamat. Der C2 - C24-Acylrest, mit dem die genannten Aminosäuren an der Aminogruppe derivatisiert sind, ist ausgewählt aus einem Acetyl-, Propanoyl-, Butanoyl-, Pentanoyl-, Hexanoyl-, Heptanoyl-, Octanoyl-, Nonanoyl-, Decanoyl-, Undecanoyl-, Lauroyl-, Tridecanoyl-, Myristoyl-, Pentadecanoyl-, Cetoyl-, Palmitoyl-, Stearoyl-, Elaidoyl-, Arachidoyl- oder Behenoyl-Rest. Mischungen von C8-C18- Acylresten werden auch als Cocoyl-Rest bezeichnet und sind ebenfalls bevorzugte Substituenten. Die physiologisch verträglichen Salze der erfindungsgemäß bevorzugten Wirkstoffe, die Säuregruppen enthalten und Salze bilden können, sind ausgewählt aus den Ammonium-, Alkalimetall-, Magnesium-, Calcium-, Aluminium-, Zink- und Mangan-Salzen. Bevorzugt sind die Natrium-, Kalium-, Magnesium-, Aluminium-, Zink- und Mangan-Salze.
Unter Aminosäureoligomeren werden erfindungsgemäß Peptide mit 2 - 30, bevorzugt 2 - 15, Aminosäuren, verstanden. Die Oligomere der Aminosäuren und/oder der N-C2-C24-Acyl- aminosäuren sind bevorzugt ausgewählt aus Di-, Tri-, Tetra-, Penta-, Hexa- oder Pentadecapeptiden, die N-acyliert und/oder verestert sein können. Zahlreiche dieser Amino- säureoligomere stimulieren die Collagensynthese beziehungsweise sind in der Lage, Zellen des Immunsystems, wie Mastzellen und Makrophagen, zu rekrutieren, die dann über die Freisetzung von Wachstumsfaktoren Reparaturprozesse im Gewebe, z.B. die Collagensynthese, induzieren, beziehungsweise sind in der Lage, an die Sequenz Arg-Phe-Lys in Thrombospondin I (TSP-1 ) zu binden und damit aktives TGF-ß (tissue growth factor), der die Synthese von Collagen in dermalen Fibroblasten induziert, freizusetzen. Derartige Aminosäureoligomere können als Wirkstoffe gegen die Hautalterung verwendet werden.
Erfindungsgemäß bevorzugte, gegebenenfalls N-acylierte und/oder veresterte Dipeptide sind Acetyl-Citrullyl-Arginin (z. B. Exsy-Algine von Exsymol), Tyr-Arg (Dipeptide-1 ), Val-Trp (Dipeptide- 2), Asn-Phe, Asp-Phe, N-Palmitoyl-ß-Ala-His, N-Acetyl-Tyr-Arg-hexyldecylester (z. B. Calmosensine von Sederma), Carnosin (ß-Ala-His) und N-Palmitoyl-Pro-Arg. Erfindungsgemäß bevorzugte, gegebenenfalls N-acylierte und/oder veresterte Tripeptide sind Gly-His-Lys, das z. B. unter der Bezeichnung „Omega-CH-Aktivator" von der Firma GfN oder in acylierter Form (N- Palmitoyl-Gly-His-Lys) unter der Bezeichnung Biopeptide CL von Sederma erhältlich ist, aber (in acylierter Form) auch einen Bestandteil des Produktes Matrixyl 3000 von Sederma darstellt. Das Tripeptid Gly-His-Lys kann auch als Kupfersalz (Cu2+) eingesetzt werden und ist als solches über ProCyte Corporation zu beziehen. Weiterhin können Analoga von Gly-His-Lys eingesetzt werden, wobei maximal zwei Aminosäuren durch geeignete andere Aminosäuren substituiert sind. Zur Substitution von GIy sind erfindungsgemäß AIa, Leu und He geeignet. Die erfindungsgemäß bevorzugten Aminosäuren, die His oder Lys ersetzen können, beinhalten eine Seitenkette mit einem Stickstoffatom, das bei pH 6 überwiegend geladen vorliegt, z. B. Pro, Lys, Arg, His, Desmosin und Isodesmosin. Besonders bevorzugt wird Lys durch Arg, Orn, oder Citrullin ersetzt. Ein weiteres erfindungsgemäß bevorzugtes Tripeptid ist Gly-His-Arg (INCI-Bezeichnung: Tripep- tide-3) sowie dessen Derivat N-Myristoyl-Gly-His-Arg, das z. B. unter der Bezeichnung Collasyn 314-GR von Therapeutic Peptide Inc. erhältlich ist; weitere erfindungsgemäß bevorzugte Tripeptide sind ausgewählt aus Lys-Val-Lys, Lys-Val-Dab (Dab = Diaminobuttersäure), Lys-Phe-Lys, Lys-Ile- Lys, Dab-Val-Lys, Lys-Val-Orn, Lys-Val-Dap (Dap = Diaminopropionsäure), Dap-Val-Lys, Palmitoyl-Lys-Val-Lys, z. B. erhältlich von der Firma Pentapharm unter der Bezeichnung SYN®- COLL, Lys-Pro-Val, Tyr-Tyr-Val, Tyr-Val-Tyr, Val-Tyr-Val (Tripeptide-2), Tripeptide-4 (z. B. ATPeptide, zu beziehen über IMPAG), His-Ala-Om N-Elaidoyl-Lys-Phe-Lys und N-Acetyl-Arg-Lys- Arg-NH2.
Erfindungsgemäß bevorzugte, gegebenenfalls N-acylierte und/oder veresterte Tetrapeptide sind ausgewählt aus Rigin und Rigin-basierten Tetrapeptiden sowie ALAMCAT-Tetrapeptiden. Rigin weist die Sequenz Gly-Gln-Pro-Arg auf. Rigin-basierte Tetrapeptide umfassen die Rigin-Analoga und Rigin-Derivate, insbesondere das erfindungsgemäß besonders bevorzugte N-Palmitoyl-Gly- Gln-Pro-Arg, das z. B. unter der Bezeichnung Eyeliss von Sederma erhältlich ist, aber auch einen Bestandteil des Produktes Matrixyl 3000 von Sederma darstellt. Zu den Rigin-Analoga zählen solche, bei denen die vier Aminosäuren umarrangiert sind und/oder bei denen gegenüber Rigin maximal zwei Aminosäuren substituiert sind, z. B. die Sequenz Ala-Gln-Thr-Arg. Bevorzugt hat mindestens eine der Aminosäuren der Sequenz ein Pro oder Arg und besonders bevorzugt beinhaltet das Tetrapeptid sowohl Pro als auch Arg, wobei ihre Reihenfolge und Position variieren können. Die substituierenden Aminosäuren können aus jeder Aminosäure, die im folgenden definiert ist, ausgewählt werden. Besonders bevorzugte Rigin-basierte Tetrapetide umfassen: Xaa- Xbb-Arg-Xcc, Xaa-Xbb-Xcc-Pro, Xaa-Xbb-Pro-Arg, Xaa-Xbb-Pro-Xcc, Xaa-Xbb-Xcc-Arg, wobei Xaa, Xbb und Xcc gleiche oder voneinander verschiedene Aminosäuren sein können und wobei Xaa ausgewählt ist aus GIy und den Aminosäuren, die GIy substituieren können, Xbb ausgewählt ist aus GIn und den Aminosäuren, die GIn substituieren können, Xcc ausgewählt ist aus Pro oder Arg und den Aminosäuren, die Pro und Arg substituieren können.
Die bevorzugten Aminosäuren, die GIy ersetzen können, beinhalten eine aliphatische Seitenkette, z. B. ß-Ala, AIa, VaI, Leu, Pro, Sarcosin (Sar) und lsoleucin (He). Die bevorzugten Aminosäuren, die GIn ersetzen können, beinhalten eine Seitenkette mit einer Aminogruppe, die bei neutralem pH (pH 6-7) überwiegend ungeladen vorliegt, z.B. Asn, Lys, Orn, 5-Hydroxyprolin, Citrullin und Canavanin.
Die bevorzugten Aminosäuren, die Arg ersetzen können, beinhalten eine Seitenkette mit einem Stickstoffatom, das bei pH 6 überwiegend geladen vorliegt, z.B. Pro, Lys, His, Desmosin und Isodesmosin.
Als Rigin-Analoga sind erfindungsgemäß Gly-Gln-Arg-Pro und Val-Val-Arg-Pro bevorzugt. ALAMCAT-Tetrapeptide sind Tetrapeptide, die mindestens eine Aminosäure mit einer aliphatischen Seitenkette enthalten, z. B. ß-Ala, AIa, VaI, Leu, Pro, Sarcosin (Sar) und Isoleucin (He). Weiterhin beinhalten ALAMCAT-Tetrapeptide mindestens eine Aminosäure mit einer Seitenkette mit einer Aminogruppe, die bei neutralem pH (pH 6-7) überwiegend ungeladen vorliegt, z.B. GIn, Asn, Lys, Orn, 5-Hydroxyprolin, Citrullin und Canavanin. Weiterhin beinhalten ALAMCAT- Tetrapeptide mindestens eine Aminosäure mit einer Seitenkette mit einem Stickstoffatom, das bei pH 6 überwiegend geladen vorliegt, z. B. Arg, Pro, Lys, His, Desmosin und Isodesmosin. Als vierte Aminosäure können ALAMCAT-Tetrapeptide jede beliebige Aminosäure enthalten; bevorzugt ist jedoch auch die vierte Aminosäure aus den drei vorstehend genannten Gruppen ausgewählt. Erfindungsgemäß bevorzugte, gegebenenfalls N-acylierte und/oder veresterte Pentapeptide sind ausgewählt aus Lys-Thr-Thr-Lys-Ser und seinen N-acylierten Derivaten, besonders bevorzugt N- Palmitoyl-Lys-Thr-Thr-Lys-Ser, das unter der Bezeichnung Matrixyl von der Firma Sederma erhältlich ist, weiterhin N-Palmitoyl-Tyr-Gly-Gly-Phe-Met, Val-Val-Arg-Pro-Pro, N-Palmitoyl-Tyr-Gly- Gly-Phe-Leu, Gly-Pro-Phe-Pro-Leu und N-Benzyloxycarbonyl-Gly-Pro-Phe-Pro-Leu (die beiden letztgenannten stellen Serinproteinase-Inhibitoren zur Inhibition der Desquamation dar). Erfindungsgemäß bevorzugte, gegebenenfalls N-acylierte und/oder veresterte Hexapeptide sind VaI- Gly-Val-Ala-Pro-Gly und seine N-acylierten Derivate, besonders bevorzugt N-Palmitoyl-Val-Gly- Val-Ala-Pro-Gly, das unter der Bezeichnung Biopeptide EL von der Firma Sederma erhältlich ist, weiterhin Acetyl-Hexapeptide-3 (Argireline von Lipotec), Hexapeptide-4 (z. B. Collasyn 6KS von Therapeutic Peptide Inc. (TPI)), Hexapeptide-5 (z. B. Collasyn 6VY von TPI), Myristoyl Hexapep- tide-5 (z. B. Collasyn 614VY von TPI), Myristoyl Hexapeptide-6 (z. B. Collasyn 614VG von TPI), Hexapeptide-8 (z. B. Collasyn 6KS von TPI), Myristoyl Hexapeptide-8 (z. B. Collasyn Lipo-6KS von TPI), Hexapeptide-9 (z. B. Collaxyl von Vincience) und Hexapeptide-10 (z. B. Collaxyl von Vincien- ce oder Seriseline von Lipotec), Ala-Arg-His-Leu-Phe-Trp (Hexapeptide-1 ), Acetyl Hexapeptide-1 (z. B. Modulene von Vincience), Acetyl Glutamyl Hexapeptide-1 (z. B. SNAP-7 von Centerchem), Hexapeptide-2 (z. B. Melanostatine-DM von Vincience), Ala-Asp-Leu-Lys-Pro-Thr (Hexapeptide-3, z. B. Peptide 02 von Vincience), Val-Val-Arg-Pro-Pro-Pro, Hexapeptide-4 (z. B. Collasyn 6KS von Therapeutic Peptide Inc. (TPI)), Hexapeptide-5 (z. B. Collasyn 6VY von TPI), Myristoyl Hexapep- tide-5 (z. B. Collasyn 614VY von TPI), Myristoyl Hexapeptide-6 (z. B. Collasyn 614VG von TPI), Ala-Arg-His-Methylnorleucin-Homophenylalanin-Trp (Hexapeptide-7), Hexapeptide-8 (z. B. Collasyn 6KS von TPI), Myristoyl Hexapeptide-8 (z. B. Collasyn Lipo-6KS von TPI), Hexapeptide-9 (z. B. Collaxyl von Vincience), Hexapeptide-10 (z. B. Collaxyl von Vincience) und Hexapeptide-11 (z. B. Peptamide-6 von Arch Personal Care). Ein erfindungsgemäß bevorzugtes Pentadecapeptid ist z. B. der Rohstoff Vinci 01 von Vincience (Pentadecapeptide-1 ). Ein weiteres bevorzugtes optionales Aminosäureoligomer ist das Peptidderivat L-Glutamylaminoethyl-indol (Glistin von Exsymol). Erfindungsgemäß besonders bevorzugt ist die Kombination aus N-Palmitoyl-Gly-His-Lys und N- Palmitoyl-Gly-Gln-Pro-Arg, wie sie beispielsweise in dem Rohstoff Matrixyl 3000 von der Firma Sederma erhältlich ist.
Besonders bevorzugt enthält das erfindungsgemäße Mittel weitere Mittel zur Förderung der Collagensynthese, insbesondere Matrixyl™ und Matrixyl™3000. Matrixyl™ und Matrixyl™3000, erhältlich beispielsweise von der Firma Sederma, sind Mischungen modifizierter Peptide, die von den sogenannten Matrikinen abgeleitet werden. Matrikine sind Peptidfragmente aus bis zu 20 Aminosäuren, die aus der Proteolyse von Matrixproteinen wie Kollagen oder Elastin entstehen. Diese Fragmente wirken als autokrine und parakrine Botenstoffe und beeinflussen die Zellproliferation und Bindegewebs-Neubildung. Die Peptidkombinationen von Matrixyl™ und Matrixyl™3000 führen in in vitro-Untersuchungen zu einer gesteigerten Kollagensynthese (im Falle von Matrixyl™3000 +258% Kollagen Typ I). In vivo zeigen beide Peptidkombinationen eine Reduzierung von Falten sowohl hinsichtlich der Tiefe als auch ihrer Anzahl. In vitro-Tests ergaben, dass die Verstärkung der Collagen I-Synthese mit Matrixyl® dreimal größer ist als mit Vitamin C; und bei Collagen IV über 50 % größer.
Unabhängig von dem genauen Ablauf der Behandlung hat es sich als vorteilhaft erwiesen, das erfindungsgemäße Mittel bei einer Temperatur von 20 bis 55 0C, insbesondere von 35 bis 4O0C, anzuwenden.
Hinsichtlich der Art, gemäß das erfindungsgemäße Mittel auf das Haar, aufgebracht wird, bestehen keine prinzipiellen Einschränkungen.
Besonders bevorzugt enthält das erfindungsgemäße Mittel weitere Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares: Sieht man von den Blondiermitteln, die eine oxidative Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfärbung im wesentlichen drei Typen von Haarfärbemitteln von Bedeutung:
Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoffvorprodukte, sogenannte Entwicklerkomponenten und Kupplerkomponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus.
Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbungen, so dass dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare "Entfärbung" eintritt.
Schließlich hat in jüngerer Zeit ein weiteres Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. Ein solches Verfahren mit 5,6-Dihydroxyindolin als Farbstoffvorprodukt wurde in der EP-B1- 530 229 beschrieben. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6- Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die natürliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzigem Oxidationsmittel erfolgen, so dass auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden.
Die Zusammensetzung des einsetzbaren Färbe- oder Tönungsmittels unterliegt keinen prinzipiellen
Einschränkungen.
Als Farbstoff(vorprodukt)e können
• Oxidationsfarbstoffvorprodukte vom Entwickler- und Kuppler-Typ,
• natürliche und synthetische direktziehende Farbstoffe und
• Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4- Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phenylendiamin, p-Toluylendiamin, p- Aminophenol, o-Aminophenol, 1 -(2'-Hydroxyethyl)-2,5-diaminobenzol, N,N-Bis-(2-hydroxy-ethyl)-p- phenylendiamin, 2-(2,5-Diaminophenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetra- aminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4- Dihydroxy-5,6-diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino- 4-amino-phenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phenol, Bis-(2-hydroxy-5- aminophenyl)-methan, 1 ,4-Bis-(4-aminophenyl)-diazacycloheptan, 1 ,3-Bis(N(2-hydroxyethyl)-N(4- aminophenylamino))-2-propanol, 4-Amino-2-(2-hydroxyethoxy)-phenol, 1 ,10-Bis-(2,5- diaminophenyl)-1 ,4,7,10-tetraoxadecan sowie 4,5-Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-1-(2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, 1-(2'- Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ werden in der Regel m-Phenylen- diaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m-Aminophe- nolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3-
Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4- aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6- methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5-(2'-
Hydroxyethyl)-amino-2-methylphenol, 3-(Diethylamino)-phenol, N-Cyclopentyl-3-aminophenol,
1 ,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3- aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, 1 ,3-
Bis-(2,4-diaminophenoxy)-propan, 1 -Methoxy-2-amino-4-(2'-hydroxyethylamino)benzol, 1 ,3-
Bis-(2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol und 1-Amino-
3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-
Diamino-1 -methylbenzol,
Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Re- sorcinmonomethylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-
Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1 ,2,4-Trihydroxybenzol,
Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2-Amino-5- chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihydroxy-3,4- dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3-Diamino-6- methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin,
Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2-Hydroxymethyl-1- naphthol, 2-Hydroxyethyl-1-naphthol, 1 ,5-Dihydroxynaphthalin, 1 ,6-Dihydroxynaphthalin, 1 ,7-
Dihydroxynaphthalin, 1 ,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-
Dihydroxynaphthalin,
Morpholinderivate wie beispielsweise 6-Hydroxybenzomorpholin und 6-Amino-benzomorpholin,
Chinoxalinderivate wie beispielsweise 6-Methyl-1 ,2,3,4-tetrahydrochinoxalin,
Pyrazolderivate wie beispielsweise 1-Phenyl-3-methylpyrazol-5-on,
Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol,
Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4-methylendioxybenzol, 1-
Amino-3,4-methylendioxybenzol und 1 -(2'-Hydroxyethyl)-amino-3,4-methylendioxybenzol, Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1 ,5-, 2,7- und 1 ,7-Dihydroxy- naphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3-hydroxypyridin, Resorcin, 4- Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methyl resorcin, 5-Methylresorcin, 2,5- Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1 , Disperse Violet 1 , Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 1 ,4-Bis-(ß-hydroxyethyl)-amino-2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1 ,2,3,4-tetrahydrochinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6- chloro-4-nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1 -hydroxy-4- nitrobenzol.
In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
Es ist nicht erforderlich, dass die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.
Bezüglich der in den Haarfärbe- und -tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermatology" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen.
Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Substituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin, 5,6- Dihydroxyindolin-2-carbonsäure, 6-Hydroxyindolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6- Dihydroxyindol, N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6- dihydroxyindol, N-Butyl-5,6-dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6- Aminoindol und 4-Aminoindol.
Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl- 5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl- 5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
Bei der Verwendung von Farbstoff-Vorstufen vom Indolin- oder Indol-Typ kann es bevorzugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α- Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt.
Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH-Werte im Bereich von etwa 5 bis 11 , eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdalkalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, 2-Amino-2-methyl-1 ,3-propandiol, 2-Amino-2- ethyl-1 ,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2- methyl-propanol und 2-Amino-2-methyl-1 ,3-propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω-Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Prozesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungs- Produkte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per-Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel. So können die Enzyme (Enzymklasse 1 : Oxidoreduktasen) Elektronen aus geeigneten Entwicklerkomponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40 0C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark ten- sidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorprodukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufgebracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachshampooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösungen als Oxidationsmittel bevorzugt sein.
Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, dass dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispielsweise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden. Als Konfektionierung des erfindungsgemäßen Mittels sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Diese werden in der Regel auf wäßriger oder wäßrig-alkoholischer Basis formuliert. Als alkoholische Komponente kommen dabei niedere Alkanole sowie Polyole wie Propylenglykol und Glycerin zum Einsatz. Ethanol und Isopropanol sind bevorzugte Alkohole. Wasser und Alkohol können in der wäßrig alkoholischen Basis in einem Gewichtsverhältnis von 1 : 10 bis 10 : 1 vorliegen. Wasser sowie wäßrig-alkoholische Mischungen, die bis zu 50 Gew.-%, insbesondere bis zu 25 Gew.-%, Alkohol, bezogen auf das Gemisch Alkohol/Wasser, enthalten, können erfindungsgemäß bevorzugte Grundlagen sein. Der pH-Wert dieser Zubereitungen kann prinzipiell bei Werten von 2 - 1 1 liegen. Er liegt bevorzugt zwischen 2 und 7, wobei Werte von 3 bis 5 besonders bevorzugt sind. Zur Einstellung dieses pH-Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)- ethylendiamin.
Neben dem erfindungsgemäß zwingend erforderlichen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören, kann das Mittel prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise nichtionogene Tenside wie beispielsweise Alkylphenolpolyglycolether, Fettsäurepoly- glycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, wie insbesondere ethoxyliertes Rizinusöl, Alk(en)yloligoglucoside, Fettsäure-N-alkylglucamide, Polyolfettsäureester, Zuckerester, Sorbitanester und Polysorbate. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können sie eine konventionelle oder eingeengte Homologenverteilung aufweisen. anionische Tenside, insbesondere Alkylsulfate, Alkylpolyglykolethersulfate und Ether- carbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül, Seifen sowie Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethyl-ester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, zwitterionische Tenside, insbesondere die sogenannten Betaine wie die N-Alkyl-N,N-dime- thylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammonium-glycinat, N-Acyl- aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhy- droxyethylcarboxymethylglycinat, ampholytische Tenside wie beispielsweise N-Alkylglycine, N-Alkylpropionsäuren, N-Alkyl- aminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine,
N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkyl-aminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe, nichtionische Polymere wie beispielsweise VinylpyrrolidonΛ/inylacrylat-Copoly mere,
Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum,
Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z.
B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und
Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische
Hydrokolloide wie z. B. Polyvinylalkohol,
Strukturanten wie Maleinsäure und Milchsäure, haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
Parfümöle, Dimethylisosorbid und Cyclodextrine,
Lösungsmittel und -vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol, symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n- octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n-dodecylether, n-Hexyl- n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-
Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-
Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C-Atomen, und Monoester der Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen, faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose, konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl,
Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie Phospholipide, beispielsweise Sojalecithin,
Ei-Lecithin und Kephaline, quaternierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
Entschäumer wie Silikone,
Farbstoffe zum Anfärben des Mittels,
Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
Lichtschutzmittel, insbesondere derivatisierte Benzophenone, Zimtsäure-Derivate und Triazine, - weitere Substanzen zur Einstellung des pH-Wertes, wie beispielsweise α- und ß- Hydroxycarbonsäuren
Wirkstoffe wie Allantoin und Bisabolol,
Cholesterin,
Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
Fettsäurealkanolamide,
Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate,
Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate,
- Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat, Pigmente,
Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cysteamin,
Thioäpfelsäure und α-Mercaptoethansulfonsäure,
Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
Antioxidantien.
Das erfindungsgemäße Mittel kann außerdem Tenside enthalten. Bei diesen kann es sich sowohl um anionische, ampholytische, zwitterionische oder nichtionogene Tenside als auch um kationische Tenside handeln.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird, beispielsweise in einem Shampoo, eine Kombination aus anionischen und nichtionischen Tensiden oder eine Kombination aus anionischen und amphoteren Tensiden eingesetzt. In einem Haartonic kann der Fachmann jedoch auch weitgehend oder vollständig auf den Einsatz von Tensiden verzichten.
Es hat sich in Einzelfällen als vorteilhaft erwiesen, die Tenside aus amphoteren oder nichtionischen Tensiden auszuwählen.
Als anionische Tenside eignen sich in erfindungsgemäßen Mitteln alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 10 bis 22 C- Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Nichtionogene Tenside enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Po- lyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an
Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga sowie
Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl.
Bevorzugte nichtionische Tenside sind Alkylpolyglykoside der allgemeinen Formel R1O-(Z)x. Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet.
Der Alkylrest R1 enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Die erfindungsgemäß verwendbaren Alkylpolyglykoside können beispielsweise nur einen bestimmten Alkylrest R1 enthalten. Üblicherweise werden diese Verbindungen aber ausgehend von natürlichen Fetten und Ölen oder Mineralölen hergestellt. In diesem Fall liegen als Alkylreste R Mischungen entsprechend den Ausgangsverbindungen bzw. entsprechend der jeweiligen Aufarbeitung dieser Verbindungen vor.
Besonders bevorzugt sind solche Alkylpolyglykoside, bei denen R1 im wesentlichen aus C8- und C10-Alkylgruppen, im wesentlichen aus C12- und C14-Alkylgruppen, im wesentlichen aus C8- bis C16-Alkylgruppen oder im wesentlichen aus C12- bis C16-Alkylgruppen besteht.
Als Zuckerbaustein Z können beliebige Mono- oder Oligosaccharide eingesetzt werden. Üblicherweise werden Zucker mit 5 bzw. 6 Kohlenstoffatomen sowie die entsprechenden Oligosaccharide eingesetzt. Solche Zucker sind beispielsweise Glucose, Fructose, Galactose, Arabinose, Ribose, Xylose, Lyxose, Allose, Altrose, Mannose, Gulose, Idose, Talose und Sucrose. Bevorzugte Zuckerbausteine sind Glucose, Fructose, Galactose, Arabinose und Sucrose; Glucose ist besonders bevorzugt. Die erfindungsgemäß verwendbaren Alkylpolyglykoside enthalten im Schnitt 1 ,1 bis 5 Zuckereinheiten. Alkylpolyglykoside mit x-Werten von 1 ,1 bis 1 ,6 sind bevorzugt. Ganz besonders bevorzugt sind Alkylglykoside, bei denen x 1 ,1 bis 1 ,4 beträgt.
Die Alkylglykoside können neben ihrer Tensidwirkung auch dazu dienen, die Fixierung von Duftkomponenten auf dem Haar zu verbessern. Der Fachmann wird also für den Fall, dass eine über die Dauer der Haarbehandlung hinausgehende Wirkung des Parfümöles auf dem Haar gewünscht wird, bevorzugt zu dieser Substanzklasse als weiterem Inhaltsstoff der erfindungsgemäßen Zubereitungen zurückgreifen.
Auch die alkoxylierten Homologen der genannten Alkylpolyglykoside können erfindungsgemäß eingesetzt werden. Diese Homologen können durchschnittlich bis zu 10 Ethylenoxid- und/oder Propylenoxideinheiten pro Alkylglykosideinheit enthalten.
Weiterhin können, insbesondere als Co-Tenside, zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktive Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO9- oder -SOa^'-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl- N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammonium-glycinat, N- Acyl-aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Be- zeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Ebenfalls insbesondere als Co-Tenside geeignet sind ampholytische Tenside. Unter ampholyti- schen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8- C18-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine - COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobutter- säuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokos- alkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-18-Acylsarcosin.
Erfindungsgemäß werden als kationische Tenside insbesondere solche vom Typ der quartären Ammoniumverbindungen, der Esterquats und der Amidoamine eingesetzt. Bevorzugte quaternäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltri- methylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniurnchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalze von Fettsäuren mit 1 ,2- Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N1N- Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so dass man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder - alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein. Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. Kh. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Extrakten aus Pflanzen, die der Familie der Oleaceae angehören, zur Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln, Förderung oder Verstärkung des Haarwuchses, Haarverdickung, Behandlung von Haarausfall und Beeinflussung der Keratinsynthese, Haarkonditionierung, Aufrechterhaltung oder Förderung der Homeostase des Haarfollikels bzw. Behandlung pathologischer Zustände des Haarfollikels; Behandlung pathologischer Zustände der Haut, wie Neurodermitis, Sonnenbrand, Psoriasis, Sklerodermie, Ichtyosis, atopische Dermatitis, Akne, Seborrhoe, Lupus erythematodes, Rosacea, Melanoma, Basalioma, Hautkarzinom oder Hautsarkom.
Besonders bevorzugt ist die Verwendung der erfindungsgemäßen Extrake zur zur Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln und zur Haarverdickung.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln, Förderung oder Verstärkung des Haarwuchses, Haarverdickung, Behandlung von Haarausfall und Beeinflussung der Keratinsynthese, Haarkonditionierung, Aufrechterhaltung oder Förderung der Homeostase des Haarfollikels bzw. Behandlung pathologischer Zustände des Haarfollikels; Behandlung pathologischer Zustände der Haut, wie Neurodermitis, Sonnenbrand, Psoriasis, Sklerodermie, Ichtyosis, atopische Dermatitis, Akne, Seborrhoe, Lupus erythematodes, Rosacea, Melanoma, Basalioma, Hautkarzinom oder Hautsarkom, dadurch gekennzeichnet, dass man ein erfindungsgemäßes Mittel auf die Haare bzw. die Haut aufbringt.
Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch darauf einzuschränken:
Beschreibung des Extraktes
Bei dem Extrakt aus Blättern von Olea europaea handelt es sich um einen ethanolischen Auszug. Im speziellen Fall handelt es sich um einen Extrakt aus 80% Ethanol, der in einem patentierten Verfahren (EP-B-O 730 830) der Firma Flachsmann (Artikelnummer 0085943) gewonnen wurde. Das patentierte Verfahren wirkt sich besonders schonend auf enthaltene Antioxidantien wie Oleuropein aus. Entsprechend enthält der Extrakt hohe Mengen an Oleuropein (18-26%).
Beispiel 1 :
Bestimmung des antioxidativen Potentials gegenüber Hydroxylradikalen (Liposomenperoxidation):
Als Maß für die antioxidative Kapazität der Olea-europaea-Extrakte wurde ihre Fähigkeit bestimmt, die Lipidperoxidation in Liposomen zu verhindern. Dazu wurde eine 0,2 Gew.- %ige Liposomen Suspension aus Sojalecithin in Phosphatpuffer hergestellt. Die Lipidperoxidation wurde durch Zugabe eines Eisen(ll)ascorbat Komplexes (1OmM Fe(ll)SO4, 50 mM Ascorbat) initiiert. Die Inkubation wurde bei 37°C für 45 min. durchgeführt. Als Endprodukt der Lipidperoxidation entsteht Malondialdeyd, welches über eine Farbreaktion mit Thiobarbitursäure quantifiziert wird (photometrische Bestimming des Malondialdehyd-Thiobarbitursäure Komplexes bei 532 nm). Zur Bestimmung der antioxidativen Kapazität des Olea-europaea-Extraktes wurde dieses in unterschiedlichen Konzentration vor der Zugabe des Eisen(ll)ascorbat Komplexes zum Inkubationsansatz gegeben. Ermittelt wurde die Konzentration (in μg/ml), bei der die Lipidperoxidation um 50 % verringert ist (= LDL50) im Vergleich zur Bestimmung ohne Zusatz an Pflanzenextrakt. D.h. je geringer die angegebene Konzentration LDL50, desto höher ist die antioxidative Kapazität des untersuchten Olea-europaea -Extraktes. Als Referenzsubstanzen dienten die Antioxidantien Lipochroman-6, Trolox, BHT, Tocopherol und Methylbrenzcatechin.
Bestimmung des Antioxidativen Potentials gegenüber Superoxiden (Chemolumineszenz, ACW)
Das antioxidative Potential gegenüber Superoxiden wird mit Hilfe der Chemolumineszenzmethoden ermittelt und mit einem Meßgerät der Firma Jenanalytics gemessen.
Meßprinzip:
Die Stärke der Chemolumineszenz erreicht in einer unbehandelten wässrigen Probe ihr Maximum Vmax nach einer fixen Zeit tmin = tunbehandeit- Durch die Zugabe von Antioxidantien werden durch UV gebildete ROS abgefangen, so dass Luminol erst die Energie in Chemolumineszenz umsetzen kann, wenn das antioxidative Potential der Prüfsubstanz erschöpft ist. Vmax wird zu einem späteren Zeitpunkt tProbβ erreicht. Um die einzelnen Antioxidantien untereinander vergleichen zu können, wird die Konzentration c (μg/ml) ermittelt, die benötigt wird, um tProbe = 3 x tmin zu erreichen. Je niedriger diese Konzentration ist, desto besser ist das antioxidative Potential der Substanz.
Tabelle 1 : Bestimmung des antioxidativen Potentials, LDL50 [μg/ml] und ACW [ng/ml]
Figure imgf000027_0001
n.l.: nicht löslich in diesen Testsystem
Der Extrakt aus Olea europaea weist antioxidative Eigenschaften gegen die Bildung von Hydroxyradikalen auf. Gegenüber Superoxiden hat es geringfügig bessere Eigenschaften als die wasserlösliche Standardsubstanz Vitamin C (Tabelle 1 )
Beispiel 2:
Kollagensynthese
Durchführung:
Zur Herstellung des Dermismodells wurden zunächst Fibroblasten auf eine aus Collagen, Chitosan und Glucosaminoglucan bestehende Matrix ausgesät. Nach 28-tägiger Kultivierungsdauer der
Fibroblasten wurde mit der systemischen Behandlung begonnen.
Die Behandlung erfolgte, indem die Testsubstanzen bzw. die positive Kontrolle dem Medium zugefügt wurden. Die Behandlung erfolgte alle zwei Tage, d.h. dreimal innerhalb von 6 Tagen.
Zusätzlich wurden unbehandelte Kulturen mitgeführt.
Methoden:
Collagensynthese
Die Messmethode basiert auf dem besonders hohen Gehalt an Prolin und Hydroxyprolin in
Collagenmolekülen und auf dem Einbau von radioaktivem 3H-Prolin während der
Collagensynthese durch Fibroblasten im Hautmodell. Für die letzten 24 Stunden der Kultivierung wurden jeweils 5 uCi/ml 3H-Prolin zugegeben. Nach Testende wurde das in der Matrix vorhandene Collagen spezifisch mittels Collagenase abgebaut, das übrige Protein gefällt und die inkorporierte Aktivität im Überstand (Collagen) und im Präzipitat (Nicht-Collagen-Proteine) gemessen. Durch die Bestimmung der inkorporierten Radioaktivität im Collagen im Vergleich zu den NichtCollagen-Proteinen kann der prozentuale Anteil des Collagens am Gesamtprotein ermittelt werden.
Collagen [%] = DPMcollagen
DPMcollagen + 5,4 X DPM Nicht-Collagen - Proteine
Der Extrakt aus Olea europaea steigerte die Kollagensynthese der Fibroblasten dosisabhängig gegenüber der unbehandelten Kontrolle auf maximal 148%. Im Vergleich dazu induzierte die Positivkontrolle Vitamin C bei einer Konzentration von 44 μg/ml die Kollagensynthese auf 144%. Der Extrakt aus Olea europaea zeigt somit eine vergleichbare biologische Wirkung. (Tabelle 2)
Tabelle 2: Einfluß der Prüfsubstanzen auf die Kollagensynthese von Fibroblasten [% (sd)]
Figure imgf000028_0001
Beispiel 3
Bestimmung der Zytotoxizität
Um zu überprüfen, inwieweit die Zellkulturen durch mögliche zytotoxische Effekte der Testsubstanzen beeinträchtigt wurden, wurde die Vitalität der durch einen Farbstofftest, den MTT- Test, überprüft.
Der MTT-Test liefert Informationen über die Zellproliferation und Zytotoxizität. Im Test wird die metabolische Aktivität lebender Zellen bestimmt. Die exakte Durchführung des Tests ist in J. Immunol. Methods 65, 55, 1983 (T. Mosmann) offenbart, worauf hier explizit Bezug genommen wird. Das Tetrazoliumsalz 3-[4,5-Dimethylthiazol- 2-yl]-2,5diphenyltetrazoliumbromid (MIT) wird in lebenden Zellen enzymatisch reduziert und in ein blaues, wasserunlösliches Formazansalz umgewandelt. Dieses Formazansalz wird extrahiert und photometrisch quantifiziert. Die Farbintensität der Formazansalz-Lösung kann mit der Anzahl lebender Zellen beziehungsweise mit der Vitalität eines Gewebes in der untersuchten Probe korreliert werden. Tabelle 3: Vitalität der Zellkulturen in Abhängigkeit verschiedener Konzentrationen an Olea europaea Extrakt (%[Standardabweichung])
Figure imgf000029_0001
Aus den vorliegenden Daten läßt sich ein MTT50 Wert von ca. 2900 μg/ml bestimmen. Dieser Wert zeigt eine sehr geringe Zytotoxizität des Olea-europaea-Extraktes (Tabelle 3).
Beispiel 4:
Nachweis der Stimulierung der ATP-Synthese in normalen humanen epidermalen Keratinozyten (NHEK) und dermalen Papillenzellen durch einen erfindungsgemäßen Extrakt. Der erfindungsgemäße Extrakt wurde in vitro an normalen humanen epidermalen Keratinozyten (NHEK) und an dermalen Papillenzellen auf seine stimulierende Wirkung auf die intrazelluläre ATP Synthese getestet.
ATP-Nachweismethode
Der intrazelluläre ATP-Gehalt wird über bioluminometrische Messungen mit einem Luciferase- Assay erfasst. Dazu werden die Zellkulturen mittels eines Extraktionspuffers aufgeschlossen und das Zell-Lysat mit einem kommerziell erhältlichen LuciferaseReagenz versetzt. Das dabei gebildete Biolumineszenzlicht wird mit Hilfe eines Lumineszenzmessgerätes erfasst und ist direkt proportional zur Menge des im Lysat vorhandenen ATP.
Versuchsdurchführung
Vorbereitung der Extraktlösungen zur Prüfung am Modell
Die Tests wurden mit verdünnten Lösungen von verschiedenen Extrakten durchgeführt. Zur Herstellung der Testlösungen wurden die Extrakte mit der zur Kultivierung der Keratinozyten bzw. dermalen Papillenzellen verwendeten Nährmediumlösung (KGM Nährmedium der Firma Cell Systems bzw. Chang D Medium der Firma Irvine Scientific) verdünnt und homogenisiert. Die Testlösungen enthielten die Extrakte in unterschiedlichen Konzentrationen.
Vorbereitung der normalen humanen epidermalen Keratinozyten und Inkubation mit den Extraktlösungen
Die Versuche wurden an normalen humanen epidermalen Keratinozyten (NHEK P 135 der Firma Cell Systems) durchgeführt. Es handelt sich um primäre Keratinozyten. Nach der Anzucht der Zellen im KGM Nährmedium wurden die Zellen in 96-Kavitätsmikrotiterplatten mit einer Dichte von ca. 2000 Zellen pro Kavität eingesät. Nach drei Tagen wurde das Anzuchtmedium gegen die verschiedenen extrakthaltigen Testlösungen ausgetauscht.
In jeder Versuchsreihe wurden unbehandelte, das heißt extrakt-frei inkubierte Zellkulturen mitgeführt und analysiert. Die Inkubation der primären Keratinozyten mit den einzelnen Testlösungen erfolgte anschließend für 6 Stunden im C02-Inkubator bei einer Temperatur von 37°C und 5 Vol.-% C02. Nach Ablauf der jeweiligen Inkubationszeiten wurde der ATP-Gehalt der Zellen analysiert (siehe unten). Nach 24 Stunden Inkubationszeit wurde die Vitalität (Zellproliferation/Metabolismus) der Kulturen mit Hilfe des MTT-Tests bestimmt.
Durchführung der ATP-Messungen an Keratinocyten
Nach den jeweils vorgesehenen Inkubationszeiten wurden die Kontroll- bzw. Testlösungen von den Keratinozyten durch vorsichtiges Waschen entfernt. Anschließend wurden 60 μl eines Lyse-Puffers in jede Kavität (well) pipettiert. Die Mikrotiterplatten wurden dann 5 Minuten bei Raumtemperatur geschüttelt. Der Lyse-Puffer bestand aus einer wässrigen Lösung von 10 MM TRIS (2-Amino-2- hydroxymethyl-1 ,3-propandiol), 1 mM EDTA, 100 MM NaCI, 5 MM M9C12 und 1 Gew.-% Nonidet P 40 (ethoxylierter Fettalkohol, Firma Shell).
Die ATP-Bestimmungen erfolgten mit Hilfe des ATPLiteTM-M Assays (Packard). Das Testprinzip dieses Assays beruht darauf, dass die Luciferase von Photinus pyralis eine Reaktion katalysiert, bei der in Gegenwart von ATP D-Luciferin in Oxyluciferin umgewandelt wird. Bei dieser Reaktion wird grünes Licht emittiert, das mit einem Luminometer gemessen werden kann. Das emittierte Biolumineszenzlicht ist proportional zur Menge des vorhandenen ATP.
Zur Bestimmung des ATP-Gehalts in Keratinocyten wurden 50 μl des Zell-Lysats in eine schwarze Luminometer-Mikrotiterplatte pipettiert, mit 50 μl Luciferase- Reagens aus dem ATPLiteTM-M Assay Kit versetzt und nach weiteren 10 min Inkubation im Dunkeln in das Luminometer eingesetzt, das die auftretende Biolumineszenz bei Raumtemperatur erfasst. Die Eichung des Luminometers erfolgte durch Biolumineszenz-Messungen mit ATP. Die Standardlösungen bewegten sich im Konzentrationsbereich von 1 ,6 - 10-9 bis 1 ,0 - 10- 6 mol ATP / I. Die Gleichung der Eichgeraden wurde zur Berechnung der ATP- Konzentration in den Zelllysaten herangezogen.
Vorbereitung der normalen humanen dermalen Papillenzellen, Inkubation mit den Extraktlösungen und Durchführung der ATP-Messung
Zur Bestimmung der ATP-Aktivität in dermalen Papillenzellen werden diese in geeigneter Weise unter Erhalt ihrer spezifischen Eigenschaften vorkultiviert, wie in der DE10162814 beschrieben, und in eine 48well-Zellkulturschale überführt. Die Behandlung mit dem Olivenblattextrakt erfolgte über 6 Stunden gegen eine unbehandelte Kontrolle. Anschließend wurden die Zellen mit jeweils 100 μl/Kavität eines im Testkit enthaltenen Lysepuffer für 5 min auf einem Schüttler lysiert. Danach wurden die Zellen für weitere 5 min mit jeweils 100 μl/Kavität mit der mitgelieferten Substratlösung auf dem Schüttler inkubiert und anschließend das Reaktionsgemisch in eine schwarze Mikrotiterplatte überführt. Nach einer Inkubationszeit von 10 min in der Dunkelheit erfolgte die Messung der Lumineszenz.
Der Extrakt aus Olea europaea steigerte die ATP-Produktion der Keratinocyten gegenüber der unbehandelten Kontrolle um maximal 42%. (Tabelle 4)
Der Extrakt aus Olea europaea steigerte die ATP-Produktion der dermalen Papillenzellen gegenüber der unbehandelten Kontrolle um maximal 37%. (Tabelle 5)
Tabelle 4: Einfluß der Prüfsubstanzen auf die ATP-Produktion von Keratinocyten in % (Standardabweichung)
Figure imgf000031_0001
Tabelle 5: Einfluß der Prüfsubstanzen auf die ATP-Produktion von dermalen Papillenzellen in % (Standardabweichung)
Figure imgf000031_0002
Beispiel 5:
Steigerung der Keratinsynthese
Die Haarstruktur ist im Wesentlichen von der Zusammensetzung spezieller haarspezifischer Strukturproteine abhängig, den Haarkeratinen. Durch die Beeinflussung der Zusammensetzung dieser spezifischen Proteine kann auf biologischer Ebene Einfluss auf die Haarstruktur genommen werden.
Die Expression verschiedener Haarkeratine im organotypischen Modell kann mit Hilfe eines quantitativen Real-Time-PCR- Verfahrens untersucht werden. Zur Durchführung der PCR wird zunächst mit Hilfe des RNeasy Mini Kits der Fa. Qiagen die RNA aus den organotypischen Modellen isoliert und mittels reverser Transkription in cDNA umgeschrieben. Bei der anschließenden PCR Reaktion, die mit Hilfe genspezifischer Primer für die jeweiligen Haarkeratine durchgeführt wird und die der Amplifikation der gesuchten Genabschnitte dient, wird die Bildung der PCR-Produkte online über ein Fluoreszenzsignal detektiert. Das Fluoreszenzsignal ist dabei proportional zur Menge des gebildeten PCR-Produktes. Je stärker die Expression eines bestimmten Gens ist, desto größer ist die Menge an gebildetem PCR-Produkt und um so höher ist das Fluoreszenzsignal.
Zur Quantifizierung der Genexpression wird die unbehandelte Kontrolle gleich 1 gesetzt und die Expression der zu bestimmenden Gene darauf bezogen (x-fache Expression). Dabei werden Werte, die größer/gleich der 1 ,8fachen Expression der unbehandelten Kontrolle sind als signifikant eingestuft.
Zur Untersuchung der Keratinsynthese wurden organotypische Modelle mit verschiedenen Konzentrationen des Blattextraktes aus Olea europea für 6h und 24h systemisch behandelt. Der Blattextrakt aus Olea europea steigerte die Genexpression der Haarkeratine hHa3-l und hHa4 im organotypischen Modell gegenüber der unbehandelten Kontrolle nach 24stündiger Applikation um maximal den Faktor 5,6. (Tabelle 6)
Tabelle 6: Einfluss von Olea europea auf die Haarkeratinsynthese
6-Std 24-Std hHa3-l hHa4 HHa3-l HHa4 unbehandelt 1 ,0 1 ,0 1 ,0 1 ,0
Olea 0,005% -1 ,6 -1 ,5 5,6 3,9
Olea 0,01 % 2,1 2,2 2,3 3,3
Formulierungsbeispiele: Beispiel 6:
Haarspülung
Olea-Extrakt 2,0
Eumulgin® B21 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffinöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®A-CA2 2,0
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
Phenonip®3 0,8
Wasser ad 100 PH = 7,0
1 Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth-20) (HENKEL)
2 Trimethylhexadecylammoniumchlorid (ca. 25 % Aktivsubstanz in Wasser; INCI-Bezeichnung: Aqua, Cetrimonium Chloride)
3 Hydroxybenzoesäuremethylester-Hydroxybenzoesäureethylester-Hydroxybenzoe- säurepropylester-Hydroxybenzoesäurebutylester-Phenoxyethanol-Gemisch (ca. 28 % Aktivsubstanz; INCI-Bezeichnung: Phenoxyethanol, Methylparaben, Ethylparaben, Propylparaben, Butylparaben) (NIPA)
Beispiel 7:
Haarspülung
Olea-Extrakt 1 ,0
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffinöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®L 805 2,0
Gluadin WQ 0,5
Gluadin WLM 0,2
Pantolacton 1 ,0
Subtilisin oder Papain 1 ,0
Citronensäure 0,4
Phenonip® 0,8
Wasser ad 100 PH - 7,0 5 Bis(Cocoylethyl)-hydroxyethyl-methyl-ammonium-methosulfat (ca. 76 % Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Dicocoylethyl Hydroxyethylmonium Methosulfat, Propylene Glycol) (HENKEL)
Beispiel 8:
Haarspülung
Olea-Extrakt 2,0
Isopropylmyristat 0,50
Paraffinum Liquidum 0,50
Cetearyl Alcohol 2,5
Eumulgin B 2 * 0,40
Citronensäure 0,20
Propylparaben 0,20
Wasser, vollentsalzt ad 100
Phenoxyethanol, rein 0,30
Methylparaben 0,20
Dehyquart F 75 2,0 * Eumulgin B 2 = Ceteareth-20
Beispiel 9:
Haarkur (rinse off)
Olea-Extrakt 4,0
Dehyquart® F757 4,0
Cetyl/Stearylalkohol 4,0
Paraffmöl perliquidum 15 cSt. DAB 9 1 ,5
Dehyquart® A-CA 4,0
Salcare®SC 96 0,5
Gluadin WQ 1 ,0
Gluadin WLM 1 ,0
Pantolacton 0,5
Subtilisin oder Papain 0,2
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
PH = 7,0
7 Fettalkohole-Methyltriethanolammoniummethylsulfatdialkylester-Gemisch (INCI-Bezeichnung:
Distearoylethyl Hydroxyethylmonium Methosulfate, Cetearyl Alcohol) (HENKEL) Beispiel 10:
Haarkur (rinse off)
Olea-Extrakt, 2,0
Dehyquart® L80 4,0
Cetyl/Stearylalkohol 6,0
Paraffmöl perliquidum 15 cSt. DAB 9 2,0
RewoquatOW 759 2,0
Sepigel®305 0,5
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
PH = 7,0
9 l-Methyl-2-nortalgalkyl-3-talgfettsäureamidoethylimidazolinium-methosulfat (ca. 75 %
Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Quaternium-27, Propylene Glycol) (WITCO)
Beispiel 1 1 :
Haarkur (auf dem Haar verbleibend)
Olea-Extrakt 3,0
Dehyquart® F75 0,3
Salcare®SC 96 5,0
Dow Corning®200 Fluid, 5 cSt.10 1 ,5
Gafquat®755N11 1 ,5
Biodocarb® 12 0,8
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
Parfumöl 0,25
Wasser ad 100 PH = 7,0
10
Polydimethylsiloxan (INCI-Bezeichnung: Dimethicone) (DOW CORNING) 11 Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymer, mit Diethylsi Aktivsubstanz in Wasser; INCI-Bezeichnung: Polyquaternium-11 ) (GAF) 12 3-lod-2-proinyl-n-buty!carbamat (INCI-Bezeichnung: lodopropyny! Butylcarbamate) (MILKER & GRÜNING)
Beispiel 12:
Haarkur (auf dem Haar verbleibend)
Olea-Extrakt 3,0
Sepigel®305 5,0
Dow Corning®Q2-5220 5 cSt.13 1 ,5
Genamin®DSAC14 0,3
Phenonip® 0,8
Gluadin WQ 0,5
Gluadin WLM 0,8
Pantolacton 1 ,0
Subtilisin oder Papain 0,8
Parfümöl 0,25
Wasser ad 100 PH = 7,0
13 Silicon-Glykol-Copolymer (INCI-Bezeichnung: Dimethicone Copolyol) (DOW CORNING)
14 Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
Beispiel 13:
Haarkur
Olea-Extrakt 2,0
Cetearyl Alcohol 5,00
Propylparaben 0,20
Stearamidopropyldimethylamine 1 ,50
Dehyquart F 75 *3 1 ,50
Paraffinum Liquidum 1 ,00
Quaternium-87 in Propylenglycol 1 ,50
Isopropylmyristat 2,00
Cutina GMS* 1 ,00
Methylparaben 0,20
Wasser ad 100
Citronensäure 0,45
Dehyquart A CA *2 5,00
Rheocare CTH (E) 0,50
Polymer JR 400 0,20 Pantolacton 0,20
Nikotinsäureamid 0,10
Phenoxyethanol, rein 0,40
D-Panthenol 75 % 0,20
Dow Corning 1403 Fluid 1 ,50
Parfüm 0,20 *1 Cutina GMS = Glyceryl Monostearate *2 Dehyquart A CA = Cetrimonium Chlorid *3 Dehyquart F 75 = Distearoylethyl Hydroxyethylmonium Methosulfate
Beispiel 14:
Shampoo:
Olea-Extrakt 1 ,5
LAURETHSULFAT 25% 40
CITRONENSÄURE 0,1
NATRIUMBENZOAT 0,5
DISODIUM COCOAMPHODIACETATE 6,0
SALICYLSÄURE 0,1
HYDROTRITICUM WQ 1 ,0
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,2
CETIOL HE 0,5
PARFÜM 0,4
NACL 0,5
WASSER AD 100
Beispiel 15:
Shampoo:
Olea-Extrakt 2,0
LAURETHSULFAT 25%(ALKALISCHE VERDÜNNUNG) 25,0
CITRIC ACID MONO REGULÄR 0,3
TIMIRON 0,5
NATRIUMBENZOAT 0,5
PANTHENOL 75 L 0,2
EUPERLAN PK 3000 8,0
PLANTACARE 818 UP 2,0
UVINUL MS40 1 ,0
SALICYLSAEURE 0,2
AJIDEW NL-50 2,0
CUTINA HR GEMAHLEN 0,5
CETIOL HE 1 ,0
CITRIC ACID MONO REGULÄR 0,03
JAGUAR EXCEL 0,3
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
NATRIUMCHLORID 0,3
WASSER ad 100
Beispiel 16:
Shampoo:
Olea-Extrakt 2,0
LAURETHSULFAT 25%(ALKALISCHE VERDÜNNUNG) 50
CITRIC ACID MONO REGULÄR 0,4
ARLYPON F 0,5
ANTIL171 0,3
WEIZENPROTEINHYDROLYSAT KATIONISIERT 1 ,5
NATRIUMBENZOAT 0,5
EUPERLAN PK 3000 6,0
COCAMIDOPROPYL BETAINE 45 % 5,0
SALICYLSAEURE 0,2
SILSOFT A-858 0,3
Gluadin WQ 1 ,0
Gluadin WLM 1 ,0
Pantolacton 0,5
Subtilisin oder Papain 0,2
CUTINA HR 0,2
CETIOL HE 1 ,0
WASSER ad 100
Beispiel 17:
Shampoo:
Olea-Extrakt 2,0
Vorl. Laurethsulf.25% alk.Ver. 40,00
Citronensäure 0,15
Disodium Cocoamphodiacetate 7,00
Na-benzoat 0,50
Salicylsäure 0,20
Parfüm 0,15
Natriumchlorid 1 ,50
Wasser, vollentsalzt ad 100
Polymer JR 400 0,30 Beispiel 18:
Haarstylinqqel:
Olea-Extrakt 2,5
ENTSALZTES WASSER ad 100
SYNTHALEN K 0,6
NEUTROL TE 0,5
GLYZERIN DAB 9, 86,5 8,00
ETHYLALKOHOL VERGÄLLT 96 VOL % FLS 30,00
Gluadin WQ 0,5
Gluadin WLM 0,5
Pantolacton 1 ,0
Subtilisin oder Papain 0,2
POLYETHYLENGLYKOL 2,00
PVP/VA W-635 6,50
CREMOPHOR RH 40 1 ,00
PARFÜM 0,50 PH = 7,0
Beispiel 19:
Haarspray:
Olea-Extrakt 2,0
AMPHOMER 3,00
LUVISKOL VA 37 16,00
AMP AMINO-METHYL-PROPANOL 100 0,60
ISOPROPYLMYRISTAT 0,12
Gluadin WQ 0,5
Gluadin WLM 0,5
Pantolacton 0,2
Subtilisin oder Papain 1 ,0
PARFÜM 0,20
ENTSALZTES WASSER ad 100
ETHYLALKOHOL VERGÄLLT 96 VOL % FLS 67,50 PH = 7,0 Beispiel 20:
Haartonic:
Olea-Extrakt 2,0
ENTSALZTES WASSER ad 100
PANTHENOL 75 0,1
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
CARBOPOL 0,1
NEUTROL TE 0,10
ETHYLALKOHOL VERGÄLLT 96 VOL % 30,0
PH = 7,0
Beispiel 21 :
Haartonic:
Olea-Extrakt 2,0
D-Panthenol 75 % 0,20
Allantoin 0,10
Parfüm 0,25
Wasser, vollentsalzt ad 10C
Cremophor A25* 0,200Oi
Ethanol 96 % 35,00
* Cremophor A25* = Ceteareth-25
Beispiel 22:
Beispielformulierung Haartonic:
Rezeptur Verum:
30 % Ethanol (kosmetisch)
2% Liposomen PC (Lipoid SL80, Supplier Lipoid)
2% Olea-Extrakt (Supplier: Loncha)
66% Wasser Beispielformulierung Haarshampoo:
Olea-Extrakt 2,0
LAURETHSULFAT 25%(ALKALISCHE VERDÜNNUNG) 25,0
CITRIC ACID MONO REGULÄR 0,3
TIMIRON 0,5
NATRIUMBENZOAT 0,5
PANTHENOL 75 L 0,2
EUPERLAN PK 3000 8,0
PLANTACARE 818 UP 2,0
UVINUL MS40 1 ,0
SALICYLSAEURE 0,2
AJIDEW NL-50 2,0
CUTINA HR GEMAHLEN 0,5
CETIOL HE 1 ,0
CITRIC ACID MONO REGULÄR 0,03
JAGUAR EXCEL 0,3
Gluadin WQ 0,2
Gluadin WLM 0,5
Pantolacton 0,5
Subtilisin oder Papain 0,5
NATRIUMCHLORID 0,3
WASSER ad 100
Beispiel 23:
a) ÖI-in-Wasser-Emulsionen
a1.
Figure imgf000043_0001
a2.
Figure imgf000044_0001
a3.
Figure imgf000045_0001
a4
Figure imgf000046_0001
a5.
Figure imgf000047_0001
a6.
Figure imgf000048_0001
Figure imgf000049_0001
a7.
Figure imgf000049_0002
b) Wasser-in-Oel-Emulsionen
b1.
Figure imgf000050_0001
c) Reinigungszubereitungen
d .
Figure imgf000050_0002
Figure imgf000051_0001
c2.
Figure imgf000051_0002
d. Wasser-in-Silicon-Emulsionen
d1.
Figure imgf000052_0001
Alle Angaben sind in Gewichtsprozent (w%).
Informationen zu den in den Beispielen eingesetzten Stoffen:
Gluadin WQ
Cognis Deutschland GmbH,
AQUA (WATER), LAURDIMONIUM HYDROXYPROPYL HYDROLYZED WHEAT PROTEIN,
ETHYLPARABEN, METHYLPARABEN
Protein hydrolyzates, wheat germ, (3-(dodecyldimethylammonio)-2-hydroxypropyl), Chlorides ca. 30-35 % Gehalt
Gluadin WLM
Cognis Deutschland GmbH
Weizenproteinhydrolysat in H2O
INCI declaration [INCI] HYDROLYZED WHEAT PROTEIN
Gehalt ca. 20-24 % Salcare SC 96
Ciba
INCI declaration [INCI] POLYQUATERNIUM-37, PROPYLENE GLYCOL
DICAPRYLATE/DICAPRATE,
Gehalt ca. 50 %
Cetiol HE
Cognis Deutschland GmbH
Kokosmonoglycerid ethoxyliert (7 EO)
INCI declaration [INCI] PEG-7 GLYCERYL COCOATE
Sepigel 305
Seppic (Interorgana)
INCI declaration [INCI] POLYACRYLAMIDE, C13-14 ISOPARAFFIN, LAURETH-7
Gehalt ca. 45-50 %
Euperlan PK 3000
Cognis Deutschland GmbH
INCI declaration [INCI] GLYCOL DISTEARATE, GLYCERIN, LAURETH-4, COCAMIDOPROPYL
BETAINE
Plantacare 818 UP
Cognis Deutschland GmbH
C8-16 Alkylpolyglucosid
*NLP
COCO-GLUCOSIDE, AQUA (WATER)
Aiidew NL 50
Ajinomoto
Pyrrolidoncarbonsäure Natrium Salz
Na-PCA
SODIUM PCA
Uvinul MS 40
BASF
Hydroxy-4-methoxybenzophenon-5-sulfonsäure *2-BENZOPHENONE-4 Arlypon F
Cognis Deutschland GmbH
Lauromacrogol JP 12 (Pharmacopoe of Japan)
*NLP
C12-14 Fettalkohole ethoxyliert (2.5 EO)
LAURETH-2
Antil 171
Goldschmidt (Degussa)
Polyol Fettsäure Ester
PEG-18 GLYCERYL OLEATE/COCOATE
Svnthalen K Synthalen KD (alt) 3V Sigma Polyacrylsäure CARBOMER
Cremophor RH 40
BASF
Riechstoff C 041
Rizinusöl, gehärtet, ethoxyliert (45 EO)
PEG-40 HYDROGENATED CASTOR 0IL
Neutrol TE
BASF
Tetrakis-(2-hydroxypropyl)-ethylendiamin *N,N,N1,N',-Edetol
TETRAHYDROXYPROPYL ETHYLENEDIAMINE

Claims

Patentansprüche
1. Mittel zur Behandlung des Haares oder der Haut, enthaltend mindestens einen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, dass die Pflanzen, die der Familie der Oleaceae angehören, ausgewählt sind unter Pflanzen der Genera Abeliophyllum, Chionanthus, Comoranthus, Dimetra, Fontanesia, Forestiera, Forsythia, Fraxinus, Haenianthus, Hesperelaea, Jasminum, Ligustrum, Menodora, Myxopyrum, Nestegis, Noronhia, Noteiaea, Nyctanthes, Olea, Osmanthus, Phillyrea, Picconia, Priogymnanthus, Schrebera und Syringa, insbesondere unter Pflanzen des Genus Olea.
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Pflanzen, die der Familie der Oleaceae angehören, ausgewählt sind unter Pflanzen der Species bzw. Subspecies Abeliophyllum distichum, Abeliophyllum distichum f. eburneum, Abeliophyllum distichum f. lilacinum, Chionanthus filiformis, Chionanthus ramiflorus, Chionanthus retusus, Chionanthus virginicus, Comoranthus madagascariensis, Comoranthus minor, Dimetra craibiana, Fontanesia phillyreoides, Fontanesia phillyreoides subsp. fortunei, Forestiera acuminata, Forestiera eggersiana, Forestiera neo-mexicana, Forestiera segregata, Forestiera segregata var. pinetorum, Forsythia europaea, Forsythia giraldiana, Forsythia japonica, Forsythia japonica var. saxatilis, Forsythia nakaii, Forsythia ovata , Forsythia suspensa, Forsythia viridissima, Forsythia viridissima var. koreana, Forsythia x intermedia, Forsythia sp. Reeves 11 , Fraxinus americana , Fraxinus angustifolia, Fraxinus anomala , Fraxinus biltmoreana, Fraxinus chinensis, Fraxinus chinensis var. rhynchophylla, Fraxinus cuspidata , Fraxinus cuspidata var. macropetala, Fraxinus dipetala, Fraxinus excelsior , Fraxinus excelsior var. diversifolia, Fraxinus greggii, Fraxinus latifolia , Fraxinus longicuspis, Fraxinus mandshurica , Fraxinus nigra , Fraxinus ornus , Fraxinus oxyphylla, Fraxinus pallisae, Fraxinus pennsylvanica , Fraxinus pennsylvanica var. aucubaefolia , Fraxinus pennsylvanica var. subintegerrima , Fraxinus platypoda, Fraxinus quadrangulata , Fraxinus rynchophylla, Fraxinus syriaca, Fraxinus texensis, Fraxinus tomentosa, Fraxinus velutina , Fraxinus xanthoxyloides, Fraxinus xanthoxyloides var. dimorpha, Haenianthus incrassatus, Haenianthus salicifolius, Haenianthus salicifolius var. obovatus, Hesperelaea palmeri, Jasminum abyssinicum, Jasminum attenuatum, Jasminum elegans, Jasminum floribundum, Jasminum fluminense, Jasminum fruticans, Jasminum humile , Jasminum lanceolarium, Jasminum leratii, Jasminum mesnyi , Jasminum multiflorum , Jasminum nervosum, Jasminum nitidum, Jasminum nudiflorum , Jasminum odoratissimum , Jasminum officinale , Jasminum polyanthum , Jasminum sinense, Jasminum suavissimum, Ligustrum acutissimum, Ligustrum compactum, Ligustrum ibota, Ligustrum japonicum, Ligustrum massalongianum, Ligustrum obtusifolium, Ligustrum ovalifolium, Ligustrum sempervirens, Ligustrum sinense, Ligustrum vulgäre , Menodora africana, Menodora integrifolia, Menodora scabra, Myxopyrum nervosum, Myxopyrum smilacifolium, Myxopyrum smilacifolium var. confertum, Nestegis apetala, Nestegis cunninghamii, Nestegis lanceolata, Nestegis sandwicensis, Noronhia emarginata, Noteiaea longifolia, Noteiaea microcarpa, Noteiaea punctata, Nyctanthes aculeata, Nyctanthes arbor- tristis , Olea brachiata, Olea capensis, Olea capensis subsp. macrocarpa, Olea cerasiformis, Olea europaea , Olea europaea subsp. cerasiformis, Olea europaea subsp. cuspidata, Olea europaea subsp. europaea, Olea europaea subsp. guanchica, Olea europaea subsp. laperrinei, Olea europaea subsp. maroccana, Olea lancea, Olea paniculata, Osmanthus americanus, Osmanthus fragrans , Osmanthus heterophyllus, Osmanthus insularis, Osmanthus rigidus, Osmanthus sp. Reeves 12, Phillyrea angustifolia, Phillyrea latifolia, Phillyrea media, Picconia excelsa, Priogymnanthus apertus, Priogymnanthus hasslerianus, Schrebera alata, Schrebera mazoensis, Syringa amurensis, Syringa emodi , Syringa julianae, Syringa komarowii, Syringa meyeri, Syringa microphylla, Syringa microphylla x Syringa meyeri, Syringa oblata, Syringa patula, Syringa pekinensis, Syringa pinnatifolia, Syringa pubescens, Syringa reflexa, Syringa reticulata , Syringa tigerstedtii, Syringa villosa , Syringa vulgarii, Syringa wolfii und Syringa yunnanensis, insbesondere unter Pflanzen der Species bzw. Subspecies Olea brachiata, Olea capensis, Olea capensis subsp. macrocarpa, Olea cerasiformis, Olea europaea , Olea europaea subsp. cerasiformis, Olea europaea subsp. cuspidata, Olea europaea subsp. europaea, Olea europaea subsp. guanchica, Olea europaea subsp. laperrinei, Olea europaea subsp. maroccana, Olea lancea, Olea paniculata und besonders bevorzugt unter Pflanzen der Species Olea europaea.
4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Extrakt aus Pflanzen, die der Familie der Oleaceae angehören, aus den Blättern der Pflanzen gewonnen wird, insbesondere durch ein in der EP-B-O 730 830 beschriebenes Extraktionsverfahren.
5. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Extrakt aus Pflanzen, die der Familie der Oleaceae angehören, enthält, der einen hohen Gehalt an Antioxidantien, insbesondere an Oleuropein aufweist.
6. Mittel nach Anspruch 5, dadurch gekennzeichnet, dass der Gehalt an Oleuropein in dem Extrakt Extrakt aus Pflanzen, die der Familie der Oleaceae angehören, im Bereich von 10 bis 30 Gew-%, insbesondere 15 bis 28 Gew-%, besonders bevorzugt 18 bis 26 Gew-% liegt.
7. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzlich Mittel zur Förderung der Collagensynthese, insbesondere N-Palmitoyl-Lys-Thr-Thr- Lys-Ser, N-Palmitoyl-Gly-His-Lys und/oder N-Palmitoyl-Gly-Gln-Pro-Arg, enthält.
8. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzlich Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares enthält.
9. Verwendung von Extrakten aus Pflanzen, die der Familie der Oleaceae angehören, insbesondere von Extrakten gemäß der Definitionen in einem der Ansprüche 2 bis 8, zur Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln, Förderung oder Verstärkung des Haarwuchses, Haarverdickung, Behandlung von Haarausfall und Beeinflussung der Keratinsynthese, Haarkonditionierung, Aufrechterhaltung oder Förderung der Homeostase des Haarfollikels bzw. Behandlung pathologischer Zustände des Haarfollikels; Behandlung pathologischer Zustände der Haut, wie Neurodermitis, Sonnenbrand, Psoriasis, Sklerodermie, Ichtyosis, atopische Dermatitis, Akne, Seborrhoe, Lupus erythematodes, Rosacea, Melanoma, Basalioma, Hautkarzinom oder Hautsarkom.
10. Verfahren zur Vitalisierung von Haaren, Anregung des Energiestoffwechsel in Haarfollikeln, Aktivierung von Haarfollikeln, Förderung oder Verstärkung des Haarwuchses, Haarverdickung, Behandlung von Haarausfall und Beeinflussung der Keratinsynthese, Haarkonditionierung, Aufrechterhaltung oder Förderung der Homeostase des Haarfollikels bzw. Behandlung pathologischer Zustände des Haarfollikels; Behandlung pathologischer Zustände der Haut, wie Neurodermitis, Sonnenbrand, Psoriasis, Sklerodermie, Ichtyosis, atopische Dermatitis, Akne, Seborrhoe, Lupus erythematodes, Rosacea, Melanoma, Basalioma, Hautkarzinom oder Hautsarkom, dadurch gekennzeichnet, dass man ein Mittel gemäß der Definitionen in einem der Ansprüche 2 bis 8 auf die Haare bzw. die Haut aufbringt.
PCT/EP2006/004705 2005-06-28 2006-05-18 Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören WO2007000214A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06753698A EP1901707A1 (de) 2005-06-28 2006-05-18 Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005030460A DE102005030460A1 (de) 2005-06-28 2005-06-28 Mittel zur Behandlung des Haares oder der Haut, das einen Extrakt aus Pflanzen enthält, die der Familie der Oleaceae angehören
DE102005030460.5 2005-06-28

Publications (1)

Publication Number Publication Date
WO2007000214A1 true WO2007000214A1 (de) 2007-01-04

Family

ID=36808979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004705 WO2007000214A1 (de) 2005-06-28 2006-05-18 Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören

Country Status (3)

Country Link
EP (1) EP1901707A1 (de)
DE (1) DE102005030460A1 (de)
WO (1) WO2007000214A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102631418A (zh) * 2011-02-12 2012-08-15 南京农业大学 一种消炎、镇痛中药提取物及其制备方法
CN102631417A (zh) * 2011-02-12 2012-08-15 南京农业大学 一种止血中药提取物及其制备方法
KR20160017464A (ko) * 2014-08-06 2016-02-16 대구한의대학교산학협력단 이팝나무 종자 추출물을 유효성분으로 함유하는 피부 노화 관련 퇴행성 질환의 예방 및 치료용 화장료 조성물
EP2424620B1 (de) 2009-04-27 2016-06-08 Kao Germany GmbH Färbemittelzusammensetzung
KR20170122317A (ko) * 2016-04-26 2017-11-06 괴산군 미선나무 추출액을 이용한 탈모방지용 샴푸 조성물
US10086035B2 (en) 2016-02-04 2018-10-02 ALASTIN Skincare, Inc. Compositions and methods for invasive and non-invasive procedural skincare
US10493011B2 (en) 2017-08-03 2019-12-03 ALASTIN Skincare, Inc. Peptide compositions and methods for ameliorating skin laxity and body contour
US11103455B2 (en) 2018-08-02 2021-08-31 ALASTIN Skincare, Inc. Liposomal compositions and methods of use
KR102318606B1 (ko) * 2021-03-31 2021-10-29 주식회사 뉴앤뉴 박달목서 추출물을 유효성분으로 함유하는 항산화용 화장료 조성물
US11160750B2 (en) * 2017-08-03 2021-11-02 Zivmas Llc Composition and method for promoting hair growth
CN115721588A (zh) * 2022-11-12 2023-03-03 贵州省轻工业科学研究所 一种含小叶女贞、火龙果茎提取物和丝瓜组织液的中药组合物及其在护肤品中的用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003695A1 (en) * 2009-07-10 2011-01-13 Unilever Plc Hair treatment compositions
FR2968552B1 (fr) * 2010-12-14 2012-12-28 Rocher Yves Biolog Vegetale Utilisation cosmetique d'un extrait de manne de frene
US20150104399A1 (en) * 2012-05-14 2015-04-16 Biocogent, Llc Prevention of fibroblast collapse

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068845A (en) * 1996-06-19 2000-05-30 Institute For Advanced Skin Research Inc. Inhibition of abnormal accumulation of extra-cellular matrices
FR2811224A1 (fr) * 2000-07-05 2002-01-11 Clarins Laboratoires S A S Composition cosmetique pour le soin des peaux sensibles
FR2815852A1 (fr) * 2000-11-02 2002-05-03 Seporga Lab Preparations cosmetiques ou dermo-pharmaceutiques contenant un melange d'enzymes, d'extrait de feuilles d'olivier, de jus de citron et de sucres hydrogenes
FR2831443A1 (fr) * 2001-10-30 2003-05-02 Oreal Utilisation d'extraits vegetaux pour ameliorer la fonction barriere de la peau
US20030152656A1 (en) * 2002-02-13 2003-08-14 Pinnell Sheldon R. Olive leaf extraction method and formulations containing olive leaf extract
US20030170331A1 (en) * 2000-04-28 2003-09-11 Marie-Madeleine Cals-Grierson Plant extract of the olea europaea as no-synthase inhibitor and uses
EP1430933A2 (de) * 2002-12-20 2004-06-23 Henkel Kommanditgesellschaft auf Aktien Kosmetische und pharmazeutische Zusammensetzungen enthaltend Steroidsulfatase-Inhibitoren und deren Verwendung zur Verminderung von Haarausfall
US20040234466A1 (en) * 2001-11-06 2004-11-25 Bernhard Banowski Beta-glucuronidase inhibitors for use in deodorants and antiperspirants
FR2855749A1 (fr) * 2003-06-03 2004-12-10 Silab Sa Procede d'obtention d'un principe actif dote de proprietes de photoprotection, principe actif obtenu et compositions l'incluant
US20040254245A1 (en) * 2001-10-03 2004-12-16 Sederma Cosmetic and dermopharmaceutical compositions for skin prone to acne
US20050002882A1 (en) * 2003-07-01 2005-01-06 B & T S.R.L. Natural emulsifying agent
FR2864785A1 (fr) * 2004-01-06 2005-07-08 Oreal Composition cosmetique comprenant un extrait de feuille d'olivier et un extrait d'eau de vegetation des olives
WO2005063195A2 (en) * 2003-12-30 2005-07-14 Med Care S.R.L. Compositions comprising vitamins and/or derivatives thereof stabilised with olea europea extract and/or ionene polymers
EP1640041A2 (de) * 2004-09-24 2006-03-29 Henkel Kommanditgesellschaft auf Aktien Kosmetische und dermatologische Zusammensetzungen zur Behandlung reifer oder lichtgeschädigter Haut

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3901286A1 (de) * 1989-01-18 1990-07-19 Pearson & Co Gmbh & Co Haartonikum mit pflanzlichen hypertonika
JP2977648B2 (ja) * 1991-07-19 1999-11-15 鐘紡株式会社 養毛化粧料
DE59608686D1 (de) * 1995-03-06 2002-03-21 Emil Flachsmann Ag Waedenswil Verfahren zur Entfernung von unerwünschten lipophilen Verunreinigungen und/oder Rückständen, welche in Getränken oder pflanzlichen Zubereitungen enthalten sind
IT1298283B1 (it) * 1998-02-19 1999-12-20 B & T S R L Uso dell'estratto delle foglie di olea europea come antiradicalico
FR2831441B1 (fr) * 2001-10-25 2003-12-26 Oreal Utilisation cosmetique de derives de la dhea
DE10213019A1 (de) * 2002-03-22 2003-10-02 Cognis Deutschland Gmbh Verwendung von Extrakten des Olivenbaumes als Antischuppenmittel

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068845A (en) * 1996-06-19 2000-05-30 Institute For Advanced Skin Research Inc. Inhibition of abnormal accumulation of extra-cellular matrices
US20030170331A1 (en) * 2000-04-28 2003-09-11 Marie-Madeleine Cals-Grierson Plant extract of the olea europaea as no-synthase inhibitor and uses
FR2811224A1 (fr) * 2000-07-05 2002-01-11 Clarins Laboratoires S A S Composition cosmetique pour le soin des peaux sensibles
FR2815852A1 (fr) * 2000-11-02 2002-05-03 Seporga Lab Preparations cosmetiques ou dermo-pharmaceutiques contenant un melange d'enzymes, d'extrait de feuilles d'olivier, de jus de citron et de sucres hydrogenes
US20040254245A1 (en) * 2001-10-03 2004-12-16 Sederma Cosmetic and dermopharmaceutical compositions for skin prone to acne
FR2831443A1 (fr) * 2001-10-30 2003-05-02 Oreal Utilisation d'extraits vegetaux pour ameliorer la fonction barriere de la peau
US20040234466A1 (en) * 2001-11-06 2004-11-25 Bernhard Banowski Beta-glucuronidase inhibitors for use in deodorants and antiperspirants
US20030152656A1 (en) * 2002-02-13 2003-08-14 Pinnell Sheldon R. Olive leaf extraction method and formulations containing olive leaf extract
EP1430933A2 (de) * 2002-12-20 2004-06-23 Henkel Kommanditgesellschaft auf Aktien Kosmetische und pharmazeutische Zusammensetzungen enthaltend Steroidsulfatase-Inhibitoren und deren Verwendung zur Verminderung von Haarausfall
FR2855749A1 (fr) * 2003-06-03 2004-12-10 Silab Sa Procede d'obtention d'un principe actif dote de proprietes de photoprotection, principe actif obtenu et compositions l'incluant
US20050002882A1 (en) * 2003-07-01 2005-01-06 B & T S.R.L. Natural emulsifying agent
WO2005063195A2 (en) * 2003-12-30 2005-07-14 Med Care S.R.L. Compositions comprising vitamins and/or derivatives thereof stabilised with olea europea extract and/or ionene polymers
FR2864785A1 (fr) * 2004-01-06 2005-07-08 Oreal Composition cosmetique comprenant un extrait de feuille d'olivier et un extrait d'eau de vegetation des olives
EP1640041A2 (de) * 2004-09-24 2006-03-29 Henkel Kommanditgesellschaft auf Aktien Kosmetische und dermatologische Zusammensetzungen zur Behandlung reifer oder lichtgeschädigter Haut

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424620B1 (de) 2009-04-27 2016-06-08 Kao Germany GmbH Färbemittelzusammensetzung
CN102631418A (zh) * 2011-02-12 2012-08-15 南京农业大学 一种消炎、镇痛中药提取物及其制备方法
CN102631417A (zh) * 2011-02-12 2012-08-15 南京农业大学 一种止血中药提取物及其制备方法
KR20160017464A (ko) * 2014-08-06 2016-02-16 대구한의대학교산학협력단 이팝나무 종자 추출물을 유효성분으로 함유하는 피부 노화 관련 퇴행성 질환의 예방 및 치료용 화장료 조성물
KR101689700B1 (ko) * 2014-08-06 2016-12-26 대구한의대학교산학협력단 이팝나무 종자 추출물을 유효성분으로 함유하는 피부 노화 관련 퇴행성 질환의 예방 및 치료용 화장료 조성물
US10286030B2 (en) 2016-02-04 2019-05-14 Alastin Skincare, Inc Compositions and methods for invasive and non-invasive procedural skincare
US11426443B2 (en) 2016-02-04 2022-08-30 ALASTIN Skincare, Inc. Compositions and methods for invasive and non-invasive procedural skincare
US10086035B2 (en) 2016-02-04 2018-10-02 ALASTIN Skincare, Inc. Compositions and methods for invasive and non-invasive procedural skincare
US10688147B2 (en) 2016-02-04 2020-06-23 ALASTIN Skincare, Inc. Compositions and methods for invasive and non-invasive procedural skincare
US11426442B2 (en) 2016-02-04 2022-08-30 ALASTIN Skincare, Inc. Compositions and methods for invasive and non-invasive procedural skincare
KR101956426B1 (ko) * 2016-04-26 2019-03-11 괴산군 미선나무 추출액을 이용한 탈모방지용 샴푸 조성물
KR20170122317A (ko) * 2016-04-26 2017-11-06 괴산군 미선나무 추출액을 이용한 탈모방지용 샴푸 조성물
US10493011B2 (en) 2017-08-03 2019-12-03 ALASTIN Skincare, Inc. Peptide compositions and methods for ameliorating skin laxity and body contour
US11160750B2 (en) * 2017-08-03 2021-11-02 Zivmas Llc Composition and method for promoting hair growth
US11052032B2 (en) 2017-08-03 2021-07-06 ALASTIN Skincare, Inc. Peptide compositions and methods for ameliorating skin laxity and body contour
US11752084B2 (en) 2017-08-03 2023-09-12 ALASTIN Skincare, Inc. Methods for fat reduction or elimination of lipid droplets
US11103455B2 (en) 2018-08-02 2021-08-31 ALASTIN Skincare, Inc. Liposomal compositions and methods of use
KR102318606B1 (ko) * 2021-03-31 2021-10-29 주식회사 뉴앤뉴 박달목서 추출물을 유효성분으로 함유하는 항산화용 화장료 조성물
CN115721588A (zh) * 2022-11-12 2023-03-03 贵州省轻工业科学研究所 一种含小叶女贞、火龙果茎提取物和丝瓜组织液的中药组合物及其在护肤品中的用途

Also Published As

Publication number Publication date
EP1901707A1 (de) 2008-03-26
DE102005030460A1 (de) 2007-01-04

Similar Documents

Publication Publication Date Title
WO2007000214A1 (de) Mittel zur behandlung des haares oder der haut, das einen extrakt aus pflanzen enthält, die der familie der oleaceae angehören
EP1276451B1 (de) Verwendung von zuckertensiden und fettsäurepartialglyceriden
EP1326579B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1280496A2 (de) Kosmetisches mittel enthaltend 2-furanonderivate
WO2003030848A1 (de) Verfahren zum färben von keratinfasern unter verwendung von carbonylverbindungen zur verbesserung der farbstabilität von haarfärbungen
WO2007003307A1 (de) Mittel enthaltend l-carnitin oder l-carnitinderivate und mindestens eine bestimmte weitere substanz
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
EP1531853A1 (de) Synergistische kombination von seidenproteinen
WO2002030373A2 (de) Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen
DE102005062360A1 (de) Haarfärbeverfahren
WO2010072577A2 (de) Pflegende haarfarbe
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
EP1800652B1 (de) Tönungsmittel auf Basis von Pflanzenfarbstoffen
EP1263400A1 (de) Verwendung von kationischen proteinhydrolysaten
DE102009028593A1 (de) Oxidative Färbemittel
EP1675564A1 (de) Mittel enthaltend baldrian
EP1513484A2 (de) Verwendung von ectoin und ectoinderivaten zur behandlung von haaren
EP1200045A1 (de) Verwendung synthetischer polymere
WO2002045664A1 (de) Verwendung von phospholipiden in haarbehandlungsmitteln
EP1259213A1 (de) Verwendung von pyrrolidinoncarbonsäuren und polymeren
EP1786382A1 (de) Extrakte als strukturanten
DE102004024511A1 (de) Verwendung von Polysulfiden zur Farbstabilisierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006753698

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006753698

Country of ref document: EP