WO2006132044A1 - ガラス製造装置およびその構成要素 - Google Patents

ガラス製造装置およびその構成要素 Download PDF

Info

Publication number
WO2006132044A1
WO2006132044A1 PCT/JP2006/309033 JP2006309033W WO2006132044A1 WO 2006132044 A1 WO2006132044 A1 WO 2006132044A1 JP 2006309033 W JP2006309033 W JP 2006309033W WO 2006132044 A1 WO2006132044 A1 WO 2006132044A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hollow tube
platinum
thickness
ring
Prior art date
Application number
PCT/JP2006/309033
Other languages
English (en)
French (fr)
Inventor
Yasuharu Hirabara
Hajime Itoh
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2007520042A priority Critical patent/JP5228485B2/ja
Publication of WO2006132044A1 publication Critical patent/WO2006132044A1/ja
Priority to US11/947,817 priority patent/US8019206B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Definitions

  • the present invention has a hollow tube made of platinum or a platinum alloy suitable as a molten glass conduit of a glass production apparatus, and an electrode for energization heating is joined to the outer periphery of the hollow tube. It relates to a hollow tube.
  • the present invention also relates to a method for electrically heating the hollow tube of the present invention.
  • the present invention also relates to a glass manufacturing apparatus and a glass manufacturing method using the hollow tube as a conduit for molten glass.
  • a hollow tube made of platinum alloy such as platinum, a platinum gold alloy, or a platinum rhodium alloy is used for a conduit through which high-temperature molten glass passes.
  • a platinum or platinum alloy nove is connected to the molten glass outlet at the bottom of the glass melting tank.
  • glass manufacturing equipment is used to form optical components such as outflow pipes, lenses, and prisms provided to remove impurities.
  • An outflow pipe or the like for allowing molten glass to flow out into the mold for forming may be mentioned.
  • FIG. 4 is a perspective view of a conventional hollow tube made of platinum or a platinum alloy provided with electrodes for electric heating.
  • a ring-shaped electrode 200 is joined to the outer periphery of the hollow tube 100 having a cylindrical shape.
  • Two extraction electrodes 300 and 301 are joined to the outer edge of the ring-shaped electrode 200 at positions facing each other.
  • Hollow tube 100, ring-shaped electrode 200 and extraction electrode 300, 301 are platinum or platinum Made of alloy.
  • the hollow tube 100 shown in FIG. 4 is heated by connecting the extraction electrodes 300 and 301 to an external power source (not shown) and energizing from the external power source.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-227822
  • the present inventor has found that when the hollow tube 100 shown in FIG. 4 is energized and heated, the current concentrates on a specific part of the electrode 200 and the part is locally overheated. This point will be explained more specifically below.
  • the extraction electrodes 300 and 301 when the extraction electrodes 300 and 301 are connected to an external power source and energized, current flows from the extraction electrodes 300 and 301 to the hollow tube 100 through the electrode 200.
  • the ring-shaped electrode 200 is intended to allow a uniform current to flow through the entire hollow tube 100. However, the current from the extraction electrodes 300 and 301 is concentrated on a specific part of the electrode 200.
  • the current tends to flow through the shortest path due to its characteristics.
  • the current from the extraction electrodes 300 and 301 passes through the shortest path indicated by an arrow.
  • the current flowing through the electrode 200 is concentrated on a specific part of the electrode 200 (part indicated by a dotted line).
  • the part indicated by the dotted line of the electrode 200 is locally overheated due to the concentration of current.
  • the electrode 200 may be damaged by thermal stress. If the electrode 200 is damaged, the hollow tube 100 cannot be heated by energization, so that a temperature difference occurs between the molten glass and the hollow tube, making it difficult to manufacture the glass.
  • the current flowing from the electrode 200 to the hollow tube 100 also concentrates on the specific part of the hollow tube 100. Specifically, the current concentrates at the junction between the electrode 200 and the portion indicated by the dotted line of the electrode 200.
  • the part is locally overheated. As a result, the hollow tube 100 may be damaged by thermal stress, or the molten glass flowing through the hollow tube 100 may be altered.
  • the present invention is based on this finding, and an object of the present invention is to provide a hollow tube body having a hollow tube made of platinum or platinum alloy in which local overheating of an electrode for current heating is prevented.
  • the hollow tube of the present invention is suitable as a conduit for molten glass in a glass production apparatus.
  • Another object of the present invention is to provide a method for electrically heating the hollow tube body.
  • Another object of the present invention is to provide a glass manufacturing apparatus and a glass manufacturing method using the hollow tube as a conduit for molten glass.
  • the present invention provides:
  • a ring-shaped electrode is joined to the outer periphery of the hollow tube
  • One or more lead electrodes are joined to the outer edge of the ring-shaped electrode,
  • the ring-shaped electrode is composed of a platinum or platinum alloy electrode center portion, a platinum or platinum alloy thick wall portion provided outside the electrode center portion, and a hollow tube, Provide the body.
  • the present invention also provides:
  • a ring-shaped electrode is joined to the outer periphery of the hollow tube
  • One or more lead electrodes are joined to the outer edge of the ring-shaped electrode,
  • the ring-shaped electrode includes an electrode center portion made of platinum or a platinum alloy, and a thick portion made of a metal material other than platinum and platinum alloy provided outside the electrode center portion.
  • a hollow tube is provided.
  • the thick portion is provided over the entire circumference of the ring-shaped electrode.
  • the thick portion satisfies the following formulas (1) and (2).
  • the central portion of the electrode has a smaller thickness than the other portion along the circumferential direction of the central portion of the electrode at and near the junction with the extraction electrode.
  • the first thin portion has an angle of 10 to 90 centered on a straight line connecting the center of the ring-shaped electrode and the midpoint of the joint portion of the extraction electrode. It is preferable to be within the range of degrees! /.
  • the other portions along the circumferential direction of the first thin portion and the electrode central portion satisfy the following formulas (3) to (5).
  • the second portion having a thickness smaller than that of the other portion of the electrode center portion at the joint portion of the electrode center portion with the hollow tube and in the vicinity thereof.
  • the thin-walled part is provided all over the circumference! /.
  • an angle formed by the ring-shaped electrode and the extraction electrode at the joint end is 110 degrees or more and less than 180 degrees.
  • the difference between the thickness of the ring-shaped electrode and the thickness of the extraction electrode in the joint portion is the thickness of the ring-shaped electrode or the thickness of the extraction electrode. Of these, it is preferable that the difference is 50% or less.
  • the present invention also provides a glass manufacturing apparatus using the hollow tube described above as a molten glass conduit.
  • the present invention also provides a vacuum degassing apparatus using the hollow tube described above as a molten glass conduit.
  • the present invention also provides a method of electrically heating the hollow tube described above.
  • the present invention provides a glass manufacturing method including flowing molten glass through a conduit of a glass manufacturing apparatus, and using the hollow tube described above as the conduit.
  • the hollow tube body having a platinum or platinum alloy hollow tube of the present invention prevents local overheating in the electrode for current heating. For this reason, it is possible to prevent the electrode for current heating from being damaged by thermal stress.
  • the electrode for current heating is prevented from being damaged by thermal stress. . If the electrode for electric heating is broken, the molten glass conduit cannot be heated by electric current, so that a temperature difference occurs between the molten glass and the molten glass conduit, making it difficult to manufacture the glass.
  • the glass manufacturing apparatus and the vacuum degassing apparatus of the present invention it is particularly useful for a glass manufacturing apparatus and a vacuum degassing apparatus that may cause a very large amount of current to flow due to heating.
  • FIG. 1 is a perspective view showing one embodiment of a hollow tube body having a hollow tube made of platinum or a platinum alloy according to the present invention.
  • FIG. 2 is a schematic view of the hollow tube shown in FIG.
  • FIG. 3 is the same diagram as FIG. 2, and shows a straight line connecting the center of electrode 2 and the midpoint 25 of the junction
  • FIG. 4 is a perspective view of a conventional platinum hollow tube provided with an electrode for electric heating.
  • Ring-shaped electrode 20 Center of electrode
  • FIG. 1 is a perspective view showing an embodiment of a hollow tube having a hollow tube made of platinum or a platinum alloy according to the present invention.
  • a hollow tube 1 is a hollow cylindrical tube made of platinum or a platinum alloy.
  • An electrode 2 is joined to the outer periphery of the hollow tube 1.
  • the electrode 2 is a ring-shaped electrode having a hole for inserting the hollow tube 1 at its center, and its outer shape is circular.
  • Electrode 2 is made of platinum or a gold alloy.
  • the electrode 2 is joined to the upper end of the hollow tube 1. In Fig. 1, the parts with different thicknesses of electrode 2 are indicated by different notches.
  • the extraction electrodes 3 and 4 are joined at positions facing each other on the outer edge of the electrode 2.
  • the extraction electrodes 3 and 4 have a fan shape with a wide width near the junction with the electrode 2.
  • FIG. 2 is a schematic view of the hollow tube body of FIG.
  • a ring-shaped electrode 2 joined to the outer periphery of the hollow tube 1 is composed of an electrode center portion 20 and a thick portion 21 provided outside the electrode center portion 20.
  • the electrode center portion 20 and the thick portion 21 are both made of platinum or a platinum alloy.
  • the thick part 21 is provided over the entire circumference of the ring-shaped electrode 2, and the thickness thereof is larger than the thickness of the electrode center part 20.
  • the electrical resistance of a metal material such as platinum or a platinum alloy is inversely proportional to the unit cross section of the material. For example. Therefore, the thick portion 21 has a lower electrical resistance than the electrode center portion 20.
  • the current from the extraction electrodes 3 and 4 is dispersed and thickened along the circumferential direction of the electrode 2 as indicated by an arrow b that does not flow through the shortest path indicated by the arrow a to the electrode center 20. Meat part 2 1 flows. As a result, the current from the extraction electrodes 3 and 4 is prevented from concentrating on the shortest path indicated by the arrow a.
  • the shortest path of the current from the extraction electrodes 3 and 4 indicated by the arrow a is referred to as the “shortest path indicated by the arrow a”, and the current concentrates on the shortest path indicated by the arrow a in the electrode 2. This is called “current concentration in the shortest path indicated by arrow a”.
  • the width and thickness of the thick portion 21 are not particularly limited as long as current concentration in the shortest path indicated by the arrow a can be prevented.
  • the electrode 2 can be appropriately selected according to the thickness of other portions of the electrode 2 and the like.
  • the thick part 21 preferably satisfies the following formulas (1) and (2).
  • t is the thickness (mm) of the thick part 21, and t is the thickness (mm) of the hollow tube 1.
  • w is the width (mm) of the thick part 21, and r is the radius (mm) of the electrode 2. If the thick part 21 satisfies the above formulas (1) and (2), current concentration on the shortest path indicated by the arrow a can be effectively prevented.
  • t t to 20t
  • ⁇ 0.3r represents 0.02r ⁇ w ⁇ 0.3r
  • the thick part 21 preferably satisfies the following formulas (6) and (7).
  • the ring-shaped electrode 2 joined to the outer periphery of the hollow tube 1 includes an electrode central portion 20, and a thick portion 21 provided outside the electrode central portion 20.
  • the structure described below is an optional component.
  • the hollow tubular body of the present invention preferably has the configuration described below.
  • the electrode center portion 20 is provided with portions 22 and 23 having different thicknesses along the circumferential direction thereof.
  • the corresponding portion 22 is a thin portion (first thin portion) having a smaller thickness than other portions 23 along the circumferential direction of the electrode center portion 20.
  • the electrical resistance of a metal material such as platinum or a platinum alloy is inversely proportional to the unit cross-sectional area of the material. Therefore, the part 22 has a higher electrical resistance than the part 23. Therefore, the current from the extraction electrodes 3 and 4 is distributed from the part 22 to the part 23 through the thick part 21. As a result, current concentration on the shortest path indicated by arrow a is prevented.
  • the specific position and range of the part 22 is not particularly limited as long as the part 22 is a position corresponding to and in the vicinity of the junction with the extraction electrodes 3 and 4 in the electrode central part 20, and the dimensions and the dimensions of the electrode 2 Depending on the range of the junction with the extraction electrodes 3 and 4, it can be selected as appropriate. However, as shown in FIG. 3, the region 22 is centered on a straight line connecting the center 0 of the electrode 2 (electrode center portion 20) and the midpoint 25 (center point of the junction) of the extraction electrode 3 junction. It is preferable to be located within the range of the angle.
  • the angle ⁇ is 10 to 90 degrees, more preferably 20 to 60 degrees.
  • the current from the extraction electrodes 3 and 4 can be sufficiently dispersed from the region 22 to the region 23 through the thick portion 21. As a result, current concentration on the shortest path indicated by arrow a can be effectively prevented.
  • part 22 and the part 23 satisfy the following formulas (3) to (5).
  • the current from the extraction electrodes 3 and 4 is sufficiently dispersed from the part 22 to the part 23 through the thick part 21. Can do. As a result, current concentration on the shortest path indicated by arrow a can be effectively prevented.
  • the inner peripheral side of the electrode central portion 20, the junction with the hollow tube 1 and the vicinity thereof are thicker than other portions (portions 22, 23) of the electrode central portion 20.
  • a thin-walled portion (second thin-walled portion) 24 is provided over the entire circumference.
  • the electrical resistance of a metal material such as platinum or a platinum alloy is inversely proportional to the unit cross-sectional area of the material. Therefore, the thin portion 24 has a larger electric resistance than the portions 22 and 23 located on the outer peripheral side. Therefore, the current passing through the thick part 21 from the extraction electrodes 3 and 4 is dispersed at the parts 22 and 23 before passing through the thin part 24. As a result, current concentration on the shortest path indicated by arrow a is prevented.
  • the width and thickness of the thin portion 24 are not particularly limited as long as the above-described desired effect can be obtained, and the dimensions of the electrode 2, particularly the size of the hole provided in the center of the electrode 2 and the electrode central portion 20 It can be appropriately selected depending on the thickness of other parts in the body.
  • the thin-walled portion 24 preferably satisfies the following formulas (11) to (13).
  • t is the thickness (mm) of the thin portion 24, and t is the thickness (mm) of the hollow tube 1.
  • w is the width (mm) of the thin-walled portion 24, and r is the half of the hole provided in the center of the electrode 2.
  • the shape of the extraction electrodes 3 and 4 is a fan-shaped shape in which the width in the vicinity of the junction with the electrode 2 is widened, so that the electrode 2 and the extraction electrodes 3 and 4 are connected to the junction end.
  • Angle j8 Is 110 degrees or more and less than 180 degrees. Setting the angle j8 to 110 degrees or more and less than 180 degrees is preferable because local overheating at the junction between the electrode 2 and the extraction electrodes 3 and 4 can be reduced.
  • the junction between the electrode 2 and the extraction electrodes 3 and 4, particularly the junction end between the electrode 2 and the extraction electrodes 3 and 4, is a portion where the cross-sectional area changes.
  • the angle) 8 is less than 110 degrees, the cross-sectional area changes abruptly at the joint end, so that local overheating occurs remarkably.
  • the angle) 8 is set to 110 degrees or more, since the change in the cross-sectional area at the joint end is gentle, the occurrence of local overheating at the joint end is reduced.
  • the angle j8 is preferably 120 degrees or more and less than 180 degrees, and more preferably 130 degrees or more and less than 180 degrees, because local overheating at the joint end is sufficiently reduced.
  • the junction between the electrode 2 and the extraction electrodes 3 and 4 has a structure in which the cross-sectional area does not change abruptly. Therefore, it is preferable that the difference between the thickness of the electrode 2 and the thickness of the extraction electrodes 3 and 4 is as small as possible at the joint.
  • the difference between the thickness of electrode 2 and the thickness of lead electrodes 3 and 4 at the junction is 50% or less of the thickness of electrode 2 or the thickness of lead electrodes 3 and 4, whichever is larger. It is preferably some 30% or less. It is preferable that the thickness of the electrode 2 and the thickness of the extraction electrodes 3 and 4 at the joint are substantially the same.
  • the cross-sectional area be changed so as not to change abruptly at the boundary portions of the thick portion 21, the portion 22, the portion 23, and the thin portion 24.
  • the force of a cylindrical tube being shown as the hollow tube 1 is not limited to this.
  • the cross-sectional shape may be an elliptical shape, or a polygonal shape such as a quadrangle, hexagon, or octagon.
  • the outer shape of the force ring-shaped electrode in which the ring-shaped electrode 2 has a circular outer shape is not limited thereto.
  • the outer shape may be an elliptical shape or a polygonal shape such as a square, hexagon, or octagon.
  • the ring-shaped electrode 2 is joined to the upper end of the hollow tube 1.
  • the position where the ring-shaped electrode is joined to the tube is not limited to this.
  • a ring-shaped electrode may be joined near the middle in the longitudinal direction of the hollow tube.
  • the number of ring-shaped electrodes to be joined to the hollow tube is not limited, and two or more ring-shaped electrodes may be joined to the hollow tube.
  • the ring-shaped electrode 2 includes a force in which the two extraction electrodes 3 and 4 are bonded to each other.
  • the number of extraction electrodes bonded to the ring-shaped electrode, and the extraction electrodes The position where the electrode is joined to the ring-shaped electrode is not limited to this.
  • the number of extraction electrodes may be one or three or more.
  • the thick portion 21 of the ring-shaped electrode 2 may be made of a metal material other than platinum and a platinum alloy (hereinafter referred to as “other metal material”).
  • other metal material a platinum alloy
  • a thick part 21 made of another metal material is provided outside the electrode center part 20 made of platinum or platinum alloy.
  • a metal material force excellent in heat resistance and conductivity can be widely selected.
  • other metal materials include copper, rhodium, molybdenum, tungsten, nickel, noradium, iron, chromium, and alloy materials containing these metals.
  • the thick portion 21 is made of copper or an alloy material containing copper
  • the thick portion 21 may have a hollow structure.
  • the electrode 2 can be air-cooled or water-cooled by circulating air or water through the thick-walled portion 21. It is preferable from the viewpoint of preventing local overheating of the electrode 2 to cool the electrode 2 with air or water.
  • the joint part between the electrode 2 and the extraction electrodes 3 and 4 may or may not have the thick part 21 having a hollow structure. In order to obtain a structure in which the cross-sectional area of the joint does not change suddenly, the joint 2 between the electrode 2 and the extraction electrodes 3 and 4 is provided with a thick-walled portion 21 having a hollow structure. I prefer U rather.
  • the electrode center portion 20 and the thick portion 21 may be separately formed and joined by welding.
  • the dimensions of the hollow tube, the ring-shaped electrode, and the extraction electrode are also particularly limited. I can't.
  • the dimensions of the hollow tube 1, the electrode 2, and the extraction electrodes 3 and 4 are preferably in the following ranges.
  • Radius d 25-400mm, more preferably 40-300mm
  • Length 200-8000mm, more preferably 400-3000mm
  • Wall thickness t 0.2 to 5 mm, more preferably 0.4 to 4 mm
  • Radius r 40-800mm, more preferably 50-500mm
  • Thick part 21 width w 3 to 300 mm, more preferably 5 to: LOOmm
  • Width of parts 22 and 23 10 to 500 mm, more preferably 20 to 200 mm
  • Thin part 24 width w 5 to: L00 mm, more preferably 5 to 40 mm
  • Thick part 21 thickness t 2 to 20 mm, more preferably 4 to 15 mm
  • Thickness of part 22 t 0.8 to 20 mm, more preferably l to 5 mm
  • Thickness t of part 23 1. 2 to 25 mm, more preferably 2 to 20 mm
  • Thickness of thin-walled portion 24 t 0.2 to: LOmm, more preferably 0.4 to 5mm
  • Width (excluding fan-shaped enlargement): 10-300mm, more preferably 4-15mm
  • Wall thickness t l ⁇ 20mm, more preferably 4 ⁇ 15mm
  • the hollow tube 1 and the ring-shaped electrode 2 are mainly composed of platinum. Therefore, the material is not limited to only platinum, but a platinum alloy may be used as the material. Specific examples of the platinum alloy include a platinum gold alloy and a platinum single-hole alloy. Further, strengthened platinum obtained by dispersing a metal oxide in platinum or a platinum alloy may be used. In this specification, the term “made of platinum or a platinum alloy” includes those made of reinforced platinum obtained by dispersing a metal oxide in platinum or a platinum alloy. In reinforced platinum, the dispersed metal oxide is represented by Al 2 O, ZrO or Y 2 O.
  • the hollow tube of the present invention When used as a conduit for molten glass, the hollow tube through which the molten glass passes, and the inner peripheral side of the electrode center portion joined to the hollow tube (the electrode center shown in Fig. 2) Part 20
  • the thin-walled part 24) is particularly hot. Therefore, it is heat resistant to use platinum alloy such as platinum gold alloy or platinum rhodium alloy, or reinforced platinum in which metal oxide is dispersed in platinum alloy on the inner peripheral side of the hollow tube and the electrode center. It is preferable because of its superiority.
  • platinum alloys such as platinum gold alloy and platinum rhodium alloy are expensive materials. However, since these platinum alloys have higher electrical resistance than platinum, they generate more heat when energized.
  • platinum alloy is used only for the thin portion 24, or reinforced white metal in which a metal oxide is dispersed in the platinum alloy, It is preferable to use platinum or reinforced platinum in which a metal oxide is dispersed in platinum at other parts of the electrode center. If platinum alloy is used on the inner circumference side of the electrode center and platinum is used for other parts, they should be prepared separately and joined together by welding.
  • the material constituting the extraction electrodes 3 and 4 is preferably the same as the material constituting the thick portion 21 of the extraction electrode 2.
  • the extraction electrodes 3 and 4 are preferably made of platinum or a platinum alloy.
  • the thick portion 21 is made of another metal material, it is preferable that the extraction electrodes 3 and 4 are also exemplified as other metal materials.
  • the present invention is not limited to this, and when the thick part 21 is made of platinum or a platinum alloy, the thick part 21 may be made of a metal material even if the extraction electrodes 3 and 4 are made of other metal materials. In this case, the extraction electrodes 3 and 4 may be made of platinum or a platinum alloy.
  • a known method can be used for joining the hollow tube and the ring-shaped electrode and joining the ring-shaped electrode and the extraction electrode.
  • the hollow tube and the ring-shaped electrode can be joined by welding, for example. It is preferable to use welding for joining the ring-shaped electrode and the extraction electrode, but a mechanical joining method using a fixing jig such as a bolt or a screw can also be used.
  • the hollow tube of the present invention is used as a conduit for molten glass through which high-temperature molten glass passes.
  • specific examples of the location where the hollow tube of the present invention is used include a vacuum degassing tank, a riser pipe and a downfall pipe of a vacuum degassing apparatus.
  • Glass manufacturing equipment is also used to mold optical components such as outflow tubes, lenses, and prisms that are provided to remove impurities. It can also be used as an outflow pipe for letting molten glass flow out into a mold for molding.
  • the glass manufacturing apparatus of the present invention uses the hollow tube of the present invention as a conduit for molten glass, it is possible to prevent the electrode for current heating from being damaged by thermal stress. If the electrode for heating is damaged, the molten glass conduit cannot be heated by heating, and a temperature difference occurs between the molten glass and the molten glass conduit, making it difficult to manufacture the glass. However, such a problem is solved in the glass manufacturing apparatus and the vacuum degassing apparatus of the present invention.
  • each component was joined by welding.
  • the dimensions and constituent materials of each component are as follows.
  • Thickness t 0.5 mm
  • Thick part 21 width w 10mm
  • Thick part 21 thickness t 8mm
  • Thickness of part 22 t 2mm
  • Thickness of part 23 t 4mm
  • Thin part 24 thickness t 0.5mm
  • the thin-walled portion 24 is made of a platinum-rhodium alloy (platinum 90% by mass, rhodium 10% by mass), and other parts are made of platinum. The thin portion 24 and other parts were joined by welding. (Extraction electrodes 3, 4)
  • Width (excluding fan-shaped enlarged part): 40mm
  • the extraction electrodes 3 and 4 are connected to an external power source so that the electrode 2 on the upper end side of the hollow tube 1 is on the positive electrode side and the electrode 2 on the lower end side of the hollow tube 1 is on the negative electrode side. And heated with electricity.
  • thermocouple When the temperature of electrode 2 during current heating was observed using a thermocouple, no significant local overheating was observed.
  • Example 2 In the same manner as in Example 1, a hollow tube body in which an electrode and a lead electrode were joined to the upper end and the lower end was produced. However, the thickness of electrode 2 was constant (lmm).
  • energization heating was performed in the same manner as in Example 1, remarkable local overheating was observed in the shortest path indicated by the arrow a of the electrode 2.
  • the vicinity of the shortest path indicated by arrow a of electrode 2 melted, and current conduction was disabled.
  • the hollow tube body having a hollow tube made of platinum or platinum alloy according to the present invention can be used as a vacuum degassing tank, ascending pipe or descending pipe of a vacuum degassing apparatus.
  • the hollow tube of the present invention is a glass manufacturing apparatus force when forming optical components such as outflow pipes, lenses, and prisms provided to remove impurities. It can also be used as an outflow pipe or the like for flowing out water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Resistance Heating (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 通電加熱用の電極の局部過加熱が防止された溶融ガラス用の中空管体を提供する。  通電加熱される用途に用いられる白金または白金合金製の中空管を有する中空管体であって、前記中空管の外周には、リング状の電極が接合されており、前記リング状の電極の外縁には、1またはそれ以上の引き出し電極が接合されており、前記リング状の電極は、白金または白金合金製の電極中心部と、該電極中心部の外側に設けられた白金もしくは白金合金製、または白金以外の金属材料製の厚肉部と、からなることを特徴とする。

Description

明 細 書
ガラス製造装置およびその構成要素
技術分野
[0001] 本発明は、ガラス製造装置の溶融ガラスの導管として好適な、白金または白金合金 製の中空管を有しかつ該中空管の外周に通電加熱用の電極が接合されて 、る中空 管体に関する。
また、本発明は、本発明の中空管体を通電加熱する方法に関する。
また、本発明は、溶融ガラスの導管として該中空管体を用いたガラス製造装置およ びガラス製造方法に関する。
背景技術
[0002] ガラス製造装置において、その内部を高温の溶融ガラスが通過する導管には、白 金、または白金 金合金、白金 ロジウム合金のような白金合金製の中空管が使用 されている。
特許文献 1に記載のガラス素地流出装置を例にとると、ガラス溶融槽下部の溶融ガ ラス出口に白金または白金合金製のノイブが接続されている。また、溶融ガラスが通 過する導管の他の例としては、ガラス製造装置力 不純物を除去するために設けら れた流出管、レンズ、プリズム等の光学部品を成形する場合にガラス製造装置から成 形用の型に溶融ガラスを流出させるための流出管等が挙げられる。
[0003] ガラス製造装置では、内部を通過する溶融ガラスの温度を調節するため、溶融ガラ スが通過する導管は加熱される。導管の加熱は、ヒータ等の熱源により、導管を外部 から加熱する場合もあるが、白金または白金合金製の中空管の場合、該中空管に通 電用の電極を設けて、通電加熱することが広く行われている。図 4は、通電加熱用の 電極が設けられた従来の白金または白金合金製の中空管の斜視図である。図 4にお V、て、円筒形状をした中空管 100の外周にはリング状の電極 200が接合されて 、る。 リング状の電極 200の外縁には互いに向かい合う位置に、 2つの引き出し電極 300, 301が接合されている。
中空管 100、リング状の電極 200および引き出し電極 300, 301は白金または白金 合金製である。図 4に示す中空管 100は、引き出し電極 300, 301を外部電源(図示 していない)と接続して、外部電源から通電することによって加熱される。
[0004] 特許文献 1 :特開平 6— 227822号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明者は、図 4に示す中空管 100を通電加熱した際、電極 200の特定の部位に 電流が集中し、当該部位が局部過加熱されることを見出した。この点について、以下 により具体的に説明する。
図 4において、引き出し電極 300, 301を外部電源と接続して通電すると、電流は 引き出し電極 300, 301から電極 200を介して中空管 100へと流れる。リング状の電 極 200は、中空管 100全体に均一に電流を流すことを意図したものである。しかしな がら、引き出し電極 300, 301からの電流は、電極 200の特定の部位に集中する。
[0006] 電流はその特性上最短経路を流れようとする。図 4に示す中空管 100の場合、引き 出し電極 300, 301からの電流は、矢印で示す最短経路を通過する。この結果、電 極 200を流れる電流は、電極 200の特定の部位 (点線で示した部位)に集中する。電 極 200の点線で示した部位は、電流の集中によって局部過加熱される。このような局 部過加熱が発生した場合、電極 200が熱応力によって破損するおそれがある。電極 200が破損すると、中空管 100を通電加熱できなくなるので、溶融ガラスと中空管と の間に温度差が生じてガラスを製造することが困難になる。
また、電極 200の特定の部位に電流が集中すると、電極 200から中空管 100に流 れる電流も中空管 100の特定の部位に集中する。具体的には、電極 200との接合部 のうち、電極 200の点線で示した部位との接合部に電流が集中する。中空管 100の 特定の部位に電流が集中した場合、当該部位が局部過加熱される。これにより、中 空管 100が熱応力によって破損したり、該中空管 100内を流通する溶融ガラスが変 質するおそれがある。
[0007] 本発明は、この知見に基づくものであり、通電加熱用の電極の局部過加熱が防止 された白金または白金合金製の中空管を有する中空管体を提供することを目的とす る。本発明の中空管体は、ガラス製造装置の溶融ガラスの導管として好適である。 また、本発明は、該中空管体を通電加熱する方法を提供することを目的とする。 また、本発明は、溶融ガラスの導管として該中空管体を用いたガラス製造装置およ びガラス製造方法を提供することを目的とする。
課題を解決するための手段
[0008] 上記の目的を達成するため、本発明は、
通電加熱される用途に用いられる、白金または白金合金製の中空管を有する中空 管体であって、
前記中空管の外周には、リング状の電極が接合されており、
前記リング状の電極の外縁には、 1またはそれ以上の引き出し電極が接合されてお り、
前記リング状の電極は、白金または白金合金製の電極中心部と、該電極中心部の 外側に設けられた白金または白金合金製の厚肉部と、カゝらなることを特徴とする中空 管体を提供する。
[0009] また、本発明は、
通電加熱される用途に用いられる、白金または白金合金製の中空管を有する中空 管体であって、
前記中空管の外周には、リング状の電極が接合されており、
前記リング状の電極の外縁には、 1またはそれ以上の引き出し電極が接合されてお り、
前記リング状の電極は、白金または白金合金製の電極中心部と、該電極中心部の 外側に設けられた白金および白金合金以外の金属材料製の厚肉部と、からなること を特徴とする中空管体を提供する。
[0010] 本発明の中空管体において、前記厚肉部は、前記リング状の電極の全周にわたつ て設けられて 、ることが好まし 、。
本発明の中空管体において、前記厚肉部は、下記式(1)、(2)を満たすことが好ま しい。
t =t〜20t · · · (1)
1 0 0
w=0. 02i:〜 0. 3Γ· · · (2) t:厚肉部の肉厚(mm)
1
t:中空管の肉厚(mm)
0
w :厚肉部の幅(mm)
r:リング状の電極の半径 (mm)
[0011] 本発明の中空管体において、前記電極中心部には、前記引き出し電極との接合部 およびその近傍に、該電極中心部の周方向に沿った他の部位よりも肉厚が小さい第
1の薄肉部が設けられて 、ることが好まし 、。
[0012] 本発明の中空管体において、前記第 1の薄肉部は、前記リング状の電極の中心と 前記引き出し電極との接合部の中点とを結ぶ直線を中心とした角度 10〜90度の範 囲に位置することが好まし!/、。
[0013] 本発明の中空管体において、前記第 1の薄肉部および前記電極中心部の周方向 に沿った他の部位は、下記式(3)〜(5)を満たすことが好ま 、。
t =t〜5t · · · (3)
2 0 0
t = 2t〜20t …(4)
3 0 0
t > t · ' · (5)
3 2
t:中空管の肉厚(mm)
o
t:第 1の薄肉部の肉厚(mm)
2
t:電極中心部の周方向に沿った他の部位の肉厚(mm)
3
[0014] 本発明の中空管体において、前記電極中心部の前記中空管との接合部およびそ の近傍には、さらに、前記電極中心部の他の部位よりも肉厚が小さい第 2の薄肉部が 全周にわたつて設けられて!/、ることが好まし!/、。
[0015] 本発明の中空管体において、前記リング状の電極と、前記引き出し電極と、が接合 端部でなす角度は 110度以上〜 180度未満であることが好ましい。
[0016] 本発明の中空管体は、接合部における前記リング状の電極の肉厚と前記引き出し 電極の肉厚との差が、前記リング状の電極の肉厚または前記引き出し電極の肉厚の うち、 、ずれか大き 、方の 50%以下であることが好まし 、。
[0017] また、本発明は、溶融ガラスの導管として、上記した中空管体を用いたガラス製造 装置を提供する。 また、本発明は、溶融ガラスの導管として、上記した中空管体を用いた減圧脱泡装 置を提供する。
[0018] また、本発明は、上記した中空管体を通電加熱する方法を提供する。
[0019] また、本発明は、溶融ガラスをガラス製造装置の導管に流すことを含んだガラス製 造方法であって、前記導管として上記した中空管体を用いたガラス製造方法を提供 する。
発明の効果
[0020] 本発明の白金または白金合金製の中空管を有する中空管体は、通電加熱用の電 極における局部過加熱が防止される。このため、通電加熱用の電極が熱応力によつ て破損することが防止されて 、る。
本発明のガラス製造装置および減圧脱泡装置は、溶融ガラスの導管として本発明 の中空管体を用 、て 、るため、通電加熱用の電極が熱応力によって破損することが 防止されている。通電加熱用の電極が破損すると、溶融ガラスの導管を通電加熱で きなくなるので、溶融ガラスと溶融ガラスの導管との間に温度差が生じてガラスを製造 することが困難〖こなる。し力しながら、本発明のガラス製造装置および減圧脱泡装置 では、このような問題は解消されている。また、加熱のため、非常に大量の電流を流 す可能性のあるガラス製造装置および減圧脱泡装置に特に有用である。
図面の簡単な説明
[0021] [図 1]図 1は、本発明の白金または白金合金製の中空管を有する中空管体の 1実施 形態を示した斜視図である。
[図 2]図 2は、図 1に示す中空管体を真上方向力 見た模式図である。
[図 3]図 3は、図 2と同様の図であり、電極 2の中心と接合部の中点 25とを結ぶ直線と
、部位 22の位置関係を示している。
[図 4]図 4は、通電加熱用の電極が設けられた従来の白金製の中空管の斜視図であ る。
符号の説明
[0022] 1:中空管
2 :リング状の電極 20 :電極中心部
21 :厚肉部
22 :部位 (第 1の薄肉部)
23:部位 (周方向に沿った他の部位)
24 :薄肉部 (第 2の薄肉部)
25 :接合部の中点
100 :中空管
200 :リング状の電極
300, 400 :引き出し電極
発明を実施するための最良の形態
[0023] 以下、図面を参照して本発明を説明する。図 1は、本発明の白金または白金合金 製の中空管を有する中空管体の i実施形態を示した斜視図である。
図 1において、中空管 1は白金または白金合金製の中空円筒管である。中空管 1の 外周には、電極 2が接合されている。電極 2は、その中心に中空管 1を挿入するため の孔を有するリング状の電極であり、その外形は円形である。電極 2は白金または白 金合金製である。電極 2は中空管 1の上端に接合されている。図 1において、電極 2 の肉厚が異なる部分を異なるノ、ツチングで示して 、る。
電極 2の外縁には、外部電源 (図示して!/ヽな ヽ)と接続するための弓 Iき出し電極 3, 4が接合されている。引き出し電極 3, 4は、電極 2の外縁において、互いに向かい合 う位置に接合されている。引き出し電極 3, 4は、電極 2との接合部付近の幅が広がつ た扇形形状となっている。中空管 1を通電加熱する場合、引き出し電極 3, 4を外部電 源(図示して 、な 、)と接続して矢印方向に電流を印加する。
[0024] 図 2は、図 1の中空管体を真上方向力も見た模式図である。図 2において、中空管 1 の外周に接合されたリング状の電極 2は、電極中心部 20と、該電極中心部 20の外側 に設けられた厚肉部 21と、カゝらなる。図 2において、電極中心部 20および厚肉部 21 はいずれも白金または白金合金製である。厚肉部 21は、リング状の電極 2の全周に わたって設けられており、その肉厚は電極中心部 20の肉厚よりも大きくなつている。 白金または白金合金のような金属材料の電気抵抗は、該材料の単位断面積に反比 例する。したがって、厚肉部 21は、電極中心部 20よりも電気抵抗が小さい。そのため 、引き出し電極 3, 4からの電流は、矢印 aで示す最短経路を通って電極中心部 20へ と流れるのではなぐ矢印 bで示すように、分散して電極 2の周方向に沿って厚肉部 2 1を流れる。この結果、引き出し電極 3, 4からの電流が矢印 aで示す最短経路へ集中 することが防止される。以下、本明細書において、矢印 aで示す引き出し電極 3, 4か らの電流の最短経路を「矢印 aで示す最短経路」と言い、電極 2において、矢印 aで示 す最短経路へ電流が集中することを「矢印 aで示す最短経路への電流集中」と言う。
[0025] 本発明の中空管体において、矢印 aで示す最短経路への電流集中を防止すること ができる限り、厚肉部 21の幅および肉厚は特に限定されず、電極 2の寸法や、電極 2 における他の部位の肉厚等に応じて適宜選択することができる。但し、厚肉部 21は 下記式(1)および式(2)を満たすことが好ま 、。
t =t〜20t · · · (1)
1 0 0
w=0. 02i:〜 0. 3Γ· · · (2)
式(1)中、 tは厚肉部 21の肉厚(mm)であり、 tは中空管 1の肉厚(mm)である。
1 0
式(2)中、 wは厚肉部 21の幅(mm)であり、 rは電極 2の半径(mm)である。厚肉部 2 1が上記式(1)および(2)を満たして ヽれば、矢印 aで示す最短経路への電流集中を 効果的に防止することができる。なお、本発明において、 t =t〜20t
1 0 0は t≤t≤20
0 1 tを表わし、また w=0. 02i:〜 0. 3rは 0. 02r≤w≤0. 3rを表わし、同様な表示はこ
0
れと同じことを表している。
厚肉部 21は下記式 (6)および(7)を満たすことがより好ま 、。
t = 2t〜15t · · · (6)
1 0 0
w=0. 05i:〜 0. 2Γ· · · (7)
[0026] 本発明の中空管体は、中空管 1の外周に接合されたリング状の電極 2が、電極中心 部 20と、該電極中心部 20の外側に設けられる厚肉部 21と、力もなることを特徴とし、 以下に述べる構成は任意の構成要素である。但し、本発明の中空管体は、以下に述 ベる構成を有することが好まし 、。
[0027] 図 2において、電極中心部 20には、その周方向に沿って肉厚の異なる部位 22, 23 が設けられている。具体的には、引き出し電極 3, 4との接合部およびその近傍にあ たる部位 22は、電極中心部 20の周方向に沿った他の部位 23よりも肉厚が小さい薄 肉部(第 1の薄肉部)となっている。矢印 aで示す最短経路を含んだ部位 22を電極 2 の周方向に沿った他の部位 23よりも肉厚を小さくすることにより、矢印 aで示す最短 経路への電流集中をさらに防止することができる。
上記したように、白金または白金合金のような金属材料の電気抵抗は、該材料の単 位断面積に反比例する。したがって、部位 22は部位 23よりも電気抵抗が大きい。そ のため、引き出し電極 3, 4からの電流は、厚肉部 21を経て、部位 22から部位 23へと 分散される。この結果、矢印 aで示す最短経路への電流集中が防止される。
[0028] 部位 22は、電極中心部 20において、引き出し電極 3, 4との接合部およびその近 傍にあたる位置である限り、その具体的な位置および範囲は特に限定されず、電極 2 の寸法や、引き出し電極 3, 4との接合部の範囲等に応じて適宜選択することができ る。但し、図 3に示すように、部位 22は、電極 2 (電極中心部 20)の中心 0と引き出し 電極 3との接合部の中点 25 (接合部の真ん中の点)とを結ぶ直線を中心とした角度 ひの範囲に位置することが好ましい。角度 αは、 10〜90度であり、より好ましくは 20 〜60度である。部位 22が角度 αの範囲に位置していれば、引き出し電極 3, 4から の電流を、厚肉部 21を経て、部位 22から部位 23へと十分分散させることができる。 その結果、矢印 aで示す最短経路への電流集中を効果的に防止することができる。
[0029] 部位 22および部位 23は、下記式(3)〜(5)を満たすことが好ま 、。
t =t〜5t · · · (3)
2 0 0
t = 2t〜20t …(4)
3 0 0
t > t · ' · (5)
3 2
t:中空管 1の肉厚(mm)
0
t:部位 22の肉厚(mm)
2
t:部位 23の肉厚(mm)
3
部位 22および部位 23が上記式(3)〜(5)を満たしていれば、引き出し電極 3, 4か らの電流を、厚肉部 21を経て、部位 22から部位 23へと十分分散させることができる。 その結果、矢印 aで示す最短経路への電流集中を効果的に防止することができる。 なお、前述した厚肉部 21の肉厚 tは、 tよりも大きいことが電流分散の点で好ましい 部位 22および部位 23は、下記式 (8)〜(10)を満たしていることがより好ましい。 t = 2t
2 0〜5t · · · (8)
0
t = 3t〜: LOt · · · (9)
3 0 0
t = 1. 2t
3 2〜3t
2…(10)
[0030] 図 2において、電極中心部 20のさらに内周側、中空管 1との接合部およびその近 傍には、電極中心部 20の他の部位 (部位 22, 23)よりも肉厚が小さい薄肉部(第 2の 薄肉部) 24が全周にわたって設けられている。中空管 1との接合部およびその近傍 に、薄肉部 24を全周にわたって設けることで、矢印 aで示す最短経路への電流集中 をさらに防止することができる。
上記したように、白金または白金合金のような金属材料の電気抵抗は、該材料の単 位断面積に反比例する。したがって、薄肉部 24は外周側に位置する部位 22, 23よ りも電気抵抗が大きい。そのため、引き出し電極 3, 4から厚肉部 21を経た電流は、 薄肉部 24を通過する前に部位 22, 23で分散される。この結果、矢印 aで示す最短経 路への電流集中が防止される。
[0031] 上記した所望の効果が得られる限り薄肉部 24の幅および肉厚は特に限定されず、 電極 2の寸法、特に電極 2の中心に設けられた孔の大きさや、電極中心部 20におけ る他の部位の肉厚に応じて適宜選択することができる。但し、薄肉部 24は、下記式( 11 )ないし( 13)を満たして 、ることが好まし 、。
t =0. 7t〜2t
4 0 0…(11)
w =0. 05r
1 1〜0. 5r · · · (12)
1
t <t <t
4 2 3…(13)
式(11)中、 tは薄肉部 24の肉厚(mm)であり、 tは中空管 1の肉厚(mm)である。
4 0
式(12)中、 wは薄肉部 24の幅(mm)であり、 rは電極 2の中心に設けられた孔の半
1 1
径 (mm)である。薄肉部 24が上記式(11)ないし(13)を満たしていれば、上記した 薄肉部 24による効果が好ましく発揮される。
[0032] 図 2において、引き出し電極 3, 4の形状が、電極 2との接合部付近の幅が広がった 扇形形状であることにより、電極 2と、引き出し電極 3, 4と、が接合端部でなす角度 j8 が 110度以上 180度未満となって 、る。角度 j8を 110度以上 180度未満とすることは 、電極 2と引き出し電極 3, 4との接合部における局部過加熱を軽減できることから好 ましい。
白金または白金合金のような金属材料に通電した際、該材料の断面積が急激に変 化する部位では、電流が集中するため局部過加熱が発生する。
電極 2と引き出し電極 3, 4との接合部、特に電極 2と引き出し電極 3, 4との接合端 部は断面積が変化する部位である。角度 )8が 110度未満である場合、接合端部で 断面積が急激に変化するため、局部過加熱が顕著に発生する。角度 )8を 110度以 上にした場合、接合端部における断面積の変化が穏やかであるため、接合端部にお ける局部過加熱の発生が軽減される。接合端部における局部過加熱が十分軽減さ れることから、角度 j8は 120度以上 180度未満であることが好ましぐ 130度以上 180 度未満であることがより好まし 、。
[0033] 上記した理由により、電極 2と引き出し電極 3, 4との接合部は、断面積が急激な変 化しないような構造にすることが好ましい。そのため、接合部において、電極 2の肉厚 と、引き出し電極 3, 4の肉厚と、の差はできるだけ小さくすることが好ましい。接合部 における電極 2の肉厚と、引き出し電極 3, 4の肉厚との差は、電極 2の肉厚、または 引き出し電極 3, 4の肉厚のうち、いずれか大きい方の 50%以下であることが好ましく 、 30%以下であることがより好ましい。なお、接合部における電極 2の肉厚と引き出し 電極 3, 4の肉厚は実質的に同一であることが好ましい。
また、厚肉部 21、部位 22、部位 23および薄肉部 24の各境界部においても、同様 に断面積が急激に変化しな 、ような構造とすることが好ま 、。
[0034] 図 1において、中空管 1として円筒管が示されている力 中空管の形状はこれに限 定されない。例えば、断面形状が楕円形状のものや、四角形、六角形、八角形等、 多角形形状のものであってもよい。
また、図 1において、リング状の電極 2として外形が円形のものが示されている力 リ ング状の電極の外形はこれに限定されない。例えば、外形が楕円形状のものや、四 角形、六角形、八角形等、多角形形状のものであってもよい。
また、図 1において、リング状の電極 2は中空管 1の上端に接合されている力 中空 管にリング状の電極を接合する位置はこれに限定されない。例えば、中空管の長手 方向の中間付近にリング状の電極を接合してもよ 、。
また、中空管に接合するリング状電極の数も限定されず、 2つ、またそれ以上のリン グ状電極を中空管に接合してもよい。
また、図 1において、リング状の電極 2には、 2つの引き出し電極 3, 4が互いに向か い合う位置に接合されている力 リング状の電極に接合する引き出し電極の数、およ び引き出し電極をリング状の電極に接合する位置はこれに限定されない。例えば、引 き出し電極の数は 1つであってもよぐ 3つ以上であってもよい。
[0035] また、本発明において、リング状の電極 2の厚肉部 21は、白金および白金合金以 外の金属材料 (以下、「他の金属材料」という。)製であってもよい。この場合、白金ま たは白金合金製の電極中心部 20の外側に他の金属材料製の厚肉部 21が設けられ ている。
厚肉部 21を構成する他の金属材料には、耐熱性および導電性に優れる金属材料 力も広く選択することができる。他の金属材料の具体例としては、銅、ロジウム、モリブ デン、タングステン、ニッケル、ノラジウム、鉄、クロムおよびこれら金属を含む合金材 料が挙げられる。
これらの金属材料の中でも、ロジウム、銅、およびこれらの金属を含む合金材料が 好ましい。厚肉部 21が銅または銅を含む合金材料で構成される場合、厚肉部 21は 中空構造であってもよい。中空構造の厚肉部 21を使用した場合、厚肉部 21の内部 に空気または水を流通させて、電極 2を空冷または水冷することができる。電極 2を空 冷または水冷することは、電極 2の局部過加熱を防止する観点から好ましい。厚肉部 21が中空構造の場合、電極 2と引き出し電極 3, 4との接合部〖こは、中空構造をした 厚肉部 21は設けられて 、なくてもょ 、。接合部を断面積が急激に変化しな 、ような 構造とするためには、電極 2と引き出し電極 3, 4との接合部〖こは、中空構造をした厚 肉部 21が設けられて 、な 、ほうがむしろ好ま U、。
なお、厚肉部 21が他の金属材料製の場合、電極中心部 20と厚肉部 21とは、それ ぞれ別々に作成して、溶接により接合すればよい。
[0036] 本発明において、中空管、リング状の電極および引き出し電極の寸法も特に限定さ れない。例えば、図 1および図 2に示す中空管 1を例にとると、中空管 1、電極 2、およ び引き出し電極 3, 4の寸法は以下の範囲であることが好ましい。
(中空管 1)
半径 d: 25〜400mm、より好ましくは 40〜300mm
長さ: 200〜8000mm、より好ましくは 400〜3000mm
肉厚 t : 0. 2〜5mm、より好ましくは 0. 4〜4mm
0
(電極 2)
半径 r:40〜800mm、より好ましくは 50〜500mm
厚肉部 21の幅 w: 3〜300mm、より好ましくは 5〜: LOOmm
部位 22, 23の幅: 10〜500mm、より好ましくは 20〜200mm
薄肉部 24の幅 w : 5〜: L00mm、より好ましくは 5〜40mm
1
厚肉部 21の肉厚 t : 2〜20mm、より好ましくは 4〜15mm
1
部位 22の肉厚 t : 0. 8〜20mm、より好ましくは l〜5mm
2
部位 23の肉厚 t : 1. 2〜25mm、より好ましくは 2〜20mm
3
薄肉部 24の肉厚 t : 0. 2〜: LOmm、より好ましくは 0. 4〜5mm
4
(引き出し電極 3, 4)
幅(扇形の拡大部分を除く): 10〜300mm、より好ましくは 4〜15mm
肉厚 t: l〜20mm、より好ましくは 4〜15mm
[0037] 本発明において、中空管 1およびリング状の電極 2は白金を主たる構成材料とする 。したがって、白金のみを構成材料とするものに限定されず、白金合金を構成材料と するものであってもよい。白金合金の具体例としては、白金 金合金、白金一口ジゥ ム合金が挙げられる。また、白金または白金合金に金属酸化物を分散させてなる強 化白金であってもよい。本明細書で白金または白金合金製と言った場合、白金また は白金合金に金属酸化物を分散してなる強化白金製のものも含む。強化白金にお いて、分散される金属酸化物としては、 Al O、または ZrO若しくは Y Oに代表され
2 3 2 2 3 る周期表における 3族、 4族若しくは 13族の金属酸化物が挙げられる。
[0038] 本発明の中空管体を溶融ガラスの導管として使用した場合、溶融ガラスが通過する 中空管、および中空管と接合する電極中心部の内周側(図 2に示す電極中心部 20 の薄肉部 24)は特に高温になる。そのため、中空管および電極中心部の内周側には 、白金 金合金若しくは白金 ロジウム合金のような白金合金、または白金合金に 金属酸化物を分散させてなる強化白金を使用することが耐熱性に優れるので好まし い。但し、白金 金合金、白金 ロジウム合金のような白金合金は、高価な材料であ る。し力も、これらの白金合金は、白金に比べて電気抵抗が大きいため通電時の発 熱が大きい。そのため、電極中心部の内周側、図 2に示す電極中心部 20の場合、薄 肉部 24、のみに白金合金、または白金合金に金属酸化物を分散させてなる強化白 金を使用し、電極中心部の他の部位には白金、または白金に金属酸ィ匕物を分散さ せてなる強化白金を使用することが好ま ヽ。電極中心部の内周側に白金合金を使 用し、他の部位に白金を使用する場合、両者はそれぞれ別々に作成して、溶接によ り接合すればよい。
[0039] 引き出し電極 3, 4を構成する材料は、引き出し電極 2の厚肉部 21を構成する材料 と同一であることが好ましい。厚肉部 21が白金または白金合金製である場合、引き出 し電極 3, 4も白金または白金合金製であることが好ましい。一方、厚肉部 21が他の 金属材料製である場合、引き出し電極 3, 4も他の金属材料として例示したものである ことが好ましい。但し、これに限定されず、厚肉部 21が白金または白金合金製である 場合に、引き出し電極 3, 4が他の金属材料製であってもよぐ厚肉部 21が金属材料 製である場合に、引き出し電極 3, 4が白金または白金合金製であってもよい。
[0040] 本発明において、中空管とリング状の電極との接合、およびリング状の電極と引き 出し電極との接合には、公知の方法を用いることができる。中空管とリング状の電極と は、例えば溶接により接合することができる。リング状の電極と引き出し電極との接合 にも、溶接を用いることが好ましいが、ボルト、ビス等の固定治具による機械的な接合 方法を用いることもできる。
[0041] 本発明のガラス製造装置では、高温の溶融ガラスが通過する溶融ガラスの導管とし て、本発明の中空管体が用いられている。本発明のガラス製造装置において、本発 明の中空管体を使用する箇所の具体例としては、減圧脱泡装置の減圧脱泡槽、上 昇管および下降管が挙げられる。また、ガラス製造装置力 不純物を除去するため に設けられた流出管、レンズ、プリズム等の光学部品を成形する場合にガラス製造装 置力 成形用の型に溶融ガラスを流出させるための流出管等としても使用可能であ る。
本発明のガラス製造装置は、溶融ガラスの導管として本発明の中空管体を用いて いるため、通電加熱用の電極が熱応力によって破損することが防止されている。通電 加熱用の電極が破損すると、溶融ガラスの導管を通電加熱できなくなるので、溶融ガ ラスと溶融ガラスの導管との間に温度差が生じてガラスを製造することが困難になる。 しかしながら、本発明のガラス製造装置および減圧脱泡装置では、このような問題は 解消されている。
実施例
以下、実施例により本発明をさらに説明する。
(実施例 1)
本実施例では、図 1〜図 3に示す中空管体を作製した。但し、中空管 1の下端にも 図 2と同様の形状をした電極 2を接合し、電極 2には引き出し 3, 4を接合した。なお、 各構成要素同士は溶接により接合した。各構成要素の寸法および構成材料は以下 の通りである。
(中空管 1)
半径 d: 61mm
長さ: 650mm
肉厚 t : 0. 5mm
o
構成材料:白金—ロジウム合金(白金 90質量0 /0、ロジウム 10質量0 /0)
(リング状の電極 2)
半径 r : 150mm
厚肉部 21の幅 w: 10mm
部位 22, 23の幅: 60mm
薄肉部 24の幅 w : 20mm
1
厚肉部 21の肉厚 t : 8mm
1
部位 22の肉厚 t : 2mm
2
部位 23の肉厚 t : 4mm 薄肉部 24の肉厚 t : 0. 5mm
4
角度 a : 110度
構成材料:薄肉部 24は白金—ロジウム合金(白金 90質量%、ロジウム 10質量%) 製であり、他の部位は白金製である。薄肉部 24と他の部位とは溶接により接合した。 (引き出し電極 3, 4)
幅 (扇形の拡大部分を除く) :40mm
肉厚: 8mm
角度 j8 : 120度
構成材料:白金—ロジウム合金(白金 90質量0 /0、ロジウム 10質量0 /0)
[0043] 中空管 1の上端側の電極 2が正極側、中空管 1の下端側の電極 2が負極側になるよ うに、引き出し電極 3, 4を外部電源と接続して以下の条件で通電加熱した。
電圧: 10V
電流: 800A
加熱時間: 10時間
通電加熱時の電極 2の温度を熱電対を用いて観察したところ、顕著な局部過加熱 は認められなかった。
[0044] (比較例 1)
実施例 1と同様に、上端と下端に電極および引き出し電極が接合された中空管体 を作製した。但し、電極 2は肉厚一定(lmm)とした。実施例 1と同様に通電加熱した ところ、電極 2の矢印 aに示す最短経路で顕著な局部過加熱が認められた。また、通 電加熱開始から 2時間後、電極 2の矢印 aに示す最短経路付近が溶けて通電不能と なった。
産業上の利用可能性
[0045] 本発明の白金または白金合金製の中空管を有する中空管体は、減圧脱泡装置の 減圧脱泡槽、上昇管または下降管として使用することができる。また、本発明の中空 管体は、ガラス製造装置力 不純物を除去するために設けられた流出管、レンズ、プ リズム等の光学部品を成形する場合にガラス製造装置力 成形用の型に溶融ガラス を流出させるための流出管等としても使用可能である。 なお、 2005年 6月 9日に出願された日本特許出願 2005— 169169号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 通電加熱される用途に用いられる、白金または白金合金製の中空管を有する中空 管体であって、
前記中空管の外周には、リング状の電極が接合されており、
前記リング状の電極の外縁には、 1またはそれ以上の引き出し電極が接合されてお り、
前記リング状の電極は、白金または白金合金製の電極中心部と、該電極中心部の 外側に設けられた白金または白金合金製の厚肉部と、カゝらなることを特徴とする中空 管体。
[2] 通電加熱される用途に用いられる、白金または白金合金製の中空管を有する中空 管体であって、
前記中空管の外周には、リング状の電極が接合されており、
前記リング状の電極の外縁には、 1またはそれ以上の引き出し電極が接合されてお り、
前記リング状の電極は、白金または白金合金製の電極中心部と、該電極中心部の 外側に設けられた白金および白金合金以外の金属材料製の厚肉部と、からなること を特徴とする中空管体。
[3] 前記厚肉部は、前記リング状の電極の全周にわたって設けられている請求項 1また は 2に記載の中空管体。
[4] 前記厚肉部は、下記式(1)、(2)を満たすことを特徴とする請求項 1ないし 3のいず れかに記載の中空管体。
t =t〜20t · · · (1)
1 0 0
w=0. 02i:〜 0. 3Γ· · · (2)
t:厚肉部の肉厚(mm)
1
t:中空管の肉厚(mm)
0
w :厚肉部の幅(mm)
r:リング状の電極の半径 (mm)
[5] 前記電極中心部には、前記引き出し電極との接合部およびその近傍に、該電極中 心部の周方向に沿った他の部位よりも肉厚が小さい第 1の薄肉部が設けられている 請求項 1な!、し 4の 、ずれかに記載の中空管体。
[6] 前記第 1の薄肉部は、前記リング状の電極の中心と前記引き出し電極との接合部 の中点とを結ぶ直線を中心とした角度 10〜90度の範隨こ位置する請求項 5に記載 の中空管体。
[7] 前記第 1の薄肉部および前記電極中心部の周方向に沿った他の部位は、下記式( 3)〜(5)を満たすことを特徴とする請求項 5または 6に記載の中空管体。
t =t〜5t · · · (3)
2 0 0
t = 2t〜20t…(4)
3 0 0
t > t · ' · (5)
3 2
t:中空管の肉厚(mm)
o
t:第 1の薄肉部の肉厚(mm)
2
t:電極中心部の周方向に沿った他の部位の肉厚(mm)
3
[8] さらに、前記電極中心部の前記中空管との接合部およびその近傍には、該電極中 心部の他の部位よりも肉厚が小さ 、第 2の薄肉部が全周にわたつて設けられて 、る 請求項 1な!、し 7の 、ずれかに記載の中空管体。
[9] 前記第 2の薄肉部は、下記式(11)〜(13)を満たすことを特徴とする請求項 8に記 載の中空管体。
t =0. 7t
4 0〜2t
0…(11)
w =0. 05r〜0. 5r · · · (12)
1 1 1
t < t < t…(13)
4 2 3
t:第 2の薄肉部の肉厚(mm)
4
t:中空管の肉厚(mm)
0
w:第 2の薄肉部の幅(mm)
1
r:電極の中心に設けられた孔の半径(mm)
1
[10] 前記リング状の電極と、前記引き出し電極と、が接合端部でなす角度が 110度以上
180度未満である請求項 1な 、し 9の 、ずれかに記載の中空管体。
[11] 接合部における前記リング状の電極の肉厚と前記引き出し電極の肉厚との差は、 前記リング状の電極の肉厚または前記引き出し電極の肉厚のうち、いずれか大きい 方の 50%以下である請求項 1ないし 10のいずれかに記載の中空管体。
[12] 溶融ガラスの導管として、請求項 1ないし 11のいずれかに記載の中空管体を用い たガラス製造装置。
[13] 溶融ガラスの導管として、請求項 1ないし 11のいずれかに記載の中空管体を用い た減圧脱泡装置。
[14] 請求項 1な!、し 11の 、ずれかに記載の中空管体を通電加熱する方法。
[15] 溶融ガラスをガラス製造装置の導管に流すことを含んだガラス製造方法であって、 前記導管として請求項 1な 、し 11の 、ずれかに記載の中空管体を用いたガラス製造 方法。
PCT/JP2006/309033 2005-06-09 2006-04-28 ガラス製造装置およびその構成要素 WO2006132044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007520042A JP5228485B2 (ja) 2005-06-09 2006-04-28 ガラス製造装置およびその構成要素
US11/947,817 US8019206B2 (en) 2005-06-09 2007-11-30 Glass manufacturing apparatus and a structural member thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-169169 2005-06-09
JP2005169169 2005-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/947,817 Continuation US8019206B2 (en) 2005-06-09 2007-11-30 Glass manufacturing apparatus and a structural member thereof

Publications (1)

Publication Number Publication Date
WO2006132044A1 true WO2006132044A1 (ja) 2006-12-14

Family

ID=37498251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309033 WO2006132044A1 (ja) 2005-06-09 2006-04-28 ガラス製造装置およびその構成要素

Country Status (5)

Country Link
US (1) US8019206B2 (ja)
JP (1) JP5228485B2 (ja)
KR (1) KR100914422B1 (ja)
TW (1) TWI391348B (ja)
WO (1) WO2006132044A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298671A (ja) * 2008-06-17 2009-12-24 Avanstrate Inc ガラス導管
CN102015554A (zh) * 2008-02-28 2011-04-13 康宁股份有限公司 用于含铂容器的直接电阻加热的含镍法兰
JP2011173787A (ja) * 2010-02-25 2011-09-08 Corning Inc 白金含有容器の直接抵抗加熱に使用するための装置
JP2014051399A (ja) * 2012-09-05 2014-03-20 Avanstrate Inc ガラス導管及びガラス板の製造方法
JP2015131761A (ja) * 2015-03-05 2015-07-23 AvanStrate株式会社 ガラス導管及びガラス板の製造方法
JP2016533313A (ja) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド ガラス製造装置および方法
KR20170131509A (ko) * 2015-03-23 2017-11-29 코닝 인코포레이티드 금속 용기를 가열하기 위한 장치 및 방법
JP2018531206A (ja) * 2015-10-21 2018-10-25 コーニング インコーポレイテッド 金属容器を加熱するための装置および方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242886B2 (en) * 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
CN102344236A (zh) * 2011-07-04 2012-02-08 湖北戈碧迦光电科技股份有限公司 一种玻璃制造中铂金加热系统
CN102583955A (zh) * 2012-01-19 2012-07-18 河南国控宇飞电子玻璃有限公司 用于铂金通道的直接电加热法兰
US8857219B2 (en) * 2012-07-11 2014-10-14 Corning Incorporated Apparatus for use in direct resistance heating of platinum-containing vessels
TWI746726B (zh) * 2016-12-15 2021-11-21 美商康寧公司 用於控制流入玻璃成形機之玻璃流的方法及設備
JP6925583B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
WO2020023218A1 (en) * 2018-07-27 2020-01-30 Corning Incorporated Methods for heating a metallic vessel in a glass making process
CN109336366B (zh) * 2018-10-09 2021-09-10 成都中光电科技有限公司 一种抗高温变形铂金通道结构
CN111056732B (zh) * 2019-12-09 2022-07-01 彩虹(合肥)液晶玻璃有限公司 一种环形燃烧器及玻璃卸料装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227822A (ja) * 1993-02-05 1994-08-16 Nippon Sheet Glass Co Ltd ガラス素地流出装置
JPH10152329A (ja) * 1996-11-15 1998-06-09 Canon Inc ガラス溶融炉
JPH11349334A (ja) * 1998-06-05 1999-12-21 Asahi Glass Co Ltd 溶融ガラスの加熱装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961625A (en) * 1958-07-24 1960-11-22 Bendix Corp Thermistor probe
US3411123A (en) * 1966-05-10 1968-11-12 Gen Electric Pyrolytic graphite electrical resistance element
US4180723A (en) * 1977-03-28 1979-12-25 Corning Glass Works Electrical contacts for electrically conductive carbon glasses
CA2164676C (en) * 1995-01-18 2006-10-10 Michael T. Dembicki Method and apparatus for delivering a glass stream for forming charges of glass
JP3767637B2 (ja) 1995-08-21 2006-04-19 旭硝子株式会社 高温溶融物用導管の支持構造体
DE19948634B4 (de) * 1999-10-01 2005-02-03 Reeßing, Friedrich, Dr.rer.nat. Konditioniereinrichtung für geschmolzenes Glas mit optimierter elektrischer Beheizung und verbesserter thermischer Homogenität des Glases
US6286337B1 (en) * 2000-06-29 2001-09-11 Corning Incorporated Tubing system for reduced pressure finer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227822A (ja) * 1993-02-05 1994-08-16 Nippon Sheet Glass Co Ltd ガラス素地流出装置
JPH10152329A (ja) * 1996-11-15 1998-06-09 Canon Inc ガラス溶融炉
JPH11349334A (ja) * 1998-06-05 1999-12-21 Asahi Glass Co Ltd 溶融ガラスの加熱装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015554A (zh) * 2008-02-28 2011-04-13 康宁股份有限公司 用于含铂容器的直接电阻加热的含镍法兰
JP2011513173A (ja) * 2008-02-28 2011-04-28 コーニング インコーポレイテッド 白金含有容器の直接抵抗加熱に使用するためのニッケル含有フランジ
JP2014055102A (ja) * 2008-02-28 2014-03-27 Corning Inc 白金含有容器の直接抵抗加熱に使用するためのニッケル含有フランジ
JP2014218430A (ja) * 2008-02-28 2014-11-20 コーニング インコーポレイテッド 白金含有容器の直接抵抗加熱に使用するためのニッケル含有フランジ
KR101473292B1 (ko) 2008-02-28 2014-12-16 코닝 인코포레이티드 백금-함유 용기의 직접 저항가열에 사용하기 위한 니켈-함유 플랜지
JP2009298671A (ja) * 2008-06-17 2009-12-24 Avanstrate Inc ガラス導管
JP2011173787A (ja) * 2010-02-25 2011-09-08 Corning Inc 白金含有容器の直接抵抗加熱に使用するための装置
JP2014051399A (ja) * 2012-09-05 2014-03-20 Avanstrate Inc ガラス導管及びガラス板の製造方法
JP2019163205A (ja) * 2013-10-18 2019-09-26 コーニング インコーポレイテッド ガラス製造装置および方法
JP2016533313A (ja) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド ガラス製造装置および方法
JP2015131761A (ja) * 2015-03-05 2015-07-23 AvanStrate株式会社 ガラス導管及びガラス板の製造方法
JP2018513092A (ja) * 2015-03-23 2018-05-24 コーニング インコーポレイテッド 金属容器を加熱するための装置及び方法
KR20170131509A (ko) * 2015-03-23 2017-11-29 코닝 인코포레이티드 금속 용기를 가열하기 위한 장치 및 방법
KR102497655B1 (ko) 2015-03-23 2023-02-09 코닝 인코포레이티드 금속 용기를 가열하기 위한 장치 및 방법
JP2018531206A (ja) * 2015-10-21 2018-10-25 コーニング インコーポレイテッド 金属容器を加熱するための装置および方法
JP6990010B2 (ja) 2015-10-21 2022-01-12 コーニング インコーポレイテッド 金属容器を加熱するための装置および方法

Also Published As

Publication number Publication date
TW200700338A (en) 2007-01-01
US8019206B2 (en) 2011-09-13
KR100914422B1 (ko) 2009-08-27
US20080087046A1 (en) 2008-04-17
JP5228485B2 (ja) 2013-07-03
TWI391348B (zh) 2013-04-01
KR20080014838A (ko) 2008-02-14
JPWO2006132044A1 (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2006132044A1 (ja) ガラス製造装置およびその構成要素
JP5018476B2 (ja) ガラス製造装置およびその構成要素、ならびに該構成要素を通電加熱する方法
US8274018B2 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
JP4992712B2 (ja) 白金製の複合管構造体を通電加熱する方法
JP5056411B2 (ja) 白金または白金合金製の構造体およびそれを用いたガラス製造装置
JP5749778B2 (ja) 白金含有容器の直接抵抗加熱に使用するためのニッケル含有フランジ
WO2015057646A1 (en) Apparatus and method for making glass
TW202014389A (zh) 用於在玻璃製作過程中加熱金屬容器的方法
CN116506985A (zh) 加热器、玻璃物品的制造装置以及玻璃物品的制造方法
TW201827362A (zh) 用於控制流入玻璃成形機之玻璃流的方法及設備
JP2015105196A (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP4561468B2 (ja) ガラス製造装置およびその構成要素、および該構成要素を通電加熱する方法、ならびにガラス製造方法
CN100434208C (zh) 用于镁合金熔体转炉的潜流式通道机构
CN102442759A (zh) 玻璃制造装置及其构成要素
JP2010047462A (ja) 溶融ガラス送液部の加熱機構
JP2006327830A5 (ja) ガラス製造装置およびその構成要素、および該構成要素を通電加熱する方法、ならびにガラス製造方法
JP2010173892A (ja) 溶融ガラス流出制御装置及びガラス成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007520042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11947817

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077028681

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745892

Country of ref document: EP

Kind code of ref document: A1