WO2006123529A1 - 膜電極接合体および直接液体燃料形燃料電池 - Google Patents

膜電極接合体および直接液体燃料形燃料電池 Download PDF

Info

Publication number
WO2006123529A1
WO2006123529A1 PCT/JP2006/308938 JP2006308938W WO2006123529A1 WO 2006123529 A1 WO2006123529 A1 WO 2006123529A1 JP 2006308938 W JP2006308938 W JP 2006308938W WO 2006123529 A1 WO2006123529 A1 WO 2006123529A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
polymer electrolyte
electrode assembly
electrolyte
layer
Prior art date
Application number
PCT/JP2006/308938
Other languages
English (en)
French (fr)
Inventor
Hideki Hiraoka
Daigo Sato
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2007516238A priority Critical patent/JPWO2006123529A1/ja
Priority to US11/920,002 priority patent/US20090068530A1/en
Priority to EP06745819A priority patent/EP1890351A4/en
Publication of WO2006123529A1 publication Critical patent/WO2006123529A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane electrode assembly in which an electrolyte membrane and an electrode are joined, and a direct liquid fuel type fuel cell, and more specifically, a membrane electrode assembly suitable for a fuel cell or an electrochemical device.
  • the present invention relates to a direct liquid fuel type fuel cell using this membrane electrode assembly, particularly a direct methanol type fuel cell, and relates to fuel cell technology.
  • Fuel cells which are a type of electrochemical device that uses polymer electrolytes, are attracting attention as a low-pollution automobile power source and high-efficiency power generation method, whose performance has been greatly improved by the development of electrolyte membranes and catalyst technology in recent years. I am.
  • a fuel cell using this polymer electrolyte membrane (hereinafter referred to as “solid polymer fuel cell”) has electrodes composed of catalyst layers having oxidation and reduction catalysts on both sides of the polymer electrolyte membrane. It is considered as a structure.
  • a membrane electrode assembly (hereinafter also referred to as “MEA”) in which electrodes containing a catalyst such as platinum are bonded to both surfaces of an electrolyte membrane.
  • MEA membrane electrode assembly
  • the structure is the structure shown in the cross-sectional view of FIG. 1, and the electrodes are usually provided on both surfaces of the electrolyte membrane 1, the catalyst layer 2 (the anode side 2a and the force sword side 2b), the gas It is composed of a diffusion layer 3 and a current collector 4.
  • Patent Document 1 Japanese Patent Laid-Open No. 09-036776
  • the catalyst electrode layer farther from the interface with the electrolyte membrane is made thicker.
  • DMFC direct methanol fuel cell
  • methanol and water are supplied to the anode, and protons are extracted by reacting methanol and water with a catalyst in the vicinity of the membrane.
  • a fluorine-based polymer electrolyte membrane made of polyperfluoroalkylsulfonic acid is usually used.
  • JP 2002-164055 A proposes a hydrocarbon polymer having a cation exchange group, soluble in at least one organic solvent, and hardly soluble in water. Yes.
  • non-fluorine-containing polymer electrolyte membranes such as polyperfluoroalkyl sulfonic acid membranes are not used for electrolyte membranes composed of fluorine-free! / ⁇ polymers.
  • the designation of fluorine-based polymer electrolyte membrane or hydrocarbon-based polymer electrolyte membrane is widely used.
  • This electrolyte membrane is a hydrocarbon-based electrolyte membrane in which a porous substrate is filled with an inexpensive hydrocarbon-based proton-conducting polymer as a polymer electrolyte.
  • the porous substrate is made of polyimide, bridged polyethylene, etc. Because it is made of a material that is difficult to deform, it is possible to prevent excessive swelling of the proton-conductive polymer filled in the pores with the aqueous methanol solution. . As a result, it is possible to suppress the permeation of methanol, and it is not possible to consider applying this feature to D MFC.
  • the present inventors have filled the polymer electrolyte inside the pores of the porous substrate, and covered the surface with the polymer electrolyte without exposing the surface of the porous substrate. Proposed to reduce the contact resistance with the electrode (Japanese Patent Application No. 2004-078556).
  • FIG. 2 is an enlarged cross-sectional view of the surface portion of the electrolyte membrane 1 and shows that the surface of the porous substrate 6 is covered with the polymer electrolyte 5.
  • the present inventors have prepared an electrolyte membrane having a structure in which a polymer electrolyte is filled in the pores of a porous substrate and the surface of the porous substrate is exposed, and the electrolyte membrane and the electrode.
  • a proposal has been made regarding a membrane / electrode assembly obtained by thermocompression bonding at a temperature equal to or higher than the softening temperature of a porous substrate, and a fuel cell having such strength (Japanese Patent Application No. 2004-114822).
  • the adhesion with the electrode is improved by exposing a part of the porous substrate 6 to the surface of the porous substrate 6 constituting the electrolyte membrane 1. .
  • Patent Document 1 Japanese Patent Laid-Open No. 09-036776 (Claims)
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2002-164055 (Claims)
  • Patent Document 3 WO03Z075385 Publication (Claims)
  • the present invention solves the problems of the fluorine-containing polymer electrolyte membrane as described above, taking into account the current situation, and the adhesion of the electrode in the fuel cell electrolyte membrane and the initial operation.
  • Inexpensive membrane electrode assembly suitable for direct methanol fuel cell with improved start-up speed and low methanol permeation, especially with long life, and direct methanol fuel using this membrane electrode assembly It is intended to provide a battery.
  • the present invention solves the above-mentioned problem, and is a non-fluorine in which a polymer electrolyte is filled in the pores of a porous substrate, and a part of the porous substrate is preferably exposed on the surface.
  • a layer (high electrolyte content layer) with a high polymer electrolyte content as shown by 7 in Fig. 5 is formed on the surface of the electrode catalyst layer.
  • An electrolyte membrane made of a porous substrate filled with a polymer electrolyte in the pores;
  • Electrodes having a catalyst layer formed from a catalyst and a polymer electrolyte disposed on both surfaces of the electrolyte membrane,
  • the polymer electrolyte content in the catalyst layer is greater than the other part of the catalyst layer on the surface where the catalyst layer is in contact with the electrolyte membrane.
  • the surface of the porous substrate in the electrolyte membrane is It is characterized by being covered with the polymer electrolyte used when filling the pores of the substrate.
  • the catalyst layer is
  • It is characterized by forming a multi-layer structure of a polyelectrolyte content and a few layers.
  • the volume ratio of the polymer electrolyte content of the multi-layered polymer electrolyte content in the catalyst layer is:
  • a small amount is more than twice the volume ratio of the polymer electrolyte content in the layer.
  • the polymer electrolyte content of the layer having a high polymer electrolyte content in the catalyst layer is 30% or more by volume ratio.
  • the polymer electrolyte content of the layer having a high polymer electrolyte content is 60% or more by volume, and the polymer electrolyte content of the layer having a low polymer content is less than 30% by volume.
  • the electrolyte membrane is
  • the polymer electrolyte is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoe
  • the ratio of the crosslinking agent is 15% by mass or more and less than 60% by mass of the total amount of the monomer and the crosslinking agent.
  • the particulate filler is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • a layer having a high polymer electrolyte content of the catalyst layer in the force sword side electrode is
  • the layer is formed from a composition containing a polyelectrolyte and a hydrophilic fine particle filler.
  • the surface of the electrode where the catalyst layer is in contact with the electrolyte membrane has a higher or higher molecular electrolyte content than the other parts of the catalyst layer (hereinafter referred to as “electrolyte high”).
  • electrolyte high molecular electrolyte content than the other parts of the catalyst layer
  • an electrolyte membrane excellent in methanol permeation suppression can be obtained as a fuel. It shortens the induction period of battery performance when it is installed in a battery.
  • the surface force of the electrolyte membrane substrate having a porous force is not covered with the polymer electrolyte used when filling the pores of the substrate.
  • the occurrence of defects such as electrode peeling is significantly reduced.
  • this MEA is suitable for DMFC, and the fuel of DMFC is a methanol aqueous solution.
  • This MEA is a fuel other than methanol, for example, ethanol, isopropanol which are widely studied. It can also be applied to a fuel cell using an aqueous solution of formic acid or the like as a fuel.
  • FIG. 1 is a schematic view showing a cross section of a membrane electrode assembly.
  • FIG. 2 Schematic diagram showing the vicinity of the surface of the electrolyte membrane, in which the polymer electrolyte is filled in the pores of the porous substrate, and the surface portion of the porous substrate is covered with the filled polymer electrolyte.
  • FIG. 3 is a schematic cross-sectional view showing a boundary portion between the electrolyte membrane and the electrode shown in FIG.
  • FIG. 4 The polymer electrolyte is filled in the pores of the porous substrate, and the surface layer portion of the porous substrate is covered with the filled polymer electrolyte. The vicinity of the surface of the electrolyte membrane is shown. It is a schematic cross-sectional view.
  • FIG. 5 is a schematic cross-sectional view showing a state before lamination of an electrode having the electrolyte membrane shown in FIG. 4 and a high electrolyte content layer on its surface.
  • FIG. 6 Schematic diagram showing the boundary between the electrolyte membrane shown in Fig. 5 and an electrode having a high electrolyte content layer on the surface, where the electrolyte high content layer improves the contact between the electrolyte membrane and the electrode. It is sectional drawing.
  • FIG. 7 shows the IR resistance of DMFC on the second day for Example 1 and Example 3, plotted with the current density on the horizontal axis, and shows the moisturizing effect of silica.
  • the membrane / electrode assembly of the present invention uses an electrolyte membrane in which the polymer electrolyte is filled in the pores of the porous substrate, and preferably the surface layer of the porous substrate is exposed on the surface, and the catalyst is formed on both sides thereof.
  • the electrode with the catalyst layer is laminated with the layer facing the electrolyte membrane side, and the polymer electrolyte content on the surface of the catalyst layer is higher than that of the other part over one or both electrodes. Or a high electrolyte content layer is provided. As a result, the initial performance of the fuel cell incorporating this electrolyte membrane is promoted and the performance is intended to be improved.
  • the electrolyte membrane constituting the membrane electrode assembly suppresses the permeation of methanol, this also reduces the permeation of water in the methanol aqueous solution as a fuel, and the force sword is easily dried.
  • the electrolyte performance is reduced by adding a hydrophilic material to the electrolyte-rich layer, and by suppressing the permeation of methanol not only by the membrane but also by the MEA as a whole. It is characterized by blending a plate-like filler into the containing layer. As a result, the methanol permeation prevention and output required for DMFC are further improved.
  • the electrolyte membrane used in the MEA of the present invention is an electrolyte membrane in which the polymer electrolyte is filled in the pores of the porous substrate, and preferably the surface of the electrolyte membrane is filled in the pores. The surface layer of the porous base material is exposed without being covered with the polymer electrolyte.
  • the material of the porous base material used for the electrolyte membrane is not particularly limited, but may be a material having a property of being softened or melted by heating, such as methanol and water, which are preferred for thermoplastic resin. More preferably, the material is substantially non-swelling. In particular, it is desirable that there is little or almost no change in area when wet with water compared to when dry.
  • the area increase rate is a force that changes depending on the immersion time and temperature.
  • the porous substrate when the porous substrate is immersed in pure water at a temperature of 25 ° C for 1 hour. It is preferable that the area increase rate is 20% or less at the maximum compared with the time of drying.
  • the porous substrate has a material strength having a hydrophobic surface.
  • Such a porous substrate is made of a material having a property of being softened or melted by heating, when the electrodes are bonded, they are softened or melted by a usual thermocompression bonding process to form the electrode. It is possible to bond more firmly.
  • the soft temperature at that time is appropriately selected according to the temperature at which the fuel cell, which is the main application, is operated, but an object having a soft temperature higher than the target operating temperature of the fuel cell is selected. Must be selected.
  • the soft temperature is in the range of 70 ° C to 200 ° C. More preferably, the temperature is in the range of 90 to 150 ° C.
  • the softening temperature When the softening temperature is too low, the operating temperature of the fuel cell is limited, and the fuel cell itself generates heat due to the reaction, so that long-time use is limited. In addition, when the softening temperature is higher than this range, the functional group such as sulfonic acid group of the polymer electrolyte is easily decomposed by the temperature at the time of pressing. Since the molecular electrolyte and the catalyst carrier carbon are prone to oxidative degradation, there is a problem that V is not preferable.
  • the porous base material in the present invention preferably has a tensile modulus of 500 to 5000 MPa, more preferably 1000 to 5000 MPa. Further, those having a breaking strength of 50 to 50 OMPa are preferred, more preferably 100 to 500 MPa. If these ranges are out of the lower range, the membrane is likely to be deformed by the force of swelling of the filled polymer electrolyte by methanol or water. Moreover, if it comes off higher, the base material becomes too brittle and cracks are likely to occur in the film due to press molding at the time of electrode joining or tightening when assembled in a battery. In addition, a porous base material that has heat resistance at the operating temperature of the fuel cell does not easily extend even when a preferred external force is applied.
  • thermoplastic polymers such as polyolefins, halogenated polyolefins, polysulfones, polyphenylene oxides, polyamides and polyesters, and polyolefins are crosslinked by adding radiation or a crosslinking agent. Or stretching Thus, there is a polymer that is difficult to be deformed such as extending against an external force.
  • These materials can be used alone or in combination with a method such as laminating two or more.
  • stretched polyolefins, crosslinked polyolefins, and crosslinked polyolefins after stretching are preferred because they are readily available and have good workability in the filling process.
  • the main component is polyethylene, which is superior in terms of hydrophobicity, durability, and availability.
  • the porosity of the porous substrate of the present invention obtained as described above is preferably 5 to 95%, more preferably 5 to 90%, particularly preferably 20 to 80%. %.
  • the average pore diameter is preferably in the range of 0.001 to 100 / ⁇ ⁇ . More preferably, it is the range of 0.01-1 m. If the porosity is too small, the number of ion exchange groups per area is too small, and the output is low when used as a fuel cell. If it is too large, the membrane strength is undesirably lowered.
  • the thickness of the substrate is preferably 200 m or less. More preferably, it is 1 to 150 m, more preferably 5 to: LOO ⁇ m, and particularly preferably 5 to 50 ⁇ m. If the film thickness is too thin, the film strength decreases and the amount of methanol permeated also increases, and if it is too thick, the film resistance becomes too large and the output of the fuel cell becomes low.
  • the electrolyte membrane used in the present invention is a polymer electrolyte made of a hydrocarbon polymer having an ion exchange group in the pores of the above-described porous substrate, in particular, a hydrocarbon-based porous substrate. What is filled can be preferably used.
  • the method of filling the polymer is not particularly limited, but the polymer is impregnated into the porous substrate in a solution or in a molten state, or the monomer composition constituting the polymer electrolyte or the solution or dispersion thereof is used as the porous group. It can be obtained by impregnating the material and then polymerizing the monomer.
  • a crosslinking agent, a polymerization initiator, a catalyst, a curing agent, a surfactant, and the like are added to the monomer composition to be filled or a solution thereof, if necessary.
  • the ion exchange group may contain a monomer constituting the polymer in advance, or may be introduced in a step such as sulfonating after filling.
  • the polymer electrolyte filled in the pores of the porous substrate is not particularly limited, and a generally known polymer having an ion exchange group can be used.
  • a polymer obtained by radical polymerization can be preferably used.
  • many ion exchange group-containing monomers constituting the polymer electrolyte are used. After impregnating the porous substrate, it can be obtained by a method such as polymerization with ultraviolet rays.
  • a sulfonic acid group-containing beryllium compound or a phosphoric acid group-containing bully compound is preferable because of excellent proton conductivity, and 2-methylpropane-2- (meta ) Acrylamide sulfonic acid power It has a high polymerizability and is more preferable.
  • a compound that can be used as a cross-linking agent has two or more cross-linkable functional groups that can be polymerized in one molecule. It is possible to form dots and make the polymer insoluble and infusible three-dimensional network structure.
  • N N, monomethylene bis (meth) acrylamide
  • N N, monoethylene bis (meth) acrylamide
  • N monopropylene bis (meth) acrylamide
  • N N, -butylenebis (meta ) Acrylamide
  • Polyethylene glycol di (meth) acrylate Polypropylene glycol di (meth) acrylate, Trimethylol propane diallyl ether, Pentaerythritol triallyl ether, Dibulubenzene, Bisphenol di (meth) acrylate
  • examples include isocyanuric acid di (meth) acrylate, tetraaryloxetane, triallylamine, and the like.
  • the crosslinkable functional group is not limited to those having a carbon-carbon double bond, and although it is inferior in that the polymerization reaction rate is slow, a bifunctional or higher functional epoxy compound or the like should also be used. Can do. When using an epoxy compound, it is allowed to react with an acid group such as a carboxyl group in the polymer to cause crosslinking, or a monomer component having a copolymerizable monomer having a hydroxyl group or the like as a third component is used. It can also be added and cross-linked. These crosslinking agents can be used alone or in combination of two or more as required.
  • the amount is 15 to 60%. Below this range, methanol permeation is too high and is not suitable for DMFC. On the other hand, when the amount is larger than this range, the amount of ion-exchange groups is relatively reduced, so that battery performance is lowered.
  • the monomer composition for a polymer electrolyte used in the present invention has a protonic acid group as necessary, for example, in order to adjust the swelling property of the polymer.
  • a monomer as an ingredient can be blended.
  • the strong monomer is not particularly limited as long as it can be copolymerized with the ion-exchange group-containing monomer and the crosslinking agent used in the present invention, but (meth) acrylic acid esters, (meth) atari Luamides, maleimides, styrenes, organic acid vinyls, aryl compounds, methallyl compounds, and the like.
  • the means for polymerizing the above monomer composition is not particularly limited, and a known radical polymerization method can be applied.
  • the radical polymerization can be carried out simply by heating or irradiating ultraviolet rays, but usually a polymerization initiator is added and the polymerization is initiated by radicals generated by the decomposition of the polymerization initiator.
  • Examples of such a polymerization initiator include those that start radical polymerization by heating, such as peroxide-based, azo compound-based, and redox-based polymerization initiators, and radical polymerization by ultraviolet rays or visible light. Those that start are widely used.
  • photoinitiated polymerization with ultraviolet rays is desirable in that a desired electrolyte membrane with good productivity can be obtained by a relatively simple process in which the polymerization reaction is easily controlled.
  • electron beam irradiation is also known, and this can also be used preferably.
  • the electrolyte membrane in this invention is not covered with the polymer electrolyte whose surface is filled in the pores, and the surface layer of the porous substrate is exposed, and the adhesion with the electrode is stable and reliable.
  • the manufacturing process will be described below.
  • a simple method a method in which a polymer electrolyte layer formed on the surface is scraped after impregnating a polymer electrolyte monomer and polymerizing can be used.
  • a method at that time a method of rubbing with a brush, nylon scrubbing or the like, or a method of scraping with a scraper or the like can be used.
  • the polymer electrolyte adhering to the surface it is preferable to swell the polymer electrolyte adhering to the surface by moistening the membrane with water. If the polymer electrolyte is firmly attached to the surface, it can be easily removed by moistening with an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc. However, it is necessary to wash with an acid later to make the internal ion exchange group into a protonic acid type.
  • the electrolyte membrane a polymer electrolyte is filled into the pores of the porous substrate, the methanol permeation coefficient at a temperature 25 ° C is 15 ( ⁇ m-kg) / (m 2 -h) The effect is particularly remarkable when the following are used.
  • an electrolyte membrane in which a polymer electrolyte is filled inside the pores of a porous substrate is used, but methanol permeation can be suppressed by such a structure. It is possible to demonstrate.
  • a commercially available polyperfluorosulfonic acid electrolyte membrane has an affinity for methanol of 40 to 60 m ⁇ kg) / (m 2 ⁇ h) when calculated with a methanol permeability coefficient. It has been confirmed by experiments by the inventors that the material is high. This is because the polyperfluorosulfonic acid electrolyte membrane can contain a large amount of methanol and water and easily allows ions to pass therethrough, so that it is difficult to cause a problem in ionic bonding properties when electrodes are bonded together. It is shown that. When such membranes are used for DMFC applications, it is necessary to increase the thickness to demonstrate methanol permeation prevention. However, since there are still materials with high affinity with methanol, there is a problem that the higher the methanol concentration, the easier the fuel permeates.
  • an electrolyte membrane having a small methanol permeability coefficient is effective in reducing methanol permeation, but is likely to cause problems such as ionic bonding of the electrodes and drying of the membrane.
  • the structure of the membrane electrode assembly according to this invention effectively solves the problem.
  • this membrane / electrode assembly can be used without any problem even if it is used in the above-mentioned polyperfluorosulfonic acid electrolyte membrane. Is good As such, its use is not very meaningful.
  • the MEA in which the electrode of the present invention is combined is a polymer electrolyte fuel cell, particularly a direct liquid fuel fuel cell.
  • it is suitable for direct methanol fuel cells.
  • the electrode used in the present invention includes at least a catalyst layer for promoting a reaction associated with fuel cell power generation as an essential component.
  • the polymer electrolyte content on the surface of the catalyst layer on the surface in contact with the electrolyte membrane is made higher than that in other portions, or a high electrolyte content layer is formed.
  • the electrodes are laminated on both sides of the electrolyte membrane and are provided as a pair.
  • the catalyst layers are also provided on both sides of the electrolyte membrane, that is, as a pair.
  • it is preferable to form a high electrolyte content layer but it is also possible to apply them to only one of the catalyst layers, and a certain effect can be obtained.
  • the catalyst layer includes a catalyst and an electrolyte as essential components.
  • the catalyst layer formed from these is formed in a porous shape so that air and fuel diffuse efficiently into the catalyst.
  • a resin component such as PTFE may be added for the purpose of binding the catalysts together.
  • a gas diffusion layer usually used in the fuel cell field can be used.
  • the catalyst layer is fixed on one side of the gas diffusion layer by a method such as coating, or the catalyst layer and the electrolyte membrane are bonded together, and then the catalyst layer is aligned with the catalyst layer and incorporated into the fuel cell.
  • the gas diffusion layer has a function of transmitting an oxidizing agent such as air or generated water in the force sword, and has a function of transmitting fuel, generated carbon dioxide gas or the like in the anode.
  • both poles have the function of passing electrons. For this reason, a porous material formed of a conductive material is used.
  • Examples of such a gas diffusion layer include carbon paper, carbon cloth, carbon non-woven fabric, foam metal, metal mesh, and metal mesh fixed with conductive powder such as carbon black with a binder such as PTFE. is there.
  • conductive fine particles such as carbon black are used. It can be used by applying ink mainly composed of children, and this is sometimes referred to as a gas diffusion layer. These gas diffusion layers can have a common role as the current collector 4 in the membrane electrode assembly shown in FIG.
  • the catalyst used for the electrode has a function of accelerating the reaction in the anode and the power sword of the fuel cell, and is an essential component for the electrode of the fuel cell.
  • the catalyst type can be used without particular limitation as long as it is usually used for fuel cells.
  • noble metal fine particles such as platinum can be used.
  • the noble metal catalyst can be used by mixing it with other catalyst layer components, such as platinum black, which is in the form of fine particles. It can also be blended in a form supported on a conductive carrier such as carbon black.
  • platinum or the like can be used alone, but other metals can be mixed or alloyed and used together.
  • the combined use of platinum and ruthenium is widely performed for the purpose of reducing the poisoning of the catalyst by carbon monoxide on the anode side.
  • the catalyst layer is composed of a catalyst such as a noble metal, an ion conductive material such as polyperfluorosulfonic acid, and the like.
  • a catalyst such as a noble metal, an ion conductive material such as polyperfluorosulfonic acid, and the like.
  • the catalyst layer it is required to efficiently move electrons, ions, fuel, or oxidant and to form many reaction points called three-phase bodies in a limited space.
  • the noble metal catalyst or the conductive material such as carbon black on which the noble metal catalyst is supported must be in contact with each other so that fuel and air can easily permeate and diffuse. In addition, it must be porous.
  • the ion conduction part has a function of transmitting ions, and is in contact with the catalyst, thereby transferring ions involved in the reaction. In order to have such a function, it is required to form the catalyst layer in a porous shape and to cover the surface of the catalyst particles thinly with an ion conductive material such as a polymer electroly
  • the electrolyte blended in the electrode is made of a material having an ion exchange group as in the electrolyte membrane.
  • the electrolyte is used for both the anode and the force sword of the fuel cell. This electric Dissolution functions as an ion conduction path to move ionic substances such as protons generated in the electrode to the electrolyte membrane and further to the opposite electrode.
  • Such an electrolyte can be used as long as it is usually used in fuel cells.
  • An example of widely used electrolyte is polyperfluoroalkylsulfonic acid.
  • Polyperfluoroalkylsulfonic acid is usually available in a state dissolved in alcohol, etc.
  • a component such as a catalyst to form an ink, which is applied and dried.
  • a catalyst layer is formed.
  • Polyperfluoroalkylsulfonic acid is a linear polymer that has not been cross-linked. However, once it is dried, it has the property that it becomes difficult to dissolve easily in water. Used without. In addition, simply evaporating the solvent at a low temperature will elute into the fuel, etc., and a practical life will not be obtained, so it will be harder to dissolve by firing at a high temperature of 120 to 200 ° C. Means are taken.
  • a hydrocarbon-based polymer electrolyte can also be used.
  • it is dissolved in an organic solvent other than methanol, for example, methylethylketone, acetonitrile, N, N-dimethylformamide, trichloroethane, toluene, xylene, etc.
  • a polymer electrolyte solution that is insoluble in methanol is used like polyperfluoroalkylsulfonic acid, or a monomer that constitutes the above-mentioned crosslinked polymer electrolyte, and this is polymerized in advance with a catalyst.
  • it can be used in a method of forming around the catalyst.
  • the electrolyte is filled in the pores of the porous substrate, and preferably the surface thereof is a surface layer portion of the porous substrate.
  • This high electrolyte content layer is formed of a polymer electrolyte alone or a composition containing a polymer electrolyte and a particulate filler.
  • the high electrolyte content layer has a higher proportion of polymer electrolyte than the other catalyst layers, and at least in the high electrolyte content layer, the polymer electrolyte accounts for 30% or more by volume. More preferably, the electrolyte is high
  • the proportion of the polymer electrolyte in the containing layer is a volume ratio compared to other parts of the catalyst layer.
  • the high electrolyte content layer is The catalyst has a function of smoothing the ionic conduction between the electrolyte membrane where a part of the porous substrate having no ionic conductivity on the surface is exposed and the catalyst layer, so that the catalyst other than the high electrolyte content layer Preferably, it contains more polyelectrolyte than the other parts of the layer. More preferably, in the catalyst layer, the polymer electrolyte content of the high electrolyte content layer is 60% or more by volume, and the polymer electrolyte content of other parts of the catalyst layer is less than 30% by volume. It is.
  • the electrolyte-rich layer need not be particularly porous, but can be made porous if necessary, and the catalyst layer can be made porous to save fuel and air. This is essential in order to facilitate diffusion in the layer.
  • each layer often includes pores, but in the present invention, voids are not included in the calculation of the volume ratio.
  • the polyelectrolyte constituting the high electrolyte content layer is a polymer having an ion exchange group such as sulfonic acid and phosphoric acid, and the periphery of the catalyst is exposed to a very harsh environment.
  • a sulfonic acid polymer is preferably used.
  • Force that can also use the above-mentioned cross-linkable polymer electrolyte In such a case, the electrode easily peels off when used alone, so it is necessary to add an adhesive component such as a fine particle of thermoplastic resin with good adhesion to the electrolyte membrane as a fine particle component There is.
  • polyethylene fine particles, polypropylene fine particles, polyamide fine particles, polyester fine particles and the like can be used.
  • polyolefins such as polyethylene are preferred because they are electrochemically stable and difficult to hydrolyze.
  • Examples of the particulate filler constituting the high electrolyte content layer include conductive fine particles such as a catalyst or carbon black, or surface hydrophilic fine particles.
  • conductive fine particles such as a catalyst or carbon black
  • surface hydrophilic fine particles when the conductive fine particles are mixed with a polymer electrolyte and a solvent and used as an ink, the polymer electrolyte permeates the catalyst layer and closes the pores even if it is applied onto the catalyst layer. It is possible to prevent the original performance from being impaired by greatly changing the composition of the components in the layer. It is necessary to select a fine particulate filler that is at least stable with respect to the electrolyte to be used.
  • the fine particle filler preferably has a diameter of 100 m or less, more preferably 50 m or less. If the particulate filler is too large, it may cause a short circuit between the force sword and the anode when the MEA is made.
  • the particulate filler can also be used to improve the performance of the fuel cell. It can also be used to improve the adhesion of the electrode.
  • DMFC water permeates to the hydraulic sword contained in the fuel, so that water is supplied to the cathode side membrane and the polymer electrolyte in the catalyst layer to improve ionic conductivity. It does not need to be humidified with gases such as air.
  • DMFC is being considered for application to portable devices, and it is not common to use a device such as a humidifier together.
  • DMFC is required to suppress the permeation of methanol in order to improve fuel efficiency and performance.
  • water can also be prevented from permeating. Therefore, on the force sword side, despite the presence of abundant water on the anode side across the membrane, It has been confirmed by the inventors' experiments that the water generated by the reaction alone is insufficient to reduce the battery performance.
  • Examples of such a filler include fumed silica having a hydrophilic group on the surface (for example, Aerosil 300 manufactured by Nippon Aerosil Co., Ltd.), silica such as white carbon and colloidal silica, titanium oxide, and zeolite.
  • fumed silica having a hydrophilic group on the surface for example, Aerosil 300 manufactured by Nippon Aerosil Co., Ltd.
  • silica such as white carbon and colloidal silica, titanium oxide, and zeolite.
  • the plate-like filler is a general term for a flaky filler having a thickness smaller than the area, and is also called a flake-like shape or a scale-like shape, and generally has a plate-like thickness.
  • the relationship is t ⁇ x and t ⁇ y.
  • both x and y are 10 times or more and 100 times or more with respect to t. The higher the aspect ratio, the more efficiently methanol transmission can be reduced with a small amount.
  • fillers examples include glass flakes, talc, alumina, clay, my strength, graphite, and bentonite.
  • alumina, glass, and graphite are preferred examples of those that are less likely to contaminate the electrolyte with fewer ionic impurities.
  • Those containing a normal ionic substance such as My strength can be used after performing an ion exchange treatment in advance.
  • the MEA according to the present invention has a high electrolyte content layer formed on the catalyst layer of the electrode.
  • the surface of the catalyst layer in contact with the electrolyte membrane has a high electrolyte content, or the high electrolyte content.
  • a containing layer is disposed.
  • 2-Acrylamide 2-methylpropanesulfonic acid product of Toagosei Co., Ltd .: Trade name A TBS 35 g, N, N, 15 g of ethylene bisacrylamide, non-ionic surfactant 0.005 g, UV radical generator 0 Dip a cross-linked polyethylene porous substrate (thickness 30 m, porosity 37%, average pore size approx. 0 .: L m) in an aqueous polymer electrolyte composition solution consisting of 005 g and 50 g of water. The aqueous solution was filled.
  • the porous substrate was then lifted from the solution and then sandwiched with a 50 m thick PET film to prevent bubbles.
  • the characteristics of this electrolyte membrane are: proton conductivity is 4. lS / cm 2 , and methanol permeation flux, which represents the amount of methanol permeating the electrolyte membrane, is 0.08 kg / (m 2 ' h)
  • the methanol permeability coefficient which is a material-specific value obtained by converting methanol permeability by thickness, was 2.7 ⁇ m.kgZ (m.h).
  • the membrane of this production example has much less methanol permeation than the fluorine electrolyte membrane.
  • the obtained membrane was sandwiched between electrodes with catalysts of each Example and Comparative Example and hot-pressed to make MEA, and evaluated as a direct methanol fuel cell.
  • 2-Acrylamide 2-methylpropanesulfonic acid product of Toagosei Co., Ltd .: Trade name A TBS 35 g, N, N, 15 g of ethylene bisacrylamide, non-ionic surfactant 0.005 g, UV radical generator 0 Dip a cross-linked polyethylene porous substrate (thickness 30 m, porosity 37%, average pore size approx. 0 .: L m) in an aqueous polymer electrolyte composition solution consisting of 005 g and 50 g of water. The aqueous solution was filled.
  • the porous substrate was then lifted from the solution and then sandwiched with a 50 m thick PET film to prevent bubbles.
  • the performance is the same as in Membrane Production Example 1 except that a thin layer of electrolyte polymer is formed on the surface. Further, the obtained membrane was sandwiched between electrodes with catalysts of each example and comparative example. Was subjected to hot pressing at MEA to evaluate directly as a methanol fuel cell.
  • 2-Acrylamide 2-methylpropanesulfonic acid (trade name: A TBS, manufactured by Toagosei Co., Ltd.) 45 g, N, N, —ethylenebisacrylamide 5 g, nonionic surfactant 0.005 g, UV radical generator 0.
  • a polymer electrolyte constituent monomer composition composed of 005 g and water 50 g is immersed in a cross-linked polyethylene porous substrate (thickness 30 m, porosity 37%, average pore diameter approximately 0 .: L m), The aqueous solution was filled.
  • the porous substrate was then lifted from the solution and then sandwiched with a 50 m thick PET film to prevent bubbles.
  • the membrane of this production example had the same degree of force permeability as that of the fluorinated electrolyte membrane. It can be seen that the permeation flux is comparable because the material itself is difficult to permeate methanol and is thin.
  • the proton conductivity (unit: SZcm 2 ) was about 3 times better than Nafionl l7.
  • the obtained membrane was sandwiched between electrodes with catalysts of each example and comparative example and hot-pressed to form MEA, and evaluated as a direct methanol fuel cell.
  • catalyst made by Tanaka Kikinzoku Kogyo Co., Ltd .: trade name TEC61E54
  • TEC61E54 trade name TEC61E54
  • fluoropolymer electrolyte made by DuPont: trade name Nafion
  • solid content 20 g in terms of conversion and 5 g in terms of solid content of polytetrafluoroethylene dispersion were blended and stirred and mixed with a ball mill to obtain an anode catalyst ink.
  • a catalyst ink for a power sword was prepared with the same composition as that on the anode side, except that a commercially available catalyst (platinum manufactured by Tanaka Kikinzoku Kogyo Co., Ltd .: TEC10E50E) carrying platinum on carbon black was used.
  • the proportion of the polymer electrolyte in the catalyst layer is about 25% by volume.
  • the hydrocarbon-based electrolyte membrane produced in Electrolyte Membrane Production Example 1 was sandwiched between these pair of electrodes, and hot-pressed at a temperature of 120 ° C. to obtain MEA. When evaluated as a direct methanol fuel cell, it showed good power generation performance.
  • the catalyst layer of the pair of electrodes manufactured in Electrode Production Example 1 is overlaid on this sheet, hot pressed at a temperature of 120 ° C, and the PTFE sheet is removed to transfer the fluoropolymer electrolyte film onto the catalyst layer. Finally, heating was performed at 180 ° C. for 1 hour in a nitrogen atmosphere.
  • the high electrolyte content layer on the catalyst layer has a polymer electrolyte ratio of 100 volume%.
  • the hydrocarbon-based electrolyte membrane produced in Electrolyte Membrane Production Example 1 was sandwiched between these pair of electrodes, and MEA was obtained by hot pressing at a temperature of 120 ° C.
  • the direct methanol fuel cell thus formed was repeatedly operated for 5 hours a day.
  • the cell performance was measured after 5 hours, the performance stabilized on the second day.
  • Other characteristics are shown in Table 2.
  • indicates that there is no peeling
  • X indicates that peeling has occurred.
  • Fig. 7 shows the IR resistance measured in the low current density region (marked with a circle in the figure).
  • the ratio of the polymer electrolyte in the high electrolyte content layer on the catalyst layer is about 75% by volume.
  • the ratio of the polymer electrolyte in the high electrolyte content layer on the catalyst layer is about 75% by volume.
  • the MEA was obtained in the same manner as in Example 1, using the anode electrode prepared in Example 2 and sandwiching the hydrocarbon-based electrolyte membrane prepared in Electrolyte Membrane Production Example 1 between these pair of electrodes. It was.
  • Example 1 As a direct methanol fuel cell, the operation was repeated for 5 hours a day, and the cell performance after 5 hours was measured. As in Example 1, the performance was stabilized on the second day.
  • the IR resistance in the low current density region is lower than that of Example 1 (marked in the figure). This occurs on the side of the silica force sword, which is a hydrophilic material, or retains the water that has permeated the membrane, preventing the polymer electrolyte in the force sword side of the membrane and the force sword side electrode from drying out. It seems to be to show that.
  • the IR resistance decreases as the load increases. This is because the water in the reaction is humidified by the electrolyte in the membrane and catalyst layer on the power sword side, and the resistance decreases.
  • Table 2 The other characteristics are as shown in Table 2.
  • the ratio of the polymer electrolyte in the high electrolyte content layer on the catalyst layer is about 75% by volume.
  • Example 1 the hydrocarbon-based electrolyte membrane produced in the electrolyte membrane production example 1 A MEA was obtained in the same manner as in Example 1.
  • the operation was repeated for 5 hours a day, and the cell performance after 5 hours was measured. As a result, the performance stabilized on the second day as in Example 1.
  • 2-Acrylamido 2-methylpropane sulfonic acid product of Toagosei Co., Ltd .: trade name A TBS
  • polymerization was carried out by maintaining the temperature at 70 ° C. for 2 hours under a nitrogen atmosphere.
  • the ratio of the polymer electrolyte in the high electrolyte content layer on the catalyst layer is about 71% by volume.
  • a hydrocarbon electrolyte membrane produced in electrolyte membrane production example 1 was sandwiched between these pair of electrodes, and MEA was obtained in the same manner as in Example 1.
  • the MEA was manufactured by hot pressing at a temperature of 120 ° C.
  • the direct methanol fuel cell incorporating this MEA was repeatedly operated for 5 hours a day. When the battery performance was measured after 5 hours, the performance was stable on the second day.
  • the methanol permeability was equivalent to that of Comparative Example 3 using a fluorine-based electrolyte membrane, but the output was higher than that of Comparative Example 3.
  • the other characteristics are as shown in Table 2.
  • a MEA was obtained in the same manner as in Example 1 with the hydrocarbon-based electrolyte membrane produced in Electrolyte Membrane Production Example 1 sandwiched between a pair of electrodes produced in Electrode Production Example 1 and not having a high electrolyte content layer.
  • MEA electrolyte-based electrolyte membrane produced in Electrolyte Membrane Production Example 2 and having a hydrocarbon-based polymer electrolyte layer on its surface
  • the electrolyte membrane is a commercially available fluorine-based electrolyte membrane (manufactured by DuPont: trade name Nafion 117), and hot at a temperature of 120 ° C.
  • the MEA was made by pressing.
  • the direct methanol fuel cell incorporating this MEA was repeatedly operated for 5 hours a day, and the cell performance after 5 hours was measured. As a result, the performance stabilized on the second day.
  • the electrolyte membrane swollen for 1 hour in pure water at a temperature of 25 ° C was sandwiched between two platinum plates to make a sample for measurement.
  • the amount of methanol penetrating into the pure water side was measured over time by gas chromatographic analysis, and the methanol permeability coefficient and permeation flux at the steady state were measured.
  • the permeation coefficient is a numerical value normalized by the film thickness. Therefore, the lower the permeation coefficient, the more methanol permeates through the electrolyte membrane in terms of material 1 and the permeation flux indicates the ease of permeation of methanol through the membrane itself. The smaller the permeation flux, the better the direct methanol fuel cell application.
  • Electrode adhesion in water MEA was immersed for 24 hours in a beaker containing water at a temperature of 25 ° C, and the electrodes were observed for peeling. The case where there was no peeling was marked as ⁇ , and the case where peeling occurred was marked as X.
  • the operating conditions when the MEAs prepared in the examples and comparative examples are directly incorporated into a single methanol fuel cell are as follows.
  • the fuel was a 10 mass% methanol aqueous solution, the oxidant was air, and the cell temperature was 50 ° C.
  • the current density output characteristics were measured by changing the load with an electronic loader.
  • Each MEA was incorporated into a fuel cell, and ImolZl methanol aqueous solution was flowed to one electrode, and nitrogen was flowed to the other electrode, and the cell was maintained at a temperature of 50 ° C.
  • the negative electrode was connected to the methanol electrode, and the positive electrode was connected to the nitrogen flow side to raise the voltage, and the current value flowing at this time was monitored.
  • the current value began to rise from around 0.5V and became constant around 0.7 to 1.0V, so the current values that became constant were compared.
  • the voltage is increased, methanol leaking to the nitrogen side electrode is oxidized and releases protons and electrons, indicating that the observed current value is higher and that more methanol leaks.
  • a membrane electrode assembly (MEA) prepared by the process according to the present invention is used in a fuel cell, an electrolyte membrane having a structure in which a polymer electrolyte is filled in the pores of a porous substrate, in particular, a porous surface is formed on the membrane surface.
  • exposing a part of the porous substrate it is possible to improve ionic bonding with the electrode, which has been a defect, without impairing the adhesion of the electrode, which is an advantage of the electrolyte membrane. For this reason, the period until battery performance is stabilized can be shortened significantly.
  • the membrane electrode assembly of the present invention is extremely useful as a membrane electrode assembly for solid polymer fuel cells such as direct methanol fuel cells, and is widely used in various industries including the automobile industry. It is highly likely that

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】 燃料電池や電気化学装置用として好適な膜電極接合体、およびこの膜電極接合体を用いた直接メタノール形燃料電池を提供する。 【解決手段】 膜電極接合体を、細孔内に高分子電解質を充填した多孔質基材からなる電解質膜と、この電解質膜の両面に配される、触媒と高分子電解質とから形成される触媒層を有する電極とで構成したもので、前記触媒層中における高分子電解質含有量が、触媒層が電解質膜に接する面において、触媒層の他の部分より多いものとする。また、直接メタノール形燃料電池を、この膜電極接合体を用いたものとする。                                                                                 

Description

明 細 書
膜電極接合体および直接液体燃料形燃料電池
技術分野
[0001] この発明は、電解質膜と電極が接合した膜電極接合体、および直接液体燃料形燃 料電池に関するもので、より詳細には、燃料電池や電気化学装置用として好適な膜 電極接合体およびこの膜電極接合体を用いた直接液体燃料形燃料電池、特に直接 メタノール形燃料電池に関するもので、燃料電池技術に関連するものである。
背景技術
[0002] 高分子電解質を用いた電気化学装置の一種である燃料電池は、近年電解質膜や 触媒技術の発展により性能の向上が著しぐ低公害自動車用電源や高効率発電方 法として注目嫌めている。
この高分子電解質膜を用いた燃料電池 (以下、「固体高分子形燃料電池」という。 ) は、高分子電解質膜の両面に酸化、還元触媒を有する触媒層から構成される電極 が積層された構造とされて 、る。
[0003] すなわち、固体高分子形燃料電池では、通常、電解質膜の両面に白金等の触媒 を含有する電極を張り合わせた膜電極接合体 (以下、「MEA」ともいう。)の形態にし て使用され、その構造は、図 1に示した断面図のような構造であって、電極は、通常、 電解質膜 1の両面に設けられ、触媒層 2 (アノード側 2aと力ソード側 2b)、ガス拡散層 3、集電体 4とから構成されている。
[0004] 力かる構造を有する固体高分子形燃料電池の MEAに関して、発電効率を向上さ せるために、種々の提案がなされている。
例えば、特開平 09— 036776号公報 (特許文献 1)には、
1)触媒電極における触媒物質の密度を、電解質膜との界面近傍にお!ヽて極大とす る。
2)触媒物質の密度の異なる複数の触媒電極層を積層する。
3)複数の触媒電極層の内、電解質膜との界面から離れた触媒電極層ほど厚くする。
4)イオン伝導体の密度を電解質膜との界面近傍において極大とする。 などの提案がなされている。
[0005] 一方、直接メタノール形燃料電池(以下、「DMFC」とも 、う。)では、アノードへメタ ノールと水が供給され、膜近傍の触媒によってメタノールと水を反応させてプロトンを 取り出す。これらの燃料電池には、通常ポリパーフルォロアルキルスルホン酸からな るフッ素系高分子電解質膜が使用される。
[0006] しかしながら、ポリパーフルォロアルキルスルホン酸膜には、直接メタノール形燃料 電池などの溶液状燃料、例えば、メタノールなどを、直接電池セルに供給する燃料 電池に用いると、メタノール等の燃料が膜を通過してしまいエネルギーロスが生じると いう問題がある。さらに、メタノール等の燃料により膨潤して膜面積が大きく変化する ため、電極と膜の接合部が剥がれるなどの不具合を生じ易ぐ燃料濃度が上げられ ないという問題もある。また、フッ素原子を有することで材料自体の価格が高ぐ製造 工程が複雑で生産性が低いため非常に高価であるという経済的問題もある。
[0007] このため、直接メタノール形燃料電池としたときのメタノール透過を抑制し、しかも、 安価な炭化水素骨格力 なる高分子電解質膜が求められ、様々な炭化水素系電解 質膜が提案されている。例えば、特開 2002— 164055公報 (特許文献 2)には、陽ィ オン交換基を有し、有機溶媒の少なくとも 1種に可溶性で且つ水に難溶性の炭化水 素系高分子が提案されている。
なお、燃料電池関連業界においては、ポリパーフルォロアルキルスルホン酸膜のよ うなフッ素含有高分子電解質膜に対して、フッ素を含まな!/ヽ高分子から構成される電 解質膜を非フッ素系高分子電解質膜、あるいは炭化水素系高分子電解質膜という 呼称が広く用いられている。
[0008] また、このような高分子電解質膜として、本発明者らは先に、 2—アクリルアミド一 2 —メチルプロパンスルホン酸を必須の構成単量体とする電解質膜を提案した (WOO 3Z075385号公報:特許文献 3)。
この電解質膜は、多孔質基材に高分子電解質として安価な、炭化水素系プロトン 伝導性高分子を充填してなる炭化水素系電解質膜で、多孔質基材がポリイミド、架 橋ポリエチレン等、外力に対して変形し難い材料から形成されるため、孔内に充填さ れたプロトン伝導性ポリマーのメタノール水溶液による過度な膨潤を防ぐことができる 。その結果、メタノールの透過を抑制することができるもので、この特長を生かして D MFCへ応用することが考免られるものである。
[0009] また、本発明者らは、多孔質基材の細孔内部に高分子電解質を充填させ、かつ多 孔質基材の表面を露出させずに表面を高分子電解質で被うことによって、電極との 接触抵抗を低減することを提案した (特願 2004— 078556号)。
このような電解質膜の表面付近の断面図を図 2に示す。図 2は電解質膜 1の表面部 の拡大断面図で、多孔体基材 6の表面が高分子電解質 5で覆われて ヽることを示し ている。
この提案は、多孔質基材に高分子電解質を構成するスルホン酸系単量体等を配 合した溶液を含浸させ、 PETフィルム等の保護フィルムで挟んで重合させる際に、 P ETフィルムと多孔質基材との間に狭い間隔を保つことによって、表面の榭脂が脱落 し難くなる現象を発見し、これを応用したものである。さら〖こは、多孔質基材の表面が 露出した膜であっても、フッ素含有高分子電解質溶液を塗布乾燥することで、同様の 性質を発現させると 、うものである。
[0010] このような電解質膜を用いると、図 3の断面図のように、電極を構成する触媒層 2と 電解質膜 1のイオン的な繋がりが良好となり、電解質膜と電極の接触抵抗が下がるた め、初期特性は向上する。また、本発明者らの実験によると、電池に組み込んで、発 電を始めて力 性能が最高になるまでの誘導期間が短いという特長も見つけている。
[0011] さらに、本発明者らは、多孔質基材の細孔内部に高分子電解質を充填させ、かつ 多孔質基材の表面を露出させた構造を有する電解質膜、この電解質膜と電極を、多 孔質基材の軟化温度以上で加熱圧着することによる膜電極接合体、および、それら 力もなる燃料電池に関する提案を行なった (特願 2004— 114822号)。
この提案は、図 4のように、電解質膜 1を構成する多孔質基材 6の表面に多孔質基 材 6の一部を露出させることで、電極との接着性を向上させたものである。
[0012] また、このような多孔質基材の細孔内部へ、架橋構造を有する高分子電解質を充 填させた非フッ素系高分子電解質膜を用いる際に、細孔内部に充填した高分子電 解質中の架橋剤を増やすと内部構造が緻密になり、かつ高分子電解質が膨潤しにく くなるため、メタノール透過抑制効果が高まる効果が奏されるのである。 特許文献 1:特開平 09— 036776号公報 (特許請求の範囲)
特許文献 2:特開 2002— 164055公報 (特許請求の範囲)
特許文献 3: WO03Z075385号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0013] この発明は、力かる現状を踏まえた上で、上記のようなフッ素含有高分子電解質膜 が有する問題点を解消し、燃料電池用電解質膜における電極の接着性と、運転初 期の立ち上がりの速さを向上させ、かつメタノール透過が少なぐ特に寿命が長ぐ直 接メタノール形燃料電池に適した安価な膜電極接合体、さらには、この膜電極接合 体を用いた直接メタノール形燃料電池を提供せんとするものである。
課題を解決するための手段
[0014] この発明は上記の課題を解決するもので、多孔質基材の細孔内部に高分子電解 質が充填され、かつ、好ましくは多孔性基材の一部が表面に露出した非フッ素系電 解質膜を MEAに使用する際、電極の触媒層表面に、図 5中の 7で示されるような、 高分子電解質含有量が多 、層 (電解質高含有層)を形成することで、 MEAにした後 では図 6で示されるように、電解質膜内部の高分子電解質と電極内の高分子電解質 との間の接触を改善することによって、イオン伝導がスムーズに行なわれ、電池性能 が上昇する時間が大幅に低減することを見出してなされたものである。
[0015] すなわち、この発明の請求項 1に記載の発明は、
細孔内に高分子電解質を充填した多孔質基材からなる電解質膜と、
この電解質膜の両面に配される、触媒と高分子電解質とから形成される触媒層を有 する電極とからなり、
前記触媒層中における高分子電解質含有量が、触媒層が電解質膜に接する面に おいて、触媒層の他の部分より多いこと
を特徴とする膜電極接合体である。
[0016] また、この発明の請求項 2に記載の発明は、
請求項 1に記載の膜電極接合体にお!ヽて、
前記電解質膜おける多孔質基材の表面が、 基材の細孔内に充填する際に用いられた高分子電解質で被覆されて ヽな ヽこと を特徴とするものである。
[0017] また、この発明の請求項 3に記載の発明は、
請求項 1に記載の膜電極接合体にお!ヽて、
前記触媒層が、
高分子電解質含有量が多 ヽ層と、少な ヽ層との複層構造を形成して ヽること を特徴とするものである。
[0018] また、この発明の請求項 4に記載の発明は、
請求項 3に記載の膜電極接合体にぉ 、て、
前記触媒層における高分子電解質含有量が多 ヽ層の高分子電解質含有量の体 積比が、
少な 、層における高分子電解質含有量の体積比の 2倍以上であること を特徴とするものである。
[0019] また、この発明の請求項 5に記載の発明は、
請求項 3又は 4に記載の膜電極接合体にお ヽて、
前記触媒層における高分子電解質含有量の多い層の高分子電解質含有量が、 体積比で 30%以上であること
を特徴とするものである。
[0020] また、この発明の請求項 6に記載の発明は、
請求項 5に記載の膜電極接合体にぉ 、て、
前記触媒層における高分子電解質含有量の多い層の高分子電解質含有量が、 体積比で 60%以上であって、かつ少ない層の高分子電解質含有量が、体積比で 30%未満であること
を特徴とするものである。
[0021] また、この発明の請求項 7に記載の発明は、
請求項 1に記載の膜電極接合体にお!ヽて、
前記電解質膜が、
温度 25°Cにおけるメタノール透過係数力 15 m.kg) Z (m2*h)以下のものであ ること
を特徴とするものである。
[0022] また、この発明の請求項 8に記載の発明は、
請求項 1に記載の膜電極接合体にお!ヽて、
前記高分子電解質が、
スルホン酸基を有する単量体と架橋剤を重合させて得られるもので、架橋剤の割合 力 単量体と架橋剤の総量の 15質量%以上 60質量%未満であること
を特徴とするものである。
[0023] また、この発明の請求項 9に記載の発明は、
請求項 3に記載の膜電極接合体にぉ 、て、
前記触媒層における高分子電解質含有量の多 、層が、
高分子電解質のみで形成された層であること
を特徴とするものである。
[0024] また、この発明の請求項 10に記載の発明は、
請求項 3に記載の膜電極接合体にぉ 、て、
前記触媒層における高分子電解質含有量の多 、層が、
高分子電解質と板状の充填材を含有する組成物から形成された層であること を特徴とするものである。
[0025] また、この発明の請求項 11に記載の発明は、
請求項 3に記載の膜電極接合体にぉ 、て、
前記触媒層における高分子電解質含有量の多 、層が、
高分子電解質と微粒子状充填材を含有する組成物から形成された層であること を特徴とするものである。
[0026] また、この発明の請求項 12に記載の発明は、
請求項 11に記載の膜電極接合体にお!ヽて、
前記微粒子状充填材が、
導電性を有するものであること
を特徴とするものである。 [0027] また、この発明の請求項 13に記載の発明は、
請求項 3に記載の膜電極接合体にぉ 、て、
前記触媒層の内、力ソード側電極における触媒層の高分子電解質含有量の多い 層が、
高分子電解質と親水性を有する微粒子状充填材を含有する組成物から形成され た層であること
を特徴とするものである。
[0028] さらに、この発明の請求項 14に記載の発明は、
請求項 1〜13のいずれかに記載の膜電極接合体を用いたこと
を特徴とする直接液体燃料形燃料電池である。
発明の効果
[0029] この発明の膜電極接合体は、電極の触媒層が電解質膜に接する面において、高 分子電解質含有量を触媒層の他の部分より多くする、あるいは、多い層(以下、電解 質高含有層という。)を形成することで、多孔質基材の細孔内に充填された高分子電 解質と電極内の高分子電解質との間のイオン伝導をスムーズに行なわせしめるもの である。
[0030] また、この MEAにお ヽて電解質膜内の高分子電解質と電極内の高分子電解質と の間のイオン伝導をスムーズに行なわせしめることによって、メタノール透過抑制性に 優れた電解質膜を燃料電池に組み込んだ際の電池性能の誘導期間を短縮するもの である。
[0031] また、この MEAにおいて電解質高含有層内に親水性材料を配合することにより、メ タノール透過抑制性に優れた電解質膜を、燃料電池に組み込んだ際に問題となつ ていた力ソード側の膜の乾燥を防ぎ、 DMFCの出力を高めるものである。
[0032] また、この MEAにおいて、多孔質力 なる電解質膜基材の表面力 基材の細孔内 に充填する際に用いられた高分子電解質により被覆されていないようにすることによ り、電極が剥がれるなどの不具合の発生が著しく低下するのである。
[0033] さらに、この MEAにおいて電解質高含有層内に板状の充填材を配合することによ り、メタノール透過抑制性を更に向上させ、 DMFCの効率を高めるものである。 [0034] さらにまた、この MEAは DMFCに適したものであり、 DMFCの燃料は、メタノール 水溶液である力 この MEAは燃料として、メタノール以外の燃料、例えば、広く研究 が行なわれているエタノール、イソプロパノール、ギ酸などの水溶液を燃料とする燃 料電池にも、適用可能なのである。
図面の簡単な説明
[0035] [図 1]膜電極接合体の断面を示す模式図である。
[図 2]多孔質基材の細孔内に高分子電解質が充填され、多孔質基材の表層部が充 填 された高分子電解質で被覆されて ヽる、電解質膜の表層付近を示す模式断面 図である。
[図 3]図 2に示される電解質膜と電極の接触が良好である両者の境界部分を示す模 式断面図である。
[図 4]多孔質基材の細孔内に高分子電解質が充填され、多孔質基材の表層部が充 填 された高分子電解質で被覆されて ヽな ヽ、電解質膜の表層付近を示す模式断 面図である。
[図 5]図 4に示される電解質膜と電解質高含有量層を表面に有する電極の積層前の 状態を示す模式断面図である。
[図 6]図 5に示される電解質膜と電解質高含有量層を表面に有する電極が積層され 電解質高含有量層により電解質膜と電極の接触が改善された状態の両者の境界 部分を 示す模式断面図である。
[図 7]実施例 1と実施例 3について 2日目における DMFCの IR抵抗を測定し、電流密 度を横軸としてプロットしたもので、シリカの保湿効果を示した図である。
符号の説明
[0036] 1 電解質膜
2 触媒層
2a アノード側触媒層
2b 力ソード側触媒層
3 拡散層
4 集電体 5 高分子電解質
6 多孔質基材
7 電解質高含有層
発明を実施するための最良の形態
[0037] この発明の膜電極接合体は、多孔質基材の細孔内に高分子電解質が充填され、 好ましくは表面に多孔質基材の表層が露出した電解質膜を用い、その両側に触媒 層を電解質膜側にして張り合わされる触媒層付き電極とから構成されるもので、一方 の電極または両方の電極にぉ 、て、その触媒層表面の高分子電解質含有量を他の 部分より多くする、あるいは電解質高含有層を設けたことを特徴とするものである。こ れにより、この電解質膜を組み込んだ燃料電池の初期性能の立ち上がりを促進し、 性能の向上を意図するものである。
[0038] さらには、膜電極接合体を構成する電解質膜がメタノールの透過を抑制するもので あれば、これによつて燃料であるメタノール水溶液中の水の透過も減少し力ソードが 乾燥し易くなり、電池性能が低下するが、これを防ぐために電解質高含有層内へ親 水性材料を配合する構成とすることや、膜だけでなく MEA全体としてメタノールの透 過を抑制するために、電解質高含有層へ板状充填材を配合することを特徴とするも のである。これにより、 DMFCに求められるメタノール透過防止性と出力をより向上さ ·¾:るものである。
[0039] この発明の MEAで使用する電解質膜は、多孔質基材の細孔内に高分子電解質 が充填された電解質膜であって、好ましくは、その表面が細孔内に充填された高分 子電解質で被覆されず、多孔質基材の表層が露出したものである。
[0040] 上記電解質膜に用いる多孔質基材の材質は、特に限定するものではないが、加熱 により軟化もしくは溶融する性質を有する材料、例えば、熱可塑性榭脂が好ましぐメ タノールおよび水に対して実質的に膨潤しな 、材料であることがさらに好まし 、。特 に、乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ま しい。
多孔質基材をメタノールまたは水に浸したときの面積増加率は、浸漬時間や温度 によって変化する力 この発明では、温度 25°Cにおける純水に 1時間浸漬したときの 面積増加率が、乾燥時に比較して最大でも 20%以下であるものが好ましい。さらに、 多孔質基材が疎水性の表面を有する材料力 なるものが好ましい。
[0041] このような多孔質基材が、加熱により軟化もしくは溶融する性質を有する材料からな れば、電極を貼り合せる際に、通常行われている熱圧着工程で軟化もしくは溶融して 電極とより強固に接着することができる。
[0042] その際の軟ィ匕温度は、主たる用途である燃料電池を運転する温度に応じて適宜選 択されるが、目的とする燃料電池の運転温度よりも軟ィ匕温度が高い物を選択する必 要がある。
すなわち、固体高分子形燃料電池が運転される通常の温度範囲を考慮すれば、 軟ィ匕温度が温度 70°C〜200°Cの範囲にあるものが好ましい。より好ましくは、温度 9 0〜 150°Cの範囲にあるものである。
[0043] 軟化温度が低すぎる場合は、燃料電池の運転温度に制限が加えられ、燃料電池 そのものも反応により発熱するため、長時間の使用が制限される。また、軟化温度が この範囲よりも高 、場合は、プレス時の温度によって高分子電解質が有するスルホン 酸基等の官能基が分解しやす 、と 、う問題や、電極内の触媒の作用によって高分子 電解質や触媒担体であるカーボンが酸化劣化しやす ヽと ヽぅ問題があるため、 Vヽず れも好ましくない。
[0044] この発明における多孔質基材としては、引張り弾性率が 500〜5000MPaであるも のが好ましぐさらに好ましくは 1000〜5000MPaである。また、破断強度が 50〜50 OMPaを有するものが好ましぐさらに好ましくは 100〜500MPaのものである。 これらの範囲を低い方に外れると、充填した高分子電解質のメタノールや水により 膨潤しようとする力によって膜が変形し易くなる。また、高い方に外れると、基材が脆く なり過ぎて電極接合時のプレス成形や電池に組み込む際の締付け等によって、膜に ひび割れが発生し易い。また、多孔質基材は、燃料電池の運転温度において、耐熱 性を有するものが好ましぐ外力が加えられても容易に延びな 、ものがよ!、。
[0045] 上記のような性質を持つ材料として、ポリオレフイン、ハロゲン化ポリオレフイン、ポリ スルホン、ポリフエ-レンオキサイド、ポリアミド、ポリエステル等の熱可塑性高分子、 ポリオレフインを放射線の照射や架橋剤を加えて架橋したり延伸したりする等の方法 で、外力に対して延び等の変形をし難くした高分子が挙げられる。これらの材料は、 単独で用いても 2種以上を積層する等の方法で複合ィ匕して用いてもょ ヽ。
[0046] これらの多孔質基材の中では、延伸ポリオレフイン、架橋ポリオレフイン、延伸後架 橋されたポリオレフインカもなるものは、入手が容易で充填工程の作業性が良く好ま しい。ポリオレフイン類の中では、ポリエチレンを主成分とするもの力 疎水性、耐久 性、入手しやすさ等の点で優れている。
[0047] 上記のようにして得られる、この発明の多孔質基材の空孔率は、 5〜95%であるこ と力 子ましく、さらに好ましくは 5〜90%、特に好ましくは 20〜80%である。また、平 均孔径は 0. 001〜100 /ζ πιの範囲にあることが好ましい。さらに好ましくは 0. 01〜1 mの範囲である。空孔率が小さすぎると、面積当たりのイオン交換基が少なすぎて 、燃料電池として用いた際に出力が低くなり、大きすぎると、膜強度が低下し好ましく ない。さらに、基材の厚さは 200 m以下が好ましい。より好ましくは 1〜150 m、さ らに好ましくは 5〜: LOO μ m、特に好ましくは 5〜50 μ mである。膜厚が薄すぎると、 膜強度が低下しメタノールの透過量も増え、厚すぎると、膜抵抗が大きくなりすぎ、燃 料電池の出力が低くなるため何れも好ましくない。
[0048] この発明で用いる電解質膜は、上述の多孔質基材、特には、炭化水素系多孔質基 材の細孔内に、イオン交換基を有する炭化水素系高分子からなる高分子電解質を 充填してなるものが好ましく使用できる。当該高分子の充填方法は特に限定しないが 、高分子を溶液もしくは溶融状態として多孔質基材に含浸させるか、高分子電解質 を構成する単量体組成物またはその溶液若しくは分散液を多孔質基材に含浸させ、 その後に該単量体を重合させることによって得ることができる。その際、充填する単量 体組成物またはその溶液等には、必要に応じて架橋剤、重合開始剤、触媒、硬化剤 、界面活性剤等を添加する。また、イオン交換基は、あらかじめ当該高分子を構成す る単量体が含有して 、ても、充填後にスルホンィ匕等の工程で導入しても良 、。
[0049] この発明において、多孔質基材の細孔内に充填する高分子電解質は、特に限定さ れず、通常知られているイオン交換基を有する高分子を使用することができる。例え ば、ラジカル重合により得られる高分子が好ましく使用できる。また、前出の特許文献 3に記載されているように、高分子電解質を構成するイオン交換基含有単量体を多 孔質基材に含浸させた後で、紫外線などにより重合する方法等によって得ることがで きる。
[0050] イオン交換基含有単量体としては、スルホン酸基含有ビ-ルイ匕合物またはリン酸基 含有ビュルィ匕合物がプロトン伝導性に優れるため好ましく、 2—メチルプロパン— 2— (メタ)アクリルアミドスルホン酸力 高い重合性を有しており、さらに好ましい。また、こ れらの単量体に架橋剤を配合して重合すると、重合した高分子が溶出しにくくなり好 ましい。
[0051] 架橋剤として使用可能な化合物は、一分子中に重合可能な架橋性官能基を 2個以 上有するもので、上記の単量体と配合して重合することによって高分子中に架橋点 を形成し、高分子を不溶不融の三次元網目構造とすることができるものである。
その具体例としては、 N, N,一メチレンビス(メタ)アクリルアミド、 N, N,一エチレン ビス(メタ)アクリルアミド、 N, N,一プロピレンビス(メタ)アクリルアミド、 N, N,—プチ レンビス (メタ)アクリルアミド、ポリエチレングリコールジ (メタ)アタリレート、ポリプロピレ ングリコールジ(メタ)アタリレート、トリメチロールプロパンジァリルエーテル、ペンタエ リスリトールトリアリルエーテル、ジビュルベンゼン、ビスフエノールジ(メタ)アタリレート 、イソシァヌル酸ジ (メタ)アタリレート、テトラァリルォキシェタン、トリアリルアミン、等が 挙げられる。
[0052] また、架橋性官能基としては、炭素炭素二重結合を有するものに限るものではなく 、重合反応速度が遅いという点で劣るものの、 2官能以上のエポキシィ匕合物等も使用 することができる。エポキシ化合物を使用する場合は、高分子中のカルボキシル基等 の酸基と反応させて架橋させたり、単量体組成物に第三成分として、水酸基等を有 する共重合可能な単量体を添加してぉ ヽて架橋させることでもよ ヽ。これらの架橋剤 は、単独で使用することも、必要に応じて 2種類以上を併用することも可能である。
[0053] これらの架橋剤を多く配合するほど、高分子電解質が緻密かつ膨潤しに《なり、そ の結果、電解質膜のメタノール透過が抑制され、 DMFCとして使用するときに燃料利 用効率が向上する。し力しながら、架橋剤の増加に伴なつて相対的にイオン交換基 の量が減るため、燃料電池として好ましい出力を得るためには、架橋剤の割合に上 限がある。 [0054] すなわち、架橋剤の好ましい割合は、電解質膜において多孔質基材に含浸される 単量体組成物成分の内、単量体と架橋剤の総和の 5〜70質量%範囲である。さらに 好ましくは 15〜60%である。この範囲よりも少ないと、メタノールの透過が多くなりす ぎ DMFCには適さない。また、この範囲より多いと、相対的にイオン交換基の量が減 るため電池性能が低下する。
[0055] この発明で使用される高分子電解質用単量体組成物には、重合体の膨潤性を調 整するため等、必要に応じてプロトン酸性基を有しな 、第三の共重合成分としての単 量体を配合することができる。
[0056] 力かる単量体としては、この発明で用いるイオン交換基含有単量体および架橋剤と 共重合が可能であれば特に限定しないが、(メタ)アクリル酸エステル類、(メタ)アタリ ルアミド類、マレイミド類、スチレン類、有機酸ビニル類、ァリル化合物、メタリル化合 物等が挙げられる。
[0057] 上記の単量体組成物を重合する手段は特に制限するものではなぐ公知のラジカ ル重合法が適用可能である。ラジカル重合は、単純に加熱や紫外線を照射するだけ でも行うことができるが、通常は重合開始剤を添加しておき、重合開始剤の分解によ り発生したラジカルにより重合が開始される。
[0058] そのような重合開始剤としては、過酸化物系、ァゾ化合物系、レドックス系重合系開 始剤のような、加熱によりラジカル重合を開始するもの、紫外線や可視光線によりラジ カル重合を開始するものが広く用いられて 、る。
[0059] これらの中では、重合反応の制御がし易ぐ比較的簡便なプロセスで生産性良ぐ 所望の電解質膜が得られる点で、紫外線による光開始重合が望ましい。光開始重合 を行う場合には、ラジカル系光重合開始剤を、単量体、その溶液または分散液中に、 予め溶解もしくは分散させておくことが好まし ヽ。重合開始剤を添加しなくても容易に 重合が出来る方法としては、電子線の照射なども知られており、これも好ましく使用す ることがでさる。
[0060] この発明における電解質膜は、その表面が細孔内に充填された高分子電解質で 被覆されず、多孔質基材の表層が露出したものが、電極との接着が安定して信頼性 が高くなるため望ましいが、以下にその製造工程を説明する。 [0061] 簡単な方法としては、高分子電解質用単量体を含浸させ、重合した後で、表面に 形成された高分子電解質層を搔きとる方法が使用できる。その際の方法としては、ブ ラシ、ナイロンたわし等で擦る方法、スクレーパー等で搔きとる等の方法が使用できる 。また、その際は、膜を水で湿らせて、表面に付着した高分子電解質を膨潤させなが ら行なうとよい。表面に高分子電解質が強固に付着している場合は、水酸化ナトリウ ム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ性水溶液で湿らせてか ら搔き取ると、容易に取り除くことができるが、後で酸により洗浄し、内部のイオン交換 基をプロトン酸型にする必要がある。
[0062] この発明では、多孔質基材の細孔内に高分子電解質が充填された電解質膜の、 温度 25°Cにおけるメタノール透過係数が 15 ( ^ m-kg) / (m2-h)以下であるものを 用いた場合に、特にその効果が顕著である。この発明においては、多孔質基材の細 孔内部へ高分子電解質が充填された電解質膜を用いるが、このような構造によって メタノールの透過を抑制できるため、膜厚が薄くてもメタノール透過防止性を発揮す ることがでさる。
[0063] 一方、市販のポリパーフルォロスルホン酸系電解質膜は、メタノール透過係数で計 算すると 40な 、し 60 m · kg) / (m2 · h)で、メタノールとの親和性が高 、材質であ ることが発明者らによる実験で確認されている。このことは、ポリパーフルォロスルホン 酸系電解質膜がメタノールや水を多く含むことができイオンを通し易 、ため、電極を 貼り合わせた場合の、イオン的な接合性には問題を生じ難いことを示している。この ような膜を DMFC用途として用いる場合は、厚さを増やしてメタノール透過防止性を 発揮することが行なわれる。し力しながら、メタノールとの親和性が高い材質はそのま まであるため、メタノール濃度が高くなるほど、燃料を透過し易くなるなどの問題を生 じている。
[0064] 一方、メタノール透過係数が小さい電解質膜は、メタノール透過を減らすためには 有効であるが、電極のイオン的な接合や膜が乾燥しやすい問題が生じ易い。この発 明による膜電極接合体の構造は、その問題を効果的に解消するものである。また、こ の膜電極接合体は、上述のポリパーフルォロスルホン酸系電解質膜に使用しても、 問題なく使用することができるが、この発明の工夫をしなくても、電極の接合は良好で あるため、その使用にはあまり意義がない。
[0065] この発明においては、電解質膜と電極との接着性が優れているので、この発明の電 極が組み合わされた MEAは、固体高分子形燃料電池、特に直接液体燃料形燃料 電池、なかでも直接メタノール形燃料電池に用いるに好適なものである。
[0066] この発明で用いる電極には、少なくとも燃料電池発電に伴う反応を促進させるため の触媒層が必須構成要素として含まれる。その触媒層において、電解質膜と接する 面の触媒層表面の高分子電解質含有量を他の部分より多くする、あるいは電解質高 含有層を形成したものである。電極は、電解質膜の両面に積層され、一対設けられる もので、その結果として、触媒層も電解質膜の両面に、すなわち、一対設けられるが 、その両触媒層に、高分子電解質含有量を他の部分より多くする、あるいは電解質 高含有層を形成するのが好ましいが、一方の触媒層のみにそれらを施すこともでき、 それなりの効果が奏されるものである。
[0067] 上記触媒層は、必須成分として触媒および電解質からなる。また、これらから形成さ れる触媒層は、空気や燃料が触媒にまで効率良く拡散するように、多孔質状に形成 する。また、触媒同士を結着させる目的で、 PTFE等の榭脂成分を添加しても良い。
[0068] この発明で用いる一対の電極には、上記触媒層の他、燃料電池分野で通常用いら れている、ガス拡散層を使用することができる。一般に、触媒層は、ガス拡散層の片 面に塗布などの方法により固定されるか、触媒層と電解質膜を張り合わせておいて から、触媒層に位置を合わせて燃料電池セル内に組み込まれる。ガス拡散層は、力 ソードにおいて、空気などの酸化剤や発生した水を透過させる機能を有し、アノード においては、燃料や発生した炭酸ガス等を透過させる機能を有する。また、両極とも 電子を通す機能を有する。このため、導電性物質で形成された多孔質材料が用いら れている。
[0069] このようなガス拡散層の例としては、カーボンペーパー、カーボンクロス、カーボン 不織布、発泡金属、金属メッシュ、金属メッシュにカーボンブラック等の導電性粉末を PTFEなどのバインダーで固定したものなどがある。
[0070] また、カーボンペーパーのように孔の大きさが大き 、場合は、触媒が孔内へ入り込 んで利用効率が低下するのを防ぐなどの目的で、カーボンブラック等の導電性微粒 子を主成分とするインキを塗布して用いることができ、これも含めてガス拡散層と呼ば れることがある。これらガス拡散層には、図 1に示した膜電極接合体において、集電 体 4としての役割を共通して持たせることができる。
[0071] この発明において、電極に使用する触媒は、燃料電池のアノードおよび力ソードに おける反応を促進する機能を有し、燃料電池の電極には必須成分である。触媒の種 類は、通常燃料電池に用いるものであれば、特に制限無く使用できる。
[0072] たとえば、白金などの貴金属微粒子を用いることができる。貴金属触媒は、白金黒 といわれる物のような、単独で微粒子になっている物を、その他の触媒層成分と配合 して使用することもできる。また、カーボンブラックなどの、導電性を有する担体上へ 担持した形態で配合することもできる。貴金属触媒は、白金などを単独で使用するこ ともできるが、その他の金属を混合または合金化して併用することもできる。このような 例として、白金とルテニウムを併用することは、アノード側で一酸ィ匕炭素による触媒の 被毒を軽減する目的で広く行われている。
[0073] また、触媒層は、貴金属などの触媒、ポリパーフルォロスルホン酸などのイオン伝導 物質などから構成される。触媒層では、電子、イオン、および燃料または酸化剤を効 率良く移動させ、かつ、三相体と呼ばれる反応点を限られた空間に多く形成すること が求められることから、その組成や形成方法は極めて重要で、電子伝導を行なわせ るために、貴金属触媒ある 、は貴金属触媒が担持されたカーボンブラック等の導電 物質同士が接触している必要があり、燃料や空気が透過拡散し易いように、多孔質と なる必要がある。イオン伝導部は、イオンを透過させる働きをもち、触媒に接すること で、反応に関与するイオンの受け渡しを行なう。このような機能を併せ持たせるため には、触媒層は多孔質状に形成し、触媒粒子表面を、高分子電解質などのイオン伝 導物質で薄く被うことが求められる。
[0074] この MEAにおいては、アノード電極内の触媒で発生したプロトンを膜に移動させる ため、また、力ソード側では、膜から触媒近傍へとプロトンが移動する経路を形成する 目的で、電極内部にも電解質が配合される。
[0075] 電極内部に配合する電解質としては、電解質膜と同様イオン交換基を有する材料 で構成されたもの力 燃料電池のアノード、力ソード両方の電極に使用される。この電 解質は、電極内で生成したプロトンなどのイオン性物質を電解質膜へ移動させ、さら に、反対側の電極へ移動させるためのイオン伝導パスとして機能する。
[0076] このような電解質は、通常、燃料電池に用いられるものであれば何れも使用できる 力 広く用いられているものの例としては、ポリパーフルォロアルキルスルホン酸があ る。ポリパーフルォロアルキルスルホン酸は、通常、アルコールなどに溶解させた状 態で入手することができ、使用方法の例としては、触媒などの成分と混合してインキ 状とし、塗布乾燥して触媒層を形成する。ポリパーフルォロアルキルスルホン酸は、 架橋されていない線状の高分子であるが、一旦乾燥させると、水などに簡単には溶 け難くなる性質を有しているため、通常、特に架橋させずに用いられる。また、単に低 温で溶剤を揮発させただけでは、燃料などへ徐々に溶出し、実用的な寿命が得られ ないことから、温度 120乃至 200°Cの高温で焼成して、より溶け難くする手段もとられ ている。
[0077] さらに、炭化水素系高分子電解質を使用することもできる。その場合、特許文献 2に おいて開示されているような、メタノール以外の有機溶剤、例えば、メチルェチルケト ン、ァセトニトリル、 N, N—ジメチルホルムアミド、トリクロルェタン、トルエン、キシレン などに溶解し、水とメタノールには不溶な高分子電解質の溶液を、ポリパーフルォロ アルキルスルホン酸のように使用したり、あるいは、上記した架橋高分子電解質を構 成する単量体を用い、これを予め触媒を含めて重合することで、触媒周囲に形成す る方法で使用することができる。
[0078] この発明においては、触媒層の中に電解質高含有層を形成することにより、多孔質 基材の細孔内部に電解質を充填し、好ましくは、その表面が多孔質基材の表層部が 充填された電解質で被覆されず露出することにより、炭化水素系電解質膜の欠点で あった電解質膜と電極の接合を改善するとともに、その接合を安定して持続可能とす るものである。
[0079] この電解質高含有層は、高分子電解質単独もしくは高分子電解質と微粒子状充填 材を含有する組成物から形成されたものである。電解質高含有層は、その他の触媒 層に比べて高分子電解質の割合が多く、少なくとも電解質高含有層内では体積比で 30%以上を高分子電解質が占めているものが好ましい。さらに好ましくは、電解質高 含有層における高分子電解質の占める割合は、触媒層の他の部に比べて体積比で
2倍以上のものである。触媒層においては高分子電解質の割合が多くなると空孔が 少なくなつて空気の拡散が阻害されるため、高分子電解質は必要最小限にするのが 好ましいが、触媒層の中でも電解質高含有層は、表面にイオン伝導性を有しない多 孔質基材の一部が露出した電解質膜と触媒層との間のイオン伝導をスムーズにする 作用をする機能を有するため、電解質高含有層以外の触媒層の他の部分に比べて 多くの高分子電解質を含むのが好ましい。より好ましくは、触媒層において電解質高 含有層の高分子電解質含有量は、体積比で 60%以上であって、かつ触媒層の他の 部分の高分子電解質含有量は、体積比で 30%未満である。
これらの場合、電解質高含有層は、特に多孔質である必要はないが必要に応じて 多孔質とすることもできる、また、触媒層は、多孔質として形成することが、燃料や空 気を層内に拡散させ易くする意味で必須である。このように、それぞれの層には、空 孔を含む場合が多いが、この発明において、体積比の計算には空孔は含めない。
[0080] 電解質高含有層を構成する高分子電解質は、スルホン酸、リン酸などのイオン交換 基を有する高分子で、触媒周辺が非常に過酷な環境に曝されることから、ポリパーフ ルォロアルキルスルホン酸系高分子が好ましく用いられる。前述した架橋性高分子 電解質も用いることができる力 その場合、単独で用いると電極が剥がれ易いため、 微粒子成分として電解質膜と接着性の良い熱可塑性榭脂の微粒子などの接着成分 を配合する必要がある。そのようなものとしては、ポリエチレン微粒子、ポリプロピレン 微粒子、ポリアミド微粒子、ポリエステル微粒子などを使用することができる。特に、ポ リエチレンなどのポリオレフインは加水分解しにくぐ電気化学的にも安定であり好ま しい。
[0081] 電解質高含有層を構成する微粒子状充填材としては、触媒もしくはカーボンブラッ ク等の導電性の微粒子または表面親水性の微粒子等が挙げられる。この内、導電性 微粒子は、高分子電解質および溶剤などと混ぜてインキ状として用いると、触媒層上 へ塗布しても、高分子電解質が触媒層へ浸透して細孔を閉塞させたり、触媒層内の 成分構成を大きく変えたりして本来の性能が損なわれることを抑制できる。この微粒 子状充填材は、少なくとも用いる電解質に対して安定なものを選択する必要がある。 当該微粒子状充填材は直径 100 m以下が好ましぐより好ましくは 50 m以下で ある。微粒子状充填材が大きすぎると、 MEAを作成した際に力ソードとアノードの間 で短絡を弓 Iき起こす恐れがある。
[0082] 微粒子状充填材は、それだけでなく燃料電池の性能を向上させるために用いること もできる。また、電極の接着性を向上させるために用いることもできる。
[0083] DMFCにおいては、燃料に含まれている水力 力ソード側に透過してくるため、カソ ード側の膜および触媒層中の高分子電解質に、水が供給されてイオン伝導性が良 好に保たれ、通常、空気などのガスを加湿する必要がない。また、 DMFCは、携帯 機器への応用が検討されており、加湿器等の装置を併用することは通常行なわない 。し力しながら、 DMFCにおいては、燃料効率と性能を向上させる目的で、メタノー ルの透過を抑制することが求められている。このようなメタノール透過性を抑制した膜 を使用した場合では、水も透過が抑えられるために、膜を隔てたアノード側には、水 が豊富に存在するにもかかわらず、力ソード側では、反応で発生した水だけでは水 分が不足状態となり、電池性能が低下することが発明者らの実験で確認された。
[0084] このような場合、力ソード側の電解質高含有層中へ親水性充填材を配合することで 、力ソード近傍に水が保持され性能が向上する。
[0085] そのような充填材としては、表面に親水基を有するフュームドシリカ(例えば、日本 ァエロジル株式会社製;ァエロジル 300)、ホワイトカーボン、コロイダルシリカなどの シリカ、酸化チタン、ゼォライトなどがある。
[0086] また、 DMFCにおいては、前述のように燃料の利用効率を上げるためと、電池性能 の向上の目的で、アノード側から力ソード側へのメタノールの透過をできるだけ抑制 することが求められている。通常、そのような機能の向上は、電解質膜の改良に負うと ころが大きいが、この発明の電解質高含有層層中へ、微粒子状充填材を配合するこ とにより、 MEA全体として、メタノールの透過をさらに抑制することができる。微粒子 状充填材は、添加するほどメタノール透過を抑制できるのは明らかである力 高分子 電解質の量が少なくなると当該層の内部抵抗が増大し、返って電池性能が低下する 。このため、少量の添加でイオン伝導性を低下させずに、メタノール透過量を減らす 目的で、板状の充填材の併用が好ましい。 [0087] 板状の充填材とは、面積に比べて厚さが薄い薄片状充填材の総称で、燐片状、鱗 状などと呼称されるものも用いられ、一般に板状の形状の厚さを tとし、面方向の長さ を最短距離 =x、最長距離 =yとした場合に、 tく x、 t<yの関係にある。通常は tに対 し x、 yともに 10倍以上、 100倍以上というようにアスペクト比が高いほど少量でメタノ ール透過を効率的に低減でき好ま Uヽ。
[0088] そのような充填材としては、ガラスフレーク、タルク、アルミナ、クレイ、マイ力、グラフ アイト、ベントナイトなどがある。これらの中では、イオン性不純物が少なぐ電解質を 汚染しにくいものが好ましぐそのような例としては、アルミナ、ガラス、グラフアイトがあ る。マイ力など通常イオン性物質を含有するものは、予めイオン交換処理を行って使 用することができる。
[0089] この発明による MEAは、電極の触媒層上に電解質高含有層が形成されており、 M EAとした場合に、電解質膜と接する触媒層の表面が電解質高含有とし、または電解 質高含有層が配置される。この構造によって、電解質膜中の電解質部分と触媒層中 の電解質が容易に接触し、さらに、電解質高含有層と触媒層中の高分子電解質同 士は、一体ィ匕しているために、全体としてイオン伝導がスムーズになるものと推察され る。
実施例
[0090] <電解質膜製造例 1 >
2 -アクリルアミド 2—メチルプロパンスルホン酸 (東亞合成株式会社製:商品名 A TBS) 35g、 N, N,—エチレンビスアクリルアミド 15g、ノ-オン性界面活性剤 0. 005 g、紫外線ラジカル発生剤 0. 005g、水 50gからなる高分子電解質構成単量体組成 物水溶液に、架橋ポリエチレン製多孔質基材 (厚さ 30 m、空孔率 37%、平均孔径 約 0.: L m)を浸漬し、当該水溶液を充填させた。
ついで、多孔質基材を溶液から引き上げた後、気泡ができないように厚さ 50 mの PETフィルムで挟んだ。
つぎに、高圧水銀ランプを用いて、紫外線を裏表力もそれぞれ lOOOmiZcm2照射 した。照射後に PETフィルムを剥がして除去し、さらに純水で表面を濡らしながら、榭 脂繊維不織布カゝらなるタヮシで表面を擦って表面に付着した榭脂を取り除き、膜を自 然乾燥させ電解質膜を得た。
この電解質膜表面に、水滴を垂らすと水を弾いて基材として用いたポリエチレンが 露出して!/、ることがわかった。
この電解質膜の特性は、表 1に示したように、プロトン伝導度は 4. lS/cm2、電解 質膜をメタノールが透過する量を表すメタノール透過流束は 0. 08kg/ (m2'h)、メタ ノール透過性を厚みで換算した材質固有の数値であるメタノール透過係数は 2. 7 μ m. kgZ (m .h)であった。
[0091] 表 1に示された、 Nafionl 17のメタノール透過流束および透過係数と比較すると、 本製造例の膜は、フッ素系電解質膜に比べてメタノールの透過が極めて少な ヽこと がわかる。また、得られた膜は、各実施例、比較例の触媒付き電極で挟んで熱プレス して MEAとし、直接メタノール形燃料電池として評価した。
[0092] <電解質膜製造例 2 >
2 -アクリルアミド 2—メチルプロパンスルホン酸 (東亞合成株式会社製:商品名 A TBS) 35g、 N, N,—エチレンビスアクリルアミド 15g、ノ-オン性界面活性剤 0. 005 g、紫外線ラジカル発生剤 0. 005g、水 50gからなる高分子電解質構成単量体組成 物水溶液に、架橋ポリエチレン製多孔質基材 (厚さ 30 m、空孔率 37%、平均孔径 約 0.: L m)を浸漬し、当該水溶液を充填させた。
ついで、多孔質基材を溶液から引き上げた後、気泡ができないように厚さ 50 mの PETフィルムで挟んだ。
つぎに、高圧水銀ランプを用いて、紫外線を裏表力もそれぞれ lOOOmiZcm2照射 した。照射後に PETフィルムを剥がして除去し、膜を自然乾燥させ電解質膜を得た。 この電解質膜表面に水滴を垂らすと、水を弾かず基材として用いたポリエチレンが 露出して!/、な!/、ことがわかった。
この電解質膜の特性は、表 1に示したとおりであり、プロトン伝導度は 4.
Figure imgf000023_0001
メタノール透過流束は 0. 08kgZ (m2'h)、メタノール透過係数は 2. T ^ m-kg/ dn2 •h)であった。
[0093] したがって、表面に電解質ポリマーの薄い層ができていること以外は、膜製造例 1と 同等の性能である。また、得られた膜は、各実施例、比較例の触媒付き電極で挟ん で熱プレスして MEAとし、直接メタノール形燃料電池として評価した。
[0094] <電解質膜製造例 3 >
2 -アクリルアミド 2—メチルプロパンスルホン酸 (東亞合成株式会社製:商品名 A TBS) 45g、 N, N,—エチレンビスアクリルアミド 5g、ノ-オン性界面活性剤 0. 005g 、紫外線ラジカル発生剤 0. 005g、水 50gからなる高分子電解質構成単量体組成物 水溶液に、架橋ポリエチレン製多孔質基材 (厚さ 30 m、空孔率 37%、平均孔径約 0.: L m)を浸漬し、当該水溶液を充填させた。
ついで、多孔質基材を溶液から引き上げた後、気泡ができないように厚さ 50 mの PETフィルムで挟んだ。
つぎに、高圧水銀ランプを用いて、紫外線を裏表力もそれぞれ lOOOmiZcm2照射 した。照射後に PETフィルムを剥がして除去し、さらに純水で表面を濡らしながら、榭 脂繊維不織布カゝらなるタヮシで表面を擦って表面に付着した榭脂を取り除き、膜を自 然乾燥させ電解質膜を得た。
この電解質膜表面に水滴を垂らすと、水を弾いて基材として用いたポリエチレンが 露出していることがわ力 た。この電解質膜のプロトン伝導度は 12. 9S/cm2、メタノ ール透過流束は 0. 30kgZ(m2'h)、メタノール透過係数は 10. 4 /ζ πι·1¾Ζ(πι2·1ι )であった。
[0095] 表 1に示される、 Nafionl l7とメタノール透過流束を比較すると、本製造例の膜は フッ素系電解質膜と同程度であった力 透過係数は Nafionl 17に比べて 1Z5以下 と低ぐ材料自体はメタノールを透過しにくく厚さが薄いことによって透過流束が同程 度になっていることが判る。また、プロトン伝導度(単位は、 SZcm2)は Nafionl l7に 比べて約 3倍優れた膜であった。得られた膜は各実施例、比較例の触媒付き電極で 挟んで熱プレスして MEAとし、直接メタノール形燃料電池として評価した。
[0096] [表 1] 電解質膜製造例 フッ素系
1 2 3 電解質膜 電解質膜のメタノール透過係数
2.7 2.7 10.4 56
[/i m- kg/ (m2 - )]
罨解質膜のメタノール透過流束
0.08 0.08 0.3 0.28
[kg/(m2-h)]
電解質膜のプロトン伝導度 4.1 4.2 1 2.9 3.8
[0097] <電極製造例 1 >
カーボンブラック上に、白金とルテニウムを担持した市販の触媒(田中貴金属工業 株式会社製:商品名 TEC61E54) 60g、電解質としてフッ素系高分子電解質 5質量 %溶液 (デュポン製:商品名ナフイオン)を固形分換算で 20g、ポリテトラフルォロェチ レン分散液を固形分換算で 5gを配合し、ボールミルで攪拌混合してアノード用触媒 インキとした。
これを、予め片面にカーボンブラックをアルコールに分散したものを塗布乾燥し、拡 散層を形成してぉ 、た市販のカーボンペーパー (東レ株式会社製: TGP H— 060 )の片面上へ印刷、乾燥してアノード電極とした。
同様に、カーボンブラック上に白金を担持した市販の触媒(田中貴金属工業株式 会社製: TEC10E50E)を使用したこと以外は、アノード側と同様の組成で力ソード 用触媒インキを作製した。
これを、 PTFEにより撥水性を付与した市販のカーボンペーパー (東レ株式会社製 : TGP -H- 060)の片面上へ印刷し乾燥して力ソード電極とした。
なお、この場合の触媒層に占める高分子電解質の割合は約 25体積%である。これ らの一対の電極により電解質膜製造例 1で作製した炭化水素系電解質膜を挟み、温 度 120°Cでホットプレスして MEAを得た。直接メタノール形燃料電池として評価した ところ、良好な発電性能を示した。
[0098] <実施例 1 >
触媒層上へ Nafion単独の層を使用する例;
市販のフッ素系電解質ポリマー 5質量%溶液 (デュポン製:商品名ナフイオン)を、 P TFEシート上に塗布乾燥し薄膜とした。
このシートに、電極製造例 1で製造した一対の電極の触媒層を重ねて、温度 120°C でホットプレスし、 PTFEシートを取り除くことで、触媒層上へフッ素系高分子電解質 皮膜を転写し、最後に窒素雰囲気下、温度 180°Cで 1時間加熱した。
なお、この場合の触媒層上の電解質高含有層は、高分子電解質の割合が 100体 積%である。これらの一対の電極により、電解質膜製造例 1で作製した炭化水素系 電解質膜を挟み、温度 120°Cでホットプレスして MEAを得た。
これにより形成した直接メタノール形燃料電池とし、 1日 5時間の運転を繰り返し行 つたところ、 5時間後の電池性能を測定したところ、 2日目で性能が安定した。また、 その他の特性は表 2に示したとおりである。
なお、表中〇印は剥離がないこと、 X印は剥離が生じたことを示すものである。さら に、図 7に低電流密度域で測定した IR抵抗値を示す (図中〇印)。
[0099] <実施例 2>
触媒層上へ Nafionとカーボンの配合物を印刷する例;
市販のフッ素系高分子電解質 5質量%溶液 (デュポン製:商品名ナフイオン) 60g、 カーボンブラック(ケッチェンブラックインターナショナル社製:ケッチェンブラック EC) lgを配合し、印刷に適したペースト状になるまで攪拌しながら溶剤を揮発させた。こ れを、電極製造例 1で製造した一対の電極の触媒層上へスクリーン印刷により印刷し 、最後に窒素雰囲気下、温度 180°Cで 1時間加熱した。
なお、この場合の触媒層上の電解質高含有層に占める高分子電解質の割合は、 約 75体積%である。これらの一対の電極により、電解質膜製造例 1で作製した炭化 水素系電解質膜を挟み、実施例 1と同様にして MEAを得、直接メタノール形燃料電 池として 1日 5時間の運転を繰り返し行い、 5時間後の電池性能を測定したところ、実 施例 1と同様に 2日目で性能が安定した。また、その他の特性は、表 2に示したとおり である。
[0100] <実施例 3 >
触媒層上へ Nafionと親水性シリカの配合物を印刷する例;
市販のフッ素系高分子電解質 5質量%溶液 (デュポン製:商品名ナフイオン) 60g、 親水性フュームドシリカ(日本ァエロジル製:ァエロジル 300) lgを配合し、印刷に適 したペースト状になるまで攪拌しながら溶剤を揮発させた。これを、電極製造例 1で製 造した力ソード用電極の触媒層上へスクリーン印刷により印刷し、最後に窒素雰囲気 下、温度 180°Cで 1時間加熱した。
なお、この場合の触媒層上の電解質高含有層に占める高分子電解質の割合は、 約 75体積%である。
アノード用電極は、実施例 2で作成したアノード用電極を用い、これらの一対の電 極により電解質膜製造例 1で作製した炭化水素系電解質膜を挟み、実施例 1と同様 にして MEAを得た。
直接メタノール形燃料電池として 1日 5時間の運転を繰り返し行い、 5時間後の電池 性能を測定したところ、実施例 1と同様に 2日目で性能が安定した。
また、図 7 (図中參印)に表したように、低電流密度域での IR抵抗は、実施例 1 (図 中〇印)と比較して低い。これは親水性材料であるシリカ力 力ソード側で発生したり 、膜を透過してきた水を保持し、膜の力ソード側や力ソード側電極内の高分子電解質 が乾燥するのを防 ヽで 、ることを示して 、るためと思われる。
何れの場合も、負荷を増やすに従い IR抵抗が低下するが、これは反応により生じ た水により力ソード側において、膜や触媒層内の電解質に加湿され、抵抗が下がつ たものである。また、その他の特性は表 2に示したとおりである。
<実施例 4>
触媒層上へ Nafionと板状充填材の配合物を印刷する例;
市販のフッ素系高分子電解質 5質量%溶液 (デュポン製:商品名ナフイオン) 60g、 予め 1N塩酸と水で洗浄を行 ヽ金属などの不純物を取り除!/ヽたマイ力 lgを配合し、 印刷に適したペースト状になるまで攪拌しながら溶剤を揮発させた。
これを、電極製造例 1で製造した、一対の電極の触媒層上へスクリーン印刷により 印刷し、最後に窒素雰囲気下、温度 180°Cで 1時間加熱した。
なお、この場合の触媒層上の電解質高含有層に占める高分子電解質の割合は、 約 75体積%である。
これらの一対の電極により、電解質膜製造例 1で作製した炭化水素系電解質膜を 挟み、実施例 1と同様にして MEAを得た。直接メタノール形燃料電池として 1日 5時 間の運転を繰り返し行い、 5時間後の電池性能を測定したところ、実施例 1と同様に 2 日目で性能が安定した。
また、電池内におけるメタノール透過性を評価したところ、実施例、比較例中で最も 透過が少な力つた。また、その他の特性は表 2に示したとおりである。
[0102] <実施例 5 >
触媒層上へ炭化水素系高分子電解質、カーボン、ポリエチレン粉末の配合物を印 刷する例;
2 -アクリルアミド 2—メチルプロパンスルホン酸 (東亞合成株式会社製:商品名 A TBS) 40g、 N, N,—エチレンビスアクリルアミド 10g、ァゾビス系重合開始剤(和光 純薬工業株式会社製:商品名 V50) 0. 005g、水 45g、ブタノール 5gからなる高分子 電解質構成単量体組成物水溶液に、カーボンブラック (ケッチェンブラックインターナ ショナル社製:ケッチェンブラック EC) 20gを配合し、充分撹拌混合した後、窒素雰囲 気下で温度 70°Cに 2時間保持して重合させた。
これを、乳鉢ですりつぶしてペースト状とし、さらに市販の粉末状ポリエチレン (住友 精化株式会社製:商品名フローセン) 5gを加えて、さらに攪拌してインキを作成し電 極製造例 1で製造した一対の電極の触媒層上へ印刷した。
最後に、窒素雰囲気下、温度 80°Cで 30分間乾燥させて一対の電極とした。
なお、この場合の触媒層上の電解質高含有層に占める高分子電解質の割合は、 約 71体積%である。これらの一対の電極により、電解質膜製造例 1で作製した炭化 水素系電解質膜を挟み、実施例 1と同様にして MEAを得た。
直接メタノール形燃料電池として、 1日 5時間の運転を繰り返し行い、 5時間後の電 池性能を測定したところ、実施例 1と同様に 2日目で性能が安定した。また、その他の 特性は表 2に示したとおりである。
[0103] <実施例 6 >
実施例 1で製造した一対の電極を用い、電解質膜は電解質膜作成例 3で作成した ものを用いて、温度 120°Cでホットプレスして MEAを作製した。
この MEAを組み込んだ直接メタノール形燃料電池を、 1日 5時間の運転を繰り返し 行い、 5時間後の電池性能を測定したところ、 2日目で性能が安定した。メタノール透 過性は、フッ素系電解質膜を用いた比較例 3と同等であつたが、出力は比較例 3に 比べて高力つた。また、その他の特性は表 2に示したとおりである。
[0104] <比較例 1 >
電極製造例 1で製造した、電解質高含有層を有しない一対の電極により、電解質 膜製造例 1で作製した炭化水素系電解質膜を挟み、実施例 1と同様にして MEAを 得た。
直接メタノール形燃料電池として、 1日 5時間の運転を繰り返し行い、 5時間後の電 池性能を測定したところ、内部抵抗が下がって性能が安定するのに 8日間を要した。 また、その他の特性は、表 2に示したとおりである。なお、低電流密度域で測定した 2 日目の IR抵抗値は、 400m Ω以上であり図 7に表わすことができなかった。
[0105] <比較例 2>
電極製造例 1で製造した、電解質高含有層を有しない一対の電極によって、電解 質膜製造例 2で作製した、表面に炭化水素系高分子電解質の層を有する炭化水素 系電解質膜を挟み、実施例 1と同様にして MEAを得た。
直接メタノール形燃料電池として、 1日 5時間の運転を繰り返し行い、 5時間後の電 池性能を測定したところ、 2日目で性能が安定した力 MEAを水に漬けて放置したと ころ、他の実施例、比較例は電極の剥がれ等は観察されなカゝつたが、この比較例で は 24時間浸漬後には自然に電極が剥がれており、長時間の運転には向かないこと がわかった。また、その他の特性は、表 2に示したとおりである。
[0106] <比較例 3 >
電極製造例 1で製造した電解質高含有層を有しない一対の電極を用い、電解質膜 は市販のフッ素系電解質膜 (デュポン社製:商品名ナフイオン 117)を用いて、温度 1 20°Cでホットプレスして MEAを作製した。
この MEAを組み込んだ直接メタノール形燃料電池を、 1日 5時間の運転を繰り返し 行い、 5時間後の電池性能を測定したところ、 2日目で性能が安定した。
しかし、メタノール透過性は実施例 1〜5に比べて多ぐメタノール透過流束がほぼ 等しい実施例 6と比較すると電池性能が低力つた。また、その他の特性は、表 2に示 したとおりである。
[表 2]
Figure imgf000030_0001
<評価方法 >
(1)プロトン伝導性:
温度 25°Cの純水に 1時間浸して、膨潤させた電解質膜を、 2枚の白金板で挟み込 み測定用試料とした。
その後、温度 25°Cで 100Hzから 40MHzの交流インピーダンス測定を実施し、プ 口トン伝導度を測定した。
プロトン伝導度が高いほど、電解質膜中をプロトンが移動し易ぐ燃料電池用途に 優れていることを示す。
(2)電解質膜のメタノール透過性:
温度 25°Cにおける浸透実験を以下のように行った。電解質膜をガラス製セルに挟 み、一方のセルに 10質量%メタノール水溶液を入れ、もう一方のセルに純水を入れ た。
純水側に浸透するメタノール量を、ガスクロマトグラフ分析により経時的に測定し、 定常状態になった時のメタノールの透過係数および透過流束を測定した。
透過係数は、膜厚で規格化された数値であるので、透過係数が低いほど、材質的 に電解質膜中をメタノールが透過し 1 、透過流束は膜そのもののメタノールの透過 し易さを示したもので、透過流束が小さいほど、直接メタノール形燃料電池用途に適 していることを示す。
(3)水中での電極接着性: 温度 25°Cの水を入れたビーカー中に MEAを 24時間浸漬し、電極に剥がれがな いかを観察した。剥離がないのを〇とし、剥離が生じたものを Xとした。
(4)燃料電池評価:
実施例および比較例で作成した MEAを、直接メタノール形燃料電池単セルに組 み込んだ際の運転条件は次の通りである。
燃料を、 10質量%メタノール水溶液、酸化剤に空気を用い、セル温度は 50°Cとし た。電子負荷器により負荷を変化させて電流密度出力特性を測定した。
(5)燃料電池のメタノール透過性評価:
文献「ナフイオン膜のメタノール透過」(Methanol Transport Through Nafio n Membranes^ Journal of The Electrocnemicai society ^ 2000年、丄 47 卷、 2号、 p. 466— 474、米国電気化学会、 Xiaoming Ren他著)に示される以下 の方法でメタノール透過量を測定した。
それぞれの MEAを燃料電池に組み込み、一方の極に ImolZlのメタノール水溶 液を流し、他方の極には窒素を流した状態で電池を温度 50°Cに保った。
つぎに、メタノール極に負極、窒素を流している側に正極を繋いで電圧を上げてい き、このときに流れる電流値をモニターした。
電流値は、約 0. 5V付近から上昇しはじめ、 0. 7〜1. 0V付近で一定値となるため 、一定値となった電流値を比較した。すなわち、電圧を上げていくと、窒素側の極に 漏れてきたメタノールが酸化されてプロトンと電子を放出するため、観測した電流値 が高 、ほど漏れたメタノールが多 、ことを示す。
産業上の利用可能性
この発明による工程で作成した膜電極接合体 (MEA)を燃料電池に用いると、多孔 質基材の空孔内へ高分子電解質を充填した構造を有する電解質膜、特に、膜表面 には、多孔質基材の一部が露出させることによって、電解質膜の長所である電極の 接着性を損なわずに、欠点であった電極とのイオン的な接合を改善することができる 。このため、電池性能が安定するまでの期間を大幅に短縮できる。さらに、電極表面 に形成する電解質高含有層へ添加する微粒子状物質の性質や形状を適宜選択す ることで、力ソード側の乾燥を防いだり、メタノールの透過を低下させたりすることもで きる。また、同様の構造を有する電解質膜であって、プロトン伝導度が充分に高い電 解質膜を使用した場合では、電池性能の安定期間はもとより短いが、電池性能の向 上に寄与するものである。
このため、この発明の膜電極接合体は、直接メタノール形燃料電池等の固体高分 子形燃料電池用膜電極接合体として極めて有用なもので、自動車産業を始として、 各種産業に広く利用される可能性の高いものである。

Claims

請求の範囲
[1] 細孔内に高分子電解質を充填した多孔質基材からなる電解質膜と、
この電解質膜の両面に配される、触媒と高分子電解質とから形成される触媒層を有 する電極とからなり、
前記触媒層中における高分子電解質含有量が、触媒層が電解質膜に接する面に おいて、触媒層の他の部分より多いこと
を特徴とする膜電極接合体。
[2] 前記電解質膜おける多孔質基材の表面が、
基材の細孔内に充填する際に用いられた高分子電解質で被覆されて ヽな ヽこと を特徴とする請求項 1に記載の膜電極接合体。
[3] 前記触媒層が、
高分子電解質含有量が多 ヽ層と、少な ヽ層との複層構造を形成して ヽること を特徴とする請求項 1に記載の膜電極接合体。
[4] 前記触媒層における高分子電解質含有量が多!ヽ層の高分子電解質含有量の体 積比が、
少な 、層における高分子電解質含有量の体積比の 2倍以上であること を特徴とする請求項 3に記載の膜電極接合体。
[5] 前記触媒層における高分子電解質含有量の多!ヽ層の高分子電解質含有量が、 体積比で 30%以上であること
を特徴とする請求項 3又は 4に記載の膜電極接合体。
[6] 前記触媒層における高分子電解質含有量の多!ヽ層の高分子電解質含有量が、 体積比で 60%以上であって、かつ少ない層の高分子電解質含有量が、体積比で 3 0%未満であること
を特徴とする請求項 5に記載の膜電極接合体。
[7] 前記電解質膜が、
温度 25°Cにおけるメタノール透過係数力 15 m.kg) Z (m2*h)以下のものであ ること
を特徴とする請求項 1に記載の膜電極接合体。
[8] 前記高分子電解質が、
スルホン酸基を有する単量体と架橋剤を重合させて得られるもので、架橋剤の割合 力 単量体と架橋剤の総量の 15質量%以上 60質量%未満であること
を特徴とする請求項 1に記載の膜電極接合体。
[9] 前記触媒層における高分子電解質含有量の多 、層が、
高分子電解質のみで形成された層であること
を特徴とする請求項 3に記載の膜電極接合体。
[10] 前記触媒層における高分子電解質含有量の多 、層が、
高分子電解質と板状の充填材を含有する組成物から形成された層であること を特徴とする請求項 3に記載の膜電極接合体。
[11] 前記触媒層における高分子電解質含有量の多い層が、
高分子電解質と微粒子状充填材を含有する組成物から形成された層であること を特徴とする請求項 3に記載の膜電極接合体。
[12] 前記微粒子状充填材が、
導電性を有するものであること
を特徴とする請求項 11に記載の膜電極接合体。
[13] 前記触媒層の内、力ソード側電極における触媒層の高分子電解質含有量の多い 層が、
高分子電解質と親水性を有する微粒子状充填材を含有する組成物から形成され た層であること
を特徴とする請求項 3に記載の膜電極接合体。
[14] 請求項 1〜13のいずれかに記載の膜電極接合体を用いたこと
を特徴とする直接液体燃料形燃料電池。
PCT/JP2006/308938 2005-05-18 2006-04-28 膜電極接合体および直接液体燃料形燃料電池 WO2006123529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007516238A JPWO2006123529A1 (ja) 2005-05-18 2006-04-28 膜電極接合体および直接液体燃料形燃料電池
US11/920,002 US20090068530A1 (en) 2005-05-18 2006-04-28 Membrane electrode assembly and direct liquid fuel cell
EP06745819A EP1890351A4 (en) 2005-05-18 2006-04-28 MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL OF DIRECT LIQUID FUEL TYPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005145012 2005-05-18
JP2005-145012 2005-05-18

Publications (1)

Publication Number Publication Date
WO2006123529A1 true WO2006123529A1 (ja) 2006-11-23

Family

ID=37431107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308938 WO2006123529A1 (ja) 2005-05-18 2006-04-28 膜電極接合体および直接液体燃料形燃料電池

Country Status (6)

Country Link
US (1) US20090068530A1 (ja)
EP (1) EP1890351A4 (ja)
JP (1) JPWO2006123529A1 (ja)
KR (1) KR20080007613A (ja)
CN (1) CN100514730C (ja)
WO (1) WO2006123529A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099698A1 (ja) * 2007-02-16 2008-08-21 Shin-Etsu Chemical Co., Ltd. 燃料電池用電解質膜及び燃料電池用電解質膜・電極接合体の製造方法
US20090148751A1 (en) * 2007-12-07 2009-06-11 Samsung Sdi Co., Ltd. Membrane electrode assembly for fuel cell, and method of manufacturing the same
JP2009187760A (ja) * 2008-02-05 2009-08-20 Kagoshima Univ 光機能性複合材、光蓄電池及び光機能性複合材の製造方法
US10535888B2 (en) 2017-03-22 2020-01-14 Kabushiki Kaisha Toshiba Membrane electrode assembly, electrochemical cell, stack, fuel cell, and vehicle
JP2021521322A (ja) * 2018-05-02 2021-08-26 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated 表面イオン交換高分子電解質が除去された細孔充填イオン交換高分子電解質複合膜及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151471A4 (en) * 2007-05-24 2012-06-20 Nitto Denko Corp METHOD FOR THE PRODUCTION OF A POROUS FILM, SEPARATOR FOR A BATTERY WITH A WATER-FREE ELECTROLYTE AND BATTERY WITH A WATER-FREE ELECTROLYTE WITH SUCH A SEPARATOR
DE102008002457A1 (de) * 2008-06-16 2009-12-17 Elcomax Membranes Gmbh Verwendung eines protonenleitfähigkeitverleihenden Materials bei der Herstellung von Brennstoffzellen
KR101109143B1 (ko) * 2009-09-29 2012-02-15 한국에너지기술연구원 무수 전해질에 의한 가교 고분자 전해질 복합막의 제조방법 및 이를 이용한 고분자전해질 연료전지 시스템
JP5534906B2 (ja) 2010-03-31 2014-07-02 Jx日鉱日石エネルギー株式会社 膜電極接合体および燃料電池
KR20140126734A (ko) * 2012-03-29 2014-10-31 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
GB201309806D0 (en) * 2013-05-31 2013-07-17 Itm Power Research Ltd Catalysts and methods of depositing same
JP7243030B2 (ja) * 2018-03-30 2023-03-22 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
KR102036766B1 (ko) * 2018-05-24 2019-10-25 도레이케미칼 주식회사 바나듐 이온 저투과를 목적으로 하는 세공충진형 양쪽성막 및 이의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265992A (ja) 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造
JPH11288727A (ja) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd 固体高分子型燃料電池用膜・電極接合体
JP2003200052A (ja) * 2001-03-28 2003-07-15 Toshiba Corp 炭素繊維合成用触媒、複合炭素材料、炭素繊維の製造方法、燃料電池用触媒材料及び燃料電池用触媒材料の製造方法
JP2004114822A (ja) 2002-09-26 2004-04-15 Sumitomo Wiring Syst Ltd ワイヤハーネス用スプールプロテクタ
WO2004051776A1 (ja) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
JP2005038669A (ja) * 2003-07-18 2005-02-10 Ube Ind Ltd 氷点以下でも使用可能な直接メタノ−ル形燃料電池、電解質膜および膜−電極接合体
JP2005268032A (ja) * 2004-03-18 2005-09-29 Toagosei Co Ltd 高分子電解質膜、その評価方法および燃料電池
WO2005098875A1 (ja) * 2004-04-08 2005-10-20 Toagosei Co., Ltd. 電解質膜および膜電極接合体の製造方法並びに燃料電池
JP2006147278A (ja) * 2004-11-18 2006-06-08 Konica Minolta Holdings Inc 固体燃料電池用電解質膜−電極接合体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523181A (en) * 1992-09-25 1996-06-04 Masahiro Watanabe Polymer solid-electrolyte composition and electrochemical cell using the composition
US5554608A (en) * 1994-09-28 1996-09-10 Ahluwalia; Gurpreet S. Inhibition of hair growth
JPH1140172A (ja) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd 燃料電池用膜・電極接合体の製造方法
ITMI20000628A1 (it) * 2000-03-24 2001-09-24 Indena Spa Composizioni cosmetiche ritardanti la ricrescita dei peli
JP2005071609A (ja) * 2002-03-07 2005-03-17 Japan Science & Technology Corp 電解質膜及びそれを用いた固体高分子型燃料電池
JP4427291B2 (ja) * 2003-09-03 2010-03-03 東亞合成株式会社 機能性膜の連続製造方法
JP4228911B2 (ja) * 2003-12-25 2009-02-25 パナソニック株式会社 燃料電池とその製造方法
KR100670284B1 (ko) * 2005-02-04 2007-01-16 삼성에스디아이 주식회사 연료전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265992A (ja) 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造
JPH11288727A (ja) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd 固体高分子型燃料電池用膜・電極接合体
JP2003200052A (ja) * 2001-03-28 2003-07-15 Toshiba Corp 炭素繊維合成用触媒、複合炭素材料、炭素繊維の製造方法、燃料電池用触媒材料及び燃料電池用触媒材料の製造方法
JP2004114822A (ja) 2002-09-26 2004-04-15 Sumitomo Wiring Syst Ltd ワイヤハーネス用スプールプロテクタ
WO2004051776A1 (ja) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
JP2005038669A (ja) * 2003-07-18 2005-02-10 Ube Ind Ltd 氷点以下でも使用可能な直接メタノ−ル形燃料電池、電解質膜および膜−電極接合体
JP2005268032A (ja) * 2004-03-18 2005-09-29 Toagosei Co Ltd 高分子電解質膜、その評価方法および燃料電池
WO2005098875A1 (ja) * 2004-04-08 2005-10-20 Toagosei Co., Ltd. 電解質膜および膜電極接合体の製造方法並びに燃料電池
JP2006147278A (ja) * 2004-11-18 2006-06-08 Konica Minolta Holdings Inc 固体燃料電池用電解質膜−電極接合体及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099698A1 (ja) * 2007-02-16 2008-08-21 Shin-Etsu Chemical Co., Ltd. 燃料電池用電解質膜及び燃料電池用電解質膜・電極接合体の製造方法
US8609743B2 (en) 2007-02-16 2013-12-17 Shin-Etsu Chemical Co., Ltd. Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
US20090148751A1 (en) * 2007-12-07 2009-06-11 Samsung Sdi Co., Ltd. Membrane electrode assembly for fuel cell, and method of manufacturing the same
JP2009187760A (ja) * 2008-02-05 2009-08-20 Kagoshima Univ 光機能性複合材、光蓄電池及び光機能性複合材の製造方法
US10535888B2 (en) 2017-03-22 2020-01-14 Kabushiki Kaisha Toshiba Membrane electrode assembly, electrochemical cell, stack, fuel cell, and vehicle
JP2021521322A (ja) * 2018-05-02 2021-08-26 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated 表面イオン交換高分子電解質が除去された細孔充填イオン交換高分子電解質複合膜及びその製造方法
JP7208362B2 (ja) 2018-05-02 2023-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド 表面イオン交換高分子電解質が除去された細孔充填イオン交換高分子電解質複合膜及びその製造方法
US11975296B2 (en) 2018-05-02 2024-05-07 Toray Advanced Materials Korea Inc. Pore-filled ion exchange polyelectrolyte composite membrane from which surface ion exchange polyelectrolyte has been removed and method for manufacturing same

Also Published As

Publication number Publication date
EP1890351A1 (en) 2008-02-20
KR20080007613A (ko) 2008-01-22
JPWO2006123529A1 (ja) 2008-12-25
EP1890351A4 (en) 2010-11-03
CN100514730C (zh) 2009-07-15
CN101180756A (zh) 2008-05-14
US20090068530A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
WO2006123529A1 (ja) 膜電極接合体および直接液体燃料形燃料電池
JP4327732B2 (ja) 固体高分子型燃料電池、およびその製造方法
CN1764001B (zh) 用于直接氧化燃料电池的聚合物电解液及其制备方法以及包含它的直接氧化燃料电池
WO2007052650A1 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP2006114502A (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
JPH11288727A (ja) 固体高分子型燃料電池用膜・電極接合体
JP2006073530A (ja) ポリマー電解質膜及びポリマー電解質膜を採用した燃料電池
JPWO2005098875A1 (ja) 電解質膜および膜電極接合体の製造方法並びに燃料電池
WO2007074616A1 (ja) 膜電極接合体、および、これを用いた燃料電池
JP5165205B2 (ja) 固体高分子型燃料電池用膜電極構造体
JP2010146965A (ja) 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
JP2008311180A (ja) 膜電極接合体、その製造方法及び該膜電極接合体を用いた燃料電池
JP4804812B2 (ja) 燃料電池用高分子膜の製造方法
JP2007317391A (ja) 燃料電池用電極及び燃料電池用電極の製造方法、膜−電極接合体及び膜−電極接合体の製造方法、並びに固体高分子型燃料電池
JP2004247091A (ja) 電解質膜電極接合体および直接アルコール形燃料電池
JP4090108B2 (ja) 固体高分子型燃料電池用膜・電極接合体
JP2012074324A (ja) 固体高分子形燃料電池
KR100709220B1 (ko) 연료 전지용 고분자 전해질 막, 이의 제조방법 및 이를포함하는 연료 전지 시스템
EP1858097A1 (en) Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell
JP2007287663A (ja) 直接酸化型燃料電池およびその製造方法
JP2007265898A (ja) 固体高分子型燃料電池用電解質膜及びこれを備える固体高分子型燃料電池
JP2007234359A (ja) 固体高分子型燃料電池用膜電極構造体
EP2017913B1 (en) Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell
JP2007250468A (ja) 電解質膜
JP4534590B2 (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017344.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006745819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920002

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077026764

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745819

Country of ref document: EP