WO2006121121A1 - 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法 - Google Patents

酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法 Download PDF

Info

Publication number
WO2006121121A1
WO2006121121A1 PCT/JP2006/309496 JP2006309496W WO2006121121A1 WO 2006121121 A1 WO2006121121 A1 WO 2006121121A1 JP 2006309496 W JP2006309496 W JP 2006309496W WO 2006121121 A1 WO2006121121 A1 WO 2006121121A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
acid
polyalkylene terephthalate
sol
titanium oxide
Prior art date
Application number
PCT/JP2006/309496
Other languages
English (en)
French (fr)
Inventor
Jinichiro Kato
Yoshiki Takeda
Takafumi Konishi
Original Assignee
Asahi Kasei Fibers Corporation
Fuji Titanium Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corporation, Fuji Titanium Industry Co., Ltd. filed Critical Asahi Kasei Fibers Corporation
Priority to CN2006800163426A priority Critical patent/CN101175789B/zh
Priority to JP2007528318A priority patent/JP5001838B2/ja
Priority to EP06732527A priority patent/EP1881019B1/en
Priority to US11/920,253 priority patent/US7759270B2/en
Publication of WO2006121121A1 publication Critical patent/WO2006121121A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to a catalyst for polymerizing polyalkylene terephthalate, a polymer obtained using the catalyst, and a processed product thereof. More specifically, an environmentally friendly catalyst using a titanium element without using an antimony element, and a high-quality polyalkylene terephthalate obtained by using the catalyst and excellent in hue, moldability, melt stability, and the like. And processed products such as fibers, films and molded articles thereof.
  • PET polyethylene terephthalate
  • dicarboxylic acids mainly composed of terephthalic acid and glycol.
  • An acid glycol ester and Z or an oligomer thereof are produced, and then the oligomer is subjected to a polycondensation reaction under high vacuum.
  • a method in which the obtained polymer is further solid-phase polymerized in a solid phase under high vacuum or in an inert gas is also used industrially.
  • an antimony catalyst represented by antimony trioxide has long been used.
  • antimony-based catalysts are generally desired to be replaced from the viewpoint of environmental impact.
  • PET using an antimony-based catalyst has a quality problem in that a part of antimony becomes antimony black, so the polymer becomes darker and difficult to dye clearly.
  • the antimony black causes dirt and filter clogging around the spinneret, resulting in yarn breakage. In order to solve these problems, it is necessary to clean the spinneret and the filter, but there is a problem in productivity that the cleaning cycle is shortened.
  • Patent Document 1 discloses an acid-titanium sol having a good light transmittance, which is a fine particle having an acid-titanium power of about 5 OOm, and has a light transmittance of 95 to 600 nm as a titanium oxide sol. It is disclosed that it is% or more. However, there is no disclosure of a point having a specific amount of hydroxyl groups or an effect as a polymerization catalyst for polyalkylene terephthalate. Furthermore, according to the study by the present inventors, the hydroxyl group in the titanium oxide sol disclosed here is less than 1.8 mmol per lg of titanium oxide. This is because the production method is different from the titanium oxide titanium of the present invention, and the titanium oxide titanium particles are simply crushed or produced by a gas phase method.
  • Patent Document 2 discloses a technique in which a pulverized product of titanium oxide having a specific surface area of greater than 10 m 2 / g is used as a polymerization catalyst for polyester.
  • a specific titanium oxide sol is used. It is not described that this is effective as a polymerization catalyst.
  • These inorganic titanium compound catalysts are considered to be superior catalysts because of their low thermal decomposition reactivity, despite their higher activity compared to organic titanium compound catalysts.
  • the polymer obtained can still be intensely colored, and in order to avoid this, it is conceivable to use a cobalt compound which is a blue agent.
  • the conoleto compound like antimony, is not necessarily effective in solving environmental problems, and has a tendency to lower the thermal stability of the polymer and the sharpness of the dyed product in the polymer quality.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-182152
  • Patent Document 2 JP 2000-119383 A
  • the present inventors have found that a titanium oxide sol having specific physical properties is highly active as a polymerization catalyst for polyalkylene terephthalate, leading to the present invention. It was. That is, the present invention is as follows.
  • Oxidized titanium sol using an organic solvent as a dispersion medium The concentration of oxidized titanium in the sol was adjusted to 0.7 gZL, and light in the wavelength range of 400 to 800 nm when measured with an optical path length of lcm.
  • An acid titanium sol for a polyalkylene terephthalate polymerization catalyst having a permeability of 50% or more and an amount of hydroxyl groups per lg of titanium oxide of 1.8 mmol or more.
  • [6] Group power consisting of terephthalic acid, lower alcohol ester derivatives of terephthalic acid, dicarboxylic acids mainly composed of terephthalic acid and derivatives of dicarboxylic acids mainly composed of terephthalic acid.
  • the resulting diol is subjected to esterification reaction and Z or transesterification to produce terephthalic acid dallicol ester and Z or oligomer thereof, and then polycondensation reaction under a vacuum of 0.3 kPa or less
  • the acid titanium sol according to any one of 1 to 5 above is used as a catalyst in at least one of the esterification reaction, ester exchange reaction and polycondensation reaction.
  • a process for producing polyalkylene terephthalate characterized in that
  • the obtained polyalkylene terephthalate is solidified and heated in a solid phase state so that at least the intrinsic viscosity is higher than the intrinsic viscosity at the end of the polycondensation reaction.
  • L A processed product comprising a polyalkylene terephthalate obtained by the production method according to any one of the items.
  • the acid titanium sol of the present invention is an environment-friendly catalyst that does not use heavy metal elements, particularly antimony elements that have been used in the past.
  • Polyesters typified by polyalkylene terephthalates obtained using the catalyst of the present invention are high-quality polymers excellent in hue, melt moldability, melt stability, etc., and high-quality fibers and films. And a processed product such as a molded product.
  • the inventors of the present invention have studied both the polymerization reactivity during polyalkylene terephthalate polymerization and the improvement in polymer quality obtained with a focus on titanium compounds. It has been found that by using the titanium oxide sol thus produced as a catalyst, a high polymer quality, which is the object of the present invention, is achieved while having a high degree of polymerization activity as compared with a known antimony alternative catalyst.
  • the sol referred to in the present invention refers to a form in which an aggregate of very fine colloidal particles is highly dispersed in a medium by peptization, and is not simply a dispersion of fine particles as a powder.
  • the titanium oxide sol of the present invention is a titanium oxide sol using an organic solvent as a dispersion medium, has a specific light transmittance, and contains a specific amount or more of hydroxyl groups per lg of titanium oxide.
  • the acid titanium sol proposed in the present invention is a hydroxy titanium fine particle obtained by simply hydrolyzing an organic or inorganic titanium compound solution, or the hydroxy titanium fine particle.
  • Titanium oxide which is a heat-treated product, is not obtained by the conventional method of mechanically pulverizing it in a solvent, for example, but is a gel-like aggregate of fine colloidal particles of titanium hydroxide obtained under certain hydrolysis conditions It can be obtained only by removing the moisture after the peptizer is peptized by acid treatment to achieve a high level of dispersion and then mixed with an organic solvent.
  • the dispersion level can be judged by the light transmittance and the amount of hydroxyl groups in titanium oxide.
  • the light transmittance at a wavelength of 400 to 800 nm is 50% or more and the amount of hydroxyl groups is 1.8 mmol or more per liter of titanium oxide. .
  • the titanium oxide sol for a polyalkylene terephthalate polymerization catalyst of the present invention needs to have a light transmittance of 50% or more in a wavelength range of 400 to 800 nm.
  • 50% or more means that the minimum light transmittance in the wavelength range of 400 to 800 nm is 50% or more.
  • the light transmittance is a value measured by diluting or concentrating the titanium oxide concentration in the sol so that the amount of titanium oxide per liter of the sol is 0.7 g and the optical path length is 1 cm.
  • the light transmittance is preferably 60 to 100% in terms of catalytic activity, more preferably 70 to 100%, and most preferably 90 to: L0 0%.
  • the amount of hydroxyl group of titanium oxide is 1.8 mmolZg or more (1.8 mmol or more per lg of titanium oxide).
  • the upper limit is not particularly limited, but is preferably 15 mmol / g or less from the viewpoint of suppressing thermal decomposition. From the viewpoint of high catalytic activity and storage stability, it is 1.8 to 10, more preferably 1.8 to 5 mmol / g.
  • the conventionally known acidic titanium oxide catalyst has a value of less than 1.8 mmolZg.
  • an acid-titanium sol for polyalkylene terephthalate polymerization catalyst having excellent catalytic activity can be obtained by simultaneously satisfying the light transmittance and the hydroxyl group content of acid-titanium.
  • the acid titanium sol of the present invention is highly active as a polymerization catalyst for polyester is not clear, at the same time that a large number of portions serving as active sites of the catalyst were introduced by a high surface area, It is considered that the surface structure is less likely to cause side reactions.
  • the titanium oxide sol of the present invention has a form in which titanium oxide is dispersed in an organic solvent.
  • a solvent for dispersing titanium oxide alkanes such as pentane, hexane and octane, Halogenated alkanes such as methylene chloride and chloroform, aromatic compounds such as toluene and xylene, aliphatic esters such as methyl acetate and ethyl acetate, aliphatic ketones such as acetone and methyl ethyl ketone, alcohols such as methanol And aliphatic glycols.
  • alkanes such as pentane, hexane and octane
  • Halogenated alkanes such as methylene chloride and chloroform
  • aromatic compounds such as toluene and xylene
  • aliphatic esters such as methyl acetate and ethyl acetate
  • aliphatic ketones such as acetone
  • a preferred solvent is glycol corresponding to the alkylene portion of polyalkylene terephthalate which is polymerized from the viewpoint of polymerization reactivity and polymer quality.
  • glycol ethylene glycol is preferred when polymerizing PET, 1,3 propanediol when polymerizing polytrimethylene terephthalate, and 1,4 butanediol when polymerizing polybutylene terephthalate!
  • the amount of titanium oxide in the titanium oxide sol is not particularly limited, but usually 0.1 to 70% by weight is preferred. From the viewpoint of suppressing the by-production of glycol dimer used in the polymerization process, it is more preferably 5 to 50% by weight, particularly preferably 10 to 30% by weight.
  • the crystal system of titanium oxide is not particularly limited, and amorphous, anatase, rutile and brookite, which may be misaligned, may be mixed at an arbitrary ratio.
  • the acid titanium sol of the present invention is obtained by converting a gel-like aggregate of fine colloidal particles of hydroxide titanium obtained by hydrolyzing an organic or inorganic titanium compound solution under a certain condition. It can be obtained by deflocculating by processing to achieve a high level of dispersion and then removing moisture after mixing with an organic solvent.
  • titanium sulfate, titanium acetate, titanium nitrate, titanium tetrachloride, or alkoxides such as titanium isopropoxide and titanium butoxide can be used.
  • titanium sulfate and tetrasalt-titanium are preferred.
  • other hydrolyzable metal compound in these Chitani ⁇ was 1-50 mol% with respect to titanium metal, preferably may be mixed so that the 1-3 0 mol 0/0.
  • hydrolyzable metal sols of silicon, zirconium, zinc and germanium are preferred from the viewpoint of enhancing the catalytic activity.
  • the titanium compound can be hydrolyzed in water or in a water-soluble solvent such as alcohol, glycol, acetone, and methyl ethyl ketone.
  • fine particles of orthotitanic acid are added in advance as a reaction nucleus during hydrolysis. It is necessary. These fine particles of orthotitanic acid are produced by a neutralization reaction in which an alkali solution is added to a titanium compound solution at room temperature.
  • the orthotitanic acid concentration is preferably 20 to 200 gZL in terms of titanium oxide.
  • the alkali to be used sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like can be used. Particularly preferred are sodium hydroxide and potassium hydroxide, which are strong alkalis.
  • alkaline solution is added, the temperature of the liquid rises due to heat of neutralization. The activity is low. In order to prevent the formation of metatitanic acid, it is preferable to control at 0-50 ° C.
  • the amount of orthotitanic acid as a reaction nucleus is preferably 0.5 to 30% of the raw material acid-titanium compound by acid-titanium conversion, more preferably 1 to 20%.
  • the preferred reaction temperature for a total acid / titanium concentration of 50 to 300 gZL is usually 0 to 120 ° C., and the reaction time is usually 10 minutes and 48 hours.
  • an alkali treatment is carried out so that the pH is 8 to 14, preferably 9 to 12.
  • the alkali treatment temperature is usually from 0 to 100 ° C., and the time is usually from 10 minutes to 48 hours. Impurities such as sulfate ions derived from raw materials are removed by alkali treatment.
  • Titanium hydroxide titanium is subjected to an alkali treatment and then an acid treatment. Disperse colloidal particles condensing into gel by acid treatment (called peptization).
  • acid in addition to inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, organic acids such as oxalic acid, citrate and lactic acid can be used.
  • the acid treatment temperature is usually from 0 to 100 ° C., and the time is usually from about 10 minutes to 96 hours.
  • the concentration of titanium hydroxide during acid treatment is 50 to 500 gZL in terms of acid titanium, and the amount of acid used is preferably 10 to 200 parts by weight per 100 parts by weight of titanium hydroxide in terms of titanium oxide.
  • an aqueous sol can be obtained by performing desalting treatment by ion exchange method, electrodialysis method, ultrafiltration, etc., and releasing aggregation by salt.
  • the target acid-soluble titanium sol can be obtained.
  • Evaporator as a method for solvent replacement Any of a distillation method using a vacuum, a replacement method using an ultrafiltration device, or an azeotropic distillation method may be used. By the method as described above, an acid titanium sol having the light transmittance and the amount of hydroxyl groups aimed by the present invention can be produced.
  • a polyalkylene terephthalate can be produced by using the acid titanium sol of the present invention as a catalyst.
  • the polyalkylene terephthalate is 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, most preferably from the viewpoint of good strength and thermal stability. 90% by weight or more of a polymer composed of alkylene terephthalate units.
  • Specific examples include PET, polytrimethylene terephthalate, and polybutylene terephthalate.
  • the present invention as a raw material monomer that forms the main skeleton of polyalkylene terephthalate, in addition to terephthalic acid, glycol, and diglycol, other monomers are copolymerized within a range that does not impair the object of the present invention. May be.
  • the monomer to be copolymerized is not particularly limited as long as it is other than terephthalic acid, its lower alcohol ester and glycol, such as diol, dicarboxylic acid, dicarboxylic acid ester, dicarboxylic acid amide and oxycarboxylic acid.
  • Specific examples include ethylene glycol, 1,2 propanediol, 1,3 propanediol, 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, and 1,4-cyclohexanedimethanol.
  • ester-forming monomers may be copolymerized.
  • molecular weight control and molecular end control Specifically, monocarboxylic acids such as formic acid, acetic acid, propionic acid and benzoic acid and lower alcohol esters thereof, monoalcohols such as hexanol, propanol, benzyl alcohol and phenol, and derivatives thereof can be used.
  • the terephthalic acid, lower alcohol ester of terephthalic acid and glycol used in the present invention may be commercially available, or those recovered by chemical recycling from products such as bottles, rosin formers, fibers and films. But ... By using chemically recycled monomers and using a catalyst that does not add to the environment, we can provide polyalkylene terephthalate and molded products that are natural and human-friendly. Today, the present invention is considered an extremely important technology as one of the solutions.
  • diglycol in terms of improving dye exhaustion rate and coloring property in dyeing, improving yarn-forming stability, and hardly generating polymer powder during polymer transportation.
  • the chemical formula: HOROROH, R corresponds to an alkylene group in glycol
  • R is preferably copolymerized in an amount of 0.01 to 2% by weight with respect to the polyalkylene terephthalate. If it is less than 0.01% by weight, dye exhaustion rate, color developability and powder generation will be insufficient. On the other hand, if it exceeds 2% by weight, the stability of the yarn production and the light resistance decrease due to the decrease in thermal stability. More preferably, it is 0.2 to 1.7% by weight, and particularly preferably 0.2 to 1.0% by weight.
  • the total amount force polyalkylene terephthalate by weight per 0.2 to 3 weight 0 of linear oligomers alkylene terephthalate units led to linear / 0 may be included.
  • the intrinsic viscosity of the polyalkylene terephthalate is preferably 0.3 to 1.8 dLZg.
  • the strength and durability of the resulting molded product are low. 1. If it exceeds 8dLZg, the melt viscosity is too high. Is not smoothly measured, and the spinnability tends to decrease due to defective discharge.
  • it is preferably 0.3 to 1.4 dLZg, particularly preferably 0.4 to 1.3 dL / g.
  • catalyst residues derived from titanium oxide sol may be present in the polyalkylene terephthalate.
  • the amount is preferably as small as possible. If it exceeds 150 ppm based on the weight of polyalkylene terephthalate, the hue and melt stability will decrease. Usually 10 to 120 ppm.
  • the polyalkylene terephthalate preferably has an L * value of 70 or more and a b * value of 2 to 10.
  • the L * value is an indicator of brightness, and when it is 70 or more, the sharpness of the dyed product is remarkably improved.
  • the L * value is more preferably 78 or more, and particularly preferably 85 or more.
  • the b * value is an indicator of yellowness.
  • a b * value of 2-10 indicates excellent color development after staining. If the b value is less than –2 or greater than 10, the dyeing will become dull.
  • an anti-fogging agent such as acid titanium, a heat stabilizer, a pigment, a dye, an antifoaming agent, a color adjuster, a flame retardant, an oxidation agent Inhibitors, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent brighteners, and the like may be copolymerized or mixed.
  • acid titanium rutile or anatase crystalline acid titanium
  • 0.01 to 3% by weight with respect to polyalkylene terephthalate is preferable.
  • a thermal stabilizer or a coloring inhibitor As the heat stabilizer, a pentavalent or trivalent phosphorus compound is preferably a hindered phenolic acid oxidizer.
  • pentavalent or trivalent phosphorus compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, trimethyl phosphite, triethyl phosphate, triphenyl phosphate, phosphoric acid and phosphorous acid. Can be mentioned.
  • Hindered phenolic antioxidants include pentaerythritol-tetrakis [3— (3,5-di-tert-butyl-4-hydroxyphenol) propionate], 1,1,3 tris (2-methyl-4-hydroxy-1). 5— tert-butylphenol) butane, 1, 3, 5 trimethyl 2, 4, 6 tris (3,5 di-tert-butyl 4-hydroxybenzyl) benzene, 3, 9 bis ⁇ 2— [3— (3— tert— Butyl-4-hydroxy-5-methylphenol) propio-loxy] —1,1-dimethyl 2,4,8,10-tetraoxaspiro [5,5] undecane, 1,3,5 tris (4-tert butyl-3-hydroxy-2,6-dimethylbenzene) isophthalic acid, triethyldallycol-bis [3 — (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [
  • the amount added is 0.001 to 2 parts by weight, preferably 0.001 to 1 part by weight, in the case of a hindered phenolic antioxidant, based on 100 parts by weight of the polyalkylene terephthalate obtained by calculation.
  • a compound having a visible light absorption maximum at a wavelength of 500 to 600 nm may be contained in an amount of 0.1 to LOOppm.
  • dyes represented by anthraquinone dyes and diazo dyes are preferable.
  • the content is preferably 1 to 30 ppm.
  • the polyalkylene terephthalate contains terephthalic acid and Z or a lower alcohol ester derivative thereof or a dicarboxylic acid mainly containing terephthalic acid and Z or a derivative thereof and a glycol with an ester-acid reaction and Z or an ester.
  • the catalyst is produced by using the above-described acid titanium sol of the present invention as a catalyst for at least one reaction of the polycondensation reaction.
  • the acid titanium sol of the present invention is preferably used for at least the polycondensation reaction.
  • a method of reacting a terephthalic acid, a lower alcohol ester thereof, a dicarboxylic acid mainly comprising terephthalic acid and a derivative thereof with a glycol to produce a glycol ester of terephthalic acid or an oligomer thereof.
  • a known method can be used.
  • This reaction is called a transesterification reaction when a lower alcohol ester of terephthalic acid is used, and an esterification reaction when terephthalic acid is used.
  • the lower alcohol ester of terephthalic acid includes dimethyl terephthalate, decyl terephthalate and monomethyl terephthalate.
  • the carboxylic acid, carboxylic acid derivative and diol other than the lower alcohol ester of terephthalic acid, terephthalic acid and ethylene glycol for example, the monomers exemplified in the description of the monomer raw material described above can be used.
  • the invention is not limited to the above exemplified monomers.
  • the charging ratio of the diol mainly composed of ethylene glycol to the total of terephthalic acid, its lower alcohol ester, dicarboxylic acid mainly composed of terephthalic acid and its derivatives is preferably 1.0 to 3 in terms of molar ratio. . If the feed ratio is less than 1.0, the ester exchange reaction does not proceed easily.If the feed ratio is greater than 3, the amount of diglycol increases excessively, or the whiteness of the resulting polymer tends to decrease. is there. More preferably, it is 1.4 to 2.5, and particularly preferably 1.5 to 2.3.
  • the titanium oxide sol of the present invention calcium acetate, manganese acetate, zinc acetate, acetic acid.
  • lithium, lithium formate and sodium acetate can be used.
  • the amount of the catalyst used is 0.002 to 3% by weight, preferably 0.004 to 0.15% by weight, based on the total amount of rubonic acid and its derivatives used as monomers. This is preferable because it combines reaction rate, polymer whiteness and thermal stability.
  • the acid titanium sol of the present invention is used as a catalyst, the amount of acid titanium is within this range.
  • the reaction temperature is about 200 to 230 ° C, and the reaction can be carried out while distilling off by-produced alcohol such as methanol and water.
  • the reaction time is usually 2 to 10 hours, preferably 2 to 4 hours.
  • the reactants thus obtained are terephthalic acid ethylene glycol ester and Z or oligomers thereof.
  • the above transesterification reaction and esterification reaction may be carried out successively in succession in two or more reaction kettles if necessary.
  • the polyalkylene terephthalate of the present invention can be produced by polycondensation of the glycol ester of terephthalic acid thus obtained and / or its oligomer. In the polycondensation reaction, it is preferable to add a catalyst as needed before the polycondensation reaction. In addition, titanium alkoxides such as titanium tetrabutoxide and titanium tetraisopropoxide, titanium alkoxides with trivalent or pentavalent phosphorus compounds, and aliphatic or aromatic compounds having 1 to 4 carboxy groups are reacted. Compound, trivalent or pentavalent halogenated titanium dioxide, fine crystalline titanium oxide, etc. are 0.001-0.
  • the catalyst used in the esterification reaction or transesterification reaction can be used as it is, or it may be newly added. Titanium-based catalysts are effective catalysts for esterification reactions, transesterification reactions, and polycondensation reactions. If they are added in the transesterification or esterification reaction stage, they can be added before the polycondensation reaction. The polycondensation reaction can be carried out in a small amount with or without the addition.
  • additives other than the catalyst may be added at any stage of the polymerization, and may be added at once or in several batches. However, they may be added as they are before the polycondensation reaction or as a glycol solution or a glycol dispersion. It is preferable to add as.
  • the additive inhibits the transesterification reaction and the esterification reaction after the completion of the transesterification reaction or the esterification reaction. It is preferable in that the coloring of the polymer can be suppressed most.
  • the temperature of the reaction product is higher than the boiling point of the phosphorus compound used, if it is added as it is, it will evaporate and a predetermined amount cannot be added. In such a case, it is particularly preferable to add it after dissolving it in Daricol at a temperature of at least 50 ° C. and once reacting with Daricol to raise the boiling point.
  • a desired amount of phosphorus element can be added to the polyalkylene terephthalate.
  • the concentration of the glycol solution is, for example, 0.001 to 10% by weight.
  • a compound having a visible light absorption maximum at a wavelength of 500 to 600 nm can be added as it is at any stage of polymerization, or as a solution or a dispersion in a solvent as described above.
  • a surface activity that helps disperse the dye in the dye product May contain chemicals and inorganic salts such as sodium sulfate. Since these cause a decrease in the hue of the polymer and clogging of the filter during melt molding, it is particularly preferable to remove them in advance.
  • the glycols may condense to form diglycol and copolymerize with the polymer, and the copolymerization ratio of diglycol may exceed 2% by weight.
  • the time from normal pressure to 0.3 kPa is 15 to LOO minutes. Within 15 minutes, glycols can suddenly boil and can quickly clog the vacuum line. If it exceeds 100 minutes, a large amount of diglycol is produced. Preferably it is 15-60 minutes.
  • the polyalkylene terephthalate thus obtained can be used as a raw material for fibers, films and molded articles after being chipped using a known method.
  • the intrinsic viscosity of the polyalkylene terephthalate thus obtained is usually about 0.3 to 1. OdL / g, which achieves the object of the present invention, but the intrinsic viscosity is higher than 0.75 dLZg. It can be difficult. This is because if the reaction temperature is increased to increase the intrinsic viscosity, thermal decomposition occurs and the viscosity may increase. Therefore, as a method for achieving an intrinsic viscosity of 0.75 dLZg or more, a preferable method is to use solid phase polymerization. Using solid-phase polymerization, it is possible to increase the intrinsic viscosity of the prepolymer by at least 0.
  • chips, powders, fibers, plates, or block-shaped prepolymers are 190-250 ° in the presence of inert gas such as nitrogen and argon or under reduced pressure of lOkPa or less, preferably lkPa or less.
  • the polycondensation can be carried out at a temperature of C for about 1 to 70 hours.
  • the polyalkylene terephthalate thus obtained is also the raw material for fibers, films and molded articles. It can be used as a fee.
  • the dispersion medium used for example, ethylene glycol in Example 1
  • the titanium oxide concentration was adjusted to 0.7 gZL, and a cell with an optical path length of 1 cm was used.
  • the light transmittance in the wavelength region of 800 nm was measured.
  • the minimum value was set as the light transmittance of the acid titanium sol.
  • Measurement was performed by F ion exchange method.
  • F ion exchange method For the determination of F ions, an absorptiometric method by color development was applied.
  • the adsorbing liquid is stirred at room temperature. At this time, make sure that the total liquid volume is 250 mL, and use this as the test liquid. Continue stirring the test solution at room temperature until the measurement is completed.
  • Intrinsic viscosity [7?] Is a value obtained based on the definition of the following formula.
  • ⁇ r in the definition formula is a value obtained by dividing the viscosity at 35 ° C of a diluted PET solution dissolved in 98% pure ⁇ -chlorophenol by the viscosity of the solvent itself measured at the same temperature, It is defined as relative viscosity.
  • C is the solute weight value in grams in the above solution lOOmL.
  • the content of the element was measured using high-frequency plasma emission spectroscopy (model: IRIS-AP, manufactured by Thermo Jarrel Ash).
  • the analytical sample was prepared as follows. An Erlenmeyer flask was charged with 0.5 g of a rosin composition and 15 milliliters of concentrated sulfuric acid and decomposed on a 150 ° C hot plate for 3 hours and on a 350 ° C hot plate for 2 hours. After cooling, add 5 ml of hydrogen peroxide solution, oxidatively decompose, concentrate the solution to 5 ml, add 5 ml of concentrated hydrochloric acid Z water (1: 1) solution, and then add 40 ml of water for analysis. It was.
  • the column is a DURABOND DB with an inner diameter of 0.25 mm x length of 30 m (liquid phase film thickness of 0.25 m).
  • WAX manufactured by J & W Scientific
  • helium was measured at 150 ° C to 230 ° C at a temperature increase rate of 20 ° CZ while flowing helium at lOOmLZ minutes.
  • Dry cleaning fastness was determined according to ⁇ O IS-L-0860 and light fastness to ⁇ OW IS-L-0842.
  • the dimethyl terephthalate and ethylene glycol used in the examples were chemically recycled as follows.
  • the obtained residue at 140 ° C was poured into 100 parts by weight of methanol at 25 ° C in which 1.92 parts by weight of sodium carbonate was dispersed, and heated at 65 ° C for 120 minutes. After the reaction, it was cooled to 20 ° C. and left for 30 minutes. Thereafter, the mixture was centrifuged at lOOOrpm, and the liquid phase (mainly composed of methanol and ethylene glycol, including sodium acetate and sodium carbonate) and the solid phase (mainly composed of dimethyl terephthalate. Sodium acetate and Sodium carbonate is also included.) The liquid and solid phases were distilled to recover ethylene glycol and dimethyl terephthalate.
  • an acid-titanium sol using ethylene glycol as a solvent (light transmittance 99%, acid-titanium concentration 21.3 gZL) in the same manner as in Example 1.
  • the amount of hydroxyl group per lg of titanium oxide was 2.5 mmol).
  • the hydrous titanium dioxide slurry obtained by hydrolysis in the same manner as in Example 2 was washed with water, dried at 150 ° C., and then pulverized.
  • the specific surface area of the obtained powder was 110 m 2 Zg.
  • the obtained titanium oxide compound was a mixture of titanium hydroxide and titanium oxide.
  • the obtained powder was mixed with ethylene glycol and dispersed in ethylene glycol with a bead mill to obtain a titanium oxide dispersion (light transmittance 60%, titanium oxide concentration 20. Og / hydroxyl group amount per 1 lg of titanium oxide).
  • PET was produced in the same manner as in Example 3, except that the acid-titanium sol of Example 2 was used as the polycondensation catalyst.
  • Table 1 shows the physical properties of the polymer obtained.
  • PET was prepared in the same manner as in Example 3 except that the acid-titanium ethylene glycol dispersion of Comparative Example 1 was used as the polycondensation catalyst. Table 1 shows the physical properties of the polymer obtained.
  • BHET was produced by an ester exchange reaction at 220 ° C using 1300 parts by weight of dimethyl terephthalate, 872 parts by weight of ethylene glycol, and 1.2 parts by weight of calcium acetate hydrate as an ester exchange catalyst.
  • 0.45 parts by weight of trimethyl phosphate and 0.65 parts by weight of antimony trioxide as a polycondensation catalyst were added. Thereafter, the temperature was continuously raised and maintained at a temperature of 230 to 240 ° C for 45 minutes. Meanwhile, the pressure was reduced from normal pressure to 0.3 kPa, and finally to 0.09 kPa while distilling off ethylene glycol. Thereafter, the temperature was raised to 285 ° C, and polycondensation was carried out for 2 hours and 40 minutes.
  • the obtained PET was discharged into 10 mm diameter circular spinning roller water and solidified. Table 1 shows the physical properties of the polymer obtained.
  • Esters at 220 ° C using 1300 parts by weight of dimethyl terephthalate, 872 parts by weight of ethylene glycol, and 0.06 parts by weight of the acid-titanium sol of Example 1 (Ti02 equivalent) as a tester exchange catalyst and polycondensation catalyst Exchange reaction was carried out to produce bis (2-hydroxyethyl) terephthalate (BHET).
  • BHET bis (2-hydroxyethyl) terephthalate
  • trimethyl phosphate 0.4 A part by weight and 0.5 parts by weight of pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] were added. Thereafter, the temperature was raised and maintained at a temperature of 230 to 240 ° C for 45 minutes.
  • the obtained polymer was dried in a nitrogen atmosphere at 160 ° C for 3 hours using a circulation dryer to a moisture content of 30 ppm.
  • the obtained dried polymer was put into an extruder and extruded through a round spinner having a diameter of 0.23 mm ⁇ 36 at 290 ° C.
  • Cold air of 20 ° C and relative humidity of 90% was blown onto the spun filaments at a speed of 0.4 mZs to cool and solidify.
  • a finishing agent mainly composed of an aliphatic ester was adhered to the yarn as a 10% water-dispersed emulsion using an oiling nozzle on the solidified filament group, and wound up at a speed of 1600 mZmin.
  • the obtained undrawn yarn was drawn to a degree of elongation of about 25% while passing through a hot plate at 70 ° C and then a hot plate at 160 ° C to obtain a drawn yarn of 57dtexZ36f.
  • the strength was 4.7 cNZdtex and the elongation was 25%.
  • the drawn yarn thus obtained was formed into a tubular knitting and subjected to dry heat setting at 160 ° C. for 1 minute. After that, using 8% omf of Dynics Black BG-FS (manufactured by Dystar Japan Co., Ltd.), make Nitsuka Sun Salt 1200 as a dyeing aid present at a concentration of 0.5 gZ liter and adjust ⁇ to 6 with acetic acid. The dyeing was carried out for 60 minutes at a bath ratio of 1:30 and a temperature of 120 ° C. The obtained dyed product was clearly superior in sharpness as compared with the fiber dyed product obtained in the same manner using the polymer obtained in Comparative Example 3.
  • An acidic titanium sol was prepared in the same manner as in Example 1 except that 1,4 butanediol was used instead of ethylene glycol as the dispersion medium.
  • the obtained titanium oxide sol had a light transmittance of 98%, an acid-titanium concentration of 20 gZL, and a hydroxyl group content of 2. Ommol per lg of titanium oxide.
  • a polyalkylene terephthalate polymer was produced in the same manner as in Example 6 except that the above-mentioned titanium oxide sol was used as the catalyst titanium oxide sol and that 1,4-butanediol was used in place of ethylene glycol. Table 1 shows the physical properties of the polymer obtained.
  • An acid titanium sol was prepared in the same manner as in Example 1 except that tetrasalt silicate in an amount corresponding to 10 mol% of the titanium element was added to titanium sulfate.
  • the obtained titanium oxide sol had a light transmittance of 98%, a titanium oxide concentration of 22 gZL, a silicon oxide concentration of 2 gZL, and a hydroxyl group amount of 2. lmmol per lg of total oxide.
  • Example 10 An acid titanium sol was prepared in the same manner as in Example 1. The obtained titanium oxide sol had a light transmittance of 98%, a titanium oxide concentration of 18 gZL, a silicon oxide concentration of 2 gZL, a zinc oxide concentration of 2 gZL, and a hydroxyl group amount of 2 g of total oxide. lmmol. [Example 10]
  • PET was produced in the same manner as in Example 3 except that the acid-titanium sol of Example 8 was used as the polycondensation catalyst.
  • Table 1 shows the physical properties of the polymer obtained.
  • PET was produced in the same manner as in Example 3, except that the acid-titanium sol of Example 9 was used as the polycondensation catalyst.
  • Table 1 shows the physical properties of the polymer obtained.
  • the PET chip obtained after the polycondensation reaction in Example 5 was subjected to solid state polymerization at 220 ° C. for 30 hours in a nitrogen atmosphere.
  • Table 1 shows the physical properties of the polymer obtained.
  • An acidic titanium sol was prepared in the same manner as in Example 1 except that 1,3-propanediol was used instead of ethylene glycol as the dispersion medium.
  • the obtained titanium oxide sol had a light transmittance of 98%, an acid-titanium concentration of 20 gZL, and a hydroxyl group amount of 2. Ommol per lg of titanium oxide.
  • Table 1 shows the physical properties of the polymer obtained.
  • Table 1 shows the physical properties of the polymer obtained.
  • Titanium sulfate aqueous solution obtained by dissolving ilmenite ore in sulfuric acid and removing the precipitate was adjusted to 60g, L of titanium oxide (TiO equivalent) and 250g, L of sulfuric acid concentration (HSO equivalent)
  • HC1 and water were added to 200gZL and HC1 concentration of 200gZL, and the mixture was peptized at a temperature of 60 ° C for 34 hours without stirring. After that, desalting is performed and converted to TiO.
  • a weight percent aqueous titanium oxide sol was obtained.
  • ethylene glycol 80 g was added to 100 g of aqueous titanium oxide sol, mixed with water, heated under reduced pressure to remove water, and an ethylene / silicon sol with ethylene glycol as the dispersion medium (light transmittance 70%, acid / titanium concentration) 20 g ZL, 14 mmol of hydroxyl group per lg of titanium oxide).
  • Example 2 As in Example 1, except that salt-zinc and tetrasalt-germanium were added to titanyl sulfate so that zinc atoms and germanium atoms each corresponded to 5 atomic% of titanium element.
  • a titanium sol was prepared.
  • the obtained titanium oxide sol has a light transmittance of 98%, a titanium oxide concentration of 18 gZL, a zinc oxide concentration of 2 gZL, a germanium oxide concentration of 2 gZL, and the amount of hydroxyl groups per lg of total oxide.
  • the obtained titanium oxide sol has a light transmittance of 98%, a titanium oxide concentration of 18 gZL, a zinc oxide concentration of 2 gZL, a germanium oxide concentration of 2 gZL, and the amount of hydroxyl groups per lg of total oxide.
  • Ommol Ommol.
  • PET was produced in the same manner as in Example 3 except that the acid-titanium sol obtained in Example 15 was used as the transesterification catalyst and the polycondensation catalyst, and the polycondensation time was set to 1.2 hours.
  • Table 1 shows the physical properties of the polymer obtained.
  • PET was produced in the same manner as in Example 3, except that the acid-titanium sol obtained in Example 16 was used as the transesterification catalyst and polycondensation catalyst.
  • Table 1 shows the physical properties of the polymer obtained.
  • the titanium oxide sol of the present invention is suitably used as a polymerization catalyst for polyalkylene terephthalate.
  • the resulting polyalkylene terephthalate is environmentally friendly and Wei, is useful as a raw material for ⁇ and film c

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明の目的は、アンチモン等の重金属を用いない環境に優しいポリアルキレンテレフタレート重合触媒を提供することである。また、その触媒を用いたポリアルキレンテレフタレートの製造方法を提供することである。  本発明のポリアルキレンテレフタレート重合触媒用酸化チタンゾルは、有機溶剤を分散媒体とした酸化チタンゾルであって、ゾル中の酸化チタン濃度を0.7g/Lに調整し、光路長1cmで測定したときの400~800nm波長域での光透過率が50%以上であり、かつ酸化チタン1g当たりの水酸基の量が1.8mmol以上であることを特徴とするポリアルキレンテレフタレート重合触媒用酸化チタンゾル。

Description

明 細 書
酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造 方法
技術分野
[0001] 本発明は、ポリアルキレンテレフタレートを重合するための触媒、該触媒を用いて得 られたポリマーとその加工物に関する。更に詳しくは、アンチモン元素を用いず、チタ ン元素を用いた環境にやさしい触媒と、該触媒を用いて得られる、色相、成形性およ び溶融安定性等に優れた高品質のポリアルキレンテレフタレート及びその繊維、フィ ルムおよび成形物等の加工物に関する。
背景技術
[0002] ポリエチレンテレフタレート(以下、 PETと略記する)に代表されるポリアルキレンテ レフタレートは、テレフタル酸の低級アルコールエステル誘導体ゃテレフタル酸を主 とするジカルボン酸とグリコールとを反応させて、ー且テレフタル酸のグリコールエス テル及び Z又はそのオリゴマーを生成させ、その後、このオリゴマーを高真空下で重 縮合反応させて製造されている。また、分子量をさらに高めるために、得られたポリマ 一を更に固相状態で高真空下又は不活性気体中で固相重合する方法も工業的に 使用されている。
[0003] そのような PETの重縮合触媒としては、古くから三酸ィ匕アンチモンに代表されるァ ンチモン系触媒が使用されてきた。し力しながら、アンチモン系触媒は、環境への負 荷の観点から、一般的にはその代替品が望まれている。また、アンチモン系触媒を使 用した PETはアンチモンの一部がアンチモンブラックになるのでポリマーが黒っぽくく すみ、鮮明な染色が困難といった品質上の問題がある。さらに紡糸工程では、その アンチモンブラックが紡糸口金周辺の汚れやフィルター詰まりを引き起こし、その結 果糸切れが発生する。これらの解消のために紡糸口金およびフィルターを清掃する 必要があるが、清掃周期が短くなるという生産性上の問題があった。
[0004] このような状況の中、特に環境問題の観点や品質および生産性の改善の観点から アンチモン系触媒代替材料の検討力 Sいくつかなされている。とりわけ、チタン元素を 有する有機および無機化合物を用いる検討が数多くなされて!/ヽる。
[0005] 特許文献 1には光透過性の良好な酸ィ匕チタンゾルが開示され、酸ィ匕チタン力 〜5 OOm 程度の微粒子であり、酸化チタンゾルとして波長 370〜600nmでの光透過 率が 95%以上であることが開示されている。しかし、水酸基を特定量有する点や、ポ リアルキレンテレフタレートの重合触媒として効果がある点は開示されていない。更に 、本発明者らの検討によれば、ここで開示された酸化チタンゾル中の水酸基は、酸ィ匕 チタン lg当たり 1. 8mmol未満である。これは本発明の酸ィ匕チタンとは製法が異なり 、酸ィ匕チタン粒子を単に砕いたり、気相法で製造したためである。
[0006] 特許文献 2には、比表面積が 10m2/gより大きい酸ィ匕チタンの粉砕物をポリエステ ルの重合触媒として使用する技術が開示されて 、るが、特定の酸化チタンゾルを使 用することが重合触媒として有効である点は記載されていない。これらの無機系チタ ン化合物触媒は、有機系チタンィ匕合物触媒に対比して更に活性が高いにも力かわら ず、熱分解反応性は低いのでより優れた触媒と考えられる。しかしながら、それでも 得られたポリマーは激しく着色することがあり、これを回避するために、青剤であるコ バルト化合物を使用することが考えられる。しかし、コノ レト化合物はアンチモン同様 に環境問題解決に対しては必ずしも有効ではなぐ更にポリマー品質において、ポリ マーの熱安定性および染色物の鮮明性を低下させる傾向があった。
[0007] 特許文献 1 :特開平 10— 182152号公報
特許文献 2:特開 2000— 119383号公報
発明の開示
発明が解決しょうとする課題
[0008] 上述の状況に鑑みて、本発明の目的は、アンチモン等の重金属を用いない環境に 優しいポリアルキレンテレフタレート重合触媒を提供することである。また、その触媒 を用いたポリアルキレンテレフタレートの製造方法を提供することである。
課題を解決するための手段
[0009] 本発明者らは前記課題を解決するため鋭意検討した結果、特定の物性を有する酸 化チタンゾルがポリアルキレンテレフタレートの重合触媒として活性が高いことを見出 し、本発明をなすに至った。 [0010] すなわち、本発明は以下のとおりのものである。
(1)有機溶剤を分散媒体とした酸ィ匕チタンゾルであって、ゾル中の酸ィ匕チタン濃度 を 0. 7gZLに調整し、光路長 lcmで測定したときの 400〜800nm波長域での光透 過率が 50%以上であり、かつ酸化チタン lg当たりの水酸基の量が 1. 8mmol以上で あることを特徴とするポリアルキレンテレフタレート重合触媒用酸ィ匕チタンゾル。
[0011] (2)光透過率が 90%以上である上記 1項に記載の酸ィ匕チタンゾル。
(3)有機溶剤がグリコールである上記 1または 2項に記載の酸ィ匕チタンゾル。
(4)酸化チタン中のチタン元素の 1〜50モル%がチタン元素以外の元素で置換さ れて 、る上記 1〜3項の 、ずれか一項に記載の酸ィ匕チタンゾル。
(5)チタン元素以外の元素がケィ素、ジルコニウム、亜鉛およびゲルマニウム力 な る群力 選ばれた少なくとも 1種である上記 4項に記載の酸ィ匕チタンゾル。
[0012] (6)テレフタル酸、テレフタル酸の低級アルコールエステル誘導体、テレフタル酸を 主とするジカルボン酸およびテレフタル酸を主とするジカルボン酸の誘導体からなる 群力 選ばれた少なくとも 1種とグリコールを主とするジオールとをエステルイ匕反応お よび Zまたはエステル交換反応させて、テレフタル酸のダリコールエステルおよび Z またはそのオリゴマーを生成させ、その後、 0. 3kPa以下の真空下で重縮合反応さ せてポリアルキレンテレフタレートを重合する方法において、該エステル化反応、エス テル交換反応および重縮合反応の少なくとも 1つの反応で、上記 1〜5項のいずれか 一項に記載の酸ィ匕チタンゾルを触媒として用いることを特徴とするポリアルキレンテレ フタレートの製造方法。
[0013] (7)少なくとも重縮合反応において上記 1〜5項のいずれか一項に記載の酸ィ匕チタ ンゾルを触媒として用いる請求項 6に記載の製造方法。
(8)重縮合反応終了後、得られたポリアルキレンテレフタレートをー且固化させて、 固相状態で加熱して少なくとも固有粘度を重縮合反応終了時点での固有粘度よりも
0. IdLZg以上上げる工程をさらに有する上記 6または 7項に記載の製造方法。
[0014] (9)重合の任意の過程で、計算上得られるポリアルキレンテレフタレート 100重量部 に対し、リン原子として 1 X 10—4〜250 Χ 10—4重量部に相当するリンィ匕合物を添加す る上記 6〜8項の 、ずれか一項に記載の製造方法。 (10)重合の任意の過程で、計算上得られるポリアルキレンテレフタレート 100重量 部に対し、 0. 001〜2重量部のヒンダードフエノール化合物を添加する上記 6〜9項 の!、ずれか一項に記載の製造方法。
[0015] (11)テレフタル酸の低級アルコールエステル、テレフタル酸およびグリコールの少 なくとも 1種力 ポリアルキレンテレフタレートをケミカルリサイクルして回収されたもの である上記 6〜: L0項のいずれか一項に記載の製造方法。
(12)上記 6〜: L 1項のいずれか一項に記載の製造方法で得られたポリアルキレン テレフタレートからなる加工物。
発明の効果
[0016] 本発明の酸ィ匕チタンゾルは、重金属元素、特に従来力も使用されていたアンチモ ン元素を用いない、環境にやさしい触媒である。また、本発明の触媒を用いて得られ るポリアルキレンテレフタレートに代表されるポリエステルは、色相、溶融成形性およ び溶融安定性等に優れた高品質のポリマーであり、高品質の繊維、フィルムおよび 成形物等の加工物を提供することができる。 発明を実施するための最良の形態
[0017] 本発明について、以下具体的に説明する。
本発明者らは、チタンィ匕合物を中心にポリアルキレンテレフタレート重合時の重合 反応性と得られるポリマー品質向上の両面力 詳細に触媒開発の検討を進めた結 果、有機溶剤中で高度に分散された酸化チタンゾルを触媒として用いることで、公知 のアンチモン代替触媒に対比して、高度の重合活性を有しながら、本発明の目的と する高いポリマー品質が達成されることを見出した。
[0018] 本発明でいうゾルとは、極めて微細なコロイド粒子の凝結体が解膠処理により媒質 中に高分散された形態を指し、単に粉末としての微粒子の分散体でな 、。
本発明の酸ィ匕チタンゾルは、有機溶剤を分散媒体とした酸化チタンゾルであり、特 定の光透過率を有し、かつ、酸ィ匕チタン lg当たり特定量以上の水酸基を含有してい る。
本発明で提案する酸ィ匕チタンゾルは、単に有機系あるいは無機系チタンィ匕合物溶 液を加水分解して得られた水酸ィ匕チタン微粒子、ある 、はその水酸ィ匕チタン微粒子 の熱処理物である酸ィ匕チタンを例えば溶媒中で機械的に粉砕するという従来の製法 では得られず、一定の加水分解条件で得られた水酸化チタンの微細なコロイド粒子 のゲル状凝結体を酸処理によって解膠させ、高度の分散レベルを達成した後、有機 溶剤と混合後、水分を除去して初めて得ることができる。その分散レベルは光透過率 および酸化チタン中の水酸基量で判断でき、波長 400〜800nmでの光透過率が 5 0%以上、かつ、水酸基量が酸ィ匕チタン lg当たり 1. 8mmol以上である。
[0019] 本発明のポリアルキレンテレフタレート重合触媒用酸化チタンゾルは、 400〜800n m波長域での光透過率は 50%以上であることが必要である。ここで、 50%以上とは 4 00〜800nm波長域での最小の光透過率が 50%以上であることを指す。光透過率 は、ゾル中の酸ィ匕チタン濃度を希釈または濃縮して、ゾル 1L当りの酸ィ匕チタン量を 0 . 7gとし、光路長 lcmで測定したときの値である。光透過率を 50%以上にすることで 、エステル交換速度、エステルイ匕速度および重縮合反応速度を高めることができ、同 時に得られたポリマーの品質を高めることも可能になる。光透過率は、触媒活性の点 で好ましくは 60〜100%であり、更に好ましくは 70〜100%、最も好ましくは 90〜: L0 0%である。
[0020] 本発明において、酸化チタンの水酸基量は 1. 8mmolZg以上(酸化チタン lg当り 1. 8mmol以上)である。上限は特に制限はないが、熱分解を抑制する点で 15mmo lZg以下であることが好ましい。触媒活性の高さおよび保存安定性の観点から、 1. 8 〜10、より好ましくは 1. 8〜5mmol/gである。
[0021] 尚、従来公知の酸ィ匕チタン触媒では 1. 8mmolZg未満である。
本発明においては光透過率と酸ィ匕チタンの水酸基量を同時に満足させることにより 優れた触媒活性を有するポリアルキレンテレフタレート重合触媒用酸ィ匕チタンゾルを 得ることができる。
[0022] 本発明の酸ィ匕チタンゾルがポリエステルの重合触媒として高活性である理由につ いては明らかではないが、触媒の活性点となる部分が高い表面積によって数多く導 入されたことと同時に、副反応が起こりにくい表面構造になったことが考えられる。
[0023] 本発明の酸化チタンゾルは有機溶剤に酸化チタンを分散させた形態である。酸ィ匕 チタンを分散させる溶剤としては、ペンタン、へキサンおよびオクタン等のアルカン、 塩化メチレンおよびクロ口ホルム等のハロゲン化アルカン、トルエンおよびキシレン等 の芳香族化合物、酢酸メチルおよび酢酸ェチル等の脂肪族エステル、アセトンおよ びメチルェチルケトン等の脂肪族ケトン、メタノール等のアルコール、および脂肪族グ リコール等が挙げられる。好ましい溶媒としては、重合反応性およびポリマー品質の 観点から重合するポリアルキレンテレフタレートのアルキレン部分に相当するグリコー ルである。具体的には、 PETを重合するときにはエチレングリコール、ポリトリメチレン テレフタレートを重合するときには 1, 3 プロパンジオール、およびポリブチレンテレ フタレートを重合するときには 1 , 4 ブタンジオールが好まし!/、。
[0024] 酸化チタンゾル中の酸化チタン量については、特に制限はないが、通常 0. 1〜70 重量%が好ま 、。重合過程で用いるグリコールダイマーの副生を抑制する観点か ら、さらに好ましくは 5〜50重量%、特に好ましくは 10〜30重量%である。
[0025] 酸化チタンの結晶系は、特に制限はなぐ非晶質、アナタース、ルチルおよびブル ッカイトの 、ずれでもよぐこれらが任意の比率で混ざって 、てもよ 、。
[0026] 本発明の酸ィ匕チタンゾルは、有機あるいは無機チタンィ匕合物溶液を一定条件下で 加水分解することにより得られた水酸ィ匕チタンの微細なコロイド粒子のゲル状凝結体 を酸処理することによって解膠させ、高度の分散レベルを達成した後、有機溶剤と混 合後、水分を除去して得ることができる。
[0027] 本発明の酸ィ匕チタンゾルの製造法について更に詳細に説明する。
チタン源となる有機系あるいは無機系チタンィ匕合物としては、例えば、硫酸チタン、 酢酸チタン、硝酸チタン、四塩化チタン、またはチタンイソプロボキシドおよびチタン ブトキシド等のアルコキシド等を用いることができる。コストおよび加水分解反応性を 考慮すると硫酸チタンおよび四塩ィ匕チタンが好ましい。また、これらのチタンィ匕合物 に他の加水分解性金属化合物をチタン金属に対して 1〜 50モル%、好ましくは 1〜 3 0モル0 /0になるように混合してもよい。特に、ケィ素、ジルコニウム、亜鉛およびゲルマ -ゥムの加水分解性金属ゾルが触媒活性を高める観点カゝら好ましい。
[0028] チタン化合物の加水分解方法としては、水、ある 、はアルコール、グリコール、ァセ トンおよびメチルェチルケトン等の水溶性溶剤中で実施することができる。
本発明では加水分解の際に予め反応核としてオルトチタン酸の微粒子を添加する ことが必要である。このオルトチタン酸の微粒子は常温にてチタンィ匕合物溶液にアル カリ溶液を加える中和反応により生成する。その際のオルトチタン酸の濃度は、酸ィ匕 チタン換算で 20〜200gZLが好ましい。使用するアルカリとしては、水酸化ナトリウ ム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水 素カリウム等を用いることができる。特に強アルカリとなる水酸ィ匕ナトリウムおよび水酸 化カリウムが好ましい。アルカリ溶液添カ卩時には中和熱により液温が上昇する力 活 性の低 、メタチタン酸の生成を防ぐために、 0〜50°Cに制御することが好ま 、。
[0029] 加水分解反応において、反応核としてのオルトチタン酸の添力卩量は酸ィ匕チタン換 算で原料酸ィ匕チタンィ匕合物の 0. 5〜30%が好ましぐさらに好ましくは 1〜20%であ る。全酸ィ匕チタン濃度は 50〜300gZLが好ましぐ反応温度としては、通常 0〜120 °Cであり、反応時間としては、通常 10分力も 48時間である。
[0030] こうして得られた水酸ィ匕チタンは、硫酸チタンおよび四塩ィ匕チタン等のような無機系 チタンィ匕合物を原料とする場合には、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウ ム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水素カリウム等のアルカリ性ィ匕合物 を用いて、 pH8〜14、好ましくは pH9〜12になるようにアルカリ処理する。アルカリ 処理温度としては、通常 0〜100°Cであり、時間は通常 10分〜 48時間である。アル カリ処理をすることにより原料に由来する硫酸イオンなどの不純物を除去する。
[0031] 水酸ィ匕チタンは、アルカリ処理した後、次いで酸処理を行う。酸処理することにより ゲル状に凝結しているコロイド粒子を分散させる (解膠といわれる)。酸としては、塩酸 、硫酸、硝酸および燐酸などの無機酸のほか、シユウ酸、クェン酸および乳酸等の有 機酸を用いることができる。酸処理の温度としては通常 0〜100°Cであり、時間は通 常 10分〜 96時間程度である。酸処理時の水酸ィ匕チタンの濃度は酸ィ匕チタン換算で 50〜500gZLであり、使用する酸の量は水酸化チタンの酸化チタン換算 100重量 部に対し 10〜 200重量部が好ましい。
[0032] 酸処理による解膠の後、イオン交換法、電気透析法および限外ろ過などにより脱塩 処理を行い、塩による凝集を解くことにより水性ゾルを得ることができる。
続いて、溶媒となる水をエチレングリコールなどの分散媒体と置換することにより目 的とする酸ィ匕チタンゾルを得ることができる。溶媒置換の方法としてはエバポレーター を用いる減圧蒸留、限外ろ過装置による置換方式、あるいは共沸蒸留等何れでも構 わない。以上のような方法により、本発明が目的とする光透過率および水酸基量を有 する酸ィ匕チタンゾルを製造することができる。
[0033] 本発明の酸ィ匕チタンゾルを触媒として用いて、ポリアルキレンテレフタレートを製造 することができる。
本発明において、ポリアルキレンテレフタレートとは、強度および熱安定性が良好と いう観点から、繰り返し単位の 50重量%以上、好ましくは 70重量%以上、更に好まし くは 80重量%以上、最も好ましくは 90重量%以上がアルキレンテレフタレート単位か らなるポリマーである。具体的には、 PET、ポリトリメチレンテレフタレートおよびポリブ チレンテレフタレート等が挙げられる。
[0034] 本発明において、ポリアルキレンテレフタレートの主骨格を形成する原料モノマーと しては、テレフタル酸、グリコールおよびジグリコール以外に、本発明の目的を阻害し ない範囲で他のモノマーを共重合してもよい。共重合するモノマーとしては、テレフタ ル酸、その低級アルコールエステルおよびグリコール以外であれば、ジオール、ジカ ルボン酸、ジカルボン酸エステル、ジカルボン酸アミドおよびォキシカルボン酸等、特 に制限はない。具体例としては、エチレングリコール、 1, 2 プロパンジオール、 1, 3 プロパンジオール、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキ サンジオールおよび 1, 4ーシクロへキサンジメタノール等のジオール、シユウ酸、マロ ン酸、コハク酸、グルタル酸、アジピン酸、イソフタル酸、 2, 6 ナフタレンジカルボン 酸、ビフエ-ルジカルボン酸、 5—ナトリウムスルホイソフタル酸、 5—カリウムスルホイ ソフタル酸、 5 リチウムスルホイソフタル酸、 2 ナトリウムスルホテレフタル酸、 2— カリウムスルホテレフタル酸、 4 ナトリウムスルホー 2, 6 ナフタレンジカルボン酸、 2 ナトリウムスルホー 4ーヒドロキシ安息香酸および 5—スルホイソフタル酸テトラブ チルホスホ-ゥム等のカルボン酸またはそのエステル誘導体、ビス(ヒドロキシェチル )ビスフエノールー A、ビス(ヒドロキシェチル)ビスフエノールー S、ォキシ酢酸、ォキシ 安息香酸、および分子量が 200〜 100000のポリエチレングリコールやポリテトラメチ レンダリコール等のポリオール等が挙げられる。必要に応じて 2種類以上のエステル 形成性モノマーを共重合させてもよい。また、分子量制御および分子末端制御を目 的として、ギ酸、酢酸、プロピオン酸および安息香酸等のモノカルボン酸やその低級 アルコールエステル、並びにへキサノール、プロパノール、ベンジルアルコールおよ びフエノール等のモノアルコールやその誘導体等を用いることができる。
[0035] 本発明で用いるテレフタル酸、テレフタル酸の低級アルコールエステルおよびグリ コールは、市販のものでもよいし、あるいはボトル、榭脂形成体、繊維およびフィルム 等の製品からケミカルリサイクルによって回収されたものでもよ 、。ケミカルリサイクル されたモノマーを使用し、かつ環境付加のない触媒を使用することによって、 自然や 人類にとって優し 、ポリアルキレンテレフタレートやその成形体を提供できるので、環 境破壊および健康破壊が叫ばれている今日、本発明はその解決策の一つとして、極 めて重要な技術と考えられる。
[0036] 本発明によって製造されるポリアルキレンテレフタレートにおいては、染色における 染料吸尽率や発色性の向上、製糸安定性の向上、およびポリマー運送時にポリマー 粉が発生しにくいという点において、ジグリコール (ィ匕学式: HOROROH、 Rはグリコ ール中のアルキレン基に対応する。)を、ポリアルキレンテレフタレートに対して、 0. 0 1〜2重量%共重合されていることが好ましい。 0. 01重量%未満では染料吸尽率、 発色性および耐粉発生が不十分がとなる。一方、 2重量%を越えると、熱安定性低下 による製糸安定性および耐光性の低下が起こる。さらに好ましくは 0. 2〜1. 7重量% 、特に好ましくは 0. 2〜1. 0重量%である。
[0037] また、本発明においては、ポリアルキレンテレフタレートにアルキレンテレフタレート 単位力 なる環状オリゴマーや、アルキレンテレフタレート単位が線状につながった 線状オリゴマーの合計量力 ポリアルキレンテレフタレート重量当たり 0. 2〜3重量0 /0 含まれてもよ 、。これらはポリアルキレンテレフタレート重合時に生成する副生物であ る。これらのオリゴマーが 3重量%を越えると成形時に析出して工程安定性を低下さ せる。 0. 2重量%未満では染色性が若干低下する。好ましくは、 0. 7〜2. 8重量% である。
[0038] 本発明において、ポリアルキレンテレフタレートの固有粘度は 0. 3〜1. 8dLZgが 好ましい。固有粘度が 0. 3dLZg未満の場合は、得られる成形体の強度および耐久 性が低い。 1. 8dLZgを越える場合は、溶融粘度が高すぎるために、ギアポンプで の計量がスムーズに行われなくなり、吐出不良等で紡糸性が低下する傾向がある。さ らに好ましくは 0. 3〜1. 4dLZg、特に好ましくは 0. 4〜1. 3dL/gである。
[0039] 本発明においては、ポリアルキレンテレフタレート中に酸化チタンゾル由来の触媒 残さ(酸ィ匕チタン)が存在してもよい。しかし、その量はできるだけ少ないことが好まし い。ポリアルキレンテレフタレート重量に対し、 150ppmを越えると、色相および溶融 安定性が低下する。通常は 10〜120ppmである。
[0040] 本発明においては、ポリアルキレンテレフタレートの L *値は 70以上、 b *値は 2 〜 10であることが好ましい。 L*値は、明るさを示す指標であり、 70以上で染色物の 鮮明性が著しく向上する。 L *値はさらに好ましくは 78以上、特に好ましくは 85以上 である。 b *値は黄色みを示す指標である。 b *値が 2〜 10であれば、優れた染色 後の発色を示す。 b値が— 2未満や 10より大きい場合は、染色物がくすんでしまう。
[0041] 本発明においては、ポリアルキレンテレフタレートに各種の添加剤、例えば、酸ィ匕チ タン等の艷消し剤、熱安定剤、顔料、染料、消泡剤、整色剤、難燃剤、酸化防止剤、 紫外線吸収剤、赤外線吸収剤、結晶核剤および蛍光増白剤等を共重合または混合 してもよい。特に、艷消し剤として用いる酸ィ匕チタン (ルチル型またはアナタース型の 結晶性酸ィ匕チタン)を用いる場合は、ポリアルキレンテレフタレートに対して 0. 01〜3 重量%が好ましい。
[0042] 特に、熱安定性、溶融安定性およびポリマーの白度を高める方法としては、熱安定 剤や着色抑制剤を用いることが特に好ましい。熱安定剤としては、 5価または 3価のリ ン化合物ゃヒンダードフエノール系酸ィ匕防止剤が好ましい。例えば、 5価または 3価の リン化合物としては、トリメチルホスフェート、トリェチルホスフェート、トリブチルホスフ ユート、トリフエ-ルホスフェート、トリメチルホスファイト、トリェチルホスファイト、トリフエ -ルホスファイト、リン酸および亜リン酸等が挙げられる。ヒンダードフエノール系酸化 防止剤としては、ペンタエリスリトールーテトラキス [3— (3, 5—ジ— tert ブチル— 4 —ヒドロキシフエ-ル)プロピオネート]、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5— tert ブチルフエ-ル)ブタン、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ一 tert ブチル 4 ヒドロキシベンジル)ベンゼン、 3, 9 ビス {2— [3— (3— tert— ブチルー 4ーヒドロキシ 5 メチルフエ-ル)プロピオ-ルォキシ ]—1, 1ージメチル ェチル } 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカン、 1, 3, 5 トリス(4— t ert ブチルー 3 ヒドロキシ 2, 6 ジメチルベンゼン)イソフタル酸、トリエチルダリ コール—ビス [ 3— ( 3— tert ブチル— 5—メチル— 4—ヒドロキシフエ-ル)プロピオ ネート]、 1, 6 へキサンジオール ビス [3— (3, 5 ジ tert—ブチルー 4ーヒドロ キシフエ-ル)プロピオネート]、 2, 2 チォージエチレン ビス [3— (3, 5 ジ ter tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]、およびォクタデシルー [3— (3 , 5—ジ—tert ブチルー 4ーヒドロキシフエ-ル)プロピオネート]等が挙げられる。添 加量としては計算上得られるポリアルキレンテレフタレート 100重量部に対し、ヒンダ ードフエノール系酸化防止剤の場合、 0. 001〜2重量部、好ましくは 0. 001〜1重 量部を添加し、リンィ匕合物の場合、リン原子として 1 X 10— 4〜250 X 10— 4重量部、好ま しくは 10 X 10— 4〜80 X 10— 4重量部添カ卩する。
[0043] また、ポリマーの白度を向上させるために、波長 500〜600nmに可視光吸収極大 値を有する化合物を 0. 1〜: LOOppmを含有せしめてもよい。これらの具体的物質とし ては、アントラキノン系染料およびジァゾ系染料に代表される染料が好ましい。含有 量としては、好ましくは l〜30ppmである。
[0044] 本発明において、ポリアルキレンテレフタレートは、テレフタル酸および Zまたはそ の低級アルコールエステル誘導体あるいはテレフタル酸を主とするジカルボン酸およ び Zまたはその誘導体とグリコールとをエステルイ匕反応および Zまたはエステル交換 反応させて、テレフタル酸のダリコールエステルまたはそのオリゴマーを生成させ、そ の後、 0. 3kPa以下の真空下で重縮合反応させてポリエチレンテレフタレートを重合 する方法において、エステル化反応、エステル交換反応および重縮合反応の少なく とも 1つの反応の触媒として、上述の本発明の酸ィ匕チタンゾルを用いて製造する。本 発明の酸ィ匕チタンゾルは少なくとも重縮合反応に用いられることが好ましい。
[0045] 本発明にお!/、て、テレフタル酸、その低級アルコールエステル、テレフタル酸を主と するジカルボン酸およびその誘導体とグリコールとを反応させてテレフタル酸のグリコ ールエステルまたはそのオリゴマーを生成させる方法としては、公知の方法を用いる ことができる。この反応は、テレフタル酸の低級アルコールエステルを用いる場合は エステル交換反応と、テレフタル酸を用いる場合にはエステルイ匕反応と呼ばれる。こ こで、テレフタル酸の低級アルコールエステルとは、テレフタル酸ジメチル、テレフタ ル酸ジェチルおよびテレフタル酸モノメチル等である。また、テレフタル酸の低級ァ ルコールエステル、テレフタル酸およびエチレングリコール以外の、カルボン酸、カル ボン酸誘導体およびジオールとして、例えば前述のモノマー原料の説明で例示した モノマーを使用できる。もちろん、前述の例示されたモノマーのみに限定されるもの ではない。
[0046] テレフタル酸、その低級アルコールエステル、テレフタル酸を主とするジカルボン酸 およびその誘導体の合計に対するエチレングリコールを主とするジオールの仕込み 比率は、モル比で 1. 0〜3であることが好ましい。仕込み比率が 1. 0未満では、エス テル交換反応が進行しにくぐまた、仕込み比率が 3より大きくなるとジグリコールの量 が過度に多くなつたり、得られたポリマーの白度が低下する傾向がある。さらに好まし くは 1. 4〜2. 5であり、特に好ましくは、 1. 5〜2. 3である。
[0047] エステル交換反応およびエステル化反応においては、触媒は反応を円滑に進行さ せるために用いることが好ましぐこの触媒として本発明の酸化チタンゾル、酢酸カル シゥム、酢酸マンガン、酢酸亜鉛、酢酸リチウム、蟻酸リチウムおよび酢酸ナトリウム等 の 1種もしくはそれ以上を用いることができる。
[0048] 触媒の使用量としては、モノマーとして使用する全力ルボン酸およびその誘導体の 合計量に対して 0. 002〜3重量%、好ましくは 0. 004-0. 15重量%を用いることが 、反応速度、ポリマーの白度および熱安定性を兼ね備えるので好ましい。尚、本発明 の酸ィ匕チタンゾルを触媒として用いる場合、酸ィ匕チタン量がこの範囲となる。
[0049] 反応温度としては 200〜230°C程度で、副生するメタノール等のアルコールや水等 を留去しながら反応を行うことができる。反応時間は通常 2〜10時間、好ましくは 2〜 4時間である。こうして得られた反応物は、テレフタル酸のエチレングリコールエステ ルおよび Zまたはそのオリゴマーである。以上のエステル交換反応およびエステル 化反応は、必要に応じて 2つ以上の反応釜に分けて順次連続的に行ってもよい。
[0050] 本発明のポリアルキレンテレフタレートは、こうして得られたテレフタル酸のグリコー ルエステルおよび/またはそのオリゴマーを重縮合することにより製造することができ る。 重縮合反応では、重縮合反応前に必要に応じて触媒を添加することが好ましぐ本 発明の酸ィ匕チタンゾルを必要に応じて添加する。また、チタンテトラブトキシドおよび チタンテトライソプロポキシド等のチタンアルコキシド、チタンアルコキシドと 3価や 5価 のリン化合物、 1〜4個のカルボシキル基を有する脂肪族または芳香族化合物等を 反応させた変性チタン化合物、 3価又は 5価のハロゲンィ匕チタン、および微粒子結晶 性酸化チタン等を全力ルボン酸およびその誘導体の合計量に対して 0. 001-0. 2 重量%、好ましくは 0. 003-0. 15重量%添加してもよい。この重縮合触媒は、エス テルィ匕反応やエステル交換反応でもちいた触媒をそのまま使用することもできるし、 新たに追加してもよい。チタン系の触媒はエステルイ匕反応、エステル交換反応および 重縮合反応の!/ヽずれにも有効な触媒であるので、エステル交換反応やエステル化反 応段階で添加しておくと、重縮合反応前に新たに添加することなぐあるいは添加す るにしても少量で重縮合反応を行うことができる。
[0051] 触媒以外の各種添加剤は、重合のどの段階で添加してもよく一気にあるいは数回 に分けて添加してもよいが、重縮合反応前にそのまま、あるいは、グリコール溶液や グリコール分散液として添加することが好ましい。例えば、本発明に用いるリンィ匕合物 およびヒンダードフエノール系酸ィ匕防止剤の場合、添カ卩はエステル交換反応やエス テルィ匕反応終了後以降が、エステル交換反応およびエステルイ匕反応を阻害すること なぐポリマーの着色を最も抑えられる点で好ましい。尚、反応物の温度が用いるリン 化合物の沸点よりも高くなる場合は、そのまま添加すると、蒸発して所定の量を添カロ することができなくなる。このような場合は、一度ダリコールに少なくとも 50°C以上の温 度で溶解させ、一度ダリコールと反応させて沸点を高めてから添加する方法が特に 好ましい。このような方法を用いることで、所望するリン元素量をポリアルキレンテレフ タレートに添加することが可能となる。グリコール溶液の濃度としては、例えば 0. 001 〜 10重量%である。
[0052] また、波長 500〜600nmに可視光吸収極大値を有する化合物についても、重合 のどの段階で添加してもよぐそのままあるいは上記と同様に溶液または溶剤中の分 散液として添加できる。 500〜600nmに可視光吸収極大値を有する化合物を巿販 の染料として入手し使用する場合は、染料製品の中に染料の分散を助ける界面活性 剤および硫酸ナトリウム等の無機塩が入って 、る場合がある。これらはポリマーの色 相低下および溶融成形時のフィルター詰まりの原因となるので、事前に除去すること が特に好ましい。
[0053] 重縮合反応は、触媒を加えた後、昇温して、 0. 0001-0. 3kPaの減圧下、得られ るポリマーの融点の 25〜50°Cまでの温度で反応させる。添加剤は任意の段階で添 加できる。重合時間は目標固有粘度にもよるが、通常は 2〜5時間である。昇温前あ るいは昇温の初期段階で減圧にして、好ましくは 240°Cに到達する前に過剰のグリコ ールの大部分を除去することが必要である。高温で過剰のグリコールが長 、時間滞 留すると、グリコール同士が縮合してジグリコールになり、ポリマーに共重合されて、 ジグリコールの共重合比率が 2重量%を超える場合がある。そのような具体的な減圧 方法としては、常圧から 0. 3kPaまでにする時間が 15〜: LOO分であることが必要であ る。 15分以内ではグリコールが突沸する問題が起こりやすぐ真空ラインを詰まらせる 可能性がある。 100分を越えるとジグリコールが大量に生成する。好ましくは 15〜60 分である。
こうして得られたポリアルキレンテレフタレートは公知の方法を用いてチップィ匕を行 い、繊維、フィルムおよび成形品の原料として用いることができる。
[0054] こうして得られたポリアルキレンテレフタレートの固有粘度は、通常 0. 3〜1. OdL/ g程度であり、本発明の目的を達成するものであるが、固有粘度を 0. 75dLZgより高 めることは困難となる場合がある。なぜならば、固有粘度を上げるために反応温度を 高くしたりすると、熱分解が起こり、粘度が上がりに《なる場合がある力もである。そこ で、 0. 75dLZg以上の固有粘度を達成する方法として、好ましい方法は固相重合を 用いることである。固相重合を用いるとプレボリマーの固有粘度よりも少なくとも 0. Id LZg以上高めることが可能であり、最終的には 1. 5dLZgまでも極限粘度を高める ことが可能となる。固相重合はチップ、粉、繊維状、板状またはブロック状にしたプレ ポリマーを、窒素およびアルゴン等の不活性ガスの存在下あるいは lOkPa以下好ま しくは lkPa以下の減圧下で、 190〜250°Cの温度で、 1〜70時間程度重縮合させ ること〖こよって行なうことができる。
こうして得られたポリアルキレンテレフタレートも、繊維、フィルムおよび成形品の原 料として用いることができる。
実施例
[0055] 以下、本発明を実施例によって更に詳細に説明する。しかし、本発明はこれらの実 施例にのみ限定されるものではな 、。本発明の実施例等で用いる主な測定値は以 下の測定法により測定した。
[0056] (1)酸ィ匕チタンゾルの光透過率測定
用いた分散媒体 (例えば、実施例 1ではエチレングリコール)で酸化チタン濃度を 0 . 7gZLに調整し、光路長 lcmのセルを用い、島津製作所製分光光度計「UV-3100 PC」にて 400〜800nmの波長域での光透過率を測定した。この領域での光透過率 のうち、最小値を酸ィ匕チタンゾルの光透過率とした。
[0057] (2)酸化チタン表面の水酸基量
Fイオン交換法により測定を行った。なお、 Fイオンの定量は発色させることによる吸 光光度法を適用した。
(A)測定方法
1.酢酸として 1N、酢酸ナトリウムとして 0. 5Nとなるように緩衝液を調整し、その緩 衝液を 10倍に希釈する。その希釈した緩衝液に、 Fイオン量力 Ommol/Lとなるよ うに NaFを 1L当たり 1. 68g添加する。この溶液を吸着液とする。この吸着液の初期 のフリー Fイオン量 (a) (gZL)を測定しておく。
2.試料の TiO 濃度をあら力じめ測定しておき、試料から吸着液の TiO 濃度が 4g
2 2
ZLとなる量を分取し、吸着液に添加した後、吸着液の攪拌を常温で開始する。この 時、トータル液量は 250mLとなるようにし、これを検査液とする。なお、検査液は測定 が終了するまで常温で攪拌を継続する。
3.試料の添加後、検査液のフリーの Fイオン量 (gZL)を 1時間ごとに測定し、飽和 吸着量に達して数値が変化しなくなった時点を終点とする。飽和吸着時のフリー Fィ オン量 (b)から以下の計算式により水酸基量を算出する。
水酸基量 (mmolZg) = ( (a)— (b) ) Z ( 18. 998 X 4)
(B) Fイオンの測定方法
1.検査液からサンプルを 100 L分取し、 50mLメスフラスコに入れる。 2.これに発色剤として 2. 5%ランタンァリザリンコンプレキソン溶液 5mLを添カロし、 さらにメスフラスコの標線まで水を加え混合'攪拌した後、 1時間静置する。
3.分光光度計にて吸光度を測定し、検量線にて Fイオン量を算出する。
[0058] (3)固有粘度
固有粘度 [ 7? ]は次式の定義に基づいて求められる値である。
[ r? ] =lim ( r? r- l) /C
C→0
定義式中の η rは純度 98%の ο—クロ口フ ーノールで溶解した PETの希釈溶液 の 35°Cでの粘度を、同一温度で測定した上記溶媒自体の粘度で割った値であり、 相対粘度と定義されているものである。また、 Cは上記溶液 lOOmL中のグラム単位 による溶質重量値である。
[0059] (4)元素量の含有量測定
元素の含有量は、高周波プラズマ発光分光分析 (機種: IRIS— AP、サーモジャー レルアッシュ社製)を用いて測定した。
分析試料は、以下のようにして調整した。三角フラスコに 0. 5gの榭脂組成物と 15ミ リリットルの濃硫酸をカ卩え、 150°Cのホットプレート上で 3時間、 350°Cのホットプレート 上で 2時間分解させた。冷却後、過酸化水素水を 5ミリリットル加え、酸化分解した後 、その液を 5ミリリットルまで濃縮し、濃塩酸 Z水(1: 1)の水溶液を 5ミリリットル加え、 更に水を 40ミリリットル加え分析試料とした。
[0060] (5) L *値、 b *値の測定
試料(例えば、ペレット)をガラス製セル(内径 61mm X深さ 30mm)に深さの 9〜10 割まで満たし、スガ試験機 (株)製色彩色差計 (SM— 7— CH)を用いて、 CIE— L * a * b * (CIE1976)表色系で L *および b *を測定した。
[0061] (6)ジグリコールの共重合比率
微粉末ィ匕した試料 2gを精秤後、 2Nの水酸ィ匕カリゥムのメタノール溶液 25mLにカロ え、還流下、 4時間かけて加溶媒分解した。得られた分解物を用い、ガスクロマトダラ フィ一により定量した。
カラムは、内径 0. 25mm X長さ 30m (液相膜厚 0. 25 m)の DURABOND DB — WAX(J&W Scientific社製)を用い、ヘリウムを lOOmLZ分で流しながら、 20 °CZ分の昇温速度で 150〜230°Cまで測定した。
[0062] (7)末端カルボキシル基量
試料 lgをべンジルアルコール 25mLに溶解し、その後クロ口ホルム 25mLをカ卩えた 後、 1Z50Nの水酸化カリウムベンジルアルコール溶液での滴定値 VA (mL)と、ぺ レット無しのブランク滴定での滴定値 VOを求め、以下の式に従って、ポリマー lkg当 たりの末端カルボキシル基量を求めた。
末端カルボキシル基量 (ミリ当量 Zkgポリマー) = (VA -VO ) X 20
[0063] (8)比表面積の測定
BET法に準じて測定した。
(9)染色堅ろう度
ドライクリーニング堅ろう度 ίお IS— L— 0860に、耐光堅ろう度 ίお IS— L— 0842に 準じて判定した。
[0064] [参考例 1]
実施例で用いたテレフタル酸ジメチルおよびエチレングリコールは以下のようにして 、ケミカルリサイクルしたものを使用した。
固有粘度 0. 7dLZgの PET144重量部、エチレングリコール 270重量部および酢 酸ナトリウム 0. 144重量部を 220°Cで 120分間反応させた。反応後、エチレングリコ ールを 160mmHgの減圧下で留去した。
[0065] 得られた 140°Cの残留物を、炭酸ナトリウム 1. 92重量部を分散させた 25°Cのメタノ ール 100重量部に注ぎ入れ、 65°Cで 120分間加熱した。反応後、 20°Cまで冷却し 3 0分間放置した。その後、 lOOOrpmで遠心分離を行い、液相(メタノールおよびェチ レングリコールを主体としたもの。酢酸ナトリウムおよび炭酸ナトリウムも含まれる。)と 固相(テレフタル酸ジメチルを主体としたもの。酢酸ナトリウムおよび炭酸ナトリウムも 含まれる。)に分離した。液相と固相をそれぞれ蒸留し、エチレングリコールとテレフタ ル酸ジメチルを回収した。
[0066] [実施例 1]
ィルメナイト鉱石を硫酸に溶解した後、沈殿物を除去した硫酸チタ-ル水溶液を、 酸ィ匕チタン濃度 (TiO換算) 60gZLおよび硫酸濃度 (H SO換算) 250gZLに調
2 2 4
整した後、 200gZL水酸ィ匕ナトリウム水溶液を pH7になるように添加しオルトチタン 酸を析出させた。この間、液温は 20〜40°Cに維持した。次いで、酸ィ匕チタン濃度 10 OgZLおよび硫酸濃度 350gZLに調整した硫酸チタ-ル水溶液に当該オルトチタ ン酸を酸ィ匕チタン換算にて 5%添加し、 3時間沸騰して加水分解した。得られた水酸 化チタンスラリーを水で洗浄した後、水酸化ナトリウムで pHIOに調整し、攪拌しなが ら 60°Cに加熱し 2時間保持した。次いで、冷却し、濾過した後、酸化チタン濃度 (Ti O換算) 200gZLおよび HC1濃度 lOOgZLとなるように HC1および水をカ卩え、攪拌
2
しながら 60°Cで 4時間解膠した。その後、脱塩処理を行い TiO に換算して 20重量
2
%の水性酸化チタンゾルを得た。
[0067] 水性酸化チタンゾル 100gに対しエチレングリコール 80gを添加混合し、減圧加熱 することにより水分を除去し、エチレングリコールを溶媒とした酸ィ匕チタンゾル (光透 過率 98%、酸ィ匕チタン濃度 20gZL、酸ィ匕チタン lg当たりの水酸基量 2. Ommol)を 得た。
[0068] [実施例 2]
添加するオルトチタン酸の添加量を 15%とする以外は実施例 1と同様な方法にて、 エチレングリコールを溶媒とした酸ィ匕チタンゾル (光透過率 99 %、酸ィ匕チタン濃度 21 . 3gZL、酸ィ匕チタン lg当たりの水酸基量 2. 5mmol)を得た。
[0069] [比較例 1]
実施例 2と同様に加水分解を行い得られた水酸ィ匕チタンスラリーを水洗し、 150°C で乾燥した後、粉砕を行った。得られた粉末の比表面積は 110m2Zgであった。得ら れた酸化チタン化合物は水酸化チタンと酸化チタンの混合物であった。得られた粉 末をエチレングリコールと混ぜビーズミルでエチレングリコールに分散させ酸化チタン 分散液 (光透過率 60%、酸化チタン濃度 20. Og/ 酸化チタン lg当たりの水酸基 量 0. 4mmol)を得た。
[0070] [実施例 3]
テレフタル酸ジメチル 1300重量部、エチレングリコール 872重量部、およびエステ ル交換触媒として酢酸カルシウム水和塩 1. 2重量部を用いて、 220°Cにてエステル 交換反応を行 、ビス(2—ヒドロキシェチル)テレフタレート(BHET)を製造した。得ら れた BHETにトリメチルホスフェート 0. 4重量部および重縮合触媒として実施例 1の 酸ィ匕チタンゾル (TiO 換算) 0. 06重量部を添カ卩した。その後昇温を続け、 230〜2
2
40°Cの温度で 45分維持した。その間、圧力は常圧から 0. 3kPaまで減圧し、最終的 には 0. 09kPaまでエチレングリコールを留去しながら減圧した。その後昇温を 290 °Cまで続け、約 3時間重縮合を行った。得られた PETは、 10mm直径の円形紡口か ら水中に吐出し、固化させた。得られたポリマーの物性を表 1に示す。
[0071] [実施例 4]
重縮合触媒として、実施例 2の酸ィ匕チタンゾルを用いた以外は、実施例 3と同様に PETを作製した。得られたポリマーの物性を表 1に示す。
[0072] [比較例 2]
重縮合触媒として、比較例 1の酸ィ匕チタンエチレングリコール分散液を用いた以外 は、実施例 3と同様に PETを作製した。得られたポリマーの物性を表 1に示す。
[0073] [比較例 3]
テレフタル酸ジメチル 1300重量部、エチレングリコール 872重量部、およびエステ ル交換触媒として酢酸カルシウム水和塩 1. 2重量部を用いて、 220°Cにてエステル 交換反応を行い BHETを製造した。得られた BHETにトリメチルホスフェート 0. 45重 量部および重縮合触媒として三酸ィ匕アンチモン 0. 65重量部を添加した。その後昇 温を続け、 230〜240°Cの温度で 45分間維持した。その間、圧力は常圧から 0. 3k Paまで減圧し、最終的には 0. 09kPaまでエチレングリコールを留去しながら減圧し た。その後昇温を 285°Cまで続け、 2時間 40分重縮合を行った。得られた PETは、 1 0mm直径の円形紡ロカ 水中に吐出し、固化させた。得られたポリマーの物性を表 1に示す。
[0074] [実施例 5]
テレフタル酸ジメチル 1300重量部、エチレングリコール 872重量部、およびテステ ル交換触媒並びに重縮合触媒として実施例 1の酸ィ匕チタンゾル (Ti02換算) 0. 06 重量部を用いて、 220°Cにてエステル交換反応を行い、ビス(2—ヒドロキシェチル) テレフタレート(BHET)を製造した。得られた BHETに、トリメチルホスフェート 0. 4重 量部およびペンタエリスリトールーテトラキス [3— (3, 5—ジ tert ブチルー 4ーヒド ロキシフエ-ル)プロピオネート] 0. 5重量部を添カ卩した。その後昇温を続け、 230〜 240°Cの温度で 45分間維持した。その間、圧力は常圧から 0. 3kPaまで減圧し、最 終的には 0. 09kPaまでエチレングリコールを留去しながら減圧した。その後昇温を 2 90°Cまで続け、約 3時間重縮合を行った。得られた PETは、 10mm直径の円形紡口 力 水中に吐出し、固化させた。得られたポリマーの物性を表 1に示す。
[0075] 得られたポリマーを窒素雰囲気下、 160°Cで 3時間、循環式乾燥機を用いて、水分 率 30ppmまで乾燥を行った。得られた乾燥ポリマーを押出機に投入し、 290°Cで口 径 0. 23mm X 36個の丸型紡口を通して押し出した。紡出されたフィラメント群に 20 °C、相対湿度 90%の冷風を 0. 4mZsの速度で吹き付け、冷却固化させた。固化さ れたフィラメント群に給油ノズルを用いて脂肪族エステルを主体とするの仕上げ剤を 1 0%の水分散ェマルジヨンとして糸に付着させ 1600mZminの速度で巻き取った。 次に得られた未延伸糸を 70°Cのホットプレート、さらに 160°Cのホットプレートに通し ながら伸度がほぼ 25%になるように延伸し、 57dtexZ36fの延伸糸を得た。強度は 4. 7cNZdtex、伸度は 25%であった。
[0076] 紡糸を 1週間続けても、紡口周辺に汚れは認められな力つた。
得られた延伸糸を筒編みにし、 160°C、 1分間乾熱セットを施した。その後、ダイァ ニックスブラック BG—FS (ダイスタージャパン社製)の 8%omfを用い、染色助剤であ るニツカサンソルト 1200を 0. 5gZリットルの濃度で存在させ、酢酸で ρΗを 6に調整 し、 1 : 30の浴比および 120°Cの温度で、 60分間染色を行った。得られた染色物は、 比較例 3で得られたポリマーを用いて同様に得た繊維染色物に対比して、明らかに 鮮明'性に優れていた。
[0077] また、筒編みを 1N水酸ィ匕ナトリウム水溶液で 30分アルカリ減量し、同様の染色を 施したところ、黒の発色が非常に鮮明かつ深みを持った。このような深みは、比較例 3で得られたポリマーを用いた繊維では得られなかった。
[0078] [実施例 6]
テレフタル酸ジメチル 1300重量部、エチレングリコール 872重量部、およびエステ ル交換触媒並びに重縮合触媒として実施例 1の酸ィ匕チタンゾル (TiO 換算) 0. 06 重量部を用いて、 220°Cにてエステル交換反応を行 、ビス(2—ヒドロキシェチル)テ レフタレート(BHET)を製造した。得られた BHETにトリメチルホスフェート 0. 4重量 部を添加した。その後昇温を続け、 230〜240°Cの温度で 45分間維持した。その間 、圧力は常圧から 0. 3kPaまで減圧し、最終的には 0. 09kPaまでエチレングリコー ルを留去しながら減圧した。その後昇温を 250°Cまで続け、約 3時間重縮合を行った 。得られた PETは、 10mm直径の円形紡口から水中に吐出し、固化させた。得られ たポリマーの物性を表 1に示す。
[0079] [実施例 7]
分散媒体として、エチレングリコールの代わりに 1, 4 ブタンジオールを用いたこと を除いて、実施例 1と同様に酸ィ匕チタンゾルを作製した。得られた酸化チタンゾルは 、光透過率 98%、酸ィ匕チタン濃度 20gZL、および酸ィ匕チタン lg当たりの水酸基量 2. Ommolであった。
触媒の酸化チタンゾルとして上記の酸化チタンゾルを用いたこと、およびエチレング リコールの代わりに 1, 4 ブタンジオールを用いたことを除いて、実施例 6と同様にポ リアルキレンテレフタレートポリマーを製造した。得られたポリマーの物性を表 1に示 す。
[0080] [実施例 8]
チタン元素の 10モル%に相当するケィ素原子となる量の四塩ィ匕ケィ素を硫酸チタ -ルに加えたことを除いて、実施例 1と同様に酸ィ匕チタンゾルを作製した。得られた 酸ィ匕チタンゾルは、光透過率が 98%、酸化チタン濃度が 22gZL、酸化ケィ素濃度 が 2gZL、および全酸ィ匕物 lg当たりの水酸基量が 2. lmmolであった。
[0081] [実施例 9]
ケィ素原子およびジルコニウム原子がそれぞれチタン元素の 5%モルに相当する 量となるよう〖こ、四塩ィ匕ケィ素および四塩ィ匕ジルコニウムを硫酸チタ-ルにカロえたこと を除いて、実施例 1と同様に酸ィ匕チタンゾルを作製した。得られた酸化チタンゾルは 、光透過率が 98%、酸化チタン濃度が 18gZL、酸化ケィ素濃度が 2gZL、酸化ジ ルコ-ゥム濃度が 2gZL、および全酸ィ匕物 lg当たりの水酸基量が 2. lmmolであつ た。 [0082] [実施例 10]
重縮合触媒として実施例 8の酸ィ匕チタンゾルを用いたことを除 ヽて、実施例 3と同様 に PETを製造した。得られたポリマーの物性を表 1に示す。
[0083] [実施例 11]
重縮合触媒として実施例 9の酸ィ匕チタンゾルを用いたことを除 ヽて、実施例 3と同様 に PETを製造した。得られたポリマーの物性を表 1に示す。
[0084] [実施例 12]
実施例 5において重縮合反応後に得られた PETのチップを窒素雰囲気下 220°C で 30時間固相重合を行った。得られたポリマーの物性を表 1に示す。
[0085] [実施例 13]
分散媒体として、エチレングリコールの代わりに 1, 3—プロパンジオールを用いたこ とを除いて、実施例 1と同様に酸ィ匕チタンゾルを作製した。得られた酸化チタンゾル は、光透過率 98%、酸ィ匕チタン濃度 20gZL、および酸ィ匕チタン lg当たりの水酸基 量 2. Ommolであった。
次【こ、テレフタノレ酸ジメチノレ 1300重量咅^ 1, 3—プロノ ンジ才一ノレ 1370重量咅^ およびエステル交換触媒並びに重縮合触媒として上記の酸ィ匕チタンゾル (TiO 換
2 算) 0. 06重量部を用いて、 220°Cにてエステル交換反応を行いビス(3—ヒドロキシ プロピル)テレフタレート(BHPT)を製造した。得られた BHPTにトリメチルホスフエ一 ト 0. 4重量部を添加した。その後昇温を続け、 230〜240°Cの温度で 45分間維持し た。その間、圧力は常圧から 0. 3kPaまで減圧し、最終的には 0. 09kPaまで 1, 3— プロパンジオールを留去しながら減圧した。その後昇温を 250°Cまで続け、約 3時間 重縮合を行った。
得られたポリマーの物性を表 1に示す。
[0086] [実施例 14]
テレフタル酸ジメチル 1300重量部、 1, 4—ブタンジオール 1370重量部、およびェ ステル交換触媒並びに重縮合触媒として実施例 7で作製した酸ィ匕チタンゾル (TiO
2 換算) 0. 06重量部を用いて、 220°Cにてエステル交換反応を行いビス (4—ヒドロキ シブチル)テレフタレート(BHBT)を製造した。得られた BHBTにトリメチルホスフエ ート 0. 4重量部を添加した。その後昇温を続け、 230〜240°Cの温度で 45分間維持 した。その間、圧力は常圧から 0. 3kPaまで減圧し、最終的には 0. 09kPaまで 1, 4 —ブタンジオールを留去しながら減圧した。その後昇温を 250°Cまで続け、約 3時間 重縮合を行った。
得られたポリマーの物性を表 1に示す。
[0087] [実施例 15]
ィルメナイト鉱石を硫酸に溶解し、沈殿物を除去した硫酸チタ-ル水溶液を、酸ィ匕 チタン濃度 (TiO換算) 60g,Lおよび硫酸濃度 (H SO換算) 250g,Lに調整した
2 2 4
後、濃度 200gZLの水酸ィ匕ナトリウム水溶液を pH7になるように添加しメタチタン酸 を析出させた。この間、液温は 20〜40°Cに維持した。次いで、酸ィ匕チタン濃度 100g ZLおよび硫酸濃度 450gZLに調整した硫酸チタニル水溶液に当該メタチタン酸を 酸ィ匕チタン換算にて 5%添加し、 3時間沸騰して加水分解した。得られた水酸化チタ ンスラリーを水で洗浄した後、水酸化ナトリウムで pHIOに調整し、攪拌しながら 60°C の温度に加熱し 2時間保持した。次いで、冷却、濾過した後、酸ィ匕チタン濃度 (TiO
2 換算) 200gZLおよび HC1濃度 200gZLとなるように HC1および水を加え、攪拌しな 力 Sら 60°Cの温度で 34時間解膠した。その後、脱塩処理を行い TiO に換算して 20
2
重量%の水性酸化チタンゾルを得た。
[0088] 水性酸化チタンゾル 100gに対しエチレングリコール 80g添加混合し、減圧加熱す ることにより水分を除去しエチレングリコールを分散媒体とした酸ィ匕チタンゾル (光透 過率 70%、酸ィ匕チタン濃度 20gZL、酸ィ匕チタン lg当たりの水酸基量 14mmol)を 得た。
[0089] [実施例 16]
亜鉛原子およびゲルマニウム原子がそれぞれチタン元素の 5原子%に相当する量 となるように、塩ィ匕亜鉛および四塩ィ匕ゲルマニウムを硫酸チタニルに加えたことを除 いて、実施例 1と同様に酸ィ匕チタンゾルを作製した。得られた酸ィ匕チタンゾルは、光 透過率が 98%、酸化チタン濃度が 18gZL、酸ィ匕亜鉛濃度が 2gZL、酸化ゲルマ- ゥム濃度が 2gZL、および全酸ィ匕物 lg当たりの水酸基量が 9. Ommolであった。
[0090] [実施例 17] エステル交換触媒および重縮合触媒として、実施例 15で得られた酸ィ匕チタンゾル を用い、重縮合時間を 1. 2時間としたことを除いて、実施例 3と同様に PETを製造し た。得られたポリマーの物性を表 1に示す。
[0091] [実施例 18]
エステル交換触媒および重縮合触媒として、実施例 16で得られた酸ィ匕チタンゾル を用いたことを除いて、実施例 3と同様に PETを製造した。得られたポリマーの物性 を表 1に示す。
[0092] [表 1] 表 1
Figure imgf000025_0001
産業上の利用可能性
本発明の酸化チタンゾルはポリアルキレンテレフタレートの重合用触媒として好適 に用いられる。得られたポリアルキレンテレフタレートは環境にやさしいものであり、繊 維、榭脂およびフィルム等の原料として有用である c

Claims

請求の範囲
[1] 有機溶剤を分散媒体とした酸ィ匕チタンゾルであって、ゾル中の酸ィ匕チタン濃度を 0 . 7gZLに調整し、光路長 lcmで測定したときの 400〜800nm波長域での光透過 率が 50%以上であり、かつ酸化チタン lg当たりの水酸基の量が 1. 8mmol以上であ ることを特徴とするポリアルキレンテレフタレート重合触媒用酸ィ匕チタンゾル。
[2] 光透過率が 90%以上である請求項 1に記載の酸ィ匕チタンゾル。
[3] 有機溶剤がグリコールである請求項 1または 2に記載の酸ィ匕チタンゾル。
[4] 酸化チタン中のチタン元素の 1〜50モル%がチタン元素以外の元素で置換されて
V、る請求項 1〜3の!、ずれか一項に記載の酸化チタンゾル。
[5] チタン元素以外の元素がケィ素、ジルコニウム、亜鉛およびゲルマニウム力もなる 群カゝら選ばれた少なくとも 1種である請求項 4に記載の酸ィ匕チタンゾル。
[6] テレフタル酸、テレフタル酸の低級アルコールエステル誘導体、テレフタル酸を主と するジカルボン酸およびテレフタル酸を主とするジカルボン酸の誘導体からなる群か ら選ばれた少なくとも 1種とグリコールを主とするジオールとをエステルイ匕反応および Zまたはエステル交換反応させて、テレフタル酸のダリコールエステルおよび Zまた はそのオリゴマーを生成させ、その後、 0. 3kPa以下の真空下で重縮合反応させて ポリアルキレンテレフタレートを重合する方法において、該エステル化反応、エステル 交換反応および重縮合反応の少なくとも 1つの反応で、請求項 1〜5のいずれか一 項に記載の酸ィ匕チタンゾルを触媒として用いることを特徴とするポリアルキレンテレフ タレートの製造方法。
[7] 少なくとも重縮合反応において請求項 1〜5のいずれか一項に記載の酸ィ匕チタンゾ ルを触媒として用いる請求項 6に記載の製造方法。
[8] 重縮合反応終了後、得られたポリアルキレンテレフタレートをー且固化させて、固相 状態で加熱して少なくとも固有粘度を重縮合反応終了時点での固有粘度よりも 0. 1 dLZg以上上げる工程をさらに有する請求項 6または 7に記載の製造方法。
[9] 重合の任意の過程で、計算上得られるポリアルキレンテレフタレート 100重量部に 対し、リン原子として 1 X 10— 4〜250 X 10— 4重量部に相当するリン化合物を添加する 請求項 6〜8の 、ずれか一項に記載の製造方法。
[10] 重合の任意の過程で、計算上得られるポリアルキレンテレフタレート 100重量部に 対し、 0. 001〜2重量部のヒンダードフエノール化合物を添カ卩する請求項 6〜9のい ずれか一項に記載の製造方法。
[11] テレフタル酸の低級アルコールエステル、テレフタル酸およびグリコールの少なくと も 1種が、ポリアルキレンテレフタレートをケミカルリサイクルして回収されたものである 請求項 6〜10のいずれか一項に記載の製造方法。
[12] 請求項 6〜: L 1の 、ずれか一項に記載の製造方法で得られたポリアルキレンテレフ タレートからなる加工物。
PCT/JP2006/309496 2005-05-12 2006-05-11 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法 WO2006121121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800163426A CN101175789B (zh) 2005-05-12 2006-05-11 氧化钛溶胶以及使用其制造聚对苯二甲酸亚烷基酯的方法
JP2007528318A JP5001838B2 (ja) 2005-05-12 2006-05-11 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法
EP06732527A EP1881019B1 (en) 2005-05-12 2006-05-11 Titanium oxide sol and process for producing polyalkylene terephthalate therewith
US11/920,253 US7759270B2 (en) 2005-05-12 2006-05-11 Titanium oxide sol and process for producing polyalkylene terephthalate therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005139394 2005-05-12
JP2005-139394 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006121121A1 true WO2006121121A1 (ja) 2006-11-16

Family

ID=37396629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309496 WO2006121121A1 (ja) 2005-05-12 2006-05-11 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法

Country Status (5)

Country Link
US (1) US7759270B2 (ja)
EP (1) EP1881019B1 (ja)
JP (1) JP5001838B2 (ja)
CN (1) CN101175789B (ja)
WO (1) WO2006121121A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168766A1 (en) 2008-09-26 2010-03-31 FUJIFILM Corporation Process for making lithographic printing plate
JP2011026437A (ja) * 2009-07-24 2011-02-10 Teijin Fibers Ltd ポリエチレンテレフタレートの製造方法
WO2013153702A1 (ja) * 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
US9487623B2 (en) 2012-09-24 2016-11-08 Sk Chemicals Co., Ltd. Preparation method of polycyclohexylenedimethylene terephthalate resin having excellent color, and polycyclohexylenedimethylene terephthalate resin prepared by the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182152A (ja) * 1986-10-29 1998-07-07 Catalysts & Chem Ind Co Ltd 酸化チタンゾル
JPH11130856A (ja) * 1997-10-28 1999-05-18 Kanebo Ltd ポリエステル樹脂の製造方法
JP2000119383A (ja) * 1998-10-09 2000-04-25 Toyobo Co Ltd ポリエステル重合触媒、ポリエステルの製造方法およびポリエステル
JP2001081172A (ja) * 1999-07-13 2001-03-27 Mitsui Chemicals Inc ポリエチレンテレフタレートの処理方法
JP2002542323A (ja) * 1999-04-08 2002-12-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 酸化チタンを含む触媒
JP2006002068A (ja) * 2004-06-18 2006-01-05 Teijin Fibers Ltd チタン成分が析出しにくい安定なポリエステル製造用チタン触媒溶液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918330B1 (ja) * 1969-02-08 1974-05-09
EP1413593B1 (en) * 2001-07-16 2015-10-28 Teijin Limited Catalyst for polyester production and process for producing polyester with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182152A (ja) * 1986-10-29 1998-07-07 Catalysts & Chem Ind Co Ltd 酸化チタンゾル
JPH11130856A (ja) * 1997-10-28 1999-05-18 Kanebo Ltd ポリエステル樹脂の製造方法
JP2000119383A (ja) * 1998-10-09 2000-04-25 Toyobo Co Ltd ポリエステル重合触媒、ポリエステルの製造方法およびポリエステル
JP2002542323A (ja) * 1999-04-08 2002-12-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 酸化チタンを含む触媒
JP2001081172A (ja) * 1999-07-13 2001-03-27 Mitsui Chemicals Inc ポリエチレンテレフタレートの処理方法
JP2006002068A (ja) * 2004-06-18 2006-01-05 Teijin Fibers Ltd チタン成分が析出しにくい安定なポリエステル製造用チタン触媒溶液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1881019A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168766A1 (en) 2008-09-26 2010-03-31 FUJIFILM Corporation Process for making lithographic printing plate
JP2011026437A (ja) * 2009-07-24 2011-02-10 Teijin Fibers Ltd ポリエチレンテレフタレートの製造方法
WO2013153702A1 (ja) * 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
WO2013154042A1 (ja) * 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
JP5652552B2 (ja) * 2012-04-11 2015-01-14 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
US9487623B2 (en) 2012-09-24 2016-11-08 Sk Chemicals Co., Ltd. Preparation method of polycyclohexylenedimethylene terephthalate resin having excellent color, and polycyclohexylenedimethylene terephthalate resin prepared by the same

Also Published As

Publication number Publication date
EP1881019A1 (en) 2008-01-23
JP5001838B2 (ja) 2012-08-15
US7759270B2 (en) 2010-07-20
JPWO2006121121A1 (ja) 2008-12-18
CN101175789B (zh) 2012-05-02
CN101175789A (zh) 2008-05-07
US20090069529A1 (en) 2009-03-12
EP1881019B1 (en) 2012-08-22
EP1881019A4 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CN101208371B (zh) 聚酯的制造方法以及使用该方法制造的聚酯以及聚酯成形体
US5798433A (en) Process for production of polypropylene terephthalate
JP3461175B2 (ja) ポリエステル重合触媒及びこれを用いて製造されたポリエステル並びにポリエステルの製造方法
US4668732A (en) Polyester composition and process for producing the same
JP5998541B2 (ja) ポリエステル組成物の製造方法
TWI309246B (en) Catalyst for polymerization of polyester
JP2003160656A (ja) ポリエステルの製造方法及び繊維
WO2006121121A1 (ja) 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法
JP2006282801A (ja) ポリエステルフィルム製造方法
JP4342211B2 (ja) ポリエステル及びその製造方法
JP2008266359A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
KR101551638B1 (ko) 화학 재생 공정을 이용한 난연성 공중합 폴리에스테르 수지 및 그 제조 방법
JP3888884B2 (ja) ポリエステルの製造方法
JP2005187556A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187561A (ja) ポリエステルならびにポリエステルの製造方法
JP4282205B2 (ja) ポリエステルの製造方法
JP2005187557A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187559A (ja) ポリエステルならびにポリエステルの製造方法
WO2022054669A1 (ja) ポリエステル樹脂組成物の製造方法
JP5181409B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2003268095A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
EP1690881B1 (en) Polyester, process for producing the same, fiber, and polymerization catalyst for polyester
JP2008063384A (ja) ポリエステルの製造方法およびこれによって得られる繊維
JPS6025047B2 (ja) 改質ポリエステルの製造法
CA2426137A1 (en) Polyester based on poly(trimethylene terephthalate)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016342.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528318

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006732527

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11920253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006732527

Country of ref document: EP