WO2006121031A1 - 超音波診断装置及び超音波画像表示方法 - Google Patents

超音波診断装置及び超音波画像表示方法 Download PDF

Info

Publication number
WO2006121031A1
WO2006121031A1 PCT/JP2006/309290 JP2006309290W WO2006121031A1 WO 2006121031 A1 WO2006121031 A1 WO 2006121031A1 JP 2006309290 W JP2006309290 W JP 2006309290W WO 2006121031 A1 WO2006121031 A1 WO 2006121031A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ultrasonic
tissue
diagnostic apparatus
physical quantity
Prior art date
Application number
PCT/JP2006/309290
Other languages
English (en)
French (fr)
Inventor
Takeshi Matsumura
Toshihiko Kawano
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to EP06746121.0A priority Critical patent/EP1880679B1/en
Priority to US11/913,852 priority patent/US9060737B2/en
Priority to JP2007528278A priority patent/JP5160227B2/ja
Publication of WO2006121031A1 publication Critical patent/WO2006121031A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the present invention relates to an ultrasonic image display method and an ultrasonic diagnostic apparatus. Specifically, the physical quantity correlates with the distortion of the yarn and the weaving of each part of the living body with respect to the amount of compression applied to the subject.
  • the present invention relates to an ultrasonic image display method and an ultrasonic diagnostic apparatus capable of providing an image to a user and improving tissue discrimination in diagnosis.
  • An ultrasonic diagnostic apparatus obtains displacement of each part of a living body by applying pressure to a subject using a technique or a mechanical method, and images information on tissue hardness based on the obtained displacement. It is a device that makes it possible to properly distinguish a diseased tissue such as a cancer tumor by culling.
  • a strain image which is one of the tissue hardness information, is an image obtained by spatially differentiating the displacement distribution to obtain the strain of each part of the living body and adding gradation according to the hue and brightness according to the magnitude of the strain. It is.
  • strain is a qualitative physical quantity that depends on the amount of compression, and the magnitude of strain changes depending on how the compression force is applied. For this reason, even with the same yarn and weave, the amount of compression may be large, and the distortion or distortion may be displayed as a hue or brightness with a large value, which may cause misidentification due to the experience and skill of the examiner. There is.
  • Patent Document 1 proposes an attempt to acquire the hardness characteristics of a tissue based on a strain image without correlating with the amount of compression.
  • ROI-l and ROI-2 are set for the lesion tissue and the surrounding tissue in the strain image, respectively, and the ratio ⁇ ⁇ / ⁇ 2 of strain ⁇ 1, ⁇ 2 within each ROI is set as the hardness index. It has been suggested that This has the advantage that the relative ratio of the strain in the two regions of interest does not depend on the amount of compression, so that the difference in strain between the diseased tissue and the surrounding tissue can be identified semi-quantitatively.
  • Patent Document 1 US Patent Publication WO 2006/013916
  • an ultrasonic image of a lesion such as a cancer tumor is observed to determine whether the lesion tissue is benign or malignant.
  • the difference in hardness identifies the boundary between the diseased tissue and the normal tissue, or if the hardness of the tissue surrounding the diseased tissue or the change in the hardness of the boundary tissue between the diseased tissue and the surrounding tissue is known It can be expected that the tissue at the lesion site can be properly identified.
  • An object of the present invention is to display a spatial distribution of tissue hardness excluding the influence of the compression amount as an image.
  • the ultrasonic diagnostic apparatus of the present invention is configured as follows.
  • an ultrasonic probe an ultrasonic tomographic data measuring means for measuring ultrasonic tomographic data of a tomographic part by applying pressure to the tissue of the subject, and a tomographic image generation for generating a tomographic image from the ultrasonic tomographic data
  • an elastic image generating means for obtaining a physical quantity that correlates with tissue distortion at a plurality of measurement points of the tomographic part based on the ultrasonic tomographic data and generating an elastic image at the tomographic part based on the physical quantity.
  • means for selecting a reference area from a tomographic image or an elasticity image, and an indexed elasticity image representing the distribution of index values by converting the physical quantity of each measurement point into an index value based on the physical quantity of the reference area as a reference And means for generating.
  • the ultrasonic image display method of the present invention is configured as follows. That is, a step of measuring the ultrasonic tomographic data by applying pressure to the tissue of the subject, and obtaining a physical quantity correlated with tissue distortion at a plurality of measurement points of the tomographic site of the subject based on the ultrasonic tomographic data. A step of generating an elasticity image of the tomographic site based on the physical quantity; a step of selecting a reference area for the inertial image; and the physical quantity of each measurement point based on the physical quantity of the reference area And a step of generating an indexed elasticity image representing the distribution of the index value.
  • the spatial distribution of tissue hardness excluding the influence of the compression amount can be displayed as an image.
  • FIG. 1 is a block configuration diagram of an embodiment of an ultrasonic diagnostic apparatus to which an ultrasonic image display method of the present invention can be applied.
  • FIG. 2 is a flowchart showing a processing procedure of an embodiment of the ultrasonic image display method of the present invention.
  • FIG. 3 is an external view showing an example of an ultrasonic probe.
  • FIG. 4 is a diagram for explaining a problem of a conventional distorted image for explaining the effect of the embodiment of the present invention.
  • FIG. 5 is a diagram showing an indexed elasticity image of an example of the present invention.
  • FIG. 6 is a diagram showing an indexed elasticity image of another example of the present invention.
  • FIG. 7 is a diagram for explaining an example of a method for automatically setting a reference area according to an index value of the present invention.
  • FIG. 8 is a diagram for explaining another example of the reference region automatic setting method according to the index value of the present invention.
  • FIG. 9 is a diagram showing an indexed elasticity image of another example of the present invention.
  • FIG. 10A is a diagram for explaining a method of moving a reference region related to an index value of the present invention by following a tissue variation accompanying compression.
  • FIG. 10B A specific example of the tracking processing of the points constituting the reference region R according to the index value of the present invention.
  • FIG. 10C is a diagram showing a specific example of the tracking process of the reference region R according to the index value of the present invention.
  • FIG. 11 is a diagram for explaining an example of gradation of the indexed elasticity image of the present invention.
  • FIG. 12 is a diagram for explaining another example of gradation of the indexed elasticity image of the present invention.
  • FIG. 13 is a diagram for explaining still another example of gradation conversion of the indexed elasticity image of the present invention.
  • FIG. 14 is a diagram illustrating an example in which the indexed elasticity image of the present invention is displayed superimposed on a B-mode image.
  • FIG. 15 is a diagram for explaining an embodiment in which a region of interest is set in the indexed elasticity image of the present invention, and an average value of hardness index values of the region of interest is numerically displayed.
  • FIG. 16 is a diagram for explaining an embodiment in which an indexed elasticity image is generated as a whole by subdividing an elasticity image in the lateral direction and performing indexing for each segmented image.
  • FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment suitable for carrying out the ultrasonic image display method of the present invention.
  • FIG. 2 shows a flowchart of one embodiment of the ultrasonic image display method according to the feature of the present invention.
  • the ultrasonic probe 2 used in contact with the subject 1 transmits ultrasonic waves to and from the subject 1 as shown in FIG. 3 (A).
  • a plurality of receiving transducers are formed to have an ultrasonic transmission / reception surface 21 in which the transducers are aligned.
  • the probe 2 is driven by ultrasonic pulses supplied from the transmission circuit 3.
  • the transmission / reception control circuit 4 controls the transmission timing of the ultrasonic pulses that drive the plurality of transducers of the probe 2 so as to form an ultrasonic beam toward the focal point set in the subject 1. It has become.
  • the transmission / reception control circuit 4 electronically scans the ultrasonic beam in the direction in which the transducers of the probe 2 are arranged.
  • the probe 2 receives a reflected echo signal generated from within the subject 1 and outputs it to the receiving circuit 5.
  • the reception circuit 5 takes in the reflected echo signal and performs reception processing such as amplification.
  • the reflected echo signal received and processed by the receiving circuit 5 is amplified by adding together the phases of the reflected echo signals received by the plurality of transducers in the phasing and adding circuit 6.
  • the reflected echo signal (hereinafter referred to as ultrasonic tomographic data) that has been phased and added by the phasing and adding circuit 6 is input to the signal processing unit 7 to receive signals such as gain correction, log compression, detection, contour enhancement, and filter processing. No. processing is done.
  • the radio frequency (RF) signal of the ultrasonic tomographic data generated in the phasing addition circuit 6 may be a complex demodulated I and Q signal.
  • the ultrasonic tomographic data processed by the signal processing unit 7 is guided to a black and white scan converter 8, where it is converted into a digital signal and converted into two-dimensional tomographic image data corresponding to the scanning plane of the ultrasonic beam. Converted.
  • These signal processing unit 7 and monochrome scan converter 8 constitute a tomographic image reconstruction means.
  • the tomographic image data output from the black-and-white scan converter 8 is supplied to the image display 10 via the switching adder 9 so that the tomographic image is displayed.
  • the ultrasonic tomographic data output from the phasing addition circuit 6 is RF signal frame data.
  • Data acquisition unit 11. The RF signal frame data acquisition unit 11 acquires a plurality of frames of RF signal groups corresponding to the scanning plane (tomographic plane) of the ultrasonic beam as frame data and stores them in a memory or the like.
  • the displacement measurement unit 12 sequentially captures a plurality of pairs of frame data with different acquisition times stored in the RF signal frame data acquisition unit 11, and based on the acquired pair of frame data, displacement vectors of a plurality of measurement points on the tomographic plane. And output to the strain Z modulus calculator 13 as displacement frame data.
  • the strain Z elastic modulus calculation unit 13 obtains strains at a plurality of measurement points on the tomographic plane based on the input displacement frame data, and outputs the strain to the elasticity data processing unit 14 as elasticity frame data. ing.
  • the strain Z elastic modulus calculation unit 13 takes in pressure measurement data applied to the specimen from the pressure gauge side part 19 and obtains the stress distribution of each part of the subject, and obtains the strain frame data and stress distribution obtained previously.
  • the elastic modulus is obtained from the above and is output to the elastic data processing unit 14 as elastic frame data.
  • the elastic data processing unit 14 is a strain Z elastic modulus calculation unit 13 force input to the elastic frame data of strain or elastic modulus, smoothing processing in the coordinate plane, contrast optimization processing, and time axis direction between frames It performs various image processing such as smoothing processing and sends it to the color scan converter 15! /.
  • the color scan converter 15 converts the elastic frame data output from the elastic data processing unit 14 to generate a color elastic image, and displays it on the image display 10 via the switching addition unit 9. ing.
  • the color scan converter 15 has red, green, and gray scales (for example, 256 gradations) applied to an elastic image based on a range of preset upper and lower limits of elasticity (strain or elastic modulus).
  • a hue code such as blue is given.
  • an area where the distortion of the inertia frame data is measured is converted into a red code, and an area where the distortion is measured is converted into a blue code.
  • a black and white scan converter can be used in place of the color scan converter 15. In this case, the distribution of the distortion can be expressed by brightening the brightness of the area where the distortion is greatly measured, and darkening the brightness of the area where the distortion is measured.
  • the switching addition unit 9 receives black and white tomographic image data output from the black and white scan converter 8 and color elastic image data output from the color scan converter 15. , A function to switch both images and display one of them, a function to make one of both images semi-transparent, add and combine them and display them on the image display 10, and a function to display both images side by side It is formed. Further, the cine memory unit 18 stores the image data output from the switching addition unit 9 in the memory, and recalls the past image data and displays it on the image display 10 in accordance with a command from the device control interface unit 17. It is like that. In addition, the selected image data can be transferred to a recording medium such as an MO.
  • the index value calculation unit 16 starts processing in accordance with the control command output from the device control interface unit 17, takes in the elastic frame data calculated by the strain Z elastic modulus calculation unit 13, and performs indexed elasticity according to the present invention.
  • Image frame data is generated and output to the color scan converter 15.
  • the color scan converter 15 generates a gradation indexed elasticity image based on the indexed inertial image frame data and displays it on the image display 10 via the switching addition unit 9. It is summer. Details of the index value calculation unit 16 will be described later.
  • the probe 2 scans the subject 1 with an ultrasonic beam while changing the pressure in the subject 1 and continuously receives reflected echo signals from the scanning surface. Based on the ultrasonic tomographic data output from the phasing addition circuit 6, a tomographic image is reconstructed by the signal processing unit 7 and the black and white scan converter 8 and displayed on the image display 10.
  • the RF signal frame data acquisition unit 11 acquires ultrasonic tomographic data in the process of changing the compression force applied to the subject 1 and repeatedly acquires frame data in synchronization with the frame rate. Save in chronological order in the built-in frame memory. Then, a plurality of pairs of frame data are successively selected and output to the displacement measuring unit 12 with a pair of frame data having different acquisition times as a unit.
  • the displacement measurement unit 12 performs one-dimensional or two-dimensional correlation processing on the selected pair of frame data, and measures the displacement of each measurement point on the scanning plane to generate displacement frame data.
  • a method for detecting the displacement vector for example, a block matching method or a gradient method described in JP-A-5-317313 is disclosed. It has been known.
  • the image is divided into blocks consisting of, for example, NXN pixels, and the previous frame force is searched for the block closest to the target block in the current frame, and the displacement of the measurement point is obtained based on this. Also, the displacement can be calculated by calculating the autocorrelation in the same region of the pair of RF signal frame data.
  • the displacement frame data obtained by the displacement measurement unit 12 is input to the strain Z elastic modulus calculation unit 13, and the distortion or elastic modulus at each measurement point is calculated to obtain elastic frame data as an elastic data processing unit 14. Is output.
  • the calculation of distortion is calculated by spatially differentiating the displacement distribution as is well known.
  • the elastic modulus at each measurement point is calculated based on the obtained strain.
  • the measured value of the pressure measured by the pressure measuring unit 19 is taken in, and based on this, the stress at each measurement point is calculated.
  • the pressure measuring unit 19 is configured by providing a reference deformable body 33 on the surface of the compression plate 31, for example, as shown in FIG.
  • the strain Z coefficient calculation unit 13 calculates the stress at the measurement point inside the subject 1 based on the deformation of the reference deformable body 33. In this way, the strain Z elastic modulus calculation unit 13 calculates the elastic modulus (for example, Young's modulus) at each measurement point on the tomographic plane from the stress at each measurement point and the strain frame data obtained by the strain Z elastic modulus calculation unit 13. The ratio Ym) is calculated and output to the elastic data processing unit 14.
  • the elasticity data processing unit 14 generates elasticity image data based on the strain or the elastic modulus, and displays the elasticity image on the image display 10 via the force large scan converter 15 and the switching addition unit 9.
  • FIG. 2 is a flowchart showing the procedure for generating the indexed elasticity image of the first embodiment.
  • a reference region R is set in a strain image 41, which is one of elastic images, and this is performed.
  • FIG. 6 is an example of generating and displaying the indexed elasticity image 51 shown in FIG. 5 based on this.
  • step S 1 of FIG. 2 a command is sent to the strain Z elastic modulus calculator 13 to display the strain image 41 on the image display 10.
  • step S 1 of FIG. 2 a command is sent to the strain Z elastic modulus calculator 13 to display the strain image 41 on the image display 10.
  • the strain Z elastic modulus calculation unit 13 takes in the strain image frame data and calculates the average strain value of the region corresponding to the reference region R as the reference strain ⁇ (S3). Then
  • the index value R which is the relative ratio between the strain ⁇ and the reference strain ⁇ at each strain measurement point (i, j), is
  • index is not limited to the ratio, and any index that reflects the difference between ⁇ and ⁇ may be used.
  • any index that reflects the difference between ⁇ and ⁇ may be used.
  • Hard measurement point R ⁇ 1
  • soft measurement point R ⁇ 0
  • An index that is standardized so as to take a value between 0 and 1 can be used.
  • the magnitude of the strain depends on the amount of compression at that time. For example, as shown in FIG. 4 (A), it is assumed that the strain at measurement point 1 and measurement point 2 in the living body is 0.8% and the strain at measurement point 3 is 0.1% with a certain amount of compression. On the other hand, as shown in Fig. 4 (B), the strain at measurement point 1 and measurement point 2 is 1.6% and the strain at measurement point 3 is 0.2% as shown in Fig. 4 (B). is there.
  • a distortion image is gradated based on the magnitude (%) of the distortion, as shown in FIG.
  • the reference region R is set.
  • the indexed elastic image 51 is generated by gradation!
  • an indexed elasticity image 51 is obtained in which the gradation distribution such as the luminance distribution does not change, as is clear by comparing FIGS. Therefore, the image pattern of the border of the tumor part 42 at the site of interest can be recognized with high sensitivity. In particular, the difference in hardness of the boundary tissue 44 from the surrounding tissue 2 of the tumor part 42 can be identified.
  • the figure shown on the right side of 05 (A) and ( ⁇ ) shows the distribution of index values on the analysis line connecting measurement points 1 and 2.
  • fat is the softest tissue. If the reference region R is set in this region, the other regions are harder than fat, so
  • the relative ratio which is the only index value R, has a value of 1 or more. The harder the tissue, the larger the relative ratio is.
  • the reference strain can be detected with high sensitivity.
  • the fat thickness varies greatly between individuals, and it may not be possible to ensure a sufficiently wide area as a reference area.
  • a reference region is set in the kidney, and a ratio R to the distortion of each measurement point G, j) of the liver is calculated based on Equation (1) to generate an indexed elasticity image of the liver. It's okay.
  • the adipose tissue of the prostate membrane may be used as the reference region.
  • an indexed elasticity image is generated based on a strain image.
  • the present invention is not limited to this, and an elasticity modulus, which is information related to tissue hardness characteristics
  • An indexed elasticity image can be generated using tissue characteristic data such as viscosity, and the same effect as in this embodiment can be obtained.
  • the average value of distortion in the reference region R is used as an index as the reference distortion ⁇ .
  • the present invention is not limited to this, and the median value of the distortion in the reference region R and the i, j 0
  • the strain value of one measurement point may be set as the reference strain ⁇ .
  • the physical quantity correlated with the strain at the plurality of measurement points of the tomographic site is normalized based on the physical quantity correlated with the set strain of the reference site. It is represented as an index value image. Since the index value is a relative value of each part that receives the same amount of compression, the index value hardly changes even if the amount of compression changes. Therefore, the indexed elasticity image of the present invention eliminates the effect of the compression amount, changes the hardness from the lesion tissue to the surrounding tissue, or the difference in the hardness of the boundary region, based on the hardness of the reference region. Semi-quantitative display. As a result, it becomes easier to objectively and universally distinguish between benign and malignant lesions.
  • a reference region R that is a reference region for indexing is set in a living tissue.
  • the present invention is not limited to this, and when ultrasonic tomographic data is acquired using the probe 2 having the reference deformable body 33 which is an elastic member shown in FIG. 3 (B), as shown in FIG.
  • the image 53 of the reference deformable body 33 is displayed in the tissue region closest to the probe 2.
  • a reference area R is set in the image area of the reference deformable body 33, and the finger is designated as in the first embodiment.
  • a standardized elasticity image 52 can be generated and displayed.
  • the approximate elastic modulus E at each measurement point can be obtained by the following equation (2).
  • force indicating the use of an external reference deformable body is not limited to this, and the reference deformable body may be disposed in the subject.
  • the reference deformable body may be disposed in the subject.
  • take a picture of the prostate In this case, a catheter that also inserts the base force of the foot is used as a reference deformable body. This catheter
  • the outer diameter of the catheter is 1-2 mm.
  • imaging is performed using a prostate probe.
  • This catheter site is used as a reference deformable body.
  • the balloon inserted into the body is hollow and can be expanded and contracted by inserting a liquid such as liquid rubber gel.
  • the outer diameter when expanded is 0.5 to 5 mm, and the outer diameter can be arbitrarily set by adjusting the amount of liquid inserted.
  • the reference region R is set to the device control interface 17 force input.
  • 0 can be set automatically. For example, the softest area in a distorted image is detected, and the reference area R
  • the diagram shown in Fig. 7 (A) is a B-mode tomographic image 54 of the mammary gland region, and the adipose tissue appears closest to the probe 2, and the adipose tissue is measured at the measurement site.
  • the softest! / ⁇ organization the force that can detect the boundary between fat 61 and mammary gland 62 in B-mode image 54 is extracted, and the region up to the boundary with mammary gland is extracted as the reference region R.
  • an index with the entire tissue 1 of fat 61 as the reference region R is used.
  • a zero elasticity image 55 is obtained.
  • the cursor 63 on the display screen is moved to a desired reference area by operating an input device such as a mouse, and clicked to specify.
  • the same tissue region including the region is identified based on the elasticity information such as strain value and the luminance information and pattern information of the B-mode tomogram, and the reference region R is automatically set.
  • the mammary gland is shown as an example, but the present invention is not limited to this, and the elasticity evaluation of the plaque 58 in the carotid artery portion 57, etc. The same applies to odor.
  • the region of the muscle 59 is set as the reference region R,
  • Diagnosis can be made by imaging the vascular wall 60 and plaque 58 distortion index values.
  • the reference area R is always fixed and set as a fixed coordinate area.
  • the reference region R is always followed by following the same tissue region.
  • the distortion value can be set as the reference strain ⁇ , and the index value can be obtained accurately by eliminating disturbance.
  • a coordinate system is set in which the y-coordinate is set in the horizontal direction and the X-coordinate is set in the depth direction on the ⁇ mode image, and the measurement points in the direction along the line yl
  • the tissue at coordinates (xl (t-1), yl (t-1) moves to coordinates (xl (t), yl (t >>) at time t.
  • the organization at the coordinates (x2 (t-1), yl (t-1) moves to the coordinates (x2 (t), yl (t >>) at time t ⁇ .
  • the displacement measurement unit 12 calculates the displacement d (x, y) at all measurement points (X, y). For example, the distribution d (x (tl)) of the displacement along the line yl from the time t-1 to the time t is obtained as shown in the figure, and the X coordinate after the movement at the current time t, xl ( t) and x2 (t) are
  • x2 (t) x2 (t-l) + d (x2 (t-l))
  • the same tissue region can be tracked and followed.
  • the tracking process may be performed with high accuracy by using information on displacement at coordinates arranged along a line indicating a boundary and based on more information.
  • the displacement information at the coordinates inside the reference area R is used to follow the position with higher accuracy.
  • Processing may be performed.
  • the correspondence between the index value and the gradation level when gradation of the indexed elastic image based on the index value of each measurement point has not been particularly explained.
  • a variety of gradation functions such as a proportional function, a logarithmic function, and a setting function with a high resolution near the threshold for judging benign or malignant tissue, are applied as the gradation function that defines the relationship between the value and the gradation level. be able to.
  • the gradation function is a proportional function, for example, an 8-bit 256-level gradation map expressed by the index value, hue, and luminance.
  • the linear function Can be assigned to a clerk.
  • the gradation function can be defined by a logarithmic function.
  • a specific part may be displayed as an index of the elastic modulus.
  • the normal fat is 20 kPa, which is displayed as an index.
  • Other parts are also displayed in terms of elastic modulus. Therefore, it is possible to recognize benign and malignant images with high sensitivity with respect to normal parts.
  • the gradation function of a special gradation map in which the hue and luminance change greatly depending on whether it is larger or smaller than the threshold Rth. can be prepared and mapped accordingly.
  • the hue and brightness of the gradation map can be changed stepwise and discontinuously in a range 77 where the index value power S of the bar display 76 is small.
  • a certain colored range 79 is set near the threshold Rth of the bar display 78, for example, and the examiner moves the colored range 79 up and down by a pointing device or the like.
  • the examiner can increase or decrease the threshold value Rth in real time and perform processing such as coloring only the area exceeding the threshold value Rth.
  • the indexed elasticity image formed in each of the above embodiments is a B-mode image, a strain image, or the like. They can be displayed side by side or independently on the elastic image. Furthermore, for example, as shown in FIG. 14, the indexed elasticity image may be superimposed and displayed as a color translucent image on the black and white B-mode image.
  • the size and position of the reference region R of the indexed elasticity image are set using the B-mode image as a guide.
  • the present invention sets a region of interest ROI in the displayed indexed elasticity image, and sets the reference region R
  • Analysis of tissue hardness with zero can be performed. For example, as shown in FIG. 15, by setting the region of interest ROI on the indexed elasticity image, the average value of the distortion in the ROI is obtained and displayed in association with the vicinity of the region of interest ROI, for example. . Multiple ROIs can be set.
  • a B-mode image or a distorted image and an indexed elasticity image are generated and displayed in real time.
  • the present invention is not limited to this, and various settings can be made offline after freezing. It is also possible to generate and display an indexed elasticity image using the elasticity frame data secured in the cine memory.
  • the biological tissue of the subject 1 is uniformly compressed by the probe 2, but the probe 2 is inclined with respect to the body surface of the subject 1. If a pressing operation such as pressing in a pressed state is inappropriate, the living tissue is compressed unevenly. In particular, the pressure becomes uneven in the direction perpendicular to the transmission / reception direction (that is, the sound ray direction) (hereinafter referred to as the lateral direction). As a result, the distortion of the reference area is uneven in the lateral direction, and the index value may be inaccurate. Therefore, in this embodiment, even when the distortion of the reference region becomes nonuniform, the influence is eliminated and the index value is obtained with high accuracy. For this purpose, the entire image area is subdivided in the lateral direction so that it can be regarded as being uniformly compressed within each subdivided area. Then, index values are calculated for each subdivided area. Put out.
  • FIG. 16 shows a specific example of this example.
  • FIG. 16 shows an example of an indexed elasticity image displayed on the image display device 10 representing an indexed elasticity image including a reference area and other areas.
  • This indexed elasticity image is subdivided into strips in the lateral direction, for example, M pieces, and a plurality of elongated subregions R 1, R 2,.
  • each subdivision reference region can be, for example, about several mm. Then, an index value of distortion at each measurement point is obtained using the reference distortions ⁇ , ⁇ ,..., ⁇ ,. That is, for example, as shown in Figure 16
  • the strain ⁇ measured at the measurement point G, j) is considered to have been given via the subdivision reference region R within the subdivision region. Therefore, the index value R at the measurement point (i, j) is
  • the index value can be obtained for each subdivided area. As a result, the index value can be accurately obtained for the entire indexed elasticity image.
  • the subdivision area is described as being relatively wide in the lateral direction.
  • the subdivision area is set independently for each line, and the index value R at the measurement point G, j) is expressed by the following equation. (4), j to get it! /, Even!

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 圧迫量の影響を排除した組織の硬さの空間分布を画像として表示することを目的とする。そのために、被検体の組織に圧力を加えて計測された超音波断層データに基づいて、被検体の組織の複数の計測点における組織の歪みに相関する物理量を求め、該物理量に基づいて組織の弾性画像を生成し、弾性画像に設定される基準領域の物理量を基準として、各計測点の物理量を指標化し、その指標値の分布を表す指標化弾性画像を生成する。

Description

明 細 書
超音波診断装置及び超音波画像表示方法
技術分野
[0001] 本発明は、超音波画像表示方法及び超音波診断装置に係り、具体的には、被検 体に加えられる圧迫量に対する生体各部の糸且織の歪みに相関する物理量を指標化 した画像をユーザに提供して、診断における組織の鑑別性を向上させることができる 超音波画像表示方法及び超音波診断装置に関する。
背景技術
[0002] 超音波診断装置は、被検体に用手法又は機械的な方法により被検体に圧力を加 えて生体各部の変位を求め、求めた変位に基づいて組織の硬さに関する情報を画 像ィ匕することにより、ガン腫瘍等の病変組織を適切に鑑別可能にする装置である。
[0003] 例えば、組織の硬さ情報の一つである歪み画像は、変位分布を空間微分して生体 各部の歪みを求め、歪みの大きさに応じて色相や輝度により階調を付けた画像であ る。しかし、歪みは、圧迫量に依存した定性的な物理量であり、圧迫力の加え方によ つて歪みの大きさが変わってしまう。そのため、同一の糸且織であっても、圧迫量が大き いだけで、歪みが大きな値の色相や輝度として表示されることがあり、検者の経験や 熟練度によって鑑別に誤認が生ずるおそれがある。
[0004] 一方、特許文献 1には、歪み画像に基づ!/、て圧迫量に相関しな 、組織の硬さ特性 を取得する試みが提案されている。すなわち、歪み画像内に病変組織とその周辺組 織とにそれぞれ関心領域 ROI— l、 ROI— 2を設定し、各 ROI内の歪み ε 1、 ε 2の比 ε \/ ε 2を硬さ指標とすることが示唆されている。これにより、 2つの関心領域内の歪 みの相対比は圧迫量に依存しないから、病変組織と周辺組織の歪みの違いを半ば 定量的に識別できるという利点がある。
特許文献 1 :米国特許公開 WO 2006/013916号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、ガン腫瘍等の病変部の超音波画像を観察して病変組織の良性や悪性を 適切に鑑別する場合、硬さの違いによって病変組織と正常組織の境界を識別したり 、病変組織の周辺組織の硬さ、あるいは病変組織と周辺組織との境界組織の硬さの 変化が判れば、病変部位の組織を適切に鑑別できることが期待できる。
[0006] しかし、特許文献 1に開示された技術では、関心領域 ROIが設定された領域のみの 圧迫量に相関しな 、組織の硬さ特性を取得することが可能であって、関心領域 ROI が設定されな 、領域にっ 、ても圧迫量に相関しな 、組織の硬さ特性を取得すること は考慮されてない。また、関心領域 ROI同士の比では、歪みの 2次元分布情報を充 分に抽出して 、るわけではな 、ので、さらに改善すべき余地が残されて 、る。
[0007] 本発明は、圧迫量の影響を排除した組織の硬さの空間分布を画像として表示する ことを課題とする。
上記課題を解決するため、本発明の超音波診断装置は以下の様に構成される。即 ち、超音波探触子と、被検体の組織に圧力を加えて断層部位の超音波断層データ を計測する超音波断層データ計測手段と、超音波断層データから断層像を生成する 断層像生成手段と、超音波断層データに基づいて断層部位の複数の計測点におけ る組織の歪みに相関する物理量を求め、この物理量に基づいて断層部位における 弾性画像を生成する弾性画像生成手段と、を備え、さらに、断層像又は弾性画像に ぉ 、て基準領域を選択する手段と、基準領域の物理量を基準として各計測点の物 理量を指標値化し、指標値の分布を表す指標化弾性画像を生成する手段と、を備え る。
[0008] また、本発明の超音波画像表示方法は以下の様に構成される。即ち、被検体の組 織に圧力を加えて超音波断層データを計測するステップと、超音波断層データに基 づいて被検体の断層部位の複数の計測点における組織の歪みに相関する物理量を 求めるステップと、物理量に基づいて断層部位の弾性画像を生成するステップと、弹 性画像にお 1、て基準領域を選択するステップと、基準領域の前記物理量を基準とし て、各計測点の前記物理量を指標値化するステップと、指標値の分布を表す指標化 弾性画像を生成するステップと、を有することを特徴とする。
上記本発明の超音波診断装置及び超音波画像表示方法によれば、圧迫量の影響 を排除した組織の硬さの空間分布を画像として表示することができる。 図面の簡単な説明
[図 1]本発明の超音波画像表示方法を適用可能な超音波診断装置の一実施形態の ブロック構成図である。
[図 2]本発明の超音波画像表示方法の一実施形態の処理手順を示すフローチャート である。
[図 3]超音波の探触子の一例を示す外観図である。
[図 4]本発明の実施例の効果を説明するための従来例の歪み画像の問題点を説明 する図である。
[図 5]本発明の一実施例の指標化弾性画像を示す図である。
[図 6]本発明の他の実施例の指標化弾性画像を示す図である。
[図 7]本発明の指標値に係る基準領域の自動設定法の一例を説明する図である。
[図 8]本発明の指標値に係る基準領域の自動設定法の他の例を説明する図である。
[図 9]本発明の他の実施例の指標化弾性画像を示す図である。
[図 10A]本発明の指標値に係る基準領域を、圧迫に伴う組織の変異に追従させて移 動する方法を説明する図である。
[図 10B]本発明の指標値に係る基準領域 Rの構成する点の追従処理の具体的な実
0
施例を示す図である。
[図 10C]本発明の指標値に係る基準領域 Rの追従処理の具体的な実施例を示す図
0
である。
[図 11]本発明の指標化弾性画像の階調化の例を説明する図である。
[図 12]本発明の指標化弾性画像の階調化の他の例を説明する図である。
[図 13]本発明の指標化弾性画像の階調化のさらに他の例を説明する図である。
[図 14]本発明の指標化弾性画像を Bモード像に重ねて表示する例を説明する図であ る。
[図 15]本発明の指標化弾性画像に関心領域を設定し、その関心領域の硬さの指標 値の平均値を数値表示する実施例を説明する図である。
[図 16]ラテラル方向に弾性画像を細分化して、細分化された画像毎に指標化を行う ことによって全体として指標化弾性画像を生成する実施例を説明する図である。 発明を実施するための最良の形態
[0010] 以下、本発明を実施形態に基づいて説明する。図 1に、本発明の超音波画像表示 方法を実施するのに好適な一実施形態の超音波診断装置のブロック構成図を示す
。図 2に、本発明の特徴部に係る超音波画像表示方法の一実施形態のフローチヤ一 卜を示す。
[0011] 図 1に示すように、被検体 1に当接して用いられる超音波の探触子 2は、図 3(A)に示 すように、被検体 1との間で超音波を送信及び受信する複数の振動子が整列された 超音波送受信面 21を有して形成されている。探触子 2は、送信回路 3から供給される 超音波パルスにより駆動される。送受信制御回路 4は、探触子 2の複数の振動子を駆 動する超音波パルスの送信タイミングを制御して、被検体 1内に設定される焦点に向 けて超音波ビームを形成するようになっている。また、送受信制御回路 4は、探触子 2 の振動子の配列方向に電子的に超音波ビームを走査するようになって!/、る。
[0012] 一方、探触子 2は、被検体 1内から発生する反射エコー信号を受信して受信回路 5 に出力する。受信回路 5は、送受信制御回路 4から入力されるタイミング信号に従って 、反射エコー信号を取り込んで増幅などの受信処理を行う。受信回路 5により受信処 理された反射エコー信号は、整相加算回路 6において複数の振動子により受信され た反射エコー信号の位相を合わせて加算することのより増幅される。整相加算回路 6 において整相加算された反射エコー信号 (以下、超音波断層データという。)は、信号 処理部 7に入力され、ゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信 号処理がなされる。なお、整相加算回路 6において生成される超音波断層データの 高周波 (RF)信号は、複合復調した I、 Q信号であっても良い。
[0013] 信号処理部 7により処理された超音波断層データは白黒スキャンコンバータ 8に導 かれ、ここにおいてディジタル信号に変換されるとともに、超音波ビームの走査面に 対応した 2次元の断層像データに変換される。これらの信号処理部 7と白黒スキャンコ ンバータ 8によって断層像の画像再構成手段が構成される。白黒スキャンコンバータ 8から出力される断層像データは、切替加算部 9を介して画像表示器 10に供給されて 断層像が表示されるようになって 、る。
[0014] 一方、整相加算回路 6から出力される超音波断層データは、 RF信号フレームデー タ取得部 11に導かれる。 RF信号フレームデータ取得部 11は、超音波ビームの走査面 (断層面)に対応する RF信号群を、フレームデータとして複数フレーム分を取得してメ モリなどに格納する。変位計測部 12は、 RF信号フレームデータ取得部 11に格納され ている取得時刻が異なる複数対のフレームデータを順次取り込み、取り込んだ一対 のフレームデータに基づいて断層面における複数の計測点の変位ベクトルを求め、 変位フレームデータとして歪み Z弾性率演算部 13に出力するようになっている。
[0015] 歪み Z弾性率演算部 13は、入力される変位フレームデータに基づいて断層面にお ける複数の計測点の歪みを求め、弾性フレームデータとして弾性データ処理部 14に 出力するようになっている。また、歪み Z弾性率演算部 13は、圧力計側部 19から被検 体に加えられた圧力計測データを取り込み、被検体各部の応力分布を求め、先に求 めた歪みフレームデータと応力分布とから弾性率を求め、弾性フレームデータとして 、弾性データ処理部 14に出力するようになっている。
[0016] 弾性データ処理部 14は、歪み Z弾性率演算部 13力 入力される歪み又は弾性率 の弾性フレームデータに座標平面内におけるスムージング処理、コントラスト最適化 処理や、フレーム間における時間軸方向のスムージング処理などの様々な画像処理 を施して、カラースキャンコンバータ 15に送出するようになって!/、る。
[0017] カラースキャンコンバータ 15は、弾性データ処理部 14から出力される弾性フレーム データを変換してカラーの弾性画像を生成し、切替加算部 9を介して画像表示器 10 に表示させるようになつている。つまり、カラースキャンコンバータ 15は、予め設定され た弾性 (歪み又は弾性率)の上限値及び下限値の範囲に基づいて、弾性画像に階調 ィ匕 (例えば、 256階調)された赤、緑、青などの色相コードを付与する。例えば、弹性フ レームデータの歪みが大きく計測された領域は赤色コードに変換し、逆に歪みが小 さく計測された領域は青色コードに変換する。なお、カラースキャンコンバータ 15に代 えて、白黒スキャンコンバータを用いることができる。この場合は、歪みが大きく計測さ れた領域は輝度を明るぐ逆に歪みが小さく計測された領域は輝度を暗くするなどに より、歪みの分布を表すことができる。
[0018] また、切替加算部 9は、白黒スキャンコンバータ 8から出力される白黒の断層像デー タと、カラースキャンコンバータ 15から出力されるカラーの弾性画像データとを入力し 、両画像を切り替えていずれか一方を表示させる機能と、両画像の一方を半透明に して加算合成して画像表示器 10に重ねて表示させる機能と、両画像を並べて表示さ せる機能を有して形成されている。また、シネメモリ部 18は、切替加算部 9から出力さ れる画像データをメモリに格納し、装置制御インターフェイス部 17からの指令に従つ て、過去の画像データを呼び出して画像表示器 10に表示するようになっている。さら に、選択された画像データを MOなどの記録メディアへ転送することが可能になって いる。
[0019] 次に、本発明の特徴部の実施形態である指標値演算部 16について説明する。指 標値演算部 16は、装置制御インターフェイス部 17から出力される制御指令に従って 処理を開始し、歪み Z弾性率演算部 13により演算された弾性フレームデータを取り 込み、本発明に係る指標化弾性画像フレームデータを生成して、カラースキャンコン バータ 15に出力する。カラースキャンコンバータ 15は、前述したと同様に、指標化弹 性画像フレームデータに基づいて階調化した指標化弾性画像を生成し、切替加算 部 9を介して画像表示器 10に表示させるようになつている。指標値演算部 16の詳細に ついては後述する。
[0020] ここで、本実施形態の基本的な動作について説明する。まず、探触子 2により被検 体 1における圧力を変化させながら、被検体 1に超音波ビームを走査するとともに、走 查面からの反射エコー信号を連続的に受信する。そして、整相加算回路 6から出力さ れる超音波断層データに基づいて、信号処理部 7及び白黒スキャンコンバータ 8によ り断層像が再構成されて画像表示器 10に表示される。
[0021] 一方、 RF信号フレームデータ取得部 11は、被検体 1に加えられる圧迫力が変化す る過程で、超音波断層データを取り込んでフレームレートに同期させてフレームデー タを繰り返し取得し、内蔵されたフレームメモリ内に時系列順に保存する。そして、取 得時刻が異なる一対のフレームデータを単位として、連続的に複数対のフレームデ ータを選択して変位計測部 12に出力する。変位計測部 12は、選択された一対のフレ ームデータを 1次元もしくは 2次元相関処理し、走査面における各計測点の変位を計 測して変位フレームデータを生成する。この変位ベクトルの検出法としては、例えば 特開平 5-317313号公報等に記載されて 、るブロックマッチング法又はグラジェント法 が知られている。ブロックマッチング法は、画像を例えば N X N画素からなるブロックに 分け、現フレーム中の着目しているブロックに最も近似しているブロックを前フレーム 力も探索し、これに基づいて計測点の変位を求める。また、一対の RF信号フレーム データの同一領域における自己相関を計算して変位を算出することができる。
[0022] 変位計測部 12で求められた変位フレームデータは、歪み Z弾性率演算部 13に入 力され、各計測点の歪み又は弾性率を演算して弾性フレームデータとして弾性デー タ処理部 14に出力される。歪みの演算は、公知のように変位分布を空間微分すること によって計算される。また、求めた歪みに基づいて各計測点の弾性率を演算する。 弾性率を求める場合は、圧力計測部 19により計測された圧力の計測値を取り込み、 これに基づいて各計測点における応力を演算する。圧力計測部 19は、例えば、図 3 の (B)に示すように、圧迫板 31の表面に参照変形体 33を設けて構成される。歪み Z弹 性率演算部 13は、参照変形体 33の変形を基準にして被検体 1内部の計測点におけ る応力を演算する。このようにして、歪み Z弾性率演算部 13は、各計測点における応 力と、歪み Z弾性率演算部 13で求めた歪みフレームデータから断層面上の各計測 点の弾性率 (例えば、ヤング率 Ym)を演算し、弾性データ処理部 14に出力する。弾性 データ処理部 14は、歪み又は弾性率に基づいて弾性画像データを生成し、力ラース キャンコンバータ 15と切替加算部 9を介して画像表示器 10に弾性画像を表示する。
[0023] 次に、図 2を参照して、本実施形態の特徴部である指標値演算部 16に係る詳細構 成を、実施例に分けて動作とともに説明する。
実施例 1
[0024] 図 2に、実施例 1の指標化弾性画像の生成手順をフローチャートを示す。本実施例 は、図 4に示すように、弾性画像の一つである歪み画像 41に基準領域 Rを設定し、こ
0
れに基づいて図 5に示す指標化弾性画像 51を生成して表示する例である。
[0025] まず、図 2のステップ S1において、歪み Z弾性率演算部 13に指令を送り、歪み画像 41を画像表示器 10に表示させる。次いで、装置制御インターフェイス部 17を介してマ ウス等を用いて手動ある!、は自動で設定された基準領域 Rの
0 座標データを取り込む
(S2)。そして、歪み Z弾性率演算部 13力 歪み画像フレームデータを取り込み、基準 領域 Rに対応する領域の歪みの平均値を基準歪み ε として演算する (S3)。次いで、 各歪み計測点 (i, j)における歪み ε と基準歪み ε との相対比である指標値 R を次
1, J i, J 式により求める (S)。求めた R 力もなる指標化弾性画像データは、カラースキャンコン
1,
バータ 15に出力される (S5)。これにより、画像表示器 10には、各計測点の歪みが基準 歪み ε により正規化された指標化弾性画像が表示される。
[0026] R = ε / ε (1)
i, j i, j
なお、比に限らず、 ε と ε の違いが反映された指標であれば良い。例えば、
i, j
R =log( ε ) -1ο§( ε )
でも良い。或いは、
R = ( ε - ε )/( ε + ε )
1,
又は
R = ( ε - ε )/ ε
i, j i, j
とすると、硬 、領域の計測点では ε 〜0となり、軟らか 、領域の計測点では ε 〜 ε
1,
となるので、
硬い計測点: R →1,軟らかい計測点: R →0
のように 0〜1の間の値を取るように規格ィ匕された指標とすることができる。
[0027] 本実施例の効果について、図 4及び図 5を参照して具体的に説明する。まず、生体 糸且織を自由に圧迫してその歪みを計測する場合、歪みの大きさはそのときの圧迫量 に依存する。例えば、図 4(A)に示すように、あるときの圧迫量では生体内の計測点 1と 計測点 2の歪みが 0.8%、計測点 3の歪みが 0.1 %として計測されたとする。これに対し 、別なときの圧迫量では、図 4(B)に示すように、計測点 1と計測点 2における歪みが 1.6 %となり、計測点 3における歪みが 0.2%として計測されることがある。このような歪み 画像を、歪みの大きさ (%)に基づいて階調化すると、図 4(B)ように、計測点 1、 2の歪み 力 S l .6%のときの圧迫量では、関心部位の腫瘍部 42に縁取りが生じるような画像パタ ンが得られる。し力し、図 4(A)のように、計測点 1、 2の歪みが 0.8%のときの圧迫量で は、階調レベルの範囲が感度の悪い範囲に変わるので、関心部位の腫瘍部 42の縁 取りの画像パタンを鮮明に表示することができなくなる。つまり、歪み画像に基づいた 画像診断では、同一糸且織であっても、その時の圧迫量に応じて、色相や輝度の強度 及び病変部位のパタンが変化してしまうから、病変部位の境界を適切に認識できなく なる。なお、図 4において、 (A), (B)の右側に示した図は、それぞれ計測点 1, 2を結ん だ解析ライン上における歪み分布を表して 、る。
[0028] これに対し、本実施例によれば、図 5(A)又は図 5(B)に示すように、基準領域 Rを設
0 定し、その領域の歪みの平均値を基準歪み ε として、各計測点 の歪みを正規化し
0 i, j
た歪みの指標値 R に基づ!/、て階調化して指標化弾性画像 51を生成して 、ることか ,
ら、圧迫量に依存しない組織固有の硬さの情報を取得することができる。その結果、 圧迫量が異なることにより、同一の糸且織 1に設定された基準領域 R
0の基準歪み ε
0が
、 8%又は 16%のように異なっても、図 5(Α)、(Β)を対比して明らかなように、輝度分布 などの階調分布が変わらない指標化弾性画像 51が得られる。したがって、関心部位 の腫瘍部 42の縁取りの画像パタンを感度良く認識できる。特に、腫瘍部 42の周辺組 織 2との境界組織 44の硬さの違いを識別することができる。また、 05(A), (Β)の右側に 示した図は、計測点 1, 2を結んだ解析ライン上における指標値の分布を表している。
[0029] 例えば、乳癌検診における計測断面内においては、脂肪が最も柔らかい組織であ り、この領域に基準領域 Rを設定すれば、それ以外の領域は脂肪より硬いため、歪
0
みの指標値 R である相対比は 1以上の値をもち、硬い組織ほどその相対比の値は大 ,
きく計測されることとなる。或いは、大胸筋に基準領域 R
0を設定しても良い。大胸筋は 肋骨に支えられて固定されているために、感度良く基準歪みを検出することができる 。また脂肪の厚さは個人差が大きく充分な広さの領域を基準領域として確保できない ことがあるが、大胸筋は個人差が少なく必ず計測面に入れることができる。
また、腹部においては、例えば腎臓に基準領域を設定し、数式 (1)に基づいて肝臓 の各計測点 G, j)の歪みとの比 R を求めて、肝臓の指標化弾性画像を生成しても良 い。
また、前立腺部位を撮影する際には、前立腺皮膜部の脂肪組織を基準領域として も良い。
[0030] 本実施例においては、歪み画像に基づいて指標化弾性画像を生成する例を説明 したが、本発明はこれに限らず、組織の硬さの特性に関係した情報である弾性率、粘 性などの組織の特性データを用いて指標化弾性画像を生成することができ、本実施 例と同様の効果を得ることができる。 [0031] また、本実施例では、基準領域 Rにおける歪みの平均値を基準歪み ε として指標
0 0
値 R を求めたが、本発明はこれに限らず、基準領域 Rにおける歪みの中央値や、ヒ i, j 0
ストグラム処理などで最も頻度が高く計上された歪みの値などを基準歪み ε として、
0 各計測点の歪み ε を正規ィ匕することができる。
また、基準領域 Rを、複数の計測点を含む一定範囲の領域とするのに代えて、基
0
準部位として 1点の計測点の歪みの値を基準歪み ε として設定してもよい。
0
[0032] 以上のように、本発明の指標化弾性画像は、設定された基準部位の歪みに相関す る物理量を基準として、断層部位の複数の計測点における歪みに相関する物理量が 正規化した指標値の画像として表される。その指標値は、同一の圧迫量を受けた各 部位の相対値であるから、圧迫量が変化しても指標値は殆ど変わらない。したがって 、本発明の指標化弾性画像は、圧迫量の影響を排除して、病変組織から周辺組織 に至る硬さの変化、あるいは境界領域の硬さの違いを、基準部位の硬さを基準に半 ば定量的に表示できる。その結果、病変組織の良性や悪性を客観的かつ普遍的に 適切に鑑別することが容易になる。
実施例 2
[0033] 実施例 1においては、指標化の基準部位である基準領域 Rを生体組織内に設定す
0
る例を示した。しかし、本発明はこれに限らず、図 3(B)に示した弾性部材である参照 変形体 33を有する探触子 2を用いて超音波断層データを取得すると、図 6に示すよう に、歪み画像では最も探触子 2に近い組織領域に、参照変形体 33の画像 53が表示さ れる。この参照変形体 33の画像領域に基準領域 Rを設定して、実施例 1と同様に指
0
標化弾性画像 52を生成して表示することができる。
[0034] 特に、参照変形体 33の弾性率を予め計測しておくことにより、各計測点における組 織のおおまかな弾性率を推定することができる。つまり、参照変形体 33の弾性率を Er e kPa)とすると、次式 (2)により、各計測点の大まかな弾性率 E を求めることができる ,
。これを画像化することにより、より精細な硬さの画像情報を取得することができる。
E =ErefX R (kPa) (2)
i, j i, j
[0035] 上記説明にお!/、ては、体外の参照変形体を利用する例を示した力 本発明はこれ に限らず、被検体内に参照変形体を配置してもよい。例えば、前立腺部位を撮影す る場合、足の付け根力も挿入するカテーテルを参照変形体とする。このカテーテルは
、中空ではなくゴム等で満たされて構成されている。カテーテルの外径は、 l〜2mm である。
前立腺部位を撮影する際、前立腺用探触子を用いて撮影を行う。前立腺の近傍に カテーテルを挿入した血管があり、得られる画像にはカテーテルの断面が表示される
。このカテーテル部位を参照変形体とする。
[0036] また、中空のカテーテルの先端に伸縮するノ レーンを設け、体内に挿入されたバ ルーンを参照変形体としてもよい。このバルーンは中空であり、中に液体ゴムゃゼリ 一等の液体を挿入することにより、伸縮可能となっている。膨張するときの外径は、 0. 5〜5mmであり、液体の挿入量の調整により、任意に外径を設定することができる。 実施例 3
[0037] 実施例 1においては、基準領域 Rを装置制御インターフェイス 17力 入力設定する
0
例を説明したが、次に説明するように、基準領域 R
0を自動設定することができる。例 えば、歪み画像などにおいて最も軟らかい領域を検出し、その領域に基準領域 R
0を 設定することができる。
[0038] また、例えば、図 7(A)に示す図は、乳腺部位の Bモード断層像 54であり、探触子 2に 最も近 、位置に脂肪組織が表れ、その脂肪組織が計測部位における最も軟らか!/ヽ 組織でもある。ここで、 Bモード画像 54でも脂肪 61と乳腺 62の境界を検出することがで きる力 、体表近傍力 乳腺との境界までの領域を抽出し、基準領域 R
0として自動設 定することが可能である。
この場合は、図 7(B)に示すように、脂肪 61の組織 1の全体を基準領域 Rとする指標
0 化弾性画像 55が得られる。
[0039] また、例えば、図 8(A)に示すように、マウスなどの入力デバイスを操作して表示画面 上のカーソル 63を所望の基準領域に移動してクリックして指定することにより、図 8(B) に示すように、歪み値などの弾性情報や、 Bモード断層像の輝度情報やパタン情報 に基づいてその領域を含む同一組織領域を同定して、自動で基準領域 Rを設定す
0 ることがでさる。
このように基準領域 Rを自動設定することにより、基準領域 Rの設定にあたっての 任意性を排除できるから、客観的な硬さの指標化弾性画像による診断が可能となる。
[0040] なお、上記の説明では、乳腺を例に示したが、本発明はこれに限らず、図 9に示す 指標化弾性画像 56のように、頸動脈部位 57におけるプラーク 58の弾性評価などにお いても同様に適用できる。この場合は、例えば、筋 59の領域を基準領域 Rに設定し、
0
血管壁 60やプラーク 58の歪みの指標値を画像ィ匕して診断することができる。
実施例 4
[0041] 上記の各実施例において設定した基準領域 Rは、圧迫過程において組織が移動
0
すると、設定した同一組織の領域力 基準領域 R
0が外れる場合がある。つまり、図 10
A(a)〜(c)に示すように、基準領域 Rを常に一定の座標領域として固定して設定して
0
いる場合、圧迫過程において、別の組織が基準領域 R
0の領域に入ってくることがある この場合は、同図 (d)〜(i)に示すように、常に同一の組織領域を追従して、基準領 域 R
0を変更設定することが好ましい。このようにした場合、圧迫過程において別の組 織が基準領域 Rに入ってくるようなことがなぐ常に同一組織内において計測された
0
歪みの値を基準歪み ε とすることができ、外乱を排除して指標値を精度良く求める
0
ことができる力 、診断の信頼性が向上する。
[0042] 上記基準領域 Rの追従処理の具体的な実施例を以下に示す。
0
[図 1]における変位計測部 12において、変位分布 (変位フレームデータ)を求める処 理を具体的に [図 10Β]を用 、て示す。
例えば、 Βモード画像上の横方向に y座標、深度方向に X座標を設定した座標系を 設け、ライン ylに沿った方向にある計測点
(xl, yl)、 (x2, yl)
の 2点に注目する。図示したように、時刻 t-l(過去)から時刻 t (現在)の時間変化の間 に、対象組織が圧迫されたものとする。
時刻 t- 1において、座標 (xl(t- 1), yl(t- 1》にあった組織は、時刻 tにおいて座標 (xl(t ), yl(t》に移動し、同様に、時刻 t- 1において、座標 (x2(t- 1), yl(t- 1》にあった組織は 、時刻 t〖こおいて座標 (x2(t), yl(t》に移動する。
このとき、変位計測部 12において、全計測点 (X, y)における変位 d(x, y)を演算して おり、例えば、上記時刻 t-1から tにおけるライン ylに沿った変位の分布 d( x(t-l) )は、 図に示すように求められ、現時刻 tにおける上記移動後の X座標、 xl(t)、 x2(t)は、それ ぞれ、
xl(t)=xl(t- l) + d(xl(t- 1》
x2(t)=x2(t-l) + d(x2(t-l))
として求めることができる。
同様にして、 y座標方向の移動後の座標 yl(t), y2(t)も求められる。
[0043] 以上の方法を基づけば、例えば [図 10C]に示すように、時刻 t-1において
(xl(t-l), yl(t- 1》、 (x2(t-l), yl(t- 1》、 (xl(t- 1), y2(t- 1》、 (x2(t- 1), y2(t- 1)) の 4点力もなる長方形の基準領域 Rを設定したとき、上記 4点における組織が時刻 tに
0
おいてどこに移動したかを求めることができ、これにより、 Rの内部における組織は同
0
一の組織領域が指定されて 、ることになる。
上記の処理をリアルタイムに行うことができ、 [図 10A]に示すように、基準領域 R
0として、同一組織領域をトラッキングして追従するようにすることができる。
上記の説明では、基準領域 Rを指定する角に配置された 4点の座標における変位
0
の情報を用いて追従する処理を示したが、その方法に限らず、基準領域 Rの
0 境界を 示す線上に沿って配置された座標における変位の情報を用いて、より多くの情報に 基づくことにより高精度に追従処理を行うようにしてもよい。
また、基準領域 Rの内部の座標における変位の情報を用いて、更に高精度に追従
0
処理を行うようにしてもよい。
実施例 5
[0044] 上記各実施例においては、各計測点の指標値に基づいて指標化弾性画像を階調 化する際の指標値と階調レベルとの対応については特に説明しな力つたが、指標値 と階調レベルとの関係を規定する階調化関数は、比例関数、対数関数、及び組織の 良性又は悪性を判断する閾値近傍の分解能を高くした設定関数等、種々のものを適 用することができる。
具体的には、図 11(A)のバー表示 71に示すように、階調化関数を比例関数とし、指 標値と色相や輝度で表現された例えば 8ビットの 256段階の階調マップとをリニアの関 係に割り当てることができる。
[0045] また、図 11(B)のバー表示 72に示すように、階調化関数を対数関数で規定すること ができる。特に、色相、輝度が敏感に変化する範囲 73に、閾値 Rthが設定される特定 の関数を定義することも可能である。例えば、良性と悪性を効果的に識別する指標値 の閾値 Rthが得られて 、る場合、この閾値 Rthの近傍にぉ 、て色相や輝度が敏感に 変化する階調化関数を定義することにより、高感度に良悪性を画像識別できるように することができる。
[0046] また、図 11(C)のバー表示 80に示すように、弾性率の指標としてある特定部位を表 示させてもよい。例えば、正常部位である脂肪は 20kPaであり、それを指標として表示 させる。他の部位も弾性率に換算して表示させる。したがって、正常部位に対して高 感度に良悪性を画像で認識できるようにすることができる。
[0047] さらに、図 12(A)のバー表示 74の範囲 75に示すように、閾値 Rthより大きい場合と小 さい場合とで色相や輝度が大きく変化する特別な階調マップの階調化関数を準備し 、それによりマッピングするようにすることができる。また、同図 (B)に示すように、バー 表示 76の指標値力 S小さい範囲 77に、階調マップの色相や輝度が段階的に不連続的 に変化するようにすることができる。
[0048] また、図 13に示すように、バー表示 78の例えば閾値 Rthの近傍を、ある一定の色づ け範囲 79を設定し、その色づけ範囲 79をポインティングデバイス等のより検者が上下 させて閾値 Rthを変えることにより、関心領域の指標値の大きさがどの範囲に入って いるのかが簡単に解析できるようにすることができる。また、同様に、検者が閾値 Rth をリアルタイムに上下して、その閾値 Rthを超える領域にだけ色をつけるなどの処理を 行うようにすることができる。
その結果、指標化弾性画像について関心のある病変部位に、特に関心領域を設 定し、その関心領域の指標値を求めて表示させることなぐ階調マップの閾値 Rthの 位置を自由に移動させることにより、関心領域の組織の硬さの指標値を正確かつ容 易に把握することができる。
実施例 6
[0049] 上記の各実施例で形成される指標化弾性画像は、 Bモード画像、歪み画像などの 弾性画像に並べて、あるいは独立に表示することができる。さらに、例えば、図 14に 示すように、白黒 Bモード画像に指標化弾性画像をカラーの半透明画像として重畳し て表示するようにしてもょ ヽ。
また、例えば、 Bモード画像と指標化弾性画像を 2画面で独立に表示する場合は、 B モード画像をガイドとして、指標化弾性画像の基準領域 Rのサイズや位置などを設
0
定可能にすることができる。また、 Bモード画像に限らず、指標化弾性画像とペアにな つて表示される画像をガイドとして、基準領域 R
0を設定するようにしてもよい。
実施例 7
[0050] さらに、本発明は、表示された指標化弾性画像において、関心領域 ROIを設定して 、基準領域 R
0との組織の硬さの解析を行わせることができる。例えば、図 15に示すよ うに、指標化弾性画像上に関心領域 ROIを設定することにより、 ROI内の歪みの平均 値などを求めて、例えば、その関心領域 ROIの近傍に対応付けて表示する。また、こ のような関心領域 ROIは、複数設定できる。
実施例 8
[0051] 上記の各実施例は、 Bモード像あるいは歪み画像とリアルタイムで指標化弾性画像 を生成して表示することを説明したが、本発明はこれに限らず、フリーズ後にオフライ ンで諸設定を行い、シネメモリに確保された弾性フレームデータを利用して、指標化 弾性画像を生成して表示するようにしてもょ ヽ。
実施例 9
[0052] 上記の各実施例は、探触子 2により被検体 1の生体組織が均一に圧迫されることを 想定しているが、被検体 1の体表面に対して探触子 2が傾いた状態で圧迫される等の 圧迫操作が不適切である場合には、生体組織が不均一に圧迫されることになる。特 に送受信方向 (つまり音線方向)に垂直な方向 (以下、ラテラル方向という)に圧迫が不 均一となってしまう。その結果、基準領域の歪みがラテラル方向に不均一となり指標 値が不正確となってしまう可能性がある。そこで本実施例では、基準領域の歪みが不 均一となる場合でも、その影響を排除して精度良く指標値を求める。そのために、画 像領域全体をラテラル方向に細分化して、細分化された各領域内では均一に圧迫さ れているとみなすことができるようにする。そして、細分化された領域毎に指標値を算 出する。
[0053] 図 16に本実施例を具体的に示す。図 16は、画像表示器 10に表示された指標化弹 性画像であって、基準領域とそれ以外の領域を含む指標化弾性画像を表して!/ヽる例 である。この指標化弾性画像をラテラル方向に短冊状に例えば M個に細分ィ匕して、 音線方向に平行な細長い複数の細分領域 R , R , · ··, R
1 2 k , を得る。それぞれの 細分領域内における基準領域を細分基準領域 R , R , · ··, R ,〜R
01 02 Ok 0として得る。 各細分基準領域のラテラル方向の幅は、例えば数 mm程度とすることができる。そして 、各計測点の歪みの指標値を、その計測点の細分領域における細分基準領域の基 準歪み ε , ε , · ··, ε ,… ε を用いて求める。つまり、例えば、図 16に示すよう
01 02 Ok 0
に、計測点 G, j)にお 、て計測された歪み ε は、その細分領域内にある細分基準領 域 R を介して与えられたと考えられる。従い、計測点 (i, j)における指標値 R を次式(
Ok i, j
3)により求める。
R = ε / ε (3)
O k
[0054] これにより、圧迫操作が不適切で基準領域の歪みがラテラル方向に不均一となって も、細分ィ匕された各領域内では均一に圧迫されているとみなすことができるので、精 度良く指標値を細分化された領域毎に求めることができる様になる。その結果、指標 化弾性画像全体として精度良く指標値を求める事が出来るようになる。
[0055] 上記説明においては、細分領域をラテラル方向に比較的広くとるように説明したが 、細分領域を各ライン毎に独立して設定し、計測点 G, j)における指標値 R を次式 (4) , j により求めるようになって!/、てもよ!、。
R = ε / ε (4)
0

Claims

請求の範囲
[1] 超音波探触子と、被検体の組織に圧力を加えて該組織の超音波断層データを計 測する超音波断層データ計測手段と、前記超音波断層データから断層像を生成す る断層像生成手段と、前記超音波断層データに基づいて複数の計測点における組 織の歪みに相関する物理量を求め、該物理量に基づいて前記組織の弾性画像を生 成する弾性画像生成手段と、を備えた超音波診断装置において、
前記断層像又は前記弾性画像において基準領域を選択する手段と、
前記基準領域の前記物理量を基準として前記各計測点の前記物理量を指標値ィ匕 し、前記指標値の分布を表す指標化弾性画像を生成する手段と、
を備えたことを特徴とする超音波診断装置。
[2] 請求項 1記載の超音波診断装置において、
前記指標化弾性画像生成手段は、前記指標値として、前記基準領域の物理量と 前記計測点の物理量との比を求めることを特徴とする超音波診断装置。
[3] 請求項 1記載の超音波診断装置において、
前記指標化弾性画像生成手段は、前記指標値として、前記基準領域の物理量と 前記計測点の物理量とを用いて、固さを表す規格化された値を求めることを特徴とす る超音波画像表示方法。
[4] 請求項 1記載の超音波診断装置において、
前記指標化弾性画像生成手段は、前記指標値として、前記基準領域の物理量の 対数と前記計測点の物理量の対数との差を求めることを特徴とする超音波診断装置
[5] 請求項 1記載の超音波診断装置において、
前記基準領域選択手段は、前記断層像又は前記弾性画像上で選択された基準点 に基づいて前記基準領域を選択することを特徴とする超音波診断装置。
[6] 請求項 5記載の超音波診断装置において、
前記基準領域選択手段は、前記基準領域として、前記弾性画像上の各点の前記 物理量に基づ ヽて、前記基準点が設定された組織と同一組織を有する領域を選択 することを特徴とする超音波診断装置。
[7] 請求項 5又は 6に記載の超音波診断装置において、
前記基準領域選択手段は、前記被検体に加えられる圧力に応じて変位する前記 組織の画像上の移動先に合わせて前記基準領域を移動させることを特徴とする超音 波診断装置。
[8] 請求項 1記載の超音波診断装置において、
前記指標値と階調との関係を規定する階調化関数に基づ!、て、前記指標化弾性 画像を階調化する階調化手段と、
前記階調化された指標化弾性画像を表示する表示手段と、
を備えたことを特徴とする超音波診断装置。
[9] 請求項 8記載の超音波診断装置において、
前記階調化関数の前記指標値と前記階調との関係をバー表示することを特徴とす る超音波診断装置。
[10] 請求項 9記載の超音波診断装置において、
前記表示手段は、白黒の前記断層像と前記階調化された指標化弾性画像とを重 ね合わせて表示することを特徴とする超音波診断装置。
[11] 請求項 1記載の超音波診断装置において、
前記表示手段は、前記指標化弾性画像に設定された関心領域の前記物理量の平 均値と、 前記基準領域の前記物理量との比を数値により前記関心領域に対応付け て表示することを特徴とする超音波診断装置。
[12] 請求項 1に記載の超音波診断装置において、
前記指標化弾性画像生成手段は、前記超音波探触子の送受信方向に垂直な方 向に前記弾性画像を複数の領域に分割し、各領域毎に前記指標値化を行うことを特 徴とする超音波診断装置。
[13] 請求項 1に記載の超音波診断装置において、
前記弾性画像生成手段は、前記組織の歪みに相関する物理量として、前記組織 の変位、歪み、弾性率及び粘性のいずれか一つを求めることを特徴とする超音波診 断装置。
[14] 被検体の組織に圧力を加えて超音波断層データを計測するステップと、 前記超音波断層データに基づいて複数の計測点における組織の歪みに相関する 物理量を求めるステップと、
前記物理量に基づいて前記組織の弾性画像を生成するステップと、
前記弾性画像において基準領域を選択するステップと、
前記基準領域の前記物理量を基準として、前記各計測点の前記物理量を指標値 化するステップと、
前記指標値の分布を表す指標化弾性画像を生成するステップと、
を有することを特徴とする超音波画像表示方法。
[15] 請求項 14記載の超音波画像表示方法にぉ 、て、
前記基準領域設定ステップでは、前記基準領域として脂肪組織が選択されることを 特徴とする超音波画像表示方法。
[16] 請求項 14記載の超音波画像表示方法にお 、て、
前記基準領域設定ステップでは、前記基準領域として筋組織が選択されることを特 徴とする超音波画像表示方法。
[17] 請求項 14記載の超音波画像表示方法にぉ 、て、
前記基準領域設定ステップでは、前記被検体の外に配置された参照変形体に対 応する画像上の領域内に前記基準領域が選択されることを特徴とする超音波画像 表示方法。
[18] 請求項 17記載の超音波画像表示方法において、
前記参照変形体は、前記探触子と前記被検体との間に挿入されて用いられる弾性 部材であることを特徴とする超音波画像表示方法。
[19] 請求項 14記載の超音波画像表示方法にお 、て、
前記基準領域設定ステップでは、前記被検体の内に挿入された参照変形体に対 応する画像上の領域内に前記基準領域が選択されることを特徴とする超音波画像 表示方法。
[20] 請求項 19記載の超音波画像表示方法にお 、て、
前記参照変形体は、前記被検体の内に挿入されたカテーテル又はバルーンである ことを特徴とする超音波画像表示方法。
PCT/JP2006/309290 2005-05-09 2006-05-09 超音波診断装置及び超音波画像表示方法 WO2006121031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06746121.0A EP1880679B1 (en) 2005-05-09 2006-05-09 Ultrasonograph and ultrasonic image display method
US11/913,852 US9060737B2 (en) 2005-05-09 2006-05-09 Ultrasonic diagnostic apparatus and ultrasonic image display method
JP2007528278A JP5160227B2 (ja) 2005-05-09 2006-05-09 超音波診断装置及び超音波画像表示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005136233 2005-05-09
JP2005-136233 2005-05-09

Publications (1)

Publication Number Publication Date
WO2006121031A1 true WO2006121031A1 (ja) 2006-11-16

Family

ID=37396539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309290 WO2006121031A1 (ja) 2005-05-09 2006-05-09 超音波診断装置及び超音波画像表示方法

Country Status (5)

Country Link
US (1) US9060737B2 (ja)
EP (1) EP1880679B1 (ja)
JP (1) JP5160227B2 (ja)
CN (1) CN100544678C (ja)
WO (1) WO2006121031A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188180A (ja) * 2007-02-02 2008-08-21 Hitachi Medical Corp 超音波診断装置
WO2009131028A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
WO2009131029A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
JP2009268640A (ja) * 2008-05-02 2009-11-19 Kao Corp 皮膚内部の弾性計測方法
JP2010036041A (ja) * 2008-08-05 2010-02-18 Medison Co Ltd 弾性情報のカラーマップを形成する超音波システム及びカラーマップ形成方法
WO2010026823A1 (ja) * 2008-09-08 2010-03-11 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
WO2010044385A1 (ja) * 2008-10-14 2010-04-22 株式会社 日立メディコ 超音波診断装置、及び超音波画像表示方法
JP2011505957A (ja) * 2007-12-17 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 弾性イメージングにおけるひずみ利得補償の方法およびシステム
JP2011087782A (ja) * 2009-10-23 2011-05-06 Ge Medical Systems Global Technology Co Llc 超音波診断装置
WO2011062106A1 (ja) * 2009-11-18 2011-05-26 株式会社 日立メディコ 超音波診断装置、及び3次元弾性比算出方法
WO2011129237A1 (ja) * 2010-04-15 2011-10-20 株式会社 日立メディコ 超音波診断装置
JP2012071037A (ja) * 2010-09-29 2012-04-12 Fujifilm Corp 超音波画像診断装置、超音波画像生成方法およびプログラム
JP2012100997A (ja) * 2010-11-12 2012-05-31 Hitachi Medical Corp 超音波診断装置及びその作動方法
US8948485B2 (en) 2009-06-10 2015-02-03 Hitachi Medical Corporation Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, ultrasonic image processing program, and ultrasonic image generation method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011000A1 (ja) * 2005-07-20 2007-01-25 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
WO2009104657A1 (ja) * 2008-02-21 2009-08-27 株式会社 日立メディコ 超音波診断装置、超音波画像処理方法及び超音波画像処理プログラム
US20120136255A1 (en) * 2010-06-07 2012-05-31 Shu Feng Fan Tissue malignant tumor detection method and tissue malignant tumor detection apparatus
JP2011254975A (ja) * 2010-06-09 2011-12-22 Nakashima Medical Co Ltd 手術支援システム
JP5260602B2 (ja) * 2010-06-11 2013-08-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP4999969B2 (ja) * 2010-07-13 2012-08-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
US8840555B2 (en) * 2010-11-10 2014-09-23 Echometrix, Llc System and method of ultrasound image processing
US20120259224A1 (en) * 2011-04-08 2012-10-11 Mon-Ju Wu Ultrasound Machine for Improved Longitudinal Tissue Analysis
JP5879230B2 (ja) * 2012-08-21 2016-03-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
JP5863628B2 (ja) * 2012-11-30 2016-02-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
JP6169396B2 (ja) * 2013-04-11 2017-07-26 株式会社日立製作所 参照変形体、超音波探触子、及び超音波撮像装置
KR101512291B1 (ko) * 2013-05-06 2015-04-15 삼성메디슨 주식회사 의료 영상 장치 및 의료 영상 제공 방법
WO2014198012A1 (zh) * 2013-06-09 2014-12-18 中国科学院深圳先进技术研究院 一种基于超声弹性图像的弹性应变评估方法和系统
KR101580584B1 (ko) * 2013-11-28 2015-12-28 삼성전자주식회사 탄성 영상 내에 종양을 표시하는 방법 및 이를 위한 초음파 장치
KR102249528B1 (ko) * 2014-04-01 2021-05-11 삼성메디슨 주식회사 미리 저장된 그라데이션 데이터 및 영상을 이용하여 초음파 영상의 밝기를 조정하는 방법, 장치 및 시스템.
WO2015149805A1 (en) * 2014-04-04 2015-10-08 Aarhus Universitet Reference material element for ultrasound scanning probe
EP3366220A4 (en) 2015-10-23 2019-07-24 Olympus Corporation ULTRASONIC OBSERVATION DEVICE, OPERATING METHOD FOR ULTRASONIC OBSERVATION DEVICE AND OPERATING PROGRAM FOR ULTRASONIC OBSERVATION DEVICE
EP3463099B1 (en) * 2016-06-07 2020-05-13 Koninklijke Philips N.V. Ultrasound system and method for breast tissue imaging and annotation of breast ultrasound images
US11138723B2 (en) * 2016-07-22 2021-10-05 Canon Medical Systems Corporation Analyzing apparatus and analyzing method
KR102591371B1 (ko) * 2017-12-28 2023-10-19 삼성메디슨 주식회사 초음파 영상 장치 및 그 제어 방법
WO2020042033A1 (zh) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 一种基于超声检测肝的装置及超声设备及超声成像方法
JP7170215B2 (ja) 2019-07-03 2022-11-14 パナソニックIpマネジメント株式会社 応力分布画像処理装置
CN112788997B (zh) * 2019-08-23 2024-08-06 深圳迈瑞生物医疗电子股份有限公司 肝肾回声对比的测量方法、设备、医用系统和存储介质
CN115120266A (zh) * 2022-06-29 2022-09-30 华力创科学(深圳)有限公司 超声探头接触力感知方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435653A (ja) * 1990-05-31 1992-02-06 Fujitsu Ltd 超音波診断装置
US5495771A (en) 1993-08-12 1996-03-05 Kiyoshi Nakayama Elasticity measuring method and elasticity measuring apparatus
JPH11188036A (ja) * 1997-10-06 1999-07-13 Endosonics Corp 内腔その他の体腔とそれを囲む組織との像を作成する方法及び装置
US6508768B1 (en) 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190209A (ja) 1983-04-11 1984-10-29 Semiconductor Energy Lab Co Ltd シリコン被膜作製方法
JP2674005B2 (ja) * 1985-04-23 1997-11-05 株式会社島津製作所 超音波診断装置
JP3308570B2 (ja) * 1991-10-31 2002-07-29 フクダ電子株式会社 超音波診断装置
US5678565A (en) * 1992-12-21 1997-10-21 Artann Corporation Ultrasonic elasticity imaging method and device
US5524636A (en) * 1992-12-21 1996-06-11 Artann Corporation Dba Artann Laboratories Method and apparatus for elasticity imaging
JPH10146338A (ja) * 1996-11-19 1998-06-02 Toshiba Iyou Syst Eng Kk 超音波診断装置
JP4697375B2 (ja) 2001-09-20 2011-06-08 清 難波 乳房検査用超音波スキャン装置
US7297116B2 (en) * 2003-04-21 2007-11-20 Wisconsin Alumni Research Foundation Method and apparatus for imaging the cervix and uterine wall
US7455640B2 (en) * 2003-06-13 2008-11-25 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic apparatus
JP2005066041A (ja) * 2003-08-25 2005-03-17 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP4286621B2 (ja) * 2003-09-19 2009-07-01 富士フイルム株式会社 超音波送受信装置
JP5203605B2 (ja) * 2004-06-18 2013-06-05 株式会社日立メディコ 超音波診断装置
WO2006013916A1 (ja) 2004-08-05 2006-02-09 Hitachi Medical Corporation 弾性像表示方法及び超音波診断装置
WO2006042201A1 (en) * 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for ultrasound tissue treatment
JP2007105400A (ja) * 2005-10-17 2007-04-26 Toshiba Corp 超音波診断装置及び画像処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435653A (ja) * 1990-05-31 1992-02-06 Fujitsu Ltd 超音波診断装置
US5495771A (en) 1993-08-12 1996-03-05 Kiyoshi Nakayama Elasticity measuring method and elasticity measuring apparatus
JPH11188036A (ja) * 1997-10-06 1999-07-13 Endosonics Corp 内腔その他の体腔とそれを囲む組織との像を作成する方法及び装置
US6508768B1 (en) 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
JP2004351062A (ja) * 2003-05-30 2004-12-16 Hitachi Medical Corp 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1880679A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188180A (ja) * 2007-02-02 2008-08-21 Hitachi Medical Corp 超音波診断装置
JP2011505957A (ja) * 2007-12-17 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 弾性イメージングにおけるひずみ利得補償の方法およびシステム
WO2009131028A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
WO2009131029A1 (ja) * 2008-04-25 2009-10-29 株式会社 日立メディコ 超音波診断装置
JP5329533B2 (ja) * 2008-04-25 2013-10-30 株式会社日立メディコ 超音波診断装置
JP5329532B2 (ja) * 2008-04-25 2013-10-30 株式会社日立メディコ 超音波診断装置
US8747320B2 (en) 2008-04-25 2014-06-10 Hitachi Medical Corporation Ultrasonic diagnostic apparatus
US8845538B2 (en) 2008-04-25 2014-09-30 Hitachi Medical Corporation Ultrasonic diagnostic apparatus
JP2009268640A (ja) * 2008-05-02 2009-11-19 Kao Corp 皮膚内部の弾性計測方法
US9629605B2 (en) 2008-08-05 2017-04-25 Samsung Medison Co., Ltd. Formation of a color map for an elastic image
JP2010036041A (ja) * 2008-08-05 2010-02-18 Medison Co Ltd 弾性情報のカラーマップを形成する超音波システム及びカラーマップ形成方法
WO2010026823A1 (ja) * 2008-09-08 2010-03-11 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
US8469892B2 (en) 2008-09-08 2013-06-25 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and method of displaying ultrasonic image
WO2010044385A1 (ja) * 2008-10-14 2010-04-22 株式会社 日立メディコ 超音波診断装置、及び超音波画像表示方法
US8948485B2 (en) 2009-06-10 2015-02-03 Hitachi Medical Corporation Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, ultrasonic image processing program, and ultrasonic image generation method
JP5730196B2 (ja) * 2009-06-10 2015-06-03 株式会社日立メディコ 超音波診断装置、超音波画像処理装置、超音波画像生成方法
JP2011087782A (ja) * 2009-10-23 2011-05-06 Ge Medical Systems Global Technology Co Llc 超音波診断装置
WO2011062106A1 (ja) * 2009-11-18 2011-05-26 株式会社 日立メディコ 超音波診断装置、及び3次元弾性比算出方法
JP5689073B2 (ja) * 2009-11-18 2015-03-25 株式会社日立メディコ 超音波診断装置、及び3次元弾性比算出方法
US9044175B2 (en) 2009-11-18 2015-06-02 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and three-dimensional elastic ratio calculating method
WO2011129237A1 (ja) * 2010-04-15 2011-10-20 株式会社 日立メディコ 超音波診断装置
JP5789599B2 (ja) * 2010-04-15 2015-10-07 株式会社日立メディコ 超音波診断装置
JP2012071037A (ja) * 2010-09-29 2012-04-12 Fujifilm Corp 超音波画像診断装置、超音波画像生成方法およびプログラム
JP2012100997A (ja) * 2010-11-12 2012-05-31 Hitachi Medical Corp 超音波診断装置及びその作動方法

Also Published As

Publication number Publication date
EP1880679A1 (en) 2008-01-23
JPWO2006121031A1 (ja) 2008-12-18
US9060737B2 (en) 2015-06-23
EP1880679B1 (en) 2015-10-07
CN101160099A (zh) 2008-04-09
EP1880679A4 (en) 2009-10-21
JP5160227B2 (ja) 2013-03-13
CN100544678C (zh) 2009-09-30
US20090216123A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5160227B2 (ja) 超音波診断装置及び超音波画像表示方法
JP4966578B2 (ja) 弾性画像生成方法及び超音波診断装置
JP5304986B2 (ja) 超音波診断装置
JP5645811B2 (ja) 医用画像診断装置、関心領域設定方法、医用画像処理装置、及び関心領域設定プログラム
US8118746B2 (en) Ultrasonic diagnostic apparatus
WO2006040967A1 (ja) 超音波診断装置
WO2007138881A1 (ja) 超音波診断装置
WO2007046272A1 (ja) 弾性画像を生成する超音波診断装置
US20050283076A1 (en) Non-invasive diagnosis of breast cancer using real-time ultrasound strain imaging
WO2007083745A1 (ja) 弾性画像表示方法及び弾性画像表示装置
JP5726081B2 (ja) 超音波診断装置及び弾性画像の分類プログラム
JP5113322B2 (ja) 超音波診断装置
JP2024098018A (ja) 解析装置及びプログラム
JP5415669B2 (ja) 超音波診断装置
JP2013503680A (ja) フェード制御を用いた超音波弾性イメージング歪イメージング
JP2007125152A (ja) 超音波診断装置
JP5680703B2 (ja) 超音波診断装置
JP5128149B2 (ja) 超音波診断装置
JP5638641B2 (ja) 超音波診断装置
JP6230801B2 (ja) 超音波撮像装置及び超音波画像表示方法
JP5663640B2 (ja) 超音波診断装置
JP2012055742A (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012656.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528278

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006746121

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11913852

Country of ref document: US