WO2010026823A1 - 超音波診断装置及び超音波画像表示方法 - Google Patents

超音波診断装置及び超音波画像表示方法 Download PDF

Info

Publication number
WO2010026823A1
WO2010026823A1 PCT/JP2009/061290 JP2009061290W WO2010026823A1 WO 2010026823 A1 WO2010026823 A1 WO 2010026823A1 JP 2009061290 W JP2009061290 W JP 2009061290W WO 2010026823 A1 WO2010026823 A1 WO 2010026823A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal frame
unit
frame data
image
elastic
Prior art date
Application number
PCT/JP2009/061290
Other languages
English (en)
French (fr)
Inventor
康治 脇
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2010527733A priority Critical patent/JP5438012B2/ja
Priority to US13/062,769 priority patent/US8469892B2/en
Publication of WO2010026823A1 publication Critical patent/WO2010026823A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic image display method for displaying an elastic image indicating the hardness or softness of a biological tissue of a subject using ultrasonic waves.
  • the ultrasonic diagnostic apparatus transmits ultrasonic waves inside the subject using an ultrasonic probe, and constructs and displays, for example, a tomographic image based on a received signal received from a living tissue inside the subject.
  • the reception signal received from the living tissue inside the subject is measured by the ultrasonic probe, and the displacement of each part of the living body is obtained from the RF signal frame data of two reception signals having different measurement times.
  • An elastic image indicating the elastic modulus of the living tissue is constructed based on the displacement data (for example, Patent Document 1).
  • the position sensor that measures the position and tilt of the ultrasound probe simultaneously with the transmission and reception of ultrasound, and generates volume data from position information acquired by the position sensor and a plurality of two-dimensional tomographic images, Displaying a three-dimensional tomographic image is performed (for example, Patent Document 2).
  • Patent Document 1 is limited to constructing a two-dimensional elastic image, and does not specifically disclose constructing a three-dimensional elastic image. Therefore, in order to construct a three-dimensional elasticity image, a large amount of calculation and a memory capacity are required, which cannot be realized by extending the technology of the three-dimensional tomographic image construction disclosed in Patent Document 2.
  • An object of the present invention is to construct and display a three-dimensional elastic image showing the hardness or softness of a living tissue of a subject.
  • an ultrasonic probe having a transducer for transmitting and receiving ultrasonic waves, a transmitter for transmitting ultrasonic waves to a subject via the ultrasonic probe, and the subject
  • a receiving unit that receives a reflected echo signal from a specimen, an RF signal frame data storage unit that stores a predetermined range of RF signal frame data based on the reflected echo signal received by the receiving unit, and an RF signal frame data storage unit
  • An RF signal frame data selection unit that selects the RF signal frame data in the predetermined range stored in the memory, an elastic information calculation unit that calculates strain or elastic modulus from the RF signal frame data in the predetermined range, and the calculated strain
  • a three-dimensional elasticity image forming unit that configures a three-dimensional elasticity image based on an elastic modulus and a display unit that displays the three-dimensional elasticity image are provided.
  • a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
  • FIG. 3 is a diagram showing a form for creating two-dimensional elasticity image data according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a form for creating two-dimensional elasticity image data according to the fourth embodiment of the present invention.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 2 that is used while being in contact with the subject 1, and a repetition of the subject 1 via the ultrasonic probe 2 at time intervals.
  • Transmitter 3 for transmitting ultrasonic waves
  • receiver 4 for receiving time-series reflected echo signals generated from subject 1
  • ultrasonic transmission / reception control for controlling transmission and reception between transmitter 3 and receiver 4
  • a phasing addition unit 6 for phasing and adding the reflected echo signals received by the reception unit 4.
  • the ultrasonic probe 2 is formed by arranging a plurality of transducers, and has a function of transmitting / receiving ultrasonic waves to / from the subject 1 via the transducers.
  • the ultrasonic probe 2 can transmit and receive ultrasonic waves by mechanically swinging the transducers in a direction orthogonal to the arrangement direction of a plurality of transducers having a rectangular or fan shape.
  • the ultrasonic probe 2 has a position sensor that measures the tilt of the vibrator simultaneously with transmission / reception of the ultrasonic wave, and outputs the tilt of the vibrator as a frame number.
  • the ultrasonic probe 2 may be one in which a plurality of transducers are two-dimensionally arranged and the ultrasonic transmission / reception direction can be electronically controlled.
  • the ultrasonic probe 2 mechanically or electronically shakes and transmits / receives ultrasonic waves in a direction orthogonal to the arrangement direction of a plurality of rectangular or fan-shaped transducers that transmit / receive ultrasonic waves.
  • the transmission unit 3 generates a transmission pulse for driving the transducer of the ultrasonic probe 2 to generate an ultrasonic wave.
  • the transmission unit 3 has a function of setting a convergence point of transmitted ultrasonic waves to a certain depth.
  • the receiving unit 4 amplifies the reflected echo signal received by the ultrasonic probe 2 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the ultrasonic transmission / reception control unit 5 is for controlling the transmission unit 3 and the reception unit 4.
  • the phasing / adding unit 6 inputs the RF signal amplified by the receiving unit 4 and performs phase control, and forms an ultrasonic beam at one or a plurality of convergence points to generate RF signal frame data.
  • the tomographic image construction unit 7 receives the RF signal frame data from the phasing addition unit 6 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data. . Further, the monochrome scan converter 8 performs coordinate system conversion of the tomographic image data in order to display the tomographic image data synchronized with the ultrasonic scanning by the scanning method of the image display unit 13.
  • the two-dimensional tomographic image storage unit 9 stores the tomographic image data output from the monochrome scan converter 8 together with the frame number.
  • the transducer is mechanically shaken in a direction orthogonal to the arrangement direction of a plurality of transducers that form a rectangle or a sector, and ultrasonic waves are transmitted and received.
  • the tomographic image data is acquired.
  • FIG. 2 (a) is a diagram showing that the two-dimensional tomographic image data is regarded as one line in the frame direction and the tomographic image data is acquired three-dimensionally.
  • FIG. 2 (b) is a diagram showing that the two-dimensional tomographic image data is acquired three-dimensionally.
  • the frame number associates the position (tilt) of a plurality of transducers with tomographic image data.
  • the first frame number in the scan in the A direction is “1”, and the last frame number is “n”.
  • the tomographic image data with the frame number “1” is first stored in the two-dimensional tomographic image storage unit 9, and then the tomographic image data with the frame number “2” is stored in the two-dimensional tomographic image storage unit 9. Finally, the tomographic image data of the frame number “n” is stored in the two-dimensional tomographic image storage unit 9.
  • the first frame number in the scan in the B direction is set to “n”
  • the last frame number is set to “1”
  • the tomographic image data is stored in the two-dimensional tomographic image storage unit 9.
  • the monochrome volume data creation unit 10 reads the tomographic image data for n frames stored in the two-dimensional tomographic image storage unit 9, and creates the monochrome volume data by arranging them sequentially for each scan plane. In this way, monochrome volume data for rendering, which is a set of tomographic image data in the subject, is configured.
  • the black and white 3D tomographic image construction unit 11 reads the black and white volume data from the black and white volume data creation unit 10 and projects the black and white volume data onto a plane to form a black and white 3D tomographic image. Specifically, the monochrome three-dimensional tomographic image construction unit 11 obtains image information of each point from the luminance value and opacity corresponding to each point (coordinate) of the monochrome volume data. Then, for example, a monochrome three-dimensional tomographic image is constructed using a volume rendering method that calculates the brightness value and opacity of the monochrome volume data in the line-of-sight direction in the depth direction and gives light and shade according to the following equation.
  • ⁇ outi Output of i-th opacity
  • ⁇ ini Input of i-th opacity
  • ⁇ i Output of i-th opacity
  • C outi Output of i-th brightness value
  • C ini Input of i-th brightness value
  • C i I-th luminance value
  • a monochrome three-dimensional tomographic image is constructed using the volume rendering method.
  • a surface rendering method that gives light and shade according to the inclination angle formed by the image of each point with respect to the surface corresponding to the viewpoint position, and the viewpoint You may use the voxel method which gives a light / dark according to the depth of the target object seen from the position.
  • a black and white 3D tomographic image and a color 3D elastic image which will be described later, are combined, displayed in parallel, or switched, and a switching composition unit 12; a black and white 3D tomographic image, a color 3D elastic image, a black and white 3D
  • An image display unit 13 that displays a combined image obtained by combining the tomographic image and the color three-dimensional elasticity image is provided.
  • the ultrasonic diagnostic apparatus includes an RF signal frame data storage unit 20 that stores the RF signal frame data output from the phasing addition unit 6, and at least two RF signals stored in the RF signal frame data storage unit 20.
  • the RF signal frame data selection unit 21 for selecting signal frame data From the RF signal frame data selection unit 21 for selecting signal frame data, the displacement calculation unit 22 for measuring the displacement of the living tissue of the subject 1 from the two RF signal frame data, and the displacement information measured by the displacement calculation unit 22
  • An elastic information calculation unit 23 for obtaining elastic information such as strain or elastic modulus, an elastic image configuration unit 24 that constitutes two-dimensional elastic image data from the strain or elastic modulus calculated by the elastic information calculation unit 23, and an elastic image configuration unit 24 Is provided with an elastic scan converter 25 that performs coordinate system conversion for displaying the two-dimensional elastic image data output from the image display unit 13 using the scanning method.
  • a two-dimensional elastic image storage unit 26 that further stores two-dimensional elastic image data output from the elastic scan converter 25, and an elastic volume data generation unit that generates elastic volume data from a plurality of two-dimensional elastic image data 27 and a three-dimensional elastic image constructing unit 28 for constructing a color three-dimensional elastic image from the elastic volume data.
  • the ultrasonic diagnostic apparatus includes a control unit 31 that controls each component and an input unit 30 that performs various inputs to the control unit 31.
  • the input unit 30 includes a keyboard, a trackball, and the like.
  • the RF signal frame data storage unit 20 sequentially stores the RF signal frame data generated from the phasing addition unit 6 in time series.
  • 3 and 4 are diagrams showing details of the RF signal frame data storage unit 20.
  • the RF signal frame data storage unit 20 includes a storage medium 200 that stores RF signal frame data related to scanning in the A direction, and a storage medium 201 that stores RF signal frame data related to scanning in the B direction. ing.
  • the storage medium 200 and the storage medium 201 store a plurality of ultrasonic wave transmission / reception directions, that is, RF signal frame data of a plurality of raster addresses.
  • the raster address corresponds to the data on the scanning line (arrow) of one RF signal frame data shown in FIG. Assuming that all raster addresses are “256”, the storage medium 200 and the storage medium 201 store, for example, RF signal frame data at raster addresses “1” to “50” within a set range.
  • the setting range can be arbitrarily set by the input unit 30, and RF signal frame data at raster addresses “50” to “200” can be stored in the storage media 200 and 201, or “100” to “150”.
  • the RF signal frame data at the raster address "" can be stored in the storage medium 200 and the storage medium 201.
  • the storage medium 200 for storing the RF signal frame data related to the scan in the A direction stores the RF signal frame data at the raster address in the set range set as described above for the scan in the A direction.
  • FIG. 3B shows the relationship between the RF signal frame data and the frame number at the raster address in the setting range of the A direction scan
  • FIG. 3D shows the raster in the setting range of the scan in the A direction.
  • 2 shows a storage form of a storage medium 200 that stores RF signal frame data at an address in association with a frame number.
  • the storage medium 200 stores the RF signal frame data with “1” as the first frame number in the scan in the A direction and “n” as the last frame number. Specifically, the RF signal frame data with the frame number “1” in the scan in the A direction is first stored in the storage medium 200, and then the RF signal frame data with the frame number “2” is stored in the storage medium 200. . Finally, the RF signal frame data of the frame number “n” is stored in the storage medium 200.
  • the storage medium 201 for storing the RF signal frame data regarding the scan in the B direction stores the RF signal frame data at the raster address in the same setting range as the storage medium 200 for the scan in the B direction.
  • FIG. 3 (c) shows the relationship between the RF signal frame data and the frame number at the raster address in the B direction scan setting range
  • FIG. 3 (e) shows the raster in the B direction scan setting range
  • 2 shows a storage form of a storage medium 201 that stores RF signal frame data at an address in association with a frame number.
  • the storage medium 201 stores the RF signal frame data with “n” as the first frame number in the scan in the B direction and “1” as the last frame number.
  • the RF signal frame data of frame number “n” in the scan in the B direction is first stored in the storage medium 201, and then the RF signal frame data of frame number “n ⁇ 1” is stored in the storage medium 201. Is done.
  • the RF signal frame data with the frame number “1” is stored in the storage medium 201.
  • the RF signal frame data storage unit 20 includes the two storage media 200 and 201.
  • the RF signal frame data may be distributed and stored in one storage medium.
  • the RF signal frame data selection unit 21 selects the RF signal frame data of the frame number “N” stored in the storage medium 200 of the RF signal frame data storage unit 20.
  • N is an integer of 1 to n. Then, the RF signal frame data selection unit 21 has the same frame number “N” as the RF signal frame data read from the storage medium 200, and the RF signal frame data of the frame number “N” stored in the storage medium 201. Select.
  • the displacement measuring unit 22 performs one-dimensional or two-dimensional correlation processing from the selected RF signal frame data of the frame number “N”, and the displacement or movement vector in the biological tissue corresponding to each point of the RF signal frame data. That is, a one-dimensional or two-dimensional displacement distribution regarding the direction and magnitude of the displacement is obtained.
  • a block matching method is used to detect the movement vector.
  • the block matching method divides an image into blocks consisting of, for example, M ⁇ M pixels, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this Then, predictive coding, that is, processing for determining the sample value by the difference is performed.
  • the elasticity information calculation unit 23 is a strain of the living tissue corresponding to each point (coordinate) on the image from the measurement value output from the displacement measurement unit 22, for example, the movement vector and the pressure value output from the pressure measurement unit 26. And elastic modulus is calculated to generate elasticity information. At this time, the distortion is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement. Further, when the elastic modulus is calculated by the elastic information calculation unit 23, the pressure information acquired by the pressure measurement unit 29 connected to the pressure sensor (not shown) of the ultrasonic probe 2 is sent to the elastic information calculation unit 23. Output. The elastic modulus is calculated by dividing the change in pressure by the change in strain.
  • the Young's modulus is a ratio of a simple tensile stress applied to the object and a strain generated in parallel with the tension.
  • the elasticity image constructing unit 24 performs various image processing such as smoothing processing in the coordinate plane, contrast optimization processing, and smoothing processing in the time axis direction between frames for the calculated elasticity value (strain, elasticity modulus, etc.). To construct two-dimensional elasticity image data.
  • the elastic scan converter 25 has a function of performing coordinate system conversion for displaying the two-dimensional elastic image data output from the elastic image construction unit 24 by the scanning method of the image display unit 13.
  • the two-dimensional elastic image storage unit 26 stores the two-dimensional elastic image data together with the frame number “N”.
  • the RF signal frame data selection unit 21 has the same frame numbers “1” to “n” stored in the storage medium 200 and the storage medium 201 of the RF signal frame data storage unit 20. Each of the RF signal frame data at the raster address in the set range is selected, and a series of processing is performed in the displacement measuring unit 22, the elastic information calculating unit 23, the elastic image forming unit 24, and the elastic scan converter 25 as described above.
  • the 2D elastic image storage unit 26 stores 2D elastic image data at a raster address within a set range of a series of frame numbers “1” to “n”.
  • FIG. 5 shows a form of creating two-dimensional elastic image data of frame numbers “1” to “n”.
  • FIGS. 5 (a) and 5 (b) show a mode in which RF signal frame data of frame numbers “1” to “n” in the A direction and the B direction are read from the storage medium 200 and the storage medium 201.
  • (c) shows a state in which the two-dimensional elastic image data is stored in the two-dimensional elastic image storage unit 26 at the raster addresses in the setting range of the frame numbers “1” to “n”.
  • the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data at a raster address in a set range.
  • the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
  • the elastic volume data at the raster address of the setting range for rendering which is a set of two-dimensional elastic image data in the subject, is constructed.
  • the three-dimensional elasticity image constructing unit 28 obtains image information of each point from the elasticity value (one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constructs a three-dimensional elasticity image. To do.
  • a three-dimensional elasticity image is constructed using a volume rendering method that calculates the elasticity value of the elasticity volume data in the line-of-sight direction in the depth direction according to the following equation.
  • the line-of-sight direction is the same as the line-of-sight direction in the volume rendering process or the like of the black and white three-dimensional tomographic image construction unit 11.
  • the three-dimensional elastic image construction unit 28 assigns three primary colors of light, that is, a red (R) value, a green (G) value, and a blue (B) value, to image information constituting the three-dimensional elastic image.
  • the three-dimensional elastic image forming unit 28 gives a red code to a portion where the strain is large compared to the surroundings or a portion where the elastic modulus is small, and applies a blue code to a portion where the distortion is small or the elastic modulus is large compared to the surroundings. Processing such as granting is performed.
  • the switching composition unit 12 includes an image memory, an image processing unit, and an image selection unit.
  • the image memory temporally displays the black and white 3D tomographic image output from the black and white 3D tomographic image construction unit 11 and the color 3D elastic image at the raster address in the set range output from the 3D elastic image construction unit 28. It is stored together with information.
  • the image processing unit combines black and white 3D tomographic image data secured in the image memory and color 3D elastic image data at a raster address in a set range by changing the combining ratio.
  • the image processing unit reads black and white 3D tomographic image data and color 3D elastic image data at the same viewpoint position from the image memory.
  • the image processing unit synthesizes the black and white 3D tomographic image data and the color 3D elastic image data, but the black and white 3D tomographic image data and the color 3D elastic image data are image data after volume rendering processing or the like. In effect, each is added two-dimensionally.
  • the red (R) value, the green (G) value, the blue (B) value of the color 3D elastic image data, and the monochrome 3D tomographic image data are added.
  • is a coefficient not less than 0 and not more than 1, and can be arbitrarily set by the input unit 30.
  • the image selection unit selects an image to be displayed on the image display unit 10 from the monochrome 3D tomographic image data in the volume memory, the color 3D elastic image data at the raster address in the set range, and the composite image data of the image processing unit. Is.
  • the image display unit 13 displays the composite image synthesized by the switching synthesis unit 12, the monochrome three-dimensional tomographic image, or the color three-dimensional elastic image at the raster address in the set range in parallel.
  • a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
  • the elastic calculation time can be shortened by performing the elastic calculation of each frame by narrowing down to the raster address in the set range.
  • the RF signal frame data in the set range of raster addresses is stored in the storage medium 200 and the storage medium 201 to form a three-dimensional elastic image.
  • the RF signal frame data at the raster address in the range adjacent to the raster address in the range set in the first embodiment is further stored in the storage medium 200 and the storage medium 201, and the first embodiment
  • a 3D elasticity image is constructed by connecting to the 3D elasticity image composed of
  • the RF signal frame data at raster addresses “1” to “50” is stored in the storage medium 200 and the storage medium 201.
  • the RF signal frame data at the raster addresses “51” to “100” adjacent to the raster addresses “1” to “50” is stored in the storage medium 200 and the storage medium 201.
  • the RF signal frame data selection unit 21 sets the same frame number “1” to “n” stored in the storage medium 200 and the storage medium 201 of the RF signal frame data storage unit 20.
  • a series of processing is performed in the displacement measurement unit 22, the elastic information calculation unit 23, the elastic image construction unit 24, and the elastic scan converter 25, respectively, by selecting the RF signal frame data at the raster addresses of .
  • 6 (a) and 6 (b) show a mode in which RF signal frame data of frame numbers “1” to “n” in the A direction and the B direction are read from the storage medium 200 and the storage medium 201.
  • (c) shows a state in which the two-dimensional elastic image data of the frame numbers “1” to “n” is stored in the two-dimensional elastic image storage unit 26.
  • two-dimensional elastic image data at raster addresses “1” to “100” is stored in the two-dimensional elastic image storage unit 26.
  • the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data at raster addresses “1” to “100”.
  • the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
  • elastic volume data at raster addresses “1” to “100” for rendering which is a set of two-dimensional elastic image data in the subject, is constructed.
  • the three-dimensional elasticity image constructing unit 28 obtains image information of each point from the elasticity value (one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constructs a three-dimensional elasticity image. To do.
  • the RF signal frame data at the raster addresses “101” to “150” can be stored in the storage medium 200 and the storage medium 201 to form a three-dimensional elastic image.
  • the input unit 30 applies interest to any one black and white 3D tomographic image 40 of frame numbers “1” to “n” formed by the black and white 3D tomographic image construction unit 11.
  • Region 42 is set.
  • a trackball of the input unit 30 is used to track a circle, an ellipse, a rectangle, and the like, and a region of interest 42 is determined using a button of the input unit 30.
  • control unit 31 informs the RF signal frame data storage unit 20 of the address (coordinates) of the boundary (broken line portion) of the region of interest 42.
  • the RF signal frame data storage unit 20 stores the RF signal frame data within the boundary of the region of interest 42 in the storage medium 200 and the storage medium 201.
  • the RF signal frame data selection unit 21 performs the region of interest of the same frame numbers “1” to “n” stored in the storage medium 200 and the storage medium 201 of the RF signal frame data storage unit 20.
  • Each of the RF signal frame data within the boundary of 42 is selected, and a series of processing is performed in the displacement measurement unit 22, the elastic information calculation unit 23, the elastic image configuration unit 24, and the elastic scan converter 25 as in the first embodiment. Do.
  • 8 (a) and 8 (b) show a mode in which RF signal frame data of frame numbers “1” to “n” in the A direction and the B direction are read from the storage medium 200 and the storage medium 201.
  • (c) shows a state in which the two-dimensional elastic image data of the frame numbers “1” to “n” is stored in the two-dimensional elastic image storage unit 26.
  • two-dimensional elasticity image data within the boundary of the region of interest 42 is stored in the two-dimensional elasticity image storage unit 26.
  • the elastic volume data creating unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data within the boundary of the region of interest 42.
  • the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
  • elastic volume data within the boundary of the region of interest for rendering 42 which is a set of two-dimensional elastic image data in the subject, is constructed.
  • the three-dimensional elasticity image constructing unit 28 obtains image information of each point from the elasticity value (one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constructs a three-dimensional elasticity image.
  • FIG. 8C shows a composite image obtained by combining the color three-dimensional elasticity image and the black and white three-dimensional tomographic image in the region of interest 42 by the switching combining unit 12.
  • a three-dimensional elastic image in the region of interest 42 can be configured.
  • the elasticity calculation time can be shortened by performing the elasticity calculation of each frame by focusing on the region of interest 42.
  • the range of elasticity to be extracted as the region of interest 50 is set by the input unit 30.
  • the elastic modulus is described as an example, but the region of interest 50 may be set using strain, viscosity, or the like.
  • the elastic modulus range is set to, for example, a or more using the input unit 30.
  • the range of the elastic modulus may be set as a to b.
  • a and b are natural numbers.
  • the control unit 31 causes the elasticity information calculation unit 23 to specify a range in which the elastic modulus is a or more from the elasticity information corresponding to each point (coordinate) of the frame numbers “1” to “n”.
  • a region of interest 50 having an elastic modulus of a or more is set in each frame of frame numbers “1” to “n”.
  • the region of interest 70 may be set using a distortion ratio.
  • the compression probe 60 for pushing the subject 1 to the ultrasonic probe 2 and the reference deformable body 62 on the surface of the compression plate 60 are provided.
  • the reference deformable body 62 is generated based on an oil-based gel material, a water-based gel material such as acrylamide, or silicon.
  • a distortion ratio at each point inside the subject 1 is calculated based on the distortion of the reference deformable body 62.
  • the image region 66 of the reference deformable body 62 is displayed in the tissue region closest to the ultrasound probe 2 in the elastic image.
  • elastic images 64 of the tissues 1 to 5 are displayed below the reference deformable body 62.
  • a reference area 68 is set in the image area 66 of the reference deformable body 62 by the input unit 30.
  • the control unit 31 causes the elasticity information calculation unit 23 to calculate the strain ratio.
  • the elasticity information calculation unit 23 obtains a ratio (index value R i, j ) between the strain ⁇ i, j and the reference strain ⁇ 0 at each point i, j by the following equation.
  • the elasticity information calculation unit 23 extracts a region where the index value R i, j is greater than or equal to the reference value.
  • This reference value can be arbitrarily set by the input unit 30.
  • the elasticity information calculation unit 23 sets a region of interest where the index value R i, j is greater than or equal to the reference value.
  • the elasticity information calculation unit 23 can estimate the approximate elasticity of the living tissue at each point by measuring the elasticity of the reference deformable body 62 in advance.
  • the elastic information calculation unit 23 may set the region of interest 70 based on the elastic modulus.
  • control unit 31 notifies the RF signal frame data storage unit 20 of the address (coordinates) of the region of interest 50 or the region of interest 70 set as described above.
  • the RF signal frame data storage unit 20 stores the RF signal frame data in the region of interest 50 or the region of interest 70 in the storage medium 200 and the storage medium 201.
  • the RF signal frame data selection unit 21 includes the regions of interest of the same frame numbers “1” to “n” stored in the storage medium 200 and the storage medium 201 of the RF signal frame data storage unit 20. 50 or the RF signal frame data in the region of interest 70, respectively, and in the same manner as in the first embodiment, the displacement measurement unit 22, the elastic information calculation unit 23, the elastic image configuration unit 24, and the elastic scan converter 25 perform a series of Perform processing.
  • FIGS. 11 (a) and 11 (b) show a mode in which RF signal frame data of frame numbers “1” to “n” in the A direction and the B direction are read from the storage medium 200 and the storage medium 201.
  • (c) shows a state in which the two-dimensional elastic image data of the frame numbers “1” to “n” is stored in the two-dimensional elastic image storage unit 26.
  • the two-dimensional elastic image data in the region of interest 50 or the region of interest 70 is stored in the two-dimensional elastic image storage unit 26.
  • the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data in the region of interest 50 or the region of interest 70.
  • the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
  • the elastic volume data in the region of interest 50 or the region of interest 70 for rendering which is a set of two-dimensional elastic image data in the subject, is constructed.
  • the three-dimensional elasticity image constructing unit 28 obtains image information of each point from the elasticity value (one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constructs a three-dimensional elasticity image. To do.
  • a three-dimensional elasticity image in the region of interest 50 or the region of interest 70 set by the elasticity information can be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を構成し、表示する超音波診断装置及び超音波画像表示方法を提供する。超音波を送受信する振動子を有する超音波探触子2と、超音波探触子2を介して被検体1に超音波を送信する送信部3と、被検体1からの反射エコー信号を受信する受信部4と、該受信部4により受信された反射エコー信号に基づくRF信号フレームデータの所定範囲を記憶するRF信号フレームデータ記憶部20と、RF信号フレームデータ記憶部20に記憶された前記所定範囲における前記RF信号フレームデータを選択するRF信号フレームデータ選択部21と、前記所定範囲におけるRF信号フレームデータから歪み又は弾性率を演算する弾性情報演算部23と、該演算された歪み又は弾性率に基づいて3次元弾性画像を構成する3次元弾性画像構成部28とを備える。

Description

超音波診断装置及び超音波画像表示方法
 本発明は、超音波を利用し、被検体の生体組織の硬さ又は軟らかさを示す弾性画像を表示する超音波診断装置及び超音波画像表示方法に関する。
 超音波診断装置は、超音波探触子により被検体内部に超音波を送信し、被検体内部の生体組織から受信される受信信号に基づいて、例えば断層画像を構成して表示する。また、超音波探触子で被検体内部の生体組織から受信される受信信号を計測し、計測時間が異なる2つの受信信号のRF信号フレームデータから生体各部の変位を求める。そして、その変位データに基づいて生体組織の弾性率を示す弾性画像を構成することが行なわれている(例えば、特許文献1)。
 また、超音波の送受信と同時に超音波探触子の位置と傾きを計測する位置センサを有し、位置センサにより取得される位置情報と複数の2次元断層画像とから、ボリュームデータを生成し、3次元断層画像を表示していることが行なわれている(例えば、特許文献2)。
特開2000-060853号公報 特開2006-271523号公報
 しかしながら、特許文献1では、2次元弾性画像を構成することに留まっており、3次元弾性画像を構成することについては具体的には開示されていない。そのため、3次元弾性画像を構成するためには、多くの演算量とメモリ容量が必要であり、特許文献2の3次元断層画像構成の技術の拡張で実現可能となるものではない。
 本発明の目的は、被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を構成し、表示することを目的とする。
 上記課題を解決するため、本発明では、超音波を送受信する振動子を有する超音波探触子と、前記超音波探触子を介して被検体に超音波を送信する送信部と、前記被検体からの反射エコー信号を受信する受信部と、該受信部により受信された反射エコー信号に基づいてRF信号フレームデータの所定範囲を記憶するRF信号フレームデータ記憶部と、RF信号フレームデータ記憶部に記憶された前記所定範囲におけるRF信号フレームデータを選択するRF信号フレームデータ選択部と、前記所定範囲におけるRF信号フレームデータから歪み又は弾性率を演算する弾性情報演算部と、該演算された歪み又は弾性率に基づいて3次元弾性画像を構成する3次元弾性画像構成部と、前記3次元弾性画像を表示する表示部とを備える。
 よって、被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を構成することができる。
 本発明によれば、被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を構成し、表示することができる。
本発明の全体構成のブロック図を示す図。 本発明の断層画像データの記憶形態を示す図。 本発明の第1の実施形態のRF信号フレームデータ記憶部の詳細を示す図。 本発明の第1の実施形態のRF信号フレームデータ記憶部の詳細を示す図。 本発明の第1の実施形態の2次元弾性画像データを作成する形態を示す図。 本発明の第2の実施形態の2次元弾性画像データを作成する形態を示す図。 本発明の第3の実施形態を示す図。 本発明の第3の実施形態の2次元弾性画像データを作成する形態を示す図。 本発明の第4の実施形態を示す図。 本発明の第4の実施形態を示す図。 本発明の第4の実施形態の2次元弾性画像データを作成する形態を示す図。
 (第1の実施形態:ラスタアドレス)
 本発明を適用してなる超音波診断装置について、図1を用いて説明する。図1に示すように、超音波診断装置には、被検体1に当接させて用いる超音波探触子2と、超音波探触子2を介して被検体1に時間間隔をおいて繰り返し超音波を送信する送信部3と、被検体1から発生する時系列の反射エコー信号を受信する受信部4と、送信部3と受信部4の送信と受信を切り換える制御を行なう超音波送受信制御部5と、受信部4で受信された反射エコー信号を整相加算する整相加算部6とが備えられている。
 超音波探触子2は、複数の振動子を配設して形成されており、被検体1に振動子を介して超音波を送受信する機能を有している。この超音波探触子2は、矩形又は扇形をなす複数の振動子の配列方向と直交する方向に振動子を機械的に振り、超音波を送受信することができる。また、超音波探触子2は、超音波の送受信と同時に振動子の傾きを計測する位置センサを有しており、振動子の傾きをフレームナンバーとして出力する。なお、超音波探触子2は、複数の振動子が2次元配列され、超音波送受信方向を電子的に制御することができるものでもよい。
 このように、超音波探触子2は、超音波送受信する矩形又は扇形をなす複数の振動子の配列方向と直交する方向に機械的又は電子的に振るとともに、超音波を送受信する。送信部3は、超音波探触子2の振動子を駆動して超音波を発生させるための送波パルスを生成する。送信部3は、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部4は、超音波探触子2で受信した反射エコー信号について所定のゲインで増幅してRF信号すなわち受信信号を生成するものである。超音波送受信制御部5は、送信部3や受信部4を制御するためのものである。
 整相加算部6は、受信部4で増幅されたRF信号を入力して位相制御し、一点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成するものである。
 断層画像構成部7は、整相加算部6からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行ない、断層画像データを得るものである。また、白黒スキャンコンバータ8は、超音波走査に同期した断層画像データを画像表示部13の走査方式で表示するために、断層画像データの座標系変換を行なう。
 2次元断層画像記憶部9は、図2に示すように、白黒スキャンコンバータ8から出力される断層画像データをフレームナンバーとともに記憶する。ここでは、矩形又は扇形をなす複数の振動子の配列方向と直交する方向に機械的に振動子を振り、超音波を送受信しており、A方向又はB方向のスキャンに対して、nフレームの断層画像データを取得しているものである。
 図2(a)は、2次元断層画像データをフレーム方向に1ラインとみなし、断層画像データを3次元的に取得していることを示す図である。図2(b)は、2次元断層画像データを3次元的に取得していることを示す図である。
 フレームナンバーは、図2(a)に示すように、複数の振動子の位置(傾き)と断層画像データとを対応付けられるものである。A方向のスキャンにおける最初のフレームナンバーを“1”とし、最後のフレームナンバーを“n”としている。フレームナンバー“1”の断層画像データが最初に2次元断層画像記憶部9に記憶され、次にフレームナンバー“2” の断層画像データが2次元断層画像記憶部9に記憶される。そして、最後にフレームナンバー“n” の断層画像データが2次元断層画像記憶部9に記憶される。また、B方向のスキャンにおける最初のフレームナンバーを“n”とし、最後のフレームナンバーを“1”とし、断層画像データが2次元断層画像記憶部9に記憶される。
 白黒ボリュームデータ作成部10は、2次元断層画像記憶部9に記憶されたnフレーム分の断層画像データを読み出し、スキャン面毎に順次並べて白黒ボリュームデータを作成する。このように、被検体内の断層画像データの集合であるレンダリング用の白黒ボリュームデータが構成される。
 白黒3次元断層画像構成部11は、白黒ボリュームデータ作成部10から白黒ボリュームデータを読み出し、白黒ボリュームデータを平面に投影して白黒3次元断層画像を構成する。具体的には、白黒3次元断層画像構成部11は、白黒ボリュームデータの各点(座標)に対応する輝度値と不透明度から各点の画像情報を求める。そして、例えば下記式による、視線方向の白黒ボリュームデータの輝度値と不透明度を深さ方向に演算して濃淡を与えるボリュームレンダリング法を用いて白黒3次元断層画像を構成する。
Figure JPOXMLDOC01-appb-M000001
   αouti :i番目の不透明度の出力
   αini  :i番目の不透明度の入力
   αi   :i番目の不透明度
   Couti  :i番目の輝度値の出力
   Cini   :i番目の輝度値の入力
   Ci     :i番目の輝度値
 なお、上記では、ボリュームレンダリング法を用いて白黒3次元断層画像を構成したが、各点の画像が視点位置に該当する面に対してなす傾斜角に応じて濃淡を与えるサーフェスレンダリング法や、視点位置からみた対象物の奥行きに応じて濃淡を与えるボクセル法を用いてもよい。
 また、白黒3次元断層画像と後述するカラー3次元弾性画像を合成したり、並列に表示させたり、切替えを行なう切替合成部12と、白黒3次元断層画像、カラー3次元弾性画像、白黒3次元断層画像とカラー3次元弾性画像が合成された合成画像を表示する画像表示部13とが備えられている。
 さらに、超音波診断装置には、整相加算部6から出力されるRF信号フレームデータを記憶するRF信号フレームデータ記憶部20と、RF信号フレームデータ記憶部20に記憶された、少なくとも2つのRF信号フレームデータを選択するRF信号フレームデータ選択部21と、2つのRF信号フレームデータから被検体1の生体組織の変位を計測する変位演算部22と、変位演算部22で計測された変位情報から歪み又は弾性率などの弾性情報を求める弾性情報演算部23と、弾性情報演算部23で演算した歪み又は弾性率から2次元弾性画像データを構成する弾性画像構成部24と、弾性画像構成部24から出力される2次元弾性画像データに、画像表示部13の走査方式で表示するための座標系変換を行なう弾性スキャンコンバータ25を備えている。
 本実施形態では、さらに弾性スキャンコンバータ25から出力された2次元弾性画像データを記憶する2次元弾性画像記憶部26と、複数の2次元弾性画像データから弾性ボリュームデータを作成する弾性ボリュームデータ作成部27と、弾性ボリュームデータからカラー3次元弾性画像を構成する3次元弾性画像構成部28とを備えている。
 また、超音波診断装置には、各構成要素を制御する制御部31と、制御部31に各種入力を行なう入力部30を備えている。入力部30は、キーボードやトラックボール等を備えている。
 RF信号フレームデータ記憶部20は、整相加算部6から時系列に生成されるRF信号フレームデータを順次記憶する。図3、図4は、RF信号フレームデータ記憶部20の詳細を示す図である。
 本実施形態では、RF信号フレームデータ記憶部20は、A方向のスキャンに関するRF信号フレームデータを記憶する記憶媒体200と、B方向のスキャンに関するRF信号フレームデータを記憶する記憶媒体201とを有している。
 具体的には、記憶媒体200と記憶媒体201は、複数の超音波送受波方向、すなわち複数のラスタアドレスのRF信号フレームデータを記憶する。ラスタアドレスは、図3(a)に示される1枚のRF信号フレームデータの走査線(矢印)上のデータに対応している。全ラスタアドレスを“256”とすると、記憶媒体200と記憶媒体201は、例えば、設定した範囲の“1”~“50”のラスタアドレスにおけるRF信号フレームデータを記憶する。
 設定範囲は、入力部30で任意に設定することができ、“50”~“200”のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶したり、“100”~“150”のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶したりすることができる。
 そして、A方向のスキャンに関するRF信号フレームデータを記憶する記憶媒体200は、上記の通り設定された設定範囲のラスタアドレスにおけるRF信号フレームデータをA方向のスキャン分記憶する。
 図3(b)は、A方向のスキャンの設定範囲のラスタアドレスにおけるRF信号フレームデータとフレームナンバーとの関係を示すものであり、図3(d)は、A方向のスキャンの設定範囲のラスタアドレスにおけるRF信号フレームデータをフレームナンバーと対応付けて記憶する記憶媒体200の記憶形態を示すものである。
 記憶媒体200は、A方向のスキャンにおける最初のフレームナンバーを“1”とし、最後のフレームナンバーを“n”としてRF信号フレームデータを記憶する。具体的には、A方向のスキャンにおけるフレームナンバー“1”のRF信号フレームデータが最初に記憶媒体200に記憶され、次にフレームナンバー“2” のRF信号フレームデータが記憶媒体200に記憶される。そして、最後にフレームナンバー“n” のRF信号フレームデータが記憶媒体200に記憶される。
 また、B方向のスキャンに関するRF信号フレームデータを記憶する記憶媒体201は、記憶媒体200と同じ設定範囲のラスタアドレスにおけるRF信号フレームデータをB方向のスキャン分記憶する。
 図3(c)は、B方向のスキャンの設定範囲のラスタアドレスにおけるRF信号フレームデータとフレームナンバーとの関係を示すものであり、図3(e)は、B方向のスキャンの設定範囲のラスタアドレスにおけるRF信号フレームデータをフレームナンバーと対応付けて記憶する記憶媒体201の記憶形態を示すものである。記憶媒体201は、B方向のスキャンにおける最初のフレームナンバーを“n”とし、最後のフレームナンバーを“1”としてRF信号フレームデータを記憶する。具体的には、B方向のスキャンにおけるフレームナンバー“n”のRF信号フレームデータが最初に記憶媒体201に記憶され、次にフレームナンバー“n-1” のRF信号フレームデータが記憶媒体201に記憶される。そして、最後にフレームナンバー“1” のRF信号フレームデータが記憶媒体201に記憶される。
 なお、上記では、RF信号フレームデータ記憶部20は2つの記憶媒体200,201を有したが、1つの記憶媒体にRF信号フレームデータを振り分けて記憶させてもよい。
 図4に示すように、RF信号フレームデータ選択部21は、RF信号フレームデータ記憶部20の記憶媒体200に記憶されたフレームナンバー“N”のRF信号フレームデータを選択する。Nは1以上n以下の整数である。そして、RF信号フレームデータ選択部21は、記憶媒体200から読み出されたRF信号フレームデータと同じフレームナンバー“N”である、記憶媒体201に記憶されたフレームナンバー“N”のRF信号フレームデータを選択する。
 そして、変位計測部22は、選択されたフレームナンバー“N”のRF信号フレームデータから1次元或いは2次元相関処理を行って、RF信号フレームデータの各点に対応する生体組織における変位や移動ベクトルすなわち変位の方向と大きさに関する1次元又は2次元変位分布を求める。ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング法とは、画像を例えばM×M画素からなるブロックに分け、関心領域内のブロックに着目し、着目しているブロックに最も近似しているブロックを前のフレームから探し、これを参照して予測符号化すなわち差分により標本値を決定する処理を行なう。
 弾性情報演算部23は、変位計測部22から出力される計測値、例えば移動ベクトルと、圧力計測部26から出力される圧力値とから画像上の各点(座標)に対応する生体組織の歪みや弾性率を演算し、弾性情報を生成するものである。このとき、歪みは、生体組織の移動量、例えば、変位を空間微分することによって算出される。また、弾性情報演算部23において弾性率を演算する場合、超音波探触子2の圧力センサ(図示しない。)に接続された圧力計測部29によって取得された圧力情報を弾性情報演算部23に出力する。弾性率は、圧力の変化を歪みの変化で除することによって計算される。
 例えば、変位計測部22により計測された変位をL(X)、圧力計測部29により計測された圧力をP(X)とすると、歪みΔS(X)は、L(X)を空間微分することによって算出することができるから、ΔS(X)=ΔL(X)/ΔXという式を用いて求められる。また、弾性率のヤング率Ym(X)は、Ym=(ΔP(X))/ΔS(X)という式によって算出される。このヤング率Ymから画像の各点に相当する生体組織の弾性率が求められるので、2次元弾性画像を連続的に得ることができる。なお、ヤング率とは、物体に加えられた単純引張り応力と、引張りに平行に生じる歪みに対する比である。
 弾性画像構成部24は、算出された弾性値(歪み、弾性率等)に対し、座標平面内におけるスムージング処理、コントラスト最適化処理や、フレーム間における時間軸方向のスムージング処理等の様々な画像処理を行ない、2次元弾性画像データを構成する。
 弾性スキャンコンバータ25は、弾性画像構成部24から出力される2次元弾性画像データに画像表示部13の走査方式で表示するための座標系変換を行なう機能を有したものである。2次元弾性画像記憶部26は、2次元弾性画像データをフレームナンバー“N”とともに記憶する。
 このように、図4に示すように、RF信号フレームデータ選択部21は、RF信号フレームデータ記憶部20の記憶媒体200と記憶媒体201に記憶された同じフレームナンバー“1”~“n”の設定範囲のラスタアドレスにおけるRF信号フレームデータをそれぞれ選択して、上記の通り、変位計測部22、弾性情報演算部23、弾性画像構成部24、弾性スキャンコンバータ25において一連の処理を行なう。
 2次元弾性画像記憶部26は、一連のフレームナンバー“1”~“n”の設定範囲のラスタアドレスにおける2次元弾性画像データを記憶する。図5は、フレームナンバー“1”~“n”の2次元弾性画像データを作成する形態を示すものである。図5(a)(b)は、A方向及びB方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが記憶媒体200と記憶媒体201から読み出される形態を示すものであり、図5(c)は、フレームナンバー“1”~“n”の設定範囲のラスタアドレスにおける2次元弾性画像データが2次元弾性画像記憶部26に記憶された状態を示すものである。
 弾性ボリュームデータ作成部27は、設定範囲のラスタアドレスにおける複数の2次元弾性画像データから弾性ボリュームデータを作成する。2次元弾性画像記憶部26に記憶されたnフレーム分の2次元弾性画像データを読み出し、スキャン面毎に順次並べて弾性ボリュームデータを作成する。このように、被検体内の2次元弾性画像データの集合であるレンダリング用の設定範囲のラスタアドレスにおける弾性ボリュームデータが構成される。
 3次元弾性画像構成部28は、弾性ボリュームデータの各点に対応する弾性値(歪み、弾性率等のいずれか1つ)と不透明度から各点の画像情報を求め、3次元弾性画像を構成する。例えば下記式による、視線方向の弾性ボリュームデータの弾性値を深さ方向に演算するボリュームレンダリング法を用いて3次元弾性画像を構成する。なお、この視線方向は、白黒3次元断層画像構成部11のボリュームレンダリング処理等における視線方向と同一方向である。
Figure JPOXMLDOC01-appb-M000002
   αouti :i番目の不透明度の出力
   αini  :i番目の不透明度の入力
   αi    :i番目の不透明度
   Eouti  :i番目の弾性値の出力
   Eini   :i番目の弾性値の入力
   Ei     :i番目の弾性値
 また、3次元弾性画像構成部28は、3次元弾性画像を構成する画像情報に光の3原色すなわち赤(R)値、緑(G)値、青(B)値を付与する。3次元弾性画像構成部28は、例えば、歪みが周囲に比べて大きい箇所又は弾性率が小さい箇所に赤色コードを付与し、歪みが周囲に比べて小さい箇所又は弾性率が大きい箇所に青色コードを付与するなどの処理を行なう。
 (並列表示・重ねあわせ表示)
 切換合成部12は、画像メモリと、画像処理部と、画像選択部とを備えて構成されている。ここで、画像メモリは、白黒3次元断層画像構成部11から出力される白黒3次元断層画像と3次元弾性画像構成部28から出力される設定範囲のラスタアドレスにおけるカラー3次元弾性画像とを時間情報とともに格納するものである。
 また、画像処理部は、画像メモリに確保された白黒3次元断層画像データと設定範囲のラスタアドレスにおけるカラー3次元弾性画像データとを合成割合を変更して合成するものである。画像処理部は、同じ視点位置における白黒3次元断層画像データとカラー3次元弾性画像データを画像メモリから読み出す。そして、画像処理部は、白黒3次元断層画像データとカラー3次元弾性画像データを合成するが、白黒3次元断層画像データとカラー3次元弾性画像データはボリュームレンダリング処理等後の画像データであるため、実質的にはそれぞれ2次元的に加算されることとなる。
 具体的には、例えば下記数式に示すように、各点において、カラー3次元弾性画像データの赤(R)値、緑(G)値、青(B)値と、白黒3次元断層画像データの赤(R)値、緑(G)値、青(B)値とをそれぞれ加算する。なお、αは0以上1以下の係数であり、入力部30で任意に設定することができる。
Figure JPOXMLDOC01-appb-M000003
 例えば、上記αを0又は1とすることにより、白黒3次元断層画像データ又はカラー3次元弾性画像データのみを抽出することもできる。画像選択部は、ボリュームメモリ内の白黒3次元断層画像データと設定範囲のラスタアドレスにおけるカラー3次元弾性画像データ及び画像処理部の合成画像データのうちから画像表示部10に表示する画像を選択するものである。
 画像表示部13は、切換合成部12で合成された合成画像、白黒3次元断層画像又は設定範囲のラスタアドレスにおけるカラー3次元弾性画像を並列に表示する。
以上、本実施形態によれば、被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を構成し、表示することができる。また、設定範囲のラスタアドレスに絞って各フレームの弾性演算を行なうことにより、弾性演算時間を短くすることができる。
 (第2の実施形態:繋ぐ)
 次に第2の実施形態について図1~図6を用いて説明する。第1の実施形態と異なる点は、隣接するラスタアドレスにおけるRF信号フレームデータを用いて3次元弾性画像を構成する点である。
 第1の実施形態では、設定した範囲のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶して、3次元弾性画像を構成した。第2の実施形態では、さらに第1の実施形態で設定した範囲のラスタアドレスに隣接する範囲のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶して、第1の実施形態で構成した3次元弾性画像に繋げて3次元弾性画像を構成する。
 具体的には、第1の実施形態では、“1”~“50”のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶した。そして、第2の実施形態では、“1”~“50”のラスタアドレスに隣接する“51”~“100”のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶する。
 そして、図4に示すように、RF信号フレームデータ選択部21は、RF信号フレームデータ記憶部20の記憶媒体200と記憶媒体201に記憶された同じフレームナンバー“1”~“n”の設定範囲のラスタアドレスにおけるRF信号フレームデータをそれぞれ選択して、第1の実施形態と同様に、変位計測部22、弾性情報演算部23、弾性画像構成部24、弾性スキャンコンバータ25において一連の処理を行なう。
 図6(a)(b)は、A方向及びB方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが記憶媒体200と記憶媒体201から読み出される形態を示すものであり、図6(c)は、フレームナンバー“1”~“n”の2次元弾性画像データが2次元弾性画像記憶部26に記憶された状態を示すものである。本実施形態では、“1”~“100”のラスタアドレスにおける2次元弾性画像データが2次元弾性画像記憶部26に記憶される。
 そして、弾性ボリュームデータ作成部27は、“1”~“100”のラスタアドレスにおける複数の2次元弾性画像データから弾性ボリュームデータを作成する。2次元弾性画像記憶部26に記憶されたnフレーム分の2次元弾性画像データを読み出し、スキャン面毎に順次並べて弾性ボリュームデータを作成する。このように、被検体内の2次元弾性画像データの集合であるレンダリング用の“1”~“100”のラスタアドレスにおける弾性ボリュームデータが構成される。
 3次元弾性画像構成部28は、弾性ボリュームデータの各点に対応する弾性値(歪み、弾性率等のいずれか1つ)と不透明度から各点の画像情報を求め、3次元弾性画像を構成する。
 さらに、“101”~“150”のラスタアドレスにおけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶して、3次元弾性画像を構成することもできる。
 以上、本実施形態によれば、前回取得したラスタアドレスの3次元弾性画像に繋げて、3次元弾性画像を構成することができる。
 (第3の実施形態:関心領域(手動))
 次に第3の実施形態について図1~8を用いて説明する。第1の実施形態、第2の実施形態と異なる点は、設定した関心領域に該当する弾性画像から3次元弾性画像を構成する点である。
 まず、図2(b)に示すように、白黒3次元断層画像構成部11によって構成されたフレームナンバー“1”~“n”のいずれか1つの白黒3次元断層画像40に入力部30によって関心領域42を設定する。具体的には、図7に示すように、入力部30のトラックボールを用いて、円形、楕円形、矩形等をトラックし、入力部30のボタンを用いて、関心領域42を決定する。
 そして、制御部31は、関心領域42の境界(破線部)のアドレス(座標)をRF信号フレームデータ記憶部20へ連絡する。RF信号フレームデータ記憶部20は、関心領域42の境界内におけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶する。
 そして、図4に示すように、RF信号フレームデータ選択部21は、RF信号フレームデータ記憶部20の記憶媒体200と記憶媒体201に記憶された同じフレームナンバー“1”~“n”の関心領域42の境界内におけるRF信号フレームデータをそれぞれ選択して、第1の実施形態と同様に、変位計測部22、弾性情報演算部23、弾性画像構成部24、弾性スキャンコンバータ25において一連の処理を行なう。
 図8(a)(b)は、A方向及びB方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが記憶媒体200と記憶媒体201から読み出される形態を示すものであり、図8(c)は、フレームナンバー“1”~“n”の2次元弾性画像データが2次元弾性画像記憶部26に記憶された状態を示すものである。本実施形態では、関心領域42の境界内における2次元弾性画像データが2次元弾性画像記憶部26に記憶される。
 そして、弾性ボリュームデータ作成部27は、関心領域42の境界内における複数の2次元弾性画像データから弾性ボリュームデータを作成する。2次元弾性画像記憶部26に記憶されたnフレーム分の2次元弾性画像データを読み出し、スキャン面毎に順次並べて弾性ボリュームデータを作成する。このように、被検体内の2次元弾性画像データの集合であるレンダリング用の関心領域42の境界内における弾性ボリュームデータが構成される。3次元弾性画像構成部28は、弾性ボリュームデータの各点に対応する弾性値(歪み、弾性率等のいずれか1つ)と不透明度から各点の画像情報を求め、3次元弾性画像を構成する。図8(c)は、関心領域42におけるカラー3次元弾性画像と白黒3次元断層画像を切替合成部12で合成した合成画像を示すものである。
 以上、本実施形態によれば、関心領域42内における3次元弾性画像を構成することができる。また、関心領域42内に絞って各フレームの弾性演算を行なうことにより、弾性演算時間を短くすることができる。
 (第4の実施形態:関心領域(弾性情報))
 次に第4の実施形態について図1~11を用いて説明する。第1の実施形態~第3の実施形態と異なる点は、弾性情報を用いて関心領域50又は関心領域70を設定し、設定した関心領域内の弾性画像から3次元弾性画像を構成する点である。
 (弾性率)
 まず、図9に示すように、関心領域50として抽出したい弾性率の範囲を入力部30によって設定する。ここでは、弾性率を例に挙げて説明するが、歪み、粘性等を用いて関心領域50を設定してもよい。
 図9(a)に示すように、入力部30を用いて弾性率の範囲を、例えばa以上と設定する。なお、弾性率の範囲をa以上b以下として設定してもよい。a、bは自然数である。制御部31は、弾性情報演算部23にフレームナンバー“1”~“n”の各点(座標)に対応する弾性情報から弾性率がa以上の範囲を特定させる。図9(b)に示すように、フレームナンバー“1”~“n”の各フレームに弾性率がa以上の関心領域50が設定される。
 (2ROI比)
 また、歪みの比を用いて関心領域70を設定してもよい。図10(a)に示すように、超音波探触子2に被検体1を押すための圧迫板60のと、圧迫板60の表面に参照変形体62を設けて構成される。参照変形体62は、オイル系のゲル素材やアクリルアミドなどの水をベースとしたゲル素材、シリコンなどをベースとして生成されたものである。
 参照変形体62の歪みを基準にして被検体1内部の各点における歪みの比を演算する。具体的には、図10(b)に示すように、弾性画像では最も超音波探触子2に近い組織領域に、参照変形体62の画像領域66が表示される。また、参照変形体62の下方に各組織1~5における弾性画像64が表示される。この参照変形体62の画像領域66に基準領域68を入力部30によって設定する。そして、制御部31は、弾性情報演算部23に歪み比の演算を行なわせる。弾性情報演算部23は、各点i,jにおける歪みεi,jと基準歪みεとの比(指標値Ri,j)を次式により求める。
Figure JPOXMLDOC01-appb-M000004
 そして、弾性情報演算部23は、指標値Ri,jが、基準値以上である領域を抽出する。この基準値は入力部30で任意に設定することができる。弾性情報演算部23は、指標値Ri,jが基準値以上の領域を関心領域70とする。
 また、弾性情報演算部23は、参照変形体62の弾性率を予め計測しておくことにより、各点における生体組織のおおまかな弾性率を推定することができる。弾性情報演算部23は、その弾性率によって関心領域70を設定してもよい。
 そして、制御部31は、上記のように設定された関心領域50又は関心領域70のアドレス(座標)をRF信号フレームデータ記憶部20へ連絡する。RF信号フレームデータ記憶部20は、関心領域50又は関心領域70内におけるRF信号フレームデータを記憶媒体200と記憶媒体201に記憶する。
 そして、図4に示すように、RF信号フレームデータ選択部21は、RF信号フレームデータ記憶部20の記憶媒体200と記憶媒体201に記憶された同じフレームナンバー“1”~“n”の関心領域50又は関心領域70内におけるRF信号フレームデータをそれぞれ選択して、第1の実施形態と同様に、変位計測部22、弾性情報演算部23、弾性画像構成部24、弾性スキャンコンバータ25において一連の処理を行なう。
 図11(a)(b)は、A方向及びB方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが記憶媒体200と記憶媒体201から読み出される形態を示すものであり、図11(c)は、フレームナンバー“1”~“n”の2次元弾性画像データが2次元弾性画像記憶部26に記憶された状態を示すものである。本実施形態では、関心領域50又は関心領域70内における2次元弾性画像データが2次元弾性画像記憶部26に記憶される。
 そして、弾性ボリュームデータ作成部27は、関心領域50又は関心領域70内における複数の2次元弾性画像データから弾性ボリュームデータを作成する。2次元弾性画像記憶部26に記憶されたnフレーム分の2次元弾性画像データを読み出し、スキャン面毎に順次並べて弾性ボリュームデータを作成する。このように、被検体内の2次元弾性画像データの集合であるレンダリング用の関心領域50又は関心領域70内における弾性ボリュームデータが構成される。3次元弾性画像構成部28は、弾性ボリュームデータの各点に対応する弾性値(歪み、弾性率等のいずれか1つ)と不透明度から各点の画像情報を求め、3次元弾性画像を構成する。
 以上、本実施形態によれば、弾性情報によって設定された関心領域50又は関心領域70における3次元弾性画像を構成することができる。
 1 被検体、2 超音波探触子、3 送信部、4 受信部、5 超音波送受信制御部、6 整相加算部、7 断層画像構成部、8 白黒スキャンコンバータ、9 2次元断層画像記憶部、10 白黒ボリュームデータ作成部、11 白黒3次元断層画像構成部、12 切替合成部、13 画像表示部、20 RF信号フレームデータ記憶部、21 RF信号フレームデータ選択部、22 変位演算部、23 弾性情報演算部、24 弾性画像構成部、25 カラースキャンコンバータ、26 2次元弾性画像記憶部、27 弾性ボリュームデータ作成部、28 カラー3次元弾性画像構成部

Claims (12)

  1.  超音波を送受信する振動子を有する超音波探触子と、
     前記超音波探触子を介して被検体に超音波を送信する送信部と、
     前記被検体からの反射エコー信号を受信する受信部と、
     該受信部により受信された反射エコー信号に基づいてRF信号フレームデータの所定範囲を記憶するRF信号フレームデータ記憶部と、
     RF信号フレームデータ記憶部に記憶された前記所定範囲におけるRF信号フレームデータを選択するRF信号フレームデータ選択部と、
     前記所定範囲におけるRF信号フレームデータから歪み又は弾性率を演算する弾性情報演算部と、
     該演算された歪み又は弾性率に基づいて3次元弾性画像を構成する3次元弾性画像構成部と、
     前記3次元弾性画像を表示する表示部とを備えることを特徴とする超音波診断装置。
  2.  前記RF信号フレームデータの所定範囲は、前記超音波のラスタアドレスの設定範囲に基づいて設定されることを特徴とする請求項1記載の超音波診断装置。
  3.  前記RF信号フレームデータの所定範囲は、前記表示部に設定される関心領域に基づいて設定されることを特徴とする請求項1記載の超音波診断装置。
  4.  前記関心領域を入力する入力部を備えることを特徴とする請求項3記載の超音波診断装置。
  5.  前記関心領域は、前記歪み又は弾性率に基づいて設定されることを特徴とする請求項3記載の超音波診断装置。
  6.  前記関心領域は、前記歪みの比に基づいて設定されることを特徴とする請求項3記載の超音波診断装置。
  7.  前記超音波探触子は、矩形又は扇形をなす複数の振動子の配列方向と直交する方向に振動子が傾くように構成されていることを特徴とする請求項1記載の超音波診断装置。
  8.  前記超音波探触子は、前記振動子の傾きを計測する位置センサを有し、前記振動子の傾きをフレームナンバーとして出力することを特徴とする請求項7記載の超音波診断装置。
  9.  前記RF信号フレームデータ記憶部は、一方向にスキャンされる一連のRF信号フレームデータを前記振動子の傾きに対応付けられたフレームナンバーとともに記憶する記憶媒体を備えることを特徴とする請求項1記載の超音波診断装置。
  10.  前記RF信号フレームデータ選択部は、前記RF信号フレームデータ記憶部に記憶された同じフレームナンバーの前記RF信号フレームデータをそれぞれ選択することを特徴とする請求項9記載の超音波診断装置。
  11.  前記RF信号フレームデータから断層画像を構成する断層画像構成部と、
     複数の前記断層画像から断層ボリュームデータを作成する断層ボリュームデータ作成部と、前記断層ボリュームデータから3次元断層画像を構成する3次元断層画像構成部とを備えることを特徴とする請求項1記載の超音波診断装置。
  12.  被検体に超音波を送受信するステップと、
     該受信部により受信された反射エコー信号に基づくRF信号フレームデータの所定範囲を記憶するステップと、
     RF信号フレームデータ記憶部に記憶された少なくとも2つの所定範囲における前記RF信号フレームデータを選択するステップと、
     選択された所定範囲におけるRF信号フレームデータの一部から歪み又は弾性率を演算するステップと、
     該演算された歪み又は弾性率に基づいて3次元弾性画像を構成するステップを含む超音波画像表示方法。
PCT/JP2009/061290 2008-09-08 2009-06-22 超音波診断装置及び超音波画像表示方法 WO2010026823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010527733A JP5438012B2 (ja) 2008-09-08 2009-06-22 超音波診断装置
US13/062,769 US8469892B2 (en) 2008-09-08 2009-06-22 Ultrasonic diagnostic apparatus and method of displaying ultrasonic image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008229179 2008-09-08
JP2008-229179 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010026823A1 true WO2010026823A1 (ja) 2010-03-11

Family

ID=41796996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061290 WO2010026823A1 (ja) 2008-09-08 2009-06-22 超音波診断装置及び超音波画像表示方法

Country Status (3)

Country Link
US (1) US8469892B2 (ja)
JP (1) JP5438012B2 (ja)
WO (1) WO2010026823A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062106A1 (ja) * 2009-11-18 2011-05-26 株式会社 日立メディコ 超音波診断装置、及び3次元弾性比算出方法
JP2011245006A (ja) * 2010-05-26 2011-12-08 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
WO2012014739A1 (ja) * 2010-07-27 2012-02-02 株式会社 日立メディコ 超音波診断装置
JP2012065737A (ja) * 2010-09-22 2012-04-05 Hitachi Medical Corp 超音波診断装置及び超音波画像表示方法
JP2012115283A (ja) * 2010-11-29 2012-06-21 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
JP2012135553A (ja) * 2010-12-28 2012-07-19 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
CN103108593A (zh) * 2010-09-21 2013-05-15 株式会社日立医疗器械 超声波诊断装置及超声波图像的显示方法
CN103118600A (zh) * 2010-09-21 2013-05-22 株式会社日立医疗器械 超声波诊断装置以及超声波图像的显示方法
JPWO2021020038A1 (ja) * 2019-07-26 2021-02-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067938A1 (ja) * 2009-12-04 2011-06-09 パナソニック株式会社 超音波診断装置
JP5606998B2 (ja) * 2011-07-28 2014-10-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
US20140290368A1 (en) * 2013-03-28 2014-10-02 Siemens Energy, Inc. Method and apparatus for remote position tracking of an industrial ultrasound imaging probe
WO2015149805A1 (en) * 2014-04-04 2015-10-08 Aarhus Universitet Reference material element for ultrasound scanning probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060853A (ja) * 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
WO2006013916A1 (ja) * 2004-08-05 2006-02-09 Hitachi Medical Corporation 弾性像表示方法及び超音波診断装置
WO2006106852A1 (ja) * 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
JP2006271523A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 超音波診断装置
WO2006121031A1 (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2007105400A (ja) * 2005-10-17 2007-04-26 Toshiba Corp 超音波診断装置及び画像処理装置
JP2007125152A (ja) * 2005-11-02 2007-05-24 Hitachi Medical Corp 超音波診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217981A (ja) * 1993-01-29 1994-08-09 Toshiba Corp 超音波診断装置
US20040034304A1 (en) * 2001-12-21 2004-02-19 Chikayoshi Sumi Displacement measurement method and apparatus, strain measurement method and apparatus elasticity and visco-elasticity constants measurement apparatus, and the elasticity and visco-elasticity constants measurement apparatus-based treatment apparatus
JP4657106B2 (ja) * 2003-11-21 2011-03-23 株式会社日立メディコ 超音波診断装置
JP4769715B2 (ja) * 2004-06-22 2011-09-07 株式会社日立メディコ 超音波診断装置および弾性画像表示方法
CN101370431B (zh) * 2006-01-20 2011-10-05 株式会社日立医药 弹性图像显示方法及弹性图像显示装置
JP5188959B2 (ja) * 2006-04-07 2013-04-24 株式会社日立メディコ 超音波探触子及び超音波診断装置
GB2438461A (en) * 2006-05-23 2007-11-28 Univ Cambridge Tech Weighted phase separation based ultrasonic deformation estimation
JP4898809B2 (ja) * 2006-07-18 2012-03-21 株式会社日立メディコ 超音波診断装置
EP2050398B1 (en) * 2006-07-31 2012-04-11 Hitachi Medical Corporation Pressing device, and ultrasonic probe and ultrasonic diagnosis device using the pressing device
EP2123224A4 (en) * 2006-12-20 2013-01-09 Hitachi Medical Corp ULTRASOUND DEVICE
EP2189118A4 (en) * 2007-09-06 2013-10-23 Hitachi Medical Corp ULTRASOUND DEVICE
JP5322945B2 (ja) * 2007-11-06 2013-10-23 株式会社日立メディコ 超音波診断装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060853A (ja) * 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
WO2006013916A1 (ja) * 2004-08-05 2006-02-09 Hitachi Medical Corporation 弾性像表示方法及び超音波診断装置
JP2006271523A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 超音波診断装置
WO2006106852A1 (ja) * 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
WO2006121031A1 (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corporation 超音波診断装置及び超音波画像表示方法
JP2007105400A (ja) * 2005-10-17 2007-04-26 Toshiba Corp 超音波診断装置及び画像処理装置
JP2007125152A (ja) * 2005-11-02 2007-05-24 Hitachi Medical Corp 超音波診断装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062106A1 (ja) * 2009-11-18 2011-05-26 株式会社 日立メディコ 超音波診断装置、及び3次元弾性比算出方法
US9044175B2 (en) 2009-11-18 2015-06-02 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and three-dimensional elastic ratio calculating method
JP5689073B2 (ja) * 2009-11-18 2015-03-25 株式会社日立メディコ 超音波診断装置、及び3次元弾性比算出方法
JP2011245006A (ja) * 2010-05-26 2011-12-08 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
WO2012014739A1 (ja) * 2010-07-27 2012-02-02 株式会社 日立メディコ 超音波診断装置
JP5770189B2 (ja) * 2010-07-27 2015-08-26 株式会社日立メディコ 超音波診断装置
US9101289B2 (en) 2010-07-27 2015-08-11 Hitachi Medical Corporation Ultrasonic diagnostic apparatus
CN102933155A (zh) * 2010-07-27 2013-02-13 株式会社日立医疗器械 超声波诊断装置
CN103118600A (zh) * 2010-09-21 2013-05-22 株式会社日立医疗器械 超声波诊断装置以及超声波图像的显示方法
US8879816B2 (en) 2010-09-21 2014-11-04 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic image display method
CN103108593A (zh) * 2010-09-21 2013-05-15 株式会社日立医疗器械 超声波诊断装置及超声波图像的显示方法
US9107634B2 (en) 2010-09-21 2015-08-18 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and method of displaying ultrasonic image
EP2620102A4 (en) * 2010-09-21 2016-12-07 Hitachi Ltd ULTRASONIC DIAGNOSIS DEVICE AND METHOD FOR DISPLAYING ULTRASONIC IMAGES
JP2012065737A (ja) * 2010-09-22 2012-04-05 Hitachi Medical Corp 超音波診断装置及び超音波画像表示方法
JP2012115283A (ja) * 2010-11-29 2012-06-21 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
JP2012135553A (ja) * 2010-12-28 2012-07-19 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
JPWO2021020038A1 (ja) * 2019-07-26 2021-02-04
JP7132440B2 (ja) 2019-07-26 2022-09-06 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法

Also Published As

Publication number Publication date
JP5438012B2 (ja) 2014-03-12
US20110178404A1 (en) 2011-07-21
US8469892B2 (en) 2013-06-25
JPWO2010026823A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5438012B2 (ja) 超音波診断装置
JP5470253B2 (ja) 超音波診断装置
JP5203605B2 (ja) 超音波診断装置
JP5496302B2 (ja) 超音波診断装置
JP4657106B2 (ja) 超音波診断装置
JP5479353B2 (ja) 超音波診断装置
JP5689073B2 (ja) 超音波診断装置、及び3次元弾性比算出方法
US9514564B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP5770189B2 (ja) 超音波診断装置
WO2011030812A1 (ja) 超音波診断装置及び弾性画像表示方法
JP4903271B2 (ja) 超音波撮像システム
JP5411699B2 (ja) 超音波撮像装置
WO2010024168A1 (ja) 超音波診断装置
KR101100464B1 (ko) 부 관심영역에 기초하여 3차원 초음파 영상을 제공하는 초음파 시스템 및 방법
US9247922B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP2004135929A (ja) 超音波診断装置
JPWO2011001776A1 (ja) 超音波診断装置、せん断波の伝搬画像生成方法
JP5789599B2 (ja) 超音波診断装置
JP4732086B2 (ja) 超音波診断装置
JP4754838B2 (ja) 超音波診断装置
JP4789243B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527733

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13062769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811352

Country of ref document: EP

Kind code of ref document: A1