JP5188959B2 - 超音波探触子及び超音波診断装置 - Google Patents

超音波探触子及び超音波診断装置 Download PDF

Info

Publication number
JP5188959B2
JP5188959B2 JP2008509879A JP2008509879A JP5188959B2 JP 5188959 B2 JP5188959 B2 JP 5188959B2 JP 2008509879 A JP2008509879 A JP 2008509879A JP 2008509879 A JP2008509879 A JP 2008509879A JP 5188959 B2 JP5188959 B2 JP 5188959B2
Authority
JP
Japan
Prior art keywords
pressure
compression bag
liquid
ultrasonic
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008509879A
Other languages
English (en)
Other versions
JPWO2007116957A1 (ja
Inventor
剛 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2008509879A priority Critical patent/JP5188959B2/ja
Publication of JPWO2007116957A1 publication Critical patent/JPWO2007116957A1/ja
Application granted granted Critical
Publication of JP5188959B2 publication Critical patent/JP5188959B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/168Fluid filled sensor housings

Description

本発明は、超音波を利用して被検体内の撮像対象部位について断層像、生体組織の硬さまたは軟らかさを示す弾性画像を表示するための超音波探触子及び超音波診断装置に関する。
超音波診断装置は、超音波探触子により被検体内部に超音波を送信し、被検体内部から生体組織の構造に応じた超音波の反射エコー信号を受信し、例えばBモード像等の断層像を構成して診断用に表示する。
近年、手動又は機械的な方法により超音波探触子で被検体を圧迫して超音波受信信号を計測し、計測時間が異なる二つの超音波受信信号のフレームデータに基づいて圧迫により生じた生体各部の変位を求め、その変位データに基づいて生体組織の弾性を表す弾性画像を生成することが行なわれている。
生体組織の弾性に関する物理量には、種々のものが知られているが、例えば、生体組織の歪み又は弾性率が用いられている。ここで、歪みは生体組織の移動量である変位を空間微分して得られる相対的な値であり、弾性率は生体組織の各部位に作用する応力変化を歪みで除した定量的な値である。そのため、弾性率を求めるためには、生体組織に作用する圧力を計測する必要がある。生体組織に作用する圧力を計測するために、超音波探触子の振動子の周囲に圧力センサを配置させ、被検体を圧迫する圧力を間接的に計測する超音波診断装置が開示されている(例えば、特許文献1)。
特開2004-267464号公報 特許文献1開示されている圧力センサは、被検体と超音波送受信面の周辺部との間の圧力は計測しているが、超音波が走査される超音波送受信面直下の超音波走査領域における圧力は計測できてきない。
つまり、特許文献1では、超音波走査領域の圧力を超音波送受信面の周辺部の圧力情報から推定しているに過ぎず、超音波送受信領域における真の圧力は得られない。そのため、推定した圧力を用いて求められる弾性率の精度が落ちてしまう可能性がある。
そこで本発明は、超音波走査領域に加わる圧力を実測することにより、精度の高い弾性率を求めることを目的とする。
前記課題を解決するために、本発明は以下の様に構成される。被検体に加える圧力を計測する圧力計測手段を備えた超音波探触子において、液体が充填され、超音波送受信面に設置されるとともに前記被検体を圧迫する圧迫袋を備え、前記圧力計測手段は前記圧迫袋内に充填された液体の圧力を計測する。
また、超音波探触子と、前記超音波探触子を介して被検体の断層部位のRF信号フレームデータに基づいて断層像を構成する断層画像構成手段と、前記RF信号フレームデータに基づいて前記断層部位における組織の歪み又は弾性率を求める弾性情報演算手段と、前記弾性情報演算手段で求めた歪み又は弾性率に基づいて前記断層部位における弾性画像を生成する弾性画像構成手段と、前記断層像及び/又は前記弾性画像を表示する表示手段とを備える超音波診断装置において、前記超音波探触子の超音波送受信面に設置され、液体が充填される圧迫袋と、前記圧迫袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入出手段と、前記圧迫袋内に充填された液体の圧力を計測する圧力計測手段と、前記圧力計測手段で計測された圧力情報に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を演算する圧力演算手段とを備え、前記弾性情報演算手段は前記圧力情報を用いて弾性率を演算する。
前記圧力演算手段は、前記圧力計測手段により、前記被検体に前記圧迫袋を接触させていない状態で計測した第1の圧力値と、前記被検体に前記圧迫袋を接触させた状態で計測した第2の圧力値との差に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を演算する。また、前記圧迫袋への前記液体の流入出量を計測する流量計測手段を備え、前記圧力演算手段は、前記流量計測手段で計測された流入出量に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を演算する。
以上より、本発明によれば、超音波走査領域に加わる圧力を実測することにより、精度の高い弾性率を求めることできる。
本発明の全体構成を説明するための図。 本発明の超音波探触子の圧迫機構を説明するための図。 本発明の液体注入出操作部を説明するための図。 本発明の第1の実施形態を説明するための図。 本発明の第1の実施形態を説明するための図。 本発明の第2の実施形態を説明するための図。 本発明の第2の実施形態を説明するための図。 本発明の第2の実施形態を説明するための図。 本発明のカテーテル型圧力センサを説明するための図。 本発明の圧迫袋外部から圧力を計測する形態を説明するための図。 本発明の圧迫袋外部から圧力を計測する形態を説明するための図。 本発明の流量センサの形態を説明するための図。 本発明の流量センサの形態を説明するための図。 本発明の流量センサの形態を説明するための図。 本発明の流量センサの形態を説明するための図。 本発明の流量センサの形態を説明するための図。 本発明の自動圧迫機構を説明するための図。 本発明の被検体外部から圧迫する形態を説明するための図。
本発明を適用してなる超音波探触子及び超音波診断装置の実施形態について、図を用いて説明する。図1は本発明を適用した超音波診断装置の構成を示すブロック図である。
図1に示すように、超音波診断装置1には、被検体10に当接させて用いる超音波探触子12と、超音波探触子12を介して被検体10に時間間隔をおいて超音波を繰り返し送信する送信部14と、被検体10から発生する時系列の反射エコー信号を受信する受信部16と、送信部14と受信部16を制御する送受信制御部17と、受信部16で受信された反射エコーを整相加算する整相加算部18とが備えられている。
また、整相加算部18からのRF信号フレームデータに基づいて被検体の濃淡断層画像例えば白黒断層画像を構成する断層画像構成部20と、断層画像構成部20の出力信号を画像表示器26の表示に合うように変換する白黒スキャンコンバータ22とが備えられている。
また、整相加算部18から出力されるRF信号フレームデータを記憶するRF信号フレームデータ記憶部28と、RF信号フレームデータ記憶部28から少なくとも2枚のフレームデータを選択し、被検体10の生体組織の変位を計測する変位計測部30と、変位計測部30で計測された変位情報から歪み又は弾性率を求める弾性情報演算部32と、弾性情報演算部32で演算した歪み又は弾性率からカラー弾性画像を構成する弾性画像構成部34と、弾性画像構成部34の出力信号を画像表示器26の表示に合うように変換するカラースキャンコンバータ36とが備えられている。
そして、白黒断層画像とカラー弾性画像を重ね合わせたり、並列に表示させたり、切替を行う切替加算部24と、合成された合成画像を表示する画像表示器26とが備えられている。
被検体10と超音波探触子12との間には圧力を計測するための圧迫袋38が備えられている。この圧迫袋38は、超音波を通過させることができる材質であり、超音波探触子12の超音波走査面上に配置されている。圧迫袋38は、例えば、ポリウレタン、塩ビ、ラテックス(天然ゴム)、シリコンなど、生体にも安全な素材の膜で形成されている。
圧迫袋38の内部には水や油等の液体が充填されている。この液体を圧迫袋38に注入出することにより、圧迫袋38を膨張させたり収縮させたりする液体注入出操作部44が備えられている。
液体注入出操作部44によって、液体を注入して圧迫袋38を膨張させると被検体10への圧迫が強まり、圧迫袋38から液体を排出して収縮させると被検体10への圧迫が緩まる。液体注入出操作部44の操作は、自動制御の場合、装置制御インターフェイス部50で行うが、手動でも行うことができるようになっている。
また、液体注入出操作部44により注入出した液体の流量を計測する流量センサ部42と、圧迫袋38の内部の圧力(水圧)を計測する圧力センサ部40と、RF信号フレームデータ記憶部28のRF信号フレームデータから注入出した液体の流量を計測するための圧迫袋膜面距離演算部48と、流量センサ部42又は圧迫袋膜面距離演算部48で計測された流量情報、又は圧力センサ40の圧力情報から圧迫袋38と接する被検体10の超音波走査領域の圧力を演算する圧力演算部46とを備えている。
圧力演算部46で演算された圧力情報は、弾性情報演算部32に入力され、変位計測部30の変位情報とから弾性率が求められる。なお、詳細は後述する。
ここで、超音波診断装置1の全体構成について詳細に説明する。
超音波探触子12は、複数の振動子を配設して形成されており、被検体10に振動子を介して超音波を送受信する機能を有している。送信部14は、超音波探触子12を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部16は、超音波探触子12で受信した反射エコー信号について所定のゲインで増幅してRF信号すなわち受波信号を生成するものである。
整相加算部18は、受信部16で増幅されたRF信号を入力して位相制御し、一点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成するものである。
断層画像構成部20は、整相加算部18からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行い、断層画像データを得るものである。
また、白黒スキャンコンバータ22は、断層画像構成部20からの断層画像データをデジタル信号に変換するA/D変換器と、変換された複数の断層画像データを時系列に記憶するフレームメモリと、制御コントローラを含んで構成されている。
この白黒スキャンコンバータ22は、フレームメモリに格納された被検体内の断層フレームデータを一画像として取得し、取得された断像フレームデータをテレビ同期で読み出すものである。
RFフレームデータ記憶部28は、整相加算部18からの複数のRF信号フレームデータを格納するものである。変位計測部30は、RFフレームデータ記憶部28に格納されたRF信号フレームデータ群から一組すなわち二つのRF信号フレームデータを選択する。
例えば、整相加算部16から時系列すなわち画像のフレームレートに基づいて生成されるRF信号フレームデータをRFフレームデータ記憶部28に順次記憶し、記憶されたRF信号フレームデータ(N)を第一のデータとして選択すると同時に、時間的に過去に記憶されたRF信号フレームデータ群(N-1,N-2,N-3,..,N-M)の中から一つのRF信号フレームデータ(X)を選択する。
なお、ここでN,M,XはRF信号フレームデータに付されたインデックス番号であり、自然数とする。
そして、変位計測部30は、選択された一組のデータすなわちRF信号フレームデータ(N)及びRF信号フレームデータ(X)から一次元或いは二次元相関処理を行って、断層画像の各点に対応する生体組織における変位や移動ベクトルすなわち変位の方向と大きさに関する一次元又は二次元変位分布を求める。
ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング法とは、画像を例えばN×N画素からなるブロックに分け、関心領域内のブロックに着目し、着目しているブロックに最も近似しているブロックを前のフレームから探し、これを参照して予測符号化すなわち差分により標本値を決定する処理を行う。
弾性情報演算部32は、変位計測部30から出力される計測値、例えば移動ベクトルと、圧力演算部46から出力される圧力値とから断層画像上の各点に対応する生体組織の歪みや弾性率を演算し、その歪みや弾性率に基づいて弾性画像信号すなわち弾性フレームデータを生成するものである。
このとき、歪みのデータは、生体組織の移動量例えば変位を空間微分することによって算出される。また、弾性率のデータは、圧力の変化を歪みの変化で除することによって計算される。例えば、変位計測部30により計測された変位をL(X),圧力演算部46により計測された圧力をP(X)とすると、歪みΔS(X)は、L(X)を空間微分することによって算出することができるから、ΔS(X)=ΔL(X)/ΔXという式を用いて求められる。
また、弾性率データのヤング率Ym(X)は、Ym=(ΔP(X))/ΔS(X)という式によって算出される。このヤング率Ymから断層画像の各点に相当する生体組織の弾性率が求められるので、二次元の弾性画像データを連続的に得ることができる。なお、ヤング率とは、物体に加えられた単純引張り応力と、引張りに平行に生じるひずみに対する比である。
弾性画像構成部34は、フレームメモリと画像処理部とを含んで構成されており、弾性情報演算部32から時系列に出力される弾性フレームデータをフレームメモリに確保し、確保されたフレームデータに対し画像処理を行うものである。
カラースキャンコンバータ36は、弾性画像構成部34からの弾性フレームデータに色相情報を付与する機能を有したものである。つまり、弾性フレームデータに基づいて光の三原色すなわち赤(R)、緑(G)、青(B)に変換するものである。例えば、歪みが大きい弾性データを赤色コードに変換すると同時に、歪みが小さい弾性データを青色コードに変換する。
そして、本発明に係る切替加算部24は、フレームメモリと、画像処理部と、画像選択部とを備えて構成されている。ここで、フレームメモリは、白黒スキャンコンバータ32からの断層画像データとカラースキャンコンバータ36からの弾性画像データとを格納するものである。
また、画像処理部は、フレームメモリに確保された断層画像データと弾性画像データとを合成割合を変更して合成するものである。合成画像の各画素の輝度情報及び色相情報は、白黒断層画像とカラー弾性画像の各情報を合成割合で加算したものとなる。さらに、画像選択部は、フレームメモリ内の断層画像データと弾性画像データ及び画像処理部の合成画像データのうちから画像表示器26に表示する画像を選択するものである。
ここで、本発明の超音波探触子12について説明する。図2(a)は、超音波探触子12の側面図を示すものである。超音波探触子12は体内挿入型の探触子であり、被検体内に挿入できるよう円柱状になっている。超音波探触子12の長手方向の先端部は球状になっており、他端部は超音波診断装置1の送波部14又は受信部16に繋がるケーブルに接続されている。
超音波探触子12の長手方向の先端部付近は、被検体10内に挿入される体内挿入部64であり、複数の超音波振動子が配列されている。例えば、前立腺を観察できる部位に体内挿入部64を挿入し、配列された超音波振動子で超音波を送受信することにより、前立腺のRF信号を得ることができる。
体内挿入部64の前方にはコンベックス型探触子60、後方にはリニア型探触子62として形成される複数の超音波振動子が配置されており、それぞれの超音波振動子は送波部14又は受信部16にケーブルを介して接続されている。
一方、超音波探触子12のケーブルに接続される側には、操作者が超音波探触子12を把持するための探触子把持部65を有している。操作者は探触子保持部65を握り、超音波探触子12を任意に移動させることができる。
図2(a)に示す超音波探触子12のコンベックス型探触子60に圧迫袋38を配置させた形態を図2(b)、図2(c)に示す。図2(b)は超音波探触子12の長軸方向の側面図を示すものであり、図2(c)は超音波探触子12の短軸方向の側面図を示すものである。
圧迫袋38はコンベックス型探触子60の外周を覆うように配置されており、圧迫袋38の両端は二つの固定ベルト70で固定されている。中空のチューブ37は、超音波探触子12の長軸方向に沿って配置されており、圧迫袋38と液体注入出操作部44とを連結するものである。
液体注入出操作部44で液体をチューブ37へ注入することにより、チューブ37から圧迫袋38に液体を注入し、圧迫袋38を膨張させる。また、液体注入出操作部44で液体をチューブ37から引き出すことにより、圧迫袋38からチューブ37に液体を注出させ、圧迫袋38を収縮させる。
具体的に圧迫袋38に液体を注入させると、圧迫袋38は、超音波探触子12の短軸断面の中心部を中心にして放射状に膨張する。
なお、圧迫袋38は、コンベックス型探触子60表面の外周だけでなく、超音波探触子12の一周を覆うようなリング形状になっていてもよい。その場合も、圧迫袋38は、超音波探触子12の短軸断面の中心部を中心にして放射状に膨張することになる。
次に、図3を用いて液体注入出操作部44を説明する。液体注入出操作部44は、主に、本体部80と、本体部80に固定され内部に液体が充填されているシリンダ92と、シリンダ92内に配置され、液体を押し出したり引き出したりするピストン90及び押し子88と、押し子88を固定するための押し子固定部86と、押し子88を駆動する操作部82と、ピストン90の移動ストロークを制限するストローク調整部99とからなる。
操作部82は支持部84によって軸通され本体部80に接続されている。操作部82は支持部84を中心にして回転させることができる。操作部82の一端は、押し子固定部86に連結されており、操作部82の他端は、操作者が握り、動作を与える把持部83となっている。
また、押し子88の一端は、押し子固定部86と連結されている。押し子88の他端はシリンダ88内のピストン90となっている。シリンダ88の内部でピストン90を往復運動させることにより、シリンダ88内部の液体に外力を与える。押し子88を押して外力を与えられた液体はチューブ37を介して圧迫袋38に到達され、液体が押し出された分だけ圧迫袋38を膨張させる。逆に押し子88を引くと、圧迫袋38の液体がシリンダ88に引き出され、圧迫袋38を収縮させる。
つまり、操作者は、掌を本体部80で支え、把持部83を複数の指で掴んで右下方向に引くことにより、押し子88を押し出すことができ、押し子88の運動により押し出された液体分だけ圧迫袋38を膨張させることができる。把持部83を掴んで左上方向に押すことにより、押し子88を引き出すことができ、押し子88の運動により引き出された液体分だけ圧迫袋38を膨張させることができる。
ストローク調整部99は、本体部80の押し子88のストローク面に設置された固定具98に設置されている。ストローク調整部99は雄ネジであり、固定具98は雄ネジを貫通させることができる雌ネジを有している。ストローク調整部99を回転することにより、固定具98を介してストローク調整部99を左右に移動することができる。
次にストローク調整部99の機能について説明する。ピストン90を図の左方向に運動させると、所定の位置でストローク調整部99に押し子88が接触する。この位置からピストン90を左方向に移動させようとしても、押し子88がストローク調整部99によって固定されるため、接触した位置からピストン90を左方向に運動させることができない。つまり、ストローク調整部99はピストン90の移動ストロークを制限することができる。
このように、ストローク調整部99は、ピストン90の運動を制限することにより、圧迫袋38に注入される液体の流量を任意に設定できる。具体的には、圧迫袋38の表面積が1000mmとすると、1ストローク当たりの液体の注入量が0.2cc〜1.0cc程度の範囲であることが好ましい。
なぜなら、被検体10を圧迫しすぎても、圧迫に不具合が生じてしまい、適した歪み及び弾性率は取得できないからである。そこで、シリンダ92の断面積とピストン90の移動量の積が0.2cc〜1.0cc程度になるように、ストローク調整部99はピストン90の移動量を調整する。具体的には、シリンダ92の断面積S、押し子88の移動量Aとすると、S×Aが0.2cc〜1.0cc程度になるようにする。
また、シリンダ92、ピストン90、押し子88からなるシリンジ部は、固定部97を介して、ワンタッチで本体部80に脱着できる構造を有している。固定部97は、シリンダ92を受けて嵌装するものであり、シリンダ92を固定部97で受けることによりシリンジ部は、本体80に固定される。また、本体80は、アルミやステンレス、プラスチックなどの、錆びにくい素材で構成されている。
なお、ここでは、操作者の手動による圧迫を説明したが、液体注入出操作部44にモータを備え、モータの動力により押し子88を往復運動させ、圧迫袋38を膨張・収縮させてもよい。
ここで、圧迫袋38と接する被検体10の超音波走査領域の圧力を求める第一の実施形態を図1〜図5を用いて説明する。
超音波探触子12であるコンベックス型探触子60を覆うように圧迫袋38が設置されている。圧迫袋38は、チューブ37を介して液体注入出操作部44と、圧力センサ部40に連結されている。圧迫袋38内部の圧力を計測するための圧力センサ部40で検出された圧力情報Pが圧力演算部46に出力されるようになっている。圧力演算部46は、圧力センサ40の圧力情報から圧迫袋38と接する被検体10の超音波走査領域の圧力を演算する。なお、図1に示すように、圧力演算部46で演算された圧力情報は、弾性情報演算部32に入力される。
圧迫袋38と液体注入出操作部44の間には液体の注入出を制御するコック100が配置されている。コック100を開くと、圧迫袋38と液体注入出操作部44の間で自由に液体が注入出される。コック100を閉じると、圧迫袋38と液体注入出操作部44の間で液体が注入出されないため、圧迫袋38内の液体の体積は一定となる。
まず、被検体10に圧迫袋38を接触させていない状態で、圧力センサ部40は圧迫袋38内部の圧力を測定し、この圧力値を圧力演算部46内のメモリに一時保存させる。そして、被検体10に圧迫袋38を接触させ、被検体10を圧迫させた状態で、圧力センサ部40は圧迫袋38内部の圧力を測定する。この時、圧迫前後において圧迫袋38内の液体の体積は一定である。圧力演算部46は、メモリ内に保存された圧迫する前の圧力と、圧迫した後の圧力の差を演算し、この圧力の差を圧迫袋38と接する被検体10の超音波走査領域の圧力として弾性情報演算部32に出力する。
次に図5を用いて、第1の実施形態を具体的に説明する。図5(a)は、圧迫袋38に被検体10の対象組織が接触していないフリーな状態である。まず、圧力演算部46は、この状態で圧迫袋38の内部圧力と体積の関係を求める。そして、液体注入出操作部44から体積V0の液体を圧迫袋38に注入し、その後、コック100を閉じる。コック100を閉じることにより、圧迫袋38の内部の液体の体積は常に一定値V0となる。そして、この状態での圧力P0を求める。この状態を基準状態P0、この作業をキャリブレーションと呼称する。
図5(b)は、圧迫袋38に被検体10の対象組織が接触した状態であり、組織弾性の診断に適用する状態である。この状態の超音波探触子12を、被検体10の生体組織、例えば前立腺に接触させ、操作者は超音波探触子12を前立腺に対して押し付けるようにして圧迫し、圧力演算部46は対象組織の圧迫過程における任意の時刻tにおける圧力情報P(t)を取得する。このとき、P(t)の基準状態からの差分が、現時刻tにおいて被検体10の生体組織に加えられている圧力Ptarget(t)であり、数1に示すように

{数1}Ptarget(t) = P(t)−P0

として圧力演算部46で求めることができる。
圧迫前のRF信号フレームデータを取得した時刻をt-1、圧迫後のRF信号フレームデータを取得した時刻を現時刻tとすると、現時刻tにおいて、生体組織の圧迫圧力の変化ΔP(t)は、数2に示すように

{数2}ΔP(t) = Ptarget(t)−Ptarget(t-1)

として圧力演算部46で求めることができる。変位計測部30で求められた時刻t-1、tにおいて得られたRF信号フレームデータの変位に基づく計測値と、圧力演算部46で求められたΔP(t)の情報とをもとにして弾性情報演算部32で弾性率が演算される。
次に、圧迫袋38と接する被検体10の超音波走査領域の圧力を求める第2の実施形態を図6〜図8を用いて説明する。第1の実施形態と異なる点は、液体の注入出量を検出する流量センサ部42を備え、圧力センサ部40で検出される圧力情報と流量センサ部で検出される流量情報から圧迫袋38と接する被検体10の超音波走査領域の圧力を求める点である。
圧迫袋38内部の圧力を計測するための圧力センサ部40が圧迫袋38と連結され、圧力センサ部40で検出された圧力情報Pが圧力演算部46に出力されるようになっている。圧迫袋38と液体注入出操作部44の間には液体の注入出量を計測する流量センサ部42が配置され、圧迫袋38に注入出された液体の流量(体積)情報Vが圧力演算部46に出力されるようになっている。流量センサ42は、例えば、その内部に液体の動きに伴い移動する弁やファン等の移動部材を有しており、移動部材の変位により液体の流量を計測するものである。
まず、被検体10に圧迫袋38を接触させていない状態で、液体注入出操作部44を用いて液体を圧迫袋38に注入出させ、圧力センサ部40は圧迫袋38内部の圧力を測定し、流量センサ部42は注入出された液体の流量を測定する。この時計測されたそれぞれの圧力と流量の関係を圧力演算部46内のメモリに一時保存する。
そして、被検体10に圧迫袋38を接触させ、被検体10を圧迫させた状態で、液体注入出操作部44を用いて液体を圧迫袋38に注入出させ、圧力センサ部40は圧迫袋38内部の圧力を測定し、流量センサ部42は注入出された液体の流量を測定する。圧力演算部46は、この時計測されたそれぞれの圧力と流量と、メモリ内に一時保存された圧力と流量の関係とから所定の流量値における圧力の差を演算し、この圧力の差を圧迫袋38と接する被検体10の超音波走査領域の圧力として弾性情報演算部32に出力する。
次に図7、図8を用いて、第2の実施形態を具体的に説明する。図7は、圧迫袋38に被検体10の対象組織が接触していないフリーな状態で、圧力演算部46は圧迫袋38の内部圧力と体積の関係を求める。この関係は、組織圧迫に適するように予め設定された流量の体積範囲[0,Vmax](Vmaxは数cc程度)の範囲で求める。図7のグラフの実線461は、圧力演算部46で求められる流量が0〜Vmaxの範囲における圧力の関係を示すものである。流量が増加するにつれて、圧力が増加することが分かる。
そして、組織弾性の診断に移行し、被検体10の対象組織を圧迫する。この圧迫過程における任意の時刻tにおいて、圧力情報P(t)、流量(体積)情報V(t)を取得する。流量(体積)情報V(t)は、時刻tにおいて流量計を通過した流量v(t)ではなく、圧迫袋38に流れ込んだ全ての液体の流量V(t)=Σv(t)を示す。
図8のグラフは、圧迫袋38に対象組織が接触していないフリーな状態の流量と圧力の関係を示すグラフの実線461に、対象部位を圧迫した状態で得られる流量と圧力の関係を対応させて示したものである。
体積V(t)において、圧迫袋38に対象組織が接触していないときの基準状態では、どれだけの内部圧力が加わっているかをP0(V(t))として求めることができる。グラフでは(V(t), P0(V(t)))は点Y462として表示される。そして、対象部位を圧迫した状態の体積V(t)において得られる圧力はP(t)である。グラフでは(V(t), P(t))は点X463として表示される。
P(t)のこの基準状態からの差分が、現時刻tにおいて生体組織に加えられている圧迫の圧力Ptarget(t)であり、数3に示すように、

{数3}Ptarget(t) = P(t) − P0(V(t))

として求めることができる。
ここで、圧力情報、及び、流量(体積)情報は、圧力センサ部40、流量センサ部42ですでにA/D変換されてデジタル信号として圧力演算部46に入力されるようになっていてもよく、圧力演算部46においてアナログ信号の圧力情報、及び、流量(体積)情報がA/D変換されるように処理されてもよい。
また、上記説明では流量センサ部42から流量情報を出力する例を示したが、現時刻において流量計を通過した流量v(t)を出力し、圧力演算部46で流量V(t)=Σv(t)を評価するようになっていてもよい。
また、被検体10の対象組織を圧迫することによって、液体注入出操作部44側に押し戻されるわずかな液体の流量を流量センサ部42で測定して、圧力演算部46は押し戻される流量に基づいて圧力を求めてもよい。具体的には、圧力演算部46に所定の液体の注入量と、圧迫袋38を圧迫することによって押し戻される液体の流量とから算出される圧力情報を予め複数記録しておく。圧迫袋38を膨張させて、被検体10の対象組織を圧迫した場合、圧力演算部46は、所定の液体の注入量と液体が押し戻される流量とから圧力を求める。
上記第1の実施形態又は第2の実施形態に適用させる圧力センサ部40の様々な形態について図9〜図11を用いて説明する。
圧迫袋38内の圧力を計測するための圧力センサカテーテルを適用した形態を図9(a)に示す。圧迫袋38内の圧力を計測する圧力センサ401は、カテーテル型であり、チューブ37内のケーブル402を介して圧力センサ部40に接続されている。圧力センサ401の先端部で計測された圧力情報は圧力センサ部40に伝達される。
図9(b)に圧力センサ401の詳細を示す。カテーテル型の圧力センサ401は、例えば、中空体4011とマイクロマシニング技術を用いて適用されたダイヤフラムの膜4012と歪みゲージ4013とを有している。中空体4011の内周面にはダイヤフラムの膜4012と歪みゲージ4013が設置されており、圧迫袋38内の液体はダイヤフラムの膜4012に接している。
圧迫袋38内の圧力に基づいてダイヤフラムの膜4012が凹む。ダイヤフラムの膜4012の凹み情報を歪みゲージ4013が検出する。そして、歪みゲージ4013で検出された凹み情報はケーブル402を介して圧力センサ部40に出力される。圧力センサ部40では、ダイヤフラムの凹み情報と圧力との関係は予め計測されており、圧力センサ部40は、圧力センサ401のダイヤフラムの実測した凹み情報に基づいて圧力情報を算出して、圧力演算部46に出力する。
また、ケーブル402自体を圧力センサに適用してもよい。ケーブル402の先端部から中央部は、圧迫袋38又はチューブ内の圧力に応じて凹む材料、例えばゴム材を適用させておき、その凹み具合に基づいて圧力を計測してもよい。具体的には、圧力センサ401の内部に油や生理食塩水等の液体を充填しておく。圧迫袋38やチューブ37内の圧力により、圧力センサ401の凹み具合に応じて押し出された液体量を圧力センサ部40は認識する。圧力センサ部40は、圧力センサ401の凹み情報に基づいて圧力情報を算出して、圧力演算部46に出力する。
なお、ここでは、圧迫袋38内に圧力センサ401を設けたが、シリンダ92の表面やチューブ37内に圧力センサを配置してもよい。
ここで、前記圧力センサ部40では、圧迫袋38内部の圧力を計測する形態を示したが、圧迫袋38外部で圧力を計測する形態を図10、図11に示す。
この形態では、図10に示すように、圧迫袋38内の圧力を計測するための圧力センサ402を圧迫袋38と超音波探触子12の間に設置する。圧力センサ402は、感圧抵抗材料やチタン酸ジルコン酸鉛等の圧電材料、半導体圧力センサ等である。圧迫袋38の膨張、収縮により、圧迫袋38と超音波探触子12の間に設置された圧力センサ402は圧迫状況が変わる。圧力センサ402は圧力を検出し、その圧力情報は圧力センサ部40に伝達される。圧力センサ部40は、圧力センサ402の圧力情報を算出して、圧力演算部46に出力する。
図10は、コンベックス型探触子60の周囲に圧力センサ402を配置した図である。
圧迫袋38が膨張すると、圧迫袋38と圧力センサ402が密着する状態になり、圧力センサ402の締め付けの圧力が大きくなる。逆に圧迫袋38が収縮すると、圧力センサ402に対し、圧迫袋38が開放される状態になり、圧力センサ402の締め付けの圧力が小さくなる。このように、圧迫袋38の締め付け圧力を計測することにより圧迫袋38の内部の圧力P(t)を間接的に評価することができる。圧力センサ402を液体に浸す必要がないので、防水性の圧力センサでなくても実現することができる。
また、図11に示すように、圧力センサ403を液体注入出操作部44の押し子88の背面に設置させてもよい。つまり、押し子88と押し子固定部86の間に圧力センサ403が配置される。
押し子88と押し子固定部86の間に圧力センサ403を介在した状態で、シリンダ92の内部でピストン90を往復運動させ、シリンダ88内部の液体に外力を与える。外力を与えられた液体はチューブ37を介して圧迫袋38に到達され、押し子88及びピストン90の運動により液体が押し出された分だけ圧迫袋38を膨張させる。逆に押し子88を引くと、圧迫袋38の液体がシリンダ88に引き出され、圧迫袋38を収縮させる。この運動では、圧迫袋38を膨張させればさせるほど、圧迫袋38内の圧力が大きくなり、押し子88に伝達される力が大きくなる。
圧迫袋38の膨張、収縮に伴い、圧迫袋38から押し子88に圧力が伝達され圧力センサ403が圧迫されるため、圧迫袋38に負荷している圧力P(t)を間接的に計測することができる。つまり、上記式より、生体組織に加えられている圧迫の圧力Ptarget(t)を求めることができる。
圧力センサ403はその圧力を検出し、図示はしていないが、その圧力情報は圧力センサ部40に伝達される。圧力センサ部40は、圧力センサ403の圧力情報を算出して、圧力演算部46に出力する。圧力センサ403を液体に浸す必要がないので、防水性の圧力センサでなくても実現することができる。
上記第1の実施形態又は第2の実施形態に適用させる流量センサ部42の様々な形態について図12〜図16を用いて説明する。
図12に示す形態では、流量センサ部42内の位置センサ421が押し子固定部86に連結して設置されている。位置センサ421は、一般的なエンコーダや、赤外線などの光学的なセンサ等からなる。押し子88の位置(=ピストン90の位置)を位置センサ421により検出するようになっている。
シリンダ92の断面積と、位置センサ421により検出される押し子88の移動量との積は、圧迫袋38に押し出される流量に相当する。つまり、押し子88の位置を検出することにより圧迫袋38に流れ込んだ液体の流量を計測することができる。
例えば、シリンダ92の断面積S、押し子88の初期位置X0、押し子位置X(X0≦X≦Xmax)とすると、時刻tにおいて押し子位置がX = X(t)の時、圧迫袋38に流れ込んでいる液体の流量は、数4に示すように、

{数4}V(t) = S×(X(t) X0)

となる。この方法によれば、位置センサ421を利用するため、圧迫袋38に流れ込んだ液体の流量を、より直接的かつ確実に計測することができる。流量センサ部42は、圧迫袋38に注入出された液体の流量を測定し、流量情報を圧力演算部46へ出力する。
このように、流量センサ部42も液体注入出操作部44に装備することができる。図11に示した形態と組み合わせると、圧力センサと流量センサを液体注入出操作部44に装備される。そのため、付加的に必要になる装置を全て液体注入出操作部44内に収めることができる。
上記形態では、圧迫袋38に流れ込んだ液体の体積の情報に基づいて圧力を計測する形態を示したが、その流量を超音波受信信号の情報から読み取り、その情報に基づいて組織対象に加わっている圧力を計測する形態を説明する。圧迫袋38の膨張を超音波受信信号で評価し、液体注入出操作部44により流入出された液体の流量を計測する形態を図13〜図16に示す。
図13に示すように、RF信号フレームデータから圧迫袋38の膜面を認識して圧迫袋38の膨らみ具合を演算する圧迫袋膜面距離演算部48を有している。取得された超音波受信信号を整相加算された複数のRF信号フレームデータを格納するRF信号フレームデータ記憶部28は、圧迫袋膜面距離演算部48にRF信号フレームデータを出力する。圧迫袋膜面距離演算部48では、RF信号フレームデータを用いて超音波探触子12の超音波送受信面から圧迫袋38の膜面までの距離(圧迫袋膜面距離)dを解析し、その結果を圧力演算部46に出力するようになっている。また、圧迫袋38内部の水圧を計測するための圧力センサ部40が圧迫袋38と連結され、圧力センサ部40で検出された圧力情報Pが圧力演算部46に出力されるようになっている。
圧力演算部46は、圧力センサ部40から取得した圧力情報と圧迫袋膜面距離演算部48で演算された圧迫袋38膜面距離に基づいて、圧迫袋38と接する被検体10の超音波走査領域の圧力を求める。
この具体例を図14を用いて説明する。図14は、圧迫袋膜面距離演算部48における圧迫袋膜面距離の演算方法を示す図である。
グラフの波形110は、圧迫袋38を介して超音波探触子12を生体組織に接触して超音波を送受信した時、或る一つの超音波振動子において受信された超音波受信信号波形である。縦軸がRF信号(超音波受信信号)の強度、横軸が超音波探触子の超音波送受信面からの距離を示す。
圧迫袋38の内部には水などの液体を入れているが、水は超音波散乱体を含まないため、超音波反射強度は生体組織に比べて非常に弱い。また、圧迫袋38は非常に薄い膜で作成されているが水の音響インピーダンスとは異なるため、水と圧迫袋38の膜面の境界において超音波は大きな反射を起こす。
圧迫袋膜面距離演算部48は、RF信号(超音波受信信号)に図に示すような圧迫袋膜面を判定するための適切な閾値を設定させることにより、超音波送受信面から探索して初めてこの閾値を超えたときの距離を求めれば水と圧迫袋の境界位置111を容易に検出する。この境界までの距離を圧迫袋膜面距離dとして取得する。
まず、被検体10に圧迫袋38を接触させていない状態で、液体注入出操作部44を用いて液体を圧迫袋38に注入出させ、圧力センサ部40は圧迫袋38内部の圧力を測定し、圧迫袋膜面距離演算部48は圧迫袋膜面距離を測定する。この時計測されたそれぞれの圧力と圧迫袋膜面距離の関係を圧力演算部46内のメモリに一時保存する。
そして、被検体10に圧迫袋38を接触させて被検体を圧迫した状態で、液体注入出操作部44は液体を圧迫袋38に注入出させ、圧力センサ部40は圧迫袋38内部の圧力を測定し、圧迫袋膜面距離演算部48は圧迫袋膜面距離を測定する。圧力演算部46は、この時計測されたそれぞれの圧力と圧迫袋膜面距離の関係と、メモリ内に一時保存された圧力と圧迫袋膜面距離の関係とから所定の圧迫袋膜面距離における圧力の差を演算し、この圧力の差を圧迫袋38と接する被検体10の超音波走査領域の圧力として弾性情報演算部32に出力する。
次に圧力演算部46に入力された圧力情報Pと圧迫袋膜面距離情報dを用いて圧迫袋38が生体組織を圧迫している圧力を計測する形態を図15、図16を用いて具体的に説明する。
まず、図15に示すように、圧迫袋38に対象組織が接触していないフリーな状態で、圧迫袋38の内部圧力と圧迫袋膜面距離の関係を求める。このとき、圧迫袋38には生体組織が接触するのではなく、空気中にさらされることになる。
生体組織の場合とは異なり、圧迫袋と空気との間での音響インピーダンスの違いが非常に大きいため、図15のB-mode画像に示すように多重散乱として圧迫袋膜面距離の整数倍の間隔で高輝度な縞状の模様が現れるが、水と圧迫袋38の境界で大きな反射がおこるため、圧迫袋膜面距離演算部48は、適切な閾値を設定することにより圧迫袋膜面距離dを求めることができる。
つまり、超音波探触子12の中心軸に対し最も手前に位置する境界位置111を圧迫袋膜面距離dとして求めることができる。
この圧迫袋38の内部圧力と圧迫袋膜面距離の関係は、組織圧迫に適したあらかじめ設定された圧迫袋膜面距離の範囲[0, dmax](dmaxは1cm程度)で求めるようにすればよい。グラフの実線が圧力と圧迫袋膜面距離の関係を示す。以下この関係を基準状態P0(d)、この作業をキャリブレーションと呼称する。
図16のグラフは、圧迫袋38に対象組織が接触していないフリーな状態の圧迫袋膜面距離と圧力の関係を示す図15のグラフの実線465に、対象部位を圧迫した状態で得られる流量と圧力の関係を対応させて示したものである。
そして、組織弾性の診断に移行し、対象組織の圧迫過程における任意の時刻tにおいて、圧力情報P(t)、圧迫袋膜面距離情報d(t)を取得する(点X)。
このとき、同一の圧迫袋膜面距離d(t)において、圧迫袋38に対象組織が接触していないときの基準状態では、どれだけの内部圧力が加わっているかを、P0(d(t))として求めることができる(点Y)。P(t)のこの基準状態からの差分が、現時刻tにおいて生体組織に加えられている圧迫の圧力Ptarget(t)であり、数5に示すように、

{数5}Ptarget(t) = P(t) − P0(d(t))

として求めることができる。
図13〜図16では、あるひとつの超音波振動子における受信信号において圧迫袋膜面距離dを求める方法を示したが、これに限らず、超音波送受信面に備えられているすべての超音波振動子によってそれぞれ受信された超音波受信信号波形を用いてそれぞれに圧迫袋膜面距離dを求め、それらの平均値として最終的な圧迫袋膜面距離dを決定するようになっていてもよい。
また、RF信号(超音波受信信号)に対して閾値処理により圧迫袋膜面距離の検出を行う方法を示したが、これに限らず、RF信号(超音波受信信号)を用いて構築されるB-modeなどの診断画像を用いて同様の処理を行うようになっていてもよい。
また、圧迫袋膜面距離の検出をするため、閾値を設定することによる二値化処理の方法で実現することを示したが、それに限らず、例えば輪郭抽出などに広く適用されているリージョングローイング法や画像認識などに適用されているパターンマッチング法などの画像処理方法に従って実現するようになっていてもよい。
この形態によれば、圧迫袋38の膨らみ具合を信号処理で求めるため、流量センサ部42が不要となり、簡便に対象組織に加わっている圧力を評価することができる。
前記形態では、生体組織との接触がないフリーな状態で圧迫袋を膨張・収縮して、基準状態P0(V)の関係を把握するキャリブレーション作業を前提にしたが、あらかじめこの基準状態P0(V)の関係が把握されている圧迫袋38を適用し、その関係を圧力演算部46内のメモリに記憶させておけば、このようなキャリブレーション作業を省略することができる。
また、流量センサ部42は、予め液体注入出操作部44を用いて例えば5ccの液体を圧迫袋38に注入出させ、圧迫袋膜面距離d1を計測しておき、注入した流量と圧迫袋膜面距離との関係を演算して求めてもよい。具体的には、液体の流量を圧迫膜面距離で除することにより、圧迫膜面距離が1mm辺り移動することで流入される液体の流量を演算する。そして、計測した圧迫膜面距離に応じた液体の流量を演算する。
上記第1の実施形態又は第2の実施形態に適用させる液体注入出操作部44を用いて、自動で圧迫袋38を圧迫する形態を図17に示す。図17(a)に示す液体注入出操作部44は、モータユニット132と、モータユニット132を制御するモータ制御部130と、モータユニット132の駆動により移動する板材134と、板材134を支えるスプリング135と、板材134に連結されるピストン136と、ピストン136を内包するシリンダ137と、シリンダ137を固定するシリンダ固定具141と、液体の流れを制御するコック139とからなる。スプリング135は、板材134と固定具141とに連結されており、モータユニット132とスプリング135により板材135が左右往復運動するようになっている。
モータユニット132は、楕円型の回転体1321と、回転体1321を回転させるモータ1322とからなる。モータ制御部130の指令により、モータ1322を回転させると楕円形の回転体1321は、回転軸1323を中心にして板材134に外接しながら回転する。板材134は、回転体1321の回転により左方向に押され、スプリング135により回転体132の反対方向(右方向)に押されて、左右に往復運動する。
往復運動した板材134と一体化に形成されたピストン136も共に往復運動する。そして、シリンダ137内の液体がピストン136により押し出され、押し出された液体は圧迫袋38に到達する。そして、液体が押し出された圧迫袋38が膨張する。
回転体1321の回転軸1323の位置及び短軸・長軸の長さに基づいて、板材134の往復運動のストロークが決まる。例えば、回転体の1321の中心に回転軸1323が設置されている場合、楕円の短軸と長軸の差分だけ板材134が往復運動することになる。また、回転軸1323が回転体1321の中心よりずれて設置されている場合、回転軸1323が、ずれた分だけストローク範囲が変わる。
すなわち、ストロークが、回転体1321の回転軸1323の位置及び短軸・長軸の長さを設定することにより、ピストン136による液体の注入量を設定することができる。例えば、シリンダ92の断面積を用いて、1ストローク当たりの液体の注入量が0.2cc〜1.0cc程度の範囲であることが実現できるように設定することもできる。
なお、回転体1321は様々な形状があり、取替え可能であってもよい。また、モータ1322にはエンコーダが設けられており、そのエンコーダは画像表示器26に接続されている。画像表示器26上でモータ1322の回転情報を把握することもできる。
図17(b)に示す液体注入出操作部44は、ワイヤーユニット138を用いて板材134を押す形態である。ワイヤー1381を駆動するワイヤーユニット138と、ワイヤーユニット138を制御するモータ制御部130と、ワイヤー1381と板材134とに接続され、ワイヤー1381の運動を板材134に連絡する回転部材140と、左右に往復運動する板材134と、板材134を支えるスプリング135と、板材134に連結されるピストン136と、ピストン136を内包するシリンダ137と、シリンダ137を固定するシリンダ固定具141と、液体の流れを制御するコック139とからなる。スプリング135は、板材134と固定具141とに連結されており、ワイヤーユニット138とスプリング135により板材135が左右往復運動するようになっている。
ワイヤーユニット138には、ワイヤー1381を左右方向に移動させるモータが内蔵されており、ワイヤー1381を左右方向に往復運動させることができる。回転部材140は、中心軸1401を中心にして回転するようになっており、ワイヤー1381を右側に移動させると、板材134を左側に押し、ワイヤー1381を左側に移動させると、板材134を右側に引くようになっている。
板材134の動作に基づく、圧迫袋38への液体の伝達については、図17(a)で説明したことと同様であるので、ここでは省略する。
ワイヤーユニット138は、ワイヤーの1381のストローク幅を調整することができる。例えば、シリンダ92の断面積を用いて、1ストローク当たりの液体の注入量が0.2cc〜1.0cc程度の範囲であることが実現できるように設定することもできる。
上述した自動で圧迫袋38を圧迫する形態は、モータ1322又はワイヤー1381による回転運動をピストン136の直線運動に変換させるクランク機構を有するものであるが、この形態に限らず、直線運動する機構を有し、ピストン136を直線運動させたりするものであってもよい。
前記形態では、体内用のコンベックス型の探触子を例にして説明したが、これに限らず、図18に示すような被検体10の体外から圧迫することができるリニア探触子でもよく、任意の超音波探触子に適用することができる。圧迫袋38は、被検体10の体外から圧迫するものである。
リニア型超音波探触子の複数の振動子素子150の前面に圧迫袋38が設置されている。超音波探触子12内に圧力センサ部40と、流量センサ部42と、液体注入出操作部44とを備えている。圧力センサ部40で検出された圧力情報と、流量センサ部42で検出された流量情報は、圧力演算部46に出力される。
まず、被検体10の外部から圧迫袋38を接触させていない状態で、圧力センサ部40は圧迫袋38内部の圧力を測定し、この圧力値を圧力演算部46内のメモリに一時保存する。そして、操作者は、超音波探触子12を被検体10に接触させ圧迫させる。被検体10を圧迫させた状態で、圧力センサ部40は圧迫袋38内部の圧力を測定する。この時、圧迫前後において圧迫袋38内の液体の体積は一定である。圧力演算部46は、メモリ内に保存された圧迫する前の圧力と、圧迫した後の圧力の差を演算し、この圧力の差を圧迫袋38と接する被検体10の超音波走査領域の圧力として弾性情報演算部32に出力する。
ここでは、第1の実施形態を適用した場合を示したが、第2の実施形態も適用できる。また、圧力センサ部40と、流量センサ部42と、液体注入出操作部44は、超音波探触子に内蔵されていなくてもよい。

Claims (12)

  1. 超音波探触子と、前記超音波探触子を介して被検体の断層部位のRF信号フレームデータに基づいて断層像を構成する断層画像構成手段と、前記RF信号フレームデータに基づいて前記断層部位における組織の歪み又は弾性率を求める弾性情報演算手段と、前記弾性情報演算手段で求めた歪み又は弾性率に基づいて前記断層部位における弾性画像を生成する弾性画像構成手段と、前記断層像及び/又は前記弾性画像を表示する表示手段とを備える超音波診断装置において、
    前記超音波探触子の超音波送受信面に設置され、液体が充填される圧迫袋と、前記圧迫袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入出手段と、前記圧迫袋内に充填された液体の圧力を計測する圧力計測手段と、前記圧迫袋への前記液体の流入出量を計測する流量計測手段と、前記圧力計測手段で計測された圧力と前記流量計測手段で計測された流入出量に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を演算する圧力演算手段とを備え、前記弾性情報演算手段は前記超音波走査領域の圧力を用いて弾性率を演算することを特徴とする超音波診断装置。
  2. 前記圧力演算手段は、前記圧力計測手段により、前記被検体に前記圧迫袋を接触させていない状態で計測した第1の圧力値と、前記被検体に前記圧迫袋を接触させた状態で計測した第2の圧力値との差に基づいて、前記圧迫袋に接する前記超音波走査領域の圧力を演算することを特徴とする請求項1記載の超音波診断装置。
  3. 前記圧迫袋内の液体の体積を一定にするコックを備えることを特徴とする請求項1記載の超音波診断装置。
  4. 前記圧力計測手段は、所定の流量時に前記液体の圧力を計測することを特徴とする請求項1記載の超音波診断装置。
  5. 前記圧力計測手段は、前記圧迫袋に内在していることを特徴とする請求項1記載の超音波診断装置。
  6. 前記圧力計測手段は、前記液体の圧力により凹むダイヤフラムの膜と、前記ダイヤフラムの膜の凹みを計測する歪みゲージとを有することを特徴とする請求項1記載の超音波診断装置。
  7. 前記圧力計測手段は、前記圧迫袋と前記超音波探触子の間に設置されていることを特徴とする請求項1記載の超音波診断装置。
  8. 前記圧力計測手段は、前記液体注入出手段に設置されていることを特徴とする請求項1記載の超音波診断装置。
  9. 前記流量計測手段は、前記RF信号フレームデータを用いて前記圧迫袋の流量を計測することを特徴とする請求項1記載の超音波診断装置
  10. 前記流量計測手段は、前記RF信号フレームデータから前記圧迫袋の膜面を検出し、前記圧迫袋の流量を計測することを特徴とする請求項9記載の超音波診断装置
  11. 前記液体注入出手段は、本体部と、前記本体部に固定され、内部に液体が充填されているシリンダと、前記シリンダ内に配置され、前記圧迫袋へ液体を押し出したり引き出したりするピストン及び押し子と、前記押し子を固定するための押し子固定部と、前記押し子を駆動する操作部とを有していることを特徴とする請求項1記載の超音波診断装置。
  12. 前記押し子には圧力計測手段が備えられており、前記圧力計測手段は、前記押し子の駆動で前記圧迫袋から伝達される圧力を計測することを特徴とする請求項11記載の超音波診断装置。
JP2008509879A 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置 Expired - Fee Related JP5188959B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509879A JP5188959B2 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006105916 2006-04-07
JP2006105916 2006-04-07
PCT/JP2007/057730 WO2007116957A1 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置
JP2008509879A JP5188959B2 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置

Publications (2)

Publication Number Publication Date
JPWO2007116957A1 JPWO2007116957A1 (ja) 2009-08-20
JP5188959B2 true JP5188959B2 (ja) 2013-04-24

Family

ID=38581237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008509879A Expired - Fee Related JP5188959B2 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置

Country Status (5)

Country Link
US (1) US20100036243A1 (ja)
EP (1) EP2008591B1 (ja)
JP (1) JP5188959B2 (ja)
CN (1) CN101415367B (ja)
WO (1) WO2007116957A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9332958B2 (en) * 2008-08-25 2016-05-10 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and method of displaying ultrasonic image
US8469892B2 (en) * 2008-09-08 2013-06-25 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and method of displaying ultrasonic image
WO2011004661A1 (ja) * 2009-07-07 2011-01-13 株式会社 日立メディコ 超音波診断装置及び超音波計測方法
JP5943598B2 (ja) * 2011-12-26 2016-07-05 キヤノン株式会社 被検体情報取得装置
WO2013160837A1 (en) * 2012-04-26 2013-10-31 Koninklijke Philips N.V. Sensing apparatus for sensing an object
KR20140140331A (ko) * 2013-05-29 2014-12-09 삼성메디슨 주식회사 생체에 가해지는 압력을 검출하는 초음파 시스템 및 방법
JP2015020013A (ja) * 2013-07-23 2015-02-02 キヤノン株式会社 被検体情報取得装置およびその制御方法
US20160089110A1 (en) * 2014-09-29 2016-03-31 Siemens Medical Solutions Usa, Inc. Conformal interface for medical diagnostic ultrasound volume imaging
KR102361612B1 (ko) * 2014-12-16 2022-02-10 삼성메디슨 주식회사 초음파 진단장치 및 그에 따른 초음파 진단 장치의 동작 방법
CN104622511B (zh) * 2015-01-26 2017-06-20 首都医科大学附属北京天坛医院 一种利用超声波检测骨骼肌机械力学参数的装置及超声波检测方法
EP3432804B1 (en) * 2016-03-21 2021-05-05 Isono Health, Inc. Wearable ultrasound system and method
DE102017221330A1 (de) * 2017-11-28 2019-05-29 Ulrich A. Baumann Druckmessvorrichtung zur Druckmessung und/oder Elastizitätsmessung einer Vene oder eines Organs und zur Kombination mit einer Ultraschallmesseinheit sowie System und Verfahren zur Druckmessung und/oder Elastizitätsmessung einer Vene oder eines Organs
KR20190081316A (ko) * 2017-12-29 2019-07-09 삼성전자주식회사 청소용 이동장치 및 그 제어방법
CN108852410A (zh) * 2018-05-17 2018-11-23 庄艳芳 一种超声科组合式检测诊断彩超装置及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107774A (ja) * 1984-10-30 1986-05-26 バア−−ブラウン コ−ポレ−シヨン 圧力感知装置及びその製作方法
JPH02154131A (ja) * 1988-10-04 1990-06-13 Peter Von Berk Extrakorp Syst Medizintech Gmbh プレッシャメータカテーテル
JPH08112280A (ja) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd 機械走査型超音波プローブ
JPH08322842A (ja) * 1995-05-31 1996-12-10 Aloka Co Ltd 体腔内挿入型超音波探触子
WO2004105615A1 (ja) * 2003-05-30 2004-12-09 Hitachi Medical Corporation 超音波探触子及び超音波弾性画像撮影装置
JP2005021710A (ja) * 2004-09-06 2005-01-27 Olympus Corp 注液装置
JP2005066041A (ja) * 2003-08-25 2005-03-17 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2005144155A (ja) * 2003-10-20 2005-06-09 National Institute Of Advanced Industrial & Technology 超音波を利用した軟組織の粘弾性推定装置およびプログラム
JP2007014424A (ja) * 2005-07-05 2007-01-25 Olympus Medical Systems Corp 超音波医療システム及びカプセル型医療装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771638A (en) * 1985-09-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure sensor
US5265612A (en) * 1992-12-21 1993-11-30 Medical Biophysics International Intracavity ultrasonic device for elasticity imaging
SE513524C2 (sv) * 1994-02-18 2000-09-25 Gambro Med Tech Ab System jämte förfarande för beräkning och/eller övervakning av ett vätskeflöde i en dialysapparat
US5551434A (en) * 1994-06-22 1996-09-03 Kabushiki Kaisha Toshiba Ultrasonic imaging diagnosis apparatus
US6595957B1 (en) * 2000-01-31 2003-07-22 Ethicon, Inc. Surgical fluid management system with a dampening chamber
US6691047B1 (en) * 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
US20020138216A1 (en) * 2001-02-16 2002-09-26 Merit Medical Systems, Inc., Systems and methods for accurately measuring fluid
EP1464176B1 (en) * 2001-12-28 2006-04-12 Koninklijke Philips Electronics N.V. Transparent access of stb mhp digital tv middleware to ip video content
US7297116B2 (en) * 2003-04-21 2007-11-20 Wisconsin Alumni Research Foundation Method and apparatus for imaging the cervix and uterine wall
US20060071985A1 (en) * 2004-10-06 2006-04-06 Therien Patrick J Fluid sensing apparatus for an ink supply system
ES2401503T3 (es) * 2005-12-02 2013-04-22 Baxter Corporation Englewood Sistema de llenado de líquido médico automático

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107774A (ja) * 1984-10-30 1986-05-26 バア−−ブラウン コ−ポレ−シヨン 圧力感知装置及びその製作方法
JPH02154131A (ja) * 1988-10-04 1990-06-13 Peter Von Berk Extrakorp Syst Medizintech Gmbh プレッシャメータカテーテル
JPH08112280A (ja) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd 機械走査型超音波プローブ
JPH08322842A (ja) * 1995-05-31 1996-12-10 Aloka Co Ltd 体腔内挿入型超音波探触子
WO2004105615A1 (ja) * 2003-05-30 2004-12-09 Hitachi Medical Corporation 超音波探触子及び超音波弾性画像撮影装置
JP2005066041A (ja) * 2003-08-25 2005-03-17 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2005144155A (ja) * 2003-10-20 2005-06-09 National Institute Of Advanced Industrial & Technology 超音波を利用した軟組織の粘弾性推定装置およびプログラム
JP2005021710A (ja) * 2004-09-06 2005-01-27 Olympus Corp 注液装置
JP2007014424A (ja) * 2005-07-05 2007-01-25 Olympus Medical Systems Corp 超音波医療システム及びカプセル型医療装置

Also Published As

Publication number Publication date
WO2007116957A1 (ja) 2007-10-18
EP2008591A1 (en) 2008-12-31
US20100036243A1 (en) 2010-02-11
EP2008591B1 (en) 2015-09-09
EP2008591A4 (en) 2011-01-12
CN101415367A (zh) 2009-04-22
JPWO2007116957A1 (ja) 2009-08-20
CN101415367B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5188959B2 (ja) 超音波探触子及び超音波診断装置
JP5400919B2 (ja) 超音波診断装置の作動方法及び超音波診断装置
JP4798719B2 (ja) 圧迫部材、超音波探触子及び超音波診断装置
CN101912275B (zh) 超声波探头以及超声波成像装置
US8007438B2 (en) Ultrasound probe and ultrasound elasticity imaging apparatus
JP5559788B2 (ja) 超音波診断装置
WO2006073088A1 (ja) 超音波診断装置、超音波撮像プログラム及び超音波撮像方法
WO2008016022A1 (fr) Dispositif de pressage, sonde ultrasonore et dispositif de diagnostic ultrasonore utilisant le dispositif de pressage
JPH05317313A (ja) 超音波診断装置
JP2005066041A5 (ja)
JP2010082337A (ja) 超音波診断装置
CN101564309B (zh) 超声波成像装置
JP5623609B2 (ja) 超音波診断装置
JP6144990B2 (ja) 超音波画像撮像装置及び超音波画像撮像方法
JP5354599B2 (ja) 組織硬度評価装置
JP2010253300A (ja) 超音波探触子及び超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees