WO2006121012A1 - パルス変調型送信装置およびパルス変調型受信装置 - Google Patents

パルス変調型送信装置およびパルス変調型受信装置 Download PDF

Info

Publication number
WO2006121012A1
WO2006121012A1 PCT/JP2006/309258 JP2006309258W WO2006121012A1 WO 2006121012 A1 WO2006121012 A1 WO 2006121012A1 JP 2006309258 W JP2006309258 W JP 2006309258W WO 2006121012 A1 WO2006121012 A1 WO 2006121012A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frame synchronization
synchronization
unit
timing
Prior art date
Application number
PCT/JP2006/309258
Other languages
English (en)
French (fr)
Inventor
Suguru Fujita
Masahiro Mimura
Kazuaki Takahashi
Yoshinori Kunieda
Noriyuki Ueki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/914,281 priority Critical patent/US7881400B2/en
Publication of WO2006121012A1 publication Critical patent/WO2006121012A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/7183Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation

Definitions

  • the present invention relates to a wireless communication apparatus using a pulse modulation signal.
  • FIG. 12 is a block diagram showing a configuration of a conventional pulse radio communication device described in Patent Document 1.
  • a conventional pulse radio communication apparatus 1200 includes an amplifier 1202 for amplifying an RF signal received by an antenna 1201, a filter 1203 for removing an unnecessary signal, and an analog encoding means 1204 for analogizing the signal.
  • a splitter 1 205 which splits the signal, a plurality of delay devices 1206 1207 1208 which delay the signal, multipliers 1209 1210 1211 which multiply the signal, integrators 1212 1213 1214 which integrate the time, correlation Reception synchronization control unit 1217 that performs synchronization determination and delay control according to the above, phase delay means 1218 that delays the phase of the signal, and a main reception wavelet code generator that modulates the phase delay signal and diffuses with the same spreading code. 1216 and a splitter 1215 which branches the output of the main reception wavelet code generator 1216 into three and outputs the result to multipliers 1209, 1210 and 1211.
  • the received RF signal is amplified to an amplitude necessary for demodulation by amplifier 1202, an unnecessary frequency band outside the band is removed by filter 1203, and an analog code is generated by analog coding means 1204.
  • This signal is branched by a splitter 1205 and a delay unit 1206 And 1207 and 1208 output three delayed signals, that is, a signal delayed by time L, a signal delayed by time L + Y, and a signal delayed by time LY.
  • These three signals are multiplied by the reference pulse signals generated by the main receive wavelet code generator 1216 by multipliers 1209, 1210, 1211 [hereby, integrators 1212, 1213, 1214 [note, symbol respectively Integrate the corresponding time.
  • the reception synchronization control unit 1217 determines synchronization according to the correlation of each signal, and controls the phase delay unit 1218 to output the decoded data 1219 while sliding synchronization.
  • the reception path signal at time L is used as a reference for correlation, and when the signal at time L + Y becomes higher correlation than the signal at time L, the tracking period is delayed by phase delay means 1218 to When the signal of time L ⁇ Y is higher at the time of the correlation, the phase delay means 1218 is adjusted to synchronize with the transmission data signal by advancing the tracking period.
  • Patent Document 1 JP-A-2003-535552 (148, FIG. 27)
  • a conventional pulse radio communication apparatus for establishing synchronization by correlating a waveform based on a synchronization frame in a received signal every time communication is performed, and then performing data demodulation, and
  • the level of the correlation pulse is increased by the interference wave such as the multipath where the transmission speed of the actual information is lower or the power of other devices.
  • the interference wave is determined by determining the level of the correlation pulse in stages or by using a plurality of receiving systems as shown in the prior art (FIG. 12).
  • a configuration to remove is also proposed, there is a problem that the judgment flow becomes complicated, the equipment configuration becomes large, the power consumption increases, and the equipment also becomes expensive.
  • An object of the present invention is to provide a pulse modulation type transmitter and a pulse modulation type receiver capable of high-speed data transmission capable of exchanging data.
  • the receiving device switches the synchronization method as appropriate according to the synchronization state, thereby providing a plurality of reception systems.
  • Another object of the present invention is to provide a low power consumption pulse modulation type transmitter, pulse modulation type receiver and system.
  • a pulse modulation type receiving apparatus comprises a second RF input signal as a received RF data signal and a first template signal used to generate a frame synchronization signal of the first RF input signal.
  • a pulse modulation type receiving apparatus including a frame synchronization unit that receives a RF input signal of a signal and outputs a correlation reception data signal that is a correlation between a first RF input signal and a second RF input signal, comprising: The section synchronizes the first template synchronization timing adjustment section for extracting the first template signal from the second RF input signal and the second template signal with the first template signal, and outputs the template signal.
  • the first template signal is selected, and according to the synchronization state of the frame, First temp Frame signal generation for generating a frame synchronization signal using the template signal switching unit for switching and outputting to the second template signal and the first or second template signal output from the template signal switching unit And a second frame synchronization timing adjustment unit that synchronizes the frame synchronization signal with the first RF input signal and outputs a correlated reception data signal, and the second frame synchronization timing
  • the adjustment unit is a frame synchronization correlation determination unit that outputs a template switching instruction signal to the template switching unit when the correlation value between the first RF input signal and the frame synchronization signal reaches a predetermined value.
  • the template signal switching unit receives the template switching signal and disconnects the first template signal power to the second template signal. It has a configuration to perform the replacement operation.
  • the frame synchronization unit is configured to receive the first RF input signal, which is the received RF data signal, and the second RF input signal having the template signal for generating the frame synchronization signal.
  • the frame synchronization signal switching unit selects a frame synchronization signal using the first template signal of the second RF input signal.
  • the second frame synchronization timing adjustment unit uses the frame synchronization signal to achieve synchronization pull-in of the first RF input signal.
  • the second thin While synchronization between the first RF input signal and the frame synchronization signal using the first template signal is established in the bolt synchronization timing adjustment unit, the template signal generation unit is operated in the template signal generation unit.
  • the correlation judgment unit for frame synchronization in the second timing adjustment unit for frame synchronization detects the correlation between the first RF input signal and the signal for frame synchronization, and when the correlation value reaches a predetermined value, Send a frame synchronization signal switching instruction signal to the frame synchronization signal switching unit. Furthermore, the frame synchronization signal switching unit performs an input switching operation from the first template signal to the second template signal in accordance with the frame synchronization signal switching instruction signal. Furthermore, the second frame synchronization timing adjustment section synchronizes the frame synchronization signal using the second template signal with the first RF input signal, and outputs a decoded data signal.
  • the frame synchronization establishment operation is performed by switching from the frame synchronization signal using the first template signal to the frame synchronization signal using the second template signal according to the frame synchronization state.
  • the time required for establishing frame synchronization can be shortened.
  • by shortening the time required to establish frame synchronization a large amount of data can be received, so high-speed data transmission can be performed.
  • the first RF input signal and the second RF input signal are started to be input to the frame synchronization unit in the frame synchronization state.
  • the frame synchronization timing adjustment unit detects the presence or absence of the RF data pulse that constitutes the first RF input signal, and the first state in the pulse capture state for achieving synchronization pull-in, and the second frame synchronization state.
  • a second state which is a pulse phase capture state for establishing synchronization of phase levels of wave elements forming an RF data pulse, and the correlation determination unit for frame synchronization determines a first RF input signal.
  • the first template It was subjected to synchronous detection using No., in the second state, and has a structure having means for performing synchronous detection using the second template signal.
  • the frame synchronization unit in the pulse capture state, receives the first template signal.
  • the pulse phase capture state synchronous detection using the second template signal can be performed, and the time required to establish frame synchronization can be shortened.
  • the time required to establish frame synchronization a large amount of data can be received, so high-speed data transmission can be performed.
  • the pulse modulation type receiving apparatus of the present invention has a configuration in which the second RF input signal is a signal transmitted in a frequency band different from that of the first RF input signal.
  • the frame synchronization unit can reduce the influence of the first RF input signal from the second RF input signal transmitted in the frequency band different from that of the first RF input signal.
  • the template signal can be extracted, and frame synchronization can be established using the first template signal less affected by the first RF input signal, and the time required to establish frame synchronization can be shortened. can do. Further, by shortening the time required for establishing frame synchronization, a large amount of data can be received, and high-speed data transmission can be performed.
  • the template signal switching unit in the pulse modulation type receiving apparatus receives the template switching signal and performs the switching operation to the first template signal power and the second template signal.
  • the power supply to the timing adjustment section for synchronization is shut off!
  • the frame synchronization unit receives the template signal switching unit force template switching signal, performs the switching operation from the first template signal to the second template signal, and then performs the first frame synchronization.
  • Power consumption of the pulse modulation type receiving apparatus can be reduced by stopping the power supply supplied to the timing adjustment unit in a predetermined portion or the entire first symbol synchronization timing adjustment unit.
  • the pulse modulation type receiving device of the present invention when the power supply to the first frame synchronization timing adjustment unit is stopped, the second RF input signal is input again, or If the RF frame synchronization holding signal for performing synchronization error correction is input from the communication partner at a predetermined interval, there is a configuration having means for resuming power supply to the first frame synchronization timing adjustment unit. I will speak.
  • the symbol synchronization unit of the pulse modulation type receiving apparatus controls the power supply supplied to the first frame synchronization timing adjustment unit by a predetermined portion or the first frame synchronization. By stopping the entire timing adjustment unit, the power consumption of the pulse modulation type receiving apparatus can be reduced. Also, after frame synchronization is established, frame synchronization is maintained after frame synchronization has been established using an RF frame synchronization signal sent subsequently after a predetermined time has elapsed or an RF frame synchronization holding signal received at predetermined time intervals. It is possible to shorten the time required to establish reframe synchronization for maintaining frame synchronization.
  • the decoded data signal is received in response to the correlated received data signal and the RF symbol synchronization timing signal having the first timing signal used to generate the symbol synchronization signal.
  • the symbol synchronization unit further includes a first symbol synchronization timing adjustment unit that extracts a first timing signal from the RF symbol synchronization timing signal, and a second timing signal, When the input of the correlation reception data signal and the timing signal for RF symbol synchronization to the clock recovery unit and the symbol synchronization unit synchronized with the timing signal 1 is started, the first timing signal is selected. And a timing signal switching unit that switches and outputs the first timing signal to the second timing signal according to the symbol synchronization state.
  • a symbol generation unit that generates an RF symbol synchronization signal using the first and second timing signals output from the timing signal switching unit, and synchronizes the symbol synchronization signal with the correlation reception data signal
  • a second symbol synchronization timing adjustment unit for outputting a second symbol synchronization timing signal, the second symbol synchronization timing adjustment unit, when the correlation value between the correlated reception data signal and the symbol synchronization signal reaches a predetermined value.
  • a correlation determination unit for symbol synchronization that outputs a timing switching instruction signal to the timing signal switching unit, the timing signal switching unit receiving the timing switching instruction signal, the first timing signal strength, and the second timing.
  • the timing signal switching unit performs timing for RF symbol synchronization. Select the first timing signal that the signal has To choose. Then, the symbol generation unit generates a symbol synchronization signal based on the first timing signal. Then, the second symbol synchronization timing adjustment unit pulls in synchronization of the correlation reception data signal using the symbol synchronization signal. Also, while synchronization between the correlation reception data signal and the symbol synchronization signal is established in the second symbol synchronization timing adjustment unit, the second timing generated in the clock reproduction unit in the clock recovery unit. The signal is synchronized with the first timing signal.
  • the correlation determination unit for symbol synchronization in the second timing adjustment unit for symbol synchronization detects the correlation between the correlation reception data signal and the signal for symbol synchronization, and the timing when the correlation value reaches a predetermined value, Send a timing switching instruction signal to the signal switching unit. Furthermore, in the timing signal switching unit, an input switching operation is performed from the first timing signal to the second timing signal according to the timing switching instruction signal. Furthermore, the second symbol synchronization timing adjustment unit synchronizes the symbol synchronization signal using the second timing signal with the correlated reception data signal, and outputs a decoded data signal.
  • the timing signal switching unit can switch to the first timing signal or the second timing signal, and the symbol synchronization establishing operation can be performed, and the time required for symbol synchronization establishment can be achieved. Can be shortened. In addition, by shortening the time required to establish symbol synchronization, a large amount of data can be received, so high-speed data transmission can be performed.
  • the timing signal switching unit when the timing signal switching unit receives the timing switching instruction signal and performs switching operation to the first timing signal strength second timing signal, It has a configuration having means for stopping the power supply to the timing adjustment section for symbol synchronization.
  • the timing signal switching unit receives the timing switching signal and performs the switching operation to the first timing signal strength second timing signal
  • the first symbol synchronization is performed.
  • Power consumption of the pulse modulation type receiving apparatus can be reduced by stopping the power supply supplied to the timing adjustment section for the predetermined part or the entire first symbol synchronization timing adjustment section.
  • the RF symbol synchronization timing signal is input again. In this case, or when the RF symbol synchronization timing holding signal is inputted with a communication partner at predetermined time intervals, the power supply to the first symbol synchronization timing adjustment unit is reopened.
  • the symbol synchronization unit transmits the first symbol synchronization signal until the RF symbol synchronization timing signal or the RF symbol synchronization timing holding signal received at predetermined time intervals is transmitted.
  • Power consumption of the pulse modulation type receiving apparatus can be reduced by stopping the power supply supplied to the timing adjustment section for the predetermined part or the entire first symbol synchronization timing adjustment section. .
  • the symbol synchronization is established after the symbol synchronization is established using the RF symbol synchronization timing signal that is subsequently sent or the RF symbol synchronization timing holding signal that is sent at predetermined time intervals. Therefore, the time required for establishing resynchronization for maintaining symbol synchronization can be shortened.
  • a pulse modulation type receiving apparatus includes a second RF input signal as a received RF data signal and a template signal used for generating a frame synchronization signal of the first RF input signal.
  • a pulse modulation type receiving apparatus including a frame synchronization unit that receives a RF input signal of a signal and outputs a correlation reception data signal that is a correlation between the first and second RF input signals.
  • a first frame synchronization timing adjustment unit that extracts a template signal from a second RF input signal; a frame synchronization signal generation unit that generates a frame synchronization signal based on the template signal;
  • a variable delay unit that outputs a delayed reception RF data signal obtained by delaying an RF input signal for a predetermined time and a frame synchronization unit start inputting the first RF input signal and the second RF input signal ,
  • the frame synchronization signal switching unit that switches to the frame synchronization signal power and the delayed reception RF data signal according to the frame synchronization state, and the first RF input signal, the frame synchronization signal switching unit.
  • a second frame synchronization timing adjustment unit that synchronizes the frame synchronization signal output from the delay reception RF data signal and outputs a correlation reception data signal, and the second frame synchronization timing adjustment unit
  • the frame synchronization signal switching unit transmits the frame synchronization signal to the frame synchronization signal.
  • the frame synchronization signal switching unit receives the frame synchronization signal switching instruction signal and switches to the frame synchronization signal power delayed reception RF data signal. It has a configuration to operate.
  • the frame synchronization unit is configured to receive the first RF input signal, which is a received RF data signal, and the second RF input signal having a template signal for generating a frame synchronization signal.
  • the frame synchronization signal switching unit selects a frame synchronization signal using the template signal of the second RF input signal.
  • the second frame synchronization timing adjustment unit uses the frame synchronization signal to achieve synchronization pull-in of the first RF input signal.
  • the correlation judgment unit for frame synchronization in the timing adjustment unit for second frame synchronization detects the correlation between the first RF input signal and the signal for frame synchronization, and when the correlation value reaches a predetermined value, the frame A frame synchronization signal switching instruction signal is sent out to the synchronization signal switching unit. Furthermore, the frame synchronization signal switching unit switches the frame synchronization signal using the template signal of the second RF input signal to the delayed reception RF data signal according to the frame synchronization signal switching instruction signal. Do the action. Further, the second frame synchronization timing adjustment section synchronizes the delayed received RF data signal with the first RF input signal, and outputs a decoded data signal.
  • the frame synchronization signal using the template signal can be switched to the delayed reception RF data signal, and frame synchronization establishment operation can be achieved, and the time required for frame synchronization establishment can be shortened. be able to . Also, by shortening the time required to establish frame synchronization, a large amount of data can be received, so high-speed data transmission can be performed.
  • the first RF input signal and the second RF input signal have an input to the frame synchronization unit.
  • the second frame synchronization timing adjustment unit detects a presence or absence of an RF data pulse that constitutes the first RF input signal, and a first state in a pulse capture state for achieving synchronization pull-in;
  • a second state which is a pulse phase capture state in which the timing adjustment unit for frame synchronization aims to establish synchronization of the phase level of the wave element forming the RF data pulse, and the correlation determination unit for frame synchronization Correlation between RF input signal and frame synchronization signal
  • the value reaches a predetermined value, it is determined that the first state should be shifted to the second state, and a template switching instruction signal is sent to the template switching unit, and in the first state, the template signal is transmitted.
  • the configuration has means for performing synchronous
  • the frame synchronization unit can perform synchronous detection using the template signal in the pulse capture state, and can perform synchronous detection using the first RF input signal in the pulse phase capture state.
  • the time required to establish frame synchronization can be shortened.
  • by shortening the time required to establish frame synchronization a large amount of data can be received, so high-speed data transmission can be performed.
  • the first frame synchronization timing adjustment is performed when the frame synchronization signal power is also switched to the delayed reception RF data signal in the frame synchronization signal switching unit.
  • the unit has a configuration with means for stopping the operation.
  • the frame synchronization unit receives the frame synchronization signal switching unit power frame synchronization signal switching signal, and after performing a switching operation from the frame synchronization signal to the delayed reception RF data signal, To reduce the power consumption of the pulse modulation type transmitting apparatus by stopping the power supply supplied to the frame synchronization timing adjustment section in a predetermined portion or the entire first frame synchronization timing adjustment section. Can.
  • the frame synchronization unit of the pulse modulation type reception device of the present invention performs synchronization with low accuracy with the second RF input signal, and performs high accuracy synchronization with the first RF input signal. have.
  • sparse synchronization is performed in a communication system with a low rate and a communication system, and synchronization is performed with high accuracy in a communication system with a high rate and a communication system as needed.
  • the power can be reduced, and by performing sparse synchronization at a constant time interval, the accuracy of starting synchronization can also shorten the time to establish synchronization.
  • the pulse modulation type transmitting apparatus of the present invention applies predetermined symbols to transmission data, a signal for frame synchronization, and a timing signal for symbol synchronization, and transmits data for symbol transmission and frame synchronization.
  • Signal and the symbol / symbol synchronization timing signal A symbolizing unit to be generated and a predetermined modulation are applied to the symbolized transmission data, and the signal is up-converted to a radio frequency to generate an RF data signal having a first RF input signal to be input to a frame synchronization unit of the communication partner.
  • An RF data signal transmission unit and an RF data signal having a second RF input signal which is subjected to predetermined modulation on a symbolized frame synchronization signal, upconverted to a radio frequency, and input to a frame synchronization unit of a communication partner.
  • the frame synchronization signal and the symbol / symbol synchronization timing signal are subjected to predetermined modulation, up-converted to a radio frequency, and the RF symbol synchronization timing signal input to the symbol synchronization unit of the communication partner is generated. It has a configuration having an RF synchronization signal transmission unit.
  • the RF data signal transmission unit performs predetermined symbolization on transmission data, then performs predetermined modulation and up-converts to radio frequency, and performs frame synchronization of the communication partner's pulse-modulated receiver.
  • An RF data signal may be generated having a first RF input signal to be input to the unit.
  • the RF synchronization signal transmission unit performs predetermined symbol modulation on the frame synchronization signal, then performs predetermined modulation, and up-compensates to the radio frequency, and the frame of the communication partner's pulse modulation type receiving apparatus After an RF frame synchronization signal having a second RF input signal input to the synchronization unit is generated, and a predetermined symbol signal is applied to the symbol synchronization timing signal, a predetermined modulation is performed, and the radio frequency is up-converted.
  • an RF symbol synchronization timing signal to be input to the symbol synchronization section of the communication partner pulse modulation type receiving apparatus.
  • the pulse modulation type receiving apparatus at the other end of the communication party transmits the transmission data, the frame synchronization signal, the RF data signal having the symbol synchronization timing signal, the RF frame synchronization signal, and the RF symbol synchronization timing signal.
  • the time required for frame synchronization establishment and symbol synchronization establishment in the pulse modulation type receiving apparatus can be shortened.
  • the signal transmission section for RF synchronization of the pulse modulation type transmission apparatus of the present invention has a configuration having a means for transmitting the timing signal for RF symbol synchronization in a frequency band different from that of the RF frame synchronization signal. doing.
  • the pulse modulation type transmitting apparatus can transmit the timing signal for RF symbol synchronization and the signal for RF frame synchronization in different frequency bands having little influence with each other, and the pulse of the communication partner is
  • RF symphon The symbol synchronization and frame synchronization can be established based on the timing signal for RF synchronization and the signal for RF frame synchronization, and the time required for establishing frame synchronization and symbol synchronization can be shortened. Also, by shortening the time required for establishing frame synchronization and symbol synchronization, a large amount of data can be transmitted, so high-speed data transmission can be performed.
  • the signal transmission unit for RF synchronization of the pulse modulation type transmitting apparatus of the present invention has a configuration having means for transmitting an RF frame synchronization holding signal and an RF symbol synchronization timing holding signal at predetermined time intervals. I have it.
  • the nors modulation transmitter can transmit the RF frame synchronization holding signal and the RF symbol synchronization timing holding signal at predetermined time intervals, and the RF frame synchronization holding signal and the RF symbol synchronization can be transmitted.
  • the pulse modulation type transmitting device is stopped by stopping the power supply supplied to the RF synchronization signal transmission unit in a predetermined portion or the entire RF synchronization signal transmission unit while not transmitting the timing holding signal. To reduce power consumption.
  • the RF data signal transmission unit and the RF synchronization signal transmission unit of the pulse modulation type transmission device further include an RF data signal, an RF frame synchronization signal, and an RF symbol synchronization timing signal.
  • the RF frame synchronization holding signal and the RF symbol synchronization timing holding signal it has a configuration including means having a waveform selection unit that assigns wavelets having signal waveforms that can be separated from each other.
  • wavelets having signal waveforms that can be separated from each other can be transmitted in the same frequency band, so RF frame synchronization signals, RF symbol synchronization timing signals, and RF frame synchronization, which are separate transmission signals other than data signals, can be transmitted. It becomes possible to transmit the holding signal and the timing holding signal for RF symbol synchronization in the same frequency band as the data signal or other separate transmission signal, and using the frequency band to be prepared for each separate transmission signal, Since data signals can be transmitted, frequency utilization efficiency can be improved, and as a result, high-speed data transmission can be performed.
  • the waveform selection unit of the pulse modulation type transmitting apparatus comprises an RF frame synchronization signal, an RF symbol synchronization timing signal, an RF frame synchronization holding signal, and an RF symbol signal. It has a configuration having means for using different wavelets for one or more of the timing holding signals.
  • wavelets having signal waveforms that can be separated from each other can be transmitted in the same frequency band, so RF frame synchronization signals, RF symbol synchronization timing signals, and RF frame synchronization, which are separate transmission signals other than data signals, can be transmitted. It becomes possible to transmit the holding signal and the timing holding signal for RF symbol synchronization in the same frequency band as the data signal or other separate transmission signal, and using the frequency band to be prepared for each separate transmission signal, Since data signals can be transmitted, frequency utilization efficiency can be improved, and as a result, high-speed data transmission can be performed.
  • the RF frame synchronization signal of the pulse modulation type transmitting apparatus of the present invention may include data for device authentication.
  • the data portion for authentication is not required for the data signal for communication, and it is not necessary to reduce the data rate.
  • the pulse modulation type transmitting apparatus of the present invention at least two data rates of the RF data signal, the RF frame synchronization signal, and the RF symbol synchronization timing signal are different.
  • the above configuration makes it possible to narrow the occupied band of low rate signals and reduce the frequency band to be used by changing the data rate of each signal. In this case, cooperation with low rate other pulse communication is also included.
  • the RF synchronization signal transmission unit has a configuration for transmitting at least one of the RF data signal, the RF frame synchronization signal, and the RF symbol synchronization timing signal! / Scold.
  • the present invention shortens the time required to establish synchronization, and can transmit and receive data more quickly than the start of communication, and has the effect of enabling high-speed data transmission, and a pulse modulation type receiving device and pulse modulation type receiving device. Can be provided. Also, there are multiple reception systems It is possible to provide a pulse modulation type transmitting apparatus, a pulse modulation type receiving apparatus, and a system, which have the effect of achieving low power consumption of the synchronization unit while having the configuration described above.
  • FIG. 1 is a block diagram showing the configuration of a pulse modulation type receiving apparatus according to a first embodiment of the present invention.
  • FIG. 2 A block diagram showing the configuration of a pulse modulation type transmitting apparatus according to a first embodiment of the present invention.
  • FIG. 3 A block diagram showing the configuration of a pulse modulation type receiving apparatus according to a second embodiment of the present invention.
  • FIG. 4 A block diagram showing the configuration of a pulse modulation type receiving apparatus according to a third embodiment of the present invention.
  • FIG. 5 A block diagram showing the configuration of a pulse modulation type receiving apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 A block diagram showing a configuration of a pulse modulation type receiving apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 An explanatory diagram of a signal for RF frame synchronization and a timing signal for RF symbol synchronization in Embodiment 5 of the present invention.
  • FIG. 8 A block diagram showing a configuration of a pulse modulation type transmitting apparatus according to a sixth embodiment of the present invention.
  • FIG. 9 A block diagram showing a configuration of a pulse modulation type receiving apparatus according to a sixth embodiment of the present invention.
  • FIG. 10A Wavelet allocation waveform in a pulse modulation type transmitting apparatus according to a sixth embodiment of the present invention
  • FIG. 10B Wavelet allocation waveform in the pulse modulation type transmitting apparatus according to the sixth embodiment of the present invention
  • FIG. 11 Various input and output signal waveforms in the pulse modulation type transmitting apparatus according to the sixth embodiment of the present invention
  • FIG. 12 A block diagram showing the configuration of a conventional pulse modulation type wireless communication device BEST MODE FOR CARRYING OUT THE INVENTION
  • the pulse modulation type transmitting apparatus and the pulse modulation type receiving apparatus according to the present embodiment apply predetermined modulation to the transmission data signal and the frame synchronization signal, and transmit the radio signal upconverted to the radio frequency to the other party of communication.
  • a pulse modulation type transmitting apparatus and a pulse modulation type receiving apparatus that receives the radio signal upconverted to the radio frequency and demodulates transmission data.
  • FIG. 1 is a block diagram relating to a synchronous operation of a pulse modulation type receiving device in the first embodiment of the present invention.
  • FIG. 2 is a block diagram relating to the transmission operation of transmission data and a signal for frame synchronization in the pulse modulation type transmission apparatus in the first embodiment of the present invention.
  • pulse modulation type receiving apparatus 100 is connected to two systems of antennas 101a and 101b for receiving radio signals, and receiving section 110a, receiving section 110b, frame synchronization section 140, and symbol synchronization section. And 170.
  • the receiving unit 110 a extracts a frequency component including a data signal (hereinafter referred to as an RF data signal) from the wireless signal and amplifies the signal, and the receiving unit 110 b receives the frequency signal from the wireless signal.
  • a frequency component having a first template signal for generating a frame synchronization signal (hereinafter, referred to as separately transmitted RF synchronization signal) is extracted and amplified.
  • Frame synchronization section 140 receives reception RF data signal 1004 and RF frame synchronization signal 1005 having a first template signal for generating a frame synchronization signal, and receives the received RF data signal.
  • a correlation reception data signal 1010 which is a correlation between the signal 1004 and a frame synchronization signal 1009 described later, is output.
  • the symbol synchronization unit 170 generates a symbol synchronization signal 1012 generated by the symbol synchronization signal generation unit 172 using the internally generated timing signal 1011 generated based on the correlation reception data signal 1010, and the correlation reception By correlating with the data signal 1010, the decoded data signal 1015 is extracted and output to a signal processing unit in a later stage (not shown).
  • Receiving section 110a inputs a radio signal received by antenna 101a to band pass filter 102a, thereby removing noise components other than the frequency band including the RF data signal. Furthermore, by inputting the noise-removed RF data signal to the amplifier 103a, the RF data signal is amplified to a desired power level with low noise and output.
  • the receiving unit 110b removes the noise component other than the frequency band including the RF synchronization signal by inputting the radio signal received by the antenna 101b to the band pass filter 102b. Further, by inputting the denoised RF synchronization signal to the amplifier 103b, the separately transmitted RF synchronization signal component is configured to be amplified with low noise to a desired power level and output.
  • the frame synchronization unit 140 generates the first template signal timing adjustment unit 160 that generates the first tepla signal 1006 based on the separately transmitted RF frame synchronization signal 1005, and the first template signal 1006.
  • the template signal switching unit 142 selects the first template signal 1006 and switches from the first template signal 1006 to the second template signal 1007 according to the synchronization state, and the synchronization output from the template signal switching unit 142 Synchronize the received RF data signal 1 004 on the basis of the template signal 1008 (first template signal 1006 or second template signal 1007)
  • a second frame synchronization timing adjustment unit 150 that synchronizes the received RF data signal 1004 with the frame synchronization signal 1009.
  • the frame synchronization signal generation unit 141 generates a frame synchronization signal 1009 for communication.
  • the first frame synchronization timing adjustment unit 160 causes the first template signal generation unit 161 to generate a carrier of the same frequency as the separately transmitted RF frame synchronization signal and the first template signal, and A modulation signal is generated by modulating the carrier wave with the first template signal 1006, and the output of the correlation determination unit 164 becomes a predetermined value using the correlation unit 162, the low pass filter 163, and the correlation determination unit 164.
  • the modulation signal is configured to be synchronized with the separately transmitted RF frame synchronization signal 1005 by feedback control.
  • the first template signal generation unit 161 has a template having a rising waveform synchronized with the rising timing of the first template signal included in the separately transmitted RF frame synchronization signal 1005. It is configured to output a 1006 signal.
  • the second template signal generation unit 143 is configured to synchronize the internally generated second template signal 1007 with the input first template signal 1006 and output it.
  • the template signal switching unit 142 receives the template switching signal 1020 from the frame synchronization correlation determiner 155, switches the first template signal 1006 or the second template signal 1007, and selectively outputs the selected signal. Configure to
  • the frame synchronization signal generator 141 receives the first template signal 1006 or the second template signal 1007, generates a carrier wave having the same frequency as the received RF data signal 1004, and the carrier wave is generated by The frame synchronization signal 1009 modulated by the first template signal 1006 or the second template signal 1007 is configured to be output.
  • Second frame synchronization timing adjustment section 150 receives frame synchronization signal 1009, and after delaying for a predetermined initial time ⁇ ⁇ in variable delay section 151, amplifier 152 attains a predetermined power level. Using the correlation unit 153, the low pass filter 154, and the frame synchronization correlation detector 155, the synchronization pull-in starts and the output power of the frame synchronization correlation detector 155 is set to the first predetermined value. When reached, a template switching signal 1020 is sent to the template signal switching unit 142. After that, the feedback amount of the variable delay unit 151 is feedback-controlled by the control signal 1013 so that the output of the frame synchronization correlation determiner 155 becomes the second predetermined value, and the frame synchronization signal 1009 is received. Are configured to establish synchronization with the master signal 1004.
  • the synchronization state can be divided into two states, and the presence or absence of the RF data pulse constituting the reception RF data signal 1004 is detected, and the synchronization pull-in is performed. There is a pulse capture state for achieving synchronization, and a pulse phase capture state for achieving synchronization of phase levels of wave elements forming an RF data pulse.
  • the symbol synchronization unit 170 generates a timing signal 1011 (hereinafter referred to as an internally generated timing signal) based on the correlation reception data signal 1010, and a symbol based on the internally generated timing signal 1011.
  • the symbol synchronization signal generation unit 172 that generates the synchronization signal 1012 and the symbol synchronization signal 1012 are synchronized with the correlation reception data signal 1010, and the decoded data signal 1015 is restored and output, and the output is a desired decoded data signal.
  • a first symbol synchronization timing adjustment unit 180 which internally performs timing adjustment.
  • the timing recovery unit 171 generates an internally generated timing signal 1011 having a rising waveform synchronized with the rising timing of the correlation reception data signal based on the correlation reception data signal 1010 and having a predetermined repetition cycle.
  • the symbol synchronization signal generator 172 despreads the correlation reception data signal 1010 based on the internally generated timing signal 1011 to generate a symbol synchronization signal 1012 for recovering the decoded data signal 1015. , Is configured to output.
  • the correlation unit 181 After the first symbol synchronization timing adjustment unit 180 delays the input of the symbol synchronization signal 1012 by the variable delay unit 181 by a predetermined initial time nXT (where ⁇ is an integer), the correlation unit The control signal 1014 controls the variable delay unit 181 so that the output of the symbol synchronization correlation determiner 184 has a predetermined value using the low pass filter 182 and the symbol synchronization correlation determiner 184.
  • the symbol synchronization signal 1012 is configured to be synchronized with the correlation reception data signal 1010 by performing feedback control of the delay amount of.
  • pulse modulation type receiving apparatus 100 receives received RF data signal 1004 from wireless signals received by two systems of antennas 101a and 101b that receive wireless signals, in receiving section 110a.
  • the RF frame synchronization signal 1 005 is extracted from the radio signal by the receiver 110 b.
  • the extracted received RF data signal 1004 and the RF frame synchronization signal 1 005 are input to the frame synchronization unit 140.
  • the first frame synchronization timing adjustment unit 160 receives the RF frame synchronization signal 1005 and outputs a first template signal 1006.
  • the template signal switching unit 142 The template signal 1006 is selected and output to the frame synchronization signal generator 141 as the synchronization template signal 1008.
  • the frame synchronization signal generation unit 141 receives the synchronization template signal 1008, generates a frame synchronization signal 1009, and outputs the frame synchronization signal 1009 to the second frame synchronization timing adjustment unit 150.
  • the second frame synchronization timing adjustment section 150 correlates the received RF data signal 1004 with the frame synchronization signal 1009 while bringing the frame synchronization signal 1009 into synchronization with the received RF data signal 1004.
  • a template switching signal 1020 is sent to the template signal switching unit 142.
  • the second template signal generation unit 143 synchronizes the internally generated second template signal 1007 with the first template signal 1006.
  • the template signal switching unit 142 receives the template switching signal 1020 and switches the input from the first template signal 1006 to the second template signal 1007. Then, the template signal switching unit 142 outputs the second template signal 1007 to the frame synchronization signal generation unit 141 as the synchronization template signal 1008.
  • the frame synchronization signal generation unit 141 receives the synchronization template signal 1008, generates a frame synchronization signal 1009, and outputs the frame synchronization signal 1009 to the second frame synchronization timing adjustment unit 150.
  • the second frame synchronization timing adjustment section 150 correlates the received RF data signal 1004 with the frame synchronization signal 1009 while bringing the frame synchronization signal 1009 into synchronization with the received RF data signal 1004. Further, the control signal 1013 is output to the variable delay unit 151 until the output of the frame synchronization correlation detector 155 reaches a second predetermined value.
  • the pulse modulation type transmitting apparatus 200 performs symbol signal processing for performing predetermined pulse signal string conversion operation (hereinafter referred to as symbolization) on the transmission data signal 2001 and the frame synchronization signal 2002. 210, and one of the outputs of the symbol block 210, the symbol
  • the RF data signal transmission unit 220 outputs an RF data signal 2004 which is a radio signal having a data signal obtained by filtering an unnecessary component after performing frequency modulation to a high speed radio frequency and amplification to a predetermined power level.
  • an RF synchronization signal transmission unit 230 for outputting an RF frame synchronization signal 2006 which is a wireless signal having a frame synchronization signal obtained by filtering the RF data signal 2004 or the RF frame synchronization signal 2006.
  • RF frame synchronization signal 2006 is a wireless signal having a frame synchronization signal obtained by filtering the RF data signal 2004 or the RF frame synchronization signal 2006.
  • Symbol part 210 receives transmission data signal 2001 and frame synchronization signal 2002, and symbolizes transmission data signal 2003 and symbolized frame synchronization signal 2005 obtained by symbolizing each signal. Configure to output.
  • the RF data signal transmission unit 220 performs predetermined modulation on the symbolized transmission data signal 2033 by the modulation unit 22 la, and then performs frequency conversion to a radio frequency by the frequency conversion unit 222 a. Further, after amplification to a predetermined power level by the amplifier 223a, the band pass filter 224a is configured to output an RF data signal 2004 from which unnecessary components are removed.
  • the RF synchronization signal transmission unit 230 performs predetermined modulation on the symbol / frame synchronization signal 2005 by the modulation unit 221b, and then performs frequency conversion to a radio frequency by the frequency conversion unit 222b. Furthermore, after amplification to a predetermined power level by the amplifier 223b, the band pass filter 224b is configured to output an RF frame synchronization signal 2006 from which unnecessary components have been removed.
  • the pulse modulation type transmitting apparatus 200 receives a start Z stop instruction signal 2007 for instructing start or stop of the RF synchronization signal transmission unit 230 from a built-in start Z stop instruction signal generation unit (not shown) described later. , Start or stop the RF synchronization signal transmission unit 230; When attempting to start a new communication with the noise modulation type receiver 100, the start Z stop instruction signal The start signal is sent from the generation unit to the RF synchronization signal transmission unit 230.
  • the transmission data signal 2001 and the frame synchronization signal 2002 to be transmitted to the pulse modulation type receiving apparatus 100 of the communication partner are input to the symbolization unit 210, Symbolization section 210 applies predetermined symbols to each of transmission data signal 2001 and frame synchronization signal 2002.
  • a value (1 or 0) force for each input bit is converted into a plurality of pulse signal trains corresponding to the value and a pattern force configured based on a predetermined rule defined in advance. Output. Also, in symbolization, a symbol of converting a 1-bit input into a pulse signal string of multiple bits, and a symbol of converting a multi-bit input into a pulse signal string of even multiple bits, is performed. It is good.
  • a symbolized transmission data signal 2003 obtained by symbolizing transmission data signal 2001 is input to RF data signal transmission section 220, and symbol frame synchronization signal 2005 obtained by symbolizing frame synchronization signal 2002 is an RF synchronization signal.
  • Signal transmission unit 230 Signal transmission unit 230.
  • the symbolized transmission data signal 2003 input to the RF data signal transmission unit 220 is subjected to predetermined modulation by the modulation unit 221a, and then frequency-converted to a radio frequency by the frequency conversion unit 222a. Further, after being amplified to a predetermined power level by the amplifier 223a, unnecessary components are removed by the band pass filter 224a, and the signal is output to the antenna 201a.
  • modulation methods such as OOK (On Off Keying), BPSK (Binary Phase Shift Keying), QPSK (Quadra Phase Shift Keying), and PP M (Pulse Phase Modulation) are used.
  • a method of combining a sine wave source and a mixer circuit, and mixing a high frequency carrier signal generated by the sine wave source by the mixer circuit with the output signal of the modulator 22 la, generated by the sine wave source A frequency conversion method such as a method of turning ON / OFF the high frequency carrier signal output by the output signal of the modulator 221a using a switch element or a method of turning ONZOFF the sine wave source itself by the output signal of the modulator 221a is used.
  • the RF data signal 2004 output from the RF data signal transmission unit 220 is sent by the antenna 201 a to the pulse modulation type receiving apparatus 100 of the other party of communication via the transmission medium (not shown).
  • the symbol synchronization / frame synchronization signal 2055 input to the RF synchronization signal transmission unit 230 is subjected to predetermined modulation by the modulation unit 221 b and then converted to the radio frequency by the frequency conversion unit 222 b. After frequency conversion and amplification to a predetermined power level by the amplifier 223b, unnecessary components are removed by the band pass filter 224b, and the signal is output to the antenna 201b.
  • the same modulation method and frequency conversion method as in the RF data signal transmission unit 220 are used. Further, as a modulation method used by each of the modulation unit 221a and the modulation unit 221b, different modulation methods may be used as long as they can be demodulated by the pulse modulation type receiving apparatus 100 on the communication partner side. Furthermore, as long as the frequency conversion method used by each of the frequency conversion unit 222a and the frequency conversion unit 222b is conversion to a predetermined radio frequency, different frequency conversion methods may be used instead of the same method. You can
  • the RF frame synchronization signal 2006 output from the RF synchronization signal transmission unit 230 is sent to the pulse modulation type receiving apparatus 100 of the communication partner via the transmission medium (not shown) by the antenna 201 b.
  • the operation up to this point is the transmission operation of the transmission data signal 2001 and the frame synchronization signal 2002 in the pulse modulation type transmission apparatus 200 when the RF synchronization signal transmission unit 230 is in the activated state.
  • the operation of the pulse modulation type transmitting apparatus 200 when the stop signal output from the start Z stop instruction signal generating unit is applied to the RF synchronization signal transmitting unit 230 will be described.
  • the stop signal from the start Z stop instruction signal generating unit is for RF synchronization. It is sent to the signal transmission unit 230. Also, even if it is not a method of issuing a stop signal after receiving a frame synchronization establishment information and a predetermined time has elapsed, frame synchronization is established, and after a predetermined time has elapsed, the pulse modulation type receiving apparatus 100 is stopped.
  • the stop signal generation request signal may be sent to the pulse modulation type transmitting apparatus 200, and the stop signal generation request signal may be received to generate a stop signal.
  • the power supply start-up Z stop control circuit (not shown) in the RF synchronization signal transmission unit 230 transmits the RF synchronization signal transmission unit 230. Power supply is shut off.
  • pulse modulation type receiving apparatus 100 After establishing synchronization using RF frame synchronization signal 1005, synchronization is maintained using frame synchronization signal 10 09 generated using second template signal 1007. ing. Integration of the time lag between the pulse modulation type transmitter side timing and the pulse modulation type receiver side timing due to the prolongation of the elapsed time from the start of communication, pulse modulation type transmitter 200 and pulse modulation type receiver 100 Due to the positional relationship with the network and the time lag due to changes in the communication path, significant desynchronization may occur.
  • a force corrected by the second frame synchronization timing adjustment unit 150 inside the frame synchronization unit 140 For example, a time domain in which the second template signal 1007 is “1”.
  • synchronization error correction that greatly exceeds synchronization error correction within the device, it is necessary to extend the synchronization correction cycle, and it becomes necessary to set a constant that is contrary to shortening of the synchronization time.
  • the start Z stop instruction signal generation unit issues the stop instruction signal, it alternately transmits the start instruction signal and the stop instruction signal toward the RF synchronization signal transmission unit 230 at predetermined time intervals. Do.
  • the pulse modulation type receiving apparatus 100 performs synchronization deviation correction using an RF frame synchronization signal (hereinafter referred to as an RF frame synchronization holding signal) transmitted at predetermined time intervals after synchronization is established.
  • power supply to the receiving unit 110b of the pulse modulation type receiving apparatus 100 or the first frame synchronization timing adjustment section 160 or both may be stopped, or the pulse modulation type transmitting apparatus
  • the power supply of the RF synchronization signal transmitter 230 may be stopped, or both of them may be performed.
  • the pulse modulation type receiving apparatus 100 extracts the received RF data signal 1004 from the radio signal sent from the pulse modulation type transmitting apparatus 200 on the communication partner side by the antenna 101a and the receiving unit 110a, and the antenna 101b.
  • the RF frame synchronization signal 1005 is extracted by the receiver 110 b.
  • frame synchronization section 140 performs frame synchronization with reception RF data signal 1004.
  • Signal 1009 is synchronized.
  • the RF data pulse train constituting the received RF data signal 1004 may have no pulse signal depending on time.
  • a mode for detecting the approximate position of the RF data pulse constituting received received RF data signal 1004, received RF data signal 1004 and frame It is configured in a mode (hereinafter referred to as pulse phase acquisition) in which the phase of the synchronization signal 1009 is made to coincide.
  • an RF frame having a template signal which is frame synchronization signal information synchronized with an RF data pulse which is data signal information in a pulse capturing process is used.
  • the frame synchronization signal generation unit 141 generates the frame synchronization signal based on the first template signal 1006 from the first frame synchronization timing adjustment unit 160. Synchronize frame synchronization signal 1009 with received RF data signal 1004. At this time, since the phase relationship between the RF data pulse and the first template signal 1006 that constitutes the frame synchronization signal 1009 is the same timing, the RF data pulse that constitutes the RF data signal and the RF frame synchronization signal 1005 have. The phase relationship with the template signal is also matched.
  • the frame synchronization signal generation unit 160 since the first template signal 1006 output from the first frame synchronization timing adjustment unit 160 has the same phase relationship as the template signal of the RF frame synchronization signal 1005, the frame synchronization signal generation unit The frame synchronization signal 1009 generated at 141 is also in phase with the RF data pulses that make up the received RF data signal 1004. As a result, the first power of the synchronization establishment process is It becomes possible to realize the capture of the light.
  • correlation output is obtained from the beginning of the synchronization establishment process if the reception RF data signal 1004 and the frame synchronization signal 1009 are multiplied by the correlation unit 153.
  • the correlation judgment unit for frame synchronization 155 judges the correlation between the received RF data signal 1004 and the signal 1009 for frame synchronization, and the variable delay unit 151 controls the control signal 1013 until the correlation output becomes a first predetermined value.
  • the carrier wave of the RF data signal at the rise of the RF data pulse constituting the reception RF data signal 1004 and the signal for frame synchronization at the rise of the template signal for synchronization constituting the signal 1009 for frame synchronization It is desirable that the phase relationship with the carrier wave of each carrier should be matched, that is, the same timing, but the correlation output can be obtained even if the phase relationship of each carrier level is not matched. It is controlled to match the phase relationship of the carrier level.
  • the phase relationship with the frame synchronization signal carrier is designed, feedback control is not performed, and the delay amount of the variable delay unit 151 is set to 0 (zero) to perform pulse acquisition and pulse phase acquisition. It can be realized simultaneously. In this case, the time required to establish synchronization is almost unnecessary, and since the correlation reception data signal 1010 is also obtained at the start of frame synchronization establishment operation, there is no need to transmit extra data for frame synchronization establishment, and further High speed data communication is possible.
  • the delay amount is described as 0 (zero)
  • the template signal switching unit 142, the variable delay unit 151, the amplifier 152, and a wiring (not shown) up to the correlation unit 153 have this.
  • the inherent delay amount is appropriately corrected.
  • the inherent delay amounts possessed by the antennas 101a and 101b, the bandpass filters 102a and 102b, and the low noise amplifiers 103a and 103b are appropriately corrected as well.
  • a template used to generate the frame synchronization signal 1009 The signal is switched from the first template signal 1006 generated by the first frame synchronization timing adjustment unit 160 to the second template signal 1007 generated by the second template signal generation unit 143.
  • synchronization establishment which is timing alignment between the template signal 1006 and the second template signal 1007.
  • This synchronization establishment operation uses a correlation unit (not shown) in the second template signal generation unit 143, a low pass filter, a correlation determination unit, a variable delay unit, etc., and uses the first or second frame synchronization timing. It is performed by performing the same operation as the operation used by the adjustment units 160 and 150.
  • the synchronization holding state is also referred to the first template signal 1006 after synchronization is established or at a predetermined time before the output of the template signal 1006 is stopped after the synchronization is established. Without referring to the first template signal 1006, it shifts to a self-synchronization holding state in which the synchronization establishment state is held.
  • the first frame synchronization timing adjustment unit 160 It is possible to maintain the first state of synchronization establishment even if the operation of is stopped.
  • an RF frame synchronization holding signal input detection circuit (not shown) for performing synchronization correction using an RF frame synchronization holding signal input detection circuit. It is detected that the frame synchronization holding signal is the first template signal generated by the input. After that, the self-synchronization holding state is stopped, and the second template signal 1007 is resynchronized with the first template signal 1006.
  • the self-synchronization holding state and the resynchronization state are alternately repeated according to the input of the synchronization error correction RF frame synchronization holding signal.
  • the template signal switching unit 142 switches the input from the first template signal 1006 to the second template signal 1007 and outputs it as a synchronization template signal 1008 to the frame synchronization signal generation unit 141.
  • transition from frame synchronization using RF frame synchronization signal 1005 to frame synchronization using second template signal 1007 is performed, and second template signal 1007 is used.
  • the used frame synchronization holding state is established.
  • the decoded data signal 1015 is restored in the symbol synchronization unit 170 based on the correlation reception data signal 1010 output from the frame synchronization unit 140.
  • pulse modulation type transmission apparatus 200 one or more bits of the transmission data signal in symbol conversion section 210 are converted and output into a plurality of pulse signal trains having pattern powers configured based on a predetermined rule. ing.
  • an operation performed by the symbolization unit 210 is a diffusion coding process. Further, as an operation performed by the symbol synchronization unit 170, there is a despreading coding process.
  • symbol code ⁇ is not a necessary operation, it is one of the methods to realize multiplexing in pulse communication as well as CDMA communication using a continuous wave.
  • the correlation reception data signal 1010 input to the symbol synchronization unit 170 is divided into two by a distributor (not shown), and one is input to the first symbol synchronization timing adjustment unit 180 and the other is input to the timing recovery unit 171. .
  • the second template signal generation unit 143 of the frame synchronization unit 140 When the correlation reception data signal 1010 is input to the timing recovery unit 171, the second template signal generation unit 143 of the frame synchronization unit 140 generates a second template signal based on the correlation reception data signal 1010. By substantially the same operation as described in the operation, an internally generated timing signal 1011 is generated in which pulses occur at predetermined time intervals.
  • the first and second frame synchronization timing adjustment units 160 and 150 are used by using a correlation unit (not shown) inside the timing recovery unit 171, a low pass filter, a correlation determination unit, a variable delay unit, and the like.
  • the internally generated timing signal 1011 synchronized with the correlated reception data signal 1010 is generated and output to the symbol synchronization signal generation unit 172.
  • BPSK is used as the modulation method
  • the data sequence of correlated reception data signal 1010 is continuous at a constant interval, so that only the amplitude information is used to generate internally generated timing signal 1011. can do.
  • OOK modulation or PPM modulation is used, although the data strings are not at fixed intervals, it is possible to generate an internally generated timing signal 1011 for establishing symbol synchronization with any data string. .
  • the symbol synchronization signal generation unit 172 receives the internally generated timing signal 1011 and generates a symbol synchronization signal 1012 having a plurality of pulse trains for recovering the decoded data signal 1015, and performs the first symbol synchronization. It is sent to the timing adjustment unit 180.
  • first symbol synchronization timing adjustment section 180 correlation section 182 multiplies input correlation reception data signal 1010 and symbol synchronization signal 1012 by correlation section 182 to obtain a decoded data signal from the other end of the communication. And outputs a decoded data signal 1015.
  • the timing of the symbol synchronization signal 1012 and that of the correlation reception data signal 1010 are deviated, a state in which an incorrect time slot is at the head of a symbol in the correlation reception data signal pulse train due to this timing deviation. Therefore, symbol synchronization is realized by changing the delay time of the variable delay unit 181.
  • the delay time is changed by the symbol synchronization correlation determiner 184 from the symbol synchronization correlation determiner 184 to the variable delay unit 181 until the correlation value reaches a predetermined value. It is realized by sending out 1014.
  • the variable delay unit 181 changes the delay time based on the control signal 1014 for changing the delay amount.
  • the amount of change is changed quantumally with the time set T as the step width. However, if the step width is increased or decreased continuously one by one, the number of steps increased or decreased according to the amount of change. I can change it.
  • the transmission data signal 2001 and the frame synchronization signal are transmitted to the pulse modulation type transmitting apparatus 200.
  • An RF data signal transmission unit 220 and an RF synchronization signal transmission unit 230 for separately transmitting 2002 and 2002 are provided, and a frame synchronization unit 140 of the pulse modulation type receiving apparatus 100 is further transmitted with a signal for RF frame synchronization.
  • a first frame synchronization timing adjustment unit 160 that generates a first template signal 1006 generated based on 1005, and a template that generates a second template signal 1007 that is synchronized to the first template signal 1006.
  • a template signal switching unit 142 that selects one of the first template signal 1006 and the second template signal 1007 according to the synchronization state and switches and outputs it as a synchronization template signal 1008, and the reception RF
  • a frame synchronization signal generator 141 which receives a template signal 1008 for synchronization synchronized with an RF data pulse forming the data signal 1004 and generates a signal 1009 for frame synchronization, a received RF data signal 1004 and a signal 1009 for frame synchronization
  • a second frame synchronization timing adjustment unit 150 that generates and outputs a correlation reception data signal 1010 from the signal acquisition unit, and the RF frame synchronization signal 1005 is used for pulse capture or pulse phase capture at initial synchronization establishment at the start of communication.
  • Frame synchronization is performed by the first template signal 1006 generated based on the second template signal after synchronization is established.
  • frame synchronization is performed using a frame synchronization signal generated internally without using the RF frame synchronization signal 1005 separately transmitted, Since synchronization can be established in a short time, communication speed can be increased.
  • the second template signal is synchronized with the first template signal 1006, and the first template signal 1006 to the second template signal 1007 are held as synchronization after synchronization establishment.
  • the frequency band used for RF frame synchronization signal transmission is also for RF transmission data signal transmission. Since it can be used, a pulse modulation type transmitter, pulse modulation type receiver and system capable of further high-speed data transmission can be realized.
  • the frame synchronization unit 140 of the above embodiment uses the first template signal 1006 generated from the RF frame synchronization signal 1005 separately transmitted to establish frame synchronization, and the second synchronization holding after synchronization establishment. Shows a configuration that uses the template signal 1007 of The received RF data signal 1004 may be used as a second template signal for later synchronization. Furthermore, synchronization may be established not only by synchronization but also as a configuration in which the received RF data signal 1004 is used as a first template signal generated from the RF frame synchronization signal 1005 sent separately.
  • the information to be transmitted separately is described as the frame synchronization timing indicating the pulse position and phase, and the symbol synchronization timing indicating the position of the code string
  • Information may be sent separately.
  • a device capable of receiving a signal including authentication information sent separately receives a request for transmission from another device and limits the other party of communication.
  • data for authentication may be added to either the RF frame synchronization signal or the RF symbol synchronization timing signal, or may be separately transmitted as a new signal.
  • the data signal, the frame synchronization timing signal, and the symbol synchronization timing signal may change the data rate. This makes it possible to narrow the occupied band of the low rate signal and reduce the frequency band used by changing the data rate of each signal.
  • sparse synchronization is performed in a low-rate communication system or communication system.
  • power consumption of the synchronous circuit can be reduced, and by performing sparse synchronization at fixed time intervals, accuracy can be reduced. The time from the start of high synchronization to the establishment of synchronization can be shortened.
  • FIG. 1 A block configuration of the pulse modulation type receiving apparatus according to the embodiment 2 of the present invention is shown in FIG.
  • FIG. 3 uses the first template signal 1006 generated from the RF frame synchronization signal 1005 sent separately to establish frame synchronization, and the reception RF data signal 1 004 has a variable delay unit 343 for maintaining synchronization after establishment of synchronization.
  • the configuration of the pulse modulation type receiving apparatus 100 shown in FIG. 1 differs from that of FIG. 1 in that the second template signal generation unit 143 and the template signal switching unit 142 are not provided, and a frame synchronization signal switching unit 342 and a variable delay unit 343.
  • the data signal 1004 is delayed by the variable delay unit 343 for a predetermined time T and then input to the frame synchronization signal switching unit 342.
  • the difference from the operation of the frame synchronization unit 140 is as follows.
  • frame synchronization signal switching unit 342 uses frame signal 1006 to perform frame synchronization.
  • the frame synchronization signal 1009 generated by the signal generation unit 141 is selected and output to the second frame synchronization timing adjustment unit 150.
  • the second frame synchronization timing adjustment unit 150 synchronizes the frame synchronization signal 1009 output from the frame synchronization signal switching unit 342 with the reception RF data signal 1004 while receiving the reception RF data signal 1004. Correlation with the frame synchronization signal 1009 output from the frame synchronization signal switching unit 342 to determine the frame synchronization correlation.
  • a frame synchronization signal switching signal 3020 is sent to the frame synchronization signal switching unit 342.
  • the frame synchronization signal switching unit 342 receives the frame synchronization signal switching signal 3020, switches the input to the delayed reception RF data signal 3010 from the template signal 1006, and transmits the second frame synchronization timing adjustment unit 150. Output.
  • the second frame synchronization timing adjustment section 150 correlates the reception RF data signal 1004 with the delay reception RF data signal 3010 while bringing the delay reception RF data signal 3010 into synchronization with the reception RF data signal 1004.
  • the control signal 1013 is output to the variable delay unit 151 until the output of the correlation detector for frame synchronization 155 reaches a second predetermined value.
  • the output of the correlation detector for frame synchronization 155 reaches a second predetermined value, synchronization of the delayed reception RF data signal 3010 with respect to the reception RF data signal 1004 is established, and the predetermined correlation reception data signal 1010 is a frame. It is output from the synchronization correlation determination unit 155.
  • received RF data signal 1004 is branched into two, one of which is a variable delay unit.
  • the delayed reception RF data signal 3010 delayed by a predetermined time T according to H. 343 is used to perform the delay detection for detecting the correlation reception data signal 1010.
  • the above is the difference from the operation of the frame synchronization unit 140.
  • the second template signal generation unit 143 is generated inside the frame synchronization unit 340. As the circuit configuration is simplified because it is not necessary to have the power consumption can be reduced.
  • the signal levels of amplifiers or the like may be used depending on the elements used for multiplication processing and correlation processing. Needless to say, to make adjustments.
  • FIG. 4 shows the block configuration of the pulse modulation type receiving device in mode 3.
  • FIG. 4 is a block diagram of a pulse modulation type receiving apparatus having a frame synchronization unit 440 which uses received RF data signal 1004 in synchronization pull-in and establishment of synchronization.
  • the difference from the pulse modulation type receiver shown in FIG. 3 is that it is not connected to the antenna 101b and does not have the receiver 110b, and an RF data signal is branched into three and input to the frame synchronization unit 440.
  • the point is that the received RF data signal 1004 which is not the frame synchronization signal 1005 is input to the correlation unit 162 of the first frame synchronization timing adjustment unit 160.
  • the operation of the frame synchronization unit 340 is different from that described below in the following points.
  • the delayed reception RF data signal 3010 is selected by the frame synchronization signal switching unit 342, and the second frame synchronization timing adjustment unit 150 is selected.
  • the second frame synchronization timing adjustment unit 150 synchronizes the reception RF data signal 3010 output from the signal synchronization signal switching unit 342 with the reception RF data signal 1004 while synchronizing the reception RF data signal 1004.
  • the signal 1004 is correlated with the delayed received RF data signal 3010 output from the frame synchronization signal switching unit 342 and the output of the frame synchronization correlation detector 155 reaches a first predetermined value, frame synchronization is performed.
  • a frame synchronization signal switching signal 3020 is sent to the signal switching unit 342.
  • the frame synchronization signal switching unit 342 receives the frame synchronization signal switching signal 3020, switches the input from the delayed reception RF data signal 3010 to the frame synchronization signal 4009, and adjusts the second frame synchronization timing. Output to section 150.
  • Second frame synchronization timing adjustment section 150 correlates reception RF data signal 1004 with frame synchronization signal 4009 while establishing synchronization of frame synchronization signal 4009 with reception RF data signal 1004.
  • the control signal 1013 is output to the variable delay unit 151 until the output of the correlation detector for frame synchronization 155 reaches a second predetermined value.
  • the output of the correlation detector for frame synchronization 155 reaches a second predetermined value, synchronization of the delayed reception RF data signal 3010 with respect to the reception RF data signal 1004 is established, and the predetermined correlation reception data signal 1010 is a frame. It is output from the synchronization correlation determination unit 155.
  • the reception RF data signal 1004 is branched into three, and when drawing in frame synchronization, it takes three minutes.
  • a variable delay unit 343 performs delayed detection of the correlated received data signal 1010 using one of the delayed signals by the delayed received RF data signal 3010 delayed by a predetermined time T.
  • the frame synchronization signal 4009 generated by the frame synchronization signal generator 141 based on the template signal 1006 generated using another received RF data signal 1004 out of the three branches is used. Using this, synchronous detection is performed to detect the correlation received data signal 1010.
  • the above is the difference from the operation of the frame synchronization unit 340.
  • delay detection is performed to detect the correlation reception data signal 1010 by delaying one of the three branches of the reception RF data signal 1004 for a predetermined time T.
  • the first template signal generation unit 161 generates a first template signal 1006 in which 1 and 0 are alternately continuous.
  • the frame synchronization signal switching unit 342 is synchronized with the rising waveform of the RF data pulse forming the reception RF data signal 1004, and then receives the reception RF data signal 1004 from the frame synchronization signal generation unit 141. It switches to the frame synchronization signal 4009 and outputs it to the second frame synchronization timing adjustment unit 150.
  • the RF data pulses that the received RF data signal 1004 has are not continuous with 1s and 0s alternately.
  • the sensitivity in the correlation detector 164 is reduced.
  • a pulse modulation type transmitting apparatus and a pulse modulation type receiving apparatus according to a fourth embodiment of the present invention will be described.
  • the difference from the first embodiment is that the pulse modulation type receiving apparatus is different, and the pulse modulation type transmitting apparatus is the same as the first embodiment.
  • the block configuration of a pulse modulation type receiving apparatus according to the fourth embodiment of the present invention is shown in FIG.
  • the difference from Embodiment 1 is that, in addition to the separately transmitted RF frame synchronization signal 1005 used in the frame synchronization unit 140, a signal itself of a format necessary as a timing signal for symbol synchronization is used. , And at another radio frequency (hereinafter referred to as an RF timing signal).
  • timing signal there are a format in which the signal is generated only at the start of the symbol, a format in which the signal is generated at the timing of a plurality of bits in the symbol, and the like.
  • pulse modulation type reception apparatus 500 transmits to symbol synchronization section 570 a baseband timing signal from RF symbol synchronization timing signal 5006 transmitted separately.
  • a second symbol synchronization timing adjustment unit 560 that detects the first timing signal and performs amplitude addition, and a timing signal 5008 synchronized with the RF symbol synchronization timing signal 5006 (hereinafter referred to as the second And a timing signal switching unit 573 for switching and outputting one of the second timing signal 5008 and the first timing signal 5007.
  • the second symbol synchronization timing adjustment unit 560 detects a baseband timing signal from the RF symbol synchronization timing signal 5006 in the detection unit 501 and divides one of the detection signals into two for a predetermined time m
  • the first timing signal 5007 having a predetermined amplitude or more is output by being delayed by XT and added to the other.
  • the clock recovery unit 571 generates a timing signal internally generated by an internal template signal generation unit, a variable delay unit, a correlation unit, a low pass filter, a correlation determination unit, etc. (not shown). It is configured to synchronize with the RF symbol synchronization timing signal 5006 and output it.
  • Timing signal switching unit 573 synchronizes second timing signal 5008 with first timing signal 5007, receives symbol synchronization signal switching signal 5020 from symbol synchronization correlation determiner 184, and It is configured to switch from the timing signal 5007 of 1 to the second timing signal 5008 and output it.
  • the first timing signal 5007 may be switched to the second timing signal 5008 after a predetermined time has elapsed and may be output.
  • symbol synchronization unit 570 can establish symbol synchronization using first timing signal 5007. First, after the RF symbol synchronization timing signal 5006 is extracted from the radio signal by the antenna 101b and the reception unit 110b, the signal is input to the second symbol synchronization timing adjustment unit 560.
  • the detection unit 501 detects a baseband timing signal from the RF symbol synchronization timing signal 5006, and one of the two detection signals is branched by the variable delay unit 503.
  • the signal is delayed by a predetermined time m XT, added to the other detection signal by the addition / reset circuit unit 502, reset after addition a predetermined number of times, reset, and added an appropriate number of signals, and an external timing signal 5007 is output.
  • m is an integer representing the number of frames constituting one symbol
  • T represents a time of one symbol length.
  • the external timing signal 5007 is selected by the timing signal switching unit 573, and is output to the symbol synchronization signal generation unit 172.
  • the subsequent operation of generating a symbol synchronization signal based on the first timing signal input to the symbol synchronization signal generation unit 172 is the same as that of the first embodiment.
  • the first timing signal 5007 is branched into two, one of which is input to the clock recovery unit 571.
  • the timing signal generated by the internal template signal generation unit (not shown) is initially delayed by the variable delay unit for a predetermined time, and then correlated with the external timing signal 5007 by the correlation unit. Pass through the low pass filter After that, the amount of delay of the variable delay unit is feedback-controlled until the correlation output reaches a predetermined value by the correlation determination unit. When the correlation output reaches a predetermined value, the second timing signal 5008 generated inside the clock recovery unit 571 is synchronized with the first timing signal 5007.
  • the timing signal switching unit 573 synchronizes the second timing signal 5008 with the first timing signal 5007, and after a predetermined time passes, the first timing signal 5007 to the second timing signal 5008 are synchronized. , And output to the symbol synchronization signal generator 172.
  • the RF symbol synchronization timing signal 5006 is stopped after a predetermined time, and the RF timing signal for symbol synchronization (hereinafter referred to as a symbol synchronization holding timing signal) is transmitted at predetermined time intervals.
  • a symbol synchronization holding timing signal the RF timing signal for symbol synchronization
  • the RF of the separate transmission to the pulse modulation type transmitting apparatus 200 of the first embodiment is transmitted.
  • the RF symbol synchronization timing signal is further transmitted separately, and the pulse modulation type receiving apparatus 100 according to the first embodiment further includes a first timing signal 5007 for the RF symbol synchronization timing signal.
  • the second symbol synchronization timing adjustment unit 560 to detect and the first timing signal 5007 for establishing or maintaining symbol synchronization, symbol synchronization is established, and the symbol synchronization signal from the symbol synchronization correlation determination unit 184 By providing the timing switching portion 573 for switching from the first timing signal 5007 to the second timing signal 5008 in response to the switching signal 5020, Together it can be shortened synchronization establishment time in-time synchronization, further attained also shorten your Keru synchronization establishment time in the synchronization symbol.
  • the symbol synchronization may be established and switched from the external timing signal 5007 to the internal timing signal 5008 after a predetermined time has elapsed.
  • the signal for RF synchronization on the side of pulse modulation type transmitting apparatus 200 is used.
  • the RF frame synchronization signal on the pulse modulation type transmission device 200 side is also performed during symbol synchronization holding.
  • the transmission with the transmission of the RF symbol synchronization timing signal can be stopped, and the operation of the low noise amplifier 103b on the pulse modulation type receiving device 500 side and the second symbol synchronization timing adjustment unit 560 can be stopped. Power consumption can be further reduced by reducing the number of operation circuits in the pulse modulation type transmitting apparatus 200 and the pulse modulation type receiving apparatus 500.
  • the RF frame synchronization signal and the RF Since the frequency band used for transmission with the symbol synchronization timing signal can be used for transmission of the transmission data signal, it is possible to realize a pulse modulation type transmission device and pulse modulation type reception device capable of further high-speed data transmission. .
  • FIG. 1 A block configuration of the pulse modulation type receiving apparatus according to the fifth embodiment of the present invention is shown in FIG.
  • FIG. 6 differs from the configuration of Embodiment 4 in the RF frame synchronization signal 1005 and the RF symbol synchronization timing signal 50 separately transmitted to the pulse modulation type transmitter.
  • the RF frame synchronization signal 1005 and the RF symbol synchronization timing signal 5006 are extracted by separate radio reception systems and output. That is the point.
  • pulse modulation type receiving apparatus 600 is further connected to antenna 601, and has receiving section 110c.
  • a radio signal to RF signal can be generated. After extracting the timing signal 5006 for low synchronization and amplifying it with low noise to a predetermined power level, and then outputting the extracted signal to the second timing adjustment circuit 560 for symbol synchronization. It is.
  • FIG. 7 shows RF frame synchronization signal 1005 and RF symbol synchronization timing signal 5006 which are separately transmitted.
  • the RF frame synchronization signal 1005 used at the time of synchronization establishment for performing pulse capture and pulse phase capture has a pulse width of an RF data pulse forming an RF data signal at time tl to tn separated by a constant time T. It consists of sine waves that are excited intermittently for the same time length tel.
  • the pulse width tel of the transmitting and receiving pulse is shorter than the time interval T.
  • the symbol synchronization signal generation unit 172 generates a symbol synchronization signal based on the signal start time tl of the RF symbol synchronization timing signal 5006 used for symbol synchronization. Therefore, it is only necessary to excite the sine wave for a predetermined time only during the time t1 which is not necessary to intermittently excite the sine wave at all the times tl to tn. Also, the excitation time may be longer than tel. In FIG. 7, excitation is performed for time T only.
  • a second narrowband frequency channel different from that for initial frame synchronization establishment is assigned to the separately transmitted RF symbol synchronization timing signal 5006 used for symbol synchronization.
  • an RF frame synchronization signal By providing a configuration for transmitting and receiving 1005 and RF symbol synchronization timing signal 5006 at different radio frequencies, the first frame synchronization timing adjustment section and the first frame synchronization timing adjustment section and the second frame synchronization timing signal 5006 can be compared The second symbol synchronization timing adjustment units 160 and 560 remove the influence of the mutual signal components.
  • Embodiment 4 in which the frame synchronization establishment time and symbol synchronization establishment time can be shortened, more stable frame synchronization signal and symbol synchronization timing signal can be extracted. Furthermore, it is possible to obtain a correlated reception data signal or a recovered data signal which is stable with less jitter.
  • Embodiment 6 Next, a pulse modulation type transmitting apparatus and pulse modulation type receiving apparatus according to a sixth embodiment of the present invention will be described.
  • the difference from the fifth embodiment is that the pulse modulation type receiving apparatus and the pulse modulation type transmitting apparatus are different !.
  • the block configuration of the pulse modulation type transmitting apparatus according to the sixth embodiment of the present invention is shown in FIG. 8, and the block configuration of the pulse modulation type receiving apparatus is shown in FIG.
  • pulse modulation type transmission apparatus 800 in addition to the configuration of pulse modulation type transmission apparatus 200, pulse modulation type transmission apparatus 800 includes waveform selection section 81 la, 8 between modulation sections 221a and 221b and frequency conversion sections 222a and 222b. It is configured to have l ib.
  • pulse modulation type reception apparatus 900 has timing generation section 571 for generating the second timing in symbol synchronization section 570 of pulse modulation type reception apparatus 600, and timing switching section 573. Also, the second symbol synchronization timing adjustment unit does not have the detection unit 501 and the addition / reset circuit unit 502, and has the correlation unit 901, the low pass filter 902, and the correlation determination unit 903. It becomes the composition.
  • transmission data signal 2001 and frame synchronization signal 2002 are symbolized by symbolization section 210, and after predetermined modulation is performed by modulation sections 221a and 221b, waveform selection section 811a, Wavelets having a predetermined waveform are assigned at 8 l ib, frequency-converted by frequency conversion units 222 a and 222 b, and transmitted.
  • the symbol synchronization timing signal 8003 is symbolized by the symbolization unit 210, subjected to predetermined modulation by the modulation units 221a and 221b, and then transmitted by the waveform selection unit 81 lb.
  • a wavelet having a waveform different from that of the frame synchronization signal is assigned.
  • FIGS. 10A and 10B show the waveforms of the wavelets used for the transmission data signal 2001 or the signal 2002 for frame synchronization and the timing signal 8003 for symbol synchronization.
  • Figure 10A is the first derivative of the Gaussian impulse waveform
  • FIG. 10B shows the second derivative of the Gaussian impulse waveform, where the abscissa represents time and the ordinate represents amplitude.
  • the waveforms in FIG. 10A and FIG. 10B are in a temporally orthogonal relationship with each other, and are waveforms that can be separated on the pulse modulation type receiver side.
  • FIGS. 10A and 10B use the first-order derivative waveform of the Gaussian impulse waveform of FIG. 10A for transmission data signal 2001 and frame synchronization signal 2002, and uses symbol synchronization timing signal 8003 for transmission synchronization. It is not necessary to simply assign the second-order differential waveform of the Gaussian impulse waveform shown in FIG. 10B. Also, the waveform of the wavelet used is only an example, and is not limited to the waveforms shown in FIGS. 10A and 10B as long as they are orthogonal to each other in time.
  • the output signals from transmit data signal 2001 and waveform selectors 811 a and 8 l ib of symbol synchronization timing signal 8003 are respectively selected as transmit data 8005 for waveform selection and signal 8006 for waveform selection symbol synchronization.
  • the output signals of the conversion units 222a and 222b are RF transmission data 8007 and RF symbol synchronization signal 8008, respectively
  • FIG. 11 shows the waveforms and relationships of the input and output signals.
  • the symbol synchronization timing signal 8003 has a length and a pulse width.
  • pulse modulation type reception apparatus 900 extracts RF symbol synchronization timing signal 5006 from a radio signal using antenna 601, band pass type filter 602 of reception section 110c, and low noise amplifier 603. After amplification with low noise to a predetermined power level, the extracted signal is output to the second symbol synchronization timing adjustment unit 960. At this time, the RF frame synchronization signal 1005 having different wavelets is removed by the second symbol synchronization timing adjustment unit 960 even if the carrier frequency is the same as the frequency band to be transmitted.
  • Second symbol synchronization timing adjustment section 960 splits the input RF symbol synchronization timing signal into two, and delays one signal by time m XT by delay section 503 (however, m Is an integer), and the other signal is input to the correlation unit 901 to perform differential detection.
  • the correlation determiner 903 changes the m value of the delay unit 503 until the correlation value becomes a predetermined value. When the correlation value reaches a predetermined value, the timing signal required for desired symbol synchronization is correlated. It is outputted from the judgment unit 903.
  • the configuration of the pulse modulation type receiving apparatus of the fifth embodiment is slightly modified. Further, by providing a configuration in which different wavelets are applied to the RF frame synchronization signal 8008 and the RF symbol synchronization timing signal 8009 on the pulse modulation type transmitting apparatus 800 side, the RF frame synchronization signal 8008 and the RF symbol synchronization timing signal The 8009 can be sent in the same frequency band.
  • the RF frame synchronization signal 1005 and the RF symbol synchronization timing signal 5006 can be easily separated at the pulse modulation type receiving apparatus 900 side, different wavelets are not applied, and the same signal is generated. Since the first frame synchronization timing adjustment unit and the second symbol synchronization timing adjustment units 160 and 960 remove the influence of each other's signal components as compared to the case of receiving on a radio frequency, the frame is eliminated. According to the effect of the fifth embodiment that the synchronization establishment time can be shortened and the symbol synchronization establishment time can be shortened, more stable frame synchronization signal and symbol synchronization timing signal can be extracted. In addition, it is possible to obtain a correlated reception data signal or a restored data signal which is stable with less jitter.
  • the pulse modulation type transmitting apparatus, pulse modulation type receiving apparatus and system according to the present invention can shorten the time required for establishing synchronization and can transmit and receive data more quickly than the start of communication,
  • the power consumption of the synchronization unit can be reduced even with a configuration having a plurality of reception systems, and AV devices and personal computers can be wirelessly connected to each other. Therefore, the present invention is useful as a data communication apparatus or a UWB wireless apparatus using a pulse-like modulation signal to form a seamless network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 短時間での同期確立と、同期部の低消費電力化の両立を実現し、通信開始より速やかにデータの授受ができる高速データ伝送が可能な低消費電力のパルス変調型送信装置およびパルス変調型受信装置を提供することを目的とする。別送されたRFフレーム同期用信号(1005)を基に生成した第1のテンプレート信号(1006)を用いてフレーム同期用信号(1009)を生成し、第2のフレーム同期用タイミング調整部(150)にて、フレーム同期用信号(1009)を受信RFデータ信号(1004)に同期させ同期検波することで、敏速にパルス捕捉及びパルス位相捕捉を実現する。また、フレーム同期確立後は、テンプレート切替え部(142)により、第1のテンプレート信号(1006)から事前に第1のテンプレート信号(1006)に同期させておいた第2のテンプレート信号(1007)に切替えて同期検波を行うことによりフレーム同期保持を行う。

Description

明 細 書
パルス変調型送信装置およびパルス変調型受信装置
技術分野
[0001] 本発明は、パルス状の変調信号を用いた無線通信装置に関する。
背景技術
[0002] IEEE802. l ibに代表される無線 LAN機器の急速な普及に加えて、 AV機器や パーソナルコンピュータを相互に無線接続することによって、シームレスなネットヮー クが確立された社会が予想されており、小型かつ高速のデータ通信装置を安価に実 現する技術の確立が急務となって 、る。
[0003] その一つとして、パルス状の変調信号を用いるパルス無線通信が注目されて 、る。
パルス無線通信装置での受信データ信号を同期する従来方法として、基準時間と前 後する遅延処理を施した各信号との相関により、同期を行う方法が、知られている( 例えば特許文献 1参照)。
[0004] 図 12は、特許文献 1に記載されている従来のパルス無線通信装置の構成を示す ブロック図である。図 12において、従来のパルス無線通信装置 1200は、アンテナ 12 01で受信した RF信号を増幅する増幅器 1202と、不要な信号を取り除くフィルタ 120 3と、信号をアナログ化するアナログ符号化手段 1204と、信号を分岐するスプリッタ 1 205と、信号を遅延する複数の遅延器 1206、 1207、 1208と、信号を乗算する乗算 器 1209、 1210、 1211と、時間積分する積分器 1212、 1213、 1214と、相関に応じ て同期判定と遅延制御とを行う受信同期制御部 1217と、信号の位相を遅延する位 相遅延手段 1218と、位相遅延信号を変調し、同一拡散コードで拡散するメイン受信 ウェーブレット符号生成器 1216と、メイン受信ウェーブレット符号生成器 1216出力を 3分岐し、乗算器 1209、 1210、 1211に出力するスプリッタ 1215とで構成されてい る。
[0005] この構成で、受信した RF信号を、増幅器 1202により復調に必要な振幅に増幅し、 帯域外の不要周波数帯域をフィルタ 1203により除去して、アナログ符号化手段 120 4によりアナログ符号を生成する。この信号をスプリッタ 1205で分岐し、遅延器 1206 、 1207、 1208により、 3つの遅延した信号、すなわち、時間 L遅延した信号、時間 L +Y遅延した信号、時間 L Y遅延した信号を出力する。これら 3つの信号に、メイン 受信ウェーブレット符号生成器 1216で生成した基準パルス信号を乗算器 1209、 12 10、 1211【こより、それぞれ乗算し、積分器 1212、 1213、 1214【こて、それぞれシン ボルに相当する時間積分する。受信同期制御部 1217により、各信号の相関に応じ て、同期を判定し、位相遅延手段 1218を制御して、スライディング同期しながら、復 号データ 1219を出力する。このとき、時間 Lにおける受信パス信号を相関の基準とし 、時間 Lの信号よりも時間 L+Yの信号のほうが高い相関となった場合には、位相遅 延手段 1218によりトラッキング周期を遅らせ、逆に時間 L—Yの信号のほうが高 、相 関となった場合には、位相遅延手段 1218によりトラッキング周期を進めることにより、 送信データ信号と同期するよう調整している。
特許文献 1:特表 2003 - 535552号公報(148項、図 27)
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、通信の度に、受信信号中の同期フレームをもとに、波形相関をとるこ とで同期を確立し、その後にデータの復調を行う従来のパルス無線通信装置および その同期方法では、同期確立に要する時間が長くなるため、実情報の伝送速度が下 力 ¾ば力りでなぐマルチパスや他の装置力もの電波などの干渉波によって、相関パ ルスのレベルが高 ヽ状態が発生し、誤同期してしまうと ヽぅ問題を有して!/ヽた。
[0007] 一方、これらの課題を解決するために、段階的に相関パルスのレベルを判断したり 、先行技術 (図 12)に示すように、複数の受信系により構成することによって、干渉波 を除去する構成も提案されているが、判断フローが複雑ィ匕すると共に、機器構成が 大型化し、消費電力が増加し、機器も高価になってしまうという問題を有していた。
[0008] 本発明は、このような課題を解決するもので、受信装置が同期状態に応じて、適宜 同期方法を切り替えることによって、同期確立に要する時間を短くすると共に、通信 開始より速やかに、データの授受ができる高速データ伝送を可能としたノ ルス変調 型送信装置およびパルス変調型受信装置を、提供することを目的とする。また、受信 装置が、同期状態に応じて適宜同期方法を切り替えることによって、受信系を複数有 する構成としても、低消費電力のパルス変調型送信装置、パルス変調型受信装置及 びシステムを提供することを目的とする。
課題を解決するための手段
[0009] 本発明のパルス変調型受信装置は、受信 RFデータ信号である第 1の RF入力信号 と第 1の RF入力信号のフレーム同期用信号の生成に用いる第 1のテンプレート信号 を有する第 2の RF入力信号とを受けて、第 1の RF入力信号と第 2の RF入力信号と の相関である相関受信データ信号を出力するフレーム同期部を含むパルス変調型 受信装置であって、フレーム同期部は、第 2の RF入力信号から、第 1のテンプレート 信号を抽出する第 1のフレーム同期用タイミング調整部と、第 2のテンプレート信号を 、第 1のテンプレート信号に同期させ、出力するテンプレート信号生成部と、フレーム 同期部に、第 1の RF入力信号と第 2の RF入力信号との入力が開始された場合には 、第 1のテンプレート信号を選択し、フレームの同期状態に応じて、第 1のテンプレー ト信号力 第 2のテンプレート信号へ切り替え出力するテンプレート信号切り替え部と 、テンプレート信号切り替え部から出力した第 1或いは第 2のテンプレート信号を用い て、フレーム同期用信号を生成するフレーム同期用信号生成部と、第 1の RF入力信 号に、フレーム同期用信号を同期させ、相関受信データ信号を出力する第 2のフレ ーム同期用タイミング調整部と、を含み、第 2のフレーム同期用タイミング調整部は、 第 1の RF入力信号とフレーム同期用信号との相関値が、所定値に達した場合に、テ ンプレート切り替え部へ、テンプレート切り替え指示信号を出力するフレーム同期用 相関判定部を含み、テンプレート信号切り替え部は、テンプレート切り替え信号を受 けて、第 1のテンプレート信号力 第 2のテンプレート信号へ切り替え動作を行う構成 を有している。
[0010] 上記構成により、フレーム同期部は、受信 RFデータ信号である第 1の RF入力信号 と、フレーム同期用信号を生成する為のテンプレート信号を有する第 2の RF入力信 号とが、フレーム同期部へ入力される入力開始時には、フレーム同期用信号切り替 え部により、第 2の RF入力信号が有する第 1のテンプレート信号を用いたフレーム同 期用信号を選択する。そして、第 2のフレーム同期用タイミング調整部にて、フレーム 同期用信号を用いて、第 1の RF入力信号の同期引き込みを図る。また、第 2のシン ボル同期用タイミング調整部にて、第 1の RF入力信号と第 1のテンプレート信号を用 いたフレーム同期用信号との同期が確立される間に、テンプレート信号生成部にて、 テンプレート信号生成部内で発生させた第 2のテンプレート信号を第 1のテンプレー ト信号に同期させる動作を行う。そして、第 2のフレーム同期用タイミング調整部にあ るフレーム同期用相関判定部で、第 1の RF入力信号とフレーム同期用信号との相関 を検出し、相関値が所定値に達した時に、フレーム同期用信号切り替え部に向けて フレーム同期用信号切り替え指示信号を送出する。さらに、フレーム同期用信号切り 替え部で、フレーム同期用信号切り替え指示信号により、第 1のテンプレート信号か ら、第 2のテンプレート信号へ入力切り替え動作を行う。さらに、第 2のフレーム同期 用タイミング調整部で、第 1の RF入力信号に第 2のテンプレート信号を用いたフレー ム同期用信号を同期させ、復号データ信号を出力する。これにより、フレーム同期状 態に応じて、第 1のテンプレート信号を用いたフレーム同期用信号から、第 2のテンプ レート信号を用いたフレーム同期用信号へ切り替えて、フレーム同期確立動作を図 ることにより、フレーム同期確立に要する時間を短くすることができる。また、フレーム 同期確立に要する時間を短くすることにより、多くのデータを受信することができるの で、高速データ伝送を行うことが可能となる。
[0011] さらに、本発明のパルス変調型受信装置は、フレームの同期状態に、第 1の RF入 力信号と第 2の RF入力信号とが、フレーム同期部への入力が開始され、第 2のフレ ーム同期用タイミング調整部が、第 1の RF入力信号を構成する RFデータパルスの有 無を検出し同期引き込みを図るパルス捕捉状態である第 1の状態と、第 2のフレーム 同期用タイミング調整部力 RFデータパルスを形成する波素の位相レベルの同期の 確立を図るパルス位相捕捉状態である第 2の状態と、を含み、フレーム同期用相関 判定部は、第 1の RF入力信号とフレーム同期用信号との相関値が所定値に達した 場合に、第 1の状態から第 2の状態へ移行すべきと判定し、テンプレート切り替え部 にテンプレート切り替え指示信号を送出し、第 1の状態では、第 1のテンプレート信号 を利用した同期検波を行い、第 2の状態では、第 2のテンプレート信号を利用した同 期検波を行う手段を持つ構成を有している。
[0012] 上記構成により、フレーム同期部は、パルス捕捉状態では、第 1のテンプレート信号 を利用した同期検波を行い、パルス位相捕捉状態では、第 2のテンプレート信号を利 用した同期検波を行うことができ、フレーム同期確立に要する時間を短くすることがで きる。また、フレーム同期確立に要する時間を短くすることにより、多くのデータを受信 することができるので、高速データ伝送を行うことが可能となる。
[0013] さらに、本発明のパルス変調型受信装置は、第 2の RF入力信号が、第 1の RF入力 信号とは異なる周波数帯にて伝送された信号である構成を有している。
[0014] 上記構成により、フレーム同期部は、第 1の RF入力信号とは異なる周波数帯にて、 伝送される第 2の RF入力信号から、第 1の RF入力信号による影響が少ない第 1のテ ンプレート信号を抽出することができると共に、第 1の RF入力信号による影響の少な い第 1のテンプレート信号を用いて、フレーム同期の確立を図ることができ、フレーム 同期確立に要する時間を短くすることができる。また、フレーム同期確立に要する時 間を短くすることにより、多くのデータを受信することができるので、高速データ伝送を 行うことが可能となる。
[0015] さらに、本発明のパルス変調型受信装置におけるテンプレート信号切り替え部は、 テンプレート切り替え信号を受けて、第 1のテンプレート信号力 第 2のテンプレート 信号へ切り替え動作を行った場合、第 1のフレーム同期用タイミング調整部への電源 供給が停止される構成を有して!/、る。
[0016] 上記構成により、フレーム同期部は、テンプレート信号切り替え部力 テンプレート 切り替え信号を受けて、第 1のテンプレート信号から第 2のテンプレート信号へ切り替 え動作を行った後、第 1のフレーム同期用タイミング調整部に供給する電源を、予め 定めた部分又は第 1のシンボル同期用タイミング調整部全体において、停止すること により、パルス変調型受信装置の低消費電力化を図ることができる。
[0017] さらに、本発明のパルス変調型受信装置は、第 1のフレーム同期用タイミング調整 部への電源供給が停止された後、再度、第 2の RF入力信号が入力された場合、又 は、同期ずれ補正を行う為の RFフレーム同期保持信号が、所定間隔で通信相手か ら入力された場合、第 1のフレーム同期用タイミング調整部への電源供給が再開され る手段を持つ構成を有して ヽる。
[0018] 上記構成により、 RFフレーム同期用信号、或いは所定時間間隔で受信される RF フレーム同期保持信号が送られてくるまでの間、パルス変調型受信装置のシンボル 同期部は、第 1のフレーム同期用タイミング調整部に供給する電源を、予め定めた部 分または第 1のフレーム同期用タイミング調整部全体において、停止することにより、 パルス変調型受信装置の低消費電力化を図ることができる。又、所定時間が経過し た後、引き続き送られてくる RFフレーム同期用信号、或いは所定時間間隔で受信さ れる RFフレーム同期保持信号を用いて、フレーム同期が確立した後のフレーム同期 保持を図ることができ、フレーム同期保持を図る為の再フレーム同期確立に要する時 間を短くすることができる。
[0019] また、本発明のパルス変調型受信装置は、相関受信データ信号とシンボル同期用 信号の生成に用いる第 1のタイミング信号を有する RFシンボル同期用タイミング信号 とを受けて、復号データ信号を出力するシンボル同期部をさらに有し、シンボル同期 部は、 RFシンボル同期用タイミング信号から、第 1のタイミング信号を抽出する第 1の シンボル同期用タイミング調整部と、第 2のタイミング信号を、第 1のタイミング信号に 同期させ、出力するクロック再生部と、シンボル同期部に、相関受信データ信号と RF シンボル同期用タイミング信号との入力が開始された場合には、第 1のタイミング信号 を選択し、シンボル同期状態に応じて、第 1のタイミング信号力ゝら第 2のタイミング信号 へ切り替え出力するタイミング信号切り替え部と、タイミング信号切り替え部から出力 した第 1或いは第 2のタイミング信号を用いて、 RFシンボル同期用信号を生成するシ ンボル発生部と、相関受信データ信号にシンボル同期用信号を同期させ、復号デ一 タ信号を出力する第 2のシンボル同期用タイミング調整部と、を含み、第 2のシンボル 同期用タイミング調整部は、相関受信データ信号とシンボル同期用信号との相関値 が所定値に達した場合に、タイミング信号切り替え部に向けてタイミング切り替え指示 信号を出力するシンボル同期用相関判定部を含み、タイミング信号切り替え部は、タ イミング切り替え指示信号を受けて、第 1のタイミング信号力 第 2のタイミング信号へ 切り替え動作を行う構成を有して!/ヽる。
[0020] 上記構成により、シンボル同期部は、相関受信データ信号と RFシンボル同期用タ イミング信号とが、シンボル同期部へ入力される入力開始時には、タイミング信号切り 替え部により、 RFシンボル同期用タイミング信号が有する第 1のタイミング信号を選 択する。そして、シンボル発生部にて、第 1のタイミング信号を基にシンボル同期用信 号を生成する。そして、第 2のシンボル同期用タイミング調整部にて、シンボル同期用 信号を用いて相関受信データ信号の同期引き込みを図る。また、第 2のシンボル同 期用タイミング調整部にて、相関受信データ信号とシンボル同期用信号との同期が 確立される間に、クロック再生部で、クロック再生部内で発生させた第 2のタイミング信 号を第 1のタイミング信号に同期させる動作を行う。そして、第 2のシンボル同期用タ イミング調整部にあるシンボル同期用相関判定部で、相関受信データ信号とシンポ ル同期用信号との相関を検出し、相関値が所定値に達した時に、タイミング信号切り 替え部に向けてタイミング切り替え指示信号を送出する。さらに、タイミング信号切り 替え部で、タイミング切り替え指示信号により、第 1のタイミング信号から、第 2のタイミ ング信号へ入力切り替え動作を行う。さらに、第 2のシンボル同期用タイミング調整部 で、相関受信データ信号に第 2のタイミング信号を用いたシンボル同期用信号を同 期させ、復号データ信号を出力する。これにより、シンボル同期状態に応じて、タイミ ング信号切り替え部にて第 1のタイミング信号力ゝら第 2のタイミング信号へ切り替えて、 シンボル同期確立動作を図ることができ、シンボル同期確立に要する時間を短くする ことができる。また、シンボル同期確立に要する時間を短くすることにより、多くのデー タを受信することができるので、高速データ伝送を行うことが可能となる。
[0021] さらに、本発明のパルス変調型受信装置は、タイミング信号切り替え部において、タ イミング切り替え指示信号を受けて、第 1のタイミング信号力 第 2のタイミング信号へ 切り替え動作を行った場合、第 1のシンボル同期用タイミング調整部への電源供給が 停止される手段を持つ構成を有して ヽる。
[0022] 上記構成により、シンボル同期部は、タイミング信号切り替え部が、タイミング切り替 え信号を受けて、第 1のタイミング信号力 第 2のタイミング信号へ切り替え動作を行 つた後、第 1のシンボル同期用タイミング調整部に供給する電源を、予め定めた部分 または第 1のシンボル同期用タイミング調整部全体において、停止することにより、パ ルス変調型受信装置の低消費電力化を図ることができる。
[0023] さらに、本発明のパルス変調型受信装置は、第 1のシンボル同期用タイミング調整 部への電源供給が停止された後、再度、 RFシンボル同期用タイミング信号が入力さ れた場合、又は、 RFシンボル同期用タイミング保持信号が、所定時間間隔で通信相 手力も入力された場合、第 1のシンボル同期用タイミング調整部への電源供給が再 開される手段を持つ構成を有して ヽる。
[0024] 上記構成により、 RFシンボル同期用タイミング信号、或 、は所定時間間隔で受信 される RFシンボル同期用タイミング保持信号が送られてくるまでの間、シンボル同期 部は、第 1のシンボル同期用タイミング調整部に供給する電源を、予め定めた部分ま たは第 1のシンボル同期用タイミング調整部全体において、停止することにより、パル ス変調型受信装置の低消費電力化を図ることができる。又、所定時間が経過した後 、引き続き送られてくる RFシンボル同期用タイミング信号、或いは所定時間間隔で送 られてくる RFシンボル同期用タイミング保持信号を用いて、シンボル同期が確立した 後のシンボル同期保持を図ることができ、シンボル同期保持を図る為の再同期確立 に要する時間を短くすることができる。
[0025] さらに、本発明のパルス変調型受信装置は、受信 RFデータ信号である第 1の RF入 力信号と第 1の RF入力信号のフレーム同期用信号の生成に用いるテンプレート信号 を有する第 2の RF入力信号とを受けて、第 1と第 2の RF入力信号との相関である相 関受信データ信号を出力するフレーム同期部を含むパルス変調型受信装置であつ て、フレーム同期部は、第 2の RF入力信号から、テンプレート信号を抽出する第 1の フレーム同期用タイミング調整部と、テンプレート信号を基にして、フレーム同期用信 号を生成するフレーム同期用信号生成部と、第 1の RF入力信号を所定時間遅延し た遅延受信 RFデータ信号を出力する可変遅延部と、フレーム同期部に、第 1の RF 入力信号と第 2の RF入力信号との入力が開始された場合には、フレーム同期用信 号を選択し、フレームの同期状態に応じて、フレーム同期用信号力 遅延受信 RFデ ータ信号へ切り替え出力するフレーム同期用信号切り替え部と、第 1の RF入力信号 に、フレーム同期用信号切り替え部から出力されるフレーム同期用信号或いは遅延 受信 RFデータ信号を同期させ、相関受信データ信号を出力する第 2のフレーム同 期用タイミング調整部と、を含み、第 2のフレーム同期用タイミング調整部は、第 1の R F入力信号とフレーム同期用信号切り替え部力 出力されるフレーム同期用信号との 相関値が、所定値に達した場合に、フレーム同期用信号切り替え部へ、フレーム同 期用信号切り替え指示信号を出力するフレーム同期用相関判定部を含み、フレーム 同期用信号切り替え部は、フレーム同期用信号切り替え指示信号を受けて、フレー ム同期用信号力 遅延受信 RFデータ信号へ切り替え動作を行う構成を有している。
[0026] 上記構成により、フレーム同期部は、受信 RFデータ信号である第 1の RF入力信号 と、フレーム同期用信号を生成する為のテンプレート信号を有する第 2の RF入力信 号とが、フレーム同期部へ入力される入力開始時には、フレーム同期用信号切り替 え部により、第 2の RF入力信号が有するテンプレート信号を用いたフレーム同期用 信号を選択する。そして、第 2のフレーム同期用タイミング調整部にて、フレーム同期 用信号を用いて第 1の RF入力信号の同期引き込みを図る。そして、第 2のフレーム 同期用タイミング調整部にあるフレーム同期用相関判定部で、第 1の RF入力信号と フレーム同期用信号との相関を検出し、相関値が所定値に達した時に、フレーム同 期用信号切り替え部に向けてフレーム同期用信号切り替え指示信号を送出する。さ らに、フレーム同期用信号切り替え部で、フレーム同期用信号切り替え指示信号によ り、第 2の RF入力信号が有するテンプレート信号を用いたフレーム同期用信号から、 遅延受信 RFデータ信号へ入力切り替え動作を行う。さらに、第 2のフレーム同期用タ イミング調整部で、第 1の RF入力信号に遅延受信 RFデータ信号を同期させ、復号 データ信号を出力する。これにより、フレーム同期状態に応じて、テンプレート信号を 用いたフレーム同期用信号から、遅延受信 RFデータ信号へ切り替えて、フレーム同 期確立動作を図ることができ、フレーム同期確立に要する時間を短くすることができる 。また、フレーム同期確立に要する時間を短くすることにより、多くのデータを受信す ることができるので、高速データ伝送を行うことが可能となる。
[0027] さらに、本発明のパルス変調型受信装置は、フレーム同期状態を構成する 2つの状 態において、第 1の RF入力信号と第 2の RF入力信号とが、フレーム同期部への入力 が開始され、第 2のフレーム同期用タイミング調整部が、第 1の RF入力信号を構成す る RFデータパルスの有無を検出し同期引き込みを図るパルス捕捉状態である第 1の 状態と、第 2のフレーム同期用タイミング調整部が、 RFデータパルスを形成する波素 の位相レベルの同期の確立を図るパルス位相捕捉状態である第 2の状態と、含み、 フレーム同期用相関判定部は、第 1の RF入力信号とフレーム同期用信号との相関 値が所定値に達した場合に、第 1の状態から第 2の状態へ移行すべきと判定し、テン プレート切り替え部にテンプレート切り替え指示信号を送出し、第 1の状態では、テン プレート信号を利用した同期検波を行い、第 2の状態では、第 1の RF入力信号を利 用した同期検波を行う手段を持つ構成を有して!/ヽる。
[0028] 上記構成により、フレーム同期部は、パルス捕捉状態では、テンプレート信号を利 用した同期検波を行い、パルス位相捕捉状態では、第 1の RF入力信号を利用した 同期検波を行うことができ、フレーム同期確立に要する時間を短くすることができる。 また、フレーム同期確立に要する時間を短くすることにより、多くのデータを受信する ことができるので、高速データ伝送を行うことが可能となる。
[0029] さらに、本発明のパルス変調型受信装置は、フレーム同期用信号切り替え部にお いて、フレーム同期用信号力も遅延受信 RFデータ信号へ切り替えを行った場合、第 1のフレーム同期用タイミング調整部は、動作を停止する手段を持つ構成を有してい る。
[0030] 上記構成により、フレーム同期部は、フレーム同期用信号切り替え部力 フレーム 同期用信号切り替え信号を受けて、フレーム同期用信号から遅延受信 RFデータ信 号へ切り替え動作を行った後、第 1のフレーム同期用タイミング調整部に供給する電 源を、予め定めた部分又は第 1のフレーム同期用タイミング調整部全体において、停 止することにより、パルス変調型送信装置の低消費電力化を図ることができる。
[0031] さらに、本発明のパルス変調型受信装置の前記フレーム同期部は、前記第 2の RF 入力信号で精度の低い同期を行い、前記第 1の RF入力信号で精度の高い同期を 行う構成を有している。
[0032] 上記構成により、例えばレートの低い通信システム、通信方式にて疎同期を行い、 必要に応じてレートの高い通信システム、通信方式にて精度の高い同期を行うことで 、同期回路の消費電力を低減できるとともに、一定の時間間隔で疎同期を行うことで 、精度の高い同期の開始力も同期確立までの時間を短縮することができる。
[0033] また、本発明のパルス変調型送信装置は、送信データと、フレーム同期用信号と、 シンボル同期用タイミング信号とに所定のシンボルィ匕を施し、シンボルィ匕送信データ と、シンボルィ匕フレーム同期用信号と、シンボルィ匕シンボル同期用タイミング信号とを 生成するシンボル化部と、シンボル化送信データに所定の変調を施し、無線周波数 にアップコンバートして、通信相手方のフレーム同期部に入力される第 1の RF入力 信号を有する RFデータ信号を生成する RFデータ信号送信部と、シンボル化フレー ム同期用信号に、所定の変調を施し、無線周波数にアップコンバートして、通信相手 方のフレーム同期部に入力される第 2の RF入力信号を有する RFフレーム同期用信 号と、シンボルィ匕シンボル同期用タイミング信号に所定の変調を施し、無線周波数に アップコンバートして、通信相手方のシンボル同期部に入力される RFシンボル同期 用タイミング信号と、を生成する RF同期用信号送信部とをもつ構成を有している。
[0034] 上記構成により、 RFデータ信号送信部では、送信データに所定のシンボル化を施 した後、所定の変調を施し無線周波数にアップコンバートして、通信相手方パルス変 調型受信装置のフレーム同期部に入力すべき第 1の RF入力信号を有する RFデー タ信号を生成することができる。また、 RF同期用信号送信部では、フレーム同期用信 号に所定のシンボルィ匕を施した後、所定の変調を施し、無線周波数にアップコンパ ートして、通信相手方パルス変調型受信装置のフレーム同期部に入力される第 2の RF入力信号を有する RFフレーム同期用信号を生成し、シンボル同期用タイミング信 号に所定のシンボルィ匕を施した後、所定の変調を施し、無線周波数にアップコンパ ートして、通信相手方パルス変調型受信装置のシンボル同期部に入力される RFシ ンボル同期用タイミング信号を生成することができる。そして、通信相手方のパルス変 調型受信装置に、送信データと、フレーム同期用信号と、シンボル同期用タイミング 信号を有した RFデータ信号と RFフレーム同期用信号と RFシンボル同期用タイミン グ信号とを送出することにより、パルス変調型受信装置でのフレーム同期確立とシン ボル同期確立とに要する時間を短くすることができる。
[0035] さらに、本発明のパルス変調型送信装置の RF同期用信号送信部は、 RFシンボル 同期用タイミング信号を、 RFフレーム同期用信号とは異なる周波数帯で送出する手 段を持つ構成を有している。
[0036] 上記構成により、ノ ルス変調型送信装置は、互いに影響の少ない異なる周波数帯 にて、 RFシンボル同期用タイミング信号と、 RFフレーム同期用信号とを送出すること ができ、通信相手方のパルス変調型受信装置にて、互いに影響の少ない RFシンポ ル同期用タイミング信号と、 RFフレーム同期用信号を基にしてシンボル同期とフレー ム同期の確立を図ることができ、フレーム同期確立とシンボル同期確立に要する時間 を短くすることができる。また、フレーム同期確立とシンボル同期確立に要する時間を 短くすることにより、多くのデータを送信することができるので、高速データ伝送を行う ことが可能となる。
[0037] さらに、本発明のパルス変調型送信装置の RF同期用信号送信部は、 RFフレーム 同期保持信号と RFシンボル同期用タイミング保持信号とを、所定時間間隔で送出す る手段を持つ構成を有して ヽる。
[0038] 上記構成により、ノルス変調型送信装置は、 RFフレーム同期保持信号と RFシンポ ル同期用タイミング保持信号とを所定時間間隔で送出することができ、 RFフレーム同 期保持信号と RFシンボル同期用タイミング保持信号とを送出していない間は、 RF同 期用信号送信部に供給する電源を、予め定めた部分または RF同期用信号送信部 全体において、停止することにより、パルス変調型送信装置の低消費電力化を図るこ とがでさる。
[0039] さらに、本発明のパルス変調型送信装置の RFデータ信号送信部と RF同期用信号 送信部は、さら〖こ、 RFデータ信号と RFフレーム同期用信号と RFシンボル同期用タイ ミング信号と RFフレーム同期保持信号と RFシンボル同期用タイミング保持信号と〖こ 対して、互いに分離可能な信号波形を有するウェーブレットを割り当てる波形選択部 を有する手段を持つ構成を有して 、る。
[0040] 上記構成により、互いに分離可能な信号波形を有するウェーブレットを同じ周波数 帯で送信できるので、データ信号以外の別送信号である RFフレーム同期用信号と R Fシンボル同期用タイミング信号と RFフレーム同期保持信号と RFシンボル同期用タ イミング保持信号をデータ信号或いは、他の別送信号と同じ周波数帯で伝送するこ とが可能となり、各別送信号用に用意すべき周波数帯を用いて、さらにデータ信号を 送信することができるので、周波数の利用効率が図れ、結果として高速データ伝送を 行うことが可能となる。
[0041] さらに、本発明のパルス変調型送信装置の波形選択部は、 RFフレーム同期用信 号と RFシンボル同期用タイミング信号と RFフレーム同期保持信号と RFシンボル同 期用タイミング保持信号のうち 1つ以上の信号に異なるウェーブレットを用いる手段を 持つ構成を有している。
[0042] 上記構成により、互いに分離可能な信号波形を有するウェーブレットを同じ周波数 帯で送信できるので、データ信号以外の別送信号である RFフレーム同期用信号と R Fシンボル同期用タイミング信号と RFフレーム同期保持信号と RFシンボル同期用タ イミング保持信号をデータ信号或いは、他の別送信号と同じ周波数帯で伝送するこ とが可能となり、各別送信号用に用意すべき周波数帯を用いて、さらにデータ信号を 送信することができるので、周波数の利用効率が図れ、結果として高速データ伝送を 行うことが可能となる。
[0043] さらに、本発明のパルス変調型送信装置の前記 RFフレーム同期用信号は、機器 認証用のデータを含むものであってもよい。
[0044] 上記構成により、別送信号にて、認証を行うことで、通信用のデータ信号に認証用 のデータ部分を不用とし、データ速度を落とさずに済む。
[0045] さらに、本発明のパルス変調型送信装置は、前記 RFデータ信号と、前記 RFフレー ム同期用信号と、前記 RFシンボル同期用タイミング信号の、少なくとも 2つのデータ 速度が異なるものであってもよ 、。
[0046] 上記構成により、各信号のデータ速度を変えることによって、低レートの信号の占有 帯域を狭め、使用する周波数帯域を減らすことを可能にする。この場合、低レートの 他方式のパルス通信との協調動作も含まれる。
[0047] さらに、本発明のパルス変調型送信装置の前記 RFデータ信号送信部および前記
RF同期用信号送信部は、前記 RFデータ信号と、前記 RFフレーム同期用信号と、前 記 RFシンボル同期用タイミング信号の、少なくとも 1つを送信する構成を有して!/ヽる。
[0048] 上記構成により、特定用途の信号のみを送信することで同一システム内の他機器 や、他システムの機器との協調動作、例えば通信衝突防止を行うことができる。
発明の効果
[0049] 本発明は、同期確立に要する時間を短くすると共に、通信開始より速やかにデータ の授受ができ、高速データ伝送が可能になるという効果を有するパルス変調型送信 装置およびパルス変調型受信装置を提供することができる。また、受信系を複数有 する構成でありながら、同期部の低消費電力化が図れるという効果を有するパルス変 調型送信装置、パルス変調型受信装置及びシステムを提供することができる。
図面の簡単な説明
[図 1]本発明の実施の形態 1におけるパルス変調型受信装置の構成を示すブロック 図
[図 2]本発明の実施の形態 1におけるパルス変調型送信装置の構成を示すブロック 図
[図 3]本発明の実施の形態 2におけるパルス変調型受信装置の構成を示すブロック 図
[図 4]本発明の実施の形態 3におけるパルス変調型受信装置の構成を示すブロック 図
[図 5]本発明の実施の形態 4におけるパルス変調型受信装置の構成を示すブロック 図
[図 6]本発明の実施の形態 5におけるパルス変調型受信装置の構成を示すブロック 図
[図 7]本発明の実施の形態 5における RFフレーム同期用信号と RFシンボル同期用タ イミング信号の説明図
[図 8]本発明の実施の形態 6におけるパルス変調型送信装置の構成を示すブロック 図
[図 9]本発明の実施の形態 6におけるパルス変調型受信装置の構成を示すブロック 図
[図 10A]本発明の実施の形態 6におけるパルス変調型送信装置におけるウェーブレ ット割り当て波形説明図
[図 10B]本発明の実施の形態 6におけるパルス変調型送信装置におけるウエーブレ ット割り当て波形説明図
[図 11]本発明の実施の形態 6におけるパルス変調型送信装置における各種入出力 信号波形説明図
[図 12]従来のパルス変調型無線通信装置の構成を示すブロック図 発明を実施するための最良の形態
[0051] 以下、本発明の実施の形態について、図面を用いて説明する。
[0052] (実施の形態 1)
まず、本実施の形態に係るパルス変調型送信装置およびパルス変調型受信装置 につ ヽて説明する。本実施の形態に係るパルス変調型送信装置およびパルス変調 型受信装置は、送信データ信号とフレーム同期信号とに、所定の変調を施し、無線 周波数にアップコンバートした無線信号を、通信相手方に送出するパルス変調型送 信装置と、該無線周波数にアップコンバートされた無線信号を受信し、送信データを 復調するパルス変調型受信装置とで構成される。
[0053] 図 1は、本発明の実施の形態 1において、パルス変調型受信装置の同期動作に係 るブロック図である。また図 2は、本発明の実施の形態 1において、パルス変調型送 信装置における送信データ及びフレーム同期用信号の送信動作に係るブロック図で ある。
[0054] 図 1において、パルス変調型受信装置 100は、無線信号を受信する 2系統のアンテ ナ 101a、 101bと接続されており、受信部 110a、受信部 110b、フレーム同期部 140 およびシンボル同期部 170とから構成される。
[0055] ここで、受信部 110aは、無線信号から、データ信号を含む周波数成分 (以下 RFデ ータ信号と呼ぶ)を抽出し、増幅するものであり、受信部 110bは、無線信号からフレ ーム同期用信号を生成する為の第 1のテンプレート信号を有する周波数成分 (以下 別送 RF同期用信号と呼ぶ)を抽出し、増幅するものである。
[0056] また、フレーム同期部 140は、受信 RFデータ信号 1004と、フレーム同期用信号を 生成する為の第 1のテンプレート信号を有する RFフレーム同期用信号 1005とを受 けて、受信 RFデータ信号 1004と後述するフレーム同期用信号 1009との相関である 相関受信データ信号 1010を出力するものである。
[0057] シンボル同期部 170は、相関受信データ信号 1010を基に、生成した内部生成タイ ミング信号 1011を用いて、シンボル同期用信号生成部 172で生成させたシンボル 同期用信号 1012と、相関受信データ信号 1010との相関をとることにより、復号デ一 タ信号 1015を抽出し、図示しない後段の信号処理部に出力するものである。 [0058] 受信部 110aは、アンテナ 101aで受信した無線信号を、帯域通過型フィルタ 102a に入力することで、 RFデータ信号を含む周波数帯域以外の雑音成分を除去する。さ らに、雑音除去された RFデータ信号を、増幅器 103aに入力することで、 RFデータ 信号を低雑音で所望の電力レベルまで増幅し、出力するように構成している。
[0059] 受信部 110bは、アンテナ 101bで受信した無線信号を、帯域通過型フィルタ 102b に入力することで、 RF同期信号を含む周波数帯域以外の雑音成分を除去する。さら に、雑音除去された RF同期信号を、増幅器 103bに入力することで、別送 RF同期用 信号成分を低雑音で所望の電力レベルまで増幅し、出力するように構成している。
[0060] フレーム同期部 140は、別送 RFフレーム同期用信号 1005を基に、第 1のテプレー ト信号 1006を生成する第 1のフレーム同期用タイミング調整部 160と、第 1のテンプ レート信号 1006に同期した第 2のテンプレート信号 1007を生成する第 2のテンプレ ート信号生成部 143と、受信 RFデータ信号 1004と RFフレーム同期用信号 1005と 力 Sフレーム同期部 140へ入力される入力開始時には、第 1のテンプレート信号 1006 を選択し、同期状態に応じて、第 1のテンプレート信号 1006から第 2のテンプレート 信号 1007へ切り替え出力するテンプレート信号切り替え部 142と、テンプレート信号 切り替え部 142から出力される同期用テンプレート信号 1008 (第 1のテンプレート信 号 1006、或いは、第 2のテンプレート信号 1007)を基にして、受信 RFデータ信号 1 004を同期させる為のフレーム同期用信号 1009を生成するフレーム同期用信号生 成部 141と、受信 RFデータ信号 1004をフレーム同期用信号 1009に同期させる第 2 のフレーム同期用タイミング調整部 150とを有する。
[0061] 第 1のフレーム同期用タイミング調整部 160は、第 1のテンプレート信号生成部 161 にて、別送 RFフレーム同期用信号と同じ周波数の搬送波と第 1のテンプレート信号 とを生成すると共に、この搬送波を第 1のテンプレート信号 1006で変調した変調信 号を生成し、相関部 162と、低域通過型フィルタ 163と、相関判定器 164とを用い、 相関判定器 164の出力が所定値となるよう、フィードバック制御することで、変調信号 を、別送 RFフレーム同期用信号 1005に同期させるように構成している。また、第 1の テンプレート信号生成部 161は、別送 RFフレーム同期用信号 1005が有する第 1の テンプレート信号の立ち上がりタイミングに同期した立ち上がり波形を有するテンプレ ート信号 1006を出力するように構成して 、る。
[0062] 第 2のテンプレート信号生成部 143は、内部で生成した第 2のテンプレート信号 10 07を、入力された第 1のテンプレート信号 1006に同期させ、出力するように構成して いる。
[0063] テンプレート信号切り替え部 142は、フレーム同期用相関判定器 155からのテンプ レート切り替え信号 1020を受けて、第 1のテンプレート信号 1006或いは第 2のテン プレート信号 1007を切り替えて、選択出力するように構成して 、る。
[0064] フレーム同期用信号生成部 141は、第 1のテンプレート信号 1006或いは第 2のテ ンプレート信号 1007を受け、受信 RFデータ信号 1004と同じ周波数を持つ搬送波 を生成し、この搬送波を、第 1のテンプレート信号 1006或いは第 2のテンプレート信 号 1007で変調したフレーム同期用信号 1009として、出力するように構成している。
[0065] 第 2のフレーム同期用タイミング調整部 150は、フレーム同期用信号 1009が入力さ れ、可変遅延部 151において、所定の初期時間 Φだけ遅延した後、増幅器 152にて 所定の電力レベルまで増幅し、相関部 153と、低域通過型フィルタ 154と、フレーム 同期用相関判定器 155とを用い、また、同期引き込みが始まり、フレーム同期用相関 判定器 155の出力力 第 1の所定値に達した時に、テンプレート信号切り替え部 142 に向けテンプレート切り替え信号 1020を送出する。その後、フレーム同期用相関判 定器 155の出力が第 2の所定値となるよう、制御信号 1013により可変遅延部 151の 遅延量をフィードバック制御することで、フレーム同期用信号 1009を、受信 RFデー タ信号 1004に同期確立させるように構成して 、る。
[0066] ここで、第 1或いは第 2の所定値とは、同期状態を 2つの状態に分けることができ、 受信 RFデータ信号 1004を構成する RFデータパルスの有無を検出し、同期引き込 みを図るパルス捕捉状態と、 RFデータパルスを形成する波素の位相レベルの同期 確立を図るパルス位相捕捉状態とがある。
[0067] 以上より、パルス捕捉状態であることが十分確認できた状態におけるフレーム同期 用相関判定器 155の出力を第 1の所定値とし、ノ ルス位相捕捉状態であることが十 分確認できる状態におけるフレーム同期用相関判定器 155の出力を、第 2の所定値 と呼ぶ。 [0068] シンボル同期部 170は、相関受信データ信号 1010を基に、タイミング信号 1011 ( 以下、内部生成タイミング信号と呼ぶ)を生成するタイミング再生部 171と、内部生成 タイミング信号 1011を基に、シンボル同期用信号 1012を生成するシンボル同期用 信号生成部 172と、シンボル同期用信号 1012を相関受信データ信号 1010に同期 させ、復号データ信号 1015を復元し出力すると共に、出力が所望の復号データ信 号となるように、内部でタイミング調整を行う第 1のシンボル同期用タイミング調整部 1 80と、を有する。
[0069] タイミング再生部 171は、相関受信データ信号 1010を基に、相関受信データ信号 の立ち上がりタイミングに同期した立ち上がり波形を有し、所定の繰り返し周期を持 つ内部生成タイミング信号 1011を生成するように構成して 、る。
[0070] シンボル同期用信号生成部 172は、内部生成タイミング信号 1011を基に、相関受 信データ信号 1010に逆拡散を施し、復号データ信号 1015を復元する為のシンポ ル同期用信号 1012を生成、出力するように構成している。
[0071] 第 1のシンボル同期用タイミング調整部 180は、可変遅延部 181により、シンボル同 期用信号 1012の入力を、所定の初期時間 nXTだけ遅延した後(但し、 ηは整数)、 相関部 182と、低域通過型フィルタ 183と、シンボル同期用相関判定器 184とを用い 、シンボル同期用相関判定器 184の出力が所定値となるように、制御信号 1014によ り、可変遅延部 181の遅延量をフィードバック制御することで、シンボル同期用信号 1 012が、相関受信データ信号 1010に同期するように構成している。
[0072] 上記構成において、パルス変調型受信装置 100は、無線信号を受信する 2系統の アンテナ 101a、 101bで受信される無線信号から、受信部 110aにて、受信 RFデー タ信号 1004が抽出され、受信部 110bにて、無線信号から RFフレーム同期用信号 1 005が抽出される。抽出された受信 RFデータ信号 1004と RFフレーム同期用信号 1 005とは、フレーム同期部 140に入力される。第 1のフレーム同期用タイミング調整部 160では、 RFフレーム同期用信号 1005を受けて、第 1のテンプレート信号 1006を 出力する。
[0073] そして、受信 RFデータ信号 1004と RFフレーム同期用信号 1005とがフレーム同期 部 140へ入力される入力開始時では、テンプレート信号切り替え部 142により、第 1 のテンプレート信号 1006が選択され、同期用テンプレート信号 1008としてフレーム 同期用信号生成部 141に出力される。フレーム同期用信号生成部 141では、同期 用テンプレート信号 1008を受けてフレーム同期用信号 1009を生成し、第 2のフレー ム同期用タイミング調整部 150に出力する。
[0074] 第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004にフレ ーム同期用信号 1009を同期引き込みさせながら、受信 RFデータ信号 1004にフレ ーム同期用信号 1009との相関をとり、フレーム同期用相関判定器 155の出力が第 1 の所定値に達した場合に、テンプレート信号切り替え部 142に向けて、テンプレート 切り替え信号 1020を送出する。この間、第 2のテンプレート信号生成部 143では、内 部で発生させた第 2のテンプレート信号 1007を第 1のテンプレート信号 1006に同期 させておく。
[0075] テンプレート信号切り替え部 142は、テンプレート切り替え信号 1020を受けて、第 1 のテンプレート信号 1006から、第 2のテンプレート信号 1007へ入力切り替えを行う。 そして、テンプレート信号切り替え部 142から第 2のテンプレート信号 1007が、同期 用テンプレート信号 1008としてフレーム同期用信号生成部 141に出力される。フレ ーム同期用信号生成部 141では、同期用テンプレート信号 1008を受けてフレーム 同期用信号 1009を生成し、第 2のフレーム同期用タイミング調整部 150に出力する 。第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004にフレ ーム同期用信号 1009を同期引き込みさせながら、受信 RFデータ信号 1004にフレ ーム同期用信号 1009との相関をとる。さらに、フレーム同期用相関判定器 155の出 力が第 2の所定値に達するまで、制御信号 1013を可変遅延部 151に出力する。
[0076] フレーム同期用相関判定器 155の出力が第 2の所定値に達すると、受信 RFデータ 信号 1004に対するフレーム同期用信号 1009の同期が確立され、所定の相関受信 データ信号 1010力 フレーム同期用相関判定器 155から出力される。
[0077] 次にパルス変調型送信装置の構成につ!、て説明する。図 2にお 、て、パルス変調 型送信装置 200は、送信データ信号 2001とフレーム同期用信号 2002とに対して所 定のパルス信号列変換操作 (以下、シンボル化と呼ぶ)を行うシンボル化部 210と、 シンボルィ匕部 210の一方の出力であるシンボルィ匕送信データ信号 2003に所定の変 調を施し、更に高速の無線周波数に周波数変換し、所定の電力レベルまで増幅した 後、不要な成分をフィルタリングしたデータ信号を有する無線信号である RFデータ 信号 2004を出力する RFデータ信号送信部 220と、シンボル化部 210の他方の出 力であるシンボルィ匕フレーム同期用信号 2005に所定の変調を施し、更に高速の無 線周波数に周波数変換し、所定の電力レベルまで増幅した後、不要な成分をフィル タリングしたフレーム同期用信号を有する無線信号である RFフレーム同期用信号 20 06を出力する RF同期用信号送信部 230とを有し、 RFデータ信号 2004或いは RF フレーム同期用信号 2006を、図示しな 、伝送媒体に送出する 2系統のアンテナ 20 la、 201bとに接続されている。
[0078] シンボルィ匕部 210は、送信データ信号 2001とフレーム同期用信号 2002とを受け、 各々の信号に対し、シンボル化を行ったシンボル化送信データ信号 2003とシンボル 化フレーム同期用信号 2005とを出力するように構成して 、る。
[0079] RFデータ信号送信部 220は、変調部 22 laにより、シンボル化送信データ信号 20 03に所定の変調を施した後、周波数変換部 222aにより、無線周波数に周波数変換 を行う。更に、増幅器 223aにより、所定の電力レベルまで増幅した後、帯域通過型フ ィルタ 224aにより、不要な成分を除去した RFデータ信号 2004を出力するように構 成している。
[0080] RF同期用信号送信部 230は、変調部 221bによりシンボルィ匕フレーム同期用信号 2005に所定の変調を施した後、周波数変換部 222bにより無線周波数に周波数変 換を行う。更に、増幅器 223bにより、所定の電力レベルまで増幅した後、帯域通過 型フィルタ 224bにより、不要な成分を除去した RFフレーム同期用信号 2006を出力 するように構成している。
[0081] つぎに、本実施の形態に力かるパルス変調型送信装置およびパルス変調型受信 装置の動作にっ 、て説明する。
[0082] パルス変調型送信装置 200は、後述する図示しない内蔵の起動 Z停止指示信号 生成部から、 RF同期用信号送信部 230の起動或 、は停止を命令する起動 Z停止 指示信号 2007を受け、 RF同期用信号送信部 230の起動或いは停止を行う。ノ ル ス変調型受信装置 100と新規の通信を開始しょうとする場合、起動 Z停止指示信号 生成部から起動信号が RF同期用信号送信部 230に送られる。
[0083] RF同期用信号送信部 230が起動時において、通信相手方のパルス変調型受信 装置 100に送信すべき送信データ信号 2001とフレーム同期用信号 2002とが、シン ボル化部 210に入力され、シンボル化部 210により、送信データ信号 2001とフレー ム同期用信号 2002とのそれぞれに対して、所定のシンボルィ匕が施される。
[0084] シンボル化では、各入力ビット毎の値(1又は 0)力 その値に対応して、予め定めら れた所定の規則に基づき構成されたパターン力 成る複数のパルス信号列に変換さ れ、出力される。また、シンボル化では、 1ビットの入力に対して、複数ビットからなる パルス信号列に変換するシンボルィ匕ではなぐ複数ビットの入力に対して、複数ビット 力もなるパルス信号列に変換するシンボルィ匕を行っても良い。
[0085] 送信データ信号 2001をシンボル化したシンボル化送信データ信号 2003は、 RF データ信号送信部 220に入力され、フレーム同期用信号 2002をシンボルィ匕したシ ンボルイ匕フレーム同期用信号 2005は、 RF同期用信号送信部 230に入力される。
[0086] 次に、 RFデータ信号送信部 220に入力されたシンボル化送信データ信号 2003は 、変調部 221aにて所定の変調が施された後、周波数変換部 222aにて無線周波数 に周波数変換され、さらに増幅器 223aにて所定の電力レベルまで増幅された後、帯 域通過型フィルタ 224aにて不要成分が除去され、アンテナ 201aに出力される。変 調部 221aにて用いられる変調方式としては、 OOK (On Off Keying) , BPSK (B inary Phase Shift Keying) , QPSK (Quadra Phase Shift Keying)、 PP M (Pulse Phase Modulation)等の変調方式が用いられる。また周波数変換では 、正弦波発信源とミキサ回路を組み合わせて、ミキサ回路により正弦波発信源で生成 された高周波搬送波信号を変調部 22 laの出力信号でミキシングする方法、正弦波 発信源で生成された高周波搬送波信号出力を、スィッチ素子を用いて変調部 221a の出力信号により、 ONZOFFする方法、正弦波発信源自体を変調部 221aの出力 信号で ONZOFFする方法等の周波数変換方法が用いられる。
[0087] 次に、 RFデータ信号送信部 220から出力された RFデータ信号 2004は、アンテナ 201aにより、図示しない伝送媒体を介して、通信相手方のパルス変調型受信装置 1 00に送られる。 [0088] 一方、 RF同期用信号送信部 230に入力されたシンボルィ匕フレーム同期用信号 20 05は、変調部 221bにて所定の変調が施された後、周波数変換部 222bにて無線周 波数に周波数変換され、さらに増幅器 223bにて所定の電力レベルまで増幅された 後、帯域通過型フィルタ 224bにて不要成分が除去され、アンテナ 201bに出力され る。
[0089] 変調部 221bにて用いられる変調方式及び周波数変換部 222bにて用いられる周 波数変換としては、 RFデータ信号送信部 220と同じ変調方式及び周波数変換方法 が用いられる。また、変調部 221aと変調部 221bとにて、それぞれ用いられる変調方 式は、通信相手側のパルス変調型受信装置 100で復調可能な変調方式であれば、 異なる変調方式を用いても良い。さらに、周波数変換部 222aと周波数変換部 222b とにて、それぞれ用いられる周波数変換方式は、それぞれ所定の無線周波数に変換 されるものであれば、同じ方式でなくともよぐ異なる周波数変換方式を用いることが できる。
[0090] 次に、 RF同期用信号送信部 230から出力された RFフレーム同期用信号 2006は 、アンテナ 201bにより図示しない伝送媒体を介して、通信相手方のパルス変調型受 信装置 100に送られる。
[0091] ここまでの動作は、 RF同期用信号送信部 230が起動状態である時に、パルス変調 型送信装置 200における送信データ信号 2001とフレーム同期用信号 2002との送 出動作である。次に、起動 Z停止指示信号生成部から出力される停止信号が、 RF 同期用信号送信部 230に印加された時のパルス変調型送信装置 200の動作を説明 する。
[0092] 通信相手方のパルス変調型受信装置 100において、フレーム同期が確立されたと いうフレーム同期確立情報を受けて、所定時間が経過した後、起動 Z停止指示信号 生成部から停止信号が RF同期用信号送信部 230に送られる。又、フレーム同期確 立情報を受けて所定時間が経過した後に、停止信号を発出する方法でなくとも、フレ ーム同期が確立され、所定時間が経過した後に、パルス変調型受信装置 100から停 止信号発出要求信号をパルス変調型送信装置 200に送出し、この停止信号発出要 求信号受けて停止信号を発出する方法でも良い。 [0093] 停止信号が、 RF同期用信号送信部 230に入力されると、 RF同期用信号送信部 2 30内にある図示しない電源供給起動 Z停止制御回路により、 RF同期用信号送信部 230への電源供給が停止される。
[0094] パルス変調型受信装置 100では、 RFフレーム同期用信号 1005を用いて同期確 立した後、第 2のテンプレート信号 1007を用いて生成されたフレーム同期用信号 10 09により、同期維持を行っている。し力しながら、通信開始からの経過時間の長期化 によるパルス変調型送信装置側タイミングとパルス変調型受信装置側タイミングとの 時間ずれの積算、パルス変調型送信装置 200とパルス変調型受信装置 100との位 置関係や、通信経路の変化による時間ずれによって、大幅な同期ずれが生じること がある。
[0095] 微小な同期ずれであれば、フレーム同期部 140内部の第 2のフレーム同期用タイミ ング調整部 150により補正される力 例えば、第 2のテンプレート信号 1007が、「1」 である時間領域内での同期ずれ補正を、大幅に超える同期ずれ補正には、同期補 正周期を長くする必要があり、同期時間の短縮と相反する定数を設定する必要が出 てくる。
[0096] そこで、起動 Z停止指示信号生成部は、停止指示信号を発出した後、所定の時間 間隔で RF同期用信号送信部 230に向けて、起動指示信号と停止指示信号とを交互 に送出する。パルス変調型受信装置 100では、同期確立後に所定の時間間隔で送 られてくる RFフレーム同期用信号 (以下、 RFフレーム同期保持信号と呼ぶ)を用いて 同期ずれ補正を行う。
[0097] 又、フレーム同期確立後、パルス変調型受信装置 100の受信部 110b或いは第 1 のフレーム同期用タイミング調整部 160又は両方の電源供給を停止しても良いし、パ ルス変調型送信装置 200の RF同期用信号送信部 230の電源供給を停止しても良 いし、その両方を行っても良い。
[0098] 次に、パルス変調型受信装置の動作について説明する。パルス変調型受信装置 1 00は、通信相手側のノ ルス変調型送信装置 200より送られてくる無線信号から、ァ ンテナ 101aと受信部 110aとにより受信 RFデータ信号 1004を抽出し、アンテナ 101 bと受信部 110bとにより RFフレーム同期用信号 1005をそれぞれ抽出する。 [0099] フレーム同期部 140では、受信 RFデータ信号 1004と RFフレーム同期用信号 100 5とから、ベースバンドのパルス信号である相関受信データ信号 1010を抽出する為 、受信 RFデータ信号 1004にフレーム同期用信号 1009を同期させる。しかしながら 、受信 RFデータ信号 1004を構成する RFデータパルス列は、時間によってパルス信 号の存在しない状態も有る。よって、従来このような RFデータパルスの存在しない時 間状態から、 RFデータ信号にフレーム同期用信号を同期させようとすると、同期確立 までに長い時間を要してしまっていた。つまり、同期引き込みは、フレーム同期用信 号を形成する搬送波の周期よりも短 ヽ時間間隔で行われる必要があるので、搬送波 周波数が高ぐまた、同期開始時力も RFデータパルスが現れるまでの時間が長い場 合には、同期確立までに長い時間が力かってしまう。
[0100] 一方、フレーム同期の確立動作は、受信した受信 RFデータ信号 1004を構成する RFデータパルスの概略の位置を検出するモード (以後、パルス捕捉と呼ぶ)と、受信 RFデータ信号 1004とフレーム同期用信号 1009の位相を一致させるモード(以後、 パルス位相捕捉と呼ぶ)とで構成される。
[0101] そこで、敏速なフレーム同期の確立を実現する為に、パルス捕捉過程において、デ ータ信号情報である RFデータパルスと同期のとれたフレーム同期用信号情報である テンプレート信号を有する RFフレーム同期用信号 1005を用いる。
[0102] つまり、第 2のフレーム同期用タイミング調整部 150において、第 1のフレーム同期 用タイミング調整部 160からの第 1のテンプレート信号 1006を基に、フレーム同期用 信号生成部 141で生成されたフレーム同期用信号 1009を、受信 RFデータ信号 10 04に同期させる。このとき、 RFデータパルスとフレーム同期用信号 1009を構成する 第 1のテンプレート信号 1006との位相関係は同一タイミングであるので、 RFデータ 信号を構成する RFデータパルスと RFフレーム同期用信号 1005が有するテンプレ ート信号との位相関係も合っている。さらに、第 1のフレーム同期用タイミング調整部 1 60から出力される第 1のテンプレート信号 1006は、 RFフレーム同期用信号 1005が 有するテンプレート信号とも位相関係が合っているので、フレーム同期用信号生成部 141で生成されるフレーム同期用信号 1009も、受信 RFデータ信号 1004を構成す る RFデータパルスと位相関係が合っている。その結果、同期確立過程の最初カもパ ルス捕捉を実現することが可能となる。
[0103] つまり、第 2のフレーム同期用タイミング調整部 150において、受信 RFデータ信号 1004とフレーム同期用信号 1009とを相関部 153で乗じれば、相関出力が同期確立 過程の最初から得られるので、フレーム同期用相関判定器 155にて、受信 RFデータ 信号 1004とフレーム同期用信号 1009との相関を判断し、相関出力が第 1の所定値 となるまで、可変遅延部 151において、制御信号 1013を用いて、フレーム同期用信 号を形成する搬送波の位相をフィードバック制御することで、パルス位相捕捉を行 ヽ 、同期を確立することがでさる。
[0104] ここで、受信 RFデータ信号 1004を構成する RFデータパルスの立ち上がり時にお ける RFデータ信号の搬送波と、フレーム同期用信号 1009を構成する同期用テンプ レート信号の立ち上がり時におけるフレーム同期用信号の搬送波との位相関係が合 う、つまり同一タイミングであるように設計されていることが望ましいが、各搬送波レべ ルの位相関係が合っていなくとも、相関出力が得られ、最終的に各搬送波レベルの 位相関係まで合うように制御される。フレーム同期用信号搬送波との位相関係が合う ように設計されている場合は、フィードバック制御を行わず、可変遅延部 151の遅延 量を 0 (ゼロ)とすることで、パルス捕捉とパルス位相捕捉を同時に実現することができ る。この場合、同期確立に要する時間が殆ど不要となると共に、フレーム同期確立動 作開始時力も相関受信データ信号 1010が得られるので、フレーム同期確立用の余 分なデータを送出する必要が無くなり、更なる高速データ通信が可能とる。
[0105] なお、遅延量が 0 (ゼロ)と記載したが、これは、テンプレート信号切り替え部 142と、 可変遅延部 151と、増幅器 152及び、相関部 153に至るまでの図示しない配線等が 持つ、固有の遅延量が適宜補正されているものとした場合である。もちろん、アンテ ナ 101a、 101bと、帯域通過型フイノレタ 102a、 102bと、低雑音増幅器 103a、 103b とが持つ、固有の遅延量も適宜補正されて 、るものとして 、る。
[0106] フレーム同期の確立が完了した後も、引き続き RFフレーム同期用信号 1005を使 用して、同期保持を行い、シンボル同期の動作を開始することも可能である。しかし ながら、常時、 RFフレーム同期用信号 2006を送信しておくことは、周波数利用効率 の低下につながる。そこで、フレーム同期用信号 1009の生成に用いるテンプレート 信号を、第 1のフレーム同期用タイミング調整部 160で生成した第 1のテンプレート信 号 1006から、第 2のテンプレート信号生成部 143で生成された第 2のテンプレート信 号 1007に切り替える。
[0107] 切り替えを行う前に、テンプレート信号 1006と第 2のテンプレート信号 1007とのタ イミング合わせである同期確立が行われる。この同期確立動作は、第 2のテンプレー ト信号生成部 143内部の図示しない相関部、低域通過型フィルタ、相関判定器、可 変遅延部等を用い、第 1或いは第 2のフレーム同期用タイミング調整部 160、 150に て用いた操作と同じ操作を実行することにより行われる。また、第 2のテンプレート信 号生成部 143では同期が確立した後、或いは同期確立後でテンプレート信号 1006 出力が停止する以前の所定時において、第 1のテンプレート信号 1006を参照とした 同期保持状態力も第 1のテンプレート信号 1006を参照しないで、同期確立した状態 を保持する自己同期保持状態に移行する。
[0108] これにより、通信相手側のパルス変調型送信装置 200から RFフレーム同期用信号 2006が送られてこなくなつた場合や、同期用テンプレート信号の切り替え後に第 1の フレーム同期用タイミング調整部 160の動作が停止された場合でも、最初に同期確 立した状態を保持することが可能となる。
[0109] 自己同期保持状態に移行した後、第 1のテンプレート信号 1006が入力された場合 は、図示しない同期ずれ補正用 RFフレーム同期保持信号入力検出回路により、同 期ずれ補正を行う為の RFフレーム同期保持信号が、入力されたことにより生成され た第 1のテンプレート信号であることを検出する。その後、自己同期保持状態を止め 、第 1のテンプレート信号 1006に、第 2のテンプレート信号 1007を再同期させる。
[0110] 以後、同期ずれ補正用 RFフレーム同期保持信号の入力に応じて、自己同期保持 状態と再同期状態とを交互に繰り返す。
[0111] 自己同期保持状態に移行し、且つ、第 2のフレーム同期用タイミング調整部のフレ ーム同期用相関判定器 155から、第 1のテンプレート信号 1006と第 2のテンプレート 信号 1007の切り替え指示信号が入力されている場合、テンプレート信号切り替え部 142は、第 1のテンプレート信号 1006から第 2のテンプレート信号 1007に入力を切 り替え、同期用テンプレート信号 1008としてフレーム同期用信号生成部 141に出力 する。
[0112] 以上の切り替え動作により、 RFフレーム同期用信号 1005を用いたフレーム同期か ら、第 2のテンプレート信号 1007を用いたフレーム同期への移行が行われ、かつ、 第 2のテンプレート信号 1007を用いたフレーム同期保持状態となる。
[0113] 次に、シンボル同期部 170の動作を説明する。フレーム同期が確立した後、フレー ム同期部 140から出力される相関受信データ信号 1010を基に、シンボル同期部 17 0にて、復号データ信号 1015が復元される。パルス変調型送信装置 200では、シン ボル化部 210における送信データ信号の 1つ或いは複数のビットを予め定められた 所定の規則に基づき構成されたパターン力 成る複数のパルス信号列に変換出力さ れている。
[0114] よって、相関受信データ信号 1010から復号データ信号 1015を復元する為には、 上記と逆の操作を行ってやる必要がある。上記のように、シンボル化部 210で行われ る操作としては、拡散符号化処理がある。また、シンボル同期部 170で行われる操作 としては、逆拡散符号化処理がある。
[0115] 又、シンボル符号ィ匕は必ずしも必要な動作ではないが、連続波を用いた CDMA通 信と同様に、パルス通信においても多重化を実現する方法の 1つである。シンボル同 期部 170に入力された相関受信データ信号 1010は、図示しない分配器により 2分 岐され、一方が第 1のシンボル同期用タイミング調整部 180に、他方がタイミング再生 部 171に入力される。
[0116] タイミング再生部 171に相関受信データ信号 1010が入力されると、相関受信デー タ信号 1010に基づいて、フレーム同期部 140の第 2のテンプレート信号生成部 143 における第 2のテンプレート信号生成の動作で説明したのとほぼ同様の動作により、 所定の時間間隔にパルスが生じる内部生成タイミング信号 1011を生成する。
[0117] つまり、タイミング再生部 171内部の図示しない相関部、低域通過型フィルタ、相関 判定器、可変遅延部等を用い、第 1或いは第 2のフレーム同期用タイミング調整部 16 0、 150にて用いた操作を実行することにより、相関受信データ信号 1010に同期した 内部生成タイミング信号 1011を生成し、シンボル同期用信号生成部 172に出力す る。 [0118] また、変調方式に BPSKが用いられる場合は、相関受信データ信号 1010のデー タ列は一定間隔で連続するので、その振幅情報だけをもちいることで、内部生成タイ ミング信号 1011を生成することができる。また、 OOK変調や PPM変調が用いられる 場合でも、データ列は一定間隔ではないが、いずれかのデータ列で、シンボル同期 を確立する為の内部生成タイミング信号 1011を、生成することが可能である。
[0119] シンボル同期用信号生成部 172では、内部生成タイミング信号 1011を受けて、復 号データ信号 1015を復元する為の複数パルス列を有するシンボル同期用信号 101 2を生成し、第 1のシンボル同期用タイミング調整部 180に送出する。
[0120] 第 1のシンボル同期用タイミング調整部 180では、入力された相関受信データ信号 1010とシンボル同期用信号 1012とを相関部 182で乗じ、相関をとることにより通信 相手方からの復号データ信号 1015を復号し、復号データ信号 1015を出力する。こ の際、シンボル同期用信号 1012と相関受信データ信号 1010とのタイミングがずれ ている場合は、このタイミングずれにより、相関受信データ信号パルス列において、誤 つたタイムスロットがシンボルの先頭となっている状態となるので、可変遅延部 181の 遅延時間を変更することによって、シンボル同期を実現する。
[0121] 遅延時間の変更は、シンボル同期用相関判定器 184において、相関値が所定の 値となるまで、シンボル同期用相関判定器 184から可変遅延部 181に向けて、遅延 量変更の制御信号 1014が送出されることにより実現される。可変遅延部 181では、 遅延量変更の制御信号 1014に基づき遅延時間の変更を行う。変更量は、タイムス口 ット Tをステップ幅として量子的に変更されるが、ステップ幅を 1つずつ、連続的に増 減させてもょ 、し、変更量に応じて増減するステップ数を変更しても良 、。
[0122] このような本発明の実施の形態 1のパルス変調型送信装置およびパルス変調型受 信装置及びシステムによれば、パルス変調型送信装置 200に、送信データ信号 200 1とフレーム同期用信号 2002とを、それぞれ別送する RFデータ信号送信部 220と R F同期用信号送信部 230とを設け、さらにパルス変調型受信装置 100のフレーム同 期部 140に、別送信号である RFフレーム同期用信号 1005を基に生成した第 1のテ ンプレート信号 1006を生成する第 1のフレーム同期用タイミング調整部 160と、第 1 のテンプレート信号 1006に同期した第 2のテンプレート信号 1007を生成するテンプ レート信号生成部 143と、第 1のテンプレート信号 1006と第 2のテンプレート信号 10 07のうち一つを同期状態により選択し、同期用テンプレート信号 1008として切り替え 出力するテンプレート信号切り替え部 142と、受信 RFデータ信号 1004を構成する R Fデータパルスと同期のとれた同期用テンプレート信号 1008を受けフレーム同期用 信号 1009を生成するフレーム同期用信号生成部 141と、受信 RFデータ信号 1004 とフレーム同期用信号 1009とから相関受信データ信号 1010を生成、出力する第 2 のフレーム同期用タイミング調整部 150とを設け、通信開始時の初期同期確立にお けるパルス捕捉或いはパルス位相捕捉に、 RFフレーム同期用信号 1005を基に生 成した第 1のテンプレート信号 1006によるフレーム同期を行い、同期確立後に、第 2 のテンプレート信号 1007によるフレーム同期を行うことにより、別送の RFフレーム同 期用信号 1005を用いずに内部で発生させたフレーム同期用信号を用いて受信 RF データ信号 1004との同期確立を行った場合よりも、短時間で同期を確立することが 可能となるので、通信速度を上げることが可能となる。
[0123] また、同期確立の間に、第 1のテンプレート信号 1006に第 2のテンプレート信号を 同期させておき、同期確立後の同期保持として、第 1のテンプレート信号 1006から 第 2のテンプレート信号 1007へと切り替えることで、同期保持時はパルス変調型送 信装置 200側の RF同期用信号送信部 230或いはパルス変調型受信装置 100側の 受信部 110bの動作を停止することができるので、パルス変調型送信装置 200側及 びパルス変調型受信装置 100側における動作回路数の低減による低消費電力化が 図られる。
[0124] さらに、パルス変調型送信装置 200の側における RFフレーム同期用信号 2006の 送信を停止している間は、 RFフレーム同期用信号伝送用に使用した周波数帯域も RF送信データ信号伝送用として利用できるので、更なる高速データ伝送が可能な パルス変調型送信装置、パルス変調型受信装置およびシステムを実現することがで きる。
[0125] なお、上記実施の形態のフレーム同期部 140では、フレーム同期確立に別送の RF フレーム同期用信号 1005より生成した第 1のテンプレート信号 1006を用い、同期確 立後の同期保持に第 2のテンプレート信号 1007を用いる構成を示したが、同期確立 後の同期保持に第 2のテンプレート信号として、受信 RFデータ信号 1004を用いる構 成としてもよい。さらに、同期保持だけでなぐ同期確立も受信 RFデータ信号 1004 を別送の RFフレーム同期用信号 1005より生成した第 1のテンプレート信号として用 、る構成としてもよ 、。
[0126] 以上の説明では、別送する情報としてノ ルス位置、位相を示すフレーム同期タイミ ング、符号列の位置を示すシンボル同期タイミングとした場合にっ 、て記載したが、 機器間の認証に関わる情報を別送してもよい。機器間の認証の手順としては、例え ば、別送された認証情報を含む信号を受信可能な機器が受信し、他機器の送信要 求の検出、通信相手の限定を行う。この際に、認証用のデータは RFフレーム同期用 信号と、 RFシンボル同期用タイミング信号のいずれに加えてもよぐまたこれを新た な信号として別送しても良い。このこと〖こよって、別送信号にて、認証を行うことで、通 信用のデータ信号に認証用のデータ部分を不用とし、データ速度を落とさずに済む 効果がある。
[0127] また、データ信号、フレーム同期タイミング信号、シンボル同期タイミング信号はデ ータ速度を変えてもよい。このことによって、各信号のデータ速度を変えることによつ て、低レートの信号の占有帯域を狭め、使用する周波数帯域を減らすことを可能に する。
[0128] また、低レートの信号を受信する際には、他方式のパルス通信との協調動作を行う ことも可能である。
[0129] また、前記 RFデータ信号と、前記 RFフレーム同期用信号と、前記 RFシンボル同 期用タイミング信号との、少なくとも 1つを送信するものであればよい。このことによつ て、特定用途の信号のみを送信することで同一システム内の他機器や、他システム の機器との協調動作、例えば通信衝突防止を行うことができる。
[0130] また、パルス通信システムのみならず、 OFDMシステムのような他の変調方式の信 号も受信することで、システム間干渉を低減するように送信タイミング、出力レベルを 制御することも可能である。
[0131] また、第 2の RF入力信号で精度の低い同期を行い、第 1の RF入力信号で精度の 高い同期を行うことで、例えばレートの低い通信システム、通信方式にて疎同期を行 い、必要に応じてレートの高い通信システム、通信方式にて精度の高い同期を行うこ とで、同期回路の消費電力を低減できるとともに、一定の時間間隔で疎同期を行うこ とで、精度の高い同期の開始から同期確立までの時間を短縮することができる。
[0132] (実施の形態 2)
次に、本発明の実施の形態 2のパルス変調型送信装置およびパルス変調型受信 装置について説明する。実施の形態 1と異なるのは、パルス変調型受信装置が異な つており、ノ ルス変調型送信装置は実施の形態 1と同じである。本発明の実施の形 態 2のパルス変調型受信装置のブロック構成を図 3に示す。
[0133] 図 3は、フレーム同期確立に別送の RFフレーム同期用信号 1005より生成した第 1 のテンプレート信号 1006を用い、同期確立後の同期保持に、受信 RFデータ信号 1 004を可変遅延部 343により所定の時間 Tだけ遅延させた遅延受信 RFデータ信号 3010を用いるフレーム同期部 340のブロック構成図である。図 1のパルス変調型受 信装置 100の構成と異なるのは、第 2のテンプレート信号生成部 143と、テンプレート 信号切替え部 142とを有せず、フレーム同期用信号切替え部 342と可変遅延部 343 とを有し、フレーム同期用信号切替え部 342と第 1のフレーム同期用タイミング調整 部 160の第 1のテンプレート信号生成部 161との間にフレーム同期用信号生成部 14 1を有し、受信 RFデータ信号 1004が所定時間 Tだけ可変遅延部 343にて遅延され た後、フレーム同期用信号切替え部 342に入力される点である。
[0134] また、フレーム同期部 140の動作と異なるのは、以下の点である。
[0135] 受信 RFデータ信号 1004と RFフレーム同期用信号 1005とがフレーム同期部 340 へ入力される入力開始時では、フレーム同期用信号切り替え部 342により、テンプレ ート信号 1006を用いて、フレーム同期用信号生成部 141にて生成されたフレーム同 期用信号 1009が選択され、第 2のフレーム同期用タイミング調整部 150に出力され る。
[0136] 第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004に、フ レーム同期用信号切り替え部 342から出力されるフレーム同期用信号 1009を同期 引き込みさせながら、受信 RFデータ信号 1004にフレーム同期用信号切り替え部 34 2から出力されるフレーム同期用信号 1009との相関をとり、フレーム同期用相関判定 器 155の出力が第 1の所定値に達した場合に、フレーム同期用信号切り替え部 342 に向けて、フレーム同期用信号切り替え信号 3020を送出する。
[0137] フレーム同期用信号切り替え部 342は、フレーム同期用信号切り替え信号 3020を 受けて、テンプレート信号 1006から、遅延受信 RFデータ信号 3010へ入力切り替え し、第 2のフレーム同期用タイミング調整部 150に出力する。
[0138] 第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004に遅整 延受信 RFデータ信号 3010を同期引き込みさせながら、受信 RFデータ信号 1004 に遅延受信 RFデータ信号 3010との相関をとり、フレーム同期用相関判定器 155の 出力が第 2の所定値に達するまで、制御信号 1013を可変遅延部 151に出力する。
[0139] フレーム同期用相関判定器 155の出力が第 2の所定値に達すると、受信 RFデータ 信号 1004に対する遅延受信 RFデータ信号 3010の同期が確立され、所定の相関 受信データ信号 1010が、フレーム同期用相関判定器 155から出力される。
[0140] つまり、フレーム同期の引き込み時には、図 1で示したフレーム同期部 140と同じ動 作を行うが、フレーム同期の確立には、受信 RFデータ信号 1004を 2分岐し、一方を 可変遅延部 343により所定の時間 Tだけ遅延させた遅延受信 RFデータ信号 3010 を用いて、相関受信データ信号 1010を検出する遅延検波を行う。ここまでが、フレ ーム同期部 140の動作と異なる点である。
[0141] 遅延検波では、同じ信号を用いて相関をとるので、同期検波よりも信号対雑音比が 3dB低下する力 この構成により、フレーム同期部 340の内部に、第 2のテンプレート 信号生成部 143を有する必要がない分だけ回路構成が簡単になるのと、消費電力を 削減することが可能となる。
[0142] なお、以上の説明では、各種テンプレート信号 1006、 1007及びフレーム同期用 信号 1009のレベル調整については説明していないが、乗算処理、相関処理に使用 する素子に応じて増幅器等で信号レベルの調整を行うことは言うまでも無い。
[0143] (実施の形態 3)
次に、本発明の実施の形態 3のパルス変調型送信装置およびパルス変調型受信 装置について説明する。実施の形態 2と異なるのは、パルス変調型受信装置が異な つており、ノ ルス変調型送信装置は実施の形態 1と同じである。本発明の実施の形 態 3のパルス変調型受信装置のブロック構成を図 4に示す。
[0144] 図 4は、同期引き込みと同期の確立とにおいて、受信 RFデータ信号 1004を用いる フレーム同期部 440を有するパルス変調型受信装置のブロック構成図である。図 3の パルス変調型受信装置と異なるのは、アンテナ 101bに接続されておらず、受信部 1 10bを有せず、 RFデータ信号が 3分岐されてフレーム同期部 440に入力され、さらに 、 RFフレーム同期用信号 1005ではなぐ受信 RFデータ信号 1004が第 1のフレーム 同期用タイミング調整部 160の相関部 162に入力されて 、る点である。
[0145] また、フレーム同期部 340の動作と異なるのは、以下の点である。
[0146] 受信 RFデータ信号 1004がフレーム同期部へ入力される入力開始時では、フレー ム同期用信号切り替え部 342により遅延受信 RFデータ信号 3010が選択され、第 2 のフレーム同期用タイミング調整部 150に出力される。
[0147] 第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004に、フ レーム同期用信号切り替え部 342から出力される遅延受信 RFデータ信号 3010を同 期引き込みさせながら、受信 RFデータ信号 1004にフレーム同期用信号切り替え部 342から出力される遅延受信 RFデータ信号 3010との相関をとり、フレーム同期用相 関判定器 155の出力が第 1の所定値に達した場合に、フレーム同期用信号切り替え 部 342に向けて、フレーム同期用信号切り替え信号 3020を送出する。
[0148] フレーム同期用信号切り替え部 342は、フレーム同期用信号切り替え信号 3020を 受けて、遅延受信 RFデータ信号 3010から、フレーム同期用信号 4009へ入力切り 替えし、第 2のフレーム同期用タイミング調整部 150に出力する。
[0149] 第 2のフレーム同期用タイミング調整部 150では、受信 RFデータ信号 1004にフレ ーム同期用信号 4009を同期引確立させながら、受信 RFデータ信号 1004にフレー ム同期用信号 4009との相関をとり、フレーム同期用相関判定器 155の出力が第 2の 所定値に達するまで、制御信号 1013を可変遅延部 151に出力する。
[0150] フレーム同期用相関判定器 155の出力が第 2の所定値に達すると、受信 RFデータ 信号 1004に対する遅延受信 RFデータ信号 3010の同期が確立され、所定の相関 受信データ信号 1010が、フレーム同期用相関判定器 155から出力される。
[0151] つまり、受信 RFデータ信号 1004を 3分岐し、フレーム同期の引き込み時には、 3分 岐したうちの 1つを、可変遅延部 343により、所定の時間 Tだけ遅延させた遅延受信 RFデータ信号 3010を用いて、相関受信データ信号 1010を検出する遅延検波を行 う。さらに、フレーム同期の確立には、 3分岐したうちのもう 1つの受信 RFデータ信号 1004を用いて生成したテンプレート信号 1006を基に、フレーム同期用信号生成部 141で生成したフレーム同期用信号 4009を用いて、相関受信データ信号 1010を 検出する同期検波を行う。ここまでが、フレーム同期部 340の動作と異なる点である。
[0152] つまり、フレーム同期の引き込み時には、受信 RFデータ信号 1004を 3分岐した 1 つを所定の時間 Tだけ遅延させて、相関受信データ信号 1010を検出する遅延検波 を行う。
[0153] そして、フレーム同期引き込みの間に、 3分岐したうちのもう 1つの受信 RFデータ信 号 1004を基に、受信 RFデータ信号 1004を構成する RFデータパルスの立ち上がり 波形と同期がとることができる。さらに、 1と 0が交互に連続した第 1のテンプレート信 号 1006を第 1のテンプレート信号生成部 161で生成する。
[0154] フレーム同期用信号切替え部 342は、受信 RFデータ信号 1004を構成する RFデ 一タパルスの立ち上がり波形と同期がとれた後、受信 RFデータ信号 1004をフレー ム同期用信号生成部 141からのフレーム同期用信号 4009へと切替え、第 2のフレー ム同期用タイミング調整部 150へ出力する。
[0155] 遅延検波では、同じ信号を用いて相関をとるので、同期検波よりも信号対雑音比が
3dB低下するが、同期検波よりも、ノ ルス補足及びパルス位相補足の為の回路が複 雑にならな ヽ点を利用して 、る。
[0156] また、 RFフレーム同期用信号 1005が有するテンプレート信号と異なり、受信 RFデ ータ信号 1004が有する RFデータパルスは、 1と 0が交互に連続していない。また、 相関判定器 164における感度が低下する。
[0157] この為、図 1のフレーム同期部 140の構成に比べて、同期確立に時間を要すると共 に、タイミングの安定度も低下するが、この構成により、別送の RFフレーム同期用信 号 1005を用いずに周波数利用効率の良い通信システムとすることが可能となる。
[0158] なお、以上の説明では、各種テンプレート信号 1006及びフレーム同期用信号 400
9のレベル調整については説明していないが、乗算処理、相関処理に使用する素子 に応じて増幅器等で信号レベルの調整を行うことは言うまでも無い。
[0159] (実施の形態 4)
次に、本発明の実施の形態 4のパルス変調型送信装置およびパルス変調型受信 装置について説明する。実施の形態 1と異なるのは、パルス変調型受信装置が異な つており、ノ ルス変調型送信装置は実施の形態 1と同じである。本発明の第 4の実施 の形態のパルス変調型受信装置のブロック構成を図 5に示す。
[0160] 図 5において、実施の形態 1と異なるのは、フレーム同期部 140にて使用する別送 の RFフレーム同期用信号 1005の他に、シンボル同期用のタイミング信号として必要 な形式の信号そのものが、無線周波数にて、さらに別送 (以後、 RFタイミング信号と 呼ぶ)されている点である。
[0161] タイミング信号としては、シンボルの開始時のみに信号を発生させる形式や、シンポ ル中の複数のビットのタイミングで信号を発生させる形式等がある。
[0162] 本発明の実施の形態 1のパルス変調型送信装置およびパルス変調型受信装置の 構成及び動作と共通する部分についての説明は省略し、異なる構成及び動作につ いてのみ説明を行う。
[0163] 図 5において、パルス変調型受信装置 500は、パルス変調型受信装置 100の構成 に加えて、シンボル同期部 570に、別送の RFシンボル同期用タイミング信号 5006か らベースバンドのタイミング信号 (第 1のタイミング信号と呼ぶ)を検出し、振幅加算を 行う第 2のシンボル同期用タイミング調整部 560と、 RFシンボル同期用タイミング信 号 5006と同期のとれたタイミング信号 5008 (以後、第 2のタイミング信号と呼ぶ)を生 成するクロック再生部 571と、第 2のタイミング信号 5008と第 1のタイミング信号 5007 のうち 1つを切替え出力するタイミング信号切り替え部 573とから構成されている。
[0164] 第 2のシンボル同期用タイミング調整部 560は、検波部 501にて、 RFシンボル同期 用タイミング信号 5006からベースバンドのタイミング信号を検出し、検出信号を 2分 岐した一方を所定時間 m XTだけ遅延し、他方と加算することにより所定振幅以上の 第 1のタイミング信号 5007を出力するよう構成している。
[0165] クロック再生部 571は、図示しない内部のテンプレート信号生成部、可変遅延部、 相関部、低域通過型フィルタ、相関判定器等により内部で生成したタイミング信号を RFシンボル同期用タイミング信号 5006に同期させ、出力するよう構成している。
[0166] タイミング信号切り替え部 573は、第 2のタイミング信号 5008が第 1のタイミング信 号 5007に同期し、シンボル同期用相関判定器 184からのシンボル同期用信号切り 替え信号 5020を受けて、第 1のタイミング信号 5007から第 2のタイミング信号 5008 に切替え、出力するよう構成している。所定の時間が経過した後に第 1のタイミング信 号 5007から第 2のタイミング信号 5008に切替え、出力するよう構成してもよい。
[0167] 以上のように構成された本発明の第 4の実施の形態のパルス変調型受信装置につ いて、図 5を用いてその動作を説明する。フレーム同期確立或いは保持が行われて いる一方で、シンボル同期部 570では、第 1のタイミング信号 5007を用いたシンボル 同期の確立が図られる。まず、アンテナ 101bと受信部 110bとにより、無線信号から RFシンボル同期用タイミング信号 5006が抽出された後、第 2のシンボル同期用タイ ミング調整部 560に入力される。
[0168] 第 2のシンボル同期用タイミング調整部 560では、検波部 501により RFシンボル同 期用タイミング信号 5006からベースバンドのタイミング信号を検出し、検出信号を 2 分岐した一方を可変遅延部 503で所定時間 m XTだけ遅延し、加算'リセット回路部 502で他方の検波信号と加算し、所定回数加算後にリセットし、適当な回数の信号を 加算し、外部タイミング信号 5007を出力する。ここで、 mは 1シンボルを構成するフレ 一ム数を表す整数で、 Tは 1シンボル長の時間を表す。これにより、信号の対雑音比 を改善することができると共に、送られてくるタイミング信号の時間的な変化に追従す ることち可會である。
[0169] その後、外部タイミング信号 5007は、タイミング信号切替え部 573にて選択され、 シンボル同期用信号生成部 172に出力される。シンボル同期用信号生成部 172に 入力された第 1のタイミング信号を基にシンボル同期用信号を生成する以降の動作 は、実施の形態 1と同じである。
[0170] 一方、第 1のタイミング信号 5007は、 2分岐され一方が、クロック再生部 571に入力 される。クロック再生部 571では、図示しない内部のテンプレート信号生成部で生成 されたタイミング信号が、可変遅延部により所定の時間だけ初期遅延された後、外部 タイミング信号 5007と共に相関部により相関がとられ、低域通過型フィルタを通過し た後、相関判定器により相関出力が所定値となるまで、可変遅延部の遅延量をフィ ードバック制御する。相関出力が所定値となると、クロック再生部 571内部で生成した 第 2のタイミング信号 5008が第 1のタイミング信号 5007に同期する。
[0171] タイミング信号切り替え部 573は、第 2のタイミング信号 5008が第 1のタイミング信 号 5007〖こ同期し、所定の時間が経過した後、第 1のタイミング信号 5007から第 2の タイミング信号 5008に切替え、シンボル同期用信号生成部 172に出力する。
[0172] その後、所定時間後に RFシンボル同期用タイミング信号 5006の送信が断となり、 所定時間間隔でシンボル同期保持用の RFタイミング信号 (以後、シンボル同期保持 タイミング信号と呼ぶ)が、通信相手方のノ ルス変調型送信装置力 送られてくること となるが、その動作は、実施の形態 1のフレーム同期と同じであるので、ここでは省略 する。
[0173] 又、実施の形態 4で用いられるパルス変調型送信装置の構成は、図 2のパルス変 調型送信装置 200において、フレーム同期用信号 2002に加えて、シンボル同期用 クロック信号が一緒に加えられているものとし、その構成及び動作は実施の形態 1と 同じであることから説明を省略する。
[0174] このような本発明の第 4の実施の形態のパルス変調型送信装置、パルス変調型受 信装置及びシステムによれば、実施の形態 1のパルス変調型送信装置 200に、別送 の RFフレーム同期用信号 2006に加えて、 RFシンボル同期用タイミング信号を更に 別送する構成とし、更に実施の形態 1のパルス変調型受信装置 100に、 RFシンボル 同期用タイミング信号力も第 1のタイミング信号 5007を検出する第 2のシンボル同期 用タイミング調整部 560と、シンボル同期の確立或いは同期保持に第 1のタイミング 信号 5007を用い、シンボル同期を確立し、シンボル同期用相関判定器 184からの シンボル同期用信号切り替え信号 5020を受けて、第 1のタイミング信号 5007から第 2のタイミング信号 5008に切替えるタイミング切替え部 573と、を設けることにより、フ レーム同期における同期確立時間の短縮が図れると共に、さらにシンボル同期にお ける同期確立時間の短縮化も図れる。シンボル同期を確立し、所定の時間が経過し た後に外部タイミング信号 5007から内部タイミング信号 5008に切替えてもよい。
[0175] また、フレーム同期保持時に、パルス変調型送信装置 200側における RF同期用信 号送信部 230及びパルス変調型受信装置 500側の低雑音増幅器 103bの動作を停 止することができることに加えて、シンボル同期保持時にも、パルス変調型送信装置 200側における RFフレーム同期用信号と RFシンボル同期用タイミング信号の送信と の送信停止、及び、パルス変調型受信装置 500側の低雑音増幅器 103bと第 2のシ ンボル同期用タイミング調整部 560との動作停止をすることができるので、パルス変 調型送信装置 200側及びパルス変調型受信装置 500側における動作回路数の低 減による更なる低消費電力化が図れる。
[0176] さらに、パルス変調型送信装置 200側における RFフレーム同期用信号の送信停 止に加えて、 RFシンボル同期用タイミング信号の送信停止を行っている間、 RFフレ ーム同期用信号と RFシンボル同期用タイミング信号との伝送に使用した周波数帯域 を、送信データ信号の伝送用として利用できるので、更なる高速のデータ伝送が可 能なパルス変調型送信装置およびパルス変調型受信装置を実現できる。
[0177] (実施の形態 5)
次に、本発明の実施の形態 5のパルス変調型送信装置およびパルス変調型受信 装置について説明する。実施の形態 4と異なるのは、パルス変調型受信装置が異な つており、ノ ルス変調型送信装置は実施の形態 1と同じである。本発明の実施の形 態 5のパルス変調型受信装置のブロック構成を図 6に示す。
[0178] 図 6にお 、て、実施の形態 4の構成と異なるのは、パルス変調型送信装置側にお!ヽ て、別送される RFフレーム同期用信号 1005と RFシンボル同期用タイミング信号 50 06とがそれぞれ異なる周波数帯にて伝送され、さらにパルス変調型受信装置 600側 では RFフレーム同期用信号 1005と RFシンボル同期用タイミング信号 5006とを別 々の無線受信系にて抽出、出力している点である。
[0179] 本発明の実施の形態 4のパルス変調型送信装置およびパルス変調型受信装置の 構成及び動作と共通する部分についての説明は省略し、異なる構成及び動作につ いてのみ説明を行う。
[0180] 図 6において、実施の形態 4のパルス変調型受信装置 500と異なるのは、パルス変 調型受信装置 600は、さらにアンテナ 601に接続され、受信部 110cを有し、アンテ ナ 601と帯域通過型フィルタ 602と増幅器 603とを用いて、無線信号から RFシンポ ル同期用タイミング信号 5006を抽出し、所定の電力レベルにまで低雑音で増幅した 後、抽出した信号を第 2のシンボル同期用タイミング調整回路 560に出力する構成及 び動作となって ヽる点である。
[0181] 図 7において、別送される RFフレーム同期用信号 1005と RFシンボル同期用タイミ ング信号 5006とを示す。パルス捕捉とパルス位相捕捉とを行う同期確立時に使用さ れる RFフレーム同期用信号 1005は、一定の時間 Tを隔てた時間 tl〜tnにて、 RF データ信号を構成する RFデータパルスのパルス幅と同一時間長 telだけ、断続的に 励振される正弦波で構成されている。送受信用パルスのパルス幅 telは、時間間隔 T よりち短い。
[0182] 一方、シンボル同期用信号生成部 172にて、シンボル同期用に使用される RFシン ボル同期用タイミング信号 5006は、その信号開始時間 tlを元に、シンボル同期用 信号の生成が行われるため、全ての時間 tl〜tnにて断続的に正弦波が励振される 必要は無ぐ時間 tlのみに所定時間だけ励振されていれば良い。また、励振時間は telより長くてもかまわない。図 7では、時間 Tだけ励振している。
[0183] このため、シンボル同期用に使用される別送の RFシンボル同期用タイミング信号 5 006には、初期のフレーム同期確立用とは異なる第 2の狭帯域の周波数チャネルを 割り当てる。
[0184] このような本発明の第 5の実施の形態のパルス変調型送信装置、パルス変調型受 信装置及びシステムによれば、実施の形態 4の構成に加えて、 RFフレーム同期用信 号 1005と RFシンボル同期用タイミング信号 5006を、別々の無線周波数にて送受 信する構成を設けることで、同じ無線周波数で受信する時と比較して、第 1のフレー ム同期用タイミング調整部及び第 2のシンボル同期用タイミング調整部 160、 560に て、互いの信号成分による影響が除去される。
[0185] このため、フレーム同期確立時間の短縮とシンボル同期確立時間の短縮が図れる などの実施の形態 4の効果に加え、より安定したフレーム同期用信号とシンボル同期 用タイミング信号が抽出できる。さらに、よりジッタが少なく安定した相関受信データ 信号或いは復元データ信号が得られる。
[0186] (実施の形態 6) 次に、本発明の実施の形態 6のパルス変調型送信装置およびパルス変調型受信 装置について説明する。実施の形態 5と異なるのは、パルス変調型受信装置とパル ス変調型送信装置が異なって!/、る。本発明の実施の形態 6のパルス変調型送信装 置のブロック構成を図 8に、パルス変調型受信装置のブロック構成を図 9に示す。
[0187] 本発明の実施の形態 6のパルス変調型送信装置およびパルス変調型受信装置の 構成及び動作と共通する部分についての説明は省略し、異なる構成及び動作につ いてのみ説明を行う。
[0188] 図 8において、パルス変調型送信装置 800は、パルス変調型送信装置 200の構成 に加えて、変調部 221a、 221bと周波数変換部 222a、 222bとの間に波形選択部 81 la、 8 l ibを設けた構成となっている。
[0189] 図 9において、パルス変調型受信装置 900は、パルス変調型受信装置 600のシン ボル同期部 570内に第 2のタイミングを生成するタイミング生成部 571と、タイミング切 替え部 573とを有せず、また第 2のシンボル同期用タイミング調整部内に検波部 501 と、加算'リセット回路部 502とを有せず、相関部 901と低域通過型フィルタ 902と相 関判定器 903とを有する構成となって 、る。
[0190] 図 8において、送信データ信号 2001とフレーム同期用信号 2002とは、シンボル化 部 210でシンボル化され、変調部 221a、 221bで所定の変調を施された後、波形選 択部 811a、 8 l ibで所定の波形を有するウェーブレットを割り当てられ、周波数変換 部 222a、 222bで周波数変換されて送信される。
[0191] 一方、シンボル同期用タイミング信号 8003は、シンボル化部 210でシンボル化され 、変調部 221a、 221bで所定の変調を施された後、波形選択部 81 lbにて、送信デ ータ或いはフレーム同期用信号とは異なる波形を有するウェーブレットが割り当てら れる。
[0192] このとき、送信データ信号 2001或いはフレーム同期用信号 2002とシンボル同期 用タイミング信号 8003とに割り当てられる波形には、パルス変調型受信装置 900側 にて互いに分離可能な波形が選ばれる。図 10A、図 10Bに送信データ信号 2001或 いはフレーム同期用信号 2002とシンボル同期用タイミング信号 8003に用いられるゥ エーブレットの波形を示す。図 10Aは、ガウシアンインパルス波形の 1階微分波形、 図 10Bはガウシアンインパルス波形の 2階微分波形であり、横軸が時間を縦軸が振 幅を表す。図 10Aと図 10Bとの波形は、互いに時間的に直交関係にあり、パルス変 調型受信装置側にて分離が可能な波形である。
[0193] 図 10A、図 10Bの波形の割り当て方法は、送信データ信号 2001およびフレーム 同期用信号 2002に、図 10Aのガウシアンインパルス波形の 1階微分波形を用い、シ ンボル同期用タイミング信号 8003に、図 10Bのガウシアンインパルス波形の 2階微 分波形を割り当てるだけではなぐその逆でも良い。また、用いられるウェーブレットの 波形も一例にすぎず、互いに時間的に直交関係にあれば良ぐ図 10A、図 10Bの波 形に限定されるものではない。
[0194] 図 8において、送信データ信号 2001、シンボル同期用タイミング信号 8003の波形 選択部 811a、 8 l ibからの出力信号をそれぞれ、波形選択送信データ 8005、波形 選択シンボル同期用信号 8006とし、周波数変換部 222a、 222bの出力信号を、そ れぞれ RF送信データ 8007、 RFシンボル同期用信号 8008とすると、各入出力信号 の波形及び関係を示したのが図 11である。送信データ 2001に対し、シンボル同期 用タイミング信号 8003は長 、パルス幅を有する。
[0195] 図 9において、パルス変調型受信装置 900は、アンテナ 601、受信部 110cの帯域 通過型フィルタ 602と低雑音増幅器 603とを用いて、無線信号から RFシンボル同期 用タイミング信号 5006を抽出し、所定の電力レベルにまで低雑音で増幅した後、抽 出した信号を第 2のシンボル同期用タイミング調整部 960に出力する。この時、異な るウェーブレットを有する RFフレーム同期用信号 1005は、伝送する周波数帯域つま り、搬送波周波数が同じでも第 2のシンボル同期用タイミング調整部 960では除去さ れる。
[0196] 第 2のシンボル同期用タイミング調整部 960では、入力された RFシンボル同期用タ イミング信号を 2分岐し、一方の信号を遅延部 503にて時間 m XTだけ遅延した後( 但し、 mは整数)、他方の信号と相関部 901に入力されて遅延検波が行われる。
[0197] さらに低域通過型フィルタ 902を介し、所望の信号成分が取り出された後、相関判 定器 903により相関値が所定の値となるまで遅延部 503の m値を変化させる。相関 値が所定の値となった場合、所望とするシンボル同期に必要なタイミング信号が相関 判定器 903より出力される。
[0198] このような本発明の実施の形態 6のパルス変調型送信装置、パルス変調型受信装 置及びシステムによれば、実施の形態 5のパルス変調型受信装置構成に若干の変 更を加え、更にパルス変調型送信装置 800側にて、 RFフレーム同期用信号 8008と RFシンボル同期用タイミング信号 8009に異なるウェーブレットを施す構成を設ける ことで、 RFフレーム同期用信号 8008と RFシンボル同期用タイミング信号 8009を同 じ周波数帯で送ることができる。
[0199] さらに、パルス変調型受信装置 900側にて、 RFフレーム同期用信号 1005と RFシ ンボル同期用タイミング信号 5006とが容易に分離可能となるので、異なるウェーブレ ットが施されずに同じ無線周波数で受信する時と比較して、第 1のフレーム同期用タ イミング調整部及び第 2のシンボル同期用タイミング調整部 160、 960にて互いの信 号成分による影響が除去されるので、フレーム同期確立時間の短縮とシンボル同期 確立時間の短縮が図れるなどの実施の形態 5の効果にカ卩え、より安定したフレーム 同期用信号とシンボル同期用タイミング信号が抽出できる。さらに、よりジッタが少なく 安定した相関受信データ信号或!、は復元データ信号が得られる。
[0200] 本明糸田書 ίま、 2005年 5月 13日出願の特願 2005— 140935に基づく。この内容【ま すべてここに含めておく。
産業上の利用可能性
[0201] 以上のように、本発明にかかるパルス変調型送信装置、パルス変調型受信装置及 びシステムは、同期確立に要する時間を短くすると共に、通信開始より速やかにデー タの授受ができ、高速データ伝送が可能になるという効果更には、受信系を複数有 する構成としても、同期部の低消費電力化が図れるという効果を有し、 AV機器ゃパ 一ソナルコンピュータを相互に無線接続してシームレスなネットワークを構成するため のパルス状の変調信号を用いたデータ通信装置や UWB無線装置等として有用であ る。

Claims

請求の範囲
[1] 受信 RFデータ信号である第 1の RF入力信号と前記第 1の RF入力信号のフレーム 同期用信号の生成に用いる第 1のテンプレート信号を有する第 2の RF入力信号とを 受けて、前記第 1の RF入力信号と第 2の RF入力信号との相関である相関受信デー タ信号を出力するフレーム同期部を含むパルス変調型受信装置であって、
前記フレーム同期部は、前記第 2の RF入力信号から、前記第 1のテンプレート信号 を抽出する第 1のフレーム同期用タイミング調整部と、
第 2のテンプレート信号を、前記第 1のテンプレート信号に同期させ、出力するテン プレート信号生成部と、
前記フレーム同期部に、前記第 1の RF入力信号と第 2の RF入力信号との入力され た場合には、前記第 1のテンプレート信号を選択し、フレームの同期状態に応じて、 前記第 1のテンプレート信号力 前記第 2のテンプレート信号へ切り替え出力するテ ンプレート信号切り替え部と、
前記テンプレート信号切り替え部から出力した前記第 1或いは第 2のテンプレート 信号を用いて、前記フレーム同期用信号を生成するフレーム同期用信号生成部と、 前記第 1の RF入力信号に、前記フレーム同期用信号を同期させ、前記相関受信 データ信号を出力する第 2のフレーム同期用タイミング調整部と、を含み、
前記第 2のフレーム同期用タイミング調整部は、
前記第 1の RF入力信号と前記フレーム同期用信号との相関値が、所定値に達した 場合に、前記テンプレート切り替え部へ、テンプレート切り替え指示信号を出力する フレーム同期用相関判定部を含み、
前記テンプレート信号切り替え部は、前記テンプレート切り替え信号を受けて、前 記第 1のテンプレート信号力 前記第 2のテンプレート信号へ切り替え動作を行う パルス変調型受信装置。
[2] 前記フレームの同期状態は、
前記フレーム同期部に、前記第 1の RF入力信号と第 2の RF入力信号とが入力され 、前記第 2のフレーム同期用タイミング調整部が、前記第 1の RF入力信号を構成する RFデータパルスの有無を検出し同期引き込みを図るパルス捕捉状態である第 1の状 態と、
前記第 2のフレーム同期用タイミング調整部が、前記 RFデータパルスを形成する波 素の位相レベルの同期の確立を図るパルス位相捕捉状態である第 2の状態と、を含 み、
前記フレーム同期用相関判定部は、
前記第 1の RF入力信号と前記フレーム同期用信号との前記相関値が前記所定値 に達した場合に、前記第 1の状態から前記第 2の状態へ移行すべきと判定し、前記テ ンプレート切り替え部に前記テンプレート切り替え指示信号を送出し、
前記第 1の状態では、前記第 1のテンプレート信号を利用した同期検波を行い、 前記第 2の状態では、前記第 2のテンプレート信号を利用した同期検波を行う 請求項 1記載のパルス変調型受信装置。
[3] 前記第 2の RF入力信号は、前記第 1の RF入力信号とは異なる周波数帯にて伝送 された信号である請求項 1記載のパルス変調型受信装置。
[4] 前記テンプレート信号切り替え部が、前記テンプレート切り替え信号を受けて、前記 第 1のテンプレート信号力 前記第 2のテンプレート信号へ切り替え動作を行った場 合に、
前記第 1のフレーム同期用タイミング調整部は、電源供給が停止される 請求項 1記載のパルス変調型受信装置。
[5] 前記第 1のフレーム同期用タイミング調整部への電源供給が停止された後、
再度、前記第 2の RF入力信号が入力された場合、
又は、同期ずれ補正を行う為の RFフレーム同期保持信号が、所定間隔で通信相 手から入力された場合、
前記第 1のフレーム同期用タイミング調整部は、電源供給が再開される 請求項 4記載のパルス変調型受信装置。
[6] 前記相関受信データ信号とシンボル同期用信号の生成に用いる第 1のタイミング信 号を有する RFシンボル同期用タイミング信号とを受けて、復号データ信号を出力す るシンボル同期部をさらに有し、
前記シンボル同期部は、 前記 RFシンボル同期用タイミング信号から、前記第 1のタイミング信号を抽出する 第 1のシンボル同期用タイミング調整部と、
第 2のタイミング信号を、前記第 1のタイミング信号に同期させ、出力するクロック再 生部と、
前記シンボル同期部に、前記相関受信データ信号と前記 RFシンボル同期用タイミ ング信号との入力が開始された場合には、前記第 1のタイミング信号を選択し、シン ボル同期状態に応じて、前記第 1のタイミング信号から前記第 2のタイミング信号へ切 り替え出力するタイミング信号切り替え部と、
前記タイミング信号切り替え部から出力した前記第 1或いは第 2のタイミング信号を 用いて、前記 RFシンボル同期用信号を生成するシンボル発生部と、
前記相関受信データ信号に前記シンボル同期用信号を同期させ、前記復号デ一 タ信号を出力する第 2のシンボル同期用タイミング調整部と、を含み、
前記第 2のシンボル同期用タイミング調整部は、
前記相関受信データ信号と前記シンボル同期用信号との相関値が所定値に達し た場合に、前記タイミング信号切り替え部に向けてタイミング切り替え指示信号を出 力するシンボル同期用相関判定部を含み、
前記タイミング信号切り替え部は、前記タイミング切り替え指示信号を受けて、前記 第 1のタイミング信号カゝら前記第 2のタイミング信号へ切り替え動作を行う
請求項 1記載のパルス変調型受信装置。
[7] 前記タイミング信号切り替え部が、前記タイミング切り替え指示信号を受けて、前記 第 1のタイミング信号カゝら前記第 2のタイミング信号へ切り替え動作を行った場合に、 前記第 1のシンボル同期用タイミング調整部は、電源供給が停止される 請求項 6記載のパルス変調型受信装置。
[8] 前記第 1のシンボル同期用タイミング調整部への電源供給が停止された後、
再度、前記 RFシンボル同期用タイミング信号が入力された場合、
又は、 RFシンボル同期用タイミング保持信号が、所定時間間隔で通信相手から入 力された場合、
前記第 1のシンボル同期用タイミング調整部は、電源供給が再開される 請求項 6記載のパルス変調型受信装置。
受信 RFデータ信号である第 1の RF入力信号と前記第 1の RF入力信号のフレーム 同期用信号の生成に用いるテンプレート信号を有する第 2の RF入力信号とを受けて 、前記第 1と第 2の RF入力信号との相関である相関受信データ信号を出力するフレ ーム同期部を含むパルス変調型受信装置であって、
前記フレーム同期部は、
前記第 2の RF入力信号から、前記テンプレート信号を抽出する第 1のフレーム同期 用タイミング調整部と、
前記テンプレート信号を基にして、フレーム同期用信号を生成するフレーム同期用 信号生成部と、
前記第 1の RF入力信号を所定時間遅延した遅延受信 RFデータ信号を出力する 可変遅延部と、
前記フレーム同期部に、前記第 1の RF入力信号と第 2の RF入力信号との入力が 開始された場合には、前記フレーム同期用信号を選択し、フレームの同期状態に応 じて、前記フレーム同期用信号から前記遅延受信 RFデータ信号へ切り替え出力す るフレーム同期用信号切り替え部と、
前記第 1の RF入力信号に、前記フレーム同期用信号切り替え部から出力される前 記フレーム同期用信号或いは前記遅延受信 RFデータ信号を同期させ、前記相関受 信データ信号を出力する第 2のフレーム同期用タイミング調整部と、を含み、 前記第 2のフレーム同期用タイミング調整部は、
前記第 1の RF入力信号と前記フレーム同期用信号切り替え部から出力される前記 フレーム同期用信号との相関値が、所定値に達した場合に、前記フレーム同期用信 号切り替え部へ、フレーム同期用信号切り替え指示信号を出力するフレーム同期用 相関判定部を含み、
前記フレーム同期用信号切り替え部は、前記フレーム同期用信号切り替え指示信 号を受けて、前記フレーム同期用信号から前記遅延受信 RFデータ信号へ切り替え 動作を行う
パルス変調型受信装置。 [10] 前記フレーム同期状態は、
前記フレーム同期部に、前記第 1の RF入力信号と第 2の RF入力信号とが入力され 、前記第 2のフレーム同期用タイミング調整部が、前記第 1の RF入力信号を構成する RFデータパルスの有無を検出し同期引き込みを図るパルス捕捉状態である第 1の状 態と、
前記第 2のフレーム同期用タイミング調整部が、前記 RFデータパルスを形成する波 素の位相レベルの同期の確立を図るパルス位相捕捉状態である第 2の状態と、含み 前記フレーム同期用相関判定部は、
前記第 1の RF入力信号と前記フレーム同期用信号との前記相関値が前記所定値 に達した場合に、前記第 1の状態から前記第 2の状態へ移行すべきと判定し、前記テ ンプレート切り替え部に前記テンプレート切り替え指示信号を送出し、
前記第 1の状態では、前記テンプレート信号を利用した同期検波を行い、 前記第 2の状態では、前記第 1の RF入力信号を利用した同期検波を行う 請求項 9記載のパルス変調型受信装置。
[11] 前記フレーム同期用信号切り替え部が、
前記フレーム同期用信号から前記遅延受信 RFデータ信号へ切り替えを行った場 前記第 1のフレーム同期用タイミング調整部は、動作を停止する
請求項 9記載のパルス変調型受信装置。
[12] 前記フレーム同期部は、
前記第 2の RF入力信号で精度の低い同期を行い、前記第 1の RF入力信号で精度 の高い同期を行う請求項 1記載のパルス変調型受信装置。
[13] 送信データと、フレーム同期用信号と、シンボル同期用タイミング信号とに所定のシ ンボル化を施し、シンボル化送信データと、シンボル化フレーム同期用信号と、シン ボルィ匕シンボル同期用タイミング信号とを生成するシンボルィ匕部と、
前記シンボル化送信データに所定の変調を施し、無線周波数にアップコンバートし て、通信相手方のフレーム同期部に入力される第 1の RF入力信号を有する RFデー タ信号を生成する RFデータ信号送信部と、
前記シンボルィ匕フレーム同期用信号に、所定の変調を施し、無線周波数にアップ コンバートして、通信相手方のフレーム同期部に入力される第 2の RF入力信号を有 する RFフレーム同期用信号と、
前記シンボルィ匕シンボル同期用タイミング信号に所定の変調を施し、無線周波数 にアップコンバートして、通信相手方のシンボル同期部に入力される RFシンボル同 期用タイミング信号と、を生成する RF同期用信号送信部と
を有するパルス変調型送信装置。
[14] 前記 RF同期用信号送信部は、
前記 RFシンボル同期用タイミング信号を、前記 RFフレーム同期用信号とは異なる 周波数帯で送出する請求項 13記載のパルス変調型送信装置。
[15] 前記 RF同期用信号送信部は、前記 RFフレーム同期保持信号と前記 RFシンボル 同期用タイミング保持信号とを、所定時間間隔で送出する手段を有する請求項 13記 載のパルス変調型送信装置。
[16] 前記 RFデータ信号送信部および前記 RF同期用信号送信部は、
さらに、前記 RFデータ信号と前記 RFフレーム同期用信号と前記 RFシンボル同期 用タイミング信号と前記 RFフレーム同期保持信号と前記 RFシンボル同期用タイミン グ保持信号とに対して、互いに分離可能な信号波形を有するウェーブレットを割り当 てる波形選択部を有する請求項 13記載のパルス変調型送信装置。
[17] 前記波形選択部は、前記 RFフレーム同期用信号と前記 RFシンボル同期用タイミ ング信号と前記 RFフレーム同期保持信号と前記 RFシンボル同期用タイミング保持 信号のうち 1つ以上の信号に、異なるウェーブレットを用いる請求項 13記載のパルス 変調型送信装置。
[18] 前記 RFフレーム同期用信号は、機器認証用のデータを含む請求項 13記載のパ ルス変調型送信装置。
[19] 前記 RFデータ信号と、前記 RFフレーム同期用信号と、前記 RFシンボル同期用タ イミング信号の、少なくとも 2つのデータ速度が異なる請求項 13記載のパルス変調型 送信装置。 前記 RFデータ信号送信部および前記 RF同期用信号送信部は、
前記 RFデータ信号と、前記 RFフレーム同期用信号と、前記 RFシンボル同期用タ イミング信号の、少なくとも 1つを送信する請求項 13記載のパルス変調型送信装置。
PCT/JP2006/309258 2005-05-13 2006-05-08 パルス変調型送信装置およびパルス変調型受信装置 WO2006121012A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/914,281 US7881400B2 (en) 2005-05-13 2006-05-08 Pulse modulation type transmitter apparatus and pulse modulation type receiver apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005140935 2005-05-13
JP2005-140935 2005-05-13
JP2006109027A JP4744344B2 (ja) 2005-05-13 2006-04-11 パルス変調型送信装置およびパルス変調型受信装置
JP2006-109027 2006-04-11

Publications (1)

Publication Number Publication Date
WO2006121012A1 true WO2006121012A1 (ja) 2006-11-16

Family

ID=37396521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309258 WO2006121012A1 (ja) 2005-05-13 2006-05-08 パルス変調型送信装置およびパルス変調型受信装置

Country Status (3)

Country Link
US (1) US7881400B2 (ja)
JP (1) JP4744344B2 (ja)
WO (1) WO2006121012A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088773A1 (ja) * 2006-01-31 2007-08-09 Matsushita Electric Industrial Co., Ltd. 無線受信装置および無線受信方法
US20090110096A1 (en) * 2007-10-25 2009-04-30 Panasonic Corporation Communication apparatus, communication method and integrated circuit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593243B2 (en) * 2006-10-09 2009-09-22 Honeywell International Inc. Intelligent method for DC bus voltage ripple compensation for power conversion units
JP4683093B2 (ja) * 2008-08-29 2011-05-11 ソニー株式会社 情報処理装置、信号伝送方法、及び復号方法
US8548031B2 (en) * 2009-12-30 2013-10-01 Silicon Laboratories Inc. Antenna diversity system with frame synchronization
US20120163523A1 (en) * 2010-12-22 2012-06-28 Smith International, Inc. Synchronization methods for downhole communication
US9106499B2 (en) 2013-06-24 2015-08-11 Freescale Semiconductor, Inc. Frequency-domain frame synchronization in multi-carrier systems
US9100261B2 (en) 2013-06-24 2015-08-04 Freescale Semiconductor, Inc. Frequency-domain amplitude normalization for symbol correlation in multi-carrier systems
US9282525B2 (en) * 2013-06-24 2016-03-08 Freescale Semiconductor, Inc. Frequency-domain symbol and frame synchronization in multi-carrier systems
CN103701545B (zh) * 2013-12-31 2016-03-09 深圳市汇顶科技股份有限公司 一种近场通信的接近检测方法和装置
US9178592B1 (en) 2014-07-24 2015-11-03 Silicon Laboratories Inc. Systems and methods using multiple inter-chip (IC) links for antenna diversity and/or debug
KR102342740B1 (ko) * 2014-09-15 2021-12-23 삼성전자주식회사 신호 송수신 방법 및 장치
US11626907B2 (en) * 2019-06-19 2023-04-11 Analogic Corporation Radio frequency generators, and related systems, methods, and devices
US11587767B2 (en) 2019-06-19 2023-02-21 Analogic Corporation Radio frequency generators, and related systems, methods, and devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006291A (ja) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd パルス変調型無線通信装置
JP2005039392A (ja) * 2003-07-17 2005-02-10 Hitachi Ltd 無線受信方式及び受信機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781733A (en) * 1996-06-20 1998-07-14 Novell, Inc. Apparatus and method for redundant write removal
US7280607B2 (en) 1997-12-12 2007-10-09 Freescale Semiconductor, Inc. Ultra wide bandwidth communications method and system
AU2000258822A1 (en) 2000-05-26 2001-12-11 Xtremespectrum, Inc. Ultra wide bandwidth spread-spectrum communications method and system
WO2001093442A1 (en) 2000-05-26 2001-12-06 Xtremespectrum, Inc. Ultrawide band system and method for fast synchronization using multiple detection arms
US6970448B1 (en) * 2000-06-21 2005-11-29 Pulse-Link, Inc. Wireless TDMA system and method for network communications
US7551681B2 (en) * 2005-11-08 2009-06-23 Freesystems Pte. Ltd. Digital wireless audio transmitter system employing time diversity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006291A (ja) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd パルス変調型無線通信装置
JP2005039392A (ja) * 2003-07-17 2005-02-10 Hitachi Ltd 無線受信方式及び受信機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088773A1 (ja) * 2006-01-31 2007-08-09 Matsushita Electric Industrial Co., Ltd. 無線受信装置および無線受信方法
US8213545B2 (en) 2006-01-31 2012-07-03 Panasonic Corporation Radio receiving apparatus and radio receiving method
US20090110096A1 (en) * 2007-10-25 2009-04-30 Panasonic Corporation Communication apparatus, communication method and integrated circuit
US8442130B2 (en) * 2007-10-25 2013-05-14 Panasonic Corporation Communication apparatus, communication method and integrated circuit

Also Published As

Publication number Publication date
JP4744344B2 (ja) 2011-08-10
US20090041169A1 (en) 2009-02-12
US7881400B2 (en) 2011-02-01
JP2006345487A (ja) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2006121012A1 (ja) パルス変調型送信装置およびパルス変調型受信装置
WO2006085511A1 (ja) パルス変調無線通信装置
JP3055541B2 (ja) 直交周波数分割多重信号送受信装置
JP3518760B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP3518752B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP3518754B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JPH1013300A (ja) スペクトラム拡散受信装置及び方法並びにそれを用いたスペクトラム拡散システム及び方法
JP2006211444A (ja) 送信装置、受信装置ならびに送信方法、受信方法
JP3518757B2 (ja) 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法
JP3531833B1 (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
JP3518759B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP3518756B2 (ja) 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法
JP3518753B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP3518755B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JPH09200180A (ja) スペクトラム拡散方式通信装置
JP2003101508A (ja) 無線通信システム、基地局装置、並びに端末装置
JP3531834B1 (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
JP3518762B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP3518761B2 (ja) 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法
JP3584249B2 (ja) 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法
JP3531824B2 (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
JP3531831B2 (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
CN101176294A (zh) 脉冲调制型发送装置以及脉冲调制型接收装置
JP2002305503A (ja) 直交周波数分割多重信号受信装置
JPH09247046A (ja) スペクトラム拡散通信用受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016469.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11914281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746089

Country of ref document: EP

Kind code of ref document: A1