WO2006120993A1 - エポキシ樹脂組成物および硬化物 - Google Patents

エポキシ樹脂組成物および硬化物 Download PDF

Info

Publication number
WO2006120993A1
WO2006120993A1 PCT/JP2006/309231 JP2006309231W WO2006120993A1 WO 2006120993 A1 WO2006120993 A1 WO 2006120993A1 JP 2006309231 W JP2006309231 W JP 2006309231W WO 2006120993 A1 WO2006120993 A1 WO 2006120993A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
general formula
curing agent
epoxy
Prior art date
Application number
PCT/JP2006/309231
Other languages
English (en)
French (fr)
Inventor
Masashi Kaji
Koichiro Ogami
Kazuhiko Nakahara
Original Assignee
Nippon Steel Chemical Co., Ltd.
Tohto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd., Tohto Kasei Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to US11/919,587 priority Critical patent/US20100016498A1/en
Priority to CN2006800158038A priority patent/CN101198632B/zh
Priority to JP2007528263A priority patent/JP5324094B2/ja
Publication of WO2006120993A1 publication Critical patent/WO2006120993A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Epoxy resin composition and cured product Epoxy resin composition and cured product
  • the present invention relates to an epoxy resin composition that is electrically insulating and has excellent thermal conductivity, and a cured product thereof.
  • a resin composition mainly composed of epoxy resin is widely used in the electrical and electronic fields such as casting, sealing, and laminates. With recent downsizing and light weight of electronic devices, electronic components are being mounted with high density. As a result, LSIs are becoming more highly integrated and faster, and measures to dissipate heat generated by electronic components are becoming important.
  • a heat conductive molded body made of a heat radiating material such as a metal, a ceramic, a polymer composition is used as a heat radiating member such as a printed wiring board, a semiconductor receptacle, a case, a heat pipe, a heat radiating plate, and a heat diffusing plate. has been applied.
  • the cured product obtained with epoxy resin composition strength is excellent in electrical insulation, mechanical properties, heat resistance, chemical resistance, adhesion, etc. Widely used mainly in the electric and electronic fields as plates, sealing materials, adhesives and the like.
  • the epoxy resin composition in this field uses a resin matrix containing an inorganic filler such as glass, fused silica, talc, etc. Most commonly, a method of highly filling fused silica is taken.
  • metal oxides such as acid aluminum, magnesium oxide, zinc oxide and quartz, metal nitrides such as boron nitride and aluminum nitride, silicon carbide
  • metal carbides such as aluminum hydroxide, metal hydroxides such as aluminum hydroxide, metals such as gold, silver and copper, carbon fibers, graphite and the like are used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-207031
  • Patent Document 2 Japanese Patent Publication No. 6-51778
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-172472
  • Patent Document 4 Column 2001-348488
  • Patent Document 5 Japanese Patent Laid-Open No. 11-323162
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2004-331811
  • Patent Document 5 and Patent Document 6 propose a resin composition using liquid crystalline resin having a rigid mesogenic group.
  • the epoxy resin having these mesogenic groups is a substantially single epoxy compound having a rigid structure such as a biphenyl structure, an azomethine structure, etc., having a high crystallinity and a high melting point molecular weight distribution. Therefore, there are problems such as poor solvent solubility, and there are disadvantages inferior workability when preparing an epoxy resin composition.
  • Patent Document 1 a load applied to a connection electrode portion of a semiconductor device on which a semiconductor element is mounted by a flip-chip method or the like is efficiently dispersed and reduced in a sealing resin layer, and temperature temperature is reduced.
  • Epoxy resin compositions for ensuring the conductivity of semiconductor devices are disclosed even under harsh environmental conditions such as bisphenol type epoxy resin. Etc. are only disclosed.
  • Patent Document 2 discloses an epoxy resin composition for semiconductor encapsulation using a bisphenol type epoxy resin, but a curing agent has not been studied, and it has low moisture absorption and heat resistance. The purpose is to improve.
  • Patent Document 3 discloses a highly thermally conductive epoxy resin composition containing spherical cristobalite that gives a cured product having good fluidity and low mold wear and high thermal conductivity. The means to achieve is to improve the filler, not to improve the grease.
  • Patent Document 4 discloses an epoxy resin composition that is highly filled with an inorganic filler and can obtain a molded article having excellent thermal conductivity. However, a means for achieving this is a filler. It is an improvement, and it does not try to improve rosin.
  • the present invention is excellent in handling, workability and low thermal expansion, and has excellent thermal conductivity. It is providing the epoxy resin composition which has, and its hardened
  • the present invention provides an epoxy resin composition comprising an epoxy resin and a curing agent, and the following general formula (1),
  • the diphenol ether type phenolic resin represented by the formula is used in an amount of 20 wt% or more in the curing agent component. It is a composition.
  • the epoxy resin composition of the present invention can further improve low thermal expansion and thermal conductivity by further blending 50% or more of an inorganic filler.
  • the epoxy resin composition of the present invention can be cured, and the cured product preferably has a crystal structure having an endothermic amount of 5 J / g or more by differential thermal analysis.
  • the epoxy resin represented by the general formula (1) is represented by the following general formula (3),
  • m represents an integer of 1 to 3
  • This reaction can be performed in the same manner as a normal epoxy reaction.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used.
  • a method of reacting at 50 to 150 ° C., preferably 60 to 100 ° C. for 1 to 10 hours can be mentioned.
  • the amount of alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1 mol per 1 mol of the hydroxyl group in the bisphenol compound. The range is 0 mole.
  • Epoxy chlorohydrin is used in an excess amount relative to the hydroxyl group in the bisphenol compound, and is usually 1.5 to 15 moles per mole of the hydroxyl group in the bisphenol compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off. In particular, the desired epoxy resin can be obtained.
  • a solvent such as toluene or methyl isobutyl ketone
  • n is a number greater than or equal to 0.
  • the value of n can change the molar ratio of epichlorohydrin to the bisphenol compound used in the epoxy resin synthesis reaction. Therefore, it can be adjusted easily.
  • the average value of n is preferably in the range of 1.1 to 3.0 from the viewpoint of melting point. When larger than this, melting
  • an epoxy resin mainly composed of n of 0 in the general formula (1) and a bisphenol represented by the general formula (3) It is also possible to take a method of reacting the compound in advance.
  • the bisphenol compound used as a raw material for the epoxy resin of the present invention is represented by the above general formula (3), and m is 1, 2 or 3, preferably 1 or 2. Specifically, 4,4 'dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 4,4' — Bis (4-hydroxyphenoxy) diphenyl ether can be mentioned.
  • the raw material of the epoxy resin may be a mixture thereof, but preferably has a 4,4′-dihydroxydiphenyl ether content of 50 wt% or more.
  • the epoxy resin used in the present invention contains the epoxy resin represented by the general formula (1) in an amount of 50 wt% or more, preferably 70 wt% or more in the total epoxy resin.
  • the epoxy equivalent of the epoxy resin represented by the general formula (1) is usually in the range of 160 to 10,000.
  • an epoxy equivalent strength of 00 to 40,000 is preferably selected. It is preferred that this epoxy equivalent satisfies even when two or more types of epoxy resins are used. In this case, the epoxy equivalent is calculated in terms of total weight gZ epoxy groups (mole).
  • the epoxy resin represented by the general formula (1) is preferably a crystalline solid that is solid at room temperature, particularly for molding materials, and has a desirable melting point of 70 ° C or higher. Further, the preferred melt viscosity at 150 ° C. is 0.005 to 0.5 Pa ′s. The crystallinity, melting point and melt viscosity are preferably satisfied as a mixture when two or more kinds of epoxy resins are used.
  • the purity of the epoxy resin used in the present invention is preferably smaller from the viewpoint of improving the reliability of the applied electronic component.
  • it is preferably 1500 ppm or less, more preferably 700 ppm or less.
  • the hydrolyzable chlorine as used in the present invention refers to a value measured by the following method. That is, 0.5 g of the sample was dissolved in 30 ml of dioxane, 10 ml of IN-KOH was boiled and refluxed for 30 minutes, cooled to room temperature, and then 100 ml of 80% acetone water was added, and 0.002 N — Potential with AgNO aqueous solution
  • the epoxy resin used in the present invention includes, in addition to the epoxy resin represented by the general formula (1) used as an essential component of the present invention, an ordinary resin having two or more epoxy groups in the molecule.
  • Poxy rosin may be used in combination.
  • bisphenol A bisphenol F, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, Fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl mono 4,4'-dihydroxybiphenyl, 2,2'-biphenol, hydroquinone, resorcin, catechol, t-butylcatechol , T-butylhydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene
  • phenol novolak bisphenol A novolak, 0-cresol novolak, m-tarezol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, tris (4-hydroxyphenol) ) Methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fluorologinol, pyrogallol, t-butyl pyrogallol, arylated pyrogallol, polyallylated pyrogallol, 1,2,4- Benzenetriol, 2,3,4-trihydroxybenzophenone, pheno Trivalent or higher phenols such as ruaralkyl naphtha, naphthol aralkyl rosin, di-sicyl pentagen-based rosin, or halogenated bisphenols such as tetrabromobisphenol A Etc.
  • epoxy resins can be used alone or in combination of two or more
  • the blending ratio of the epoxy resin represented by the general formula (1) in the epoxy resin composition is 50% by weight or more, preferably 70% by weight or more in the epoxy resin component. If it is less than this, the crystallinity when cured is poor and the effect of improving thermal conductivity is small.
  • the phenolic resin used in the present invention contains diphenyl ether type phenolic resin represented by the general formula (2) in an amount of 20 wt% or more in the phenolic resin.
  • the hydroxyl equivalent of the phenolic resin represented by the general formula (2) is usually in the range of 100 to 5,000.
  • Specific examples of the bisphenol compound include 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, and 4,4′bis (4-hydroxyphenoxy) diphenol.
  • -Luether can be exemplified, but 4,4'-dihydroxydiphenyl ether is preferred.
  • a high molecular weight phenolic resin having n of 1 or more is preferably used.
  • a preferred hydroxyl equivalent is 200 to 20,000.
  • an epoxy resin having a main component of n of 0 in the general formula (1) is used. It can be synthesized by a method in which an excess of the bisphenol compound represented by the general formula (3) is reacted in advance.
  • the epoxy resin composition of the present invention includes a curing agent generally known as a curing agent in addition to the phenolic resin represented by the general formula (2) used as an essential component of the present invention.
  • a curing agent generally known as a curing agent in addition to the phenolic resin represented by the general formula (2) used as an essential component of the present invention.
  • the blending amount of these curing agents should be set as appropriate in consideration of the type of curing agent to be blended and the physical properties of the resulting thermally conductive epoxy resin molding.
  • amine curing agent examples include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like.
  • Aliphatic amines include ethylene diamine, 1,3-diamine propane, 1,4-diamine propane, hexamethylene diamine, 2,5-dimethyl hexamethylene diamine, trimethyl hexamethylene diamine, Diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine, etc. Is mentioned.
  • Polyether polyamine examples include triethylene glycol diamine, tetraethylene glycol diamine, ethylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamines, and the like.
  • Cycloaliphatic amines include isophorone diamine, metasendiamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methan, bis (aminomethyl) cyclohexane, 3, 9- Bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornene diamine and the like can be mentioned.
  • Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, 0-phenylenediamine, p-phenylenediamine, 2,4-diaminoazole, 2,4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4, 4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, a-(m-aminophenol) Ethylamine, ⁇ -( ⁇
  • the acid anhydride hardener examples include dodecenyl succinic anhydride, polyadipic acid anhydrous, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride , Poly (phenolhexadecanedioic acid) anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hymic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride , Methylcyclohexene dicarboxylic anhydride, methylcyclohexene tetracarboxylic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glyco
  • phenolic curing agent examples include bisphenol ⁇ , bisphenol F, and phenol.
  • the content of the phenolic resin represented by the general formula (2) is 20% by weight or more, preferably 40% by weight or more, more preferably, in all the curing agent components in the epoxy resin composition. Is 60% by weight or more. If the amount is less than this, the degree of crystallinity when the epoxy resin is cured is lowered, and improvement in thermal conductivity cannot be expected. Further, as the curing agent used in addition to the phenolic resin represented by the general formula (2), it is preferable to use a curing agent having a phenolic hydroxyl group from the viewpoint of heat resistance, moisture resistance and electrical insulation.
  • the epoxy resin composition of the present invention can be blended with an appropriate amount of an inorganic filler in order to improve the thermal conductivity of the cured epoxy resin.
  • the inorganic filler include metals, metal oxides, metal nitrides, metal carbides, metal hydroxides, and carbon materials.
  • metals include silver, copper, gold, platinum, and zircon.
  • metal oxides include silica, oxide aluminum, magnesium oxide, titanium oxide, and tungsten trioxide.
  • the amount of the inorganic filler is preferably 50 wt% or more, more preferably 70 wt% or more. If it is less than this, the effect of improving thermal conductivity is small.
  • curing accelerators can be used in the epoxy resin composition of the present invention.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8 diazabicyclo (5, 4, 0) undecene-7, triethylenediamine, benzyldimethyl.
  • Tertiary amines such as amine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenol-imidazole, 2-phenol 4-methylimidazole, 2-hepta Imidazoles such as decylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, tetraphenylphosphine 'tetraphenylborate, tetraphenylphosphonium Methyl triphenyl borate, tetrabutyl phosphate Ho - 'tetra-substituted phospho tetrabutyl borate - ⁇ arm' ⁇ beam tetrasubstituted borate, 2 Echiru 4-methylimidazole 'Tetora
  • thermoplastic oligomers can be added to the epoxy resin composition of the present invention from the viewpoint of improving fluidity at the time of molding and improving adhesion to a lead frame and the like.
  • Thermoplastic oligomers include C5 and C9 petroleum resin, styrene resin, inden resin, indene styrene copolymer resin, indene styrene phenol copolymer resin, and indene coumarone copolymer. Examples thereof include fats, indene benzothiophene copolymerized resin. The amount added is usually in the range of 2 to 30 parts by weight per 100 parts by weight of epoxy resin.
  • the epoxy resin composition of the present invention includes a brominated epoxy or the like.
  • Release agents such as flame retardant, carnauba wax, ester wax, epoxy silane, amino silane, ureido silane, bur silane, alkyl silane, organic titanate, coupling agent such as aluminum alcoholate, coloring agent such as carbon black, triacid ⁇
  • Flame retardant aids such as antimony, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts can be used.
  • the epoxy resin composition of the present invention is generally prepared by mixing the above-described epoxy resin, curing agent component, and the like in a predetermined amount in a mixer, etc. It can be obtained by kneading with a machine or the like, cooling and grinding.
  • the above ingredients are mixed with an aromatic solvent such as benzene, toluene, xylene, and black benzene, a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, hexane, heptane, and methylcyclohexane.
  • aromatic solvent such as benzene, toluene, xylene, and black benzene
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, hexane, heptane, and methylcyclohexane.
  • Aliphatic hydrocarbon solvents such as hexane, alcohol solvents such as ethanol, isopropanol, butanol, ethylene glycol, ether solvents such as jetyl ether, dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, N, N-dimethylformamide, N It can be dissolved in a polar solvent such as N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc. to obtain a varnish-like epoxy resin composition.
  • the varnish-like epoxy resin composition can be made into a pre-preda-like epoxy composition by impregnating a fibrous filler such as glass fiber, carbon fiber, and aramid fiber, and then removing the organic solvent by drying! .
  • the epoxy resin cured product of the present invention preferably has a crystallinity from the viewpoint of high thermal conductivity.
  • the degree of crystallinity can be evaluated from the endothermic amount accompanying melting in differential thermal analysis.
  • the endothermic peak in differential thermal analysis is usually observed in the range of 120 ° C to 250 ° C, but the preferred endothermic amount is 5 J / g or more per unit weight of the resin component excluding the filler. More preferably, it is 10 J / g or more, and particularly preferably 30 J / g or more. If it is smaller than this, the effect of improving thermal conductivity as a cured epoxy resin is small.
  • the endotherm here The amount refers to the endothermic amount obtained by measuring with a differential thermal analyzer under a nitrogen stream and under a temperature rise rate of 10 ° CZ using a sample that is precisely weighed about 10 mg.
  • the epoxy resin cured product of the present invention can be obtained by heat-curing by the above molding method.
  • the molding temperature is 80 ° C to 250 ° C, and the molding time is 1 minute. ⁇ 20 hours.
  • a preferred curing temperature is in the range of 100 ° C to 180 ° C, more preferably 120 ° C to 160 ° C.
  • a preferable curing time is 10 minutes to 6 hours, and more preferably 30 minutes to 3 hours.
  • the degree of crystallization can be further increased by post-cure after molding.
  • the post-cure temperature is 130 ° C-250 ° C and the time is in the range of 1-20 hours
  • the temperature is 5 ° C-40 ° C lower than the endothermic peak temperature in differential thermal analysis Therefore, it is desirable to perform post cure for 1 to 24 hours.
  • the epoxy resin cured product of the present invention can be laminated with another type of substrate.
  • the substrate to be laminated is in the form of a sheet or film, such as a copper, aluminum, or stainless steel foil, polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyethylene terephthalate, or polybutylene.
  • Examples include polymer substrates such as terephthalate, polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, and polytetrafluoroethylene.
  • the epoxy resin composition of the present invention provides a cured product excellent in high thermal conductivity and low thermal expansion, and has excellent high heat dissipation when applied to sealing of semiconductor elements and printed wiring boards. Dimensional stability is demonstrated.
  • 4, 1-dihydroxydiphenyl ether lOlOg is dissolved in 7000 g of epichlorohydrin, and reduced pressure (about 120 mmHg, 60 ° C 48% sodium hydroxide aqueous solution 808 g for 4 hours. Dripped. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epicyclohydrin was returned to the system. After completion of dropping, the reaction was continued for another hour.
  • Epoxy resin A had an epoxy equivalent of 163, hydrolyzable chlorine of 280 ppm, a melting point of 78 to 84 ° C, and a viscosity at 150 ° C of 0.0052 Pa's.
  • the melting point is a value obtained at a rate of temperature rise of 2 ° CZ by the method of the chirality.
  • the melting point and endothermic amount were determined using a differential thermal analyzer at a temperature increase rate of 10 ° CZ.
  • Figure 1 shows the measurement results.
  • the thermal conductivity was determined by the unsteady probe method using a disk with a diameter of 50 mm and a thickness of 3 mm.
  • the epoxy resin component As the epoxy resin component, the epoxy resin of Reference Examples 1 to 3 (epoxy resin A to C), Bisphenol A type epoxy resin (epoxy resin D: manufactured by Tohto Kasei, YD-8125; epoxy equivalent 174), Curing agent: 4,4-dihydroxydiphenyl ether (curing agent A), phenol monovolak (curing agent B: manufactured by Gunei Chemical Co., PSM-4261; OH equivalent 103, softening point 82 degrees, 150 ° C Melt viscosity was 0.16 Pa's), and triphenylphosphine was used as a curing accelerator, and melt-mixed with the composition shown in Table 1 to obtain an epoxy resin composition. Using this epoxy resin thread composition, curing and post-curing were performed under the conditions shown in Table 1, and the physical properties of the cured product were evaluated in the same manner as in Example 1.

Abstract

 高熱伝導性、低熱膨張性に優れた硬化物を与え、半導体素子等の封止、プリント配線板等に応用した場合、優れた高放熱性、寸法安定性が発揮されるエポキシ樹脂組成物に関する。  このエポキシ樹脂組成物は、エポキシ樹脂成分として下記一般式(1)、   (但し、nは0以上の整数、mは1~3の整数を示す。)で表されるジフェニルエーテル型エポキシ樹脂をエポキシ樹脂成分中50wt%以上含むエポキシ樹脂と、硬化剤成分として下記一般式(2)、   (但し、nは0以上の整数、mは1~3の整数を示す。)で表されるジフェニルエーテル型フェノール性樹脂を硬化剤成分中20wt%以上含む硬化剤を配合してなる。

Description

明 細 書
エポキシ樹脂組成物および硬化物
技術分野
[0001] 本発明は、電気絶縁性であり、かつ優れた熱伝導性を有するエポキシ榭脂組成物 およびその硬化物に関するものである。
背景技術
[0002] エポキシ榭脂を主剤とする榭脂組成物は、注型、封止、積層板等の電気'電子分 野に広く使用されている。近年の電子機器の小型化、軽量ィ匕に伴い電子部品の高 密度実装化が進んでいる。これに伴い LSIの高集積化、高速化が進展し、電子部品 より発生する放熱対策が重要になっている。このために、プリント配線基板、半導体 ノ ッケージ、筐体、ヒートパイプ、放熱板、熱拡散板等の放熱部材には金属、セラミツ タス、高分子組成物等の放熱材料からなる熱伝導性成形体が適用されている。
[0003] これらの放熱部材の中でも、エポキシ榭脂組成物力 得られる硬化物は、電気絶縁 性、機械的性質、耐熱性、耐薬品性、接着性等に優れているため、注型品、積層板 、封止材、接着剤等として電気電子分野を中心に広く使用されている。
[0004] 本分野におけるエポキシ榭脂組成物は、高熱伝導性を付与させるため、榭脂マトリ ックス中に、ガラス、溶融シリカ、タルク等の無機充填材を配合したものが用いられて いるが、最も一般的には、溶融シリカを高充填させる方法が取られている。
[0005] さらに高い熱伝導性が要求される場合には、酸ィ匕アルミニウム、酸ィ匕マグネシウム、 酸化亜鉛、石英等の金属酸化物、窒化ホウ素、窒化アルミニウム等の金属窒化物、 炭化ケィ素等の金属炭化物、水酸化アルミニウム等の金属水酸化物、金、銀、銅等 の金属、炭素繊維、黒鉛等が用いられている。
[0006] 本発明に関連する先行文献としては、次の文献がある。
特許文献 1:特開 2001— 207031号公報
特許文献 2:特公平 6 - 51778号公報
特許文献 3:特開 2001— 172472号公報
特許文献 4:欄 2001— 348488号公報 特許文献 5:特開平 11― 323162号公報
特許文献 6:特開平 2004— 331811号公報
[0007] しかし、最近の電子部品はその高性能化、高機能化に伴い発熱量が増大している ため、上記の従来技術の組成物力 得られるエポキシ榭脂硬化物では熱伝導性が 不十分となっており、マトリックス榭脂自体の高熱伝導率ィ匕が求められている。例えば 、特許文献 5および特許文献 6には、剛直なメソゲン基を有する液晶性の榭脂を用い た榭脂組成物が提案されている。しかし、これらメソゲン基を有するエポキシ榭脂は、 ビフ ニル構造、ァゾメチン構造等の剛直な構造を有する高結晶性で高融点の分子 量分布を持たな 、実質上単一のエポキシィ匕合物であるため、溶剤溶解性に劣る等 の問題があり、エポキシ榭脂組成物とする際の作業性に劣る欠点があった。さらには 、硬化状態において分子を効率よく配向させるためには強力な磁場をかけて硬化さ せる必要があり、工業的に広く利用するためには設備上の大きな制約があった。
[0008] 特許文献 1には、フリップチップ方式等により半導体素子が実装された半導体装置 の接続用電極部に力かる負荷を効率的に封止榭脂層に分散させて軽減し、温度サ イタル等の過酷な環境条件下にお 、ても、半導体装置の導通性を確保するためのェ ポキシ榭脂組成物が開示されて ヽるが、エポキシ榭脂としてはビスフエノール型ェポ キシ榭脂等が開示されているにとどまる。特許文献 2には、ビスフエノール型エポキシ 榭脂を使用した半導体封止用のエポキシ榭脂組成物が開示されているが、硬化剤 の検討はなされておらず、また低吸湿性及び耐熱性の向上を目的とする。特許文献 3には、流動性が良好であり、金型摩耗が少なぐ高熱伝導性を有する硬化物を与え る球状クリストバライトを含有する高熱伝導性エポキシ榭脂組成物が開示されている 力 これを達成する手段は充填材の改良であって、榭脂を改良しょうとするものでは ない。特許文献 4には、無機充填材が高充填されて、熱伝導性に優れた成形物を得 ることができるエポキシ榭脂組成物が開示されて 、るが、これを達成する手段は充填 材の改良であって、榭脂を改良しょうとするものではない。
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、取り扱 、作業性および低熱膨張性に優れるとともに優れた熱伝導性を 有するエポキシ榭脂組成物及びその硬化物を提供することにある。 課題を解決するための手段
[0010] 本発明者らは、上記問題点に鑑み鋭意検討した結果、特定エポキシ榭脂に特定の 硬化剤を組み合わせた場合に、硬化物とした後も高!ヽ結晶状態を形成すると!ヽぅ今 までにな!/、新たな事実を見出し、本発明に到達した。
[0011] すなわち、本発明は、エポキシ榭脂、硬化剤よりなるエポキシ榭脂組成物において 、エポキシ榭脂成分として下記一般式(1)、
Figure imgf000005_0001
( 1 )
(但し、 nは 0以上の数、 mは 1〜3の整数を示す。)で表されるジフエ-ルエーテル型 エポキシ榭脂をエポキシ榭脂成分中 50wt%以上用い、硬化剤成分として下記一般 式 (2)、
Figure imgf000005_0002
(但し、 nは 0以上の数、 mは 1〜3の整数を示す。)で表されるジフエ-ルエーテル型 フエノール性榭脂を硬化剤成分中 20wt%以上用いることを特徴とするエポキシ榭脂 組成物である。
[0012] 本発明のエポキシ榭脂組成物は、さらに無機充填材を 50%以上配合させることに より、低熱膨張性、熱伝導性をより向上させることができる。本発明のエポキシ榭脂組 成物は、硬化させることができ、この硬化物は示差熱分析による吸熱量が 5J/g以上 である結晶構造を有することが望まし 、。
[0013] 上記一般式(1)で表されるエポキシ榭脂は、下記一般式(3)、
Figure imgf000006_0001
(但し、 mは 1〜3の整数を示す。)で表されるビスフエノール化合物とェピクロルヒドリ ンを反応させることにより製造することができる。この反応は、通常のエポキシィ匕反応 と同様に行うことができる。
[0014] 例えば、上記一般式(3)のビスフエノールイ匕合物を過剰のェピクロルヒドリンに溶解 した後、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属水酸ィ匕物の存在下に、 5 0〜150°C、好ましくは、 60〜100°Cの範囲で 1〜10時間反応させる方法が挙げら れる。この際の、アルカリ金属水酸ィ匕物の使用量は、ビスフエノールイ匕合物中の水酸 基 1モルに対して、 0. 8〜1. 2モル、好ましくは、 0. 9〜1. 0モルの範囲である。ェピ クロルヒドリンは、ビスフエノールイ匕合物中の水酸基に対して過剰量が用いられ、通常 は、ビスフエノール化合物中の水酸基 1モルに対して、 1. 5〜15モルである。反応終 了後、過剰のェピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン 等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することに より目的のエポキシ榭脂を得ることができる。
[0015] 上記一般式(1)において、 nは 0以上の数である力 nの値はエポキシ榭脂の合成 反応時に用いるェピクロルヒドリンのビスフエノールイ匕合物に対するモル比を変えるこ とにより、容易に調整することができる。また、 nの平均値としては、 1. 1〜3. 0の範囲 が融点の点で好ましい。これより大きいと融点が高くなり取り扱い性が低下する。
[0016] また、高分子量のエポキシ榭脂を得るためには、上記一般式(1)において nが 0の ものを主成分とするエポキシ榭脂と上記一般式(3)で表されるビスフエノールイ匕合物 を予め反応させる方法を取ることもできる。
[0017] 本発明のエポキシ榭脂の原料として用いるビスフエノールイ匕合物は、上記一般式( 3)で表され、 mは 1、 2又は 3であるが、好ましくは 1又は 2である。具体的には、 4,4' ジヒドロキシジフエ-ルエーテル、 1,4—ビス(4—ヒドロキシフエノキシ)ベンゼン、 4,4' —ビス(4—ヒドロキシフエノキシ)ジフエ-ルエーテルを挙げることができる。エポキシ 榭脂の原料としては、これらの混合物であっても良いが、好ましくは 4,4'ージヒドロキ シジフエ-ルエーテルの含有率が 50wt%以上のものである。
[0018] 本発明に用いるエポキシ榭脂は、一般式(1)で表されるエポキシ榭脂を全エポキシ 榭脂中 50wt%以上、好ましくは 70wt%以上含む。一般式(1)で表されるエポキシ 榭脂のエポキシ当量は、通常 160〜10, 000の範囲である力 好ましいエポキシ当 量は、用途に応じて適宜選択される。例えば、成形材料用途には、無機フィラーの高 充填率化および流動性向上の観点から低粘度性が要求されるため、上記一般式(1 )において n=0体を主成分とし、エポキシ当量が 160〜400の範囲のものが好まし い。また、積層板等の用途においては、フィルム性、可撓性等が要求されるため、好 ましくはエポキシ当量力 00〜40,000のものが選択される。このエポキシ当量は、 2 種類以上のエポキシ榭脂を使用する場合においてもこれを満足することが好ましぐ この場合、エポキシ当量は、全重量 gZエポキシ基 (モル)で計算される。
[0019] 一般式(1)で表されるエポキシ榭脂は、特に成形材用途においては常温で固形の 結晶性のものが好ましぐ望ましい融点は 70°C以上である。また、好ましい 150°Cで の溶融粘度は 0. 005〜0. 5Pa' sである。この結晶性、融点および溶融粘度は、 2種 類以上のエポキシ榭脂を使用する場合においては、混合物としてこれを満足すること が好ましい。
[0020] 本発明に用いるエポキシ榭脂の純度、特に加水分解性塩素量は、適用する電子 部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好まし くは 1500ppm以下、さらに好ましくは 700ppm以下である。なお、本発明でいう加水 分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料 0. 5gをジ ォキサン 30mlに溶解後、 IN— KOH、 10mlをカ卩ぇ 30分間煮沸還流した後、室温ま で冷却し、さらに 80%アセトン水 100mlをカ卩え、 0. 002N— AgNO水溶液で電位
3
差滴定を行 、得られる値である。
[0021] 本発明に用いるエポキシ榭脂には、本発明の必須成分として使用される一般式(1 )で表されるエポキシ榭脂以外に、分子中にエポキシ基を 2個以上有する通常のェポ キシ榭脂を併用してもよい。例を挙げれば、ビスフエノール A、ビスフエノール F、 3,3', 5,5'—テトラメチルー 4,4'ージヒドロキシジフエニルメタン、 4,4'ージヒドロキシジフエ二 ルスルホン、 4,4'—ジヒドロキシジフエ-ルスルフイド、 4,4'—ジヒドロキシジフエ-ルケ トン、フルオレンビスフエノール、 4,4'—ビフエノール、 3,3',5,5'—テトラメチル一 4,4'— ジヒドロキシビフエニル、 2,2'—ビフエノール、ハイドロキノン、レゾルシン、カテコール 、 t-ブチルカテコール、 t-ブチルハイドロキノン、 1,2-ジヒドロキシナフタレン、 1,3-ジヒ ドロキシナフタレン、 1,4-ジヒドロキシナフタレン、 1,5-ジヒドロキシナフタレン、 1,6-ジヒ ドロキシナフタレン、 1,7-ジヒドロキシナフタレン、 1,8-ジヒドロキシナフタレン、 2,3-ジヒ ドロキシナフタレン、 2,4-ジヒドロキシナフタレン、 2,5-ジヒドロキシナフタレン、 2,6-ジヒ ドロキシナフタレン、 2, 7-ジヒドロキシナフタレン、 2,8-ジヒドロキシナフタレン、上記ジ ヒドロキシナフタレンのァリル化物又はポリアリル化物、ァリル化ビスフエノール A、ァリ ル化ビスフエノール F、ァリル化フエノールノボラック等の 2価のフエノール類、あるい は、フエノールノボラック、ビスフエノール Aノボラック、 0 -クレゾ一ルノボラック、 m -タレ ゾールノボラック、 p-クレゾ一ルノボラック、キシレノールノボラック、ポリ- p-ヒドロキシ スチレン、トリス一(4—ヒドロキシフエ-ル)メタン、 1,1,2,2—テトラキス(4—ヒドロキシフ ェ -ル)ェタン、フルォログリシノール、ピロガロール、 t-ブチルピロガロール、ァリル 化ピロガロール、ポリアリル化ピロガロール、 1,2,4-ベンゼントリオール、 2,3,4-トリヒド ロキシベンゾフエノン、フエノールァラルキル榭脂、ナフトールァラルキル榭脂、ジシク 口ペンタジェン系榭脂等の 3価以上のフエノール類、または、テトラブロモビスフエノー ル A等のハロゲン化ビスフエノール類力 誘導されるダルシジルエーテル化物等があ る。これらのエポキシ榭脂は、 1種または 2種以上を混合して用いることができる。
[0022] 一般式(1)で表されるエポキシ榭脂のエポキシ榭脂組成物中の配合割合は、ェポ キシ榭脂成分中 50wt%以上である力 好ましくは 70wt%以上である。これより少な いと硬化物とした際の結晶性が悪く熱伝導率の向上効果が小さい。
[0023] 本発明に用いるフエノール性榭脂は、上記一般式(2)で表されるジフエニルエーテ ル型のフエノール性榭脂をフエノール性榭脂中 20wt%以上含むものである。一般式 (2)で表されるフエノール性榭脂の水酸基当量は、通常 100から 5, 000の範囲のも のである。好ましい水酸基当量は、用途に応じて適宜選択される。例えば、成形材料 用途には、無機フィラーの高充填率ィ匕および流動性向上の観点力 低粘度性が要 求されるため、一般式(2)において n=0体を主成分とするフエノール性榭脂が好適 に使用される。ここで言うフエノール性榭脂には、一般式(2)において、 n=0であるビ スフエノールイ匕合物も含まれ、低粘度性の観点からは、 n=0であるビスフエノールイ匕 合物(m= 1〜3)が 50wt%以上含まれるものが望ましい。ビスフエノール化合物とし ては、具体的には 4,4'—ジヒドロキシジフエ-ルエーテル、 1,4—ビス(4—ヒドロキシフ エノキシ)ベンゼン、 4,4' ビス(4ーヒドロキシフエノキシ)ジフエ-ルエーテルを例示 することができるが、好ましくは 4,4'ージヒドロキシジフエ-ルエーテルである。
[0024] 積層板等の用途においては、フィルム性、可撓性等が要求されるため、一般式(2) において、 nが 1以上の高分子量のフエノール性榭脂が好適に使用される。好ましい 水酸基当量としては 200〜20,000である。
[0025] 一般式(2)において、 nが 1以上の高分子量のフエノール性榭脂を得るためには、 一般式(1)において nが 0のものを主成分とするエポキシ榭脂に対して、それよりも過 剰の一般式(3)で表されるビスフエノール化合物を予め反応させる方法により合成す ることがでさる。
[0026] 本発明のエポキシ榭脂組成物には、本発明の必須成分として使用される一般式 (2 )で表されるフエノール性榭脂以外に、硬化剤として一般的に知られている硬化剤を 併用して用いることができる。例を挙げれば、アミン系硬化剤、酸無水物系硬化剤、 フエノール系硬ィ匕剤、ポリメルカプタン系硬ィ匕剤、ポリアミノアミド系硬ィ匕剤、イソシァ ネート系硬化剤、ブロックイソシァネート系硬化剤等が挙げられる。これらの硬化剤の 配合量は、配合する硬化剤の種類や得られる熱伝導性エポキシ榭脂成形体の物性 を考慮して適宜設定すればょ ヽ。
[0027] アミン系硬化剤の具体例としては、脂肪族ァミン類、ポリエーテルポリアミン類、脂環 式ァミン類、芳香族ァミン類等が挙げられる。脂肪族ァミン類としては、エチレンジアミ ン、 1,3-ジァミノプロパン、 1,4-ジァミノプロパン、へキサメチレンジァミン、 2,5-ジメチ ルへキサメチレンジァミン、トリメチルへキサメチレンジァミン、ジエチレントリァミン、ィ ミノビスプロピルァミン、ビス(へキサメチレン)トリァミン、トリエチレンテトラミン、テトラ エチレンペンタミン、ペンタエチレンへキサミン、 N-ヒドロキシェチルエチレンジァミン 、テトラ(ヒドロキシェチル)エチレンジァミン等が挙げられる。ポリエーテルポリアミン 類としては、トリエチレングリコールジァミン、テトラエチレングリコールジァミン、ジェチ レングリコールビス(プロピルァミン)、ポリオキシプロピレンジァミン、ポリオキシプロピ レントリアミン類等が挙げられる。脂環式ァミン類としては、イソホロンジァミン、メタセ ンジァミン、 N-アミノエチルピペラジン、ビス(4-ァミノ- 3 -メチルジシクロへキシル)メタ ン、ビス(アミノメチル)シクロへキサン、 3, 9-ビス(3 -ァミノプロピル) 2,4,8, 10-テトラオ キサスピロ(5,5)ゥンデカン、ノルボルネンジァミン等が挙げられる。芳香族ァミン類と しては、テトラクロ口- p-キシレンジァミン、 m-キシレンジァミン、 p-キシレンジァミン、 m-フエ二レンジァミン、 0 -フエ二レンジァミン、 p -フエ二レンジァミン、 2,4-ジアミノア二 ゾール、 2,4-トルエンジァミン、 2,4-ジアミノジフエ二ルメタン、 4,4' -ジアミノジフエ二ル メタン、 4,4' -ジァミノ- 1 ,2 -ジフエニルェタン、 2,4-ジァミノジフエニルスルホン、 4,4' -ジ アミノジフエ-ルスルホン、 m-ァミノフエノール、 m-ァミノベンジルァミン、ベンジルジ メチルァミン、 2 -ジメチルアミノメチル)フエノール、トリエタノールァミン、メチルベンジ ルァミン、 a - (m-ァミノフエ-ル)ェチルァミン、 α - (ρ -ァミノフエ-ル)ェチルァミン、 ジァミノジェチルジメチルジフエ-ルメタン、 at , α ' -ビス(4-ァミノフエ-ル) -ρ -ジィ ソプロピルベンゼン等が挙げられる。
[0028] 酸無水物系硬ィ匕剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無 水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(ェチルォクタデカン二 酸)無水物、ポリ(フエ-ルへキサデカン二酸)無水物、メチルテトラヒドロ無水フタル 酸、メチルへキサヒドロ無水フタル酸、へキサヒドロ無水フタル酸、無水メチルハイミツ ク酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロへ キセンジカルボン酸無水物、メチルシクロへキセンテトラカルボン酸無水物、無水フタ ル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフエノンテトラカルボン酸無水物、 エチレングリコールビストリメリテート、無水へット酸、無水ナジック酸、無水メチルナジ ック酸、 5 - (2,5 -ジォキソテトラヒドロ- 3 -フラ -ル) -3 -メチル -3 -シクロへキサン- 1 ,2 -ジ カルボン酸無水物、 3,4-ジカルボキシ - 1 ,2,3,4-テトラヒドロ- ナフタレンコハク酸二 無水物、 1 -メチル-ジカルボキシ - 1 ,2,3,4-テトラヒドロ- ナフタレンコハク酸二無水物 等が挙げられる。
[0029] フエノール系硬化剤の具体例としては、ビスフエノール Α、ビスフエノール F、フエノ 一ルノボラック、ビスフエノール Aノボラック、 0-クレゾ一ルノボラック、 m-クレゾールノ ボラック、 P-クレゾ一ルノボラック、キシレノールノボラック、ポリ- p-ヒドロキシスチレン、 レゾルシン、カテコール、 t-ブチルカテコール、 t-ブチルハイドロキノン、フルォログリ シノール、ピロガロール、 t-ブチルピロガロール、ァリル化ピロガロール、ポリアリルィ匕 ピロガロール、 1,2,4-ベンゼントリオール、 2,3,4-トリヒドロキシベンゾフエノン、 1,2-ジヒ ドロキシナフタレン、 1,3-ジヒドロキシナフタレン、 1,4-ジヒドロキシナフタレン、 1,5-ジヒ ドロキシナフタレン、 1,6-ジヒドロキシナフタレン、 1,7-ジヒドロキシナフタレン、 1,8-ジヒ ドロキシナフタレン、 2,3-ジヒドロキシナフタレン、 2,4-ジヒドロキシナフタレン、 2,5-ジヒ ドロキシナフタレン、 2,6-ジヒドロキシナフタレン、 2, 7-ジヒドロキシナフタレン、 2,8-ジヒ ドロキシナフタレン、上記ジヒドロキシナフタレンのァリル化物又はポリアリル化物、ァリ ル化ビスフエノール A、ァリル化ビスフエノール F、ァリル化フエノールノボラック、ァリ ル化ピロガロール等が挙げられる。
[0030] 一般式(2)で表されるフエノール性榭脂の含有量は、エポキシ榭脂組成物中の全 硬化剤成分中、 20重量%以上であり、好ましくは 40重量%以上、さらに好ましくは 6 0重量%以上である。これより少ないとエポキシ榭脂硬化物とした際の結晶化度が低 くなり、熱伝導率の向上が期待できない。また、一般式 (2)のフ ノール性榭脂以外 に用いる硬化剤としては、耐熱性、耐湿性および電気絶縁性の観点力もフエノール 性水酸基を有する硬化剤を用いることが好まし ヽ。
[0031] 本発明のエポキシ榭脂組成物には、エポキシ榭脂硬化物の熱伝導性を向上させる ため、無機充填材を適量配合することができる。無機充填材としては、金属、金属酸 化物、金属窒化物、金属炭化物、金属水酸化物、炭素材料等が挙げられる。金属と しては、銀、銅、金、白金、ジルコン等、金属酸ィ匕物としてはシリカ、酸ィ匕アルミニウム 、酸化マグネシウム、酸化チタン、三酸ィ匕タングステン等、金属窒化物としては窒化ホ ゥ素、窒化アルミニウム、窒化ケィ素等、金属炭化物としては炭化ケィ素等、金属水 酸ィ匕物としては水酸ィ匕アルミニウム、水酸ィ匕マグネシウム等、炭素材料としては炭素 繊維、黒鉛ィ匕炭素繊維、天然黒鉛、人造黒鉛、球状黒鉛粒子、メソカーボンマイクロ ビーズ、ゥイスカー状カーボン、マイクロコイル状カーボン、ナノコイル状カーボン、力 一ボンナノチューブ、カーボンナノホーン等が挙げられる。無機充填材の形状として は、破砕状、球状、ゥイスカー状、繊維状のものが適用できる。これらの無機充填材 は単独で配合してもよぐ二種以上を組み合わせて配合してもよい。また、無機充填 材とエポキシ榭脂との濡れ性の改善、無機充填材の界面の補強、分散性の改善等 の目的で無機充填材に通常のカップリング剤処理を施してもよい。
[0032] 無機充填材の配合量としては 50wt%以上が好ましぐさらに好ましくは 70wt%以上で ある。これより少ないと熱伝導率の向上効果が小さい。
[0033] 本発明のエポキシ榭脂組成物には、従来より公知の硬化促進剤を用いることができ る。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、 具体的には、 1, 8 ジァザビシクロ(5, 4, 0)ゥンデセン- 7、トリエチレンジァミン、ベン ジルジメチルァミン、トリエタノールァミン、ジメチルァミノエタノール、トリス(ジメチルァ ミノメチル)フエノールなどの三級ァミン、 2—メチルイミダゾール、 2—フエ-ルイミダゾ ール、 2 フエ-ルー 4ーメチルイミダゾール、 2 へプタデシルイミダゾールなどのイミ ダゾール類、トリブチルホスフィン、メチルジフエ-ルホスフィン、トリフエ-ルホスフィン 、ジフエ-ルホスフィン、フエ-ルホスフィンなどの有機ホスフィン類、テトラフエ-ルホ スホニゥム 'テトラフエニルボレート、テトラフェニルホスホニゥム .ェチルトリフエニルボ レート、テトラブチルホスホ-ゥム 'テトラブチルボレートなどのテトラ置換ホスホ-ゥム 'テトラ置換ボレート、 2 ェチルー 4ーメチルイミダゾール 'テトラフエ-ルポレート、 N メチルモルホリン *テトラフヱ-ルポレートなどのテトラフヱ-ルポロン塩などがある。 添加量としては、通常、エポキシ榭脂 100重量部に対して、 0. 2〜10重量部の範囲 である。
[0034] また、本発明のエポキシ榭脂組成物には、成形時の流動性改良およびリードフレ ーム等との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる
。熱可塑性のオリゴマー類としては、 C5系および C9系の石油榭脂、スチレン榭脂、 インデン榭脂、インデン'スチレン共重合榭脂、インデン 'スチレン'フエノール共重合 榭脂、インデン'クマロン共重合榭脂、インデン'ベンゾチォフェン共重合榭脂等が例 示される。添加量としては、通常、エポキシ榭脂 100重量部に対して、 2〜30重量部 の範囲である。
[0035] さらに必要に応じて、本発明のエポキシ榭脂組成物には、臭素化エポキシ等の難 燃剤、カルナバワックス、エステル系ワックス等の離型剤、エポキシシラン、アミノシラ ン、ウレイドシラン、ビュルシラン、アルキルシラン、有機チタネート、アルミニウムアル コレート等のカップリング剤、カーボンブラック等の着色剤、三酸ィ匕アンチモン等の難 燃助剤、シリコンオイル等の低応力化剤、高級脂肪酸、高級脂肪酸金属塩等の滑剤 等を使用できる。
[0036] 本発明のエポキシ榭脂組成物は、一般的には、上記エポキシ榭脂、硬化剤成分等 の配合成分を所定の配合量で、ミキサー等によって十分混合した後、ミキシングロー ル、押し出し機などによって混練し、冷却、粉砕することによって得ることができる。
[0037] あるいは、上記配合成分をベンゼン、トルエン、キシレン、クロ口ベンゼン等の芳香 族溶媒、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等の ケトン系溶剤、へキサン、ヘプタン、メチルシクロへキサン等の脂肪族炭化水素溶剤 、エタノール、イソプロパノール、ブタノール、エチレングリコール等のアルコール溶剤 、ジェチルエーテル、ジォキサン、テトラヒドロフラン、ジエチレングリコールジメチルェ 一テル等のエーテル系溶剤、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトァ ミド、ジメチルスルホキシド、 N—メチルピロリドン等の極性溶剤に溶解させてワニス状 のエポキシ榭脂組成物とすることができる。ワニス状のエポキシ榭脂組成物は、ガラ ス繊維、炭素繊維、ァラミド繊維等の繊維状充填材に含浸後、乾燥により有機溶剤を 除!、て、プリプレダ状のエポキシ組成物とすることもできる。
[0038] 本発明のエポキシ榭脂組成物を用いて硬化物を得るためには、例えば、トランスフ ァー成形、プレス成形、注型成形、射出成形、押出成形等の方法が適用される。また 、プリプレダ状のエポキシ榭脂組成物を硬化させるための手法としては真空プレス等 の方法が取られる。
[0039] 本発明のエポキシ榭脂硬化物は、高熱伝導性の観点力 結晶性を有するものが好 ましい。結晶性の程度は、示差熱分析での融解に伴う吸熱量から評価することができ る。示差熱分析における吸熱のピークは、通常、 120°Cから 250°Cの範囲に観測さ れるが、好ましい吸熱量は、充填材を除いた榭脂成分の単位重量あたり 5J/g以上で ある。より好ましくは 10J/g以上であり、特に好ましくは 30J/g以上である。これより小さ いとエポキシ榭脂硬化物としての熱伝導率向上効果が小さい。なお、ここでいう吸熱 量は、示差熱分析計により、約 lOmgを精秤した試料を用いて、窒素気流下、昇温速 度 10°CZ分の条件で測定して得られる吸熱量を指す。
[0040] 本発明のエポキシ榭脂硬化物は、上記成形方法により加熱硬化させることにより得 ることができるが、通常、成形温度としては 80°C〜250°Cであり、成形時間は 1分〜 2 0時間である。エポキシ榭脂硬化物の結晶化度を上げるためには、低い温度で長時 間かけて硬化させることが望ましい。好ましい硬化温度は 100°C〜180°Cの範囲であ り、より好ましくは 120°C〜160°Cである。また、好ましい硬化時間は 10分〜 6時間で あり、より好ましくは 30分〜 3時間である。さらに成形後、ポストキュアにより、さらに結 晶化度を上げることができる。通常、ポストキュア温度は 130°C〜250°Cであり、時間 は 1時間〜 20時間の範囲である力 好ましくは、示差熱分析における吸熱ピーク温 度よりも 5°C〜40°C低い温度で、 1時間から 24時間かけてポストキュアを行うことが望 ましい。
[0041] 本発明のエポキシ榭脂硬化物は、別種の基材と積層させることができる。積層させ る基材としては、シート状、フィルム状のものであり、銅箔、アルミニウム箔、ステンレス 箔等の金属基材、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアタリレート、ポリメ タクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナ フタレート、液晶ポリマー、ポリアミド、ポリイミド、ポリテトラフルォロエチレン等の高分 子基材が例示される。
[0042] 本発明のエポキシ榭脂組成物は、高熱伝導性および低熱膨張性に優れた硬化物 を与え、半導体素子等の封止およびプリント配線板等に応用した場合、優れた高放 熱性および寸法安定性が発揮される。
図面の簡単な説明
[0043] [図 1]エポキシ榭脂硬化物の示差熱分析チャート
発明を実施するための最良の形態
[0044] 以下実施例により本発明をさらに具体的に説明する。
参考例 1
4, 4, 一ジヒドロキシジフエニルエーテル lOlOgをェピクロルヒドリン 7000gに溶解 し、減圧下 (約 120mmHg、 60°Cにて 48%水酸ィ匕ナトリウム水溶液 808gを 4時間か けて滴下した。この間、生成する水はェピクロルヒドリンとの共沸により系外に除き、溜 出したェピクロルヒドリンは系内に戻した。滴下終了後、さらに 1時間反応を継続した
。その後、濾過により生成した塩を除き、さらに水洗したのちェピクロルヒドリンを留去 し、淡黄色液状の粗製エポキシ榭脂 1515gを得た。エポキシ当量は 171であり、カロ 水分解性塩素は 4500ppmであった。得られたエポキシ榭脂 1500gをメチルイソブ チノレケ卜ン 6000mlに溶解し、 20%水酸ィ匕ナ卜!;ゥム水溶液 76. 5gをカロえ、 80oCで 2 時間反応させた。反応後、濾過、水洗を行った後、溶媒であるメチルイソプチルケトン を減圧留去し、淡黄色液状のエポキシ榭脂 1380gを得た。得られたエポキシ榭脂( エポキシ榭脂 A)のエポキシ当量は 163、加水分解性塩素は 280ppm、融点は 78〜 84°C、 150°Cでの粘度は 0. 0062Pa' sであった。ここで、融点はキヤビラリ一法によ り昇温速度 2°CZ分で得られる値である。
[0045] 参考例 2
参考例 1で合成したエポキシ榭脂 163gと 4, 4'—ジヒドロキシジフエ-ルエーテル 2 5. 3gを 150°Cにて溶融混合した後、トリフエ-ルホスフィン 0. 075gを加え、窒素気 流下、 2時間反応を行った。反応後、室温に放冷することにより、得られた榭脂は結 晶性を示し固化した。得られた榭脂(エポキシ榭脂 B)のエポキシ当量は 261、融点 は 100〜122。C、軟ィ匕点は 127。C、 150。Cでの粘度は 0. 037Pa' sであった。また、 得られた榭脂の GPC測定より求められた一般式(1)における各成分比は、 n=0が 4 2. 5%、 n= 2力 29. 2%, n=4力 17. 6%, n≥6力 10. 70/0であった。ここで、粘度【ま コントラバス社製レオマット 115で測定し、軟ィ匕点 ίお IS K— 6911に従い環球法で測 定した。また、 GPC測定は、装置; HLC— 82A (東ソ一 (株)製)、カラム; TSK— GE L2000 X 3本および TSK— GEL4000 X 1本( ヽずれも東ソー(株)製)、溶媒;テトラ ヒドロフラン、流量; 1 mlZmin、温度; 38°C、検出器; RIの条件に従った。
[0046] 参考例 3
参考例 1で合成したエポキシ榭脂 163gおよび 4,4 '―ジヒドロキシジフエ-ルエーテ ル 50. 5gを用い、参考例 2と同様に反応を行った。反応後、室温に放冷することによ り、得られた榭脂は結晶性を示し固化した。得られた榭脂 (エポキシ榭脂 C)のェポキ シ当量は 482、融点は 145〜165°C、軟ィ匕点は 163°Cあった。また、得られた榭脂の GPC測定より求められた一般式(1)における各成分比は、 n=0が 16. 7%、 n= 2力 S 22. 10/0、 n=4力 32. 10/0、 n≥6力 29. 10/0であった。
[0047] 実施例 1
参考例 1で得たエポキシ榭脂(エポキシ榭脂 A) 92. 5g、硬化剤としての 4,4'—ジヒ ドロキシジフエ-ルエーテル (硬化剤 A) 57. 3gおよび硬化促進剤としてのトリフエ- ルホスフィン 1. 5gを 120°Cにて溶融混合させてエポキシ榭脂組成物とした。その後 、 120°Cにて 2時間、加熱硬化を行い成形物とした。得られた成形物をさらに 175°C にて 12時間ポストキュアを行い、エポキシ榭脂硬化物を得た後、各種物性測定に供 した。ガラス転移点および線膨張係数は、熱機械測定装置により昇温速度 10°CZ分 の条件で求めた。融点および吸熱量は、示差熱分析装置を用い昇温速度 10°CZ分 の条件で求めた。測定結果を図 1に示す。また、熱伝導率は、直径 50mm、厚さ 3m mの円盤を用いて、非定常プローブ法により求めた。
[0048] 実施例 2〜5および比較例 1〜3
エポキシ榭脂成分として、参考例 1から 3のエポキシ榭脂(エポキシ榭脂 A〜C)、ビ スフエノール A型エポキシ榭脂(エポキシ榭脂 D:東都化成製、 YD— 8125;エポキシ 当量 174)、硬化剤として 4, 4,ージヒドロキシジフエ-ルエーテル(硬化剤 A)、フエノ 一ルノボラック(硬化剤 B :群栄化学製、 PSM— 4261 ;OH当量 103、軟化点 82度 、 150°Cでの溶融粘度 0. 16Pa' s)、硬化促進剤としてトリフエ-ルホスフィンを用い て、表 1に示す配合で溶融混合しエポキシ榭脂組成物を得た。このエポキシ榭脂糸且 成物を用いて表 1に示す条件で硬化およびポストキュアを行 、、実施例 1と同様に硬 化物の物性を評価した。
結果をまとめて表 1に示す。
[0049] [表 1]
Figure imgf000017_0001
*1) 2つのピークを観察

Claims

請求の範囲
エポキシ榭脂、硬化剤よりなるエポキシ榭脂組成物において、エポキシ榭脂成分と して下記一般式(1)、
Figure imgf000018_0001
但し、 nは 0以上の数、 mは 1〜3の整数を示す;
で表されるジフエニルエーテル型エポキシ榭脂をエポキシ榭脂成分中 50wt%以上 用い、硬化剤成分として下記一般式 (2)、
Figure imgf000018_0002
但し、 nは 0以上の数、 mは 1〜3の整数を示す;
で表されるジフエニルエーテル型フエノール性榭脂を硬化剤成分中 20wt%以上用
V、ることを特徴とするエポキシ榭脂組成物。
[2] 無機充填材を 50wt%以上含有する請求項 1に記載のエポキシ榭脂組成物。
[3] 請求項 1または請求項 2のエポキシ榭脂組成物を硬化してなるエポキシ榭脂硬化 物。
[4] 示差熱分析による吸熱量が 5J/g以上である結晶構造を有する請求項 3に記載のェ ポキシ榭脂硬化物。
PCT/JP2006/309231 2005-05-10 2006-05-08 エポキシ樹脂組成物および硬化物 WO2006120993A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/919,587 US20100016498A1 (en) 2005-05-10 2006-05-08 Epoxy resin composition and cured article thereof
CN2006800158038A CN101198632B (zh) 2005-05-10 2006-05-08 环氧树脂组合物以及固化物
JP2007528263A JP5324094B2 (ja) 2005-05-10 2006-05-08 エポキシ樹脂組成物および硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-137228 2005-05-10
JP2005137228 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006120993A1 true WO2006120993A1 (ja) 2006-11-16

Family

ID=37396501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309231 WO2006120993A1 (ja) 2005-05-10 2006-05-08 エポキシ樹脂組成物および硬化物

Country Status (6)

Country Link
US (1) US20100016498A1 (ja)
JP (1) JP5324094B2 (ja)
KR (1) KR101262138B1 (ja)
CN (1) CN101198632B (ja)
TW (1) TWI402288B (ja)
WO (1) WO2006120993A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173728A (ja) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd エポキシ樹脂組成物及び硬化物
WO2009113392A1 (ja) * 2008-03-13 2009-09-17 新日本製鐵株式会社 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
WO2009123058A1 (ja) * 2008-03-31 2009-10-08 新日鐵化学株式会社 エポキシ樹脂組成物および成形物
WO2011033815A1 (ja) 2009-09-16 2011-03-24 株式会社カネカ 有機熱伝導性添加剤、樹脂組成物および硬化物
WO2011132390A1 (ja) 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
WO2011132389A1 (ja) 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
JP2012017405A (ja) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
WO2015083523A1 (ja) 2013-12-04 2015-06-11 株式会社カネカ 高熱伝導性樹脂組成物、それを含有する放熱・伝熱用樹脂材料および熱伝導膜
US9200111B2 (en) 2011-02-08 2015-12-01 Kaneka Corporation Thermoplastic resin, resin composition, and molding of high thermal conductivity
JPWO2015174023A1 (ja) * 2014-05-15 2017-04-20 パナソニックIpマネジメント株式会社 絶縁熱伝導性樹脂組成物
JP2020172609A (ja) * 2019-04-12 2020-10-22 本田技研工業株式会社 放熱性塗料組成物及び放熱性被膜の製造方法
JPWO2019188291A1 (ja) * 2018-03-27 2021-04-22 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物及びその硬化物
US11572437B2 (en) 2017-06-12 2023-02-07 Kaneka Corporation Thermoplastic resin, thermoplastic resin composition, and heat conductive sheet

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658259B (zh) * 2012-05-24 2013-12-04 哈尔滨玻璃钢研究院 一种气相沉积法制备树脂基复合材料外防护结构的方法
CN102658260B (zh) * 2012-05-24 2013-10-30 哈尔滨玻璃钢研究院 一种气相沉积法制备树脂基复合材料内层的方法
CN102658261B (zh) * 2012-05-24 2013-09-25 哈尔滨玻璃钢研究院 一种改性树脂气相沉积法制备树脂基复合材料热防护结构的方法
CN104822768B (zh) * 2012-11-30 2017-09-08 Lg伊诺特有限公司 环氧树脂组合物和包括使用该环氧树脂组合物的绝缘层的印刷电路板
KR101973686B1 (ko) * 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101973685B1 (ko) * 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101984791B1 (ko) * 2012-12-12 2019-09-03 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
KR102012311B1 (ko) * 2012-12-12 2019-08-20 엘지이노텍 주식회사 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR102034228B1 (ko) * 2012-12-14 2019-10-18 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
KR102104524B1 (ko) * 2013-08-23 2020-04-24 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR102104525B1 (ko) * 2013-08-23 2020-04-24 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
US20150062140A1 (en) * 2013-08-29 2015-03-05 Monotype Imaging Inc. Dynamically Adjustable Distance Fields for Adaptive Rendering
KR102135413B1 (ko) * 2013-12-20 2020-07-17 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
JP6717376B2 (ja) * 2016-05-30 2020-07-01 日立化成株式会社 封止組成物及び半導体装置
KR101899088B1 (ko) 2017-01-17 2018-09-17 한국과학기술연구원 유연기로 연결된 말단 메소겐을 갖는 액정성 에폭시 화합물 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304001A (ja) * 1992-04-28 1993-11-16 Nippon Steel Chem Co Ltd 電子部品封止用エポキシ樹脂組成物
JPH06313025A (ja) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd 新規エポキシ樹脂及びその製造方法並びにそれを用いたエポキシ樹脂組成物
JPH08301967A (ja) * 1995-04-28 1996-11-19 Nippon Steel Chem Co Ltd 新規重合物及びその製造方法並びにエポキシ樹脂組成物
JP2001026633A (ja) * 1999-07-13 2001-01-30 Nippon Steel Chem Co Ltd エポキシ樹脂、その製造方法、エポキシ樹脂組成物およびその硬化物
JP2001139658A (ja) * 1999-11-18 2001-05-22 Nippon Steel Chem Co Ltd 高純度低粘性エポキシ樹脂およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2308433B2 (de) * 1973-02-21 1976-11-25 Dynamit Möbel AG, 5210Troisdorf Verfahren zur herstellung von flammwidrigen epoxidharz-schichtpressstoffen und deren verwendung
SG41939A1 (en) * 1994-10-07 1997-08-15 Shell Int Research Epoxy resin composition for semiconductor encapsulation
JP3734602B2 (ja) * 1997-05-29 2006-01-11 ジャパンエポキシレジン株式会社 エポキシ樹脂組成物および半導体封止用エポキシ樹脂組成物
CN1605599A (zh) * 2004-09-14 2005-04-13 孙忠贤 一种填料含量高的环氧树脂组合物及其制法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304001A (ja) * 1992-04-28 1993-11-16 Nippon Steel Chem Co Ltd 電子部品封止用エポキシ樹脂組成物
JPH06313025A (ja) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd 新規エポキシ樹脂及びその製造方法並びにそれを用いたエポキシ樹脂組成物
JPH08301967A (ja) * 1995-04-28 1996-11-19 Nippon Steel Chem Co Ltd 新規重合物及びその製造方法並びにエポキシ樹脂組成物
JP2001026633A (ja) * 1999-07-13 2001-01-30 Nippon Steel Chem Co Ltd エポキシ樹脂、その製造方法、エポキシ樹脂組成物およびその硬化物
JP2001139658A (ja) * 1999-11-18 2001-05-22 Nippon Steel Chem Co Ltd 高純度低粘性エポキシ樹脂およびその製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173728A (ja) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd エポキシ樹脂組成物及び硬化物
WO2009113392A1 (ja) * 2008-03-13 2009-09-17 新日本製鐵株式会社 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
JP4608600B2 (ja) * 2008-03-13 2011-01-12 新日本製鐵株式会社 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
JPWO2009113392A1 (ja) * 2008-03-13 2011-07-21 新日本製鐵株式会社 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
WO2009123058A1 (ja) * 2008-03-31 2009-10-08 新日鐵化学株式会社 エポキシ樹脂組成物および成形物
TWI494341B (zh) * 2008-03-31 2015-08-01 Nippon Steel & Sumikin Chem Co Epoxy resin compositions and shaped articles
KR101507933B1 (ko) 2008-03-31 2015-04-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 에폭시수지 조성물 및 성형물
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
WO2011033815A1 (ja) 2009-09-16 2011-03-24 株式会社カネカ 有機熱伝導性添加剤、樹脂組成物および硬化物
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
KR20120080192A (ko) 2009-09-16 2012-07-16 카네카 코포레이션 유기 열전도성 첨가제,수지 조성물,및 경화제
WO2011132390A1 (ja) 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
WO2011132389A1 (ja) 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
JP2012017405A (ja) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
US9200111B2 (en) 2011-02-08 2015-12-01 Kaneka Corporation Thermoplastic resin, resin composition, and molding of high thermal conductivity
WO2015083523A1 (ja) 2013-12-04 2015-06-11 株式会社カネカ 高熱伝導性樹脂組成物、それを含有する放熱・伝熱用樹脂材料および熱伝導膜
US9809735B2 (en) 2013-12-04 2017-11-07 Kaneka Corporation Highly-thermally-conductive resin composition, and resin material for heat dissipation/heat transfer and thermally conductive film comprising same
JPWO2015174023A1 (ja) * 2014-05-15 2017-04-20 パナソニックIpマネジメント株式会社 絶縁熱伝導性樹脂組成物
US11572437B2 (en) 2017-06-12 2023-02-07 Kaneka Corporation Thermoplastic resin, thermoplastic resin composition, and heat conductive sheet
JPWO2019188291A1 (ja) * 2018-03-27 2021-04-22 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物及びその硬化物
JP2020172609A (ja) * 2019-04-12 2020-10-22 本田技研工業株式会社 放熱性塗料組成物及び放熱性被膜の製造方法
JP7247003B2 (ja) 2019-04-12 2023-03-28 本田技研工業株式会社 放熱性塗料組成物及び放熱性被膜の製造方法

Also Published As

Publication number Publication date
JP5324094B2 (ja) 2013-10-23
KR20080015434A (ko) 2008-02-19
US20100016498A1 (en) 2010-01-21
CN101198632A (zh) 2008-06-11
TW200702353A (en) 2007-01-16
JPWO2006120993A1 (ja) 2008-12-18
TWI402288B (zh) 2013-07-21
KR101262138B1 (ko) 2013-05-14
CN101198632B (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2006120993A1 (ja) エポキシ樹脂組成物および硬化物
JP5320384B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及び硬化物
TWI444400B (zh) A crystalline resin cured product, a crystalline resin composite, and a method for producing the same
JP5314911B2 (ja) エポキシ樹脂組成物および成形物
JP5265461B2 (ja) 結晶性変性エポキシ樹脂、エポキシ樹脂組成物及び結晶性硬化物
JP5234962B2 (ja) プリプレグ、積層板およびプリント配線板
KR101984791B1 (ko) 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
EP2662395B1 (en) Epoxy resin, epoxy resin compound comprising the same, and radiant heat circuit board using the compound
JP5312447B2 (ja) エポキシ樹脂組成物および成形物
JP2009073862A (ja) 封止用エポキシ樹脂組成物及びそれを用いた半導体装置
JP5314912B2 (ja) エポキシ樹脂組成物および成形物
JP5037370B2 (ja) エポキシ樹脂組成物及び硬化物
JP5681151B2 (ja) エポキシ樹脂組成物および成形物
JP5681152B2 (ja) エポキシ樹脂組成物および成形物
KR20150072905A (ko) 액정 고분자 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
TW202202543A (zh) 結晶性環氧樹脂、環氧樹脂組成物及環氧樹脂硬化物
KR101987260B1 (ko) 에폭시 수지, 에폭시 수지 조성물 및 이를 이용한 방열회로기판
JP2021155484A (ja) エポキシ樹脂組成物および硬化物
KR20150022479A (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR20150072904A (ko) 액정 고분자 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015803.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11919587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007528263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077028623

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746063

Country of ref document: EP

Kind code of ref document: A1