WO2006119760A2 - Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen - Google Patents

Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen Download PDF

Info

Publication number
WO2006119760A2
WO2006119760A2 PCT/DE2006/000896 DE2006000896W WO2006119760A2 WO 2006119760 A2 WO2006119760 A2 WO 2006119760A2 DE 2006000896 W DE2006000896 W DE 2006000896W WO 2006119760 A2 WO2006119760 A2 WO 2006119760A2
Authority
WO
WIPO (PCT)
Prior art keywords
imaging means
light modulator
plane
observer
spatial frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2006/000896
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2006119760A3 (de
Inventor
Armin Schwerdtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SeeReal Technologies GmbH
Original Assignee
SeeReal Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005023743.6A external-priority patent/DE102005023743B4/de
Priority to US11/914,278 priority Critical patent/US9116505B2/en
Priority to AT06742375T priority patent/ATE410719T1/de
Priority to CN2006800165633A priority patent/CN101176043B/zh
Priority to PCT/DE2006/000896 priority patent/WO2006119760A2/de
Priority to EP06742375A priority patent/EP1880252B1/de
Priority to JP2008510405A priority patent/JP5015913B2/ja
Priority to BRPI0612442-9A priority patent/BRPI0612442A2/pt
Application filed by SeeReal Technologies GmbH filed Critical SeeReal Technologies GmbH
Priority to CA002608290A priority patent/CA2608290A1/en
Priority to KR1020077029200A priority patent/KR101277370B1/ko
Priority to DE502006001767T priority patent/DE502006001767D1/de
Publication of WO2006119760A2 publication Critical patent/WO2006119760A2/de
Publication of WO2006119760A3 publication Critical patent/WO2006119760A3/de
Anticipated expiration legal-status Critical
Priority to US14/828,973 priority patent/US9513599B2/en
Priority to US15/365,116 priority patent/US10613479B2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/16Processes or apparatus for producing holograms using Fourier transform
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • G03H2001/0883Reconstruction aspect, e.g. numerical focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2239Enlarging the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2242Multiple viewing windows
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2252Location of the holobject
    • G03H2001/226Virtual or real
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/54Convergent beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/18Prism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/19Microoptic array, e.g. lens array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/24Reflector; Mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/52Reflective modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • G03H2225/61Multiple SLMs for multicolour processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer

Definitions

  • the invention relates to a projection device for holographic reconstruction of scenes with a spatial light modulator, an imaging system with at least two imaging means and a lighting device with at least one light source with sufficiently coherent light for illuminating a hologram coded in the light modulator. Furthermore, the invention also relates to a method for holographic reconstruction of scenes.
  • the stereo effect is generally utilized, wherein the light producing the stereo impression is reflected or emitted by a plane.
  • the light emanating from the hologram interferes with the object points of the scene from where it naturally propagates.
  • Holographic representations realize object substitution.
  • stereoscopic representations in still form (stills) or in moving form in arbitrary forms of representation are not object substitution. They provide two flat images for the left and right eyes that correspond to the eye positions. The three-dimensional effect is created by the parallax in the two pictures.
  • the holographic representation eliminates the problems known from stereoscopy, such as fatigue or eye and head pain, since in principle there is no difference in viewing holographic reconstructed scenes and natural scenes.
  • Holography is generally differentiated into static and dynamic methods.
  • static holography photographic media are often used
  • an interference image is recorded on the photographic medium by means of a reference beam, which is superimposed with a light beam carrying the object information.
  • This static object information is holographically reconstructed with a beam similar or similar to the reference beam.
  • the entertainment industry as well as the medical and
  • micro-displays are used, as they are also used in projection devices.
  • micro-displays are LCoS (Liquid Crystal on Silicon), transmissive LCD or MEMS (Micro Electro Mechanical Systems). Since their pixel pitch, so the distance between the pixel centers, compared to other displays is small, a comparatively large diffraction angle is achieved.
  • LCoS Liquid Crystal on Silicon
  • MEMS Micro Electro Mechanical Systems
  • Micro displays and similar light modulators have a size of a few inches and despite the relatively small pitch still such a small diffraction angle that a two-eyed viewing is hardly possible.
  • transmissive and reflective light modulators are used in holographic reconstruction devices based on technologies such as TFT, LCoS, MEMS, DMD (digital micromirror device), OASLM (optically addressed spatial light modulator), EASLM (Electronically Addressed Spatial Light Modulator), FLCD (Ferroelectric Liquid Crystal Display) or other based.
  • Such light modulators can be designed in one or two dimensions.
  • the reason for the use of reflective light modulators lies in their low-cost production, the large filling factor for a high light efficiency, the short switching time and the low light losses due to absorption compared to transmissive displays. However, the small spatial dimensions must be accepted.
  • WO 03/060612 From WO 03/060612 a reflective LC display with a resolution of about 12 microns and a reflectance up to 90% for the color real-time display of holograms is known.
  • the reconstruction is done with the collimated light of one or more LEDs via a field lens.
  • viewing at a distance of about 1 m is only possible within a range of about 3 cm, whereby the reconstructed scene can not be viewed simultaneously with both eyes, ie in three dimensions.
  • WO 02/095503 describes a holographic 3D projection device which uses a DMD chip for the hologram representation.
  • the high reflectivity and the short switching time of the light modulator can be here for the same reasons as to the WO
  • WO 00/75699 describes a holographic display which reconstructs a video hologram with the aid of partial holograms.
  • This method is also known by the term tiling.
  • partial holograms coded using a very fast Electronically Addressable Spatial Light Modulator (EASLM) are sequentially imaged into an intermediate layer, the process taking place so rapidly that an observer perceives the reconstructions of all partial holograms as a single reconstruction of a 3D object.
  • EASLM Electronically Addressable Spatial Light Modulator
  • a special illumination and imaging system is used, for example with a shutter which is controlled synchronously with the EASLM and only reads through the respective sub-hologram and in particular blocks out the unused diffraction orders.
  • the requirements for the dynamic properties of the SLM used to display the partial holograms are considerable and a flat design is hardly possible.
  • the object of the present invention is therefore to provide a projection apparatus for holographic reconstruction of two- and three-dimensional scenes, which eliminates the mentioned disadvantages of the prior art and reconstructs scenes of any size and visible within a large reconstruction space, so that with a small number of optical elements can be reconstructed simply, inexpensively and with high quality spatially extended moving scenes.
  • the object is achieved by a projection device for the holographic reconstruction of scenes, wherein a light modulator illuminated with sufficiently coherent light, which has a coded hologram, can be visually enlarged.
  • the projection device advantageously also has an imaging system with the first and the second imaging means in addition to the light modulator and the illumination device for emitting sufficiently coherent light.
  • the light modulator is a low expansion spatial light modulator and will therefore be referred to hereinafter as a micro SLM.
  • the micro SLM is magnified by the first imaging means onto the second imaging means, the spatial frequency spectrum (Fourier spectrum) of the micro SLM being imaged into the viewer window by means of the second imaging means.
  • the observer window is thus the image of the diffraction order used in the Fourier plane of the hologram.
  • the first imaging means In order for the first imaging means to image the entire micro SLM onto the second imaging means, all contributions of a desired diffraction order must be detected by the first imaging means.
  • the micro-SLM can be illuminated with a wave that converges in the light direction after the micro-SLM. Consequently, the plane of the spatial frequency spectrum contains the Fourier plane of the micro SLM and, at the same time, the first imaging means.
  • the second imaging means together with the observer window, defines a frustoconical reconstruction space, also referred to as frustration.
  • a reconstructed scene advantageously one reconstructed three-dimensional scene presented to one or more observers.
  • the reconstruction space continues at will far beyond the second imaging means. Through the observer window, the observer can thus observe the reconstructed scene in the large reconstruction space. Under sufficiently coherent light here light is understood, which is capable of interfering with the representation of a three-dimensional scene.
  • Such a projection device thus has only a small number of optical elements for holographic reconstruction. To the quality of the optical elements are compared with known optical
  • a spatial frequency filter in the plane in which the spatial frequency spectrum of the light modulator is present is arranged.
  • a spatial frequency filter here in particular a diaphragm, can advantageously be arranged in this plane, which allows only the diffraction order used to pass.
  • the individual diffraction orders overlap so that the shutter cuts off information or allows unwanted information to pass.
  • the individual diffraction orders can be separated from one another, thereby excluding clipping of the information by the shutter.
  • the aperture can be generalized as spatial frequency filter, which filters out the desired diffraction order, quantization error or blocks off other errors of the micro SLM or modulates the wave field in any other suitable way, for example to compensate for aberrations of the projection device. This happens, for example, by the spatial frequency filter adding an aspherical lens function.
  • Another advantage is that the reduction of the spatial frequency spectrum to a diffraction order and the imaging of this diffraction order and the aperture as a viewer window prevent any crosstalk that usually occurs in reconstructions using matrix-shaped light modulators.
  • a left and right eye of a viewer can be successively operated without crosstalk.
  • a multiplex method for several people is only possible.
  • the Fourier plane also contains no periodicity. An aperture can thus be omitted.
  • Such light modulators are for example OASLM.
  • a third imaging means may be included, which is arranged near the light modulator.
  • the third imaging means generates the spatial frequency spectrum as a Fourier transform of the hologram encoded in the micro SLM in its image-side focal plane.
  • the use of a third imaging means is particularly advantageous in collimated illumination, since without this imaging means only light with a correspondingly large diffraction angle reaches the first imaging means.
  • the third imaging means may be arranged in front of or behind the micro SLM. Accordingly, the third imaging means focuses the light emanating from the micro SLM or the outgoing wave into its image-side focal plane. But it is also possible that emanates from the micro-SLM a slightly converging wave, the focus is enhanced by the use of another imaging means.
  • the third imaging means need not be present in the illumination with a converging wave, because advantageously the reconstruction wave falling on the micro SLM can be adjusted to be approximately in-plane of the first imaging means converges. In all cases, however, there is always a focal plane, the Fourier plane of the micro-SLM, in which the first imaging means is also arranged.
  • a position detection system for determining an eye position of at least one observer when observing a reconstructed scene may be included.
  • the position detection system detects the eye positions or pupil positions of the viewer (s) while observing the reconstructed scene. According to the eye position of the viewer, the scene is encoded. Then the viewer window can be tracked according to the new position of the eyes.
  • space-solid representations are provided with a realistic change of perspective and representations with exaggerated change of perspective. By this is meant that the angular and positional change of the scene is greater than the angular and positional change of the observer.
  • At least one deflection element is in the
  • Such deflecting elements may be mechanical, electrical or optical elements.
  • the deflection element may, for example, be arranged in the plane of the first imaging means as a controllable optical element which, like a prism, virtually shifts the spectrum.
  • a deflection element near the second imaging means This deflecting element then has the effect of a prism and optionally the action of a lens.
  • This arrangement of the deflector near the second imaging means is particularly advantageous because the entire imaging system is static from the light source to the second imaging means. That is, the beam path to the second imaging means always remains constant. Firstly, this minimizes the demands on this part of the optical system because the entrance opening of the first and second imaging means is minimal can be kept.
  • the entrance opening of the first and second imaging means would otherwise have to be always larger. This significantly reduces the requirements for the second imaging agent. Second, this static part of the optical system can be optimally corrected in its imaging properties.
  • mapping of the micro SLM on the second imaging means does not shift.
  • the position of the reconstruction of a two-dimensional scene on the second imaging means is independent of the observer position.
  • the object is further achieved by a method for holographic reconstruction of scenes, wherein in a first step in a plane of a first imaging means a spatial frequency spectrum as a Fourier transform of the coded hologram is formed, which in a second step, the first imaging means the light modulator in a plane a second imaging means, wherein the second imaging means images the spatial frequency spectrum from the plane of the first imaging means into at least one observer window of the observer plane, whereby a reconstructed scene is displayed enlarged in at least one observer in a reconstruction space spanned by the second imaging means and the observer window Illustration of the light modulator of the reconstruction space is expanded in size.
  • the spatial frequency spectrum is used as a Fourier transform of the im
  • Light modulator here a micro-SLM, encoded hologram formed.
  • This is followed, in a second step, by imaging the micro SLM into a plane on the second imaging means by means of the first imaging means, thereby increasing the micro SLM.
  • the mapping of the micro SLM to the second imaging means means that the micro SLM can also be imaged in close proximity to the second imaging means.
  • the spatial frequency spectrum is imaged from the plane of the first imaging means via the second imaging means into the observer plane and forms a viewer window in the observer plane.
  • the reconstruction space which through Accordingly, the viewer window and the second imaging means is spanned and in which the reconstructed scene is presented enlarged to one or more viewers, is likewise designed to be enlarged. It should be noted that the reconstruction space is not bounded by the second imaging means and the viewer window but extends rearwardly beyond the second imaging means.
  • two-dimensional and / or three-dimensional scenes of high quality can thus be displayed simultaneously or sequentially in a large reconstruction space for observation.
  • the plane of the 2D representation can advantageously be placed in the second imaging means. In this plane then appears the enlarged image of the micro-SLM, which in this case is encoded with the two-dimensional image.
  • the two-dimensional image can also be moved toward the observer or moved away from him.
  • aberrations of the imaging means are taken into account in the calculation of the hologram and compensated by the light modulator.
  • Focusing causes a minimal lateral extent of the first imaging means for imaging. This can ensure that aberrations of the first imaging means are minimized. In addition, it must be ensured that the first imaging agent images the micro-SLM completely and homogeneously in its illumination to the second imaging agent. Aberrations of the second and possibly further imaging means can also be compensated by the micro-SLM. The phase errors occurring in aberrations can be easily corrected by a corresponding additional phase deviation. It is also possible that a spatial frequency filter compensates aberrations of the imaging means used in the projection device.
  • Figure 1 is a schematic representation of a projection device according to the invention for the holographic reconstruction of scenes with an imaging system
  • FIG. 2 shows a detail of the projection device shown in FIG.
  • FIG. 3 shows a detail of the projection apparatus shown in FIG. 1 when a converging wave impinges on the light modulator;
  • FIG. 4 shows a further embodiment of the projection device according to the invention with a reflective light modulator and a beam splitter element
  • FIG. 5 shows a deflection element contained in the projection device for tracking a viewer window
  • Figure 6 shows another possibility for tracking the viewer window in the projection device
  • FIG. 7 shows a further embodiment of the projection device according to the invention with a concave mirror as second imaging means; and FIG. 8 shows the projection apparatus shown in FIG. 1 viewing a single reconstructed point of the scene.
  • the projection device is shown in principle, wherein an imaging system 3 images an illumination device 1, in this case a punctiform light source, into a viewer plane 6.
  • the imaging system 3 has a first imaging means 4 and a second imaging means 5.
  • the light source 1 generates coherent or sufficiently coherent light, which is required for a holographic reconstruction of a scene.
  • a light source 1 can laser, LED (s) or other light sources are used, with a color filtering can be made.
  • a wave emitted from the light source 1 is converted to a plane wave 7 by means of a collimator lens L.
  • the wave 7 thus emanating from the light source 1 and passing through the collimator lens L as previously assumed, impinges perpendicularly on a transmissive spatial light modulator 8 with regularly arranged pixels comprising a coded dynamic hologram 2, e.g. a CGH, wherein the wavefront of the plane wave 7 is modulated at equidistant locations in the spatial light modulator 8 to a desired wavefront.
  • the spatial light modulator 8 has a small extension and is therefore referred to below as a micro-SLM.
  • a third imaging means 9 is arranged in the beam direction after the micro SLM 8.
  • the spatial frequency spectrum can also be called a Fourier spectrum.
  • the focal plane 10 shifts along an optical axis eleventh E2006 / 000896
  • the first imaging means 4 is arranged in the immediate vicinity of the focal plane 10 of the third imaging means 9.
  • This first imaging means 4 images the micro-SLM in a plane 12 onto the second imaging means 5 or in the immediate vicinity of it.
  • the second imaging means 5 here is a lens which, in comparison to the other imaging means 4 and 9, is made substantially larger in order to reconstruct the largest possible scene 13 in a reconstruction space (frustrum) 14.
  • a virtual viewer window 15 is formed which is physically absent and whose extent corresponds to the mapping of a period of the spatial frequency spectrum.
  • the observer or even the observers can observe the reconstructed scene 13 through the observer window 15.
  • the reconstruction of the scene 13 is formed in the truncated pyramid-shaped reconstruction space 14, which is spanned between the edges of the observer window 15 and the second imaging means 5.
  • the reconstruction space 14 can also extend as far as desired back beyond the second imaging means 5.
  • the micro-SLM 8 Due to the equidistant scanning of the information by the micro-SLM 8, which is assumed to be in the form of a matrix, the latter generates a plurality of diffraction orders in the focal plane 10 of the third imaging means 9 in periodic continuation.
  • This periodic repetition has a periodicity interval in the focal plane 10 whose magnitude is reciprocal to the pitch of the micro SLM 8.
  • the pitch corresponds to the distance of the scanning locations in the micro-SLM 8.
  • the second imaging means 5 forms the periodic distribution in the focal plane 10 into the observer plane 6.
  • An observer within a diffraction order in the observer plane 6 would indeed see the reconstructed scene 13 undisturbed with one eye, but the other eye of the observer could simultaneously perceive the higher diffraction orders as disturbances.
  • the periodicity angle can be described in approximation by ( ⁇ / pitch).
  • Wavelength of ⁇ 500 nm and a pitch of 10 microns in the micro-SLM 8, a diffraction angle of about ⁇ 1/20 rad would be achieved.
  • This angle corresponds to a focal length of the third imaging means 9 of 20 mm, a lateral extent of the periodicity interval of about 1 mm.
  • a diaphragm 16 is arranged in the focal plane 10 behind the first imaging means 4, which transmits only one periodicity interval or only the desired diffraction order.
  • the aperture acts as a low, high or band pass filter in this case.
  • the aperture 16 is imaged via the second imaging means 5 in the observer plane 6 and forms there the observer window 15.
  • the advantage of the presence of the aperture 16 in the projection device is that prevents crosstalk of other periods to the other eye or eyes of another observer becomes.
  • a prerequisite for this, however, is a band-limited spatial frequency spectrum of the micro-SLM 8.
  • OASLM Optically addressable light modulators
  • the three-dimensional scene in the focal plane 10 will therefore be continued periodically.
  • the three-dimensional scene will require coding of the hologram 2 on the micro SLM 8 whose spatial frequency spectrum is greater than the periodicity interval in the focal plane 10. This then leads to overlaps of the diffraction orders.
  • the diaphragm 16 in this focal plane 10 would then cut off an information-carrying part of the diffraction order used and, on the other hand, allow higher diffraction orders to pass.
  • the three-dimensional scene in the spatial frequency spectrum of the focal plane 10 can be limited by preceding filtering.
  • the previous filtering or the limitation of the bandwidth is already taken into account in the calculation of the hologram 2 and included in the calculation.
  • the aperture 16 in the focal plane 10 then blocks the higher diffraction orders without limiting the selected diffraction order.
  • the previously caused crosstalk to the other eye or eyes of another observer is suppressed or prevented.
  • the aperture 16 can also be extended to a spatial frequency filter.
  • the spatial frequency filter is a complex-valued modulation element that changes the incident wave in its amplitude and / or phase.
  • the spatial frequency filter still serves other functions, e.g. for suppressing aberrations of the third imaging means 9.
  • a position detection system 17 is included in the projection device for tracking the observer window 15, which detects the current eye position of the
  • the coding of the hologram 2 on the micro SLM 8 can thus be adapted according to the current eye position.
  • the reconstructed scene 13 is thereby recoded in such a way that it is shifted horizontally and / or vertically as a function of the position of the observer and / or becomes visible at an angle.
  • space-solid representations are provided with a realistic change of perspective and representations with exaggerated change of perspective. The latter is understood to mean that the angle and position change of the object is greater than the angle and position change of the observer.
  • the projection device has a deflection element, not shown here in FIG. 1, which is shown in more detail in FIG.
  • the observer window 15 does not permit the simultaneous observation of the reconstructed scene 13 with both eyes.
  • the other eye of the viewer can then be controlled sequentially in another viewer window or simultaneously in a parallel beam path.
  • sufficiently high resolution of the micro SLM 8 can be achieved by spatial Multiplexing the holograms for the right and the left eye are encoded on a micro SLM.
  • the reconstruction will be done only vertically.
  • the spatial frequency spectrum of the spatial light modulator in the focal plane 10 only in the vertical direction on a periodic repetition.
  • the light wave leaving the one-dimensional spatial light modulator expands accordingly in the horizontal direction.
  • a focusing perpendicular to the reconstruction direction is therefore to be carried out by additional focusing optical elements, for example cylindrical lenses.
  • FIG. 2 shows a section of the projection device shown in FIG. This section shows the micro-SLM 8 with the imaging means 4 and 9 and the diaphragm 16.
  • an inclined planar wavefront 18 is used in this embodiment. This is particularly advantageous if the detour phase coding is applied in hologram 2.
  • the detour phase coding that is with a pure amplitude hologram, the inclined wave hits adjacent pixels with the required phases. For example, with proper choice of wavefront tilt, all third pixels in their phases match (Burckhardt coding). Three pixels each encode a complex value.
  • the detour-phase coding blocks except the most used 1st or -1. Diffraction order all other diffraction orders.
  • FIG. 3 likewise shows a section of the projection device shown in FIG. 1, wherein a converging shaft 19 is used for the reconstruction instead of the plane wave incident perpendicularly.
  • the third imaging means 9 can be dispensed with if the converging shaft 19 is adjusted so that the first imaging means 4 is arranged in the focus of the converging wave 19, and the spatial frequency spectrum of the radiation beam on the focal plane 10 SLM 8 encoded hologram 2 is created. As the convergence of the incident wave changes, the point of convergence shifts along the optical axis 11 accordingly.
  • FIG. 4 shows a further embodiment of the projection device according to the invention with a reflective micro SLM 8 and a beam splitter element 20.
  • the beam splitter element 20 is arranged between the third imaging means 9 and the first imaging means 4 for beam guidance of the impinging plane wave 7.
  • the beam splitter element 20 may be a simple or dichroic splitter cube, a semitransparent mirror, or another beam injection means.
  • the micro-SLM 8 in this embodiment is a reflective micro-SLM and thus must be covered by the reflection of a double path of the light, the coding of the hologram 2 is adjusted accordingly.
  • the coupling of the light wave 7 via a dichroic beam splitter is particularly advantageous in the case of sequential reconstruction of the scene 13 in the three primary colors RGB (red-green-blue).
  • the three light sources for the individual primary colors are not shown in this embodiment.
  • the reconstruction of the scene is carried out as described for FIG.
  • the particular advantage of the sequential reconstruction lies in the identical optical beam path. Only the coding has to be adapted to the reconstruction with different wavelengths ⁇ .
  • a further development of this exemplary embodiment can be that a separate channel is created for each of the three primary colors RGB, which contains a light source in a specific base color, a micro SLM 8, imaging means 4 and 9 and a diaphragm 16 or a spatial frequency filter.
  • the third imaging means 9 omitted in converging waves of lighting.
  • beam splitter elements can also be used beam splitter elements.
  • a beam splitter element can be provided which is made up of four juxtaposed individual prisms, between which are dichroic layers with different wavelength-dependent transmission and reflection.
  • the light of the channel of a base color is coupled, the superimposed emerges on the fourth side surface. This combined light from the three primary colors then passes to the second imaging means 5 to reconstruct the colored scene.
  • the second imaging means 5 can be shared for all three channels. In this way, the color reconstruction of the scene takes place simultaneously.
  • each channel contains a monochromatic light source of a primary color, a micro-SLM 8, imaging means 4 and 9 and a diaphragm 16.
  • the second imaging means 5 can also be shared here for both channels. The two channels form their viewer window on the eyes of the beholder.
  • each channel containing three channels corresponding to the three basic colors RGB is also possible.
  • the observer window 15 can be tracked according to the eye position when the observer moves.
  • the tracking of the observer window 15 is shown in principle.
  • Baffle elements 21 may be mechanical deflection elements, such as polygon mirrors, galvanomirrors, prisms, or also optical deflection elements, such as controllable gratings or other diffraction elements, are used.
  • the deflecting element 21 has a function of a controllable prism.
  • the deflection element 21 is arranged near the second imaging means 5, ie in the beam direction in front of or behind it, or integrated into the imaging means 5 itself.
  • This deflecting element 21 optionally has the effect of a lens in addition to the action of a prism. As a result, a lateral and optionally an axial tracking of the observer window 15 is achieved.
  • Such a deflecting element 21 with a prismatic function can be produced, for example, by embedding prism-shaped elements filled with birefringent liquid crystals in a substrate of transparent material or being surrounded by a substrate having a different refractive index than the elements.
  • the angle through which a light beam is deflected by one of these elements depends on the ratio of refractive indices of the substrate material and the liquid crystal. With an electric field applied to these elements, the alignment of the liquid crystals and thus the effective refractive index are controlled. In this way, the deflection angle can be controlled with an electric field and thus the observer window 15 can be tracked to the observer.
  • the first imaging means 4 and the aperture 16 must be moved in accordance with the new position of the focal point in the focal plane 10.
  • the zeroth diffraction order of the micro-SLM 8 is arranged around the focal point in the focal plane 10 around.
  • FIG. 7 shows a further embodiment of the invention
  • the procedure of the reconstruction corresponds to that described in Figure 1 way.
  • the first imaging means 4 does not form the micro SLM 8 in the plane 12 but in a plane 23 on the concave mirror 22 or in the immediate vicinity.
  • the viewer window 15 is formed in accordance with this reflection.
  • the reconstruction space 14 in which the reconstructed scene 13 is to be observed is formed between the viewer window 15 and the concave mirror 22.
  • the reconstruction space 14 may, as already mentioned, extend rearwardly as far as possible beyond the concave mirror 22. In this way, a more compact projection device can be created.
  • Another advantage of the use of the concave mirror 22 is the better achievable aberration, simpler manufacturing and low weight in contrast to the use of a lens.
  • This imaging means 5 may be implemented as a holographic optical element (HOE) or diffractive optical element (DOE).
  • the imaging means 5 has a phase pattern which, after reflection, converges the reconstruction wave into the viewer window 15.
  • the imaging means 5 embodied as HOE or DOE fulfills the same function as the concave mirror 22.
  • the advantage of a HOE or a DOE lies in a flat configuration and in a cost-effective production.
  • Such mirrors may be prepared by known methods, e.g. interferometrically, lithographically, by embossing, molding and then curing, extruding, or otherwise prepared. They consist of photo or resist material, of polymers, of metal, glass or other substrates. You can also have reflective layers on a relief.
  • FIG. 8 shows the projection device according to FIG. 1 when viewing a reconstructed point 24 of the scene 13.
  • the relatively large second imaging means 5 in contrast to the two imaging means 4 and 9 need only be aberration-free in small areas.
  • only a reconstructed point 24 of the scene 13 is considered, which is made up of many points. The point 24 is visible only within the viewer window 15.
  • Observer window 15 serves as a window through which the observer can observe the reconstructed scene 13. So that no overlaps arise from higher diffraction orders, the bandwidth-limited coding of the hologram 2 has already been described. It ensures that the diffraction orders in level 10 do not overlap. The same applies to the image in the observer plane 6.
  • Each point of the reconstructed scene 13 is generated only by a part of the micro-SLM 8 on the second imaging means 5.
  • the corresponding projection of the edge rays of the observer window 15 through the point 24 onto the second imaging means 5 clearly shows a small area of the imaging means 5, which contributes to the reconstruction of the point 24. That is, such an area is limited to each scene point on the imaging means 5.
  • the projection apparatus not only utilizes the micro SLM 8 to reconstruct very large two- and three-dimensional scenes 13 formed by the viewer window 15 in the reconstruction space 14, but also advantageously uses it for corrections of the optical imaging means 4, 5, and 9
  • aberration-free imaging agents should be used. Examples of the corrections of the aberrations will be described below.
  • Aberrations of the third imaging means 9 manifest themselves as phase errors by which the wavefront deviates from the ideal wave.
  • the wave should be diffraction-limited focused in the plane 10, in which the first imaging means 4 and a spatial frequency filter 16 as an aperture for suppressing unwanted orders and for other functions , how to correct aberrations.
  • the greatly enlarged image of the micro SLM 8 by the first imaging means 4 on the second imaging means 5 is regularly subject to aberrations.
  • Magnifying optics for the imaging means 4 are, for example, projection optics, as used in rear-projection TVs and are also commercially available. Image sharpness is an important criterion, so that mainly spherical aberrations, but also coma and astigmatism for these optics are already largely suppressed. Although residual distortion and field curvature are tolerable to the viewer of such devices in the projection, these aberrations in the present holographic projection device create significant distortions in the reconstruction.
  • the distortion of the first imaging means 4 means a lateral geometric deviation of the magnified image of the micro SLM 8 onto the imaging means 5. The waves emanating from the second imaging means 5 then no longer converge at the intended position of the reconstructed object point, but are displaced.
  • a serious aberration is the curvature of the image when the micro SLM 8 is imaged onto the second imaging means 5.
  • the curvature of the image primarily means that the required phase values on the imaging means 5 are distorted, which has the effect of three-dimensional distortion, ie lateral and axial .
  • Both effects, field curvature and distortion, as well as coma and astigmatism can indeed be kept sufficiently small with a corresponding design and low manufacturing tolerances of the first imaging means 4, but only with increased effort.
  • the phase distortion due to the field curvature in the projection device can be compensated by the micro SLM 8. These phase errors can be corrected by an additional phase deviation.
  • coma and astigmatism can be reduced by coding.
  • the distortion can be compensated, for example, by selecting the pixels of the micro SLM 8 by encoding the hologram values on the pixel positions determined in consideration of the distortion.
  • the aberrations of the second imaging means 5 are also compensated by means of the micro SLM 8.
  • the deviations of the waves emanating from the second imaging means 5 must generally be well below ⁇ / 10. This in turn requires significant expenses.
  • the aberrations with respect to the second imaging means 5 can thus be corrected simply by corresponding coding.
  • all aberrations at the imaging means 4, 5 and 9 can be reduced or compensated by the micro SLM 8.
  • the aberrations are determined appropriately before reconstruction.
  • the thus calculated phase errors can be corrected by a corresponding additional phase deviation of the micro SLM 8.
  • the present projection apparatus allows low-expansion spatial light modulators to be used for reconstruction and viewing of large two- or three-dimensional scenes.
  • the viewer (s) can move in the observer plane 6 while observing a reconstructed scene.
  • Two- and three-dimensional scenes can be displayed simultaneously or one after the other.
  • the projection device consists of commercially available optical elements with relatively low manufacturing accuracy and aberration requirements.
  • the imaging means 4 and 5 can be corrected by the micro SLM 8 and, secondly, require only a small wavefront distortion over a small area of the large imaging means 5.
  • the projection takes place near or on the imaging means 5.
  • the hologram 2 is calculated in such a way that a two-dimensional scene is reconstructed in the plane 12 or 23 of the second imaging means 5.
  • the observer can shift a plane in which a reconstruction of the two-dimensional scene takes place by observing the scene by recalculating the hologram 2 axially. This means that the presentation can be consulted or moved away from the viewer. Likewise, details can be extracted to be more closely watched by the viewer. These actions can be interactively made by the respective viewer himself.
  • Possible fields of application of the holographic projection device can be displays for a two- and / or three-dimensional representation for the private and work area, such as for example computers, television, electronic games, automotive industry for the display of information or entertainment, medical technology, in particular for Minimally invasive surgery or the spatial representation of tomographically acquired data or even for military technology for the representation of terrain profiles.
  • the present projection device can also be used in other areas not mentioned here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Holo Graphy (AREA)
PCT/DE2006/000896 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen Ceased WO2006119760A2 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020077029200A KR101277370B1 (ko) 2005-05-13 2006-05-12 장면의 홀로그래픽 재생을 위한 투사 장치 및 투사 방법
CA002608290A CA2608290A1 (en) 2005-05-13 2006-05-12 Projection device and method for holographic reconstruction of scenes
CN2006800165633A CN101176043B (zh) 2005-05-13 2006-05-12 用于场景全息再现的投射装置和方法
PCT/DE2006/000896 WO2006119760A2 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
EP06742375A EP1880252B1 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
JP2008510405A JP5015913B2 (ja) 2005-05-13 2006-05-12 シーンのホログラフィック再構成を行う投影装置及び方法
BRPI0612442-9A BRPI0612442A2 (pt) 2005-05-13 2006-05-12 dispositivo de imagem e método para a reconstrução de cenas com hologramas de vìdeo
US11/914,278 US9116505B2 (en) 2005-05-13 2006-05-12 Projection device and method for holographic reconstruction of scenes
DE502006001767T DE502006001767D1 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
AT06742375T ATE410719T1 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
US14/828,973 US9513599B2 (en) 2005-05-13 2015-08-18 Projection device and method for holographic reconstruction of scenes
US15/365,116 US10613479B2 (en) 2005-05-13 2016-11-30 Projection device and method for the holographic reconstruction of scenes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005023743.6A DE102005023743B4 (de) 2005-05-13 2005-05-13 Projektionsvorrichtung und Verfahren zur holographischen Rekonstruktion von Szenen
DE102005023743.6 2005-05-13
PCT/DE2006/000896 WO2006119760A2 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/914,278 A-371-Of-International US9116505B2 (en) 2005-05-13 2006-05-12 Projection device and method for holographic reconstruction of scenes
US14/828,973 Division US9513599B2 (en) 2005-05-13 2015-08-18 Projection device and method for holographic reconstruction of scenes

Publications (2)

Publication Number Publication Date
WO2006119760A2 true WO2006119760A2 (de) 2006-11-16
WO2006119760A3 WO2006119760A3 (de) 2007-03-08

Family

ID=40090154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000896 Ceased WO2006119760A2 (de) 2005-05-13 2006-05-12 Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen

Country Status (10)

Country Link
US (2) US9116505B2 (enExample)
EP (1) EP1880252B1 (enExample)
JP (1) JP5015913B2 (enExample)
KR (1) KR101277370B1 (enExample)
CN (1) CN101176043B (enExample)
AT (1) ATE410719T1 (enExample)
BR (1) BRPI0612442A2 (enExample)
CA (1) CA2608290A1 (enExample)
DE (1) DE502006001767D1 (enExample)
WO (1) WO2006119760A2 (enExample)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031707A1 (de) * 2006-09-14 2008-03-20 Seereal Technologies S.A. Verfahren und wiedergabevorrichtung mit mitteln zum nachführen eines betrachterfensters
DE102007005822A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
DE102007005823A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Optische Wellenfrontkorrektur für ein holographisches Projektionssystem
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
WO2008138986A2 (en) 2007-05-16 2008-11-20 Seereal Technologies S.A. Holographic display with microprism array
WO2008138981A2 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Analytisches verfahren zur berechnung von videohologrammen in echtzeit
DE102007023740A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
DE102007023737A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline
DE102007024236A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen
DE102007024237A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
DE102007023739A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit
WO2008110476A3 (de) * 2007-03-09 2009-08-20 Seereal Technologies Sa Holographisches projektionsdisplay mit korrigierter phasenkodierung
JP2010501905A (ja) * 2006-09-01 2010-01-21 シーリアル テクノロジーズ ソシエテ アノニム 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法
JP2010501903A (ja) * 2006-09-01 2010-01-21 シーリアル テクノロジーズ ソシエテ アノニム サブホログラムを使用してビデオホログラムをリアルタイムに生成する方法
JP2010513964A (ja) * 2006-12-21 2010-04-30 シーリアル テクノロジーズ ソシエテ アノニム 可視領域を拡大するためのホログラフィック投影デバイス
JP2010518420A (ja) * 2007-02-06 2010-05-27 バイエル・イノヴェイション・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ホログラフィック記憶媒体に記憶されたホログラムを読み取るためのホログラフィック記憶装置、およびこれを実現する方法
JP2010525384A (ja) * 2007-04-18 2010-07-22 シーリアル テクノロジーズ ソシエテ アノニム 光変調器を使用してホログラフィック再構成を生成するデバイス
JP2010528330A (ja) * 2007-05-21 2010-08-19 シーリアル テクノロジーズ ソシエテ アノニム 拡大可視領域を使用するホログラフィック再構成システム及び方法
JP2010529485A (ja) * 2007-05-24 2010-08-26 シーリアル テクノロジーズ ソシエテ アノニム 自動立体視ディスプレイのための指向性制御照明装置
WO2010149588A1 (de) 2009-06-23 2010-12-29 Seereal Technologies S.A. Räumliche lichtmodulationseinrichtung zum modulieren eines wellenfeldes mit komplexer information
EP2317367A1 (en) * 2009-10-28 2011-05-04 Juan Dominguez-Montes Stereoscopic reproduction system
WO2012004016A1 (de) 2010-07-06 2012-01-12 Seereal Technologies S.A. Strahlenaufweitung und verschiedenartige kollimatoren für holografische bzw. stereoskopische displays
US8368743B2 (en) 2006-09-01 2013-02-05 Seereal Technologies S.A. Interface and circuit arrangement, in particular for holographic encoding units or holographic reproduction devices
CN101743519B (zh) * 2007-05-16 2013-04-24 视瑞尔技术公司 全息显示装置
WO2013104781A1 (de) 2012-01-11 2013-07-18 Seereal Technologies S.A. Optische vorrichtung zum beleuchten einer pixelmatrix und/oder eines steuerbaren räumlichen lichtmodulators für ein display
JP2016035580A (ja) * 2008-07-10 2016-03-17 リアル ビュー イメージング リミテッド ホログラフィディスプレイ
WO2016156287A1 (de) 2015-04-01 2016-10-06 Seereal Technologies S.A. Verfahren zur berechnung von hologrammen zur holographischen rekonstruktion von zweidimensionalen und/oder dreidimensionalen szenen
US9581965B2 (en) 2007-05-16 2017-02-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218211B2 (en) * 2007-05-16 2012-07-10 Seereal Technologies S.A. Holographic display with a variable beam deflection
DE102007023738A1 (de) * 2007-05-16 2009-01-08 Seereal Technologies S.A. Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display
DE102007025069B4 (de) 2007-05-21 2018-05-24 Seereal Technologies S.A. Holographisches Rekonstruktionssystem
DE102007036127A1 (de) * 2007-07-27 2009-01-29 Seereal Technologies S.A. Holographische Rekonstruktionseinrichtung
US7988297B2 (en) * 2007-10-19 2011-08-02 Look Dynamics, Inc. Non-rigidly coupled, overlapping, non-feedback, optical systems for spatial filtering of fourier transform optical patterns and image shape content characterization
DE102008015312A1 (de) * 2008-03-20 2009-10-01 Siemens Aktiengesellschaft Displaysystem zur Wiedergabe medizinischer Hologramme
USD666663S1 (en) 2008-10-20 2012-09-04 X6D Limited 3D glasses
USRE45394E1 (en) 2008-10-20 2015-03-03 X6D Limited 3D glasses
USD624952S1 (en) 2008-10-20 2010-10-05 X6D Ltd. 3D glasses
USD603445S1 (en) 2009-03-13 2009-11-03 X6D Limited 3D glasses
CA2684513A1 (en) 2008-11-17 2010-05-17 X6D Limited Improved performance 3d glasses
US8542326B2 (en) 2008-11-17 2013-09-24 X6D Limited 3D shutter glasses for use with LCD displays
USD646451S1 (en) 2009-03-30 2011-10-04 X6D Limited Cart for 3D glasses
USD650956S1 (en) 2009-05-13 2011-12-20 X6D Limited Cart for 3D glasses
USD672804S1 (en) 2009-05-13 2012-12-18 X6D Limited 3D glasses
EP2470965A4 (en) * 2009-08-25 2013-02-27 Lg Electronics Inc APPARATUS AND METHOD FOR RECONSTRUCTING A HOLOGRAM
CN102640045B (zh) * 2009-10-30 2016-05-11 皇家飞利浦电子股份有限公司 光束操纵装置
USD671590S1 (en) 2010-09-10 2012-11-27 X6D Limited 3D glasses
USD669522S1 (en) 2010-08-27 2012-10-23 X6D Limited 3D glasses
USD692941S1 (en) 2009-11-16 2013-11-05 X6D Limited 3D glasses
USD662965S1 (en) 2010-02-04 2012-07-03 X6D Limited 3D glasses
USD664183S1 (en) 2010-08-27 2012-07-24 X6D Limited 3D glasses
US8913149B1 (en) 2010-11-30 2014-12-16 Integrity Applications Incorporated Apparatus and techniques for enhanced resolution imaging
JP2012242513A (ja) * 2011-05-17 2012-12-10 National Institute Of Information & Communication Technology 電子ホログラフィ表示装置
KR101507202B1 (ko) * 2011-11-16 2015-04-08 엘지디스플레이 주식회사 투과형 액정표시패널을 이용한 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
US9581966B1 (en) 2012-02-15 2017-02-28 Integrity Applications Incorporated Systems and methodologies related to 3-D imaging and viewing
CN103309132B (zh) * 2012-03-13 2015-11-25 江苏慧光电子科技有限公司 全息投影照明系统
US9354606B1 (en) 2012-07-31 2016-05-31 Integrity Applications Incorporated Systems and methodologies related to generating projectable data for 3-D viewing
USD711959S1 (en) 2012-08-10 2014-08-26 X6D Limited Glasses for amblyopia treatment
US9219905B1 (en) 2012-08-31 2015-12-22 Integrity Applications Incorporated Systems and methodologies related to formatting data for 3-D viewing
US9442460B2 (en) * 2012-10-31 2016-09-13 Lg Display Co., Ltd. Digital hologram display device
KR101423163B1 (ko) * 2012-11-19 2014-07-28 전자부품연구원 홀로그래픽 프린지 패턴을 호겔 단위로 필터링하여 홀로그래픽 기록매질에 기록하는 홀로그래픽 프린터 및 그의 홀로그래픽 프린팅 방법
US9674510B2 (en) * 2012-11-21 2017-06-06 Elwha Llc Pulsed projection system for 3D video
US20140268277A1 (en) * 2013-03-14 2014-09-18 Andreas Georgiou Image correction using reconfigurable phase mask
KR102046104B1 (ko) * 2013-03-19 2019-11-18 삼성전자주식회사 홀로그래픽 3차원 영상 디스플레이 장치 및 상기 홀로그래픽 3차원 영상 디스플레이 장치용 조광 유닛
FR3010198B1 (fr) * 2013-09-05 2016-12-23 Commissariat Energie Atomique Dispositif emissif lumineux a structures diffractives et a hologramme synthetique
WO2015173210A1 (en) * 2014-05-13 2015-11-19 Agfa Healthcare Inc. A system and a related method for automatically selecting a hanging protocol for a medical study
CN105487238B (zh) * 2014-09-19 2018-06-29 上海和辉光电有限公司 应用于立体显示器的像素结构
US10379496B2 (en) 2014-12-08 2019-08-13 Levent Onural System and method for displaying and capturing holographic true 3D images
KR101800929B1 (ko) * 2015-01-29 2017-11-23 한국전자통신연구원 홀로그래픽 디스플레이 왜곡 보정 방법 및 장치
WO2016153083A1 (ko) * 2015-03-20 2016-09-29 전자부품연구원 웨지 프리즘을 이용한 테이블탑형 홀로그래픽 디스플레이 시스템
KR101842753B1 (ko) * 2015-12-27 2018-03-28 전자부품연구원 시각도 다중화에 의한 홀로그래픽 디스플레이 방법 및 장치
CN105629695B (zh) * 2016-01-13 2019-01-18 河北工程大学 一种基于相位层叠衍射的全息成像方法
DE102016100793A1 (de) * 2016-01-19 2017-07-20 Seereal Technologies S.A. Verfahren und Vorrichtung zur Kodierung von komplexwertigen Signalen für die Rekonstruktion von dreidimensionalen Objekten
CN105487244B (zh) * 2016-01-21 2020-02-14 四川大学 基于全息光学元件的集成成像多视3d显示
US10310284B1 (en) * 2016-07-09 2019-06-04 Mary Gormley Waldron Apparatus and method for projecting three-dimensional holographic images
CN105954992B (zh) 2016-07-22 2018-10-30 京东方科技集团股份有限公司 显示系统和显示方法
JP6762171B2 (ja) * 2016-08-31 2020-09-30 浜松ホトニクス株式会社 データ作成装置、光制御装置、データ作成方法、及びデータ作成プログラム
CN107783401B (zh) * 2016-08-31 2019-09-03 京东方科技集团股份有限公司 一种显示装置及其实现全息显示的方法
CN107966892B (zh) * 2016-10-20 2020-06-02 京东方科技集团股份有限公司 一种全息显示装置及其控制方法
KR102732515B1 (ko) * 2016-11-10 2024-11-20 삼성전자주식회사 확장된 시야창을 제공하는 홀로그래픽 디스플레이 장치
KR102372089B1 (ko) * 2017-03-30 2022-03-08 삼성전자주식회사 변경 가능한 시야창을 갖는 홀로그래픽 디스플레이 장치
KR101995122B1 (ko) * 2017-06-20 2019-07-02 한국과학기술원 산란층을 이용하여 3차원 홀로그래픽 영상을 녹화 재생하는 방법 및 장치
JP7485598B2 (ja) * 2017-10-18 2024-05-16 シーリアル テクノロジーズ ソシエテ アノニム 大きな視野を生成するための表示装置および方法
WO2019122295A2 (de) * 2017-12-21 2019-06-27 Seereal Technologies S.A. Anzeigevorrichtung und verfahren zur nachführung eines virtuellen sichtbarkeitsbereichs
KR102768060B1 (ko) * 2017-12-28 2025-02-18 한국전자통신연구원 홀로그램 디스플레이 장치 및 그 방법
CN115493479B (zh) 2018-01-16 2025-05-27 太平洋灯光全息图公司 使用电磁场计算的三维显示系统
WO2020176783A1 (en) * 2019-02-28 2020-09-03 Magic Leap, Inc. Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays
CN110442006B (zh) * 2019-06-28 2021-08-27 京东方科技集团股份有限公司 全息再现装置、全息再现系统和全息显示系统
KR102519587B1 (ko) * 2019-12-11 2023-04-10 한국전자통신연구원 공간 광변조기(slm)를 이용한 홀로그래픽 광학계 구성 및 홀로그래픽 디스플레이 방법
US11573529B2 (en) 2019-12-11 2023-02-07 Electronics And Telecommunications Research Institute Holographic optical system structure and holographic display apparatus using spatial light modulator
US11360430B2 (en) 2020-09-17 2022-06-14 Pacific Light & Hologram, Inc. Reconstructing objects with display zero order light suppression
KR20220081162A (ko) * 2020-12-08 2022-06-15 삼성전자주식회사 포비티드 디스플레이 장치
US11880164B2 (en) * 2021-01-04 2024-01-23 Electronics And Telecommunications Research Institute Module controlling viewing window, device for hologram display and method for displaying hologram
CN112904691B (zh) * 2021-01-25 2021-09-28 深圳市迈特瑞光电科技有限公司 一种3d模型全息投影系统
GB2609198B (en) * 2021-07-21 2024-07-10 Vividq Ltd Holographic display system and method for reducing effects of quantisation noise
KR102658892B1 (ko) * 2021-12-27 2024-04-18 서울대학교산학협력단 홀로그램의 수차 보정 방법 및 그 장치
US12079928B2 (en) * 2022-05-27 2024-09-03 Htc Corporation Analysing method for gratings, electronic device, and computer readable storage medium
US12272279B2 (en) 2023-05-12 2025-04-08 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12266280B2 (en) 2023-05-12 2025-04-01 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12230176B2 (en) 2023-05-12 2025-02-18 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12300132B2 (en) 2023-05-12 2025-05-13 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12374247B2 (en) 2023-05-12 2025-07-29 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US11900842B1 (en) 2023-05-12 2024-02-13 Pacific Light & Hologram, Inc. Irregular devices
US12254798B2 (en) 2023-05-12 2025-03-18 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12254797B2 (en) 2023-05-12 2025-03-18 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12266279B2 (en) 2023-05-12 2025-04-01 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects with optical devices having in-coupling and out-coupling diffractive structures
US12288490B2 (en) 2023-05-12 2025-04-29 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12315403B2 (en) 2023-05-12 2025-05-27 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12293687B2 (en) 2023-05-12 2025-05-06 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12236816B2 (en) 2023-05-12 2025-02-25 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12243453B2 (en) 2023-05-12 2025-03-04 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12281984B1 (en) 2023-12-21 2025-04-22 Pacific Light & Hologram, Inc. Optical measurements

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2211714B1 (enExample) * 1972-12-25 1977-09-30 Matsushita Electric Industrial Co Ltd
US3924925A (en) * 1974-01-30 1975-12-09 Rca Corp Focussed image hologram projector using a long narrow light source
US4208086A (en) 1976-05-28 1980-06-17 Perry Lawrence M Three-dimensional projection system
JPH05100615A (ja) * 1991-10-08 1993-04-23 Res Dev Corp Of Japan ホログラム再生法及び再生装置
US5469236A (en) * 1995-01-19 1995-11-21 Roessel/Cpt, Inc. Snorkel lens system
EP1008919A1 (fr) * 1998-12-09 2000-06-14 Communauté Européenne (CE) Procédé et dispositif holographiques assistés par ordinateur pour restituer des images tridimensionnelles
JP3914650B2 (ja) * 1999-02-25 2007-05-16 日本放送協会 立体表示装置
JP2000259068A (ja) * 1999-03-04 2000-09-22 Seiko Epson Corp 空間光変調装置及びホログラフィー装置
GB2350963A (en) 1999-06-09 2000-12-13 Secr Defence Holographic Displays
DE60105018T2 (de) * 2000-05-19 2005-09-08 Tibor Balogh Vorrichtung und Verfahren zur Anzeige von 3D-Bildern
US6646773B2 (en) 2001-05-23 2003-11-11 Board Of Regents, The University Of Texas System Digital micro-mirror holographic projection
JP4369639B2 (ja) * 2001-07-04 2009-11-25 日本放送協会 干渉縞作成装置および立体表示装置
JP3886036B2 (ja) * 2001-12-05 2007-02-28 日本放送協会 立体表示装置
CN1605215A (zh) * 2001-12-14 2005-04-06 皇家飞利浦电子股份有限公司 立体显示装置和系统
CA2473549C (en) * 2002-01-16 2011-02-15 Japan Science And Technology Agency Moving-image holographic reproducing device and color moving-image holographic reproducing device
GB0223119D0 (en) 2002-10-05 2002-11-13 Holographic Imaging Llc Reconfigurable spatial light modulators
US7738151B2 (en) * 2004-04-13 2010-06-15 Board Of Regents, The University Of Texas System Holographic projector
DE202004019513U1 (de) * 2004-12-15 2005-02-17 Tesa Scribos Gmbh Vorrichtung zum Auslesen eines Hologramms

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501905A (ja) * 2006-09-01 2010-01-21 シーリアル テクノロジーズ ソシエテ アノニム 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法
US11460808B2 (en) 2006-09-01 2022-10-04 Seereal Technologies S.A. Method for generating a head up display for an aircraft using video holograms in real time with the help of sub-holograms
US10678188B2 (en) 2006-09-01 2020-06-09 Seereal Technologies S.A. Method for generating a head up display for an aircraft using video holograms in real time with the help of sub-holograms
US8368743B2 (en) 2006-09-01 2013-02-05 Seereal Technologies S.A. Interface and circuit arrangement, in particular for holographic encoding units or holographic reproduction devices
US8218210B2 (en) 2006-09-01 2012-07-10 Seereal Technologies S.A. Method for generating computer-generated video holograms in real time by means of propagation
JP2010501903A (ja) * 2006-09-01 2010-01-21 シーリアル テクノロジーズ ソシエテ アノニム サブホログラムを使用してビデオホログラムをリアルタイムに生成する方法
WO2008031707A1 (de) * 2006-09-14 2008-03-20 Seereal Technologies S.A. Verfahren und wiedergabevorrichtung mit mitteln zum nachführen eines betrachterfensters
JP2010513964A (ja) * 2006-12-21 2010-04-30 シーリアル テクノロジーズ ソシエテ アノニム 可視領域を拡大するためのホログラフィック投影デバイス
US8294966B2 (en) 2007-01-31 2012-10-23 Seereal Technologies S.A. Holographic reconstruction system with optical wave tracking means
JP2010517107A (ja) * 2007-01-31 2010-05-20 シーリアル テクノロジーズ ソシエテ アノニム ホログラフィック投影システムのための光波補正
DE102007005823A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Optische Wellenfrontkorrektur für ein holographisches Projektionssystem
US8462409B2 (en) 2007-01-31 2013-06-11 Seereal Technologies S.A. Optical wave correction for a holographic projection system
DE102007005822A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
JP2010517106A (ja) * 2007-01-31 2010-05-20 シーリアル テクノロジーズ ソシエテ アノニム 光波トラッキング手段を有するホログラフィック再構成システム
JP2010518420A (ja) * 2007-02-06 2010-05-27 バイエル・イノヴェイション・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ホログラフィック記憶媒体に記憶されたホログラムを読み取るためのホログラフィック記憶装置、およびこれを実現する方法
US8482828B2 (en) 2007-03-09 2013-07-09 Seereal Technologies S.A. Holographic imaging display with corrected phase coding
WO2008110476A3 (de) * 2007-03-09 2009-08-20 Seereal Technologies Sa Holographisches projektionsdisplay mit korrigierter phasenkodierung
JP2010521004A (ja) * 2007-03-09 2010-06-17 シーリアル テクノロジーズ ソシエテ アノニム 補正位相符号化を備えるホログラフィック投影ディスプレイ
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
US8395833B2 (en) 2007-04-10 2013-03-12 Seereal Technologies S.A. Holographic projection system with optical wave tracking and with means for correcting the holographic reconstruction
JP2010525384A (ja) * 2007-04-18 2010-07-22 シーリアル テクノロジーズ ソシエテ アノニム 光変調器を使用してホログラフィック再構成を生成するデバイス
JP2010527039A (ja) * 2007-05-16 2010-08-05 シーリアル テクノロジーズ ソシエテ アノニム リアルタイムにビデオホログラムを計算する解析的方法
JP2011504240A (ja) * 2007-05-16 2011-02-03 シーリアル テクノロジーズ ソシエテ アノニム マイクロプリズム・アレイを有するホログラフィック・ディスプレイ
DE102007023737A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline
WO2008138980A3 (de) * 2007-05-16 2010-01-14 Seereal Technologies S.A. Verfahren zur generierung von videohologrammen für eine holographische wiedergabeeinrichtung mit wahlfreier adressierung
WO2008138981A3 (de) * 2007-05-16 2009-09-17 Seereal Technologies S.A. Analytisches verfahren zur berechnung von videohologrammen in echtzeit
DE102007023740B4 (de) * 2007-05-16 2009-04-09 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
JP2019204099A (ja) * 2007-05-16 2019-11-28 シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. 通信を行うホログラフィック・ディスプレイ
US9829860B2 (en) 2007-05-16 2017-11-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
US9581965B2 (en) 2007-05-16 2017-02-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
KR101505485B1 (ko) * 2007-05-16 2015-03-24 시리얼 테크놀로지즈 에스.에이. 마이크로프리즘 어레이를 구비한 홀로그래픽 디스플레이
KR101496802B1 (ko) * 2007-05-16 2015-03-02 시리얼 테크놀로지즈 에스.에이. 실시간으로 비디오 홀로그램을 계산하기 위한 분석 방법
DE102007023740A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
KR101496801B1 (ko) * 2007-05-16 2015-03-02 시리얼 테크놀로지즈 에스.에이. 자유 어드레싱 방식 홀로그램 재생 장치용 비디오 홀로그램 생성 방법
WO2008138986A3 (en) * 2007-05-16 2009-01-22 Seereal Technologies Sa Holographic display with microprism array
WO2008138981A2 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Analytisches verfahren zur berechnung von videohologrammen in echtzeit
US8493642B2 (en) 2007-05-16 2013-07-23 Seereal Technologies S.A. Method for generating video holograms for a holographic display device with random addressing
WO2008138986A2 (en) 2007-05-16 2008-11-20 Seereal Technologies S.A. Holographic display with microprism array
US8325401B2 (en) 2007-05-16 2012-12-04 Seereal Technologies S.A. Method for generating video holograms in real-time for enhancing a 3D-rendering graphic pipeline
DE102007023785A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Analytisches Verfahren zu Berechnung von Videohologrammen in Echtzeit
CN101711377B (zh) * 2007-05-16 2013-08-21 视瑞尔技术公司 一种为具有随机寻址的全息显示装置生成视频全息图的方法
DE102007023739A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit
CN101743519B (zh) * 2007-05-16 2013-04-24 视瑞尔技术公司 全息显示装置
DE102007024237A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
JP2010528330A (ja) * 2007-05-21 2010-08-19 シーリアル テクノロジーズ ソシエテ アノニム 拡大可視領域を使用するホログラフィック再構成システム及び方法
US8405891B2 (en) 2007-05-21 2013-03-26 Seereal Technologies S.A. Holographic reconstruction system with an arrangement of controllable microcells
JP2010529483A (ja) * 2007-05-21 2010-08-26 シーリアル テクノロジーズ ソシエテ アノニム 一連の可視領域を使用するホログラフィック再構成システム及び方法
US8294965B2 (en) 2007-05-21 2012-10-23 Seereal Technologies S.A. Holographic reconstruction system and method with a sequence of visibility regions
DE102007024236A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen
JP2010528332A (ja) * 2007-05-21 2010-08-19 シーリアル テクノロジーズ ソシエテ アノニム 制御可能なマイクロセルの構成を有するホログラフィック再構成システム
US8462408B2 (en) 2007-05-21 2013-06-11 Seereal Technologies S.A. Holographic reconstruction system with an optical wave tracking means
JP2010529485A (ja) * 2007-05-24 2010-08-26 シーリアル テクノロジーズ ソシエテ アノニム 自動立体視ディスプレイのための指向性制御照明装置
US10585395B2 (en) 2008-07-10 2020-03-10 Real View Imaging Ltd. Holographic image display system
US20160077489A1 (en) * 2008-07-10 2016-03-17 Real View Imaging Ltd. Holographic image display system
JP2016035580A (ja) * 2008-07-10 2016-03-17 リアル ビュー イメージング リミテッド ホログラフィディスプレイ
US10120335B2 (en) 2008-07-10 2018-11-06 Real View Imaging Ltd. Viewer tracking in a projection system
US12386311B2 (en) 2008-07-10 2025-08-12 Real View Imaging Ltd. Holographic image display system
WO2010149588A1 (de) 2009-06-23 2010-12-29 Seereal Technologies S.A. Räumliche lichtmodulationseinrichtung zum modulieren eines wellenfeldes mit komplexer information
DE102009044910B4 (de) 2009-06-23 2024-09-05 Seereal Technologies S.A. Räumliche Lichtmodulationseinrichtung zum Modulieren eines Wellenfeldes mit komplexer Information
US10234821B2 (en) 2009-06-23 2019-03-19 Seereal Technologies S.A. Spatial light modulator device for the modulation of a wave field with complex information
US12055890B2 (en) 2009-06-23 2024-08-06 Seereal Technologies S.A. Spatial light modulator device for the modulation of a wave field with complex information
US11366426B2 (en) 2009-06-23 2022-06-21 Seereal Technologies S.A. Spatial light modulator device for the modulation of a wave field with complex information
DE102009044910A1 (de) 2009-06-23 2010-12-30 Seereal Technologies S.A. Räumliche Lichtmodulationseinrichtung zum Modulieren eines Wellenfeldes mit komplexer Information
EP2317367A1 (en) * 2009-10-28 2011-05-04 Juan Dominguez-Montes Stereoscopic reproduction system
US10295959B2 (en) 2010-07-06 2019-05-21 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
US9395690B2 (en) 2010-07-06 2016-07-19 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
US11385594B2 (en) 2010-07-06 2022-07-12 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
WO2012004016A1 (de) 2010-07-06 2012-01-12 Seereal Technologies S.A. Strahlenaufweitung und verschiedenartige kollimatoren für holografische bzw. stereoskopische displays
WO2013104781A1 (de) 2012-01-11 2013-07-18 Seereal Technologies S.A. Optische vorrichtung zum beleuchten einer pixelmatrix und/oder eines steuerbaren räumlichen lichtmodulators für ein display
US11460809B2 (en) 2015-04-01 2022-10-04 Seereal Technologies S.A. Method for computing holograms for holographic reconstruction of two-dimensional and/or three-dimensional scenes
DE102015205873A1 (de) 2015-04-01 2016-10-06 Seereal Technologies S.A. Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen
WO2016156287A1 (de) 2015-04-01 2016-10-06 Seereal Technologies S.A. Verfahren zur berechnung von hologrammen zur holographischen rekonstruktion von zweidimensionalen und/oder dreidimensionalen szenen

Also Published As

Publication number Publication date
DE502006001767D1 (de) 2008-11-20
JP2008541159A (ja) 2008-11-20
KR101277370B1 (ko) 2013-06-20
US9513599B2 (en) 2016-12-06
ATE410719T1 (de) 2008-10-15
US20080198431A1 (en) 2008-08-21
JP5015913B2 (ja) 2012-09-05
CN101176043B (zh) 2011-04-20
WO2006119760A3 (de) 2007-03-08
CA2608290A1 (en) 2006-11-16
BRPI0612442A2 (pt) 2010-11-23
KR20080012972A (ko) 2008-02-12
EP1880252A2 (de) 2008-01-23
EP1880252B1 (de) 2008-10-08
CN101176043A (zh) 2008-05-07
US9116505B2 (en) 2015-08-25
US20150355597A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
EP1880252B1 (de) Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
DE102005023743B4 (de) Projektionsvorrichtung und Verfahren zur holographischen Rekonstruktion von Szenen
EP1974246B1 (de) Projektionsvorrichtung zur holographischen rekonstruktion von szenen
DE10353439B4 (de) Einrichtung zur Rekonstruktion von Videohologrammen
DE102007045332B4 (de) Holographisches Display zum Rekonstruieren einer Szene
DE112007003043B4 (de) Holographische Projektionsvorrichtung und Verfahren zum Beobachten einer rekonstruierten Szene
DE102007025069B4 (de) Holographisches Rekonstruktionssystem
DE102004044111B4 (de) Verfahren und Vorrichtung zum Kodieren und Rekonstruieren von computergenerierten Videohologrammen
WO2007131817A1 (de) Vorrichtung zur holografischen rekonstruktion von szenen mit einem nachführsystem
WO2007099458A2 (de) Holographische projektionsvorrictung zur vergrösserung eines rekonstruktionsbereichs
WO2012062681A1 (de) Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
US10613479B2 (en) Projection device and method for the holographic reconstruction of scenes
WO2018146326A2 (de) Lichtleitvorrichtung und anzeigevorrichtung zur darstellung von szenen
WO2018211074A1 (de) Anzeigevorrichtung mit einem lichtleiter
DE102006024356B4 (de) Holographische Projektionsvorrichtung zur Rekonstruktion von Szenen und Verfahren zur holographischen Rekonstruktion
WO2008071588A1 (de) Kopfgehalterte display-einrichtung zur erzeugung von rekonstruktionen dreidimensionaler darstellungen
DE102007018266A1 (de) Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
WO2008092852A1 (de) Holographisches rekonstruktionssystem mit optischen wellennachführmitteln
WO2008141988A1 (de) Holografisches rekonstruktionssystem sowie -verfahren mit einer aneinanderreihung von sichtbarkeitsbereichen
WO2018037077A2 (de) Holographische anzeigevorrichtung
WO2019076963A1 (de) Anzeigevorrichtung und verfahren zur erzeugung eines grossen sichtfeldes
DE102006062377B4 (de) Verfahren und holographische Wiedergabeeinrichtung zum Reduzieren von Speckle
WO2007099456A2 (de) Wellenfrontformvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006742375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008510405

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11914278

Country of ref document: US

Ref document number: 2608290

Country of ref document: CA

Ref document number: 200680016563.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 9275/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007146460

Country of ref document: RU

Ref document number: 1020077029200

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006742375

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0612442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071112

WWG Wipo information: grant in national office

Ref document number: 201918041079

Country of ref document: IN