WO2006115206A1 - 異方性色素膜用組成物、異方性色素膜及び偏光素子 - Google Patents

異方性色素膜用組成物、異方性色素膜及び偏光素子 Download PDF

Info

Publication number
WO2006115206A1
WO2006115206A1 PCT/JP2006/308429 JP2006308429W WO2006115206A1 WO 2006115206 A1 WO2006115206 A1 WO 2006115206A1 JP 2006308429 W JP2006308429 W JP 2006308429W WO 2006115206 A1 WO2006115206 A1 WO 2006115206A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic dye
dye film
film
composition
electron
Prior art date
Application number
PCT/JP2006/308429
Other languages
English (en)
French (fr)
Inventor
Ryuichi Hasegawa
Masaaki Nishimura
Tomio Yoneyama
Hideo Sano
Wataru Shimizu
Masami Kadowaki
Kiyoshi Sugiyama
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP06745560A priority Critical patent/EP1881349A1/en
Priority to US11/912,190 priority patent/US20090040609A1/en
Publication of WO2006115206A1 publication Critical patent/WO2006115206A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/08Disazo dyes from a coupling component "C" containing directive hydroxyl and amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/16Trisazo dyes
    • C09B31/22Trisazo dyes from a coupling component "D" containing directive hydroxyl and amino groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an anisotropic dye having a high dichroic ratio useful for a polarizing plate or the like provided in a display element of a light control element, a liquid crystal element (LCD), or an organic electoluminescence element (OLE D)
  • the present invention relates to a film, a composition for an anisotropic dye film capable of obtaining the anisotropic dye film, and a polarizing element using the anisotropic dye film.
  • a linearly polarizing plate and a circularly polarizing plate are used in order to control optical rotation and birefringence in display.
  • OLEDs also use circularly polarizing plates to prevent reflection of outside light.
  • iodine has been widely used as a dichroic material in these polarizing plates (polarizing elements).
  • polarizing elements since iodine has a high sublimation property, when used in a polarizing element, its heat resistance and light resistance are not sufficient, and the polarization characteristics deteriorate over time.
  • Patent Document 1 for example, a polarizing element using an organic dye as a dichroic substance (dichroic dye) has been studied.
  • the dichroic dyes described in these documents form a lyotropic liquid crystal phase in a solvent such as water or alcohol, and are easily aligned by an external field such as an alignment substrate, a flow field, an electric field, or a magnetic field.
  • an external field such as an alignment substrate, a flow field, an electric field, or a magnetic field.
  • CI-364 Brilliant Yellow
  • Methylene Blue CI-922
  • Amaranth CI-184
  • a negative dichroic dye film can be obtained. It has been known.
  • the resulting dichroic dye film has a drawback of low dichroism. Although there is a problem that dichroism is reduced due to schlieren defects peculiar to liquid crystals as described in the literature and defects due to drying strain that occurs during drying, even if the liquid crystal is perfectly oriented, it is a bigger problem. Was left.
  • the alignment axis of the liquid crystal and the absorption axis of the dye are completely coincident with each other.
  • the film is a negative dichroic dye film
  • the alignment axis and the absorption axis of the dye be completely perpendicular.
  • the alignment axis of the liquid crystal is the average of the long axis of the aggregate in the solvent
  • Non-Patent Documents 4 and 5 it is more stable that these aromatic rings are stacked so that the rings are not vertically stacked due to electrostatic repulsion of ⁇ electrons. If it is in an aqueous solution, it may become more energetically stable if it is stacked vertically to reduce the contact area between the solvent water and the hydrophobic aromatic ring. This effect cannot be expected from the isotropic membrane.
  • the long axis of the aggregate and the dye molecule surface are easy to assume an intermediate state, whether they are perpendicular or parallel.
  • the angle between the long axis of the aggregate and the normal of the dye molecule surface is a
  • a positive dichroic dye film if 45 ° ⁇ ⁇ 90 °
  • a negative value if 0 ° ⁇ ⁇ ⁇ 45 °.
  • an ideal dichroic dye film has did not become.
  • Non-Patent Document 6 In response to this problem, as described in Non-Patent Document 6, an attempt was made to correct the deviation of the association of aromatic rings by blending iodine, but the effect was insufficient. At the same time, there is a problem that it has the same drawbacks as the conventional iodine type polarizing plate.
  • Patent Document 1 US Patent No. 2400877
  • Non-patent document 1 rhe Fixing of Molecular Orientation, J. F. Dreyer, Physical and Colloid Chemistry, 1948, Vol.52, p.808
  • Non-patent document 2 "Light Polarization from Films of Lyotropic Nematic Liquid Crystals", J. F. Dreyer, Journal de Physique, 1969, Vol. 4, p. 114
  • Non-Patent Document 3 “Chromonic Liquid Crystal Phases”, J. Lydon, Current Opinion in Colloid & Interface Science, 1998, Vol.3, p.458—466
  • Patent Document 4 "The Nature of ⁇ - ⁇ Interactions", CA Hunter, et al., Journal of the American Chemical Society, 1990, Vol.112, p.5525
  • Non-Special Reference 5 "Aromatic Interactions", CA Hunter, et al "Journal of the Chemica 1 Society, Perkin Transactions 2, 2001, p.651
  • Non-Patent Document 6 Tetra (tert-butyl) phthalocyanine Cooper-Iodine Complex Film with Large Dichroism Induced by hear", H. Tanaka, et al "Journal of the Chemical Society, Chemical Communications, 1994, p.1851
  • the present invention has been made to solve such a problem.
  • the present invention uses an anisotropic dye film having a high dichroic ratio, a composition for an anisotropic dye film capable of obtaining the anisotropic dye film, and the anisotropic dye film.
  • An object of the present invention is to provide a polarizing element.
  • the first gist of the present invention is characterized by containing an electron-deficient discotic compound and an electron-rich compound. It exists in the composition for anisotropic dye films
  • the electron-rich compound is preferably a pigment (claim 2).
  • the dye is an azo dye (claim 3).
  • the electron-deficient discotic compound force is preferably an aromatic compound or an aza-heterocyclic compound (Claim 4).
  • the electron-deficient discotic compound power is an azo dye containing an anthraquinone derivative or an anthraquinone derivative as a partial structure (claim 5).
  • a second aspect of the present invention resides in an anisotropic dye film characterized by being formed using the anisotropic dye film composition according to the first aspect described above ( Claim 7).
  • the third gist of the present invention is characterized by containing an electron-deficient discotic compound and an electron-rich compound. It exists in an anisotropic dye film (Claim 8).
  • a tilt angle obtained from a ratio of polarized light absorptions having the directional force of (i) and (ii) is an anisotropic dye film characterized by being 10 ° or less (claim 9).
  • the value of the ratio YYZYZ polarization absorption from the direction of the following for CH out-of-plane bending vibration in 800 ⁇ 900cm _ 1 (i) and (ii) is 1 It is an anisotropic dye film characterized by being 8 or more (claim 10).
  • the sixth aspect of the present invention resides in a polarizing element characterized by using the anisotropic dye film according to the second to fifth aspects described above (claim 11).
  • a composition containing an electron-deficient discotic compound and an electron-rich compound is used, or these compounds are made anisotropic.
  • an anisotropic dye film having a high dichroic ratio can be obtained.
  • the "anisotropic dye film” refers to any two directions selected from a total of three directions in the three-dimensional coordinate system in the thickness direction of the dye film and in any two orthogonal planes.
  • Oh It is a dye film having anisotropy in its electromagnetic properties. Electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance. Examples of the film having optical anisotropy such as absorption and refraction include a linearly polarizing film, a circularly polarizing film, a phase difference film, and a conductive anisotropic film. That is, the present invention is more preferably used for a polarizing film that is preferably used for a polarizing film, a retardation film, and a conductive anisotropic film.
  • an electron-deficient disc-like compound may be referred to as “the material for anisotropic dye film of the present invention” or “the material of the present invention”.
  • the "electron-deficient discotic compound” in the present invention also includes a dye having an electron-deficient discotic partial structure.
  • an electron-deficient disc-like compound is sometimes referred to as “the dye for anisotropic dye film of the present invention” or “the dye of the present invention”.
  • electrostatic discoidal compound means, for example, ⁇ Ref. 1, An Electron-Deficient Discotic Liquid-Crystalline Material, K. Pietersers, et al., Chemistry. of Materials, 2001, Vol.13, p.2675), which has a relatively large electron affinity, preferably larger than benzene—20 X 10 _4C) Cm 2 or higher quadrupole
  • z represents a coordinate axis perpendicular to the molecular plane of the plate-like compound.
  • Equation 2 [0034] The electrostatic interaction between the plate-like molecules stacked in the z direction is strongly influenced by the value Q of the zz component.
  • Table 1 shows the Q of typical discoid molecules.
  • Such a value of the quadrupole moment can be measured by, for example, the quantum mechanical calculation described in the following references 2 to 6 or the like, or the method described in the following reference 7 or the like.
  • naphthalene -44.4 6 biphenyl (0 45 °) -41.7 6 benzene -29.7 3 benzene -27.9 2 toluene -26.4 2
  • Reference 4 “Multiple contributions to potentials of mean torque for solutes dissolve d in liquid crystal solvents", JW Emsley et al "Liquid Crystals, 1991, Vol. 9, p.6
  • Reference 5 "The Molecular ZeemanEffect", DH Sutter, WH Flygare, Topics in Current Chemistry, 1976, Vol. 63, p.89.
  • Electron-deficient discotic compounds such as and anthraquinone, are known to have positive quadrupole moments.
  • the electrostatic repulsion of ⁇ electrons is suppressed, and there is no deviation. It is possible to obtain an aggregate that is stacked on top of each other. As a result, the angle formed by the long axis of the aggregate and the dye molecule surface normal (X can be brought close to 0 °, and an ideal dichroic dye film can be obtained.
  • the electron-deficient discotic compound that can be used as the material of the present invention include an aromatic compound or aza heterocyclic compound having a substituent having a high electron affinity. It is done.
  • aromatic compounds include benzenes (perfluorobenzene, benzoquinone, cyanobenzene, nitrobenzene, phthalimide, cyanoquinomethane, etc.), naphthalenes (perfluoronaphthalene, naphthoquinone, cyananophthalene, nitro Naphthalene, cyanonaphthoquinomethane, etc.), anthracene (anthraquinone, etc.), fluorene (nitrofluorenone, etc.)
  • Examples of azaheterocyclic compounds include pyridine, pyrazine, pyrimidine, 1,3,5-triazine, indole, isoindole, quinoline, isoquinoline, quinoxaline and the like.
  • substituents include oxo group, cyano group, nitro group, halogen atom (fluorine atom, chlorine atom, etc.), sulfo group, carboxy group, sulfo group or carboxy group.
  • substituents include alkali metal (sodium) salts, alkaline earth metal salts, and the like.
  • Examples of the electron-deficient discotic compound include aromatic compounds and aza-heterocyclic compounds having one or more substituents having high electron affinity exemplified above. And compounds having one or more ring structures derived from.
  • Electron-Deficient discotic compounds are derived from aromatic compounds or aza heterocyclic compounds having one or more substituents with high electron affinity in one molecule.
  • a compound having a ring structure to be derived as a partial structure is preferably 33 mol% or more, more preferably 50 mol% or more.
  • the mol% of the ring structure (partial structure) in one molecule is calculated by the number power of the ring structure in one molecule.
  • the degree of electron deficiency is further determined by the value of the quadrupole moment.
  • the electron-deficient discotic compound used as the material of the present invention may be a dye.
  • the material of the present invention has a solubility of 0.1% or more with respect to the solvent described later because a solvent is used when an anisotropic dye film is produced by a wet film-forming method. Is preferred.
  • the electron-deficient discotic compound used as the material of the present invention is a dye
  • the dye has an electron-deficient discotic partial structure.
  • the term “electron-deficient disk-shaped partial structure” is used in the above section [1-1. Material for anisotropic dye film of the present invention]. Similar to the “Electron-Defident discoid compound” described above, it means a partial structure with a relatively large electron affinity and a negative quadrupole moment. That is, the dye of the present invention is a dye having such a partial structure in one molecule.
  • Examples of the electron-deficient disc-shaped partial structure include partial structures derived from the aromatic compounds or aza heterocyclic compounds exemplified above, and the electrons exemplified above. Examples thereof include a high affinity and a substituent.
  • the electron-deficient discotic compound represented by the following formula is exemplified by the free acid type.
  • An electron-deficient discotic compound may be one in which a part of the acid group that is used in the free acid form is in a salt form.
  • salt forms include salts of alkali metals such as Na, Li and K, substituted with alkyl groups or hydroxyalkyl groups !, but salts of ammonia and salts of organic amines. It is done.
  • organic amines include lower alkylamines having 1 to 6 carbon atoms, hydroxy-substituted lower alkylamines having 1 to 6 carbon atoms, and carboxy-substituted lower alkylamines having 1 to 6 carbon atoms.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • a compound represented by the following structural formula, B 2 and D 1 are each selected from the following group forces.
  • the above compound preferably has a solubility of 1% by weight or more in a solvent described later, and is a compound that forms a lyotropic liquid crystal phase in any concentration range of 1 to 50% by weight. It is preferable that it is a thing.
  • an azo dye containing an anthraquinone derivative or an anthraquinone derivative as a partial structure is also preferable from the viewpoint of the dichroism of the resulting film.
  • the composition for anisotropic dye film of the present invention is a composition used for forming an anisotropic dye film, and is an electron-deficient discotic compound and electron-rich (Electron). -Rich) y compound. Furthermore, it usually contains a solvent and, if necessary, other components.
  • Solvents include water, water-miscible organic solvents, and water and water-miscible organic solvents. Examples thereof include a mixed solvent. Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, glycols such as ethylene glycol and ethylene glycol, and cellosolves such as methyl and solvate. Any one of these solvents may be used alone, or two or more of them may be used in any combination and ratio.
  • Electron-deficient disc-like compounds may be used alone or in combination of two or more in any combination and ratio.
  • the ratio of the electron-deficient discotic compound in the composition of the present invention is usually 0.1 parts by weight or more, preferably 100 parts by weight or more, preferably The range is 0.2 parts by weight or more, usually 50 parts by weight or less, preferably 40 parts by weight or less. If the ratio of the material of the present invention is below the lower limit of this range, the effect of using an electron-deficient disc-like compound may not be obtained, and the upper limit of this range is exceeded. In this case, the viscosity of the composition as a solution increases, which may be difficult to handle.
  • the composition of the present invention has a force containing an electron-rich compound.
  • This electron-rich compound is usually a dye (hereinafter referred to as a dye). “Electron-rich pigments” may be!).
  • an electron-rich pixel has a relatively small ion-rich potential and has a quadrupole moment Q of less than ⁇ 20 X 10 _4G Cm 2.
  • a pigment containing 50 mol% or more of a disc-like partial structure. The quadrupole moment Q is as described above.
  • electron-rich dyes used in the composition of the present invention include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, condensed polycyclic dyes (perylene). Type, oxazine type) and the like. Among them, alkyl groups and alkoxy Preferred are azo dyes such as benzene and naphthalene substituted with a group, sulfone group, amino group, etc., porphyrins, phthalocyanines and the like, and azo dyes are particularly preferred.
  • any isomer that causes stereoisomerism such as optical isomerism is included in the illustration.
  • Any one of the electron-rich pigments exemplified above may be used alone, or two or more of them may be mixed and used in an arbitrary combination and ratio.
  • the electron-rich pigment used in the composition of the present invention usually has a solubility of 0.1% or more, particularly 1% or more, in the above-mentioned solvent.
  • a compound that forms a lyotropic liquid crystal phase in any concentration range of 0.1 to 50% is preferable.
  • the molecular weight of the electron-rich dye is usually 200 or more, particularly 350 or more, and usually 5000 or less in a free state that does not take a salt form.
  • the range is preferably 3500 or less.
  • Electron-Rich dye is one of the acid groups that can be used in the free acid form.
  • the part may take a salt form.
  • a salt-type dye and a free acid-type dye may be mixed.
  • it when it is obtained in a salt form at the time of production, it may be used as it is, or it may be converted into a desired salt form to use force.
  • Examples of the salt form include salts of alkali metals such as Na, Li and K, substituted with an alkyl group or a hydroxyalkyl group, and may be an ammonium salt or an organic amine.
  • the salt of Examples of organic amines include lower alkylamines having 1 to 6 carbon atoms, hydroxy-substituted lower alkylamines having 1 to 6 carbon atoms, and carboxy-substituted lower alkylamines having 1 to 6 carbon atoms.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • the ratio of the electron-rich pigment in the composition of the present invention is usually 50 parts by weight or less, preferably 40 parts by weight or less when the whole composition is 100 parts by weight. is there. Proportional power of dye S Above this range, the viscosity of the resulting composition solution becomes high! /, Which is preferable because it may be difficult to handle! /.
  • the weight fraction of the electron-deficient discotic compound and the electron-rich pigment is usually preferably in the range of 10Z90 to 90Z10. . Outside this range, the effect of using an electron-deficient discotic compound or an electron-rich pigment may not be obtained, which is not preferable.
  • composition of the present invention contains other components in addition to the above-mentioned solvent, an electron-deficient discotic compound, and an electron-rich dye. Also good.
  • composition of the present invention when the composition of the present invention is applied to a substrate as a dye film-forming solution by a wet film-forming method, which will be described later, the wettability and coatability to the substrate are improved.
  • a surfactant may be added as necessary.
  • the surfactant any of the ionic, cationic and nonionic types can be used.
  • the concentration of the surfactant in the composition of the present invention is usually preferably 0.05% by weight or more and 0.5% by weight or less.
  • Amino acids, hydroxyamines and the like may be used as additives.
  • the weight fraction power between the electron-deficient part and the electron-rich part in all the components of the composition of the present invention is usually 5/95 or more, preferably It is preferably 35Z65 or more, and usually 95Z5 or less, preferably 65/35 or less. Outside this range, the blending effect of each component may be difficult to appear, which is not preferable.
  • the anisotropic dye film of the present invention will be described by dividing it into characteristics relating to the composition, characteristics relating to the manufacturing method, and characteristics relating to the physical properties.
  • the anisotropic dye film of the present invention preferably satisfies all these characteristics, but the anisotropic dye film that satisfies any one of these characteristics does not satisfy the other characteristics. Even when the other characteristics are unknown, the anisotropic dye film of the present invention is applicable.
  • the anisotropic dye film of the present invention is characterized by containing an electron-deficient discotic compound and an electron-rich compound when focusing on its composition. To do.
  • the electron-deficient discoidal compound and the electron-rich compound are as described above. Moreover, the ratio is not particularly limited.
  • the anisotropic dye film of the present invention may further contain other components.
  • the other components include those exemplified as the components contained in the composition of the present invention described above.
  • the anisotropic dye film of the present invention is characterized by being formed using the above-described composition for an anisotropic dye film of the present invention (the composition of the present invention) when focusing on its production method.
  • the anisotropic dye film of the present invention can be produced by forming a film using the above-described composition of the present invention.
  • a film formation method either a dry film formation method or a wet film formation method is used.
  • the composition (aqueous solution) of the present invention used for film formation may exhibit liquid crystallinity, it is preferable to use a wet film formation method.
  • Examples of the dry film forming method include a method in which an unstretched film is produced using the composition of the present invention and a polymer and the resulting unstretched film is stretched.
  • Examples of a method for producing an unstretched film include (a) a method in which a polymer is formed into a film and then dyed using the composition of the present invention, and (b) a polymer Examples thereof include a method of forming a film after adding the composition of the present invention to the solution and dyeing the stock solution. The dyeing, film formation and stretching described above can be performed by the general methods described below.
  • the polymer film is immersed and dyed, then treated with boric acid as necessary, and dried.
  • the temperature of the dyeing bath during immersion is usually in the range of 20 ° C or higher, preferably 30 ° C or higher, and usually 80 ° C or lower, preferably 50 ° C or lower.
  • the dye bath time during immersion is usually in the range of 1 minute or longer, preferably 3 minutes or longer, and usually 60 minutes or shorter, preferably 20 minutes or shorter.
  • the polymer is dissolved in water and Z or a hydrophilic organic solvent such as alcohol, dalyserin, dimethylformamide, etc., and the composition of the present invention is added to the stock solution.
  • Dyeing is performed, and this dyeing stock solution is formed into a film by casting, solution coating, extrusion, or the like to produce a dyed film.
  • the concentration of the high molecular polymer dissolved in the solvent varies depending on the type of high molecular polymer. Usually, it is 5% by weight or more, preferably about 10% by weight or more, and usually 30% by weight or less, preferably 20% by weight. It is about the following.
  • the concentration of the dye dissolved in the solvent is usually 0.1% by weight or more, preferably about 0.8% by weight or more, and usually 5% by weight or less, preferably 2.5% with respect to the polymer. Less than about wt%.
  • the obtained unstretched film is stretched in a uniaxial direction by an appropriate method.
  • the dye molecules are oriented and dichroism is exhibited.
  • the uniaxial stretching method include a method of performing tensile stretching by a wet method, a method of performing tensile stretching by a dry method, and a method of performing inter-roll compression stretching by a dry method.
  • the draw ratio is 2 times or more and 9 times or less.
  • polyvinyl alcohol and its derivatives are used as the high molecular weight polymer, the range of usually 2.5 times or more and 6 times or less is preferable.
  • boric acid treatment is performed for the purpose of improving the water resistance and the degree of polarization of the stretched film.
  • the boric acid treatment improves the light transmittance and the degree of polarization of the anisotropic dye film.
  • the conditions for boric acid treatment vary depending on the type of hydrophilic polymer and dye used, but generally the boric acid concentration is usually 1% by weight or more, preferably about 5% by weight or more. Usually, it is about 15% by weight or less, preferably about 10% by weight or less.
  • the treatment temperature is usually 30 ° C or higher, preferably 50 ° C or higher and usually 80 ° C or lower.
  • the treatment effect will be small, and the force at which the boric acid concentration exceeds 15% by weight Treatment temperature will exceed 80 ° C or more In such a case, the anisotropic dye film becomes fragile, which is not preferable.
  • the thickness of the anisotropic dye film obtained by the dry film-forming method is usually 10 m or more, preferably 30 m or more, and usually 200 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • the wet film forming method various known methods can be used. For example, after preparing the composition of the present invention as a coating solution, it is applied to various substrates such as a glass plate and dried. And a method obtained by aligning and laminating dyes.
  • Examples of the substrate include glass, triacetate, acrylic, polyester, triacetyl cellulose, and urethane-based films.
  • the “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued on October 30, 2000) 22 pages 6 to 239, etc.
  • An alignment treatment layer may be applied by a method.
  • the concentration of the dye in the composition of the present invention is usually 0.1% by weight or more, especially 1% by weight or more, and usually 50% by weight or less, especially 30% by weight or less. Preferably with a range of. If the dye concentration is too low, sufficient dichroism cannot be obtained, and if it is too high, film formation may be difficult.
  • the drying temperature is preferably 0 ° C or higher and 120 ° C or lower, and the humidity is preferably 10% R.
  • the thickness of the anisotropic dye film obtained after drying is usually 50 nm or more, particularly lOOnm or more, and usually less than or equal to Among these, a range of 20 ⁇ m or less, and further 1 ⁇ m or less is preferable.
  • the anisotropic dye film of the present invention obtained by the dry film forming method or the wet film forming method described above is used with a protective layer provided if necessary.
  • This protective layer can be, for example, triacetate, acrylic
  • anisotropic dye film of the present invention It is formed by lamination on the anisotropic dye film of the present invention with a transparent polymer film such as polyester, polyimide, triacetyl cellulose or urethane film, and is provided for practical use.
  • a transparent polymer film such as polyester, polyimide, triacetyl cellulose or urethane film
  • the anisotropic dye film of the present invention is characterized by satisfying at least one of the following (a) and (b) when paying attention to its physical properties.
  • the tilt angle obtained from the ratio of light absorption (hereinafter sometimes simply referred to as “the ratio of polarization absorption from two directions”) is 10 ° or less.
  • the direction that absorbs most visible light parallel to the film surface of the anisotropic dye film is the X direction, and the direction that transmits the most visible light is the Y direction.
  • Infrared absorption spectrum obtained by vertically incident infrared light polarized in the X direction on the film surface is assumed to have a peak intensity around 970 cm _1 as Ax, and infrared light polarized in the Y direction incident perpendicular to the film surface the peak intensity of 970 cm _1 near infrared absorption spectrum obtained by when the Ay, Tilt angle is calculated by the following formula.
  • the direction that absorbs most visible light parallel to the film surface of the anisotropic dye film is the X direction, and the direction that transmits the most visible light is the Y direction.
  • the C—H out-of-plane variable vibration peak in the region of 800 to 900 cm _1 is Lore.
  • the CH out-of-plane bending vibration peak seen in the region of 800 to 900 cm _1 is Lorentzian.
  • the polarizing element of the present invention uses the above-described anisotropic dye film of the present invention. Specifically, the anisotropic dye film of the present invention is directly applied to an electrode substrate or the like constituting these display elements when forming polarizing filters of various display elements such as LCDs and OLEDs. If the base material on which the anisotropic dye film of the invention is formed or the anisotropic dye film of the invention is used is used as a constituent member of these display elements.
  • the anisotropic dye film of the present invention functions as a polarizing film using light absorption anisotropy to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc.
  • a composition that contains nitrile it can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy. Can do.
  • the polarizing element of the present invention uses the above-mentioned anisotropic dye film of the present invention.
  • the polarizing element of the present invention is formed by forming the anisotropic dye film of the present invention on a substrate. In this case, the formed anisotropic dye film itself may be used.
  • the adhesive layer or the antireflection layer, the alignment film, the function as a retardation film, and a brightness enhancement film In addition to the protective layer as described above, the adhesive layer or the antireflection layer, the alignment film, the function as a retardation film, and a brightness enhancement film. Layers with various functions, such as a layer with optical functions such as a function as a reflection film, a function as a reflection film, a function as a transflective film, a function as a diffusion film, etc. It may be used as a body.
  • the layer having the optical function can be formed by the following method, for example.
  • the layer having the function as the retardation film is described in, for example, Japanese Patent No. 2841377, Japanese Patent No. 3094113, and the like.
  • the film can be formed by performing a stretching process or a process described in Japanese Patent No. 3168850.
  • the layer having a function as a brightness enhancement film forms micropores by a method as described in, for example, Japanese Patent Application Laid-Open Nos. 2002-169025 and 2003-29030.
  • it can be formed by overlapping two or more cholesteric liquid crystal layers having different center wavelengths of selective reflection.
  • the layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition, sputtering, or the like.
  • a layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
  • the layer having a function as a retardation film or an optical compensation film may be formed by applying and aligning a liquid crystalline compound such as a discotic liquid crystalline compound or a nematic liquid crystalline compound. it can.
  • part means “part by weight”.
  • the dichroic ratio of the anisotropic dye film is determined by measuring the transmittance of the anisotropic dye film with a spectrophotometer in which an iodine polarizing element is arranged in the incident optical system. After the measurement, it was calculated by the following formula.
  • Tz Transmittance of polarized light in the direction of absorption axis of anisotropic dye film
  • Ty Transmittance of polarized light in the direction of the polarization axis of an anisotropic dye film
  • Ratio of polarized light absorption from two directions to the calculated tilt angle and CH out-of-plane vibration at 800 to 900 cm _1 YYZYZ value is described in [111-3. Properties of anisotropic dye film] above It was calculated by the method. Here, the infrared absorption spectrum of the anisotropic dye film was measured by NEXUS670 manufactured by Thermo Electron.
  • composition of the present invention was obtained.
  • a glass substrate 75mm x 25mm, thickness 1.
  • the anisotropic dye film (the anisotropic dye film of the present invention) is coated by applying the above composition for anisotropic dye film with an applicator (manufactured by Imoto Seisakusho Co., Ltd.) having a gap of 5 m and then naturally drying. Obtained.
  • the maximum absorption wavelength ( ⁇ max) and the dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • composition for anisotropic dye film (the present invention) is obtained by filtering to remove insoluble matter. Composition).
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) were measured on the obtained anisotropic dye film.
  • the results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • an anisotropic dye film composition (the composition of the present invention) was obtained.
  • This anisotropic dye film composition was applied on the same substrate as in Example 1 with an applicator having a gap of 5 ⁇ m (manufactured by Imoto Seisakusho Co., Ltd.) and then naturally dried to obtain an anisotropic dye film ( An anisotropic dye film of the present invention was obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matter.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method as in Example 4, and then naturally dried to produce an anisotropic dye film (anisotropy of the present invention).
  • Dye film was obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • an anisotropic dye film composition (the composition of the present invention) was obtained.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 with an applicator with a gap of 10 ⁇ m (manufactured by Imoto Seisakusho Co., Ltd.), and then naturally dried to produce an anisotropic dye film.
  • a film an anisotropic dye film of the present invention was obtained.
  • the maximum absorption wavelength ( ⁇ max) and the dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the mixture was stirred without adding the Electron-Deficient discotic compound. After dissolving, the composition for anisotropic dye film was obtained by filtering and removing an insoluble content. This anisotropic color
  • the base film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 7, and the resulting power was not obtained.
  • the composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matter.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 8, and the resulting strength was not obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. .
  • the results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the obtained tilt angle was 7.54 degrees, and the ratio of polarized light absorption YYZYZ from the two directions to the CH out-of-plane vibration at 800 to 900 cm _1 was 1.85.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 9, and was not obtained.
  • the obtained tilt angle was 11.65 degrees, and the ratio YYZYZ of the polarization absorption from two directions to the CH out-of-plane bending vibration at 800 to 900 cm _1 was 1.77.
  • composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matters.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to give an anisotropic dye film (anisotropic dye film of the present invention).
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 2 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than that of the anisotropic dye film of Example 10, and was not obtained.
  • the composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matters.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (anisotropy of the present invention).
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the obtained tilt angle was 9.56 degrees, and the ratio YYZYZ of the polarization absorption from two directions to the CH out-of-plane vibration at 800 to 900 cm _1 was 1.92.
  • Electron-deficient discotic compounds can be obtained by merely adding 16 parts of the lithium salt of the dye represented by the above formula (I 6) to 84 parts of water. Without adding, after stirring and dissolving, the composition for anisotropic dye film was obtained by filtering to remove insoluble matter. This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 11, and was unable to be obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the obtained tilt angle was 9.72 degrees, and the ratio YYZYZ of polarized light absorption from the two directions to the CH out-of-plane vibration at 800 to 900 cm _1 was 1.94.
  • Electron-deficient discotic compounds can be obtained by merely adding 16 parts of the lithium salt of the dye represented by the above formula (I7) to 84 parts of water. Without adding, after stirring and dissolving, the composition for anisotropic dye film was obtained by filtering to remove insoluble matter. This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the obtained anisotropic dye film was measured for maximum absorption wavelength ( ⁇ max) and dichroic ratio (D). .
  • ⁇ max maximum absorption wavelength
  • D dichroic ratio
  • Table 3 The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 12, and was not obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 13, and was not obtained.
  • composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matters.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to give an anisotropic dye film (anisotropic dye film of the present invention).
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than that of the anisotropic dye film of Example 14, and was not obtained.
  • the composition for anisotropic dye film (the composition of the present invention) was obtained by filtering to remove insoluble matters.
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to give an anisotropic dye film (anisotropic dye film of the present invention).
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) were measured on the obtained anisotropic dye film.
  • the results are shown in Table 3 below.
  • the anisotropic dye film of this example functions sufficiently as a polarizing film. It has a high 1 to 2 dichroic ratio (light absorption anisotropy).
  • the anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 15, and was unable to be obtained.
  • composition of this invention In 80 parts of water, 10.4 parts of a lithium salt of a dye represented by the following formula (1-11) and an electron-deficient discotic compound represented by the following formula (II-16) 9.6 After adding a part and stirring and making it melt
  • This anisotropic dye film composition was coated on the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the mixture was stirred without adding the electron-deficient discotic compound. After dissolving, the composition for anisotropic dye film was obtained by filtering and removing an insoluble content.
  • the anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 16, and was not obtained.
  • composition of the present invention In 75 parts of water, 13 parts of a lithium salt of a dye represented by the following formula (1-12) and an electron-deficient discotic compound represented by the following formula (II-17) Inventive Material) 12 parts were added, dissolved by stirring, and then filtered to remove insolubles, thereby obtaining an anisotropic color film composition (composition of the present invention).
  • This anisotropic dye film composition was coated on the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the mixture was stirred without adding the electron-deficient discotic compound. After dissolving, the composition for anisotropic dye film was obtained by filtering and removing an insoluble content.
  • the anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 17, and was not obtained.
  • an anisotropic dye film composition (the composition of the present invention).
  • This anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the mixture was stirred without adding the electron-deficient discotic compound. After dissolving, the composition for anisotropic dye film was obtained by filtering and removing an insoluble content.
  • the anisotropic dye film composition was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. .
  • the results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 18, and was not obtained.
  • composition of this invention In 80 parts of water, 10.4 parts of a lithium salt of a dye represented by the following formula (1-14) and an electron-deficient discotic compound represented by the following formula (II-19) 9.6 After adding a part and stirring and making it melt
  • This anisotropic dye film composition was coated on the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film (an anisotropic dye film of the present invention). Obtained.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this example had a high dichroic ratio (light absorption anisotropy) that can sufficiently function as a polarizing film.
  • the mixture is stirred without adding the electron-deficient discotic compound.
  • the composition for anisotropic dye film was obtained by filtering and removing an insoluble content. This anisotropic color
  • the composition for base film was applied to the same substrate as in Example 1 by the same method, and then naturally dried to obtain an anisotropic dye film.
  • the maximum absorption wavelength ( ⁇ max) and dichroic ratio (D) of the obtained anisotropic dye film were measured. The results are shown in Table 3 below.
  • the anisotropic dye film of this comparative example had a lower dichroic ratio (light absorption anisotropy) than the anisotropic dye film of Example 19, and was not obtained.
  • the anisotropic dye film of the present invention can be used as a polarizing film for obtaining linearly polarized light, circularly polarized light, elliptically polarized light and the like by utilizing the anisotropy of light absorption.
  • the dye film formation process By selecting a composition containing a pigment, the substrate can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy, and the polarizing element can be used for various applications. That's right.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、高い二色比を有する異方性色素膜を得ることを目的とする。  このため、本発明では、電子不足である(Electron-Deficient)盤状化合物及び電子リッチである(Electron-Rich)化合物を含有する異方性色素膜用組成物を用いる。

Description

明 細 書
異方性色素膜用組成物、異方性色素膜及び偏光素子
技術分野
[0001] 本発明は、調光素子や液晶素子 (LCD)、有機エレクト口ルミネッセンス素子 (OLE D)の表示素子に具備される偏光板等に有用な、高い二色比を有する異方性色素膜 と、その異方性色素膜を得ることが可能な異方性色素膜用組成物、並びにその異方 性色素膜を用いた偏光素子に関するものである。
背景技術
[0002] LCDでは、表示における旋光性ゃ複屈折性を制御するために、直線偏光板や円 偏光板が用いられている。 OLEDにおいても、外光の反射防止のために、円偏光板 が使用されている。従来、これらの偏光板 (偏光素子)には、ヨウ素が二色性物質とし て広く使用されてきた。し力しながら、ヨウ素は昇華性が大きいために、偏光素子に使 用した場合、その耐熱性と耐光性が十分ではなぐまた偏光特性が経時劣化すると いう欠点があった。
[0003] そのため、例えば特許文献 1や非特許文献 1, 2に記載されるように、有機系の色素 を二色性物質 (二色性色素)として使用した偏光素子が検討されて 、る。
[0004] これら文献に記載された二色性色素は、水やアルコールなどの溶媒中でリオトロピ ック液晶相を形成し、配向基板や流動場、電場、磁場などの外場により容易に配向さ せることが可能である。例えば、 Brilliant Yellow(CI— 364)を用いると正の二色性色 素膜、 Methylene Blue (CI— 922)や Amaranth (CI— 184)を用いると負の二色性色 素膜を得られることが知られている。しかし、得られる二色性色素膜の二色性が低い という欠点があった。文献にも記載されているような液晶特有のシュリーレン欠陥や乾 燥時に生じる乾燥歪による欠陥のため二色性が低下するという課題もあるが、仮に液 晶が完全に配向したとしても更に大きな課題が残されていた。
[0005] 理想的には、正の二色性色素膜であれば液晶の配向軸と色素の吸収軸は完全に 一致していること、一方、負の二色性色素膜であれば液晶の配向軸と色素の吸収軸 は完全に垂直であることが望ましい。液晶の配向軸は溶媒中の会合体長軸の平均 的な方向に一致するが、会合体長軸と色素の吸収軸を一致させる、もしくは、完全に 垂直にするのは以下の理由で困難であった。
[0006] 非特許文献 3に記載されているように、溶媒中の色素が会合する主たる要因は、芳 香環同士の相互作用によるものである。
[0007] 非特許文献 4, 5に記載されているように、こうした芳香環同士は、 π電子の静電斥 力のため環が垂直に積み上がることはなぐずれて積み重なる方が安定である。水溶 液中であれば、溶媒である水と疎水的な芳香環との接触面積を減らすために垂直に 積み上がった方がエネルギー的に安定となる可能性はあるが、溶媒を乾燥除去した 異方性膜にぉ 、てはこうした効果は期待できな 、。
[0008] そのため、会合体の長軸と色素分子面とは、垂直になるのでも平行になるのでもな ぐその中間的な状態を取り易い。会合体の長軸と色素分子面の法線とのなす角を aとすると、 45° < α≤90° であれば正の二色性色素膜、 0° ≤ α < 45° であれ ば負の二色性色素膜となる力 αの値が 0° 又は 90° になるのは困難で、 0° 力も 9 0° の間の値をとるのが通常であった。これにより、これまでの二色性色素膜の配向 軸に平行な偏光を入射しても、垂直な偏光を入射しても有限の吸収を持っため、理 想的な二色性色素膜にはならなかった。
[0009] この課題に対して、非特許文献 6に記載されているように、ヨウ素を配合することで 芳香環の会合のずれを是正する試みがなされたが、その効果が不十分であるととも に、従来力ものヨウ素型偏光板と同じ欠点を持つという課題があった。
[0010] 特許文献 1:米国特許第 2400877号明細書
非特干文献 1: rhe Fixing of Molecular Orientation , J. F. Dreyer, Physical and Col loid Chemistry, 1948年, Vol.52, p.808
非特許文献 2: "Light Polarization from Films of LyotropicNematic Liquid Crystals", J. F. Dreyer, Journal de Physique, 1969年, Vol.4, p.114
非特許文献 3: "Chromonic Liquid Crystal Phases", J. Lydon, Current Opinion in Co lloid & Interface Science, 1998年, Vol.3, p.458— 466
特許文献 4 : "The Nature of π— π Interactions", C. A. Hunter, et al., Journal of t he American Chemical Society, 1990年, Vol.112, p.5525 非特言午文献 5 : "Aromatic Interactions", C. A. Hunter, et al" Journal of the Chemica 1 Society, Perkin Transactions 2, 2001年, p.651
非特言午文献 6 : "Tetra(tert- butyl)phthalocyanine Cooper-Iodine Complex Film with L arge Dichroismlnduced by hear", H. Tanaka, et al" Journal of the Chemical Societ y, Chemical Communications, 1994年, p.1851
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、このような課題を解決するためになされたものである。
即ち、本発明は、高い二色比を有する異方性色素膜と、その異方性色素膜を得る ことが可能な異方性色素膜用組成物、並びにその異方性色素膜を用いた偏光素子 を提供することを目的とする。
課題を解決するための手段
[0012] 本発明者は鋭意検討の結果、電子不足である(Electron-Deficient)盤状化合物及 び電子リッチである(Electron-Rich)ィ匕合物を含有する組成物を用いることにより、或 いはこれらの化合物を異方性色素膜に含有させることにより、高い二色比の異方性 色素膜が得られることを見出し、本発明に到達した。
[0013] 即ち、本発明の第 1の要旨は、電子不足である(Electron-Deficient)盤状ィ匕合物及 び電子リッチである(Electron-Rich)化合物を含有することを特徴とする、異方性色素 膜用組成物に存する (請求項 1)。
[0014] ここで、前記の電子リッチである(Electron-Rich)化合物が色素であることが好まし い(請求項 2)。
[0015] この場合、該色素がァゾ系色素であることが好ま ヽ(請求項 3)。
[0016] また、前記の電子不足である(Electron-Deficient)盤状ィ匕合物力 芳香族系化合物 又はァザ複素環式ィ匕合物であることが好まし 、 (請求項 4)。
[0017] また、前記の電子不足である(Electron-Deficient)盤状化合物力 アントラキノン誘 導体又はアントラキノン誘導体を部分構造として含むァゾ色素であることも好ま ヽ( 請求項 5)。
[0018] また、更に溶剤を含有することが好ましい (請求項 6)。 [0019] また、本発明の第 2の要旨は、上述の第 1の要旨に係る異方性色素膜用組成物を 用いて形成されたことを特徴とする、異方性色素膜に存する (請求項 7)。
[0020] また、本発明の第 3の要旨は、電子不足である(Electron-Deficient)盤状ィ匕合物及 び電子リッチである(Electron-Rich)化合物を含有することを特徴とする、異方性色素 膜に存する (請求項 8)。
[0021] また、本発明の第 4の要旨は、 970cm_ 1近辺にある SO伸縮振動に対する下記の
3
(i)及び (ii)の方向力もの偏光吸収の比から求めたチルト角が 10° 以下であることを 特徴とする、異方性色素膜に存する (請求項 9)。
(i)可視光を最も吸収する方向
(ii)可視光を最も透過する方向
[0022] また、本発明の第 5の要旨は、 800〜900cm_ 1にある CH面外変角振動に対する 下記の(i)及び (ii)の方向からの偏光吸収の比 YYZYZの値が 1. 8以上であること を特徴とする、異方性色素膜に存する (請求項 10)。
(i)可視光を最も吸収する方向
(ii)可視光を最も透過する方向
[0023] また、本発明の第 6の要旨は、上述の第 2〜5の要旨に係る異方性色素膜を用いた ことを特徴とする、偏光素子に存する (請求項 11)。
発明の効果
[0024] 本発明によれば、電子不足である(Electron-Deficient)盤状化合物及び電子リッチ である(Electron-Rich)化合物を含有する組成物を用いることにより、或いはこれらの 化合物を異方性色素膜に含有させることにより、高い二色比の異方性色素膜を得る ことができる。
発明を実施するための最良の形態
[0025] 以下、本発明を実施するための最良の形態 (以下、発明の実施の形態)について 説明する。尚、本発明は、以下の実施の形態に限定されるものではなぐその要旨の 範囲内で種々変形して実施することができる。
[0026] なお、本明細書において「異方性色素膜」とは、色素膜の厚み方向及び任意の直 交する面内 2方向の立体座標系における合計 3方向から選ばれる任意の 2方向にお ける電磁気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸 収、屈折などの光学的性質、抵抗、容量などの電気的性質などが挙げられる。吸収、 屈折などの光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜、位 相差膜、導電異方性膜などがある。すなわち、本発明は、偏光膜、位相差膜、導電 異方性膜に用いられることが好ましぐ偏光膜に用いられることがより好ましい。
[0027] [I.電子不足である(Electron- Deficient)盤状化合物]
まず、本発明の異方性色素膜用組成物及び異方性色素膜に用いられる、電子不 足である(Electron-Deficient)盤状ィ匕合物について説明する。なお、以下の記載で は、電子不足である(Electron-Deficient)盤状ィ匕合物を「本発明の異方性色素膜用 材料」或いは「本発明の材料」 、う場合がある。
[0028] なお、本発明における「電子不足である(Electron-Deficient)盤状化合物」には、電 子不足である(Electron-Deficient)盤状部分構造を有する色素も含まれる。なお、以 下の記載では、電子不足である(Electron-Deficient)盤状ィ匕合物を「本発明の異方 性色素膜用色素」或いは「本発明の色素」 ヽぅ場合がある。
[0029] [1- 1.電子不足である盤状ィ匕合物 (本発明の異方性色素膜用材料)〕
本明細書において「電子不足である(Electron-Deficient)盤状ィ匕合物」とは、例え ί 考文献 1、 An Electron-Deficient Discotic Liquid-Crystalline Material , K. Piet erse, et al., Chemistry of Materials, 2001年, Vol.13, p.2675)に記載されているような 、比較的大きな電子親和力を有し、好ましくはベンゼンよりも大きい— 20 X 10_4C)Cm 2以上の四重極子モーメント Q 、更に好ましくは正の四重極子モーメント Q を持つ盤 状部分構造を有する化合物のことを言う。ここで zは、盤状化合物の分子面に垂直な 座標軸を表わす。
[0030] 四重極子モーメント(Quadrupole Moment)は、分子重心からの相対位置 r= (x, y, z)の電荷密度 pから、以下の体積積分で表わされるテンソル量である。
[0031] [数 1]
Q =— f(3rr - r l \ράτ [0032] ベンゼンのように、分子が zに対して軸対称な場合は、一軸性四重極子と!/、う。その 強さは、以下の式で表されるスカラー量 Qとなり、上記テンソル量の zz成分 Q と一致 する。
[0033] [数 2]
Figure imgf000007_0001
[0034] z方向に積み重なった盤状分子間の静電相互作用は、 zz成分の値 Q の影響を強 く受ける。下記表 1に代表的な盤状分子の Q を示す。こうした四重極子モーメントの 値は、例えば、下記参考文献 2〜6等に記載されている量子力学的計算や、下記参 考文献 7等に記載されている方法により測定できる。
[0035] [表 1]
表 1
Qzz / 10"40 Cm2 参考文献 pyrene -68.5 6 anthracene -61.1 6 phenanthrene -60.6 6 biphenyl (0=0° ) -53.6 6
naphthalene -44.4 6 biphenyl (0=45° ) -41.7 6 benzene -29.7 3 benzene -27.9 2 toluene -26.4 2
1 , -xy 1 ene -25.6 2 anthracene -23.0 4 pyridine -18.4 3
1, 2-di f luorobenzene -14.6 2
1, 3-d i f luorobenzene -10. ] 2 pyr i daz ine -8.0 3
1, 4 - di f luorobenzene -7.3 2 pyraz ine -6.6 3 pyr iraidine -6.4 3 benzoni t r i 1 e -5.2 2 vi ny 1 ene carbonate 0.7 5
1, 3, 5- tr i f luorobenzene 1.8 2
s-tr iazine 6.0 3 coumar in 153 6.3 2
1, I, 4, 5-tetraf luorobenzene 12.5 2
s-tetrazine 14.6 3 maleic anhydr i de 19.0 5
anthraquinone 20.0 4 hexaf luorobenzene 31.5 2
参考文献 2: "The Molecular Electric Quadrupole Moment and Solid- State Architect ure", J. H. Williams, Acc. Chem. Res., 1993年, Vol.26, p.593.
参考文献 3: "The electric structure of the azabenzenes an AB initioMO- SCF- LCA 〇 study〃, J. Almlof et al" J. Electron Spectroscopy and Related Phenomena, 1973 年, Vol.2, p.51.
参考文献 4 : "Multiple contributions to potentials of mean torque for solutes dissolve d in liquid crystal solvents", J. W. Emsley et al" Liquid Crystals, 1991年, Vol.9, p.6 参考文献 5 : "The Molecular ZeemanEffect", D. H. Sutter, W. H. Flygare, Topics in Current Chemistry, 1976年, Vol.63, p.89.
参考文献 6: "QuadrupoleMoment Calculations for Some Aromatic Hydrocarbons , A
. Chablo et.al, Chemical Physics Letters, 1981年, Vol.78, p.424.
参考文献 7 : A. D. Buckingham, Advances in Chemical Physics, 1967年, Vol.12, p. l
07.
[0037] 上記表 1に示されるように、ベンゼン等の電子リッチである(Electron-Rich)盤状化 合物は、負の四重極子モーメントを持つのに対して、へキサフルォロベンゼンやアン トラキノン等の電子不足である(Electron- Deficient)盤状化合物は、正の四重極子モ 一メントを持つことが知られて 、る。
[0038] 更【こ、参考文献 8 ( Computer Simulation Studies of Anisotropic Systems XXIX. wu adrupolar Gay-Berne Discs and Chemically Induced Liquid Crystal Phases , M. A. Bates, et al., Liquid Crystals, 1998年, Vol.24(2), p.229)に記載されているように、符 号の異なる四重極子モーメントを持つ盤状ィヒ合物が近接すると、ずれ無く互いに平 行に会合することが安定であることが知られて 、る。
[0039] 比較的分子量の高!、縮合多環化合物のように、電荷分布の複雑な化合物では、こ うしたィ匕合物全体の四重極子モーメント相互作用で考えるのは必ずしも正確ではな ヽカ、参考文献 9、 し omplementary Polytopic Interactions (し PI) as Revealed by Mol ecular Modelling using the XED Force Field", O. R. Lozman, et al., Journal of the Chemical Society, Perkin Transactions 2, 2001年, p.1446)に記載されているように、 化合物の各部位の四重極子モーメント相互作用の総和で考えることができると考えら れる。
[0040] 上述のように、本発明では、電子不足である(Electron-Deficient)盤状化合物を異 方性色素膜用材料として用いることで、 π電子の静電斥力を抑制し、ずれ無く垂直 に積み重なった会合体を得ることが可能になる。これにより、会合体の長軸と色素分 子面法線とのなす角度 (Xを 0° に近づけることができ、理想的な二色性色素膜を得 ることができると考えられる。 [0041] 本発明の材料として使用できる電子不足である(Electron-Deficient)盤状化合物の 例としては、電子親和性の高い置換基を有する芳香族系化合物又はァザ複素環式 化合物などが挙げられる。
[0042] 芳香族系化合物の例としては、ベンゼン類(パーフルォロベンゼン、ベンゾキノン、 シァノベンゼン、ニトロベンゼン、フタルイミド、シァノキノメタン等)、ナフタレン類(パ 一フルォロナフタレン、ナフトキノン、シァノナフタレン、ニトロナフタレン、シァノナフト キノメタン等)、アントラセン類 (アントラキノン等)、フルオレン類 (ニトロフルォレノン等
)、ペリレン類 (ペリレンジイミド等)、等が挙げられる。
[0043] ァザ複素環式化合物の例としては、ピリジン、ピラジン、ピリミジン、 1, 3, 5—トリア ジン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン等が挙げられる。
[0044] 電子親和性の高!、置換基の例としては、ォキソ基、シァノ基、ニトロ基、ハロゲン原 子 (フッ素原子、塩素原子等)、スルホ基、カルボキシ基、スルホ基又はカルボキシ基 のアルカリ金属(ナトリウム等)塩或いはアルカリ土類金属塩等が挙げられる。
[0045] 電子不足である(Electron-Deficient)盤状化合物の例としては、上に例示した電子 親和性の高い置換基を一つ又は二つ以上有する芳香族系化合物やァザ複素環式 化合物から誘導される環構造を一又は二以上有する化合物が挙げられる。
[0046] 電子不足である(Electron-Deficient)盤状ィ匕合物は、一分子中に、電子親和性の 高い置換基を一又は二以上有する芳香族系化合物やァザ複素環式化合物から誘 導される環構造を部分構造として、好ましくは 33モル%以上、さらには 50モル%以 上有する化合物であることが好まし 、。
[0047] ここで、本発明にお 、て、一分子中における該環構造 (部分構造)のモル%は、一 分子中における該環構造の数力 算出する。
例えば、以下の化合物の場合、一分子中に環構造が 1つであり、この 1つの環構造 が電子親和性の高 、置換基を有するため、一分子中における該環構造のモル%は
、 100モノレ0 /0である。
[0048] [化 1]
Figure imgf000011_0001
[0049] また、以下の化合物の場合、一分子中に環構造が 3つあり、 2つの環(両端のキノリ ン環)がァザ複素環式ィ匕合物であることから、一分子中における該環構造のモル% は、 67モル% (2/3)である。
[0050] [化 2]
Figure imgf000011_0002
[0051] 尚、異なる構造を有する化合物であって、一分子中における該環構造のモル%が 等しい化合物については、さらに、上記四重極子モーメントの値によってその電子不 足の度合いが決められる。
[0052] なお、本発明の材料として用いられる電子不足である(Electron-Deficient)盤状化 合物は色素であってもよい。
[0053] なお、本発明の材料は、湿式成膜法により異方性色素膜を製造する際に溶剤を用 いることから、後述する溶剤に対して 0. 1%以上の溶解性を持つことが好ましい。
[0054] 本発明の材料として用いられる電子不足である(Electron-Deficient)盤状化合物が 色素である場合、その色素は、電子不足である(Electron-Deficient)盤状部分構造を 有することを特徴とする。 [0055] 本明細書にぉ 、て「電子不足である(Electron-Deficient)盤状部分構造」とは、上 述の〔1— 1.本発明の異方性色素膜用材料〕の欄で説明した「電子不足である (Elect ron-Defident)盤状ィ匕合物」と同様に、比較的大きな電子親和力を有し、負の四重極 子モーメントを持つ部分構造を意味する。即ち、本発明の色素はこのような部分構造 を一分子内に有する色素である。
[0056] 電子不足である(Electron-Deficient)盤状部分構造の例としては、上記に例示した 芳香族系化合物又はァザ複素環式化合物に由来する部分構造や、同じく上記に例 示した電子親和性の高 、置換基等が挙げられる。
[0057] 本発明の材料として使用できる電子不足である(Electron-Deficient)盤状化合物( 電子不足である(Electron-Deficient)盤状部分構造を有する色素を含む)の好ま Uヽ 具体例としては、下記式によって表わされる化合物が挙げられる。但し、本発明の材 料として使用できる電子不足である(Electron-Deficient)盤状ィ匕合物は、これらの例 に限定されるものではない。
[0058] 尚、下記式によって表される電子不足である(Electron- Deficient)盤状化合物は、 遊離酸型で例示する。電子不足である(Electron-Deficient)盤状ィ匕合物は、遊離酸 型のまま使用してもよぐ酸基の一部が塩型を取っているものであってもよい。塩型の 例としては、 Na、 Li、 K等のアルカリ金属の塩、アルキル基若しくはヒドロキシアルキ ル基で置換されて!、てもよ 、アンモ-ゥムの塩、有機ァミンの塩などが挙げられる。 有機ァミンの例としては、炭素数 1〜6の低級アルキルァミン、ヒドロキシ置換された炭 素数 1〜6の低級アルキルァミン、カルボキシ置換された炭素数 1〜6の低級アルキ ルァミン等が挙げられる。これらの塩型の場合、その種類は 1種類に限られず、複数 種混在していてもよい。
[0059] [化 3]
Figure imgf000013_0001
[0060] [化 4]
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000016_0002
[9^ [1900] II/900Z OAV
6ひ 80£/900Zdf/ェ:) d 91- 90ZS
[ ]
Figure imgf000017_0001
Figure imgf000018_0001
[0062] [ィ匕 9]
[Οΐ^ ]
Figure imgf000019_0001
6ひ 80£/900Zdf/ェ:) d 81· 90ZSll/900Z OAV
]
Figure imgf000020_0001
6ひ 80£/900Zdf/ェ:) d 61· 90ZSll/900Z OAV
Figure imgf000021_0001
[0063] 下記構造式で表わされる化合物であって、
Figure imgf000021_0002
B2、 D1がそれぞれ以下の群力 ら選ばれるもの。
[0064] [化 12]
Β
Figure imgf000021_0003
Α1
Figure imgf000021_0004
[0065] [化 13] (群 A1)
Figure imgf000022_0001
14]
Figure imgf000022_0002
[0067] [化 15]
Figure imgf000023_0001
[0068] [化 16]
Figure imgf000024_0001
6ひ 80£/900Zdf/ェ:) d 90ZSll/900Z OAV [化 17]
Figure imgf000025_0001
[0069] 上記例示の化合物のうち、光学異性等の立体異性を生じるものについては、何れ の異性体もその例示に含まれるものとする。
[0070] なお、上記化合物は、後述の溶剤に対して 1重量%以上の溶解性を持つことが好 ましぐまた、 1〜50重量%の何れかの濃度域でリオトロピック液晶相を形成する化合 物であることが好ましい。
[0071] また、電子不足である(Electron-Deficient)盤状化合物の中でも、アントラキノン誘 導体又はアントラキノン誘導体を部分構造として含むァゾ色素が、得られる膜の二色 性の点からも好ましい。
[0072] [II.異方性色素膜用組成物]
本発明の異方性色素膜用組成物は、異方性色素膜を形成するために用いられる 組成物であって、電子不足である(Electron- Deficient)盤状化合物及び電子リッチで ある(Electron-Rich)ィ匕合物を含有する。更に、通常は溶媒と、必要に応じてその他 の成分を含有する。
[0073] (i)溶剤:
溶剤としては、水、水混和性のある有機溶剤、水と水混和性のある有機溶剤との混 合溶剤などが挙げられる。有機溶剤の具体例としては、メチルアルコール、ェチルァ ノレコーノレ、イソプロピルアルコール等のアルコール類、エチレングリコーノレ、ジェチレ ングリコール等のグリコール類、メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ 類等が挙げられる。これらの溶剤は何れか一種を単独で用いてもよぐ 2種以上を任 意の組み合わせ及び比率で混合して用いてもょ 、。
[0074] (ii)電子不足である(Electron- Deficient)盤状化合物:
電子不足である(Electron-Deficient)盤状化合物としては、上述した電子不足であ る(Electron- Deficient)盤状化合物が用いられる。電子不足である(Electron- Deficie nt)盤状ィ匕合物は何れか一種を単独で用いてもよぐ 2種以上を任意の組み合わせ 及び比率で混合して用いてもょ 、。
[0075] 本発明の組成物における電子不足である(Electron-Deficient)盤状ィ匕合物の割合 は、組成物全体を 100重量部とした場合に、通常 0. 1重量部以上、好ましくは 0. 2 重量部以上、また、通常 50重量部以下、好ましくは 40重量部以下の範囲である。本 発明の材料の割合がこの範囲の下限を下回ると、電子不足である(Electron-Deficien t)盤状ィ匕合物の使用による効果が得られないおそれがあり、この範囲の上限を上回 ると、組成物の溶液としての粘度が高くなつてしまい、扱いにくくなるおそれがあるの で好ましくない。
[0076] (iii)電子リッチである(Electron-Rich)化合物(色素):
本発明の組成物は、電子リッチである(Electron-Rich)ィ匕合物を含有する力 この電 子リッチである(Electron-Rich)ィ匕合物は、通常は色素である(これを以下「電子リッチ である(Electron- Rich)色素」と!、う場合がある)。電子リッチである(Electron- Rich)色 素とは、上述の参考文献 1に記載の通り、比較的小さなイオンィヒポテンシャルを有し 、— 20 X 10_4GCm2未満の四重極子モーメント Q を持つ盤状部分構造を 50モル% 以上含む色素のことを言う。なお、四重極子モーメント Q にっては上述した通りであ る。
[0077] 本発明の組成物に用いられる電子リッチである(Electron-Rich)色素の例としては、 ァゾ系色素、スチルベン系色素、シァニン系色素、フタロシアニン系色素、縮合多環 系色素(ペリレン系、ォキサジン系)等が挙げられる。中でも、アルキル基、アルコキシ 基、スルホン基、アミノ基等で置換されたベンゼン、ナフタレン等の芳香族炭化水素 力 なるァゾ色素、ポルフィリン、フタロシアニンなどが好ましぐ特にァゾ系色素が好 ましい。
[0078] 本発明の組成物に用いられる電子リッチである(Electron-Rich)色素の好まし!/、具 体例としては、下記式で表わされる色素が挙げられる(なお、これらの式は全て遊離 酸型で示している)。但し、本発明の組成物に使用できる電子リッチである(Electron- Rich)色素は、これらの例に限定されるものではない。
[0079] [化 18]
[6ΐ^>]
Figure imgf000028_0001
Figure imgf000028_0002
6ひ 80e/900ZdfAi:)«i LZ 90∑:SII/900∑: OAV
Figure imgf000029_0001
It-80e/900IdT/13d 83 90ISTI/900Z OfA
Figure imgf000030_0001
[化 21]
Figure imgf000031_0001
[0080] 上記例示の電子リッチである(Electron-Rich)色素のうち、光学異性等の立体異性 を生じるものについては、何れの異性体もその例示に含まれるものとする。
[0081] 上記例示の電子リッチである(Electron-Rich)色素は何れか一種を単独で用いても よぐ 2種以上を任意の組み合わせ及び比率で混合して用いてもょ 、。
[0082] なお、本発明の組成物に用いられる電子リッチである(Electron-Rich)色素は、上 述の溶剤に対して通常 0. 1%以上、特に 1%以上の溶解性を持つことが好ましぐま た、 0. 1〜50%のいずれかの濃度域でリオトロピック液晶相を形成する化合物である ことが好ましい。
[0083] 電子リッチである(Electron-Rich)色素の分子量は、色調及び製造面の観点から、 塩型をとらない遊離の状態で、通常 200以上、中でも 350以上、また、通常 5000以 下、中でも 3500以下の範囲であることが好ましい。
[0084] 電子リッチである(Electron-Rich)色素は遊離酸型のまま使用してもよぐ酸基の一 部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混 在していてもよい。更に、製造時に塩型で得られた場合はそのまま使用してもよいし、 所望の塩型に変換して力も使用してもよい。
[0085] 前記の塩型の例としては、 Na、 Li、 K等のアルカリ金属の塩、アルキル基若しくはヒ ドロキシアルキル基で置換されて 、てもよ 、アンモ-ゥムの塩、有機ァミンの塩などが 挙げられる。有機ァミンの例としては、炭素数 1〜6の低級アルキルァミン、ヒドロキシ 置換された炭素数 1〜6の低級アルキルァミン、カルボキシ置換された炭素数 1〜6 の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は 1種類に限 られず、複数種混在していてもよい。
[0086] 本発明の組成物における電子リッチである(Electron-Rich)色素の割合は、組成物 全体を 100重量部とした場合に、通常 50重量部以下、好ましくは 40重量部以下の 範囲である。色素の割合力 Sこの範囲を上回ると、得られる組成物の溶液の粘度が高く なってしま!/、、扱いにくくなるおそれがあるので好ましくな!/、。
[0087] また、電子不足である(Electron-Deficient)盤状化合物と電子リッチである(Electro n-Rich)色素との重量分率は、通常 10Z90〜90Z10の範囲内であることが好まし い。この範囲を外れると、電子不足である(Electron-Deficient)盤状化合物又は電子 リッチである(Electron-Rich)色素の使用による効果が得られな 、おそれがあるため 好ましくない。
[0088] (iv)その他の成分:
本発明の組成物は、上述した溶剤、電子不足である(Electron-Deficient)盤状ィ匕合 物、及び電子リッチである(Electron- Rich)色素の他に、その他の成分を含有してい てもよい。
[0089] 例えば、後述の湿式成膜法等にお!ヽて、本発明の組成物を色素膜形成用溶液とし て基材に塗布する場合には、基材への濡れ性、塗布性を向上させるため、必要に応 じて、界面活性剤を加えてもよい。界面活性剤としては、ァ-オン系、カチオン系、ノ 二オン系の何れも使用可能である。本発明の組成物における界面活性剤の濃度は 通常 0. 05重量%以上、 0. 5重量%以下が好ましい。
[0090] また、色素の会合性を向上させたり、異方性色素膜の欠陥を低減する等の目的で 、アミノ酸、ヒドロキシァミンなどを添加剤として使用してもよい。
[0091] 更に、上記以外の添加剤としては、参考文献 10 ("Additives for Coating", Edited b y j. Bieleman, Willey-VCH, 2000年)記載の公知の添加剤を用いることができる。
[0092] なお、本発明の組成物の全成分における電子不足である(Electron-Deficient)部 位と電子リッチである(Electron-Rich)部位との重量分率力 通常 5/95以上、好まし くは 35Z65以上、また、通常 95Z5以下、好ましくは 65/35以下の範囲内とするの が好ましい。この範囲を外れると、各成分の配合効果が現れにくいおそれがあり好ま しくない。
[0093] [III.異方性色素膜]
以下の記載では、本発明の異方性色素膜について、組成に関する特徴、製造方 法に関する特徴、及び物性に関する特徴に分けて、それぞれ説明を行なう。本発明 の異方性色素膜は、これらの全ての特徴を満たしていることが好ましいが、これらの 特徴のうち何れか一つの特徴でも満たす異方性色素膜は、他の特徴を満たさな 、、 或いは他の特徴が不明である場合でも、本発明の異方性色素膜に該当するものとす る。
[0094] 〔III 1.異方性色素膜の組成〕
本発明の異方性色素膜は、その組成面に着目した場合、電子不足である(Electro n-Deficient)盤状化合物及び電子リッチである(Electron-Rich)化合物を含有するこ とを特徴とする。電子不足である(Electron-Deficient)盤状ィ匕合物及び電子リッチで ある(Electron-Rich)ィ匕合物については、前述の通りである。また、その比率も特に制 限されるものではない。
[0095] また、本発明の異方性色素膜は、更に他の成分を含んでいてもよい。他の成分とし ては、上述した本発明の組成物中に含まれる成分として例示したものが挙げられる。
[0096] 〔III 2.異方性色素膜の製造方法〕
本発明の異方性色素膜は、その製造方法に着目した場合、上述した本発明の異 方性色素膜用組成物 (本発明の組成物)を用いて形成されることを特徴とする。具体 的には、本発明の異方性色素膜は、上述した本発明の組成物を用いて成膜すること により、作製することができる。成膜法としては、乾式成膜法及び湿式成膜法の何れ を用いてもよいが、成膜に使用する本発明の組成物 (水溶液)が液晶性を示す可能 性がある場合には、湿式成膜法を使用することが好ましい。
[0097] (i)乾式成膜法:
乾式成膜法としては、例えば、本発明の組成物と高分子重合体を用いて未延伸フ イルムを作製し、得られた未延伸フィルムを延伸する、という方法が挙げられる。未延 伸フィルムを作製する手法としては、例えば、(a)高分子重合体を成膜してフィルムと した後に、本発明の組成物を用いて染色する手法、(b)高分子重合体の溶液に本発 明の組成物を加えて原液を染色した後に成膜する手法等が挙げられる。上述の染 色、成膜、延伸は、以下に説明する一般的な方法で行なうことができる。
[0098] 上述の(a)の手法の場合、本発明の組成物と、必要に応じて塩ィ匕ナトリウム、ボウ硝 等の無機塩、界面活性剤等の染色助剤を加えた染浴中に、高分子フィルムを浸漬し て染色し、次いで必要に応じてホウ酸処理し、乾燥する。浸漬時の染浴の温度は、 通常 20°C以上、好ましくは 30°C以上、また、通常 80°C以下、好ましくは 50°C以下の 範囲である。また、浸漬時の染浴の時間は、通常 1分以上、好ましくは 3分以上、また 、通常 60分以下、好ましくは 20分以下の範囲である。
[0099] 一方、上述の (b)の方法の場合、高分子重合体を水及び Z又はアルコール、ダリ セリン、ジメチルホルムアミド等の親水性有機溶媒に溶解し、本発明の組成物を加え て原液染色を行ない、この染色原液を流延法、溶液塗布法、押出法等により成膜し て、染色フィルムを作製する。溶媒に溶解させる高分子重合体の濃度としては、高分 子重合体の種類によっても異なる力 通常 5重量%以上、好ましくは 10重量%以上 程度で、通常 30重量%以下、好ましくは 20重量%以下程度である。また、溶媒に溶 解する色素の濃度としては、高分子重合体に対して通常 0. 1重量%以上、好ましく は 0. 8重量%以上程度で、通常 5重量%以下、好ましくは 2. 5重量%以下程度であ る。
[0100] 得られた未延伸フィルムは、適当な方法によって一軸方向に延伸する。延伸処理 することによって色素分子が配向し、二色性が発現する。一軸に延伸する方法として は、湿式法にて引っ張り延伸を行なう方法、乾式法にて引っ張り延伸を行なう方法、 乾式法にてロール間圧縮延伸を行なう方法等があり、何れの方法を用いて行なって もよい。延伸倍率は 2倍以上、 9倍以下にて行なわれるが、高分子重合体としてポリビ -ルアルコール及びその誘導体を用いた場合は、通常 2. 5倍以上、 6倍以下の範囲 が好ましい。
[0101] 延伸配向処理した後、該延伸フィルムの耐水性向上と偏光度向上の目的で、ホウ 酸処理を実施する。ホウ酸処理により、異方性色素膜の光線透過率と偏光度が向上 する。ホウ酸処理の条件としては、用いる親水性高分子重合体及び色素の種類によ つて異なるが、一般的にはホウ酸濃度としては、通常 1重量%以上、好ましくは 5重量 %以上程度で、通常 15重量%以下、好ましくは 10重量%以下程度である。また、処 理温度としては通常 30°C以上、好ましくは 50°C以上で、通常 80°C以下の範囲にあ ることが望ましい。ホウ酸濃度が 1重量%未満であるか、処理温度が 30°C未満の場 合は、処理効果が小さぐまた、ホウ酸濃度が 15重量%を超える力 処理温度が 80 °C以上を超える場合は異方性色素膜がもろくなり好ましくない。
[0102] 乾式成膜法により得られる異方性色素膜の膜厚は、通常 10 m以上、中でも 30 m以上、また、通常 200 μ m以下、中でも 100 μ m以下の範囲が好ましい。
[0103] (ii)湿式成膜法:
一方、湿式成膜法としては、公知の各種の方法を用いることが可能であるが、例え ば、本発明の組成物を塗布液として調製後、ガラス板などの各種基材に塗布、乾燥 し、色素を配向、積層して得る方法などが挙げられる。
[0104] 基材としては、ガラスやトリアセテート、アクリル、ポリエステル、トリァセチルセルロー ス又はウレタン系のフィルム等が挙げられる。基材の表面には、二色性色素の配向 方向を制御するために、「液晶便覧」(丸善株式会社、平成 12年 10月 30日発行) 22 6頁〜 239頁等に記載の公知の方法により、配向処理層を施しておいてもよい。
[0105] 湿式成膜法を用いる場合、本発明の組成物における色素の濃度は、通常 0. 1重 量%以上、中でも 1重量%以上、また、通常 50重量%以下、中でも 30重量%以下の 範囲とすることが好まし 、。色素濃度が低すぎると十分な二色性を得ることができず、 高すぎると成膜が困難になるおそれがある。
[0106] 塗布法としては、原崎勇次著「コーティング工学」(株式会社朝倉書店、 1971年 3 月 20日発行) 253頁〜 277頁や、巿村國宏監修「分子協調材料の創製と応用」(株 式会社シーエムシー出版、 1998年 3月 3日発行) 118頁〜 149頁に記載の公知の 方法や、予め配向処理を施した基材上に、スピンコート法、スプレーコート法、バーコ ート法、ロールコート法、ブレードコート法などで塗布する方法などが挙げられる。塗 布時の温度は通常 0°C以上、 80°C以下が好ましぐ湿度は通常 10%RH以上、 80 %RH以下が好ましい。
[0107] 塗膜の乾燥時の温度は好ましくは 0°C以上、 120°C以下、湿度は好ましくは 10%R
H以上、 80%RH以下程度である。
[0108] 湿式成膜法で基材上に異方性色素膜を形成する場合、得られる異方性色素膜の 乾燥後の膜厚は、通常 50nm以上、中でも lOOnm以上、また、通常 以下、中 でも 20 μ m以下、更には 1 μ m以下の範囲が好ましい。
[0109] (iii)保護層:
上述の乾式成膜法又は湿式成膜法により得られた本発明の異方性色素膜は、必 要に応じ、保護層を設けて使用する。この保護層は、例えば、トリアセテート、アクリル
、ポリエステル、ポリイミド、トリァセチルセルロース又はウレタン系のフィルム等の透明 な高分子膜により、本発明の異方性色素膜上にラミネーシヨンして形成され、実用に 供される。
[0110] 〔III 3.異方性色素膜の物性〕
本発明の異方性色素膜は、その物性に着目した場合、以下の(a) , (b)のうち少な くとも一方を満たすことを特徴としている。
[0111] (a) 970cm_1付近にある SO伸縮振動に対する下記 (i)及び (ii)の 2方向力もの偏
3
光吸収の比(以下、これらを単に「2方向からの偏光吸収の比」という場合がある。)か ら求めたチルト角が 10° 以下である。
(b) 800〜900cm_1にある CH面外変角振動に対する下記(i)及び (ii)の 2方向か らの偏光吸収の比 YYZYZの値が 1. 8以上である。
(i)可視光を最も吸収する方向
(ii)可視光を最も透過する方向
[0112] これら (a) , (b)の物性は、それぞれ以下のように測定することが可能である。
[0113] (a) 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比力も求 めたチノレト角:
異方性色素膜の膜面に平行で、可視光を最も吸収する方向を X方向、可視光を最 も透過する方向を Y方向とする。
X方向に偏光した赤外光を膜面に垂直に入射して得られる赤外吸収スペクトルの 9 70cm_1近辺のピーク強度を Axとし、 Y方向に偏光した赤外光を膜面に垂直に入射 して得られる赤外吸収スペクトルの 970cm_1近辺のピーク強度を Ayとした時に、チ ルト角は下記式で計算される。
[数 3]
Figure imgf000037_0001
(b) 800〜900cm にある CH面外変角振動に対する 2方向からの偏光吸収の比 YYZYZの値:
異方性色素膜の膜面に平行で、可視光を最も吸収する方向を X方向、可視光を最 も透過する方向を Y方向とする。
Y方向に偏光した赤外光を X方向に 60° 傾けて入射して得られる赤外吸収スぺク トルにおいて、 800〜900cm_1の領域に見られる C—H面外変角振動ピークを Lore ntzian法によって n個のピークにピーク分離した時に、各ピーク強度を YYi (i= l〜n )とする。
同様に、 Y方向に偏光した赤外光を Y方向に 60° 傾けて入射して得られる赤外吸 収スペクトルにおいて、 800〜900cm_1の領域に見られる C H面外変角振動ピー クを Lorentzian法によって n個のピークにピーク分離した時に、各ピーク強度を YZi ( i= l〜n)とする。
ここで、 YYiと YZiのピーク位置及びピーク反値幅は同じになるようにする。
得られた YYi (i= l〜n)及び YZi (i= l〜n)から、 YYZYZ比は次の式で計算され る。
[数 4]
Figure imgf000038_0001
[0115] [IV.偏光素子]
本発明の偏光素子は、上述した本発明の異方性色素膜を用いたものである。具体 的には、本発明の異方性色素膜は、 LCDや OLED等の各種の表示素子の偏光フィ ルター等を形成する場合には、これらの表示素子を構成する電極基板などに直接、 本発明の異方性色素膜を形成したり、本発明の異方性色素膜を形成した基材をこれ ら表示素子の構成部材として用いればょ 、。
[0116] 本発明の異方性色素膜は、光吸収の異方性を利用し、直線偏光、円偏光、楕円偏 光等を得る偏光膜として機能する他、膜形成プロセスと基材ゃ色素を含有する組成 物の選択により、屈折異方性や伝導異方性などの各種異方性膜として機能化が可 能となり、様々な種類の、多様な用途に使用可能な偏光素子とすることができる。
[0117] 本発明の偏光素子は、上述した本発明の異方性色素膜を用いたものであるが、本 発明の異方性色素膜を基材上に形成して本発明の偏光素子とする場合、形成され た異方性色素膜そのものを使用してもよぐまた、上記の様な保護層のほか、粘着層 或いは反射防止層、配向膜、位相差フィルムとしての機能、輝度向上フィルムとして の機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルム としての機能などの光学機能をもつ層など、様々な機能をもつ層を湿式成膜法など により積層形成し、積層体として使用してもよい。
[0118] これら光学機能を有する層は、例えば以下の様な方法により形成することが出来る 位相差フィルムとしての機能を有する層は、例えば特許第 2841377号公報、特許 第 3094113号公報などに記載の延伸処理を施したり、特許第 3168850号公報など に記載された処理を施したりすることにより形成することができる。
[0119] また、輝度向上フィルムとしての機能を有する層は、例えば特開 2002— 169025 号公報ゃ特開 2003— 29030号公報に記載されるような方法で微細孔を形成するこ と、或いは、選択反射の中心波長が異なる 2層以上のコレステリック液晶層を重畳す ること〖こより形成することができる。
[0120] 反射フィルム又は半透過反射フィルムとしての機能を有する層は、蒸着やスパッタリ ングなどで得られた金属薄膜を用いて形成することができる。
拡散フィルムとしての機能を有する層は、上記の保護層に微粒子を含む榭脂溶液 をコーティングすることにより、形成することができる。
[0121] また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコテイツ ク液晶性化合物、ネマティック液晶性化合物などの液晶性化合物を塗布して配向さ せること〖こより形成することができる。
実施例
[0122] 次に、実施例により本発明を更に具体的に説明するが、本発明はその要旨を超え な 、限り以下の実施例に限定されるものではな 、。
なお、以下の記載において、「部」は「重量部」を示す。
[0123] また、以下の各実施例及び比較例において、異方性色素膜の二色比は、ヨウ素系 偏光素子を入射光学系に配した分光光度計で異方性色素膜の透過率を測定した後 、次式により計算した。
二色比(D)
Figure imgf000039_0001
Az= -log (Tz)
Ay= -log (Ty)
Tz:異方性色素膜の吸収軸方向の偏光に対する透過率
Ty:異方性色素膜の偏光軸方向の偏光に対する透過率
[0124] また、 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比から
3
求めたチルト角、及び、 800〜900cm_1にある CH面外変角振動に対する 2方向か らの偏光吸収の比 YYZYZの値は、上記〔111— 3.異方性色素膜の物性〕に記載の 方法で求めた。ここで、異方性色素膜の赤外吸収スペクトルは、 Thermo Electron社 製 NEXUS670により測定した。
[0125] [実施例 1]
水 72部に、下記式 (1—1)で表わされる色素のリチウム塩 25部と、下記式 (II— 1)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 3部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。スピンコート法により表面にポリイミドの配向膜が形成されたガラス 製基板(75mm X 25mm、厚さ 1. lmm、膜厚約 80nmのポリイミド配向膜に、予め 布でラビング処理を施したもの)に、上記の異方性色素膜用組成物を、ギャップ 5 mのアプリケーター (井元製作所社製)で塗布した後、自然乾燥することにより、異方 性色素膜 (本発明の異方性色素膜)を得た。
[0126] [化 22]
Figure imgf000040_0001
[0128] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0129] [実施例 2]
水 69部に、上記式 (I 1)で表わされる色素のリチウム塩 30部と、下記式 (II 2)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の 方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性色素 膜)を得た。
[0130] [化 24]
Figure imgf000041_0001
[0131] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0132] [実施例 3]
水 69部に、上記式 (I 1)で表わされる色素のリチウム塩 30部と、下記式 (II 3)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の 方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性色素 膜)を得た。
[0133] [化 25]
Figure imgf000042_0001
[0134] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0135] [実施例 4]
水 69部に、上記式 (I 1)で表わされる色素のリチウム塩 30部と、下記式 (II 4)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、ギヤッ プ 5 μ mのアプリケーター (井元製作所社製)で塗布した後、自然乾燥することにより 、異方性色素膜 (本発明の異方性色素膜)を得た。
[0136] [化 26]
Figure imgf000043_0001
[0137] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0138] [実施例 5]
水 66部に、上記式 (1—1)で表わされる色素のリチウム塩 33部と、下記式 (II 5)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、実施 例 4と同様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の 異方性色素膜)を得た。
[0139] [化 27]
Figure imgf000043_0002
[0140] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0141] [実施例 6]
水 70. 3部に、上記式 (I 1)で表わされる色素のリチウム塩 27部と、下記式 (II 6 )で表わされる、電子不足である(Electron- Deficient)盤状ィ匕合物 2. 7部をカ卩え、撹 拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に 、実施例 4と同様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本 発明の異方性色素膜)を得た。
[0142] [化 28]
Figure imgf000044_0001
[0143] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0144] [比較例 1]
水 63部に、上記式 (I 1)で表わされる色素のリチウム塩 37部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0145] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本比較例の異方性色素膜は、実施例 1〜6の異方性 色素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。 [0146] [実施例 7]
水 82部に、下記式 (I 2)で表わされる色素のナトリウム塩 16部と、下記式 (II 7) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 2部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、ギヤ ップ 10 μ mのアプリケーター (井元製作所社製)で塗布した後、自然乾燥することに より、異方性色素膜 (本発明の異方性色素膜)を得た。
[0147] [化 29]
Figure imgf000045_0001
[0148] [化 30]
Figure imgf000045_0002
[0149] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0150] [比較例 2]
水 85部に、上記式 (1— 2)で表わされる色素のナトリウム塩 15部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥す ることにより、異方性色素膜を得た。
[0151] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本比較例の異方性色素膜は、実施例 7の異方性色素 膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0152] [実施例 8]
水 75部に、下記式 (1— 3)で表わされる色素のリチウム塩 24部と、下記式 (II 8)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の 方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性色素 膜)を得た。
[0153] [化 31]
Figure imgf000046_0001
[0154] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。 [0155] [比較例 3]
水 80部に、上記式 (1— 3)で表わされる色素のリチウム塩 20部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0156] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本比較例の異方性色素膜は、実施例 8の異方性色素 膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0157] [実施例 9]
水 79部に、下記式 (1—4)で表わされる色素のリチウム塩 20部と、下記式 (II— 9)で 表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して溶 解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明 の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の 方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性色素 膜)を得た。
[0158] [化 32]
Figure imgf000047_0001
[0159] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0160] また、 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比から
3
求めたチルト角は 7. 54度であり、 800〜900cm_1にある CH面外変角振動に対す る 2方向からの偏光吸収の比 YYZYZの値は 1. 85であった。
[0161] [比較例 4]
水 80部に、上記式 (1—4)で表わされる色素のリチウム塩 20部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0162] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本比較例の異方性色素膜は、実施例 9の異方性色素 膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0163] また、 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比から
3
求めたチルト角は 11. 65度であり、 800〜900cm_1にある CH面外変角振動に対す る 2方向からの偏光吸収の比 YYZYZの値は 1. 77であった。
[0164] [実施例 10]
水 84部に、下記式 (I 5)で表わされる色素のリチウム塩 15部と、下記式 (II 10) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た。
[0165] [化 33]
( I 一 5 )
Figure imgf000049_0001
[0166] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0167] [比較例 5]
水 85部に、上記式 (I 5)で表わされる色素のリチウム塩 15部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0168] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 2に示す。本比較例の異方性色素膜は、実施例 10の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0169] [実施例 11]
水 81部に、下記式 (I 6)で表わされる色素のリチウム塩 18部と、下記式 (II 11) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た
[0170] [化 34]
Figure imgf000050_0001
[0171] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0172] また、 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比から
3
求めたチルト角は 9. 56度であり、 800〜900cm_1にある CH面外変角振動に対す る 2方向からの偏光吸収の比 YYZYZの値は 1. 92であった。
[0173] [比較例 6]
水 84部に、上記式 (I 6)で表わされる色素のリチウム塩 16部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物 (本発明の材料)を加えず、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物を得た 。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した 後、自然乾燥することにより、異方性色素膜を得た。
[0174] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 11の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0175] [実施例 12]
水 81部に、下記式 (I 7)で表わされる色素のリチウム塩 18部と、下記式 (II 12) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た。
[0176] [化 35]
Figure imgf000051_0001
[0177] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0178] また、 970cm_1付近にある SO伸縮振動に対する 2方向からの偏光吸収の比から
3
求めたチルト角は 9. 72度であり、 800〜900cm_1にある CH面外変角振動に対す る 2方向からの偏光吸収の比 YYZYZの値は 1. 94であった。
[0179] [比較例 7]
水 84部に、上記式 (I 7)で表わされる色素のリチウム塩 16部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物 (本発明の材料)を加えず、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物を得た 。この異方性色素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した 後、自然乾燥することにより、異方性色素膜を得た。
[0180] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 12の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0181] [実施例 13]
水 84部に、下記式 (I 8)で表わされる色素のリチウム塩 15部と、下記式 (II 13) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 1部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た。
[0182] [化 36]
Figure imgf000052_0001
[0183] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0184] [比較例 8]
水 86部に、上記式 (1— 8)で表わされる色素のリチウム塩 14部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0185] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 13の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0186] [実施例 14]
水 70部に、下記式 (1— 9)で表わされる色素のリチウム塩 24部と、下記式 (II 14) で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 6部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た。
[0187] [化 37]
Figure imgf000053_0001
H ( I I一 1 4 )
[0188] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0189] [比較例 9] 水 65部に、上記式 (I 9)で表わされる色素のリチウム塩 35部をカ卩えただけで、電 子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、濾 過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色素 膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥する ことにより、異方性色素膜を得た。
[0190] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 14の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0191] [実施例 15]
水 80部に、下記式 (I 10)で表わされる色素のリチウム塩 12部と、下記式 (II 15 )で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 8部をカ卩え、撹拌して 溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発 明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、同 様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方性 色素膜)を得た。
[0192] [化 38]
Figure imgf000054_0001
得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0194] [比較例 10]
水 65部に、上記式 (I 10)で表わされる色素のリチウム塩 35部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥す ることにより、異方性色素膜を得た。
[0195] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 15の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0196] [実施例 16]
水 80部に、下記式 (1—11)で表わされる色素のリチウム塩 10. 4部と、下記式 (II— 16)で表わされる電子不足である(Electron-Deficient)盤状化合物 9. 6部を加え、撹 拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に 、同様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方 性色素膜)を得た。
[0197] [化 39]
Figure imgf000055_0001
( I I一 1 6 ) [0198] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0199] [比較例 11]
水 80部に、上記式 (1—11)で表わされる色素のリチウム塩 20部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥す ることにより、異方性色素膜を得た。
[0200] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 16の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0201] [実施例 17]
水 75部に、下記式 (1—12)で表わされる色素のリチウム塩 13部と、下記式 (II— 17 )で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物(本発明の材料) 12 部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色 素膜用組成物 (本発明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と 同様の基板に、同様の方法で塗布した後、自然乾燥することにより、異方性色素膜( 本発明の異方性色素膜)を得た。
[0202] [化 40]
Figure imgf000057_0001
[0203] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0204] [比較例 12]
水 65部に、上記式 (1—12)で表わされる色素のリチウム塩 35部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥す ることにより、異方性色素膜を得た。
[0205] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 17の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0206] [実施例 18]
水 80部に、下記式 (I 13)で表わされる色素のリチウム塩 10部と、下記式 (II 18 )で表わされる電子不足である(Electron-Deficient)盤状ィ匕合物 10部をカ卩え、撹拌し て溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本 発明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に、 同様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方 性色素膜)を得た。
[0207] [化 41]
)
Figure imgf000058_0001
[0208] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0209] [比較例 13]
水 80部に、上記式 (1—13)で表わされる色素のリチウム塩 20部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、自然乾燥す ることにより、異方性色素膜を得た。
[0210] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 18の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0211] [実施例 19]
水 80部に、下記式 (1—14)で表わされる色素のリチウム塩 10. 4部と、下記式 (II— 19)で表わされる電子不足である(Electron-Deficient)盤状化合物 9. 6部を加え、撹 拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物 (本発明の組成物)を得た。この異方性色素膜用組成物を、実施例 1と同様の基板に 、同様の方法で塗布した後、自然乾燥することにより、異方性色素膜 (本発明の異方 性色素膜)を得た。
[0212] [化 42]
Figure imgf000059_0001
H ( I I 1 9 )
[0213] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本実施例の異方性色素膜は、偏光膜として充分機能 し得る高 1ヽ二色比(光吸収異方性)を有して ヽた。
[0214] [比較例 14]
水 80部に、上記式 (1—14)で表わされる色素のリチウム塩 20部をカ卩えただけで、 電子不足である(Electron-Deficient)盤状ィ匕合物を加えず、撹拌して溶解させた後、 濾過して不溶分を除去することにより、異方性色素膜用組成物を得た。この異方性色 素膜用組成物を、実施例 1と同様の基板に、同様の方法で塗布した後、 自然乾燥す ることにより、異方性色素膜を得た。
[0215] 得られた異方性色素膜にっ 、て、最大吸収波長( λ max)と二色比 (D)を測定した 。その結果を下記表 3に示す。本比較例の異方性色素膜は、実施例 19の異方性色 素膜に比べて、低 、二色比 (光吸収異方性)し力、得られな力つた。
[0216] [表 2] 表 2
Figure imgf000060_0001
[0217] [表 3] 表 3
Figure imgf000061_0001
[0218] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 4月 21日付で出願された特願 2005— 123764号明細 書、及び、 2006年 4月 20日付で出願された特願 2006— 116724号明細書に基づ いており、その全体が引用により援用される。
産業上の利用可能性
[0219] 本発明の異方性色素膜は、光吸収の異方性を利用することにより、直線偏光、円 偏光、楕円偏光等を得る偏光膜として利用できる。また、色素膜の形成プロセスや、 基材ゃ色素を含有する組成物の選択により、屈折異方性や伝導異方性など各種の 異方性膜としての機能化が可能となり、多種多様な用途に使用可能な偏光素子とす ることがでさる。

Claims

請求の範囲
[1] 電子不足である(Electron-Deficient)盤状化合物及び電子リッチである(Electron- Rich)化合物を含有する
ことを特徴とする、異方性色素膜用組成物。
[2] 前記の電子リッチである(Electron-Rich)化合物が色素である
ことを特徴とする、請求項 1記載の異方性色素膜用組成物。
[3] 該色素がァゾ系色素である
ことを特徴とする、請求項 2記載の異方性色素膜用組成物。
[4] 前記の電子不足である(Electron-Deficient)盤状ィ匕合物力 芳香族系化合物又は ァザ複素環式化合物である
ことを特徴とする、請求項 1〜3の何れか一項に記載の異方性色素膜用組成物。
[5] 前記の電子不足である(Electron-Deficient)盤状ィ匕合物力 アントラキノン誘導体 又はアントラキノン誘導体を部分構造として含むァゾ色素である
ことを特徴とする、請求項 1〜3の何れか一項に記載の異方性色素膜用組成物。
[6] 更に溶剤を含有する
ことを特徴とする、請求項 1〜5の何れか一項に記載の異方性色素膜用組成物。
[7] 請求項 1〜6の何れか一項に記載の異方性色素膜用組成物を用いて形成された ことを特徴とする、異方性色素膜。
[8] 電子不足である(Electron-Deficient)盤状化合物及び電子リッチである(Electron-
Rich)化合物を含有する
ことを特徴とする、異方性色素膜。
[9] 970cm_1近辺にある SO伸縮振動に対する下記の(i)及び (ii)の方向からの偏光
3
吸収の比から求めたチルト角が 10° 以下である
ことを特徴とする、異方性色素膜。
(i)可視光を最も吸収する方向
(ii)可視光を最も透過する方向
[10] 800〜900cm_1にある CH面外変角振動に対する下記の(i)及び (ii)の方向から の偏光吸収の比 YYZYZの値が 1. 8以上である ことを特徴とする、異方性色素膜。
(i)可視光を最も吸収する方向
(ii)可視光を最も透過する方向
請求項 7〜10の何れか一項に記載の異方性色素膜を用いた ことを特徴とする、偏光素子。
PCT/JP2006/308429 2005-04-21 2006-04-21 異方性色素膜用組成物、異方性色素膜及び偏光素子 WO2006115206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06745560A EP1881349A1 (en) 2005-04-21 2006-04-21 Composition for anisotropic dye film, anisotropic dye film, and polarizing device
US11/912,190 US20090040609A1 (en) 2005-04-21 2006-04-21 Composition for anisotropic dye film, anisotropic dye film, and polarizing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-123764 2005-04-21
JP2005123764 2005-04-21

Publications (1)

Publication Number Publication Date
WO2006115206A1 true WO2006115206A1 (ja) 2006-11-02

Family

ID=37214822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308429 WO2006115206A1 (ja) 2005-04-21 2006-04-21 異方性色素膜用組成物、異方性色素膜及び偏光素子

Country Status (6)

Country Link
US (1) US20090040609A1 (ja)
EP (1) EP1881349A1 (ja)
KR (1) KR100919150B1 (ja)
CN (1) CN100516947C (ja)
TW (1) TWI384033B (ja)
WO (1) WO2006115206A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488082B2 (en) 2008-09-12 2013-07-16 Nitto Denko Corporation Polarizing film and method for producing the same
US8491823B2 (en) 2008-02-13 2013-07-23 Nitto Denko Corporation Process for producing water-resistant polarizing film
US8734918B2 (en) 2007-12-28 2014-05-27 Nitto Denko Corporation Liquid crystal coating solution, and polarizing film
CN104395791A (zh) * 2013-06-18 2015-03-04 Lg化学株式会社 薄偏光板及其制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906216A1 (en) * 2005-07-19 2008-04-02 Mitsubishi Chemical Corporation Composition for anisotropic pigmented film, anisotropic pigmented film, and polarizing element
JP5153445B2 (ja) 2008-01-24 2013-02-27 日東電工株式会社 液晶性コーティング液および偏光膜
JP5323439B2 (ja) * 2008-06-20 2013-10-23 日東電工株式会社 耐水性偏光膜の製造方法
JP5305997B2 (ja) * 2008-12-03 2013-10-02 日東電工株式会社 耐水性偏光フィルム、及びその製造方法、及び画像表示装置
JP5276532B2 (ja) 2009-07-01 2013-08-28 日東電工株式会社 液晶性コーティング液および偏光膜
CN102608796B (zh) * 2012-04-01 2015-05-13 福建华映显示科技有限公司 透明液晶显示装置及其制造方法
KR101575489B1 (ko) 2013-06-18 2015-12-07 주식회사 엘지화학 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204151A1 (ko) * 2013-06-18 2014-12-24 주식회사 엘지화학 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
JP7048508B2 (ja) * 2016-11-14 2022-04-05 日本化薬株式会社 赤外波長域用染料系偏光板
KR20210066374A (ko) * 2019-11-28 2021-06-07 엘지디스플레이 주식회사 편광자, 편광자 제조방법 및 이를 구비한 표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476171A (en) * 1977-11-29 1979-06-18 Mitsubishi Electric Corp Production of polarizing film
JPS61275704A (ja) * 1985-05-16 1986-12-05 Sumitomo Chem Co Ltd 染料系偏光膜の製造方法
JPS62123405A (ja) * 1984-11-16 1987-06-04 Sumitomo Chem Co Ltd 染料系高耐久偏光膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400877A (en) * 1941-03-21 1946-05-28 John F Dreyer Optical device and method and manufacture thereof
DE3007198A1 (de) * 1980-02-26 1981-09-03 Siemens AG, 1000 Berlin und 8000 München Pleochroitischer anthrachinon-farbstoff, verfahren zu seiner herstellung und verwendung des farbstoffs
US6404472B1 (en) * 1995-09-08 2002-06-11 Alejandro Andreatta Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same
KR101135415B1 (ko) * 2003-10-14 2012-04-23 미쓰비시 가가꾸 가부시키가이샤 이방성 색소막용 색소, 이방성 색소막용 색소 조성물,이방성 색소막 및 편광소자
JP4586532B2 (ja) * 2004-01-19 2010-11-24 三菱化学株式会社 異方性色素膜用色素組成物、異方性色素膜及び偏光素子
JP5200325B2 (ja) * 2005-04-04 2013-06-05 三菱化学株式会社 湿式成膜法により形成された異方性色素膜及び偏光素子
EP1906216A1 (en) * 2005-07-19 2008-04-02 Mitsubishi Chemical Corporation Composition for anisotropic pigmented film, anisotropic pigmented film, and polarizing element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476171A (en) * 1977-11-29 1979-06-18 Mitsubishi Electric Corp Production of polarizing film
JPS62123405A (ja) * 1984-11-16 1987-06-04 Sumitomo Chem Co Ltd 染料系高耐久偏光膜
JPS61275704A (ja) * 1985-05-16 1986-12-05 Sumitomo Chem Co Ltd 染料系偏光膜の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734918B2 (en) 2007-12-28 2014-05-27 Nitto Denko Corporation Liquid crystal coating solution, and polarizing film
US8491823B2 (en) 2008-02-13 2013-07-23 Nitto Denko Corporation Process for producing water-resistant polarizing film
US8741190B2 (en) 2008-02-13 2014-06-03 Nitto Denko Corporation Process for producing water-resistant polarizing film
US8488082B2 (en) 2008-09-12 2013-07-16 Nitto Denko Corporation Polarizing film and method for producing the same
CN104395791A (zh) * 2013-06-18 2015-03-04 Lg化学株式会社 薄偏光板及其制造方法

Also Published As

Publication number Publication date
KR100919150B1 (ko) 2009-09-28
CN100516947C (zh) 2009-07-22
TWI384033B (zh) 2013-02-01
EP1881349A1 (en) 2008-01-23
CN101163996A (zh) 2008-04-16
TW200710171A (en) 2007-03-16
KR20080000667A (ko) 2008-01-02
US20090040609A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4946149B2 (ja) 異方性色素膜用組成物、異方性色素膜及び偏光素子
WO2006115206A1 (ja) 異方性色素膜用組成物、異方性色素膜及び偏光素子
JP5422864B2 (ja) トリスアゾ色素、該色素を含む異方性色素膜用組成物、異方性色素膜及び偏光素子
KR101301468B1 (ko) 이방성 색소막용 조성물, 이방성 색소막 및 편광 소자
JP5168878B2 (ja) 異方性色素膜用組成物、異方性色素膜および偏光素子
JP4784417B2 (ja) 異方性色素膜用組成物、異方性色素膜及び偏光素子
JP4736823B2 (ja) 異方性色素膜用組成物、異方性色素膜、偏光素子及び異方性色素膜用色素
JP5021387B2 (ja) 積層体の製造方法
WO2013128950A1 (ja) 偏光フィルム、画像表示装置、及び偏光フィルムの製造方法
JP2006328157A (ja) 異方性色素膜用色素、異方性色素膜及び偏光素子
WO2005069048A1 (ja) 異方性色素膜用色素組成物、異方性色素膜及び偏光素子
JP2006047966A (ja) 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜及び偏光素子
JP6604203B2 (ja) 異方性色素膜用組成物、異方性色素膜及び光学素子
JP4581627B2 (ja) ペリレン系色素、異方性色素膜形成用組成物、異方性色素膜および偏光素子
JP5092345B2 (ja) 異方性色素膜、および偏光素子
US20120313040A1 (en) Coating liquid, optical anisotropic film and image display device
JP2005284260A (ja) 異方性有機膜およびその製造方法並びに偏光膜および偏光素子
JP2008009417A (ja) 異方性色素膜用色素
JP4973100B2 (ja) 湿式成膜法により形成された異方性色素膜及び偏光素子
TWI379891B (ja)
JP5076308B2 (ja) 水溶性色素並びにそれを用いた色素組成物、異方性色素膜及び偏光素子
JP2009080250A (ja) 積層体の製造方法
JP2009053631A (ja) 積層体の製造方法
JP2021135392A (ja) 異方性色素膜及び光学素子
JP5521408B2 (ja) 化合物、該化合物を含有する組成物、異方性膜、および偏光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013277.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077026999

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11912190

Country of ref document: US