WO2006114887A1 - スラッシュ流体の製造方法及び製造装置 - Google Patents

スラッシュ流体の製造方法及び製造装置 Download PDF

Info

Publication number
WO2006114887A1
WO2006114887A1 PCT/JP2005/007794 JP2005007794W WO2006114887A1 WO 2006114887 A1 WO2006114887 A1 WO 2006114887A1 JP 2005007794 W JP2005007794 W JP 2005007794W WO 2006114887 A1 WO2006114887 A1 WO 2006114887A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pressure
gas
slush
slush fluid
Prior art date
Application number
PCT/JP2005/007794
Other languages
English (en)
French (fr)
Inventor
Masamitsu Ikeuchi
Akito Machida
Kouichi Matsuo
Original Assignee
Mayekawa Mfg. Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Mfg. Co., Ltd filed Critical Mayekawa Mfg. Co., Ltd
Priority to CA002605364A priority Critical patent/CA2605364A1/en
Priority to PCT/JP2005/007794 priority patent/WO2006114887A1/ja
Priority to EP20050734468 priority patent/EP1876404A4/en
Priority to JP2007514400A priority patent/JP4619408B2/ja
Publication of WO2006114887A1 publication Critical patent/WO2006114887A1/ja
Priority to US11/877,848 priority patent/US7591138B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/06Solidifying liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2301/00Special arrangements or features for producing ice
    • F25C2301/002Producing ice slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a method and apparatus for producing a slush fluid in which fine solids are mixed in a liquid.
  • slush fluids in which fine solids and liquids are mixed in a cryogenic state have been widely used in various fields.
  • the slush fluid has the characteristics that the density of solids is large and the amount of heat is large by the amount of latent heat compared to the case of liquid alone, and it can maintain the cooling state for a long time in an insulated container. It is attracting attention in various applications, such as ice heat storage systems using systems, cooling systems for superconducting equipment using slush nitrogen, and hydrogen fuel storage / transfer systems using slush hydrogen.
  • a cooling system using slush nitrogen will be described.
  • the melting temperature of nitrogen (63K) since the melting temperature of nitrogen (63K) is used, cooling at a lower temperature is possible and the latent heat of fusion (25.72kjZkg) is obtained.
  • the characteristic is that the nitrogen temperature is constant (63K) until the cooling heat is large and the solid content is completely dissolved.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-281321.
  • Patent Document 1 is a method for producing slush hydrogen, in which liquid hydrogen is introduced into an insulated container at a pressure higher than atmospheric pressure, expanded to a triple point pressure or lower through an expansion valve, introduced into the container, Liquid hydrogen in the container is cooled to a supercooled state with a supercooler using low-temperature helium as a cooling source, solid hydrogen is deposited on the cooling surface of the supercooler, and the deposited solid hydrogen is peeled off with an auger.
  • a method for producing slush hydrogen is a method for producing slush hydrogen.
  • the latter method is a method of generating a solid after evacuating the inside of a heat insulating container storing a liquid with a vacuum pump to reach a triple point.
  • the solid particle size is small and the particle size is uniform.
  • Patent Document 2 Japanese Patent Publication No. 2003-517411 discloses a method for producing a solid from liquid particles sprayed from a nozzle.
  • Patent Document 3 Japanese Patent Laid-Open No. 8-285420.
  • the pressure in the evacuation line force tank provided in the slush hydrogen production tank is reduced and liquid hydrogen is injected from the liquid hydrogen injection nozzle provided in the tank, the liquid hydrogen is converted into solid hydrogen by latent heat of vaporization. The state changes and is stored in the tank bottom. Then, evacuation is stopped and the inside of the tank is brought to atmospheric pressure to release the gas exhaust line force, evaporating gas, and then liquid hydrogen injection nozzle force Liquid hydrogen is supplied and mixed to generate slush nitrogen. This suggests that fine particles with uniform particle size can be produced.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-281321
  • Patent Document 2 Special Table 2003-517411
  • Patent Document 3 JP-A-8-285420
  • Patent Document 2 uses helium gas for cooling the liquid particles, and it is inevitable that helium is mixed into the manufactured slush fluid.
  • Patent Document 3 there is a high possibility that other substances will be mixed during production.
  • a substance having a melting point higher than that of the substance forming the slush fluid is solidified and adheres to the wall surface. The lower one separates as a gas and accumulates in a high place, and in any case, it will cause the clogging of the transfer pipe.
  • Patent Document 3 the gas exhausted from the exhaust line is released into the atmosphere, so there is a problem that efficiency is poor. Furthermore, Patent Document 3 has a problem in that if solid hydrogen is generated from liquid hydrogen ejected from a nozzle and then the vacuum exhaust is stopped to increase the pressure, the temperature of the hydrogen at the nozzle outlet rises and the solid hydrogen melts. It was.
  • the present invention can reliably manufacture a slush fluid containing solid particles having a fine and uniform particle size, can prevent impurities from being mixed, and can efficiently generate and transport the slush fluid.
  • An object of the present invention is to provide a method and apparatus for producing a slush fluid that can be performed with high reliability.
  • the present invention solves the difficult problem by:
  • the liquid is initially filled in the heat insulation container, and the heat insulation container is evacuated to a pressure equal to or lower than the triple point pressure of the liquid, and then the fine particle liquid is sprayed into the heat insulation container by the liquid supply means, and the latent heat of evaporation
  • the liquid is solidified to produce solid particles, and the solid particles and the initially filled liquid are mixed to produce a slush fluid.
  • the liquid is initially filled in the heat insulating container in advance, the liquid particles sprayed into the heat insulating container are cooled to the triple point by reducing the pressure of the heat insulating container by vacuuming, so that solid particles Can be generated. At this time, the initially filled liquid is saturated. It is preferable that the temperature is a sum temperature, whereby it is easily cooled to the triple point only by evacuation, and solid particles can be generated.
  • the temperature is a sum temperature, whereby it is easily cooled to the triple point only by evacuation, and solid particles can be generated.
  • liquid supply means for generating solid particles by injecting liquid into fine particles particle size can be controlled, and a slush fluid containing very fine and uniform solid particles is produced. It becomes possible. Therefore, when the produced slush fluid is applied as a refrigerant of the cooling system, the solid content can be efficiently transported and cooled without separation and precipitation.
  • a gas-liquid separation heat insulating material for preventing evaporation or solidification of the liquid is provided on the liquid surface of the liquid initially filled in the heat insulating container.
  • the heat insulating material for gas-liquid separation, it is possible to prevent evaporation and solidification of the initially filled liquid, and a large particle size solid produced by solidifying the liquid stored in the container. It can prevent the generation of particles and can produce slush fluid containing fine and uniform solid particles.
  • the compressed and exhausted gas is compressed and then cooled to be condensed and re-liquefied, and the re-liquefied liquid is supplied to the liquid supply means and circulated.
  • the low-pressure low-temperature gas exhausted under reduced pressure is heated by a heat exchanger and then compressed by a compressor to generate a high-pressure intermediate-temperature gas.
  • the high-pressure intermediate-temperature gas is heat-exchanged with the low-pressure low-temperature gas by the heat exchanger.
  • the liquid cooled and condensed by the cooling and re-liquidated is supplied to the liquid supply means and circulated.
  • the intermediate temperature means a temperature near normal temperature, and preferably normal temperature.
  • the gas released to the outside can be minimized and the gas can be used efficiently.
  • highly efficient conveyance is possible by using a compressor instead of a pump during pressure reduction.
  • heat efficiency can be improved by using a heat exchanger to exchange heat between low-pressure low-temperature gas and high-pressure medium-temperature gas.
  • the gas to be introduced into the compressor is introduced after the temperature has been raised, it is possible to prevent the occurrence of malfunctions of the equipment due to low temperature conditions as much as possible, and auxiliary cooling is provided in the cryogenic temperature section. Since it is not necessary to provide a driving device other than the means, the device cost can be reduced.
  • the present invention is characterized in that the impure gas is removed from the decompressed gas column.
  • the concentration of impurities in the system can be kept very low, and even when the manufactured slush fluid is used in a cooling system or the like, problems due to impurity contamination can be avoided, resulting in high efficiency and high reliability.
  • a cooling system can be provided.
  • an apparatus for producing a slush fluid in which liquid and solid particles are mixed is used.
  • a heat insulating container initially filled with the liquid a pressure reducing means for evacuating the inside of the heat insulating container to a pressure equal to or lower than the triple point pressure of the liquid, and injecting a fine particulate liquid into a gas phase portion in the pressure reduced heat insulating container
  • a stirring means for stirring the solid particles generated by solidifying the injected liquid by latent heat of evaporation and the initially filled liquid.
  • a heat insulating material for gas-liquid separation that prevents evaporation or solidification of the liquid is provided on the liquid surface of the liquid initially filled in the heat insulating container.
  • a heat exchanger that raises the temperature of the low-pressure low-temperature gas evacuated from the heat insulating container by the pressure-reducing means, and a compressor that compresses the heated gas to obtain a high-pressure intermediate-temperature gas is provided.
  • the high-pressure intermediate temperature gas from the compressor is cooled by exchanging heat with the low-pressure low-temperature gas by the heat exchanger, and the liquid condensed and re-liquidated by the cooling is cooled.
  • a circulation line for circulating the liquid supply means is provided.
  • auxiliary cooling means for cooling the high-pressure intermediate temperature gas may be provided.
  • the present invention is characterized in that an impure gas removing means for removing the impure gas from the gas exhausted under reduced pressure is provided.
  • the inner container has a double structure in which the inner container is accommodated in the heat insulation container, the inner container is movable up and down with respect to the heat insulation container, and has a liquid passing valve at the bottom,
  • the inner container When the solid particles are produced, the inner container is raised to close the liquid passage valve so that there is almost no liquid in the inner container.
  • the liquid passage valve is used. And the inner container is lowered to mix the initially filled liquid and the generated solid particles in the heat insulating container to produce a slush fluid, and the inner container is raised again to cause the slush fluid to flow. Disconnecting from the flow valve The slush fluid is moved to the heat vessel side and pressurized and conveyed. Thereby, the gas-liquid separability at the time of pressurization in the said heat insulation container can be ensured.
  • the heat insulating container has a double structure in which the inner container is accommodated, and the inner container is movable up and down with respect to the heat insulating container and includes a liquid passing valve at the bottom,
  • the stirring means is disposed in the side container,
  • the inner container When the solid particles are produced, the inner container is lowered and the liquid filling valve is closed in a state where the initially filled liquid is present in the inner container, and a heat insulating material for gas-liquid separation is provided on the liquid surface of the liquid.
  • the generated solid particles are mixed and stirred with the liquid to generate a slush fluid.
  • the liquid passing valve When the slush fluid reaches a predetermined concentration, the liquid passing valve is opened and the inner container is raised to raise the inner container side.
  • the slush fluid is moved to a pressure and the slush fluid is conveyed under pressure. Thereby, it is possible to ensure gas-liquid separation at the time of pressurization in the heat insulating container and to prevent solid particles from sticking to each other.
  • the present invention it is possible to produce a slush fluid having a fine and uniform particle diameter with a simple configuration.
  • the gas exhausted under reduced pressure is liquefied and reused, the amount of released gas can be minimized and the gas can be used efficiently.
  • the impure gas removal means is provided in the circulation system, the impurity concentration in the system can be kept very low, and even when the manufactured slush fluid is used in a cooling system, etc., problems due to impurity contamination can be avoided. Can provide a highly efficient and reliable system.
  • it is possible to prevent evaporation and solidification of the initially filled liquid by providing a heat insulating material for gas-liquid separation in the heat insulating container.
  • FIG. 1 is an overall configuration diagram of a slush nitrogen production apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing another configuration of the production tank provided in the slush nitrogen production apparatus of FIG. 1 according to Example 2.
  • FIG. 2 is a cross-sectional view showing another configuration of the production tank provided in the slush nitrogen production apparatus of FIG. 1 according to Example 2.
  • FIG. 3 is a cross-sectional view showing another configuration of the production tank provided in the slush nitrogen production apparatus of FIG. 1 according to Example 3. Explanation of symbols
  • the present example relates to a method and an apparatus for producing a slush fluid that is a sherbet-like fluid in which a liquid and fine solid particles are mixed.
  • Oxygen, hydrogen, helium, etc. and the form of the fluid includes dynamic ice, slush nitrogen, slush hydrogen, and the like.
  • the slush nitrogen production apparatus includes a slush nitrogen generation system including a vacuum adiabatic slush nitrogen generation tank 1 and nitrogen evacuated from the generation tank 1. Nitrogen circulation system that liquefies gas and circulates to the production tank 1 and power.
  • solid nitrogen 51 is produced from the liquid nitrogen 50 in the production tank 1 and mixed with the liquid nitrogen 50 initially charged in the production tank 1 to produce slush nitrogen.
  • a specific configuration of the production tank 1 is such that a plurality of baffle boards 2 are laminated in layers on the top of the production tank 1 and fixed, and a stirrer 3 is installed along the production tank central axis.
  • the stirrer 3 has a configuration in which a stirring blade 6 is provided at the lower end of a shaft 4 connected to a motor, and the stirring blade 6 is installed so as to stir slush nitrogen stored at the bottom of the production tank 1. Is done.
  • a gas-liquid separator 9 is provided in the gas phase portion of the production tank 1, and only the gas present in the gas phase portion is discharged to the outside through the gas-liquid separator 9.
  • the production tank 1 includes a vacuum exhaust line 11 for exhausting the gas separated by the gas-liquid separator 9 to the outside.
  • the bottom of the production tank 1 is provided with a slush nitrogen outlet la for discharging slush nitrogen produced in the production tank.
  • a liquid nitrogen supply nozzle 10 for injecting liquid nitrogen into fine particles is provided in the gas phase portion of the production tank 1.
  • the liquid nitrogen supply nozzle 10 is connected to a liquid nitrogen supply line 19 extending from the nitrogen circulation system.
  • the top space of the production tank including the baffle board 2 is isolated by a heat insulating material 7 that passes through the gas.
  • a pressure adjusting line 12 in the production tank is provided at the top of the isolated production tank.
  • the circulation system re-compresses the nitrogen gas exhausted from the production tank 1 through the vacuum exhaust line 11 by the compressor 15, further condenses and reliquefies the liquid nitrogen supply line 19 Through the production tank 1 as liquid nitrogen.
  • heat exchangers 13a and 13b are provided for raising the temperature of the exhausted nitrogen gas to substantially room temperature by heat exchange, and a compressor 15 for introducing the raised low-pressure room temperature gas is provided. It is done.
  • the nitrogen gas that has been pressurized by the compressor 15 to become high-pressure room-temperature gas is again introduced into the heat exchangers l3b and 13a and cooled by heat exchange with the nitrogen gas in the vacuum exhaust line 11 to generate low-temperature and high-pressure gas.
  • a heat exchange into which the low-temperature and high-pressure gas is introduced is provided, and the heat exchange includes an auxiliary refrigeration refrigerator 17.
  • the low-temperature and high-pressure gas is condensed and liquefied to form liquid nitrogen.
  • a heat exchanger 18 that cools slush nitrogen in the production tank 1 with the cooled liquid nitrogen may be provided on the downstream side of the heat exchanger 16. The liquid nitrogen liquefied through the heat exchanger 16 is fed to the liquid nitrogen supply nozzle 10 of the production tank 1 through the liquid nitrogen supply line 19.
  • an impure gas removing device 20 for removing impure gas such as nitrogen gas is provided on the outlet side of the compressor 15.
  • a low temperature impure gas removing device 21 is also provided between the heat exchanger 13b and the heat exchanger 13a.
  • the impure gas removing device 21 may be installed in a single unit or a plurality of units, and the installation position is not particularly limited.
  • a buffer tank 34 for temporarily storing nitrogen gas that has passed through the vacuum exhaust line so as to be in parallel with the compressor 15.
  • a bypass line 14 may be provided for feeding nitrogen gas from the vacuum exhaust line 11 to the heat exchanger 13b by binos the compressor 15 and the buffer tank 34.
  • a generation tank pressure gauge 23 for measuring the pressure in the generation tank 1, and a pressurizing pressure adjusting valve 24 for controlling the tank internal pressure based on the tank internal pressure measured by the pressure gauge 23 are provided.
  • an exhaust gas flow meter 25 and a production tank pressure regulating valve 26 are provided on the vacuum exhaust line 11 between the heat exchanger l3b and the compressor 15, and a low pressure side pressure gauge 27 is provided. Is provided. Further, based on the pressure of the nitrogen gas measured by the low pressure side pressure gauge 27, a low pressure adjustment valve 28 for adjusting the amount of gas flowing into the buffer tank 34, A bypass adjustment valve 29 for adjusting the amount of gas flowing through the no-pass line 14 is provided.
  • a high-pressure side pressure gauge 30 that measures the pressure of nitrogen gas that has passed through the compressor 15, the buffer tank 34, or the bypass line 14, and a buffer based on the pressure of the nitrogen gas measured by the pressure gauge 30.
  • a high pressure control valve 31 for controlling the amount of gas delivered from the tank 34 is provided.
  • a flow meter 32 for supply gas that measures the flow rate of the high-pressure room temperature gas downstream from the high-pressure pressure regulating valve 31 and before being introduced into the heat exchanger b, and the gas flow rate measured by the flow meter 32 are adjusted. Based on this, a supply gas flow rate adjusting valve 33 for controlling the gas flow rate is provided.
  • the nitrogen gas evacuated from the production tank 1 by the compressor 15 is heated to the normal temperature via the vacuum exhaust line 11 1 through the gas-liquid separator 9 and the heat exchangers 13a and 13b, and becomes low-pressure normal-temperature gas. Introduced into the compressor 15.
  • the gas pressurized by the compressor 15 is subjected to removal of water vapor and impure gas in the impure gas removal device 20, and is cooled again through the heat exchangers 13b and 13a to become high pressure and low temperature gas.
  • the low temperature impure gas removing device 21 removes the water vapor and the impure gas in the nitrogen gas again, and the gas is refined to a high nitrogen purity gas.
  • the production tank 1 is initially filled with liquid nitrogen 50 having a saturation temperature in advance.
  • the amount of gas sucked from the gas-liquid separator 9 and the amount of liquid injected from the liquid nitrogen supply nozzle 10 are made equal (in terms of mass), so that solid nitrogen is produced in the production tank 1.
  • the load of the auxiliary chilling refrigerator 17 can be significantly reduced by balancing the amount of heat generated 51 with the amount of heat discarded to the cooling water by the compressor 15.
  • the liquid nitrogen 50 initially charged in the production tank 1 is supplied with an external force or supplied from the buffer tank 34 with nitrogen gas, and liquidized in the auxiliary refrigeration refrigerator 17, and the liquid nitrogen 50 exceeds the triple point of nitrogen.
  • the pressure is supplied into the production tank 1. Excess nitrogen can be recovered in the buffer tank 34.
  • the liquid nitrogen sprayed from the liquid nitrogen supply nozzle 10 is 63 K, for example, liquid nitrogen having a particle diameter of 1 mm. It is solidified by taking away the latent heat of vaporization and becomes solid nitrogen 51 in the form of fine particles of about 0.9 mm. At this time, if evaporation occurs from the surface of the liquid nitrogen 50 initially filled in the lower part of the production tank 1, solid nitrogen having a large particle size is produced here. A large number of small heat-insulating gas-liquid separators 8 with a spherical force are placed so as to cover the surface of liquid nitrogen.
  • the agitator 3 is operated continuously or intermittently, and the liquid nitrogen 50 in the production tank 1 is agitated.
  • the fine particulate solid nitrogen 51 accumulated on the solid-liquid separation heat insulating material 8 rotates and enters the liquid nitrogen 50.
  • the liquid nitrogen 50 and the solid nitrogen 51 are stirred and mixed by the stirrer 3 to produce uniform slush nitrogen.
  • the pressure in the production tank 1 is measured by the production tank pressure gauge 23, and the production tank pressure adjustment valve 26 is controlled based on the measured pressure to appropriately adjust the tank internal pressure. Further, since the liquid nitrogen injection amount of 10 liquid nitrogen supply nozzles is adjusted by the supply gas flow rate adjusting valve 33, it is possible to obtain an arbitrary generation capacity.
  • the two regulating valves 26 and 33 are closed, and nitrogen gas is supplied into the production tank 1 from the pressure regulating valve 24 for pressurization.
  • the insulating material 8 for gas-liquid separation prevents the low temperature slush nitrogen from coming into contact with the pressurized gas, thus preventing the supply gas from becoming liquid and increasing the pressure in the production tank 1. it can.
  • slush nitrogen is taken out from the take-out port la and transported to the user.
  • the production tank 1 becomes empty, the liquid nitrogen 50 is directly filled into the production tank 1 or the gas is liquefied by the auxiliary refrigeration refrigerator 17 and filled into the production tank 1. Then, evacuation is started again, and the temperature of the liquid is lowered to the triple point.
  • the heat exchangers 13a and 13b for exchanging heat between the low-pressure low-temperature gas exhausted from the production tank 1 and the high-pressure normal-temperature gas pressurized by the compressor 15 are provided. , Improve thermal efficiency. Further, during the steady operation, the capacity of the auxiliary refrigeration refrigerator 17 is small or unnecessary. In addition, since the nitrogen storage is performed by gas using the nota tank 34, there is no extra refrigeration load compared to liquid storage. Furthermore, by providing an impure gas removal device The concentration of impurities in the system can be kept very low, and slush nitrogen with high nitrogen purity can be produced.
  • liquid nitrogen supply nozzle 10 for injecting fine particulate liquid nitrogen, it is possible to control the particle diameter of solid nitrogen, and it is possible to generate very fine and uniform slush nitrogen.
  • the slash is transported under pressure, so that it can be transported more efficiently than using a pump.
  • the occurrence of problems can be minimized and the cost of the device can be reduced.
  • FIG. 2 shows a production tank 1 according to the second embodiment and having a configuration different from that of FIG.
  • the second embodiment is configured such that the gas-liquid separation during pressurization in the production tank 1 shown in the first embodiment can be performed more reliably.
  • the present Example 2 has a double structure including a slush nitrogen generation tank 1 which is a vacuum heat insulating container and a gas-liquid separation inner container 40 provided in the generation tank 1.
  • the inner container 40 is a vacuum heat insulation type, and is provided so as to be movable up and down while floating in the liquid nitrogen 50 stored in the production tank 1. Therefore, there is usually no liquid inside the inner container 40.
  • the inner container 40 is separated from the production tank 1 so that it can move freely by buoyancy, and the gap between the inner and outer sides, that is, the side wall of the production tank 1 and the inner container 40 is sealed by a sealing member 41 at the upper room temperature portion. Yes.
  • a liquid passing valve 43 is provided at the bottom of the inner container 40 and is normally in a closed state.
  • the gas tank of the production tank 1 (inner vessel 40) has a liquid nitrogen supply nozzle 10 connected to the liquid nitrogen supply line 19 and a gas-liquid connected to the vacuum exhaust line 11 in the gas phase portion. Separators 9 are provided and are arranged so as not to interfere with the insulated container 40. Further, a stirrer 3 is provided along the central axis of the production tank 1, and the shaft 5 of the stirrer 3 passes through the inner container 40, and a stirring blade 6 is connected to the lower end portion thereof. The stirring blade 6 is located between the production tank 1 and the inner container 40. The normal temperature part at the upper part of the shaft 5 of the stirrer 3 is sealed with a sealing member 42.
  • the inner container 40 floats on the initially filled liquid nitrogen 50 in a state where the liquid passing valve 43 is closed. In the inner container 40, there is almost no liquid nitrogen before solid nitrogen production. Vacuum exhaust from the vacuum exhaust line 11 After the pressure is reduced to below the triple point pressure of nitrogen, fine liquid nitrogen is sprayed from the liquid nitrogen supply nozzle 10 into the inner container 40. The jetted liquid nitrogen is solidified into fine solid nitrogen 51 and collected in the inner container 40.
  • the liquid supply valve 36 is opened and the inner container 40 is sunk while suppressing the upper force, and the liquid nitrogen in the production tank 1 is caused to flow into the container.
  • the inner container 40 When all the solid nitrogen 51 in the inner container 40 enters the liquid nitrogen 50, the inner container 40 is pulled up with the liquid passing valve 43 open, so that the solid nitrogen 51 is generated together with the flowing liquid nitrogen 50. Move into tank 1. By repeating this process until the solid nitrogen 51 in the production tank 1 reaches a predetermined amount, slush nitrogen having a predetermined concentration can be produced in the production tank 1. When transporting the produced slush nitrogen, the inner container 40 is pulled up to close the liquid passage valve 36, and the inside of the production tank 1 is pressurized or the inner container 40 is closed with the liquid passage valve 36 closed. By pushing down, slush nitrogen can be pressurized and transported.
  • liquid nitrogen 50 is cooled beforehand to the vicinity of the freezing point by the auxiliary refrigeration refrigerator 17, more efficient operation is possible.
  • FIG. 3 shows a production tank 1 according to the third embodiment and having a configuration different from that of FIG.
  • this Example 3 in the production tank 1 shown in Example 2, when only solid nitrogen 51 is stored in the inner container 40, there is a concern that solid nitrogen may stick to some operating conditions. Indicates.
  • the third embodiment has a double container structure including a slush nitrogen generation tank 1 which is a vacuum heat insulating container and a gas-liquid separation inner container 44 provided in the generation tank 1.
  • the inner container 44 is of a vacuum heat insulating type and is provided so as to be movable up and down separately from the generation tank 1.
  • the upper part of the inner container 44 is a normal temperature part, and the inside and outside thereof are sealed by a seal member 41.
  • a liquid passing valve 43 is provided at the bottom of the inner container 44 and is normally in a closed state.
  • liquid nitrogen is added to the gas phase portion of the production tank 1 (inner vessel 44).
  • a liquid nitrogen supply nozzle 10 connected to the supply line 19 and a gas-liquid separator 9 connected to the vacuum exhaust line 11 are provided, and these are arranged so as not to interfere with the inner container 44.
  • a stirrer 3 is provided along the central axis of the production tank 1, and the stirring blade 6 provided at the lower end of the shaft 5 of the stirrer 3 is located at the bottom of the inner container 44.
  • the inner container 44 when the solid nitrogen 51 is produced, the inner container 44 is placed at the lowermost part of the production tank 1 and the liquid passing valve 43 is closed. In the inner container 44, a gas-liquid separation heat insulating material 8 is suspended so as to cover the entire liquid nitrogen liquid surface, and the initially filled liquid nitrogen 50 and the gas phase part are separated here. Yes. After the pressure is reduced to below the triple pressure of nitrogen by evacuation from the evacuation line 11, finely divided liquid nitrogen is injected into the inner container 44 from the liquid nitrogen supply nozzle 10. The jetted liquid nitrogen is solidified by latent heat of vaporization to form fine solid nitrogen 51 and falls onto the gas-liquid separation heat insulating material 8 and accumulates.
  • the solid nitrogen 51 on the heat-insulating material 8 penetrates into the liquid nitrogen 50 by the rotation.
  • the inner container 44 is pulled up and the liquid flow valve 43 is opened.
  • the slush nitrogen generated in the inner container 44 flows into the space in the generation tank 1 to which the container 44 has moved.
  • the rising of the inner container 44 is stopped, and the flow valve 43 is closed.
  • the inside of the inner container 44 is pressurized or the inner container 44 is pushed down to a predetermined pressure, and slush nitrogen is conveyed.
  • the present invention can easily produce a slush fluid with various material forces such as nitrogen, oxygen, hydrogen, or helium, and can produce a slush fluid containing solid particles having a uniform and fine particle size
  • the manufactured slush fluid can be used in various applications such as ice storage systems using dynamic ice systems, cooling systems such as superconducting equipment using slush nitrogen, or hydrogen fuel storage and transfer systems using slush hydrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

 液体と固体粒子とが混合したスラッシュ流体を製造する装置において、前記液体50が飽和状態にて貯留された生成タンク1と、該生成タンク1の上部に設けられた液体窒素供給ノズル10と、該生成タンク内を減圧する圧縮機15と、を備え、前記圧縮機15により減圧した前記生成タンク内に、前記液体窒素供給ノズル10により前記生成タンク内に液体を微細粒子状に噴射し、蒸発潜熱により液体粒子を固化させて固体窒素51を生成する構成とし、好適には、前記圧縮機15により前記生成タンク1から排気したガスを前記液体窒素供給ノズル10に循環させる循環系を有し、該循環系が、前記排気ガスを熱交換により常温まで昇温する熱交換器13a、13bと、該昇温したガスを圧縮して高圧常温ガスを生成する前記圧縮機15と、該高圧常温ガスを冷却して高圧低温ガスを生成する前記熱交換器13a、13bと、該高圧低温ガスを冷却して凝縮させる熱交換機16及び補助寒冷用冷凍機17と、を備える。

Description

明 細 書
スラッシュ流体の製造方法及び製造装置
技術分野
[0001] 本発明は、液体中に微細固体が混在するスラッシュ流体の製造方法及び製造装置 に関する。
背景技術
[0002] 従来、極低温状態で微細固体と液体が混じり合ったスラッシュ流体は、各種分野に おいて広く用いられている。スラッシュ流体は、液体だけの場合と比較して固体分だ け密度が大きぐ且つ潜熱分だけ熱量が大きいという特徴があり、断熱容器内での長 時間冷却状態を保持できることから、例えば、ダイナミックアイス方式を用いた氷蓄熱 システム、スラッシュ窒素を利用した超電導機器等の冷却システム、或いはスラッシュ 水素を利用した水素燃料貯蔵 ·移送システムなどの様々な用途において注目されて いる。
一例として、スラッシュ窒素を用いた冷却システムにっき説明すると、このシステム の特徴として、窒素の融解温度(63K)を利用するので、より低温での冷却が可能で、 且つ融解潜熱(25. 72kjZkg)分だけ冷却熱量が大きぐまた固体分が溶けきるま で窒素温度が一定 (63K)であると ヽぅ特徴を有する。
[0003] スラッシュ流体の代表的な製造方法としては、流体と極低温のへリウムを伝熱面を 介して熱交換により冷却し、伝熱面に凝縮した固体を削り落として微細固体を生成す る方法と、液体を減圧して固体を生成する方法がある。
前者の方法は、例えば特許文献 1 (特開平 6— 281321号公報)等に開示されてい る。特許文献 1はスラッシュ水素を製造する方法であり、液体水素を大気圧以上の圧 力で断熱容器内に導き、膨張弁を介して三重点圧力又はそれ以下まで膨張させて 容器内に導入し、低温へリウムを冷却源とする過冷器により容器内の液体水素を過 冷却状態まで冷却し、過冷器の冷却面に固体水素を析出させ、該析出した固体水 素をオーガで剥離してスラッシュ水素を製造する方法である。
しかし、この方法では、付帯設備としてヘリウム冷凍機が必要となり、オーガの刃と 冷却面との隙間の設計が困難で、またこれらの機構が複雑になるなどの問題があつ た。
[0004] 後者の方法は、液体を貯留した断熱容器内を真空ポンプにより真空引きし、三重 点に到達させた上で固体を生成する方法である
しかし、これらのスラッシュ窒素を冷却システムに適用した場合、以下の問題がある
1)スラッシュ流体は、低流速では液体より圧力損失が大きい。し力 高流速では圧力 損失の絶対値が大き!、ので搬送効率が悪化する。
2)固体分が分離 ·沈殿するのであまり低流速にできない。
従って、固体粒子径は小さく且つ粒径が均一であることが好ましい。
また、超電導送電ケーブルのような長距離冷却に関しては上記に加え以下の課題 がある。
1)ケーブルの発熱量が非常に小さく比較的小流量しか必要としない。
2)長距離冷却になるほど圧力損失分を加圧するポンプ力 の熱進入が大きくなる。 従って、流速を低くし圧力損失を減らすことが効率向上に最も必要なこととなる。
[0005] ところが、上記した真空引きによるスラッシュ窒素の製造方法では、真空引きして液 面に生成した固体分を攪拌翼で液中に拡散させていたため粒子径が均一とならず、 粒子径が大き 、ものも存在する。
そこで、特許文献 2 (特表 2003— 517411号公報)では、ノズルから噴霧する液体 粒子から固体を製造する方法が開示されている。
また、特許文献 3 (特開平 8— 285420号公報)にも同様の方法が開示されている。 この方法は、スラッシュ水素製造槽に設けられた真空排気ライン力 槽内の圧力を減 圧し、該槽に備え付けられた液体水素噴射ノズルから液体水素を噴射すると、蒸発 潜熱により液体水素が固体水素に状態変化し、槽底部に貯留する。そして真空排気 を停止して槽内を大気圧としてガス排気ライン力 蒸発ガスを放出した後、液体水素 噴射ノズル力 液体水素を供給して混合し、スラッシュ窒素を生成する。これにより粒 子径が均一で微細な粒子を生成することができると提案している。
[0006] 特許文献 1 :特開平 6— 281321号公報 特許文献 2:特表 2003— 517411号公報
特許文献 3:特開平 8 - 285420号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、特許文献 2に記載した方法は、液体粒子の冷却にヘリウムガスを用 いており、製造したスラッシュ流体中へのヘリウムの混入が避けられない。同様に、特 許文献 3の方法でも製造時に他の物質が混入する可能性が高ぐこの場合、スラッシ ュ流体を形成する物質よりも融点の高いものは固化して壁面に付着し、沸点の低いも のは気体として分離して高所に溜まり、何れの場合も搬送管の閉塞を引き起こすこと になる。
また、特許文献 3では排気ラインより排気したガスは大気放出させているため、効率 が悪いという問題がある。さらに、特許文献 3では、ノズルから噴射する液体水素から 固体水素を生成後、真空排気を止めて圧力上昇を図るとノズル出口の水素の温度 が上昇し、固体水素が溶けてしまうという問題もあった。
従って、本発明は上記従来技術の問題点に鑑み、微細で均一粒径の固体粒子を 含むスラッシュ流体を確実に製造でき、且つ不純物の混入を防止し、スラッシュ流体 の生成 ·搬送を高効率且つ高信頼で行うことのできるスラッシュ流体の製造方法及び 製造装置を提供することを目的とする。
課題を解決するための手段
[0008] そこで、本発明は力かる課題を解決するために、
液体と固体粒子が混合したスラッシュ流体を製造する方法において、
断熱容器内に前記液体を初期充填し、該断熱容器内を前記液体の三重点圧力以 下まで減圧排気した後、液体供給手段により前記断熱容器内に微細粒子状の液体 を噴射し、蒸発潜熱により該液体を固化させて固体粒子を生成し、該固体粒子と前 記初期充填した液体とを混合してスラッシュ流体を製造することを特徴とする。
本発明では、予め断熱容器内に液体が初期充填されているため、該断熱容器を真 空引きにより減圧することで前記断熱容器内に噴射された液体粒子が三重点まで冷 却され、固体粒子を生成することができる。このとき、前記初期充填される液体は飽 和温度であることが好ましく、これにより真空引きだけで容易に三重点まで冷却され、 固体粒子を生成できる。また、液体を微細粒子状に噴射して固体粒子を生成する液 体供給手段を設けたことにより、粒径制御が可能となり、非常に微細且つ均一粒径の 固体粒子を含むスラッシュ流体を製造することが可能となる。従って、製造したスラッ シュ流体を冷却システムの冷媒として適用した場合に、固体分が分離'沈殿せずに 効率良い搬送、冷却が可能となる。
[0009] また、前記断熱容器内に初期充填した液体の液面に、該液体の蒸発或いは固化 を防止する気液分離用断熱材を設けることを特徴とする。
このように、前記気液分離用断熱材を設けることにより、初期充填した液体の蒸発、 固化を防止することが可能となり、容器内に貯留した液体が固化することにより生成 する大粒径の固体粒子の生成を防ぎ、微細で均一粒径の固体粒子を含むスラッシュ 流体を製造できる。
[0010] また、前記減圧排気したガスを圧縮した後に冷却することにより凝縮させて再液ィ匕 し、該再液化した液体を前記液体供給手段に供給し、循環させることを特徴とする。 さらに、前記減圧排気した低圧低温ガスを熱交換器により昇温した後に圧縮機にて 圧縮して高圧中温ガスを生成し、該高圧中温ガスを前記熱交換器により前記低圧低 温ガスと熱交換して冷却し、該冷却により凝縮させて再液ィ匕した液体を前記液体供 給手段に供給し、循環させることを特徴とする。尚、前記中温とは、常温付近の温度 を言い、好適には常温である。
これらの発明のように、減圧排気したガスを凝縮して再液化し、循環させること〖こより 、外部へ放出するガスを最小限に抑え、ガスの効率的な利用が可能となる。また、減 圧時にポンプの代わりに圧縮機を用いることにより、高効率の搬送が可能となる。さら に、熱交換器にて低圧低温ガスと高圧中温ガスを熱交換する構成とすることにより、 熱効率の向上が図れる。さらにまた、圧縮機に導入するガスは一旦昇温してから導 入しているため、低温条件による装置の不具合の発生を極力防止することができ、且 つ極低温部には補助的な冷却手段以外の駆動装置を設ける必要がないので、装置 コストを削減することが可能である。
[0011] さらにまた、前記減圧排気したガスカゝら不純ガスを除去することを特徴とする。 これにより、系内の不純物濃度を非常に低く保つことができ、製造したスラッシュ流 体を冷却システム等に使用する場合にも不純物混入による不具合を回避することが でき、高効率、高信頼性の冷却システムが提供できる。
[0012] また、装置の発明として、液体と固体粒子が混合したスラッシュ流体を製造する装 ¾【こ; i l /、て、
前記液体が初期充填された断熱容器と、該断熱容器内を前記液体の三重点圧力 以下まで減圧排気する減圧手段と、該減圧された断熱容器内の気相部に微細粒子 状の液体を噴射する液体供給手段と、該噴射された液体が蒸発潜熱により固化して 生成した固体粒子と前記初期充填された液体とを攪拌する攪拌手段と、を備えたこと を特徴とする。
このとき、前記断熱容器内に初期充填した液体の液面に、該液体の蒸発或いは固 化を防止する気液分離用断熱材を設けることが好ま Uヽ。
[0013] また、前記減圧手段により前記断熱容器から減圧排気した低圧低温ガスを昇温す る熱交^^と、該昇温したガスを圧縮して高圧中温ガスを得る圧縮機と、を備えるとと もに、前記熱交換器により、前記圧縮機からの前記高圧中温ガスを前記低圧低温ガ スと熱交換して冷却するようにし、該冷却により凝縮させて再液ィ匕した液体を前記液 体供給手段に循環させる循環ラインを設けたことを特徴とする。
また、前記熱交換器とは別に前記高圧中温ガスを冷却する補助冷却手段を設ける ようにしても良い。
また、前記減圧排気したガスカゝら不純ガスを除去する不純ガス除去手段を設けたこ とを特徴とする。
[0014] さらに、前記断熱容器内に内側容器を収容した二重構造を有し、前記内側容器は 前記断熱容器に対して上下動自在で且つ底部に通液弁を備えており、
前記固体粒子の生成時には前記内側容器を上昇させ該内側容器内に液体が略 存在しない状態として前記通液弁を閉じ、前記生成した固体粒子が該内側容器内に 所定量貯留したら前記通液弁を開放するとともに前記内側容器を下降させて、前記 断熱容器内に初期充填した液体と前記生成した固体粒子を混合してスラッシュ流体 を生成し、再度該内側容器を上昇させて該スラッシュ流体を前記通液弁から前記断 熱容器側に移動させ、該スラッシュ流体を加圧搬送するようにしたことを特徴とする。 これにより、前記断熱容器内加圧時の気液分離性を確実にすることができる。
[0015] さらにまた、前記断熱容器内に内側容器を収容した二重構造を有し、前記内側容 器は前記断熱容器に対して上下動自在で且つ底部に通液弁を備えるとともに、該内 側容器内に前記攪拌手段が配設され、
前記固体粒子の生成時には前記内側容器を下降させて前記初期充填した液体が 該内側容器内に存在する状態で前記通液弁を閉じ、該液体の液面に気液分離用断 熱材を設け、前記生成した固体粒子を前記液体と混合攪拌してスラッシュ流体を生 成し、該スラッシュ流体が所定濃度に達したら前記通液弁を開放するとともに前記内 側容器を上昇させて前記断熱容器側に前記スラッシュ流体を移動させ、該スラッシュ 流体を加圧搬送するようにしたことを特徴とする。これにより、前記断熱容器内加圧時 の気液分離性を確実にすることができるとともに、固体粒子同士の固着を防止するこ とが可能である。
発明の効果
[0016] 以上記載のごとく本発明によれば、簡単な構成で以つて微細且つ均一粒径のスラ ッシュ流体を製造することが可能となる。また、減圧排気したガスを再液ィ匕して循環利 用する構成としたため、ガスの放出量を最小限に抑え、効率的な利用が可能となる。 また、循環系に不純ガス除去手段を設けたため、系内の不純物濃度を非常に低く保 つことができ、製造したスラッシュ流体を冷却システム等に使用する場合にも不純物 混入による不具合を回避することができ、高効率、高信頼性のシステムが提供できる 。さら〖こ、断熱容器内に気液分離用断熱材を設けることにより、初期充填した液体の 蒸発、固化を防止することが可能となる。
図面の簡単な説明
[0017] [図 1]本発明の実施例 1に係るスラッシュ窒素製造装置の全体構成図である。
[図 2]実施例 2に係り、図 1のスラッシュ窒素製造装置に備えられた生成タンクの別の 構成を示す断面図である。
[図 3]実施例 3に係り、図 1のスラッシュ窒素製造装置が備える生成タンクの別の構成 を示す断面図である。 符号の説明
1 スラッシュ窒素生成タンク(断熱容器)
3 攪拌機
6 攪拌翼
8 気液分離用断熱材
9 気液分離器
10 液体窒素供給ノズル
11 真空排気ライン
12 加圧圧力調整用ライン
13aゝ 13b 熱交換器
15 圧縮機
16、 18 熱交
17 補助寒冷用冷凍機
19 液体窒素供給ライン (真空断熱管)
20、 21 不純物除去装置
34 バッファタンク
40、 44 気液分離用内側容器
41、 42 シール咅附
43 通液弁
50 液体窒素
51 固体窒素
発明を実施するための最良の形態
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの 実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に 特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなぐ単なる 説明例に過ぎない。
本実施例は、液体と微細な固体粒子が混合したシャーベット状態の流体であるスラ ッシュ流体の製造方法及び製造装置に関し、対象とする物質としては、例えば、窒素 、酸素、水素、或いはヘリウム等とし、その流体の形態としては、ダイナミックアイス、ス ラッシュ窒素、スラッシュ水素等が挙げられる。
本実施例では一例として、スラッシュ窒素を製造する方法、装置につき説明するが 、これに限定されるものではない。
実施例 1
[0020] 図 1に示されるように、本実施例に係るスラッシュ窒素製造装置は、真空断熱式のス ラッシュ窒素生成タンク 1を含むスラッシュ窒素生成系と、前記生成タンク 1から真空 排気された窒素ガスを液ィ匕して前記生成タンク 1に循環させる窒素循環系と、力 な る。
前記スラッシュ窒素生成系では、前記生成タンク 1内で液体窒素 50から固体窒素 5 1を生成し、該生成タンク 1内に初期充填した液体窒素 50と混合してスラッシュ窒素 を製造する。
前記生成タンク 1の具体的構成は、該生成タンク 1の頂部に複数個のバッフル盤 2 が層状に積層されて固着され、該生成タンク中心軸に沿って攪拌機 3が揷設される。 該攪拌機 3は、モータに連結されたシャフト 4の下端部に攪拌翼 6が設けられた構成 を有し、該攪拌翼 6は前記生成タンク 1の底部に貯留するスラッシュ窒素を攪拌する ように設置される。また、前記生成タンク 1の気相部には気液分離器 9が設けられ、該 気液分離器 9を介して気相部に存在するガスのみが外部へ排出されるようになって いる。さらに、前記生成タンク 1は、前記気液分離器 9にて分離されたガスを外部へ排 気する真空排気ライン 11を備える。前記生成タンク 1の底部には、該生成タンク内で 生成したスラッシュ窒素を排出するスラッシュ窒素取出し口 laが備えられる。
また前記生成タンク 1の気相部には、液体窒素を微細粒子状に噴射する液体窒素 供給ノズル 10が設けられる。該液体窒素供給ノズル 10は、前記窒素循環系から延 びる液体窒素供給ライン 19に連結される。前記バッフル盤 2を含む生成タンク頂部 空間は、ガスを通過する断熱材 7により隔離されている。該隔離された生成タンク頂 部には、該生成タンク内の加圧圧力調整用ライン 12が設けられている。
[0021] 前記循環系は、前記生成タンク 1から真空排気ライン 11により排気された窒素ガス を圧縮機 15により再圧縮し、さらに凝縮して再液化させ、液体窒素供給ライン 19を 介して液体窒素として前記生成タンク 1に循環させる構成となって 、る。 前記真空排気ライン 11上には、排気した窒素ガスを熱交換により略常温まで昇温 する熱交換器 13a、 13bが設けられ、該昇温された低圧常温ガスが導入される圧縮 機 15が設けられる。該圧縮機 15により昇圧され高圧常温ガスとなった窒素ガスは、 再度前記熱交 l3b、 13aに導入され、前記真空排気ライン 11の窒素ガスとの熱 交換により冷却され、低温高圧ガスが生成される。また、前記低温高圧ガスが導入さ れる熱交 が設けられ、該熱交 は補助寒冷用冷凍機 17を備える。前記 熱交 では、前記低温高圧ガスが凝縮して液ィ匕し、液体窒素となる。該熱交換 器 16の下流側には、前記冷却された液体窒素により前記生成タンク 1内のスラッシュ 窒素を冷却する熱交換器 18を設けるようにしても良い。前記熱交換器 16を経て液化 した液体窒素は、前記液体窒素供給ライン 19を通って前記生成タンク 1の液体窒素 供給ノズル 10に送給される。
[0022] また、前記圧縮機 15の出口側には、窒素ガスカゝら不純ガスを除去する不純ガス除 去装置 20が備えられる。同様に、圧縮機 15の下流側で、前記熱交換器 13bと前記 熱交 13aの間にも低温用不純ガス除去装置 21が備えられて 、る。該不純ガス 除去装置 21は、一基のみ設置する構成としても良いし、複数設置する構成としても 良ぐまたその設置位置は特に限定されるものではない。
また、前記圧縮機 15に並列となるように、前記真空排気ラインを通ってきた窒素ガ スを一時的に貯留するバッファタンク 34を設けることが好ましい。さらに、前記真空排 気ライン 11からの窒素ガスを前記圧縮機 15及び前記バッファタンク 34をバイノスし て前記熱交換器 13bに送給するバイパスライン 14を設けても良い。
[0023] さらに、前記生成タンク 1内の圧力を測定する生成タンク圧力計 23と、該圧力計 23 にて測定したタンク内圧力に基づき、該タンク内圧力を制御する加圧用圧力調整弁 24が設けられる。
また、前記熱交 l3bと前記圧縮機 15との間の真空排気ライン 11上に、排気ガ ス用流量計 25と、生成タンク圧力調整弁 26とが設けられるとともに、低圧側圧力計 2 7が設けられている。さらに、該低圧側圧力計 27にて測定された窒素ガスの圧力に 基づき、前記バッファタンク 34に流入させるガス量を調整する低圧圧量調整弁 28と、 ノ ィパスライン 14を流れるガス量を調整するバイパス調整弁 29が設けられる。
また、前記圧縮機 15、前記バッファタンク 34、若しくは前記バイパスライン 14を経た 窒素ガスの圧力を測定する高圧側圧力計 30と、該圧力計 30にて測定された窒素ガ スの圧力に基づきバッファタンク 34から送出するガス量を制御する高圧圧力調整弁 31力待設けられる。さらにまた、前記高圧圧力調整弁 31の下流側で且つ熱交 bに導入される前の高圧常温ガスの流量を測定する供給ガス用流量計 32と、該流量 計 32により測定されたガス流量に基づき、該ガス流量を制御する供給ガス流量調整 弁 33が設けられる。
[0024] 次に、上記した構成を有するスラッシュ窒素製造装置における作用を説明する。
まず生成タンク 1内から圧縮機 15により真空引きした窒素ガスは、真空排気ライン 1 1を介して気液分離器 9、熱交換器 13a、 13bを経て常温にまで昇温され、低圧常温 ガスとして圧縮機 15に導入される。該圧縮機 15にて昇圧されたガスは、不純ガス除 去装置 20において水蒸気や不純ガスを除去され、再度熱交換器 13b、 13aを経て 冷却され、高圧低温ガスとなる。その際に、低温用不純ガス除去装置 21により再度 窒素ガス中の水蒸気や不純ガスが除去され、窒素純度の高いガスに精製される。こ の後、熱交 にて窒素の凝固点である 63K付近まで冷却 '凝縮され、液化して 液体窒素供給ライン 19を介して液体窒素供給ノズル 10に送給され、該液体窒素供 給ノズル 10から微細粒子状の液滴となって前記生成タンク 1内に噴射される。このと き、前記生成タンク 1内には、予め飽和温度の液体窒素 50を初期充填しておく。 このサイクルにお ヽて、前記気液分離器 9から吸 ヽ込まれるガス量と前記液体窒素 供給ノズル 10から噴射される液量を等しく(質量換算)することにより、生成タンク 1内 で固体窒素 51を生成する熱量と圧縮機 15で冷却水に捨て去る熱量とバランスし、補 助寒冷用冷凍機 17の負荷を大幅に小さくすることが可能である。
[0025] 前記生成タンク 1に初期充填する液体窒素 50は外部力 補給する力 若しくはバッ ファタンク 34から窒素ガスで供給し、補助寒冷用冷凍機 17で液ィ匕して、窒素の三重 点以上の圧力の状態で前記生成タンク 1内に供給する。また、余分な窒素はバッファ タンク 34に回収することができる。
前記液体窒素供給ノズル 10から噴射された 63K、例えば粒径 lmmの液体窒素は 、蒸発潜熱を奪われることで固化し、 0. 9mm程度の微細粒子状の固体窒素 51とな る。このとき生成タンク 1下部に初期充填した液体窒素 50表面からも蒸発が起こると、 ここに粒径の大きな固体窒素ができてしまうことから、液体窒素 50より密度の小さい 材質、例えば高分子榭脂製の多数の小さな球力 なる気液分離用断熱材 8を液体 窒素表面を被覆するごとく配置しておく。これにより液表面の蒸発が阻止され、前記 液体窒素供給ノズル 10から噴射した液滴が優先的に固化し、前記固液分離用断熱 材 8の上に降り注ぐ。このとき、前記攪拌機 3を連続的若しくは断続的に作動させ、前 記生成タンク 1内の液体窒素 50を攪拌する。この攪拌機 3の回転により、前記固液分 離用断熱材 8の上部に積もった微細粒子状の固体窒素 51は回転して液体窒素 50 中に入り込む。さらに攪拌機 3により液体窒素 50と固体窒素 51は攪拌されて混じり合 い、均一なスラッシュ窒素が生成する。このとき、前記生成タンク 1内の圧力は生成タ ンク圧力計 23により測定され、該測定された圧力に基づき生成タンク圧力調整弁 26 を制御してタンク内圧力を適宜調整すると良い。また、前記液体窒素供給ノズル 10 力もの液体窒素噴射量は、供給ガス流量調整弁 33にて調整されるため任意の生成 能力を得ることが可能である。
[0026] 前記生成タンク 1内の固体質量濃度が規定値に達すれば、前記二つの調整弁 26 、 33を閉じ、加圧用圧力調整弁 24より窒素ガスを生成タンク 1内に供給する。このと き気液分離用断熱材 8により低温のスラッシュ窒素と加圧ガスの接触を防いでいるた め、供給したガスの液ィ匕を防止し、生成タンク 1内の圧力を上昇させることができる。 設定した圧力に到達したら取出し口 laよりスラッシュ窒素を取出し、利用先へ搬送す る。前記生成タンク 1が空になったら液体窒素 50を直接生成タンク 1内に充填するか 、又は補助寒冷用冷凍機 17でガスを液ィ匕させ、生成タンク 1に充填する。そして再度 真空排気を開始し、液体の温度を三重点まで下げて 、く。
[0027] このように本実施例によれば、生成タンク 1から排気した低圧低温ガスと、圧縮機 15 により昇圧された高圧常温ガスとを熱交換する熱交換器 13a、 13bを設けているため 、熱効率が向上する。また、定常運転中は補助寒冷用冷凍機 17の能力は小さくてよ いか不要となる。また、ノ ッファタンク 34により不要な窒素の貯蔵をガスで行うため、 液貯蔵に比べ余分な冷凍負荷がない。さらに、不純ガス除去装置を設けることにより 、系内不純物濃度を非常に低く保つことができ、窒素純度の高いスラッシュ窒素を製 造できる。さらにまた、微細粒子状の液体窒素を噴射する液体窒素供給ノズル 10を 用いることにより、固体窒素の粒径制御が可能となり、非常に微細且つ均一粒径のス ラッシュ窒素の生成が可能となる。また、スラッシュの搬送は加圧としており、ポンプを 用いるよりも高効率の搬送が可能である。さらに、低温部に補助寒冷用冷凍機以外 の駆動装置がないため、不具合の発生を最小限に抑え、且つ装置を低コスト化する ことができる。
実施例 2
[0028] 図 2に、実施例 2に係り、図 1とは別の構成を有する生成タンク 1を示す。かかる実施 例 2は、実施例 1に示した生成タンク 1内の加圧時の気液分離をより一層確実に行う ことができる構成となって 、る。
本実施例 2は、真空断熱容器であるスラッシュ窒素生成タンク 1と、該生成タンク 1内 に設けた気液分離用内側容器 40からなる二重構造を有する。該内側容器 40は、真 空断熱式であり、前記生成タンク 1内に貯留された液体窒素 50に浮遊した状態で、 上下動自在に設けられている。従って通常は内側容器 40の内側に液はない。前記 内側容器 40は浮力により自由に動けるように生成タンク 1から分離されており、上部 の常温部でその内外、即ち生成タンク 1と内側容器 40の側壁間の隙間をシール部材 41によりシールされている。さらに、該内側容器 40の底部には通液弁 43が備えられ 、通常は閉じた状態である。また、実施例 1と同様に、生成タンク 1 (内側容器 40)の 気相部には、液体窒素供給ライン 19に接続された液体窒素供給ノズル 10と、真空 排気ライン 11に接続された気液分離器 9が設けられており、これらは断熱容器 40に 干渉しないように配置される。また、前記生成タンク 1の中心軸に沿って攪拌機 3が設 けられ、該攪拌機 3のシャフト 5は前記内側容器 40を貫通して、その下端部には攪拌 翼 6が連結されて ヽる。該攪拌翼 6は生成タンク 1と内側容器 40との間に位置する。 前記攪拌機 3のシャフト 5上部の常温部はシール部材 42でシールされている。
[0029] 本実施例では、固体窒素 51の生成時に、前記通液弁 43が閉じられた状態で内側 容器 40は初期充填した液体窒素 50上に浮かんで ヽる。該内側容器 40内には固体 窒素生成前には液体窒素は殆ど存在しない。前記真空排気ライン 11からの真空排 気により、窒素の三重点圧力以下まで減圧した後、前記液体窒素供給ノズル 10から 微粒子化した液体窒素を内側容器 40内に噴射する。該噴射した液体窒素は固化し て微粒子状の固体窒素 51となり、内側容器 40内に溜まる。ある程度固体窒素 51が 貯留したら、前記通液弁 36を開くと同時に内側容器 40を上部力も抑えて沈め、その 容器内部に生成タンク 1内の液体窒素を流入させる。
前記内側容器 40内の固体窒素 51がすべて液体窒素 50中に入ったら、前記通液 弁 43を開いた状態で該内側容器 40を引き上げることで、固体窒素 51は流出する液 体窒素 50とともに生成タンク 1内に移る。生成タンク 1内の固体窒素 51が所定量とな るまでこれを繰り返し行うことで、生成タンク 1内に所定濃度のスラッシュ窒素を製造 することができる。製造したスラッシュ窒素の搬送時には、前記内側容器 40を引き上 げてカも前記通液弁 36を閉じ、該通液弁 36を閉じたまま生成タンク 1内を加圧、或 いは内側容器 40を下に押し込むことでスラッシュ窒素を加圧し、搬送することができ る。
尚、液体窒素 50を予め補助寒冷用冷凍機 17にて凝固点付近まで冷却すれば、よ り効率的な運転が可能である。
このように本実施例によれば、内側容器 40の気液分離を確実に行うことが可能とな る。
実施例 3
図 3に、実施例 3に係り、図 1とは別の構成を有する生成タンク 1を示す。かかる実施 例 3は、実施例 2に示した生成タンク 1において、固体窒素 51のみが内側容器 40に 貯留すると、運転条件によっては固体窒素同士の固着が懸念されるため、これを解 消する構成を示す。
本実施例 3は、真空断熱容器であるスラッシュ窒素生成タンク 1と、該生成タンク 1内 に設けた気液分離用内側容器 44からなる二重容器構造を有する。該内側容器 44は 、真空断熱式であり、前記生成タンク 1とは分離され上下動自在に設けられている。 前記内側容器 44の上部は常温部で、その内外をシール部材 41によりシールされて いる。さらに、該内側容器 44の底部には通液弁 43が備えられ、通常は閉じた状態で ある。また、実施例 1と同様に、生成タンク 1 (内側容器 44)の気相部には、液体窒素 供給ライン 19に接続された液体窒素供給ノズル 10と、真空排気ライン 11に接続され た気液分離器 9が設けられており、これらは内側容器 44に干渉しな ヽように配置され る。また、前記生成タンク 1の中心軸に沿って攪拌機 3が設けられ、該攪拌機 3のシャ フト 5下端部に設けられた攪拌翼 6は、内側容器 44内の底部に位置している。
[0031] 本実施例では、固体窒素 51の生成時に、内側容器 44は生成タンク 1の最下部に 置かれ、通液弁 43は閉じている。該内側容器 44内には、液体窒素の液面全体を被 覆するように気液分離用断熱材 8が浮遊しており、初期充填した液体窒素 50と気相 部とがここで分離している。前記真空排気ライン 11からの真空排気により、窒素の三 重点圧力以下まで減圧した後、前記液体窒素供給ノズル 10から微粒子化した液体 窒素を内側容器 44内に噴射する。該噴射した液体窒素は、蒸発潜熱により固化して 微粒子状の固体窒素 51となり、気液分離用断熱材 8の上に落下し、積もる。前記攪 拌機 3により気液分離用断熱材 8は回転するため、該回転により断熱材 8上の固体窒 素 51はこれを潜り抜けて液体窒素 50中に入る。所定濃度のスラッシュ窒素が得られ たら、内側容器 44を引き上げるとともに通液弁 43を開ける。これにより、内側容器 44 内に生成したスラッシュ窒素は同容器 44が移動した生成タンク 1内の空間に流れ込 む。全てのスラッシュ窒素が流れ込んだら内側容器 44の上昇を停止し、前記通液弁 43を閉じる。その後内側容器 44内を加圧あるいは内側容器 44を押し下げることで所 定の圧力とし、スラッシュ窒素を搬送する。
このように本実施例によれば、固化生成した固体窒素 51のみを貯留することによる 固着を防止し、均一で且つ微細な粒径を有するスラッシュ窒素を製造することが可能 となる。
産業上の利用可能性
[0032] 本発明は、窒素、酸素、水素、或いはヘリウムなどの各種物質力 簡単にスラッシュ 流体を製造でき、また均一で微細な粒径の固体粒子を含むスラッシュ流体を製造可 能であるため、製造したスラッシュ流体を、ダイナミックアイス方式を用いた氷蓄熱シ ステム、スラッシュ窒素を利用した超電導機器等の冷却システム、又はスラッシュ水素 を利用した水素燃料貯蔵 ·移送システムなどの様々な用途に使用できる。

Claims

請求の範囲
[1] 液体と固体粒子が混合したスラッシュ流体を製造する方法にぉ 、て、
断熱容器内に前記液体を初期充填し、該断熱容器内を前記液体の三重点圧力以 下まで減圧排気した後、液体供給手段により前記断熱容器内に微細粒子状の液体 を噴射し、蒸発潜熱により該液体を固化させて固体粒子を生成し、該固体粒子と前 記初期充填した液体とを混合してスラッシュ流体を製造することを特徴とするスラッシ ュ流体製造方法。
[2] 前記断熱容器内に初期充填した液体の液面に、該液体の蒸発或いは固化を防止 する気液分離用断熱材を設けることを特徴とする請求項 1記載のスラッシュ流体製造 方法。
[3] 前記減圧排気したガスを圧縮した後に冷却することにより凝縮させて再液ィ匕し、該 再液化した液体を前記液体供給手段に供給し、循環させることを特徴とする請求項 1 記載のスラッシュ流体製造方法。
[4] 前記減圧排気した低圧低温ガスを熱交換器により昇温した後に圧縮機にて圧縮し て高圧中温ガスを生成し、該高圧中温ガスを前記熱交換器により前記低圧低温ガス と熱交換して冷却し、該冷却により凝縮させて再液化した液体を前記液体供給手段 に供給し、循環させることを特徴とする請求項 1記載のスラッシュ流体製造方法。
[5] 前記減圧排気したガス力 不純ガスを除去することを特徴とする請求項 3若しくは 4 記載のスラッシュ流体製造方法。
[6] 液体と固体粒子が混合したスラッシュ流体を製造する装置にぉ 、て、
前記液体が初期充填された断熱容器と、該断熱容器内を前記液体の三重点圧力 以下まで減圧排気する減圧手段と、該減圧された断熱容器内の気相部に微細粒子 状の液体を噴射する液体供給手段と、該噴射された液体が蒸発潜熱により固化して 生成した固体粒子と前記初期充填された液体とを攪拌する攪拌手段と、を備えたこと を特徴とするスラッシュ流体製造装置。
[7] 前記断熱容器内に初期充填した液体の液面に、該液体の蒸発或いは固化を防止 する気液分離用断熱材を設けたことを特徴とする請求項 6記載のスラッシュ流体製造 装置。
[8] 前記減圧手段により前記断熱容器から減圧排気した低圧低温ガスを昇温する熱交 と、該昇温したガスを圧縮して高圧中温ガスを得る圧縮機と、を備えるとともに、 前記熱交^^により、前記圧縮機からの前記高圧中温ガスを前記低圧低温ガスと熱 交換して冷却するようにし、該冷却により凝縮させて再液ィ匕した液体を前記液体供給 手段に循環させる循環ラインを設けたことを特徴とする請求項 6記載のスラッシュ流 体製造装置。
[9] 前記熱交^^とは別に前記高圧中温ガスを冷却する補助冷却手段を設けたことを 特徴とする請求項 8記載のスラッシュ流体製造装置。
[10] 前記減圧排気したガスカゝら不純ガスを除去する不純ガス除去手段を設けたことを特 徴とする請求項 8記載のスラッシュ流体製造装置。
[11] 前記断熱容器内に内側容器を収容した二重構造を有し、前記内側容器は前記断 熱容器に対して上下動自在で且つ底部に通液弁を備えており、
前記固体粒子の生成時には前記内側容器を上昇させ該内側容器内に液体が略 存在しない状態として前記通液弁を閉じ、前記生成した固体粒子が該内側容器内に 所定量貯留したら前記通液弁を開放するとともに前記内側容器を下降させて、前記 断熱容器内に初期充填した液体と前記生成した固体粒子を混合してスラッシュ流体 を生成し、再度該内側容器を上昇させて該スラッシュ流体を前記通液弁から前記断 熱容器側に移動させ、該スラッシュ流体を加圧搬送するようにしたことを特徴とする請 求項 6記載のスラッシュ流体製造装置。
[12] 前記断熱容器内に内側容器を収容した二重構造を有し、前記内側容器は前記断 熱容器に対して上下動自在で且つ底部に通液弁を備えるとともに、該内側容器内に 前記攪拌手段が配設され、
前記固体粒子の生成時には前記内側容器を下降させて前記初期充填した液体が 該内側容器内に存在する状態で前記通液弁を閉じ、該液体の液面に気液分離用断 熱材を設け、前記生成した固体粒子を前記液体と混合攪拌してスラッシュ流体を生 成し、該スラッシュ流体が所定濃度に達したら前記通液弁を開放するとともに前記内 側容器を上昇させて前記断熱容器側に前記スラッシュ流体を移動させ、該スラッシュ 流体を加圧搬送するようにしたことを特徴とする請求項 6記載のスラッシュ流体製造
6LL00/S00Zd /lDd LY L88 U/900Z OAV
PCT/JP2005/007794 2005-04-25 2005-04-25 スラッシュ流体の製造方法及び製造装置 WO2006114887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002605364A CA2605364A1 (en) 2005-04-25 2005-04-25 Process for producing slush fluid and apparatus therefor
PCT/JP2005/007794 WO2006114887A1 (ja) 2005-04-25 2005-04-25 スラッシュ流体の製造方法及び製造装置
EP20050734468 EP1876404A4 (en) 2005-04-25 2005-04-25 METHOD FOR PRODUCING A FLUID FLUID AND DEVICE THEREFOR
JP2007514400A JP4619408B2 (ja) 2005-04-25 2005-04-25 スラッシュ流体の製造方法及び製造装置
US11/877,848 US7591138B2 (en) 2005-04-25 2007-10-24 Process for producing slush fluid and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007794 WO2006114887A1 (ja) 2005-04-25 2005-04-25 スラッシュ流体の製造方法及び製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/877,848 Continuation US7591138B2 (en) 2005-04-25 2007-10-24 Process for producing slush fluid and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2006114887A1 true WO2006114887A1 (ja) 2006-11-02

Family

ID=37214525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007794 WO2006114887A1 (ja) 2005-04-25 2005-04-25 スラッシュ流体の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US7591138B2 (ja)
EP (1) EP1876404A4 (ja)
JP (1) JP4619408B2 (ja)
CA (1) CA2605364A1 (ja)
WO (1) WO2006114887A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009908A (ja) * 2007-06-29 2009-01-15 Mayekawa Mfg Co Ltd 超電導送電ケーブル、及びそのシステム
KR102461916B1 (ko) * 2021-10-19 2022-11-01 고등기술연구원연구조합 분쇄 에너지를 이용한 극저온 물질의 슬러시 생산 시스템

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566578B2 (ja) * 2008-04-16 2014-08-06 株式会社弁天 製塩設備
DE102012008591A1 (de) * 2012-04-27 2013-10-31 Messer France S.A.S Verfahren und Vorrichtung zum Herstellen gekühlter Produkte
WO2015040674A1 (ja) * 2013-09-17 2015-03-26 ギガフォトン株式会社 ターゲット供給装置およびeuv光生成装置
EP2990742A1 (en) * 2014-08-28 2016-03-02 ABB Technology AG Method and apparatus for solidifying a polar substance
ES2829261T3 (es) * 2017-06-15 2021-05-31 Suez Groupe Método y aparato para producir y almacenar hielo pastoso fluido, especialmente para la limpieza Pigging de hielo
CN115318168B (zh) * 2022-03-25 2023-07-18 北京航天试验技术研究所 一种低温浆体制备和浓度调节装置及其方法
KR20240017579A (ko) * 2022-08-01 2024-02-08 한국가스공사 액화수소 저장탱크 및 액화수소 저장탱크의 온도 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283001A (ja) * 1995-04-12 1996-10-29 Mitsubishi Heavy Ind Ltd スラッシュ水素の製造方法及び装置
JPH08285420A (ja) * 1995-04-18 1996-11-01 Mitsubishi Heavy Ind Ltd スラッシュ水素の製造装置及び製造方法
JPH11304682A (ja) * 1998-04-23 1999-11-05 Mitsubishi Heavy Ind Ltd 極低温流体の密度計測装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423610C2 (de) * 1974-05-15 1981-12-03 Messer Griesheim Gmbh, 6000 Frankfurt Verfahren zum Herstellen von Matsch tiefsiedender Gase
US4295346A (en) * 1980-09-08 1981-10-20 Aerojet-General Corporation Recirculating vapor system for gelling cryogenic liquids
JPH085642B2 (ja) * 1991-03-08 1996-01-24 岩谷産業株式会社 スラッシュ水素製造装置
JPH06281321A (ja) 1993-03-31 1994-10-07 Nippon Sanso Kk スラッシュ水素の製造方法及び装置
US5402649A (en) * 1993-09-02 1995-04-04 Rockwell International Corporation Spray-freeze slush hydrogen generator
DE19811315C2 (de) 1998-03-16 2000-08-03 Steyr Daimler Puch Ag Verfahren und Vorrichtung zur Herstellung von Matsch aus verflüssigtem Gas
JP3240470B2 (ja) * 1998-04-16 2001-12-17 春日電機株式会社 静電気測定装置
CA2511993A1 (en) * 2003-03-11 2004-09-23 Mayekawa Mfg. Co., Ltd. Process for producing slush nitrogen and apparatus therefor
CA2546183A1 (en) * 2004-02-06 2005-08-18 Mayekawa Mfg. Co., Ltd. Method and apparatus for producing slush nitrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283001A (ja) * 1995-04-12 1996-10-29 Mitsubishi Heavy Ind Ltd スラッシュ水素の製造方法及び装置
JPH08285420A (ja) * 1995-04-18 1996-11-01 Mitsubishi Heavy Ind Ltd スラッシュ水素の製造装置及び製造方法
JPH11304682A (ja) * 1998-04-23 1999-11-05 Mitsubishi Heavy Ind Ltd 極低温流体の密度計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876404A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009908A (ja) * 2007-06-29 2009-01-15 Mayekawa Mfg Co Ltd 超電導送電ケーブル、及びそのシステム
KR102461916B1 (ko) * 2021-10-19 2022-11-01 고등기술연구원연구조합 분쇄 에너지를 이용한 극저온 물질의 슬러시 생산 시스템

Also Published As

Publication number Publication date
CA2605364A1 (en) 2006-11-02
EP1876404A4 (en) 2012-08-01
JP4619408B2 (ja) 2011-01-26
JPWO2006114887A1 (ja) 2008-12-11
US7591138B2 (en) 2009-09-22
EP1876404A1 (en) 2008-01-09
US20080072609A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4619408B2 (ja) スラッシュ流体の製造方法及び製造装置
JP4346037B2 (ja) スラッシュ窒素の製造方法、製造装置及び該スラッシュ窒素を用いた冷却方法及びその装置
WO2002079355A1 (fr) Dispositif de production d'hydrate de gaz et dispositif de deshydratation d'hydrate de gaz
WO2006001203A1 (ja) 超電導電力機器用冷却システム
US7526925B2 (en) Method and apparatus for producing slush nitrogen
KR100512353B1 (ko) 고압 초고순도 생성물의 생성 및 전달 시스템
US11364452B2 (en) Extraction device and method for same
WO2019230104A1 (ja) 抽出装置および抽出部の製造方法
JPH11272337A (ja) 高純度ガスを超高圧に昇圧させる方法及び装置
US8597386B2 (en) Method and system for continuously pumping a solid material and method and system for hydrogen formation
EP0663371B1 (en) Production of solid carbon dioxide
RU2360193C1 (ru) Способ производства шуги и устройство для осуществления этого способа
CN113518656B (zh) 用于分离包含乙硼烷和氢气的气体混合物的方法和设备
JP4686149B2 (ja) スラッシュ窒素を利用した冷却装置
JPH08283001A (ja) スラッシュ水素の製造方法及び装置
JP3625810B2 (ja) Lng冷熱利用による炭酸ガス深冷分離方法および装置
JP2008215505A (ja) 水素供給ステーション
JPH10213296A (ja) Lng貯蔵設備のbog処理装置
JP2001316684A (ja) ガスハイドレート処理方法および処理装置
JP5453844B2 (ja) 高濃度オゾン供給方法及び液体オゾン蓄積用ベッセル
JP2010243017A (ja) 簡易液体窒素製造装置
JP2009204040A (ja) 固液二相流体の移送装置
JP2003041272A (ja) ガスハイドレートの生成方法および生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514400

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2605364

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005734468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11877848

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2007143536

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005734468

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11877848

Country of ref document: US