WO2006114406A1 - A package for beamlead semiconductor devices - Google Patents

A package for beamlead semiconductor devices Download PDF

Info

Publication number
WO2006114406A1
WO2006114406A1 PCT/EP2006/061788 EP2006061788W WO2006114406A1 WO 2006114406 A1 WO2006114406 A1 WO 2006114406A1 EP 2006061788 W EP2006061788 W EP 2006061788W WO 2006114406 A1 WO2006114406 A1 WO 2006114406A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
beamlead
container part
semiconductor devices
recesses
Prior art date
Application number
PCT/EP2006/061788
Other languages
French (fr)
Inventor
Willibald Konrath
Haiko Schmelcher
Original Assignee
Ericsson Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Ab filed Critical Ericsson Ab
Publication of WO2006114406A1 publication Critical patent/WO2006114406A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0084Containers and magazines for components, e.g. tube-like magazines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68313Auxiliary support including a cavity for storing a finished device, e.g. IC package, or a partly finished device, e.g. die, during manufacturing or mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

A package (200) for storing and providing supply of beamlead semiconductor devices (202, 204, 206) in a pick-and-place manufacturing process of Application Specific Integrated Circuits, ASICs, wherein the beamlead semiconductor devices (202, 204, 206) are picked directly from said package (200). The package (200) comprises a container part (302) and a lid part (304), said container part (302) comprising plurality of regularly displaced, substantially flat-bottom recesses and said lid part (304) being detachably attached to said container part (302). At least a top surface of said container part (302) is made of electric conductive material and said top surface (400) of said container part (302) is covered with a non-reflective coating and the lid part (304) is transparent in at least these areas, which are located above the recesses.

Description

A PACKAGE FOR BEAMLEAD SEMICONDUCTOR DEVICES
Field of the Invention
The present invention relates to a package for components of a circuit carrier, in general, and in particular for storing said components and providing supply of said components in an automated pick-and-place manufacturing process of Application Specific Integrated Circuits.
Background of the Invention Known methods and devices for automated placement of components on a circuit substrate use electronic image recognition techniques for recognising an individual component, to determine its location and orientation and to guide a manipulating device to the location of the circuit component and to pick it. One of the problems in the automated manipulation of elements is the correct recognition of their orientation. In general it is not difficult to automatically recognize the body of a component if the background's brightness differs sufficiently from that of the body of the component. Since the body of the component usually has no features from which the orientation of the component might be concluded the orientation of the component is recognisable from the shape of its contacts. One of said contact conventionally has a pointed end and the other one has a swallowtail-shaped one. The contacts are recognizable in an automated process if the component is placed on a dark, highly contrast background.
If the elements are provided in a package and their orientation in the package varies, the recognition of their orientation still can be carried out, but the process of picking and placing the component requires additional manipulation of the component in order to have it placed correctly. This problem is especially acute in case of so called beamlead components. These are semiconductor components having a very small chip size of typically about 100 to 400 μm edge length, which carry laterally protruding flat metallic connecting or soldering vanes for making contacts. These components are difficult to manipulate due to their small size, the brittleness of the semiconductor material and the sensitivity of the connection vane. However, in some high frequency applications they are indispensable because they achieve extremely low parasitic capacities and, hence, high switching speeds. Within microwave hybrid modules at microwave and especially at millimeter- wave frequencies the application of beamlead devices cannot be avoided. Key advantages are extremely small terminal inductances compared with standard chip devices. Possible alternatives are in some cases flip-chip elements but they are not available for all semiconductor types depending on wafer processes. Typical example of such beamlead devices, which cannot be replaced by flip-chip elements are step recovery diodes.
Usually beamlead devices are packaged using a gel-pack or a waffle-pack.
Delivered waffle packs have pockets of arbitrary size with more or less good matching to the component's size. Result is that the components are delivered like bulk material.
A waffle -pack is an injection moulded plastic package, which contains pockets to store a component. The pocket size is normally chosen depending on the size of the component to be packaged. For micro-devices as beamlead diodes, the available pocket sizes do not fit exactly the X, Y and Z dimensions and the diodes are provided more or less as bulk material in a standard waffle-pack, as illustrated on FIG. 1. Due to technological constraints attempts to manufacture of moulded-plastic packages in the form of waffle -pack with the pockets' sizes corresponding to the sizes of the beamlead devices were unsuccessful. The package is closed by an injection-moulded lid. If the components are placed on the walls between the pockets of the package (like the semiconductor device 106 of FIG. 1 illustrating the prior art), they can be damaged by the lid, which is usually pressed onto the injection-moulded part containing the pockets. Quality issues are necessarily the result of this. The suppliers try to avoid this effect by use of several paper sheets or plastic foils to fill-up a potential gap between package and lid. This is more or less successful due to limited dimensional tolerances and distortion of injection-moulded parts. Small devices like beamlead diodes are less than lOOμm thick. They easily adhere to these papers during lid removal or travel out of the pockets, which is illustrated on FIG. 1. The chaotically scattered beamlead elements cause the problems already discussed: need for additional manipulation to get them placed correctly, the quality issues caused by the fact that some of the elements can be damaged during closing the package with the lid.
The gel-pack packages due to their nature limit the beamlead attach to manual procedures or requires re-packaging. Re-packaging is extremely time-consuming. During manual re-packaging a relatively high amount of devices can be damaged mechanically and have to be replaced after attachment. Failures, which pass the assembly process, are detected almost too late during electrical test. Result is costly and time-consuming repair work.
Hence, an improved package for beamlead components would be advantageous and in particular one that allows for elimination of the re-packaging step in the pick- and-place assembly process.
Summary of the Invention
Accordingly, the invention seeks to preferably mitigate, alleviate or eliminate one or more of the disadvantages mentioned above singly or in any combination.
According to the present invention there is provided a package for storing and providing supply of beamlead semiconductor devices in a pick-and-place manufacturing process of Application Specific Integrated Circuits (ASICs). The beamlead semiconductor devices in the manufacturing process are picked directly from said package. Said package comprises a container part and a lid part, said container part comprising plurality of regularly displaced, substantially flat-bottom recesses and said lid part being detachably attached to said container part. At least a top surface of said container part is made of electric conductive material and said top surface of said container is covered with a non-reflective coating and the lid part is transparent in at least these areas, which are located above the recesses.
Further features of the present invention are as claimed in the dependent claims. The present invention beneficially allows for using the same package for storing, transport and supplying the beamlead semiconductor devices without the need of repackaging. With the beamlead devices all placed in the recesses and oriented in the same direction it is possible to reduce the number of manipulation that the pick-and- place robot has to do, which results in shortening the assembly time. Beamlead devices placed in the recesses are well protected against accidental mechanical damages and the metal used for the container part prevents static electric charges to be accumulated on the package. Use of transparent material for the lid allows for carrying visual inspection of the beamlead semiconductor devices before assembly. All these allows for using in the assembly process the elements that are free from defects, which significantly reduces the repair costs.
Brief description of the drawings
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
FIG. 1 is a diagram illustrating a package for beamlead devices known in the prior art;
FIG. 2 is a diagram illustrating a package for beamlead devices with one embodiment of the present invention;
FIG. 3 is a diagram illustrating cross-section of a package for beamlead devices with one embodiment of the present invention;
FIG.4 is a diagram illustrating cross-section of a package for beamlead devices with one embodiment of the present invention.
Description of an embodiment of the invention With reference to FIG. 2 and FIG. 3 a package 200 for storing and providing supply of beamlead semiconductor devices 202, 204, 206 is shown. The package 200 is very useful in a pick-and-place manufacturing process of Application Specific Integrated Circuits (ASICs). As the production of ASICs is very complicated and due to cleanliness regime and small sizes of the semiconductor devices used in assembly of the ASICs it is important to have the semiconductor devices 202, 204, 206 supplied in a way that ensures highest quality standards and by minimizing risk of faulty component being placed on a circuit substrate. The package 200 comprises a container part 302 and a lid part 304. By having the lid 304 that closely adhere to the container 302 the semiconductor devices 202, 204, 206 are prevented from traveling out of their recesses. If the semiconductor devices stay in their recesses the risk of mechanical damage during closing the container and/or re-packaging is eliminated. The container part 302 comprises plurality of regularly displaced, flat-bottom recesses.
In one embodiment the top view of each of the recesses is rectangular and this prevents the semiconductor devices 202, 204, 206 from rotating and in this way it preserves the original orientation of the devices 202, 204, 206. This, in turn, helps to minimize the number of operation (moves) necessary to perform by the pick-and-place robot in the process of placing the semiconductor device on the circuit substrate.
In an alternative embodiment the shape of the top view of the recesses is oval.
The lid 304 is detachably attached to the container part 302 and is transparent in at least these areas, which are located above the recesses. The transparent lid allows for optical inspection of the semiconductor devices before start of assembling the ASIC and without the need of opening the package.
In one embodiment the container part is made of metal. Using metal as a material for the container has several advantages. One of this is that metal is very durable and once the container is formed it may be re-used for a long period of time. The best results in manufacturing the container part 302 are achieved when the recesses are formed in a process of stamping. As metal is easy to stamp using it for the container part is a good choice. The other advantage of using metal for the container is fact that it is easy to discharge static electric charges that may be dangerous for the semiconductor devices stored in the package.
In an alternative embodiment, as depicted on FIG. 4, the container part 302 is made of two layers: a bottom layer 402 and a top layer 404. In this embodiment the bottom layer 402 is made of plastic and the top layer 404 is made of metal.
As the semiconductor devices are picked by the pick-and-place robot and recognition of the semiconductor devices is carried out by an optical system and image recognition technique the top surface 400 of said container part 302 is covered with a non-reflective coating that also ensures high contrast with the semiconductor devices. In one embodiment the high contrast coating is achieved by black anodising, but alternative types of coating are also possible.
The dimensions of the recesses depend on the types of the semiconductor devices and are in the range of 100 to 400 μm. However, smaller and bigger that that recesses are also possible.

Claims

1. A package (200) for storing and providing supply of beamlead semiconductor devices (202, 204, 206) in a pick-and-place manufacturing process of Application Specific Integrated Circuits, ASICs, wherein the beamlead semiconductor devices (202, 204, 206) are picked directly from said package (200), said package (200) comprises a container part (302) and a lid part (304), said container part (302) comprising plurality of regularly displaced, substantially flat-bottom recesses and said lid part (304) being detachably attached to said container part (302), wherein at least a top surface of said container part (302) is made of electric conductive material and said top surface (400) of said container part (302) is covered with a non-reflective coating and the lid part (304) is transparent in at least these areas, which are located above the recesses.
2. The package (200) according to claim 1 wherein the top view of each of the recesses is rectangular.
3. The package (200) according to claim 1 wherein the top view of each of the recesses is oval.
4. The package (200) according to claim 1 or 2 or 3, wherein said container part (302) is made of metal.
5. The package (200) according to claim 1 or 2 or 3, wherein said container part (302) comprises a bottom layer (402) and a top layer (404), wherein said bottom layer (402) is made of plastic and the top layer (404) is made of metal.
6. The package (200) according to claim 4 or claim 5, wherein said metal is covered with a dark layer to ensure high contrast with the beamlead semiconductor devices.
7. The package (200) according to claim 6, wherein said metal is black-anodised.
PCT/EP2006/061788 2005-04-27 2006-04-24 A package for beamlead semiconductor devices WO2006114406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0508415.7 2005-04-27
GB0508415A GB2425651A (en) 2005-04-27 2005-04-27 A package for beamlead semiconductor devices

Publications (1)

Publication Number Publication Date
WO2006114406A1 true WO2006114406A1 (en) 2006-11-02

Family

ID=34640143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061788 WO2006114406A1 (en) 2005-04-27 2006-04-24 A package for beamlead semiconductor devices

Country Status (2)

Country Link
GB (1) GB2425651A (en)
WO (1) WO2006114406A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048064A1 (en) * 2000-03-28 2001-12-06 Masashi Kitani Electronic device and production process of same
US20020105002A1 (en) * 2001-01-10 2002-08-08 Canon Kabushiki Kaisha Electronic part and its manufacturing method
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325654A (en) * 1992-06-19 1994-07-05 Minnesota Mining And Manufacturing Company Carrier tape with cover strip
JPH1149276A (en) * 1997-08-07 1999-02-23 Sumitomo Kinzoku Electro Device:Kk Ic package substrate holding body
GB9818474D0 (en) * 1998-08-26 1998-10-21 Hughes John E Multi-layer interconnect package for optical devices & standard semiconductor chips
JP3424676B2 (en) * 2001-06-25 2003-07-07 セイコーエプソン株式会社 Semiconductor device storage container and method of transporting the same
JP2004284601A (en) * 2003-03-19 2004-10-14 Renesas Technology Corp Method for carrying, mounting and packaging semi-conductor device, and method for reusing stored article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048064A1 (en) * 2000-03-28 2001-12-06 Masashi Kitani Electronic device and production process of same
US20020105002A1 (en) * 2001-01-10 2002-08-08 Canon Kabushiki Kaisha Electronic part and its manufacturing method
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices

Also Published As

Publication number Publication date
GB0508415D0 (en) 2005-06-01
GB2425651A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US8446002B2 (en) Multilayer wiring substrate having a castellation structure
US7189938B2 (en) Process and system to package residual quantities of wafer level packages
KR100261935B1 (en) Method and apparatus for automatically positioning electronic die
US8066470B2 (en) Waffle pack
WO2017188889A1 (en) Transfer system for flipping and multiple checking of electronic devices
US6946306B2 (en) Method of manufacturing a semiconductor device and a fabrication apparatus for a semiconductor device
EP0632496A2 (en) Method of packaging electronic circuit components and packaged circuit arrangement
US4801065A (en) Chip carrier soldering pallet
JP5045010B2 (en) Conveying device with positioning means
WO2006114406A1 (en) A package for beamlead semiconductor devices
CN104425330B (en) Carry the method and structure of integrated circuit
US7103967B2 (en) Chip-component accommodating device and examining apparatus having the same
JP3196596B2 (en) Electronic component manufacturing method and electronic component mounting method
KR101362652B1 (en) Test handler
US6579399B1 (en) Method and system for handling semiconductor components
KR101344496B1 (en) Apparatus for molding substrates
JP2002326177A (en) Electronic component mounter
TW550766B (en) Manufacturing method semiconductor device
KR102326005B1 (en) Apparatus for picking up a semiconductor device
KR101712075B1 (en) Turn-table apparatus for sawing and sorting system
US5910024A (en) Carrier socket for receiving a damaged IC
US20220078956A1 (en) Storage Device
KR100957559B1 (en) Magazine stage and apparatus for packaging a substrate having the same
KR100524906B1 (en) Method for processing a position data of tray cell in semiconductor assembly process
JP4073327B2 (en) Electronic component tape-shaped conveyance member, conveyance body and conveyance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06754815

Country of ref document: EP

Kind code of ref document: A1