WO2006112219A1 - 消耗電極式アーク溶接機 - Google Patents

消耗電極式アーク溶接機 Download PDF

Info

Publication number
WO2006112219A1
WO2006112219A1 PCT/JP2006/304946 JP2006304946W WO2006112219A1 WO 2006112219 A1 WO2006112219 A1 WO 2006112219A1 JP 2006304946 W JP2006304946 W JP 2006304946W WO 2006112219 A1 WO2006112219 A1 WO 2006112219A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
circuit
signal
short
welding
Prior art date
Application number
PCT/JP2006/304946
Other languages
English (en)
French (fr)
Inventor
Motoyasu Nagano
Shinsuke Shimabayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06729011A priority Critical patent/EP1745880B1/en
Priority to JP2006522576A priority patent/JP3933193B2/ja
Priority to US10/594,909 priority patent/US20080264916A1/en
Publication of WO2006112219A1 publication Critical patent/WO2006112219A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0734Stabilising of the arc power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a consumable electrode type arc welding machine that performs welding by generating an arc between a welding wire (hereinafter referred to as a wire) and a welding base material (hereinafter referred to as a base material).
  • a welding wire hereinafter referred to as a wire
  • a welding base material hereinafter referred to as a base material
  • FIG. 5 shows a schematic configuration of a conventional consumable electrode type arc welder.
  • the output of the three-phase AC input 11 is rectified to DC by the diode rectifier circuit 12.
  • the direct current is converted to a high frequency of several tens of k to several hundreds of kHz by the switching element 13 and is stepped down by the transformer 14.
  • the stepped-down high frequency output is rectified by the diode rectifier circuit 15.
  • the rectified output is fed to the wire 18 through the torch 17 via the reactor 16, and the wire 18 is melted to be welded to the base material 19.
  • the consumable electrode type arc welder detects a welding voltage and outputs a welding voltage detection signal S1, and a welding current is detected by a current detector 20. And a welding current detection circuit unit 6 for outputting a welding current detection signal S2.
  • a short-circuit arc determination circuit unit 7 is provided for inputting a welding voltage detection signal S1 to determine whether the state is a short-circuit state or an arc state and outputting a short-circuit arc determination signal S3.
  • a short-circuit waveform control circuit unit 108 that inputs the welding current detection signal S2 and outputs the short-circuit waveform control signal S4 based on the welding current detection signal S2 and the welding voltage detection signal S1 and inputs the arc voltage during the arc period
  • an arc waveform control circuit unit 109 for outputting a waveform control signal S5.
  • a switching circuit unit 10 is provided for selecting and outputting the arc waveform control signal S5 during the arc period and the short-circuit waveform control signal S4 during the short circuit period according to the short-circuit arc determination signal S3.
  • the switching circuit unit 10 transmits the short circuit waveform control signal S4 to the switching element 13 during the short circuit period, and transmits the arc waveform control signal S5 to the switching element 13 when the short circuit is released and the arc period is reached.
  • the consumable electrode arc welder of the present invention includes a welding voltage detection circuit unit that detects a welding voltage and outputs a welding voltage detection signal, and a welding current that detects a welding current and outputs a welding current detection signal.
  • a detection circuit a short-circuit arc detection circuit that inputs a welding voltage detection signal to determine a short-circuit or arc and outputs a short-circuit arc determination signal, and a short-circuit that inputs a welding current detection signal and outputs a short-circuit waveform control signal
  • a switching circuit section that selects and outputs an arc waveform control signal during the arc period and a short-circuit waveform control signal during the short circuit period, and welds based on the output of the switching circuit section.
  • a consumable electrode type arc welding machine that controls the output, feeds the wire, generates an arc between the wire and the base metal, and performs welding, input the welding voltage detection signal and the welding current detection signal, and the arc resistance
  • An arc resistance calculation unit that calculates and outputs a signal is provided, and the arc resistance signal is input to at least one of the short-circuit waveform control circuit unit and the arc waveform control circuit unit to control the welding output.
  • the consumable electrode arc welder of the present invention detects a welding voltage and outputs a welding voltage detection signal, and detects a welding current and outputs a welding current detection signal. Input the welding current detection circuit and the welding voltage detection signal to detect short circuit or arc.
  • the short-circuit arc judgment circuit that outputs the short-circuit arc judgment signal, the short-circuit waveform control circuit that outputs the short-circuit waveform control signal by inputting the welding current detection signal, and the arc period when the welding voltage detection signal is input.
  • the arc waveform control circuit that outputs the arc waveform control signal of the arc, the short-circuit waveform control signal and the arc waveform control signal are input, the arc waveform control signal for the arc period is based on the short-circuit arc determination signal, and the short-circuit waveform control signal for the short-circuit period And a first switching circuit section that selects and outputs the welding power, and controls the welding output based on the output of the first switching circuit section to feed the wire and generate an arc between the wire and the base material.
  • An arc resistance calculator that inputs a welding voltage detection signal and a welding current detection signal and calculates and outputs an arc resistance signal to a consumable electrode arc welding machine that performs welding.
  • a constant current control period setting unit that outputs a constant current control period signal indicating a constant current control period when an arc resistance signal is input and the arc resistance signal continuously takes a value equal to or greater than a certain value, and a welding current detection
  • a constant current circuit unit that inputs a signal and outputs a constant current signal based on that signal, and a constant current control period signal selects a constant current signal during the constant current control period.
  • a second switching circuit unit that selects and outputs an output signal from the first switching circuit unit during a period other than the current control period, and outputs an arc resistance signal during a period other than the constant current control period. It is characterized in that the welding output is controlled based on the output of the second switching circuit unit by inputting to at least one of the arc waveform control circuit units.
  • FIG. 1 is a block diagram showing a schematic configuration of a consumable electrode type arc welder according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a relationship among a welding voltage, a welding current, and an arc resistance signal in Embodiments 1 to 3 of the present invention.
  • FIG. 3 is a block diagram showing a schematic configuration of a consumable electrode arc welder according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of a consumable electrode type arc welder in Embodiment 3 of the present invention.
  • FIG. 5 is a block diagram showing a schematic configuration of a conventional consumable electrode arc welder. Explanation of symbols
  • FIGS. 1 and 2 The consumable electrode arc welder in the first embodiment will be described with reference to FIGS. 1 and 2.
  • the main differences between the consumable electrode arc welder of Embodiment 1 and the conventional one are that the short-circuit waveform control circuit unit 8 is different and that an arc resistance calculation unit 1 described later is newly provided. .
  • a welding voltage detection circuit unit 5 detects a welding voltage and outputs a welding voltage detection signal S1.
  • the welding current detection circuit unit 6 detects the welding current and outputs a welding current detection signal S2.
  • the arc resistance calculator 1 uses the welding voltage detection signal S1 and the welding current detection signal S2 as input signals. Then, the arc resistance value is calculated based on these input signals (for example, the arc resistance value is calculated by dividing the welding voltage detection signal S1 by the welding current detection signal S2). Then, the arc resistance calculation unit 1 outputs the calculation result to the short-circuit waveform control circuit unit 8 as an arc resistance signal S6.
  • the short-circuit arc determination circuit unit 7 uses the welding voltage detection signal S1 as an input signal, and based on this, determines whether the force is in a short-circuit state or an arc state, and the short-circuit arc determination signal S3 is sent to the switching circuit unit 10 To tell.
  • the short-circuit waveform control circuit unit 8 receives the arc resistance signal S6 and the welding current detection signal S2 as input signals, and outputs a short-circuit waveform control signal S7 according to these input signals to transmit to the switching circuit unit 10. When a short circuit occurs, the short circuit waveform can be controlled by changing the slope of the short circuit current waveform using the short circuit control signal S7.
  • the arc waveform control circuit unit 109 uses the welding voltage detection signal S1 as an input signal, and based on this, the arc waveform control signal S5 is output and transmitted to the switching circuit unit 10.
  • the switching circuit unit 10 uses the short-circuit arc determination signal S3, the arc waveform control signal S5, and the short-circuit waveform control signal S7 as input signals.
  • the switching circuit unit 10 selects the short-circuit waveform control signal S7 when the short-circuit arc determination signal S3 indicates a short-circuit state, and selects the arc waveform control signal S5 when the short-circuit state indicates the short-circuit state, and switches to the switching element 13.
  • Outputs element control signal S8 is
  • FIG. 2 shows an example of a waveform of the relationship between the welding current 24, the welding voltage 23, and the arc resistance signal 25 in the consumable electrode arc welder of the first embodiment.
  • the welding voltage 23 is a low level value, and the welding current 24 increases with a certain slope based on the short-circuit waveform control signal S7.
  • the welding current in the short-circuit state is controlled based on the short-circuit waveform control signal S4.
  • the welding voltage at that time is not controlled.
  • the tip shape of the wire 18 and the contact state between the base material 19 and the wire 18 are unstable, and the welding voltage is constantly changing. And if this welding voltage was excessive, it also caused spattering.
  • the consumable electrode arc welder of Embodiment 1 calculates the arc resistance signal S6 based on the welding voltage detection signal S1 and the welding current detection signal S2, as shown in FIG.
  • the arc resistance calculation unit 1 is provided for output.
  • an arc resistance signal S 6 corresponding to the change is output to the short-circuit waveform control circuit unit 8.
  • the arc resistance signal S6 is output in consideration of not only the welding current but also the welding voltage.
  • the short-circuit waveform control circuit unit 8 outputs the short-circuit waveform control signal S7 corresponding not only to the welding current but also to the change in the welding voltage by inputting the arc resistance signal S6 in addition to the welding current detection signal S2. .
  • the switching circuit 10 receives the short-circuit waveform control signal S7 and outputs a switching element control signal S8 based on the short-circuit waveform control signal S7.
  • the switching element control signal S8 is input to the switching element 13 to control the welding output.
  • the short-circuit waveform control circuit unit 8 can be constituted by, for example, a circuit that adds and calculates the welding current detection signal S2 and the arc resistance signal S6.
  • the arc resistance signal S6 reflects changes in the arc resistance value due to changes in the shape of the wire tip in the short-circuit period 21, contact state between the base material 19 and the wire 18, and droplet transfer. For this reason, the arc resistance value is large. If the welding voltage becomes excessive, the welding voltage can be lowered to prevent spattering. Alternatively, if the welding voltage becomes too low due to a decrease in the arc resistance value, increase the welding voltage to shorten the short-circuit period and quickly move to the arc period to prevent wire buckling and the like. Is possible. According to the consumable electrode type arc welder of the first embodiment, it is possible to appropriately control the welding output.
  • FIG. 3 is a block diagram showing a schematic configuration of a consumable electrode arc welder in Embodiment 2 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the difference from Embodiment 1 is that the short-circuit waveform control circuit unit 108 is different from the arc waveform control circuit unit 9 and that the output of the arc resistance calculation unit 1 is not connected to the short-circuit waveform control circuit unit 108. This is because it is input to the control circuit section 9.
  • the arc resistance calculation unit 1 uses the welding voltage detection signal S1 from the welding voltage detection circuit unit 5 and the welding current detection signal S2 from the welding current detection circuit unit 6 as input signals. Then, the arc resistance calculation unit 1 calculates an arc resistance value from these input signals, and transmits the calculation result to the arc waveform control circuit unit 9 as an arc resistance signal S6.
  • the arc waveform control circuit unit 9 uses the arc resistance signal S6 and the welding voltage detection signal S1 as input signals, and outputs an arc waveform control signal S9 according to these input signals and transmits it to the switching circuit unit 10.
  • the arc waveform control signal S9 outputs a control signal that changes the slope of the welding voltage waveform during arcing.
  • the short-circuit waveform control circuit unit 108 uses the welding current detection signal S2 as an input signal and outputs a short-circuit waveform control signal S4 to the switching circuit unit 10.
  • the switching circuit unit 10 uses the short-circuit arc determination signal S3, the arc waveform control signal S9, and the short-circuit waveform control signal S4 as input signals. Then, the switching circuit unit 10 selects the short-circuit waveform control signal S4 when the short-circuit arc determination signal S3 indicates a short-circuit state, and selects the arc waveform control signal S9 when it indicates an arc state, and outputs the selected signal to the switching element 13. .
  • the welding voltage 23 decreases with a certain slope based on the arc waveform control signal S9. Also, the welding current 24 decreases.
  • the welding voltage is controlled based on the arc waveform control signal S5, and the welding current is not controlled.
  • the welding current also changes constantly depending on the condition of the base material 19 and the like. Arc instability also affects the appearance of the weld bead. For this reason, stable arc discharge is always required.
  • fluctuations in the welding current at the end of the arc period can cause arc breaks and can result in welding defects.
  • the consumable electrode arc welder of the second embodiment calculates the arc resistance signal S6 based on the welding voltage detection signal S1 and the welding current detection signal S2, and outputs the arc resistance signal S6.
  • Arithmetic unit 1 is provided.
  • an arc resistance signal S 6 corresponding to the change in the welding current 24 is output to the arc waveform control circuit unit 9. That is, the arc resistance signal S6 is output in consideration of not only the welding voltage but also the welding current.
  • the arc waveform control circuit unit 9 inputs an arc resistance signal S6 in addition to the welding voltage detection signal S1, thereby outputting an arc waveform control signal S9 corresponding to the change in the welding current.
  • the welding output is controlled by the switching element 13 via the switching circuit 10. For this reason, arc instability can be prevented and appropriate control becomes possible. Also, for example, when the arc current decreases at the end of the arc period 22 and the arc resistance value increases and exceeds a predetermined level, the arc waveform is based on the arc resistance signal S6 at this time.
  • the control circuit unit 9 outputs the arc waveform control signal S9. Based on this output, arc switching is prevented by controlling the welding output so that the switching element 13 has a predetermined constant current value higher than the current value output by the normal constant voltage control during arcing. can do.
  • the arc resistance signal S6 that is the output of the arc resistance calculation unit 1 is used as one of the short-circuit waveform control circuit unit 108 or the arc waveform control circuit unit 9. However, it may be inputted to both the short-circuit waveform control circuit unit 108 or the arc waveform control circuit unit 9.
  • the arc resistance calculation unit 1 is not provided and the short-circuit waveform control circuit unit 108 is input with a welding voltage detection signal S1 in addition to the welding current detection signal S2, or the arc waveform control circuit unit 9 Welding voltage detection signal Controlled as a configuration that inputs a welding current detection signal in addition to S1 In this case, eventually, it is necessary to provide a circuit unit corresponding to the arc resistance calculation unit 1 in each of the short-circuit waveform control circuit unit 108 and the arc waveform control circuit unit 9.
  • one arc resistance calculation unit 1 is provided, and the output S6 of this arc resistance calculation unit 1 is input to the short-circuit waveform control circuit unit 108 and the arc waveform control circuit unit 9. It is desirable from the viewpoint of power S, economy and space.
  • the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main difference from the first embodiment and the second embodiment is that a constant current control circuit unit 2, a constant current control period setting unit 3, and a second switching circuit unit 4, which will be described later, are provided, and during the arc period This is because constant current control is performed when the welding current decreases to prevent arc breaks.
  • an arc resistance calculation unit 1 calculates an arc resistance value from the welding voltage detection signal S1 and the welding current detection signal S2, and uses the calculation result as an arc resistance signal S6 to set a constant current control period setting unit. 3 and output to the short-circuit waveform control circuit unit 8 and the arc waveform control circuit unit 9.
  • the short-circuit waveform control circuit unit 8 outputs to the first switching circuit unit 10 a short-circuit waveform control signal S7 that controls the welding current waveform at the time of a short circuit according to the arc resistance signal S6 and the welding current detection signal S2.
  • the short-circuit waveform control signal S7 is, for example, a control signal that can change the slope of the welding current waveform at the time of a short-circuit.
  • the arc waveform control circuit unit 9 outputs to the first switching circuit unit 10 an arc waveform control signal S9 for controlling the welding voltage waveform during arcing according to the arc resistance signal S6 and the welding voltage detection signal S1.
  • the arc waveform control signal S9 outputs, for example, a control signal that changes the slope of the welding voltage waveform during arcing.
  • the first switching circuit unit 10 uses the short-circuit arc determination signal S3, the short-circuit waveform control signal S7, and the arc waveform control signal S9 as input signals.
  • the first switching circuit unit 10 selects the short-circuit waveform control signal S7 when the short-circuit arc determination signal S3 indicates a short-circuit state, and selects the arc waveform control signal S9 when the short-circuit arc determination signal S3 indicates an arc state.
  • the switching element control signal S8 is output to the switching circuit section 2 of 2.
  • the constant current period setting unit 3 receives the arc resistance signal S6 and the short-circuit arc determination signal S3, and outputs a constant current control period signal S10 to the second switching circuit unit 4.
  • Constant current control The circuit unit 2 outputs a constant current signal SI 1 to the second switching circuit unit 4 based on the welding current detection signal S2.
  • the second switching circuit unit 4 selects the switching element control signal S8 or the constant current signal S11 based on the constant current control period signal S10 and outputs it to the switching element 13 as the switching element control signal S12.
  • the second switching circuit unit 4 selects the constant current signal SI 1 when the constant current control period signal S10 indicates the constant current control period, and outputs the switching element control signal S8 when it is outside the constant current control period. select.
  • the constant current control period signal S10 indicates the constant current control period when the arc resistance signal S6 is continuously higher than a certain value for a certain period of the arc period 22.
  • FIG. 1 or FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 2 shows a waveform of an example of the relationship between the welding current 24, the welding voltage 23, and the arc resistance signal 25 in the consumable electrode arc welder of the third embodiment.
  • the welding voltage 23 decreases, and the welding current 24 increases with a certain slope based on the short-circuit waveform control signal S7.
  • the arc resistance signal S6 corresponding to the change is input to the short-circuit waveform control circuit unit 8 together with the welding current detection signal S2, and the change occurs.
  • the short-circuit waveform control signal S7 corresponding to the minute is output.
  • the constant current control period setting unit 3 does not output the constant current control period signal S10, so the second switching circuit unit 4 selects the switching element control signal S8 that is the output of the switching circuit unit 10. To do.
  • the short circuit waveform control signal S7 is output to the switching element 13 via the switching circuit unit 10 and the second switching circuit unit 4.
  • the occurrence of spatter due to excessive voltage and wire buckling due to excessive voltage can be prevented, and appropriate control becomes possible.
  • the welding voltage 23 decreases with a certain slope based on the arc waveform control signal S9.
  • the welding current 24 decreases.
  • the arc waveform control signal S9 corresponding to the change is output.
  • the constant current control period setting unit 3 does not output the constant current control period signal S10, so the second switch
  • the switching circuit unit 4 selects the output of the switching circuit unit 10 and the switching element control signal S8. Therefore, the arc waveform control signal S9 is output to the switching element 13 via the switching circuit unit 10 and the second switching circuit unit 4.
  • Embodiment 2 of the present invention arc instability can be prevented and appropriate control can be performed.
  • the constant current control period setting unit 3 receives the arc resistance signal S6 and the short-circuit arc determination signal S3. For example, if the arc resistance signal S6 continues to be above a certain value for a certain period of the arc period 22, the constant current control period signal S10 is output to the second switching circuit unit 4 and the constant current control period is reached. It shows that there is.
  • the second switching circuit unit 4 selects the constant current signal S11 and outputs it to the switching element 13 as a switching element control signal S12. As a result, the constant current signal S11 is input to the force S switching element 13, and the welding current 24 is subjected to constant current control.
  • the constant current control of the welding current 24 is performed with a predetermined current value larger than the welding current value output when the arc waveform control signal S9 is output. Therefore, for example, when the welding current 24 decreases near the end of the arc period 22 or when the arc resistance signal S6 exceeds a certain value during a certain period, the arc waveform control signal S9 is output. Constant current control of the welding current 24 is performed with a predetermined current value larger than the output welding current value. That is, since the welding current 24 shifts to a short circuit at a certain current value, arc breakage can be prevented and stable arc welding can be realized.
  • the arc resistance signal S6 is input to the short-circuit waveform control circuit unit 8 and the arc waveform control circuit unit 9, but is input to only one of them. You may do it.
  • the consumable electrode arc welder of the present invention can realize stable welding by controlling the welding output based on the arc resistance signal obtained from the welding voltage and the welding current. Therefore, it is industrially useful as a consumable electrode type arc welding machine that performs welding by generating an arc between the welding wire and the base metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

 消耗電極式アーク溶接機において、溶接電流と溶接電圧とからアーク抵抗を演算してアーク抵抗信号を出力するアーク抵抗演算部を設け、このアーク抵抗信号に応じて可変する短絡波形制御信号およびアーク波形制御信号によって溶接電流および溶接電圧を制御する。これによりスパッタの抑制およびアークの安定性を確保する。また、アーク期間中にアーク抵抗信号が所定期間アーク抵抗信号レベルが一定以上となる場合には、定電流制御信号を出力してアーク波形制御信号出力時に出力される電流値よりも高い所定の電流値で溶接電流の定電流制御を行なってアーク切れを防止する。

Description

明 細 書
消耗電極式アーク溶接機
技術分野
[0001] 本発明は、溶接ワイヤ(以下、ワイヤ)と溶接母材(以下、母材)との間にアークを発 生させて溶接を行う消耗電極式アーク溶接機に関するものである。
背景技術
[0002] ワイヤと母材との間にアークを発生させて溶接を行う従来の消耗電極式アーク溶接 機において、アーク期間には電圧制御を行ない、短絡期間には電流制御を行うこと が一般的に知られている。これらの技術は、例えば、特開平 10— 109163号公報に 記載されている。
[0003] 従来の消耗電極式アーク溶接機の概略構成を図 5に示す。図 5に示す従来の消耗 電極式アーク溶接機においては、 3相交流入力 11の出力がダイオード整流回路 12 によりー且直流に整流される。その後、その直流がスイッチング素子 13により数十 k 〜数百 kHzの高周波に変換されて、変圧器 14にて降圧される。さらに降圧された高 周波出力は、ダイオード整流回路 15によって整流される。そして、整流された出力は 、リアクトノレ 16を経てトーチ 17を通してワイヤ 18に給電され、ワイヤ 18を溶かして母 材 19に溶接が行われる。
[0004] 具体的には、消耗電極式アーク溶接機は、溶接電圧を検出して溶接電圧検出信 号 S1を出力する溶接電圧検出回路部 5と、溶接電流を電流検出器 20により検出し て溶接電流検出信号 S2を出力する溶接電流検出回路部 6とを備えている。そして、 溶接電圧検出信号 S1を入力して短絡状態であるのかアーク状態であるのかを判定 して短絡アーク判定信号 S3を出力する短絡アーク判定回路部 7を備えている。加え て、溶接電流検出信号 S2を入力しそれをもとに短絡波形制御信号 S4を出力する短 絡波形制御回路部 108と、溶接電圧検出信号 S1を入力しそれをもとにアーク期間の アーク波形制御信号 S5を出力するアーク波形制御回路部 109とを備えている。さら に、短絡アーク判定信号 S3により、アーク期間はアーク波形制御信号 S5を、短絡期 間は短絡波形制御信号 S4を選択して出力するスイッチング回路部 10を備えている。 スイッチング回路部 10によって、短絡期間は短絡波形制御信号 S4をスイッチング素 子 13に伝達し、短絡が解除されてアーク期間になるとアーク波形制御信号 S5をスィ ツチング素子 13に伝達する。
[0005] しかし、従来の消耗電極式アーク溶接機は、ある所定の溶接条件に対してアーク期 間では電圧制御を行なレ、、短絡期間では電流制御を行うのが一般的である。特にァ ーク期間中は、アーク長自己制御に頼る部分が大きい。しかし、従来の制御方法で は、溶接中の微小短絡の発生やアーク期間中のワイヤ先端溶滴の肥大などの要因 により、アーク期間の電圧制御や短絡期間の電流制御では制御できない状態が発 生する。このため、従来の制御方法は、アークの不安定ゃスパッタの発生、あるいは アーク切れなどの溶接中の不安定要素の発生をともなう。
発明の開示
[0006] 本発明の消耗電極式アーク溶接機は、溶接電圧を検出して溶接電圧検出信号を 出力する溶接電圧検出回路部と、溶接電流を検出して溶接電流検出信号を出力す る溶接電流検出回路部と、溶接電圧検出信号を入力して短絡またはアークを判定し て短絡アーク判定信号を出力する短絡アーク判定回路部と、溶接電流検出信号を 入力して短絡波形制御信号を出力する短絡波形制御回路部と、溶接電圧検出信号 を入力してアーク期間のアーク波形制御信号を出力するアーク波形制御回路部と、 短絡波形制御信号およびアーク波形制御信号を入力して短絡アーク判定信号に基 づきアーク期間はアーク波形制御信号をまた短絡期間は短絡波形制御信号を選択 して出力するスイッチング回路部とを備え、スイッチング回路部の出力に基づいて溶 接出力を制御する、ワイヤを送給してワイヤと母材間にアークを発生させて溶接を行 う消耗電極式アーク溶接機において、溶接電圧検出信号と溶接電流検出信号とを 入力してアーク抵抗信号を演算して出力するアーク抵抗演算部を備え、アーク抵抗 信号を、短絡波形制御回路部またはアーク波形制御回路部の少なくともどちらかに 入力して、溶接出力を制御することを特徴とする。
[0007] また、本発明の消耗電極式アーク溶接機は、溶接電圧を検出して溶接電圧検出信 号を出力する溶接電圧検出回路部と、溶接電流を検出して溶接電流検出信号を出 力する溶接電流検出回路部と、溶接電圧検出信号を入力して短絡またはアークを判 定して短絡アーク判定信号を出力する短絡アーク判定回路部と、溶接電流検出信 号を入力して短絡波形制御信号を出力する短絡波形制御回路部と、溶接電圧検出 信号を入力してアーク期間のアーク波形制御信号を出力するアーク波形制御回路 部と、短絡波形制御信号およびアーク波形制御信号を入力して短絡アーク判定信号 に基づきアーク期間はアーク波形制御信号をまた短絡期間は短絡波形制御信号を 選択して出力する第 1のスイッチング回路部とを備え、第 1のスイッチング回路部の出 力に基づいて溶接出力を制御する、ワイヤを送給してワイヤと母材間にアークを発生 させて溶接を行う消耗電極式アーク溶接機にぉレ、て、溶接電圧検出信号と溶接電流 検出信号とを入力してアーク抵抗信号を演算して出力するアーク抵抗演算部と、ァ ーク抵抗信号を入力しアーク抵抗信号が継続して一定値以上の値をとるときに定電 流制御期間を示す定電流制御期間信号を出力する定電流制御期間設定部と、溶接 電流検出信号を入力しそれをもとに所定の定電流値になるように定電流信号を出力 する定電流回路部と、定電流制御期間信号により定電流制御期間においては定電 流信号を選択し定電流制御期間以外は第 1のスイッチング回路部からの出力信号を 選択して出力する第 2のスイッチング回路部とを備え、定電流制御期間以外におい て、アーク抵抗信号を、短絡波形制御回路部またはアーク波形制御回路部の少なく ともどちらかに入力して、第 2のスイッチング回路部の出力に基づいて溶接出力を制 御することを特徴とする。
図面の簡単な説明
[図 1]図 1は本発明の実施の形態 1における消耗電極式アーク溶接機の概略構成を 示すブロック図である。
[図 2]図 2は本発明の実施の形態 1〜3における溶接電圧と溶接電流とアーク抵抗信 号の関係を示す図である。
[図 3]図 3は本発明の実施の形態 2における消耗電極式アーク溶接機の概略構成を 示すブロック図である。
[図 4]図 4は本発明の実施の形態 3における消耗電極式アーク溶接機の概略構成を 示すブロック図である。
[図 5]図 5は従来の消耗電極式アーク溶接機の概略構成を示すブロック図である。 符号の説明
1 アーク抵抗演算部
2 定電流制御回路部
3 定電流制御期間設定部
4 第 2のスイッチング回路部
5 溶接電圧検出回路部
6 溶接電流検出回路部
7 短絡アーク判定回路部
8, 108 短絡波形制御回路部
9, 109 アーク波形制御回路部
10 スイッチング回路部(第 1のスイツ:チング回路部)
11 3相交流入力
12 ダイオード整流回路
13 スイッチング素子
14 変圧器
15 ダイオード整流回路
16 リアクトノレ
17 トーチ
18 ワイヤ
19 母材
20 電流検出器
21 短絡期間
22 アーク期間
23 溶接電圧
24 溶接電流
25 アーク抵抗信号
S1 溶接電圧検出信号
S2 溶接電流検出信号 S3 短絡アーク判定信号
S4, S7 短絡波形制御信号
S5, S9 アーク波形制御信号
S6 アーク抵抗信号
S8, S12 スイッチング素子制御信号
S10 定電流制御期間信号
S11 定電流信号
発明を実施するための最良の形態
[0010] (実施の形態 1)
本実施の形態 1における消耗電極式アーク溶接機について、図 1と図 2とを用いて 説明する。背景技術において図 5を用いて説明した従来の消耗電極式アーク溶接機 と同様の構成要素については、同一の番号を付して詳細な説明を省略する。なお、 本実施の形態 1の消耗電極式アーク溶接機が従来と異なる主な点は、短絡波形制 御回路部 8が異なることと、後述するアーク抵抗演算部 1を新たに設けた点である。
[0011] 図 1において、溶接電圧検出回路部 5は、溶接電圧を検出して溶接電圧検出信号 S1を出力する。溶接電流検出回路部 6は、溶接電流を検出して溶接電流検出信号 S2を出力する。アーク抵抗演算部 1は、溶接電圧検出信号 S1と、溶接電流検出信 号 S2とを入力信号とする。そしてこれらの入力信号に基づいてアーク抵抗値を演算 する(例えば、溶接電圧検出信号 S1を溶接電流検出信号 S2で除すことによりアーク 抵抗値を算出する)。そして、アーク抵抗演算部 1は、その演算結果をアーク抵抗信 号 S6として短絡波形制御回路部 8に出力する。また、短絡アーク判定回路部 7は、 溶接電圧検出信号 S1を入力信号とし、これに基づいて短絡状態である力、アーク状 態であるかを判定し、短絡アーク判定信号 S3をスイッチング回路部 10に伝える。短 絡波形制御回路部 8は、アーク抵抗信号 S6と溶接電流検出信号 S2とを入力信号と し、これらの入力信号に応じて短絡波形制御信号 S7を出力してスイッチング回路部 10に伝える。短絡時に、短絡波形制御信号 S7により、短絡電流波形の傾きを変化さ せることにより短絡電流波形を制御することができる。また、アーク波形制御回路部 1 09は、溶接電圧検出信号 S1を入力信号とし、これに基づいてアーク波形制御信号 S5を出力してスイッチング回路部 10に伝える。スイッチング回路部 10は、短絡ァー ク判定信号 S3、アーク波形制御信号 S5、短絡波形制御信号 S7を入力信号とする。 そして、スイッチング回路部 10は、短絡アーク判定信号 S3が、短絡状態を示す時に は短絡波形制御信号 S7を選択し、アーク状態を示す時にはアーク波形制御信号 S5 を選択して、スイッチング素子 13にスイッチング素子制御信号 S8を出力する。
[0012] 図 2は、本実施の形態 1の消耗電極式アーク溶接機における、溶接電流 24と溶接 電圧 23およびアーク抵抗信号 25の関係の一例の波形を示す。図 2に示すように、短 絡期間 21においては、溶接電圧 23は低いレベルの値であり、溶接電流 24は短絡波 形制御信号 S7に基づいてある傾きを持って増加する。図 5に示す従来の消耗電極 式アーク溶接機における溶接制御では、短絡状態の溶接電流は短絡波形制御信号 S4に基づいて制御されている力 その時の溶接電圧は制御されていなレ、。しかし、 ワイヤ 18の先端形状や母材 19とワイヤ 18との接触状態は不安定であり、溶接電圧 は常に変化している。そして、この溶接電圧が過大となった場合は、スパッタが発生 する原因にもなつていた。
[0013] これに対し、本実施の形態 1の消耗電極式アーク溶接機は、図 1に示すように、溶 接電圧検出信号 S1と溶接電流検出信号 S2とに基づいてアーク抵抗信号 S6を演算 して出力するアーク抵抗演算部 1を備えている。そして、短絡期間 21において溶接 電圧 23が変化した場合、その変化分に応じたアーク抵抗信号 S6を短絡波形制御回 路部 8に出力する。すなわち、溶接電流だけでなく溶接電圧をも考慮したアーク抵抗 信号 S6が出力される。そして、短絡波形制御回路部 8は、溶接電流検出信号 S2以 外にアーク抵抗信号 S6を入力することで、溶接電流だけでなく溶接電圧の変化分に も応じた短絡波形制御信号 S7を出力する。スイッチング回路 10は、この短絡波形制 御信号 S7を入力して、これに基づきスイッチング素子制御信号 S8を出力する。そし てこのスイッチング素子制御信号 S8がスイッチング素子 13に入力されて溶接出力の 制御が行われる。短絡波形制御回路部 8は、例えば、溶接電流検出信号 S2とアーク 抵抗信号 S6とを加算演算する回路により構成することができる。アーク抵抗信号 S6 は、短絡期間 21におけるワイヤ先端の形状や母材 19とワイヤ 18との接触状態の変 ィ匕、溶滴移行などに伴うアーク抵抗値変化を反映する。このため、アーク抵抗値が大 きくなつて溶接電圧が過大になった場合には、溶接電圧を下げてスパッタの発生を 防止することが可能となる。或いは、アーク抵抗値が小さくなつて溶接電圧が過少に なってしまった場合には、溶接電圧を上げて短絡期間を短くし、早くアーク期間に移 行させることによりワイヤ座屈等を防止することが可能となる。本実施の形態 1の消耗 電極式アーク溶接機によれば、このように適切な溶接出力の制御が可能となる。
[0014] (実施の形態 2)
図 3は本発明の実施の形態 2における消耗電極式アーク溶接機の概略構成を示す ブロック図を示す。図 3において、実施の形態 1と同様の構成については同一の番号 を付して詳細な説明を省略する。実施の形態 1と異なるのは、短絡波形制御回路部 1 08とアーク波形制御回路部 9とが異なる点と、アーク抵抗演算部 1の出力を、短絡波 形制御回路部 108にではなぐアーク波形制御回路部 9に入力するようにした点とで ある。
[0015] 図 3において、アーク抵抗演算部 1は、溶接電圧検出回路部 5からの溶接電圧検出 信号 S1と、溶接電流検出回路部 6からの溶接電流検出信号 S2とを入力信号とする 。そして、アーク抵抗演算部 1は、これらの入力信号からアーク抵抗値を演算し、この 演算結果をアーク抵抗信号 S6としてアーク波形制御回路部 9に伝える。アーク波形 制御回路部 9では、アーク抵抗信号 S6と溶接電圧検出信号 S1とを入力信号とし、こ れらの入力信号に応じてアーク波形制御信号 S9を出力してスイッチング回路部 10 に伝える。アーク波形制御信号 S9は、アーク時の溶接電圧波形の傾きを変化させる 制御信号を出力する。これにより、アーク時の溶接電圧波形を制御することができる。 また、短絡波形制御回路部 108は、溶接電流検出信号 S2を入力信号とし、短絡波 形制御信号 S4をスイッチング回路部 10に出力する。スイッチング回路部 10は、短絡 アーク判定信号 S3、アーク波形制御信号 S9、短絡波形制御信号 S4を入力信号と する。そして、スイッチング回路部 10は、短絡アーク判定信号 S3が、短絡状態示す 時には短絡波形制御信号 S4を選択し、アーク状態を示す時にはアーク波形制御信 号 S 9を選択してスイッチング素子 13に出力する。
[0016] ここで、図 2に示すように、アーク期間 22において、溶接電圧 23は、アーク波形制 御信号 S9に基づいてある傾きを持って減少する。また、溶接電流 24も減少する。図 5に示す従来の消耗電極式アーク溶接機における溶接制御では、溶接電圧はァー ク波形制御信号 S5に基づいて制御されている力 S、溶接電流は制御されていない。し かし、母材 19の状態等により溶接電流も常に変化している。そして、アーク不安定性 は溶接ビードの外観等にも影響する。このため、常に安定したアーク放電が求められ る。また、アーク期間終了時点における溶接電流の変動はアーク切れの原因ともなり 、溶接欠陥にもなりかねない。
[0017] これに対して、本実施の形態 2の消耗電極式アーク溶接機は、溶接電圧検出信号 S1と溶接電流検出信号 S2に基づいてアーク抵抗信号 S6を演算して出力するァー ク抵抗演算部 1を備えている。そして、アーク期間 22において溶接電流 24が変化し た場合、溶接電流 24の変化分に応じたアーク抵抗信号 S6をアーク波形制御回路部 9に出力する。すなわち、溶接電圧だけでなく溶接電流をも考慮したアーク抵抗信号 S6が出力される。そして、アーク波形制御回路部 9は溶接電圧検出信号 S1に加え てアーク抵抗信号 S6を入力することにより、溶接電流の変化分に応じたアーク波形 制御信号 S9を出力する。そして、この出力に基づいて、スイッチング回路 10を介して スイッチング素子 13により溶接出力の制御が行われる。このため、アーク不安定性が 防止でき適切な制御が可能となる。また、例えばアーク期間 22の終端時点にぉレ、て 、アーク電流が低下し、アーク抵抗値が増大してある所定のレベルを超えた場合、こ の時のアーク抵抗信号 S6に基づいてアーク波形制御回路部 9がアーク波形制御信 号 S9を出力する。そして、この出力に基づいてスイッチング素子 13がアーク時の通 常の定電圧制御で出力される電流値よりも高い所定の定電流値になるように溶接出 力を制御することでアーク切れを防止することができる。
[0018] なお、上記した実施の形態 1と実施の形態 2とにおいて、アーク抵抗演算部 1の出 力であるアーク抵抗信号 S6を、短絡波形制御回路部 108あるいはアーク波形制御 回路部 9の一方に入力する例を示したが、短絡波形制御回路部 108あるいはアーク 波形制御回路部 9の両方に入力するようにしても良い。
[0019] また、アーク抵抗演算部 1を設けず、短絡波形制御回路部 108に溶接電流検出信 号 S2以外に溶接電圧検出信号 S1を入力する構成や、或いは、アーク波形制御回 路部 9に溶接電圧検出信号 S1以外に溶接電流検出信号を入力する構成として制御 することも考えられる力 この場合には、結局、短絡波形制御回路部 108とアーク波 形制御回路部 9の各々にアーク抵抗演算部 1に相当する回路部を設ける必要が生じ る。従って、本発明の実施の形態 1、 2のように、アーク抵抗演算部 1を 1つ設け、この アーク抵抗演算部 1の出力 S6を短絡波形制御回路部 108やアーク波形制御回路部 9に入力する構成とすること力 S、経済性やスペースの面等からも望ましい。
[0020] (実施の形態 3)
本実施の形態において、実施の形態 1および実施の形態 2と同様の構成について は同一の番号を付して詳細な説明を省略する。実施の形態 1および実施の形態 2と 異なる主な点は、後述する定電流制御回路部 2と、定電流制御期間設定部 3と、第 2 のスイッチング回路部 4とを設け、アーク期間中に溶接電流が低下したときに定電流 制御を行ってアーク切れを防止するようにした点である。
[0021] 図 4において、アーク抵抗演算部 1は、溶接電圧検出信号 S1と溶接電流検出信号 S2とからアーク抵抗値を演算し、この演算結果をアーク抵抗信号 S6として定電流制 御期間設定部 3と短絡波形制御回路部 8とアーク波形制御回路部 9に出力する。短 絡波形制御回路部 8では、アーク抵抗信号 S6と溶接電流検出信号 S2に応じて短絡 時の溶接電流波形を制御する短絡波形制御信号 S7を第 1のスイッチング回路部 10 に出力する。短絡波形制御信号 S7は、例えば、短絡時の溶接電流波形の傾きを変 化させることができる制御信号とする。アーク波形制御回路部 9では、アーク抵抗信 号 S6と溶接電圧検出信号 S1とに応じてアーク時の溶接電圧波形を制御するアーク 波形制御信号 S9を第 1のスイッチング回路部 10に出力する。アーク波形制御信号 S 9は、例えば、アーク時の溶接電圧波形の傾きを変化させる制御信号を出力する。第 1のスイッチング回路部 10は、短絡アーク判定信号 S3、短絡波形制御信号 S7、ァー ク波形制御信号 S9を入力信号とする。そして、第 1のスイッチング回路部 10は、短絡 アーク判定信号 S3が、短絡状態を示す時には短絡波形制御信号 S7を選択し、ァー ク状態を示す時にはアーク波形制御信号 S9を選択して、第 2のスイッチング回路部 4 にスイッチング素子制御信号 S8を出力する。
[0022] 定電流期間設定部 3では、アーク抵抗信号 S6と短絡アーク判定信号 S3とを入力し て定電流制御期間信号 S10を第 2のスイッチング回路部 4に出力する。定電流制御 回路部 2では、溶接電流検出信号 S2をもとにして定電流信号 SI 1を第 2のスィッチン グ回路部 4に出力する。第 2のスイッチング回路部 4では、定電流制御期間信号 S10 に基づき、スイッチング素子制御信号 S8あるいは定電流信号 S11を選択してスイツ チング素子制御信号 S12として、スイッチング素子 13に出力する。第 2のスィッチン グ回路部 4は、定電流制御期間信号 S10が定電流制御期間を示す場合には定電流 信号 SI 1を選択し、定電流制御期間以外の場合にはスイッチング素子制御信号 S8 を選択する。ここで、定電流制御期間信号 S10が定電流制御期間を示すのは、ァー ク期間 22のある時間、アーク抵抗信号 S6が一定の値以上である状態が継続した場 合としている。
[0023] なお、その他図 1または図 3と共通する部分に同一符号を付して説明を省略してい る。
[0024] 図 2は、本実施の形態 3の消耗電極式アーク溶接機における、溶接電流 24と溶接 電圧 23およびアーク抵抗信号 25の関係の一例の波形を示す。
[0025] 図 2に示すように、短絡期間 21では、溶接電圧 23は低くなり、溶接電流 24は短絡 波形制御信号 S7に基づレ、てある傾きを持って増加する。短絡期間 21におレ、ては、 溶接電圧 23が変化した場合、その変化分に応じたアーク抵抗信号 S6を溶接電流検 出信号 S2と共に短絡波形制御回路部 8に入力することで、その変化分に応じた短絡 波形制御信号 S7が出力される。短絡期間 21の場合、定電流制御期間設定部 3は定 電流制御期間信号 S 10を出力しないので、第 2のスイッチング回路部 4はスィッチン グ回路部 10の出力であるスイッチング素子制御信号 S8を選択する。したがって、短 絡波形制御信号 S7は、スイッチング回路部 10と第 2のスイッチング回路部 4とを介し てスイッチング素子 13に出力される。これにより、電圧過大によるスパッタの発生や過 少電圧によるワイヤ座屈を防止でき、適切な制御が可能となる。
[0026] 一方、図 2に示すように、アーク期間 22では、溶接電圧 23はアーク波形制御信号 S 9に基づいてある傾きを持って減少する。また、溶接電流 24は減少する。この溶接電 流 24の変化分に応じたアーク抵抗信号 S6をアーク波形制御回路部 9に入力するこ とで、その変化分に応じたアーク波形制御信号 S9が出力される。この場合、定電流 制御期間設定部 3は定電流制御期間信号 S10を出力しないので、第 2のスィッチン グ回路部 4はスイッチング回路部 10の出力、スイッチング素子制御信号 S8を選択す る。したがって、アーク波形制御信号 S9は、スイッチング回路部 10と第 2のスィッチン グ回路部 4とを介してスイッチング素子 13に出力される。これにより、本発明の実施の 形態 2に示すように、アーク不安定性が防止でき適切な制御が可能となる。
[0027] また、定電流制御期間設定部 3はアーク抵抗信号 S6と短絡アーク判定信号 S3とを 入力する。例えば、アーク期間 22のある時間、アーク抵抗信号 S6が一定の値以上 である状態が継続した場合、定電流制御期間信号 S 10を第 2のスイッチング回路部 4 に出力して定電流制御期間であることを示す。第 2スイッチング回路部 4は、定電流 制御期間信号 S 10が入力されると定電流信号 S 11を選択し、それをスイッチング素 子制御信号 S12としてスイッチング素子 13に出力する。これにより、定電流信号 S11 力 Sスイッチング素子 13に入力されて、溶接電流 24が定電流制御される。なお、この 場合には、アーク波形制御信号 S9の出力時に出力される溶接電流値よりも大きい所 定の電流値で、溶接電流 24の定電流制御が行われる。従って、例えばアーク期間 2 2の終点付近で溶接電流 24が小さくなる場合や、あるいは、アーク抵抗信号 S6があ る期間に一定の値以上となった場合には、アーク波形制御信号 S9の出力時に出力 される溶接電流値よりも大きい所定の電流値で、溶接電流 24の定電流制御が行わ れる。すなわち、溶接電流 24は、ある大きさの電流値で短絡に移行するので、アーク 切れを防止することができ、安定したアーク溶接を実現することができる。
[0028] なお、本実施の形態 3において、アーク抵抗信号 S6を、短絡波形制御回路部 8とァ ーク波形制御回路部 9とに入力する例を示したが、どちらか一方にのみ入力するよう にしてもよい。
産業上の利用可能性
[0029] 本発明の消耗電極式アーク溶接機は、溶接電圧と溶接電流から求めたアーク抵抗 信号に基づいて溶接出力を制御することで安定した溶接を実現することができる。そ のため、溶接ワイヤと溶接母材との間にアークを発生させて溶接を行う消耗電極式ァ ーク溶接機として産業上有用である。

Claims

請求の範囲
[1] 溶接電圧を検出して溶接電圧検出信号を出力する溶接電圧検出回路部と、溶接電 流を検出して溶接電流検出信号を出力する溶接電流検出回路部と、前記溶接電圧 検出信号を入力して短絡またはアークを判定して短絡アーク判定信号を出力する短 絡アーク判定回路部と、前記溶接電流検出信号を入力して短絡波形制御信号を出 力する短絡波形制御回路部と、前記溶接電圧検出信号を入力してアーク期間のァ ーク波形制御信号を出力するアーク波形制御回路部と、前記短絡波形制御信号お よび前記アーク波形制御信号を入力して前記短絡アーク判定信号に基づき、前記ァ ーク期間では前記アーク波形制御信号を選択し前記短絡期間では前記短絡波形制 御信号を選択して出力するスイッチング回路部とを備え、前記スイッチング回路部の 出力に基づいて溶接出力を制御し、ワイヤを送給して前記ワイヤと母材間にアークを 発生させて溶接を行う消耗電極式アーク溶接機において、
前記溶接電圧検出信号と前記溶接電流検出信号とを入力してアーク抵抗信号を演 算して出力するアーク抵抗演算部を備え、前記アーク抵抗信号を、前記短絡波形制 御回路部または前記アーク波形制御回路部の少なくともどちらかに入力して、溶接 出力を制御することを特徴とする消耗電極式アーク溶接機。
[2] 前記短絡波形制御回路部は前記溶接電流検出信号と前記アーク抵抗信号とを入力 し前記アーク抵抗信号をもとに短絡波形制御信号を出力するとともに、前記スィッチ ング回路部は前記短絡アーク判定信号が前記アーク期間を示すときには前記アーク 波形制御信号を選択しまた前記短絡アーク判定信号が前記短絡期間を示すときに は前記短絡波形制御信号を選択して出力する構成とし、前記スィッチング回路部の 出力に基づいて溶接出力を制御することを特徴とする請求項 1に記載の消耗電極式 アーク溶接機。
[3] 前記アーク波形制御回路部が、前記溶接電圧検出信号と前記アーク抵抗信号とを 入力し前記アーク抵抗信号をもとにアーク波形制御信号を出力するとともに、前記ス イッチング回路部は前記短絡アーク判定信号が前記アーク期間を示すときには前記 アーク波形制御信号を選択しまた前記短絡アーク判定信号が前記短絡期間を示す ときには前記短絡波形制御信号を選択して出力する構成とし、前記スイッチング回路 部の出力に基づいて溶接出力を制御することを特徴とする請求項 1に記載の消耗電 極式アーク溶接機。
[4] 前記短絡波形制御回路部は前記溶接電流検出信号と前記アーク抵抗信号とを入力 し前記アーク抵抗信号をもとに短絡波形制御信号を出力する構成とし、前記アーク 波形制御回路部は前記溶接電圧検出信号と前記アーク抵抗信号とを入力し前記ァ ーク抵抗信号をもとに前記アーク期間のアーク波形制御信号を出力する構成とし、 前記スイッチング回路部は前記短絡アーク判定信号が前記アーク期間を示すときに は前記アーク波形制御信号を選択しまた前記短絡アーク判定信号が前記短絡期間 を示すときには前記短絡波形制御信号を選択して出力する構成とし、前記スィッチン グ回路部の出力に基づいて溶接出力を制御することを特徴とする請求項 1に記載の 消耗電極式アーク溶接機。
[5] 溶接電圧を検出して溶接電圧検出信号を出力する溶接電圧検出回路部と、溶接電 流を検出して溶接電流検出信号を出力する溶接電流検出回路部と、前記溶接電圧 検出信号を入力して短絡またはアークを判定して短絡アーク判定信号を出力する短 絡アーク判定回路部と、前記溶接電流検出信号を入力して短絡波形制御信号を出 力する短絡波形制御回路部と、前記溶接電圧検出信号を入力してアーク期間のァ ーク波形制御信号を出力するアーク波形制御回路部と、前記短絡波形制御信号お よび前記アーク波形制御信号を入力して前記短絡アーク判定信号に基づき、前記ァ ーク期間では前記アーク波形制御信号を選択し前記短絡期間では前記短絡波形制 御信号を選択して出力する第 1のスイッチング回路部とを備え、前記第 1のスィッチン グ回路部の出力に基づいて溶接出力を制御し、ワイヤを送給して前記ワイヤと母材 間にアークを発生させて溶接を行う消耗電極式アーク溶接機において、
前記溶接電圧検出信号と前記溶接電流検出信号とを入力してアーク抵抗信号を演 算して出力するアーク抵抗演算部と、前記アーク抵抗信号を入力し前記アーク抵抗 信号が継続して一定値以上の値をとるときに定電流制御期間を示す定電流制御期 間信号を出力する定電流制御期間設定部と、前記溶接電流検出信号を入力しそれ をもとに所定の定電流値になるように定電流信号を出力する定電流回路部と、前記 定電流制御期間信号により前記定電流制御期間においては前記定電流信号を選 択し定電流制御期間以外は前記第 1のスイッチング回路部からの出力信号を選択し て出力する第 2のスイッチング回路部とを備え、前記定電流制御期間以外において、 前記アーク抵抗信号を、前記短絡波形制御回路部または前記アーク波形制御回路 部の少なくともどちらかに入力して、前記第 2のスイッチング回路部の出力に基づい て溶接出力を制御することを特徴とする消耗電極式アーク溶接機。
[6] 前記短絡波形制御回路部は前記溶接電流検出信号と前記アーク抵抗信号とを入力 し前記アーク抵抗信号をもとに短絡波形制御信号を出力するとともに、前記第 1のス イッチング回路部は前記短絡アーク判定信号が前記アーク期間を示す時には前記 アーク波形制御信号を選択しまた前記短絡アーク判定信号が前記短絡期間を示す 時には前記短絡波形制御信号を選択して出力する構成とし、前記第 2のスィッチン グ回路部の出力に基づいて溶接出力を制御することを特徴とする請求項 5に記載の 消耗電極式アーク溶接機。
[7] 前記アーク波形制御回路部は前記溶接電圧検出信号と前記アーク抵抗信号とを入 力し前記アーク抵抗信号をもとにアーク波形制御信号を出力するとともに、前記第 1 のスイッチング回路部は前記短絡アーク判定信号が前記アーク期間を示すときには 前記アーク波形制御信号を選択しまた前記短絡アーク判定信号が前記短絡期間を 示す時には前記短絡波形制御信号を選択して出力する構成とし、前記第 2のスイツ チング回路部の出力に基づいて溶接出力を制御することを特徴とする請求項 5に記 載の消耗電極式アーク溶接機。
[8] 前記短絡波形制御回路部は前記溶接電流検出信号と前記アーク抵抗信号とを入力 し前記アーク抵抗信号をもとに短絡波形制御信号を出力する構成とし、前記アーク 波形制御回路部は前記溶接電圧検出信号と前記アーク抵抗信号とを入力し前記ァ ーク抵抗信号をもとに前記アーク期間のアーク波形制御信号を出力する構成とし、 前記第 1のスイッチング回路部は前記短絡アーク判定信号が前記アーク期間を示す ときには前記アーク波形制御信号を選択しまた前記短絡アーク判定信号が前記短 絡期間を示すときには前記短絡波形制御信号を選択して出力する構成とし、前記第 2のスイッチング回路部の出力に基づいて溶接出力を制御することを特徴とする請求 項 5に記載の消耗電極式アーク溶接機。
PCT/JP2006/304946 2005-04-14 2006-03-14 消耗電極式アーク溶接機 WO2006112219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06729011A EP1745880B1 (en) 2005-04-14 2006-03-14 Consumable electrode arc-welding machine
JP2006522576A JP3933193B2 (ja) 2005-04-14 2006-03-14 消耗電極式アーク溶接機
US10/594,909 US20080264916A1 (en) 2005-04-14 2006-03-14 Consumable Electrode Type Arc Welding Machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005116866 2005-04-14
JP2005-116866 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112219A1 true WO2006112219A1 (ja) 2006-10-26

Family

ID=37114951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304946 WO2006112219A1 (ja) 2005-04-14 2006-03-14 消耗電極式アーク溶接機

Country Status (5)

Country Link
US (1) US20080264916A1 (ja)
EP (1) EP1745880B1 (ja)
JP (1) JP3933193B2 (ja)
CN (1) CN100493801C (ja)
WO (1) WO2006112219A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045662A (ja) * 2007-08-22 2009-03-05 Daihen Corp 溶接電源
WO2010116695A1 (ja) * 2009-04-08 2010-10-14 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
CN101374625B (zh) * 2007-02-28 2011-08-31 松下电器产业株式会社 焊接输出控制方法及电弧焊接装置
JP2012509047A (ja) * 2008-11-17 2012-04-12 ニューフレイ リミテッド ライアビリティ カンパニー 電気溶接回路の変数を判定する方法及び器具
JP5170315B2 (ja) * 2009-07-29 2013-03-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2014083571A (ja) * 2012-10-25 2014-05-12 Daihen Corp 短絡期間の溶接電流制御方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004586A1 (ja) 2009-07-10 2011-01-13 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
US9162308B2 (en) 2010-10-22 2015-10-20 Lincoln Global, Inc. Apparatus and method for pulse welding with AC waveform
US9415457B2 (en) 2010-10-22 2016-08-16 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
EP2629918A2 (en) * 2010-10-22 2013-08-28 Lincoln Global, Inc. Methods of and system for reducing spatter in a pulse arc welding process
CN102554409B (zh) * 2012-01-06 2015-06-10 广州长胜机电有限公司 一种具有良好焊接波形的数字化焊机
US10071434B2 (en) * 2012-05-17 2018-09-11 Lincoln Global, Inc. Intelligent waveform selection for a welding system having particular electrical output characteristics
US9387550B2 (en) 2012-09-14 2016-07-12 Illinois Tool Works Inc. Waveform compensation systems and methods for secondary weld component response
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
US9506958B2 (en) 2013-01-31 2016-11-29 Illinois Tool Works Inc. Waveform compensation systems and methods for secondary weld component response
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US10835983B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
JP5994735B2 (ja) * 2013-06-07 2016-09-21 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
US11045891B2 (en) 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11478870B2 (en) 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
JP6792129B2 (ja) * 2017-03-03 2020-11-25 株式会社安川電機 アーク溶接システム及びアーク溶接判定装置
US10821535B2 (en) * 2017-03-16 2020-11-03 Lincoln Global, Inc. Short circuit welding using self-shielded electrode
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
WO2018227196A1 (en) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Welding torch, with two contact tips and a plurality of liquid cooling assemblies for conducting currents to the contact tips
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
US10926349B2 (en) 2017-06-09 2021-02-23 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
CA3066677C (en) 2017-06-09 2023-04-04 Illinois Tool Works Inc. Welding assembly for a welding torch, with two contact tips and a cooling body to cool and conduct current
EP3634682B1 (en) 2017-06-09 2023-08-23 Illinois Tool Works, Inc. Contact tip with screw threads with longitudinal slots for gas flow, and a head to enable unthreading ; welding torch with such contact tip
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11204394B2 (en) 2017-09-20 2021-12-21 Esab Ab External connector and sensor unit for welding equipment
CN113165097B (zh) 2018-08-31 2023-11-03 伊利诺斯工具制品有限公司 用于电阻式地预加热电极丝的埋弧焊系统和埋弧焊焊炬
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
CA3119590C (en) 2018-12-19 2024-06-11 Illinois Tool Works Inc. Contact tip, wire preheating assembly, contact tip assembly and consumable electrode-fed welding type system
US11623292B2 (en) 2019-03-29 2023-04-11 Lincoln Global, Inc. Real time resistance monitoring of an arc welding circuit
US12103121B2 (en) 2019-04-30 2024-10-01 Illinois Tool Works Inc. Methods and apparatus to control welding power and preheating power
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109163A (ja) * 1996-10-07 1998-04-28 Matsushita Electric Ind Co Ltd 消耗電極式直流アーク溶接機
JP2001334365A (ja) * 2000-05-22 2001-12-04 Kobe Steel Ltd 溶接電源制御装置および消耗電極ガスシールドアーク溶接装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687492A (en) * 1924-08-08 1928-10-16 Wilson Welder & Metals Company Electric welding apparatus
GB8306578D0 (en) * 1983-03-10 1983-04-13 Welding Inst Short-circuit mig welding
JPH07108459B2 (ja) * 1983-05-02 1995-11-22 株式会社神戸製鋼所 短絡移行溶接の電流制御方法および装置
US5834732A (en) * 1994-12-05 1998-11-10 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling consumable electrode type pulsed arc welding power source
JPH10277740A (ja) * 1997-04-01 1998-10-20 Kobe Steel Ltd パルスアーク溶接装置
JPH1158016A (ja) * 1997-08-25 1999-03-02 Daihen Corp 短絡移行式アーク溶接方法
US6248976B1 (en) * 2000-03-14 2001-06-19 Lincoln Global, Inc. Method of controlling arc welding processes and welder using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109163A (ja) * 1996-10-07 1998-04-28 Matsushita Electric Ind Co Ltd 消耗電極式直流アーク溶接機
JP2001334365A (ja) * 2000-05-22 2001-12-04 Kobe Steel Ltd 溶接電源制御装置および消耗電極ガスシールドアーク溶接装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374625B (zh) * 2007-02-28 2011-08-31 松下电器产业株式会社 焊接输出控制方法及电弧焊接装置
JP2009045662A (ja) * 2007-08-22 2009-03-05 Daihen Corp 溶接電源
JP2012509047A (ja) * 2008-11-17 2012-04-12 ニューフレイ リミテッド ライアビリティ カンパニー 電気溶接回路の変数を判定する方法及び器具
WO2010116695A1 (ja) * 2009-04-08 2010-10-14 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP5083415B2 (ja) * 2009-04-08 2012-11-28 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
US10500667B2 (en) 2009-04-08 2019-12-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus for adjusting a welding current waveform responsive to a setting voltage adjustment
JP5170315B2 (ja) * 2009-07-29 2013-03-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2014083571A (ja) * 2012-10-25 2014-05-12 Daihen Corp 短絡期間の溶接電流制御方法

Also Published As

Publication number Publication date
CN100493801C (zh) 2009-06-03
EP1745880B1 (en) 2011-08-03
EP1745880A4 (en) 2009-04-29
JP3933193B2 (ja) 2007-06-20
JPWO2006112219A1 (ja) 2008-12-04
CN1942279A (zh) 2007-04-04
EP1745880A2 (en) 2007-01-24
US20080264916A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
WO2006112219A1 (ja) 消耗電極式アーク溶接機
US9314866B2 (en) Modification of control parameters based on output power
KR100281315B1 (ko) 용접용 전원장치 및 그 제조방법
AU2012258585A1 (en) System for generating a weld and method of controlling a welder with modification of voltage and wire feed speed based on a calculated welding output power
JP5558881B2 (ja) プラズマミグ溶接方法
JP4815966B2 (ja) アーク溶接システム
JP4702375B2 (ja) アーク溶接制御方法およびアーク溶接装置
US11958141B2 (en) Systems and methods to provide welding-type arc starting and stabilization with reduced open circuit voltage
CN103079742B (zh) 焊接机
JP2009195952A (ja) 消耗電極アーク溶接の短絡判別方法
JP2006198668A (ja) アーク溶接電源の出力制御方法
KR20160147056A (ko) 소모 전극식 아크 용접의 아크 스타트 제어 방법, 용접 장치
KR100327704B1 (ko) 인공지능형 자동용접기
JP2022185998A (ja) アーク溶接電源
JP4661164B2 (ja) 消耗電極式アーク溶接装置
JP5257403B2 (ja) 消耗電極式アーク溶接装置
JP4576904B2 (ja) アーク溶接装置
JP7147338B2 (ja) 被覆アーク溶接システム、および、被覆アーク溶接用の溶接電源装置
US20210237189A1 (en) Systems and methods to control welding processes using a voltage-controlled control loop
JPWO2010097877A1 (ja) アーク溶接機
US20010035399A1 (en) Method and apparatus for improved arc initiation
JP2009045662A (ja) 溶接電源
KR100331348B1 (ko) 티그 용접기
KR100928533B1 (ko) 저항용접시 전력제어방법
JP2024053876A (ja) 多層盛り溶接方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006522576

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680000114.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10594909

Country of ref document: US

Ref document number: 2006729011

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006729011

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU