WO2006111231A1 - Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür - Google Patents

Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür Download PDF

Info

Publication number
WO2006111231A1
WO2006111231A1 PCT/EP2006/002513 EP2006002513W WO2006111231A1 WO 2006111231 A1 WO2006111231 A1 WO 2006111231A1 EP 2006002513 W EP2006002513 W EP 2006002513W WO 2006111231 A1 WO2006111231 A1 WO 2006111231A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcontroller
voltage
capacitor
time base
circuit arrangement
Prior art date
Application number
PCT/EP2006/002513
Other languages
English (en)
French (fr)
Inventor
Michael Franke
Original Assignee
Braun Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braun Gmbh filed Critical Braun Gmbh
Priority to JP2008506944A priority Critical patent/JP2008537237A/ja
Priority to CN2006800130244A priority patent/CN101164234B/zh
Priority to US11/912,087 priority patent/US7620512B2/en
Priority to EP06707608A priority patent/EP1872475A1/de
Publication of WO2006111231A1 publication Critical patent/WO2006111231A1/de

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F1/00Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals without driving mechanisms, e.g. egg timers
    • G04F1/005Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals without driving mechanisms, e.g. egg timers using electronic timing, e.g. counting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/145Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of resonant circuits

Definitions

  • the invention relates to a method for generating a time base for a microcontroller, and a simple circuit arrangement therefor.
  • a method for measuring time in an electronic device which has a timer module with an RC oscillator.
  • a capacitor of an RC element is charged and discharged via a resistor of the RC element.
  • the voltage across the capacitor describes an exponential charge and discharge curve.
  • the timer module switches one output to the other state (HlGH or LOW) so that a square-wave voltage results at the output whose frequency is determined by the dimensioning of the RC element. Since this frequency is too inaccurate as a time base, a correction quantity is determined with the aid of which a corrected time base is calculated.
  • the electronic device additionally has a microcontroller with a quartz or ceramic oscillating unit, which generates a second frequency with better stability than the timer module, but is only temporarily in operation to save power. By comparing the two frequencies, the correction quantity is determined from time to time.
  • Microcontrollers with an external quartz or resonator require appropriate installation space or are particularly expensive with small dimensions.
  • the clock frequency depends on the operating voltage and the temperature, and therefore may vary by more than +/- 30%.
  • the power consumption of such microcontroller for battery-powered devices is too high.
  • the method according to the invention has the following steps.
  • a first step the capacitor of the RC element is charged by the microcontroller to an initial voltage.
  • the microcontroller counts the number of clock pulses of its clock generator until the voltage on the capacitor of the RC element has dropped from the initial voltage to a predetermined percentage of the initial voltage or a voltage threshold.
  • the counted number of clock pulses is used as a time base, and preferably stored in a nonvolatile memory.
  • the circuit arrangement shown in the figure has only a microcontroller M and an RC element which is connected to a terminal A of the microcontroller.
  • the microcontroller includes a clock generator in a conventional manner.
  • the connection of the microcontroller is switchable, ie can be used as output or as an input terminal.
  • the terminal is connected as an output, and the capacitor C of the RC element is charged by the microcontroller to an initial voltage.
  • the terminal is connected as an input, and the RC element is connected to a device for measuring the voltage applied to the RC element, for example the input of an A / D converter.
  • the A / D converter continuously converts the voltage applied to the capacitor of the RC element into a numerical value, which decreases continuously from an initial value corresponding to the initial voltage, since the capacitor C of the RC element via the resistor R of the RC element discharges.
  • the microcontroller counts the number of clock pulses of its clock generator until the voltage on the capacitor of the RC element has dropped from the initial voltage to a predetermined percentage of the initial voltage, ie the A / D converter provides a numerical value stored in a microcontroller Percentage of the initial value corresponds.
  • the counted number of clock pulses is preferably stored in a non-volatile memory and then used as a time base, based on which the tasks to be performed by the microcontroller can be controlled time-dependent.
  • the accuracy of this time base is given by the accuracy of the time constant of the RC element and not by the comparatively unstable oscillation frequency of the clock generator of the microcontroller.
  • the accuracy of this method is based on the known property of an RC element to have a temperature constant and voltage largely independent time constant, ie the voltage at the RC element follows in a discharge of the capacitor C via the resistor R an exponential function practically temperature-independent time constant, so that the time duration for a discharge of the capacitor from an initial voltage to a predetermined percentage of the initial voltage is always constant, that is independent of the magnitude of the initial voltage.
  • the time constant of the RC element is independent of the supply voltage of the microcontroller.
  • the ratio between the initial value supplied by the A / D converter and the fixed percentage of the initial value is constant, ie independent of the supply voltage, since that of the A / D Transducer supplied values are related to the supply voltage of the microcontroller.
  • the RC element is connected to an output and an input of the microcontroller.
  • the capacitor of the RC element can be charged by the microcontroller via the output, wherein a diode present at the output prevents the capacitor from discharging again via the output.
  • a device for measuring the voltage applied to the capacitor of the RC element voltage is arranged, as already described above.
  • a suitable circuit arrangement is connected to the terminal or input of the microcontroller to which the RC element is connected, not only the means for measuring voltage but also a means for comparing the voltage applied to the capacitor of the RC element voltage with a reference voltage connected.
  • the inventive method may be modified so that the microcontroller can be operated in a power-saving mode, without losing its time information.
  • the RC element is connected to an interrupt input of the microcontroller, with which the microcontroller is woken up from the power saving mode when the voltage at the RC element has dropped to a voltage threshold.
  • the first three steps of the modified process are virtually the same as described above, i.
  • the capacitor of the RC element is charged by the microcontroller to an initial voltage
  • the microcontroller counts the number of clock pulses of its clock generator until the voltage at the capacitor of the RC element from the initial voltage to the voltage threshold dropped is, which would trigger an interrupt in power-saving mode
  • the microcontroller counts the number of clock pulses of its clock generator until the voltage at the capacitor of the RC element from the initial voltage to the voltage threshold dropped is, which would trigger an interrupt in power-saving mode
  • the capacitor of the RC element is then recharged to the initial voltage
  • the microcontroller is placed in the power saving mode, i. it will also shut off the clock generator of the microcontroller.
  • an interrupt is triggered in a sixth step and the microcontroller is woken up from the power-saving mode.
  • a time counter can be counted by the amount stored in the third step.
  • the microcontroller is operated in a manner in which the method steps described above are combined with each other and run several times in succession, as will be described below. In this way, cheap microcontrollers can be used for applications for which they would otherwise have been unusable due to their lack of time stability or their high power consumption.
  • steps one through three of the method of the present invention provide a timebase by counting the number of clock pulses after charging the capacitor of the RC until the voltage on the capacitor of the RC element is from the initial voltage to a predetermined percentage of the initial voltage has dropped, ie it is the appropriate number of clock pulses stored in a preferably non-volatile memory.
  • the microcontroller in a conventional manner perform the tasks for which it is intended.
  • steps one through three are repeated to account for any fluctuations in the supply voltage of the microcontroller or temperature that may have occurred in the meantime.
  • the microcontroller If the microcontroller is to be placed in its power-saving mode, according to the invention first determines the duration during which the microcontroller is to remain in power saving mode, ie it is with the steps one to three of the inventive method after charging the capacitor of the RC element, the number of clock pulses counted until the voltage across the capacitor of the RC element has dropped from the initial voltage to the voltage threshold, which would trigger an interrupt in power-saving mode, and stored the counted number of clock pulses in another preferably non-volatile memory.
  • the number of clock pulses corresponding to the duration of a power saving cycle may, if necessary, be related to the previously determined time base, for example, a power saving cycle may be exactly as long as the time base or a certain percentage of the time base.
  • the microcontroller can either immediately go through steps four to six or four to seven of the method according to the invention, ie remain in a power saving mode for one cycle, or first perform the required tasks for which it is intended. Thereafter, the microcontroller again either immediately through steps four to six or four to seven of the process according to the invention, ie for another cycle in the power saving mode persist, or first perform the necessary tasks for which it is provided.
  • steps one through three are repeated, i. the time base is again obtained and / or the period during which the microcontroller is to remain in power-saving mode is taken into account, in order to take account of possibly occurring fluctuations in the supply voltage of the microcontroller or the temperature in the meantime.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Measurement Of Predetermined Time Intervals (AREA)
  • Power Sources (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Erzeugen einer Zeitbasis für einen Mikrokontroller sowie eine einfache Schaltungsanordnung hierfür, die lediglich ein RC-Glied mit einer bestimmten Zeitkonstante aufweist, das an einen Anschluß des Mikrokontrollers angeschlossen ist. Bei diesem Verfahren wird in einem ersten Schritt der Kondensator des RC-Glieds auf eine Anfangsspannung aufgeladen, danach in einem zweiten Schritt solange die Anzahl der Taktimpulse gezählt, bis die Spannung am Kondensator von der Anfangsspannung bis auf einen festgelegten Prozentsatz der Anfangsspannung oder einen Spannungsschwellwert abgefallen ist, und dann in einem dritten Schritt die gezählte Anzahl der Taktimpulse als Zeitbasis verwendet.

Description

Verfahren zum Erzeugen einer Zeitbasis für einen Mikrokontroller und Schaltungsanordnung hierfür
Die Erfindung betrifft ein Verfahren zum Erzeugen einer Zeitbasis für einen Mikrokontroller, sowie eine einfache Schaltungsanordnung hierfür.
Aus der DE 102 60 244 A1 ist ein Verfahren zur Zeitmessung in einem elektronischen Gerät bekannt, das einen Timerbaustein mit einem RC-Oszillator aufweist. Ein Kondensator eines RC-Glieds wird über einen Widerstand des RC-Glieds aufgeladen und entladen. Die Spannung am Kondensator beschreibt eine exponentielle Auflade- und Entladekurve. Bei Erreichen einer Schwellwertspannung schaltet der Timerbaustein einen Ausgang in den jeweils anderen Zustand (HlGH oder LOW), sodaß sich an dem Ausgang eine Rechteckspannung ergibt, deren Frequenz durch die Dimensionierung des RC-Glieds vorgegeben ist. Da diese Frequenz als Zeitbasis zu ungenau ist, wird eine Korrekturgröße ermittelt, mit deren Hilfe eine korrigierte Zeitbasis berechnet wird. Dazu weist das elektronische Gerät zusätzlich einen Mikrokontroller mit einer Quarz- oder Keramik-Schwingeinheit auf, der eine zweite Frequenz mit besserer Stabilität erzeugt als der Timerbaustein, allerdings nur zeitweilig in Betrieb ist, um Strom zu sparen. Durch Vergleich der beiden Frequenzen wird von Zeit zu Zeit die Korrekturgröße ermittelt.
Mikrokontroller mit einem externen Quarz oder Resonator benötigen entsprechenden Bauraum oder sind bei kleinen Abmessungen besonders teuer. Es gibt auch Mikrokontroller, die einen internen RC-Oszillator aufweisen, und daher recht kleine Abmessungen aufweisen. Allerdings ist bei diesen Mikrokontrollern die Taktfrequenz abhängig von der Betriebsspannung und der Temperatur, und kann daher um über +/- 30% schwanken. Außerdem ist der Stromverbrauch derartiger Mikrokontroller für batteriebetriebene Geräte zu hoch.
Es ist Aufgabe der vorliegenden Erfindung ein einfaches Verfahren zum Erzeugen einer relativ genauen Zeitbasis für einen Mikrokontroller anzugeben, dessen Taktgenerator eine vergleichsweise instabile Oszillationsfrequenz aufweist.
Zur schaltungstechnischen Realisierung des erfindungsgemäßen Verfahrens wird lediglich ein RC-Glied mit bekannter Zeitkonstante benötigt, das mit dem Mikrokontroller verbunden ist. Dabei wird vorausgesetzt, daß der Mikrokontroller einen Taktgenerator aufweist, wobei es unerheblich ist, ob der Taktgenerator durch interne und/oder externe Bauelemente reali- siert ist. Auch das RC-Glied kann in den Mikrokontroller integriert sein. Daher kann das Verfahren schaltungstechnisch sehr preiswert realisiert werden.
Das erfindungsgemäße Verfahren weist folgende Schritte auf. In einem ersten Schritt wird der Kondensator des RC-Glieds vom Mikrokontroller auf eine Anfangsspannung aufgeladen. In einem zweiten Schritt zählt der Mikrokontroller solange die Anzahl der Taktimpulse seines Taktgenerators, bis die Spannung am Kondensator des RC-Glieds von der Anfangsspannung bis auf einen festgelegten Prozentsatz der Anfangsspannung oder einen Spannungsschwellwert abgefallen ist. In einem dritten Schritt wird die gezählte Anzahl der Taktimpulse als Zeitbasis verwendet, und vorzugsweise in einem nichtflüchtigen Speicher gespeichert.
Das Verfahren wird nachstehend anhand eines Ausführungsbeispiels für eine besonders vorteilhafte Schaltungsanordnung erläutert, die in der einzigen Zeichnung dargestellt ist.
Die in der Figur dargestellte Schaltungsanordnung weist lediglich einen Mikrokontroller M und ein RC-Glied auf, das mit einem Anschluß A des Mikrokontrollers verbunden ist. Der Mikrokontroller enthält in an sich bekannter Weise einen Taktgenerator. Der Anschluß des Mikrokontrollers ist umschaltbar, d.h. kann als Ausgangs- oder als Eingangsanschluß verwendet werden. Im ersten Schritt des Verfahrens ist der Anschluß als Ausgang geschaltet, und wird der Kondensator C des RC-Glieds vom Mikrokontroller auf eine Anfangsspannung aufgeladen. Im zweiten Schritt des Verfahrens ist der Anschluß als Eingang geschaltet, und ist das RC-Glied mit einer Einrichtung zur Messung der am RC-Glied anliegenden Spannung verbunden, beispielsweise dem Eingang eines A/D-Wandlers. Der A/D-Wandler wandelt fortlaufend die am Kondensator des RC-Glieds anliegende Spannung in einen Zahlenwert, der sich ausgehend von einem der Anfangsspannung entsprechenden Anfangswert fortlaufend verringert, da sich der Kondensator C des RC-Glieds über den Widerstand R des RC- Glieds entlädt. Gleichzeitig zählt der Mikrokontroller solange die Anzahl der Taktimpulse seines Taktgenerators, bis die Spannung am Kondensator des RC-Glieds von der Anfangsspannung bis auf einen festgelegten Prozentsatz der Anfangsspannung abgefallen ist, d.h. der A/D-Wandler einen Zahlenwert liefert, der einem im Mikrokontroller gespeicherten Prozentsatz des Anfangswerts entspricht. Im dritten Schritt wird die gezählte Anzahl der Taktimpulse vorzugsweise in einem nichtflüchtigen Speicher abgespeichrt und dann als Zeitbasis verwendet, anhand der die vom Mikrokontroller durchzuführenden Aufgaben zeitabhängig gesteuert werden können. Die Genauigkeit dieser Zeitbasis ist durch die Genauigkeit der Zeitkonstanten des RC-Glieds vorgegeben und nicht durch die vergleichsweise instabile Oszillationsfrequenz des Taktgenerators des Mikrokontrollers. Die Genauigkeit dieses Verfahrens beruht auf der an sich bekannten Eigenschaft eines RC- Glieds, eine von Temperatur und Spannung weitestgehend unabhängige Zeitkonstante zu besitzen, d.h. die Spannung am RC-Glied folgt bei einer Entladung des Kondensators C ü- ber den Widerstand R einer Exponentialfunktion mit praktisch temperaturunabhängiger Zeitkonstante, sodaß die Zeitdauer für eine Entladung des Kondensators von einer Anfangsspannung bis zu einem festgelegten Prozentsatz der Anfangsspannung immer konstant, d.h. unabhängig von der Höhe der Anfangsspannung ist. Somit ist also die Zeitkonstante des RC-Glieds unabhängig von der Versorgungsspannung des Mikrokontrollers. Unter der Annahme, daß die Versorgungsspannung des Mikrokontrollers zumindest während des Entladevorgangs konstant ist, ist auch das Verhältnis zwischen dem vom A/D-Wandler gelieferten Anfangswert und dem festgelegten Prozentsatz des Anfangswerts konstant, d.h. unabhängig von der Versorgungsspannung, da die vom A/D-Wandler gelieferten Werte auf die Versorgungsspannung des Mikrokontrollers bezogen sind.
Bei einer anderen Ausführung einer geeigneten Schaltungsanordnung ist das RC-Glied mit einem Ausgang und einem Eingang des Mikrokontrollers verbunden. Der Kondensator des RC-Glieds kann durch den Mikrokontroller über den Ausgang aufgeladen werden, wobei eine am Ausgang vorhandene Diode verhindert, daß sich der Kondensator wieder über den Ausgang entladen kann. Am Eingang des Mikrokontrollers ist eine Einrichtung zur Spannungsmessung der am Kondensator des RC-Glieds anliegenden Spannung angeordnet, wie bereits oben beschrieben ist.
Bei anderen Varianten einer geeigneten Schaltungsanordnung ist mit dem Anschluß bzw. Eingang des Mikrokontrollers, mit dem das RC-Glied verbunden ist, nicht nur die Einrichtung zur Spannungsmessung sondern auch noch eine Einrichtung zum Vergleichen der am Kondensator des RC-Glieds anliegenden Spannung mit einer Referenzspannung verbunden.
Das erfindungsgemäße Verfahren kann so modifiziert sein, daß der Mikrokontroller in einem Stromsparmodus betrieben werden kann, ohne dabei seine Zeitinformation zu verlieren. Bei einem entsprechend modifizierten Ausführungsbeispiel ist das RC-Glied mit einem Interrupt- Eingang des Mikrokontrollers verbunden, mit dem der Mikrokontroller aus dem Stromsparmodus aufgeweckt wird, wenn die Spannung am RC-Glied bis auf einen Spannungsschwellwert abgefallen ist. - A -
Die ersten drei Schritte des modifizierten Verfahrens sind praktisch dieselben wie oben bereits beschrieben, d.h. im ersten Schritt wird der Kondensator des RC-Glieds vom Mikrokon- troller auf eine Anfangsspannung aufgeladen, im zweiten Schritt zählt der Mikrokontroller solange die Anzahl der Taktimpulse seines Taktgenerators, bis die Spannung am Kondensator des RC-Glieds von der Anfangsspannung bis auf den Spannungsschwellwert abgefallen ist, der im Stromsparmodus einen Interrupt auslösen würde, und im dritten Schritt wird die gezählte Anzahl der Taktimpulse abgespeichert. In einem vierten Schritt wird dann der Kondensator des RC-Glieds erneut auf die Anfangsspannung aufgeladen. In einem fünften Schritt wird der Mikrokontroller in den Stromsparmodus versetzt, d.h. es wird auch der Taktgenerator des Mikrokontrollers abgeschaltet. Wenn die Spannung am Kondensator von der Anfangsspannung bis auf den Spannungsschwellwert abgefallen ist, wird in einem sechsten Schritt ein Interrupt ausgelöst, und der Mikrokontroller aus dem Stromsparmodus aufgeweckt. Bei Bedarf kann in einem siebten Schritt ein Zeitzähler um den im dritten Schritt gespeicherten Betrag weitergezählt werden. Durch Wiederholen der Schritte vier bis sieben kann der Mikrokontroller auch mehrfach hintereinander für jeweils die Dauer eines Entladevorgangs des Kondensators des RC-Glieds in den Stromsparmodus versetzt werden, ohne daß er dadurch die Kenntnis über die währenddessen verstrichene Zeit verliert.
Bei einer besonders bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Mikrokontroller auf eine Weise betrieben, bei der die oben beschriebenen Verfahrensschritte miteinander kombiniert sind und mehrfach nacheinander ablaufen, wie nachfolgend beschrieben wird. Auf diese Weise können billige Mikrokontroller für Anwendungen eingesetzt werden, für die sie sonst aufgrund ihrer mangelnden Zeitstabilität oder ihres hohen Stromverbrauchs nicht einsetzbar gewesen wären.
Zunächst wird mit den Schritten eins bis drei des erfindungsgemäßen Verfahrens eine Zeitbasis gewonnen, indem nach Aufladen des Kondensators des RC-Glieds die Anzahl der Taktimpulse gezählt werden, bis die Spannung am Kondensator des RC-Glieds von der Anfangsspannung bis auf einen festgelegten Prozentsatz der Anfangsspannung abgefallen ist, d.h. es wird die entsprechende Anzahl von Taktimpulsen in einem vorzugsweise nichtflüchtigen Speicher gespeichert. Danach kann der Mikrokontroller in an sich bekannter Weise die Aufgaben durchführen, für die er vorgesehen ist. Nach einiger Zeit werden die Schritte eins bis drei wiederholt, um zwischenzeitlich möglicherweise aufgetretenen Schwankungen der Versorgungsspannung des Mikrokontrollers oder der Temperatur Rechnung zu tragen. Wenn der Mikrokontroller in seinen Stromsparmodus versetzt werden soll, wird erfindungsgemäß zunächst die Dauer bestimmt, während der der Mikrokontroller im Stromsparmodus verharren soll, d.h. es wird mit den Schritten eins bis drei des erfindungsgemäßen Verfahrens nach Aufladen des Kondensators des RC-Glieds die Anzahl der Taktimpulse gezählt, bis die Spannung am Kondensator des RC-Glieds von der Anfangsspannung bis auf den Spannungsschwellwert abgefallen ist, der im Stromsparmodus einen Interrupt auslösen würde, und die gezählte Anzahl der Taktimpulse in einem weiteren vorzugsweise nichtflüchtigen Speicher gespeichert. Die der Dauer eines Stromsparzyklusses entsprechende Anzahl von Taktimpulsen kann bei Bedarf mit der vorher ermittelten Zeitbasis in Beziehung gesetzt werden, beispielsweise kann ein Stromsparzyklus genau so lang sein wie die Zeitbasis oder einen bestimmten Prozentsatz der Zeitbasis andauern. Danach kann der Mikrokontroller entweder sofort die Schritte vier bis sechs oder vier bis sieben des erfindungsgemäßen Verfahrens durchlaufen, d.h. für einen Zyklus im Stromsparmodus verharren, oder zuerst noch die erforderlichen Aufgaben durchführen, für die er vorgesehen ist. Danach kann der Mikrokontroller erneut entweder sofort die Schritte vier bis sechs oder vier bis sieben des erfindungsgemäßen Verfahrens durchlaufen, d.h. für einen weiteren Zyklus im Stromsparmodus verharren, oder zuerst noch die erforderlichen Aufgaben durchführen, für die er vorgesehen ist.
Nach einer gewissen Zeit werden die Schritte eins bis drei wiederholt, d.h. es wird erneut die Zeitbasis gewonnen und/oder erneut die Dauer bestimmt, während der der Mikrokontroller im Stromsparmodus verharren soll, um zwischenzeitlich möglicherweise aufgetretenen Schwankungen der Versorgungsspannung des Mikrokontrollers oder der Temperatur Rechnung zu tragen.

Claims

Patentansprüche
1. Verfahren zum Erzeugen einer Zeitbasis für einen Mikrokontroller mit einem Taktgenerator für ein Taktsignal und einem RC-GIied mit einer bestimmten Zeitkonstante, dadurch gekennzeichnet, daß
- in einem ersten Schritt der Kondensator des RC-Glieds auf eine Anfangsspannung aufgeladen wird,
- in einem zweiten Schritt solange die Anzahl der Taktimpulse gezählt wird, bis die Spannung am Kondensator von der Anfangsspannung bis auf einen festgelegten Prozentsatz der Anfangsspannung oder einen Spannungsschwellwert abgefallen ist,
- in einem dritten Schritt die gezählte Anzahl der Taktimpulse als Zeitbasis verwendet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Spannungsschwellwert durch die Interrupt-Schaltschwelle des Mikrokontrollers bestimmt ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß
- in einem vierten Schritt der Kondensator des RC-Glieds auf eine Anfangsspannung aufgeladen wird,
- in einem fünften Schritt der Mikrokontroller solange in einen Stromsparmodus versetzt wird, bis die Spannung am Kondensator von der Anfangsspannung bis auf den Spannungsschwellwert abgefallen ist,
- in einem sechsten Schritt der Mikrokontroller den Stromsparmodus wieder verläßt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß
- in einem siebten Schritt ein Zeitzähler um einen Betrag weitergezählt wird, der der im dritten Schritt ermittelten Zeitbasis entspricht.
5. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Wiederholen der vorgenannten Verfahrensschritte.
6. Schaltungsanordnung zum Erzeugen einer Zeitbasis für einen Mikrokontroller mit einem internen Taktgenerator, dadurch gekennzeichnet, daß der Mikrokontroller mit einem externen RC-Glied verbunden ist.
7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß das RC-Glied an einem Anschluß des Mikrokontrollers angeschlossen ist, der sowohl als Ausgang als auch als Eingang verwendbar ist.
8. Schaltungsanordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der Kondensator des RC-Glieds vom Mikrokontroller aufladbar ist.
9. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spannung am Kondensator des RC-Glieds vom Mikrokontroller meßbar ist.
PCT/EP2006/002513 2005-04-20 2006-03-18 Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür WO2006111231A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008506944A JP2008537237A (ja) 2005-04-20 2006-03-18 マイクロコントローラの為のタイムベースと、その為の回路装置を生産する為の方法
CN2006800130244A CN101164234B (zh) 2005-04-20 2006-03-18 用于产生微控制器的时基的方法和为此使用的电路
US11/912,087 US7620512B2 (en) 2005-04-20 2006-03-18 Determining a time base for a microcontroller
EP06707608A EP1872475A1 (de) 2005-04-20 2006-03-18 Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005018518.5 2005-04-20
DE102005018518A DE102005018518A1 (de) 2005-04-20 2005-04-20 Verfahren zum Erzeugen einer Zeitbasis für einen Mikrokontroller und Schaltungsanordnung hierfür

Publications (1)

Publication Number Publication Date
WO2006111231A1 true WO2006111231A1 (de) 2006-10-26

Family

ID=36685886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002513 WO2006111231A1 (de) 2005-04-20 2006-03-18 Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür

Country Status (7)

Country Link
US (1) US7620512B2 (de)
EP (1) EP1872475A1 (de)
JP (1) JP2008537237A (de)
CN (1) CN101164234B (de)
DE (1) DE102005018518A1 (de)
RU (1) RU2007142653A (de)
WO (1) WO2006111231A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214139B4 (de) * 2016-08-01 2021-10-28 Continental Teves Ag & Co. Ohg Vorrichtung zur Zeitüberwachung und Fahrzeug-zu-X-Kommunikationsmodul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420998A1 (de) * 1994-06-17 1995-12-21 Diehl Gmbh & Co Schaltungseinrichtung zum genauen Messen eines elektrischen Widerstandes
US5702426A (en) * 1994-11-16 1997-12-30 Ela Medical S.A. Automatic adjustment of electrical signal parameters
DE19744893A1 (de) * 1996-11-13 1998-05-20 Hella Kg Hueck & Co Schaltungsanordnung zur Erzeugung eines pulsweitenmodulierten Signals
WO2004070937A2 (en) * 2003-02-07 2004-08-19 Philips Intellectual Property & Standards Gmbh System and method for calibrating the clock frequency of a clock generator unit over a data line

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE210775C (de)
US3747089A (en) * 1971-11-09 1973-07-17 K Sharples Analog to digital converter
US4349832A (en) * 1977-01-28 1982-09-14 Ampex Corporation Digital data rate corrector and time base corrector
DE2838969B2 (de) * 1978-09-07 1981-01-22 Nsm-Apparatebau Gmbh & Co Kg, 6530 Bingen Schaltkreis zur Steuerung der Frequenz eines einem MikroprozeBrechner zugeordneten Taktgenerators
DE2923026C2 (de) * 1979-06-07 1982-09-30 Centra-Bürkle GmbH & Co, 7036 Schönaich Verfahren zur Analog/Digital-Umsetzung und Anordnung zur Durchführung des Verfahrens
DD210775A1 (de) * 1982-10-08 1984-06-20 Wetron Weida Betrieb D Kom Veb Verfahren und schaltungsanordnung zur zeitlichen programmueberwachung von mikroprozessorgesteuerten einrichtungen
JPH0280829A (ja) * 1988-09-16 1990-03-20 Kayaba Ind Co Ltd ソレノイド内蔵型ダンパ
ATE156949T1 (de) * 1989-10-31 1997-08-15 Saia Burgess Electronics Ag Zeitrelais
ZA919656B (en) * 1990-12-28 1992-09-30 Westinghouse Electric Corp Voltage controlled power supply
JP3030878B2 (ja) * 1991-01-28 2000-04-10 松下電器産業株式会社 長時間タイマ
DE4116961A1 (de) * 1991-05-24 1992-11-26 Abb Patent Gmbh Messschaltung zur messung einer kapazitaet
US5238184A (en) * 1991-09-30 1993-08-24 Honeywell Inc. Thermostat having simple battery level detection
JP2698260B2 (ja) * 1991-11-27 1998-01-19 三洋電機株式会社 ウオッチドッグタイマ装置
US5469364A (en) * 1993-03-15 1995-11-21 Hughey; Bradley W. Apparatus and methods for measuring and detecting variations in the value of a capacitor
JPH08272768A (ja) * 1995-03-30 1996-10-18 Sanyo Electric Co Ltd マイクロコンピュータのスタンバイ時間調整装置
US5825648A (en) * 1996-03-26 1998-10-20 Casio Phonemate, Inc. Backup system for a time of day clock in an electronic device
JP2000268019A (ja) * 1999-03-16 2000-09-29 Hitachi Ltd 不揮発性メモリ回路を内蔵した半導体集積回路
JP2004046535A (ja) * 2002-07-11 2004-02-12 Toshiba Corp マイクロコントローラ
DE10260244A1 (de) * 2002-12-20 2004-07-15 Siemens Ag Verfahren zur Zeitmessung, insbesondere in einem Steuergerät eines Kraftfahrzeugs, und entsprechendes Steuergerät
DE10329856A1 (de) * 2003-07-02 2005-02-03 Micronas Gmbh Verfahren und Vorrichtung zur Ermittlung des Verhältnisses zwischen einer RC-Zeitkonstante in einer integrierten Schaltung und einem Sollwert
DE102006005778A1 (de) * 2006-02-03 2007-08-16 Atmel Germany Gmbh Verfahren und Schaltung zum Ableichen eines RC-Gliedes
US20080191794A1 (en) * 2007-02-08 2008-08-14 Mediatek Inc. Method and apparatus for tuning an active filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420998A1 (de) * 1994-06-17 1995-12-21 Diehl Gmbh & Co Schaltungseinrichtung zum genauen Messen eines elektrischen Widerstandes
US5702426A (en) * 1994-11-16 1997-12-30 Ela Medical S.A. Automatic adjustment of electrical signal parameters
DE19744893A1 (de) * 1996-11-13 1998-05-20 Hella Kg Hueck & Co Schaltungsanordnung zur Erzeugung eines pulsweitenmodulierten Signals
WO2004070937A2 (en) * 2003-02-07 2004-08-19 Philips Intellectual Property & Standards Gmbh System and method for calibrating the clock frequency of a clock generator unit over a data line

Also Published As

Publication number Publication date
RU2007142653A (ru) 2009-05-27
DE102005018518A1 (de) 2006-10-26
US7620512B2 (en) 2009-11-17
JP2008537237A (ja) 2008-09-11
EP1872475A1 (de) 2008-01-02
CN101164234B (zh) 2010-09-29
US20080186073A1 (en) 2008-08-07
CN101164234A (zh) 2008-04-16

Similar Documents

Publication Publication Date Title
DE3040326C1 (de) Mikroprozessor mit Ruecksetz-Schaltanordnung
DE102005057980B4 (de) Halbleiterschaltung
EP0135121B1 (de) Schaltungsanordnung zum Erzeugen von Rechtecksignalen
DE2616678B2 (de) Oszillatorschaltung
DE10356259B4 (de) Verfahren und Schaltungsanordnung zum Vergrößern einer Funktionsreichweite bei einer aus einem elektromagnetischen Feld mit Energie versorgten Vorrichtung
EP0149277B1 (de) Monolithisch integrierter RC-Oszillator
EP0806713A1 (de) Steuerschaltung mit nachstimmbarem Standby-Oszillator
DE3440538C1 (de) Annäherungsschalter
DE2952156C2 (de)
EP2622358A1 (de) Verfahren und anordnung zur frequenzbestimmung
DE10223996A1 (de) Referenzspannungsschaltung und Verfahren zum Erzeugen einer Referenzspannung
EP1494038B1 (de) Verfahren und Vorrichtung zur Ermittlung des Verhältnisses zwischen einer RC-Zeitkonstanten in einer integrierten Schaltung und einem Sollwert
WO2006111231A1 (de) Verfahren zum erzeugen einer zeitbasis für einen mikrokontroller und schaltungsanordnung hierfür
DE102009042647B4 (de) Elektronische Schaltung für Zeitgeberanwendungen kleinster Leistungsaufnahme und Verfahren zur Kalibrierung und zum Betreiben derselben
DE4041696C1 (en) Charge state monitor for power source of electronic timepiece - has output voltage measurer connected to counter for lower and upper thresholds
EP3624341B1 (de) Pulsgeber
EP2657713B1 (de) Vorrichtung und Verfahren zur Bestimmung einer Messkapazität
DE3714630A1 (de) Vorrichtung zur ueberwachung elektronischer geraete
DE3106869A1 (de) Schaltung zur aufloesung der rueckstellung eins mikroprozessors
DE2658297B2 (de) Elektronische Uhr
DE19626869C2 (de) Schaltungsanordnung mit mindestens einem digitalen Schaltkreis und einem Überwachungsschaltkreis
WO2018006969A1 (de) Verfahren zum betreiben eines elektrischen geräts, elektrisches gerät und sensor-/aktor-system
DE19717811B4 (de) Überwachungsschaltung für eine Versorgungsspannung
DE3314928A1 (de) Elektronische schaltung zur blindleistungskompensation
DE3408961C2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006707608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680013024.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11912087

Country of ref document: US

Ref document number: 2008506944

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007142653

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006707608

Country of ref document: EP