WO2006108469A1 - Verfahren zur aufbereitung von kondensaten aus der polykondensation - Google Patents

Verfahren zur aufbereitung von kondensaten aus der polykondensation Download PDF

Info

Publication number
WO2006108469A1
WO2006108469A1 PCT/EP2006/001772 EP2006001772W WO2006108469A1 WO 2006108469 A1 WO2006108469 A1 WO 2006108469A1 EP 2006001772 W EP2006001772 W EP 2006001772W WO 2006108469 A1 WO2006108469 A1 WO 2006108469A1
Authority
WO
WIPO (PCT)
Prior art keywords
products
condenser
pressure
condensates
vapors
Prior art date
Application number
PCT/EP2006/001772
Other languages
English (en)
French (fr)
Inventor
Rudolf KÄMPF
Andreas Karpf
Rainer Linke
Oliver Schmidt
Gerald Scholz
Original Assignee
Lurgi Zimmer Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi Zimmer Gmbh filed Critical Lurgi Zimmer Gmbh
Priority to JP2008505746A priority Critical patent/JP2008535980A/ja
Priority to US11/918,636 priority patent/US20090114523A1/en
Priority to EP06707287A priority patent/EP1869102A1/de
Publication of WO2006108469A1 publication Critical patent/WO2006108469A1/de
Priority to US12/268,516 priority patent/US8029079B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/148Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step in combination with at least one evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings

Definitions

  • the invention relates to a process for the preparation of vapors and condensates which are formed in the production of polycondensates from bisphenols or higher-value phenols by esterification and / or transesterification with alkyl and / or aryl esters of at least divalent organic or inorganic acids.
  • the degradation and rearrangement products formed during the reaction contaminate the monomers and oligomers also contained in the vapors and make it impossible to return the monomers and oligomers unpurified to the polycondensation process, if they are not discolored, they do not meet the rheological and mechanical quality requirements should be generated.
  • the decomposition products formed during the polycondensation such as phenols, alcohols and water, are so contaminated by the degradation and rearrangement products mentioned that they cannot be reused easily.
  • a reuse of the phenols contained in the vapors is disturbed by the reaction products formed during thermal degradation. It is therefore the task of developing a process for the preparation of vapors and condensates, which are produced in the production of the above-mentioned polycondensates, by means of which it is possible, on the one hand, to recover the monomers carried along and those of the polycondensation again and, on the other hand, to present the cleavage products, especially the phenol, produced during the polycondensation in such a way that they can be used again for further reactions without the product quality deteriorating.
  • a process has now been found for the preparation of vapors and condensates which arise in the production of polycondensates from bisphenols or higher-quality phenols by esterification or transesterification with alkyl or aryl esters of at least divalent organic or inorganic acids, in which the preparation is carried out in several, gradually connected condensers and / or distillation columns with connected condensers, the dew point and the pressure being set in each condenser so that the respective monomers, oligomers or degradation and rearrangement products are separated in the individual stages.
  • This process enables recyclable materials to be returned to the process, is particularly economical and cost-effective, avoids environmental pollution caused by chemicals and uses the by-products that are inevitably generated to generate energy.
  • This method can be applied particularly well to the regeneration of phenol-containing vapors and condensates and to the recovery of monomers, as used, for example, in the production of polycarbonates, polyarylates or in the melt-phase polycondensation of polymers and copolymers, such as polyethylene, polypropylene or Polybutylene terephthalate with diphenols and bisphenols or polyhydric phenols are produced by esterification or transesterification with alkyl or aryl esters of organic or inorganic, at least dibasic acids and / or the acids themselves.
  • polycondensates are known as engineering plastics with excellent properties and special fields of application. They are produced either by interfacial polycondensation as in the case of the polycarbonate or by melt polycondensation in the direct polycondensation process from dicarboxylic acids or dialcohols or diphenols or by transesterification processes from the corresponding acid esters.
  • aromatic dihydroxy compounds for example bis (4-hydroxyphenyl) alkanes, in particular bisphenol A
  • diphenyl carbonate or terephthalic acid diphenolate in the presence of catalysts with the elimination of phenols, oligomerized and finally polymerized in several stages as the vacuum progresses .
  • catalysts with the elimination of phenols, oligomerized and finally polymerized in several stages as the vacuum progresses .
  • the international patent application WO 02/44244 describes a process by which polycarbonates are produced by reacting a monomeric carbonate component with at least one diphenol or dialcohol in the presence of a transesterification catalyst, the molten components being stirred with the transesterification catalyst and mixed in Produces product, which is polycondensed.
  • the transesterification product is passed through a prereactor, at least one intermediate reactor and an end reactor, the reactors being connected in series and having an essentially horizontally driven shaft with stirring elements attached to it.
  • the monomers diphenyl carbonate 1 and bisphenol A 2 introduced into the reactor 4 are reacted with one another in the presence of a catalyst 3, the cleavage products 5, especially phenol, being obtained in large quantities at the start of the reaction even at low temperature and high pressure.
  • the resulting distillate is passed into the condenser 6, its temperature is kept above the dew point of the cleavage products and that of the monomers 1 and 2, for example at a temperature above 200 ° C. and at 400 mbar.
  • the high-boiling products 7 of the side reactions, such as spiroidans and indanes, contained in the vapors 5 of the first stage can thus be separated off.
  • the further vapors then pass through the rectification column 8, in which the lowest-boiling cleavage products are driven off overhead, but the monomers 1 and 2 are drawn off on different trays and returned to the first reaction stage 4.
  • the low-boiling fission product 10 is deposited in a condenser 11 and fed to a collecting container 28.
  • the condensates occurring in the condenser 29 during the compression 12 go into the collecting container 27.
  • the amount of low-boiling cleavage products 15 is already lower.
  • more stringent measures such as higher temperature and lower pressure as in stage 1 are necessary to drive the reaction or chain growth forward, for example 270 to 300 ° C. and 100 hPa - 10 hPa Due to the higher thermal load, the products from side reactions appear increasingly in the vapor gas stream 16, consequently the amount of these product species which is produced in the condenser 6 'is also greater than in the previous stage 4.
  • the condensate 7 obtained in 6 1 goes into the collecting container 24.
  • the amount of monomers 1, 2 in the cleavage products has become so small that a separation is no longer worthwhile and everything is deposited in the condenser 8 '. is before the lowest boiling vapors are compressed in the compressor 16.
  • the vapors from the compression 16 deposited on the condenser 17 are combined with the stream 10 and fed to the collecting container 28.
  • the condensate 9 is fed into the rectification 8 in order to increase the yield of monomers 1, 2 and cleavage products 10.
  • the smallest amount of cleavage products 20 occurs in the third reaction section (reactor 19, fed with product 18 from reactor 14).
  • the harshest measures such as the highest temperature and the lowest pressure, are necessary to drive the reaction or chain growth, for example 280 to 35O 0 C and 10 hPa to 0.1 hPa. Due to the strong thermal The products of the side reactions take up a large portion of the load in the vapor gas stream 20, consequently the amount which accumulates in the condenser 6 "is also considerably higher than in the previous stages. The condensate 7 obtained in 6" goes into the collecting container 24.
  • the amount of monomers 1 and 2 in the cleavage products has become so small that a separation is no longer worthwhile and everything is therefore deposited in the condenser 8 ".
  • the vapors from the compression 21 deposited on the condenser 22 are fed to the collecting container 26 as compressor condensate 22 Remaining of the condensate 9 'is decided after an analysis in the quality control (QC) whether it is still in the rectification ion 8 can be fed in to increase the yield of monomers 1 and 2 and cleavage products 10, or is fed to the collecting container 25 for separate treatment according to FIG. 2.
  • the products collected in the collecting containers 24 to 28 are the result of a coarse fractionation or pre-fractionation by selective choice of the reaction and / or condensation conditions. They represent the first stage of an overall process that leads to optimal and economical use of the monomers and of cleavage products.
  • the product from the collecting container 24 has a high concentration of by-products, such as, for example, trisphenols, polymeric isopropenylphenols, dihydroxyindanes, dihydroxyspirobisindanes, alkyldistilboestrols and polyhyroxyarylene only requires a little effort to obtain recyclable products such as the monomers or the cleavage product.
  • a fraction of the monomers 1 and 2 is obtained on the lower trays, which after passing through a quality control (QC) either directly after purification by crystallization 41, 43 and / or zone melting process 42, 44 as pure monomer 1 and / or 2 first stage with reactor 4 are fed again.
  • the bottom of stage 34 contains only high boilers that go to incineration 32.
  • the product 35 escaping at the top of the column 34 is rich in low-boiling cleavage products and occurs in the middle part of the column 36, into which the main part of the cleavage product from the collection containers 27 and 28 is also introduced.
  • the pure cleavage product 37 leaving overhead is obtained, which after condensation 39 via the reflux tank 40 and quality control (QC) is either fed back to the column 36 or is used as the end product 45 for further use, for example for the production of acid esters or bisphenol A with acetone .
  • the recovered product 45 meets the quality criteria of a product from the monomer synthesis.
  • the quality control (QC) decides whether the bottom product 38 remains, which it either reassigns to column 34 or to incineration 32 as waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Closing And Opening Devices For Wings, And Checks For Wings (AREA)

Abstract

Es wird ein Verfahren zur Aufbereitung von Brüden und Kondensaten, die bei der Herstellung von Polykondensaten aus Bisphenolen oder höherwertigen Phenolen durch Veresterung und/oder Umesterung mit Alkyl- oder Arylestern von mindestens zweiwertigen organischen oder anorganischen Säuren entstehen, beschrieben, bei dem die Aufbereitung in mehreren stufenweise hintereinander geschalteten Kondensatoren und/oder Destillationskolonnen mit jeweils angeschlossenen Kondensatoren , erfolgt, wobei in jedem Kondensator der Taupunkt und der Druck so eingestellt werden, dass in jeder Stufe spezifische Monomere, Oligomere oder Abbau- und Umlagerungsprodukte abgetrennt werden.

Description

Verfahren zur Aufbereitung von Kondensaten aus der Polykondensation
Gegenstand der Erfindung ist ein Verfahren zur Aufbereitung von Brüden und Kondensaten, die bei der Herstellung von Polykondensaten aus Bisphenolen oder höherwertigen Phenolen durch Veresterung und/oder Umesterung mit Al- kyl- und/oder Arylestem von mindestens zweiwertigen organischen oder anorganischen Säuren entstehen.
Es ist bekannt, dass durch Veresterung und/oder Umesterung von Alkyl- oder Arylestem organischer oder anorganischer, mindestens zweiwertiger Säuren mit Bisphenolen und anschließende Grenzflächenpolykondensation oder Schmelzepolykondensation Polycarbonate, Polyarylate sowie Copolymere des Polyethylen-, Polypropylen- oder Polybutylenterephthalats hergestellt werden können. Diese Polykondensate sind als technische Kunststoffe für ihre hervorragenden Eigenschaften bekannt. Die bei der Kondensation frei werdenden Dämpfe oder Brüden enthalten neben dem hauptsächlichen Spaltprodukt aus der Umesterung oder Veresterung, das vorzugsweise Phenol ist, noch Mono- mere, Oligomere oder Produkte, die durch thermischen Abbau oder Umlagerungen entstanden sind. Die bei der Reaktion entstandenen Abbau- und UmIa- gerungsprodukte verunreinigen die in den Brüden ebenfalls noch enthaltenen Monomere und Oligomere und machen es unmöglich, die Monomere und Oligomere ungereinigt wieder in das Polykondensationsverfahren zurückzuführen, wenn nicht verfärbte, den rheologischen und mechanischen Qualitätsanforderungen nicht genügende Produkte erzeugt werden sollen. Auch die bei der Polykondensation entstehenden Spaltprodukte wie Phenole, Alkohole und Wasser sind durch die genannten Abbau- und Umlagerungsprodukte so verunreinigt, dass sie nicht ohne weiteres wieder verwendet werden können. Eine Wieder- Verwendung der in den Brüden enthaltenen Phenole, zum Beispiel für die Herstellung von Bisphenol A, Diphenylcarbonat, Triphenylborat oder für jeden anderen Phenylester einer organischen oder anorganischen Säure wird durch die beim thermischen Abbau entstandenen Reaktionsprodukte gestört. Es hat sich deshalb die Aufgabe gestellt, ein Verfahren zur Aufbereitung von Brüden und Kondensaten, die bei der Herstellung der vorstehend genannten Polykondensate entstehen, zu entwickeln, durch das es möglich wird, einerseits die mitgeführten Monomere zurück zu gewinnen und diese der Polykondensati- on wieder zuzuführen und andererseits die bei der Polykondensation entstandenen Spaltprodukte, vor allem das Phenol, so rein darzustellen, dass es für weitere Umsetzungen wieder brauchbar ist, ohne dass sich die Produktqualität verschlechtert.
Es wurde nun ein Verfahren zur Aufbereitung von Brüden und Kondensaten, die bei der Herstellung von Polykondensaten aus Bisphenolen oder höherwertigen Phenolen durch Veresterung oder Umesterung mit Alkyl- oder Arylestem von mindestens zweiwertigen organischen oder anorganischen Säuren entstehen, gefunden, bei dem die Aufbereitung in mehreren, stufenweise hintereinander geschalteten Kondensatoren und/oder Destillationskolonnen mit jeweils angeschlossenen Kondensatoren erfolgt, wobei in jedem Kondensator der Taupunkt und der Druck so eingestellt werden, dass in den einzelnen Stufen die jeweiligen Monomeren, Oligomeren oder Abbau- und Umlagerungsprodukte abgetrennt werden.
Dieses Verfahren ermöglicht die Rückführung von Wertstoffen in den Prozess, ist besonders wirtschaftlich und kostengünstig, vermeidet Umweltbelastungen durch Chemikalien und nutzt die zwangsläufig entstehenden Nebenprodukte zur Erzeugung von Energie. Besonders gut lässt sich dieses Verfahren auf die Regeneration von phenolhaltigen Brüden und Kondensaten und auf die Wiedergewinnung von Monomeren anwenden, wie sie beispielsweise bei der Herstellung von Polycarbonaten, Polyarylaten oder bei der Schmelzphasenpoly- kondensation von Polymeren und Copolymeren, wie Polyethylen-, Polypropylen- oder Polybutylenterephthalat mit Diphenolen und Bisphenolen oder mehr- wertigen Phenolen durch Veresterung oder Umesterung mit Alkyl- oder Aryles- tern organischer oder anorganischer, mindestens zweiwertiger Säuren und/oder den Säuren selbst entstehen. Die vorstehend genannten Polykondensate sind als technische Kunststoffe mit hervorragenden Eigenschaften und speziellen Einsatzgebieten bekannt. Ihre Herstellung erfolgt entweder durch die Grenzflächenpolykondensation wie im Fall des Polycarbonats oder mittels der Schmelzepolykondensation im direkten Polykondensationsverfahren aus Dicarbonsäuren oder Dialkoholen oder Diphe- nolen oder durch Umesterungsverfahren aus den entsprechenden Säureestern. Bei der Schmelzekondensation zur Herstellung von Polycarbonaten und Polya- rylaten werden aromatische Dihydroxyverbindungen, beispielsweise Bis(4- hydroxyphenyl)alkane, insbesondere Bisphenol A, mit Diphenylcarbonat oder Terephthalsäurediphenolat in Gegenwart von Katalysatoren unter Abspaltung von Phenolen umgeestert, oligomerisiert und schließlich mehrstufig bei fortschreitendem Vakuum polymerisiert. Derartige Verfahren sind in den deutschen Patentschriften DE-B-1 495 730 und DE-C-2 334 852 beschrieben. Außerdem ist in der internationalen Patentanmeldung WO 02/44244 ein Verfahren be- schrieben, mit dem Polycarbonate durch Umsetzung einer monomeren Carbo- natkomponente mit mindestens einem Diphenol oder Dialkohol in Gegenwart eines Umesterungskatalysators erzeugt werden, wobei man die geschmolzenen Komponenten mit dem Umesterungskatalysator verrührt und ein Produkt erzeugt, welches man polykondensiert. Zur Polykondensation leitet man das Umesterungsprodukt durch einen Vorreaktor, mindestens einen Zwischenreaktor und einen Endreaktor, wobei die Reaktoren in Serie geschaltet sind und eine im Wesentlichen horizontal angetriebenen Welle mit daran befestigten Rührelemente aufweisen. Man sorgt dafür, dass man im Vorreaktor und im Endreaktor eine Schmelzeverweilzeit von 5 Minuten bis 2 Stunden einhält, dass man die Temperaturen im Vorreaktor im Bereich von 220 bis 3000C hält und dass man den Druck im Vorreaktor im Bereich von 100 bis 800 mbar und im Endreaktor im Bereich von 0,1 bis 50 mbar hält.
Wendet man nun die Betriebsbedingungen und die Verfahrensstufen der WO 02/44244 auf die Produktion von Polycarbonaten, Polyarylaten und anderen Polymeren oder Copolymeren an, die aus Bisphenol A oder anderen mehrwertigen Phenolen mit mindestens zweiwertigen Säuren oder deren phenolhaltigen Estern hergestellt worden sind, dann entstehen je nach Verweilzeit, Katalysator, Druck und Temperatur unterschiedliche phenolhaltige Dampf- und Kondensatzusammensetzungen. So treten beispielsweise in einer ersten Stufe hauptsächlich Spaltprodukte aus der Veresterung oder Umesterung auf wie Wasser, Phenole oder Alkohole, die noch geringe Anteile an den anderen, das Polymer bil- denden Monomeren enthalten. Neben den üblichen Spaltprodukten kann es dabei in Abhängigkeit von den gewählten Reaktionsbedingungen auch zu Umlagerungen und Nebenreaktionen der Monomerverbindungen, hauptsächlich der mehrwertigen Phenole und speziell der Bisphenole, kommen.
So ist beispielsweise aus der US-Patentschrift 4 294 994 bekannt, dass es bei der Einwirkung von Säuren auf Bisphenol A zur Bildung von Isopropenylphenol und dessen Polymeren, zu Dihydroxyindanen, zu Dihydroxyspirobisindanen, Alkyldistilboestrolen, Trishydroxyphenylen und Polyhydroxyarylen kommt. Diese Nebenprodukte weisen aufgrund ihres hohen Molekulargewichts hohe Schmelz- und Siedepunkte auf und entweichen erst bei schärfsten Reaktionsbedingungen, d.h. bei hohen Temperaturen und geringem Druck. Sie verursachen u. a. Verfärbungen und Vernetzungen im Polykondensat und stören den Molekülaufbau. Andere Substanzen, wie zum Beispiel die Monomeren, weisen auch hohe Siedepunkte auf, diese liegen aber bei den für die Herstellung von technischen Kunststoffen eingesetzten Rohstoffen weit unterhalb denen der vorstehend beschriebenen Nebenreaktionsprodukten, so dass sie sich durch fraktionierende Verfahren sowohl von den Hochsiedern als auch von den Niedrigsiedern abtrennen lassen.
Das erfindungsgemäße Verfahren wird nun am Beispiel der Umsetzung von Diphenylcarbonat mit Bisphenol A in Gegenwart eines für diese Reaktion bekannten Katalysators gemäß Fig. 1 und Fig. 2 näher erläutert.
Die in den Reaktor 4 eingeführten Monomeren Diphenylcarbonat 1 und Bisphe- nol A 2 werden in Gegenwart eines Katalysators 3 miteinander umgesetzt, wobei die Spaltprodukte 5, vor allem Phenol, zu Beginn der Reaktion schon bei niederer Temperatur und hohem Druck in großer Menge anfallen. Das hierbei entstehende Destillat wird in den Kondensator 6 geleitet, dessen Temperatur über dem Taupunkt der Spaltprodukte und dem der Monomere 1 und 2 gehalten wird, beispielsweise bei einer Temperatur über 2000C und bei 400 mbar. Damit können die in den Brüden 5 der ersten Stufe enthaltenen hoch siedenden Produkte 7 der Nebenreaktionen wie Spiroidane und Indane abgetrennt wer- den. Die weitergehenden Dämpfe passieren dann die Rektifikationskolonne 8, in der die am niedrigsten siedenden Spaltprodukte über Kopf abgetrieben, die Monomeren 1 und 2 jedoch auf unterschiedlichen Böden abgezogen und zur ersten Reaktionsstufe 4 wieder zurückgeführt werden.
Das im Sumpf der Kolonne 8 anfallende Produkt mit Hochsiedern 30, die im Wesentlichen den Produkten der Nebenreaktion entsprechen, wird mit dem Ablauf 7 der ersten Kondensation vereinigt und einem Sammelbehälter 24 zugeführt.
Das niedrig siedende Spaltprodukt 10 wird in einem Kondensator 11 niedergeschlagen und einem Sammelbehälter 28 zugeführt. Die erste Verdichterstufe 12, die wie in der Fig. 1 angedeutet aus einem mechanischen Gebläse 12, aber auch einem Dampfstrahler bestehen kann, hat die Aufgabe, den notwendigen Unterdruck zu erzeugen. Die während der Verdichtung 12 im Kondensator 29 anfallenden Kondensate gehen in den Sammelbehälter 27.
Im zweiten Reaktionsabschnitt (Reaktor 14, gespeist mit Produkt 13 aus Reaktor 4) fällt die Menge an niedrig siedenden Spaltprodukten 15 schon geringer aus. In dieser Stufe 14 sind aber wegen der höheren Produktzähigkeit bereits schärfere Maßnahmen, wie höhere Temperatur und niedrigerer Druck wie in Stufe 1 notwendig, um die Reaktion bzw. das Kettenwachstum voran zu treiben, so beispielsweise 270 bis 3000C und 100 hPa - 10 hPa. Durch die höhere thermische Belastung treten die Produkte aus Nebenreaktionen verstärkt im Brüdengasstrom 16 in Erscheinung, folglich ist die Menge dieser Produktspe- zies, die im Kondensator 6' anfällt auch größer, als in der vorherigen Stufe 4. Das in 61 anfallende Kondensat 7 geht in den Sammelbehälter 24. Die Menge an Monomeren 1 , 2 in den Spaltprodukten ist so gering geworden, dass eine Auftrennung nicht mehr lohnend ist und im Kondensator 8' alles niedergeschla- gen wird, bevor die am niedrigsten siedenden Dämpfe im Verdichter 16 komprimiert werden. Die am Kondensator 17 niedergeschlagenen Dämpfe aus der Kompression 16 werden mit dem Strom 10 vereinigt und dem Sammelbehälter 28 zugeführt. Das Kondensat 9 wird in die Rektifikation 8 eingespeist, um die Ausbeute an Monomeren 1 , 2 und Spaltprodukten 10 zu steigern.
Im dritten Reaktionsabschnitt (Reaktor 19, gespeist mit Produkt 18 aus Reaktor 14) fällt die geringste Menge an Spaltprodukten 20 an. Hier sind aber wegen der höchsten Produktzähigkeit bereits schärfste Maßnahmen, wie höchste Temperatur und niedrigster Druck notwendig, um die Reaktion bzw. das Kettenwachstum voran zu treiben, so beispielsweise 280 bis 35O0C und 10 hPa bis 0,1 hPa. Durch die starke thermische Belastung nehmen die Produkte der Nebenreaktionen einen großen Anteil im Brüdengasstrom 20 in Anspruch, folglich ist die Menge, die im Kondensator 6" anfällt auch wesentlich höher als in den vorherigen Stufen. Das in 6" anfallende Kondensat 7 geht in den Sammelbehälter 24. Die Menge an Monomeren 1 und 2 in den Spaltprodukten ist so gering geworden, dass eine Auftrennung nicht mehr lohnt und deshalb im Kondensator 8" alles niedergeschlagen wird. Die am Kondensator 22 niedergeschlagenen Dämpfe aus der Kompression 21 werden als Verdichterkondensat 22 dem Sammelbehälter 26 zugeführt. Über den Verbleib des Kondensates 9' wird nach einer Analyse in der Qualitätskontrolle (QC) entschieden, ob es noch in die Rektifikation 8 eingespeist werden kann, um die Ausbeute an Monomeren 1 und 2 und Spaltprodukten 10 zu steigern, oder dem Sammelbehälter 25 zur gesonderten Behandlung nach Fig. 2 zugeführt wird.
Die in den Sammelbehältern 24 bis 28 aufgefangenen Produkte sind das Ergebnis einer Grobfraktionierung oder Vorfraktionierung durch selektive Wahl der Reaktions- und/oder Kondensationsbedingungen. Sie stellen die erste Stufe eines Gesamtverfahrens dar, das zu einer optimalen und wirtschaftlichen Nut- zung der Monomeren und von Spaltprodukten führt. Das Produkt aus Sammelbehälter 24 weist eine hohe Konzentration an Nebenprodukten, wie beispielsweise Trisphenolen, polymeren Isopropenylphenolen, Dihydroxyindanen, Di- hydroxyspirobisindanen, Alkyldistilboestrolen und Polyhdroxyarylen aus und es bedarf nur noch eines geringen Aufwandes zur Gewinnung von wieder verwertbaren Produkten wie den Monomeren oder dem Spaltprodukt. Man erreicht dies, indem man zur Erhöhung der Ausbeute an Monomeren und Spaltprodukten nochmals rektifiziert (31 ), bevor man das hoch siedende und verfärbte Sumpfprodukt 32 einer thermischen Verwertung unterzieht. Oder anderweitg entsorgt. Der Gehalt an Monomeren 1 und 2 und an niedrig siedendem Spaltprodukt 10 liegt im ausgehenden Produkt 32 unter 1 Massen %.
Die über Kopf abgehenden, wertstoffhaltigen Dämpfe 33 gehen zur Rektifikation 34, wo sie mit dem Produkt 9 und/oder 9', das aus der im Sammelbehälter 25 aufgefangenen mittleren Fraktion stammt, rektifiziert werden. Hierbei wird auf den unteren Böden je eine Fraktion der Monomeren 1 und 2 gewonnen, die nach Passieren einer Qualitätskontrolle (QC) entweder direkt nach einer Reinigung durch Kristallisation 41 , 43 und/oder Zonenschmelzverfahren 42, 44 als reines Monomer 1 und/oder 2 der ersten Stufe mit Reaktor 4 wieder zugeführt werden. Der Sumpf der Stufe 34 enthält nur noch Hochsieder, die zur Verbrennung 32 gehen.
Das über Kopf der Kolonne 34 entweichende Produkt 35 ist reich an niedrig siedenden Spaltprodukten und tritt im Mittelteil der Kolonne 36 ein, in den auch der Hauptteil des Spaltproduktes aus den Sammelbehältern 27 und 28 eingebracht wird. Gewonnen wird das über Kopf abgehende reine Spaltprodukt 37, das nach Kondensation 39 über den Rücklaufbehälter 40 und die Qualitätskontrolle (QC) entweder der Kolonne 36 wieder zugeführt oder als Endprodukt 45 zur weiteren Verwertung beispielsweise zur Herstellung von Säureestern oder von Bisphenol A mit Aceton benutzt wird. Das zurückgewonnene Produkt 45 erfüllt die Qualitätskriterien eines Produktes aus der Monomer-Synthese. Über den Verbleib des Sumpfproduktes 38 entscheidet die Qualitätskontrolle (QC), die es entweder der Kolonne 34 wieder zuordnet oder der Verbrennung 32 als Abfall. Bezugszeichenliste:
1 Monomer A Diphenylcarbonat
2 Monomer B Bisphenol A
3 Katalysator
4 erste Reaktorstufe (erste Umsetzung der Monomere)
5 Dämpfe (Spaltprodukte, Oligomere, Monomere) 6 Schwersiederkondensation erste Stufe
6' Schwersiederkondensation zweite Stufe
6" Schwersiederkondensation dritte Stufe
7 Kondensat (höchste Siedepunkte)
8 Rektifikation erste Stufe 8' Kondensation zweite Stufe
8" Kondensation dritte Stufe 9 Mittlere Kondensatfraktion
9' Mittlere Kondensatfraktion, nicht geeignet für die Rückführung nach 8
10 Kondensat (niedrigster Siedepunkt), Spaltproduktkondensat aus Mono- mer A und/oder Monomer B
11 Kondensator
12 Verdichter (1. Druckstufe, höchster Druck)
13 Produkt niedriger Kettenlänge (1 bis 10)
14 zweite Reaktorstufe (Vorkondensation, mittlere Kettenlänge) 15 Dämpfe (Spaltprodukte, Oligomere, Monomere)
16 Verdichter (2. Druckstufe, verminderter Druck)
17 Gaskühler/Verdichter-Kondensator
18 Produkt mittlerer Kettenlänge (5 bis 50)
19 dritte Reaktorstufe (Polykondensation, große Kettenlänge) 20 Dämpfe (Spaltprodukte, Oligomere, Monomere)
21 Verdichter (3. Druckstufe, geringster Druck)
22 Gaskühler/Verdichter-Kondensator
23 Endprodukt Kettenlänge (50 bis 300) 24 Sammelbehälter Kondensat Höchstsieder
25 Sammelbehälter Kondensat Hochsieder
26 Sammelbehälter Verdichterkondensat, geringster Druck
27 Sammelbehälter Verdichterkondensat, höchster Druck 28 Kondensatsammelbehälter Verdichterkondensat, 1. Verdichterstufe
29 Kondensator, 1. Verdichterstufe
30 Sumpfprodukt Rektifikation
31 Ausdampfer für Produkte mit höchstem Siedepunkt
32 Abfall zur Verbrennung 33 Verdampfungsprodukt
34 Rektifikation für Produkte mit mittlerem Siedepunkt
35 Verdampfungsprodukt
36 Spaltproduktrektifikation
37 reines Spaltprodukt zur weiteren Verarbeitung 38 Sumpfprodukt, nach Analyse Abfall 32 oder zurück zu 34
39 Spaltproduktkühler
40 Sammelbehälter Spaltprodukte
41 Fraktionierende Kristallisation Monomer 1
42 Zonenschmelze Reinigungsverfahren Monomer 1 43 Fraktionierende Kristallisation Monomer 2
44 Zonenschmelze Reinigungsverfahren Monomer 2
45 reines Spaltprodukt zur weiteren Umsetzung
QC Analysenstelle, Qualitätskontrolle und Verzweigung

Claims

Patentansprüche:
1. Verfahren zur Aufbereitung von Dämpfen und Kondensaten, die bei der Herstellung von Polykondensaten aus Bisphenolen oder höherwertigen Phenolen durch Veresterung von Säuren und/oder Umesterung mit Alkyl- oder Aryles- tern von mindestens zweiwertigen organischen oder anorganischen Säuren entstehen, dadurch gekennzeichnet, dass die Aufbereitung zuerst in mehre- ren stufenweise hintereinander geschalteten Kondensationsschritten und anschließend durch Destillation erfolgt, wobei in jedem Kondensator der Taupunkt und der Druck so eingestellt werden, dass in jeder Stufe spezifische Monomere, Oligomere oder Abbau- und Umlagerungsprodukte abgetrennt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es zur Aufbereitung von Dämpfen und Kondensaten eingesetzt wird, die bei der Herstellung von auf Diphenolen, Bisphenolen und/oder Phenylestern basierenden Polymeren und/oder Copolymeren entstehen,
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass für die Kondensation des in einem Aufbereitungsschritt gewonnenen Destillats der Taupunkt, die Temperatur und der Druck so gewählt werden, dass in mindestens einem Kondensator überwiegend die bei der Veresterung und/oder Umesterung entstandenen Spaltprodukte und/oder die Monomeren abgeschie- den und in einem besonderen Sammelbehälter aufgefangen werden.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass für die Kondensation des in einem Aufbereitungsschritt gewonnenen Destillats der Taupunkt, die Temperatur und der Druck so gewählt werden, dass in mindestens einem Kondensator überwiegend die bei der Vorkondensation entstandenen Oligomeren abgeschieden und in einem besonderen Sammelbehälter aufgefangen werden.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass für die Kondensation des in einem Aufbereitungsschritt gewonnenen Destillats der Taupunkt, die Temperatur und der Druck so gewählt werden, dass in mindestens einem Kondensator überwiegend die bei der Polykondensation durch thermischen Abbau oder Umlagerung entstandenen Reaktionsprodukte abgeschieden und in einem besonderen Sammelbehälter aufgefangen werden.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Dämpfe und Kondensate in mindestens einer Destillationsstufe rektifi- ziert werden,
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die in den Sammelbehältern aufgefangenen Produktgemische analysiert und dann durch mindestens eine Feindestillation und/oder mindestens eine Kristallisation gereinigt und erneut der Polykondensation zugeführt werden,
8. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Abfallprodukte verbrannt werden.
PCT/EP2006/001772 2004-05-15 2006-02-27 Verfahren zur aufbereitung von kondensaten aus der polykondensation WO2006108469A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008505746A JP2008535980A (ja) 2005-04-15 2006-02-27 重縮合から生ずる凝縮物の処理方法
US11/918,636 US20090114523A1 (en) 2004-05-15 2006-02-27 Method for treating condensates form polycodensates
EP06707287A EP1869102A1 (de) 2005-04-15 2006-02-27 Verfahren zur aufbereitung von kondensaten aus der polykondensation
US12/268,516 US8029079B2 (en) 2005-04-15 2008-11-11 Safety cabinet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005017427.2 2005-04-15
DE102005017427A DE102005017427A1 (de) 2005-04-15 2005-04-15 Verfahren zur Aufbereitung von Kondensaten aus der Polykondensation

Publications (1)

Publication Number Publication Date
WO2006108469A1 true WO2006108469A1 (de) 2006-10-19

Family

ID=36581737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/001772 WO2006108469A1 (de) 2004-05-15 2006-02-27 Verfahren zur aufbereitung von kondensaten aus der polykondensation

Country Status (7)

Country Link
US (2) US20090114523A1 (de)
EP (1) EP1869102A1 (de)
JP (1) JP2008535980A (de)
KR (1) KR20080015406A (de)
CN (1) CN101160341A (de)
DE (1) DE102005017427A1 (de)
WO (1) WO2006108469A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350651A (ja) * 2004-05-11 2005-12-22 Jsr Corp 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
WO2014191314A1 (de) * 2013-05-31 2014-12-04 Aquafil Engineering Gmbh Verfahren zur aufarbeitung eines bei polykondensationsprozessen anfallenden gemisches und eine anlage zur durchführung des verfahrens

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946665B2 (en) * 2008-11-11 2011-05-24 Dueperthal Sicherheitstechnik GmbH Safety cabinet with multipanel folding door
CN102126958B (zh) * 2010-12-30 2013-12-04 江苏淮河化工有限公司 精馏与结晶耦合制备高纯度间(对)硝基甲苯的装置及方法
US8727459B2 (en) * 2011-07-08 2014-05-20 SSI Schäfer Noell GmbH Lager- und Systemtechnik Multiple-door switchgear cabinet
DE102012105296A1 (de) 2012-06-19 2013-12-19 Epc Engineering Consulting Gmbh Verfahren und Anlage zur Herstellung von Polycarbonat
CN104109101B (zh) * 2013-06-06 2016-12-28 上海志诚化工有限公司 一种半导体用超纯电子级化学试剂纯化装置
US9243437B1 (en) * 2013-10-30 2016-01-26 Austin Hardware And Supply, Inc. Door sequencer
USD797475S1 (en) * 2016-06-23 2017-09-19 Cosmocube, Inc. Cabinet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167531A (en) 1962-01-24 1965-01-26 Monsanto Co Continuous process for the manufacture of bis(2-hydroxyethyl) terephthalate and low molecular weight polymers thereof
DE1495730B2 (de) 1963-07-24 1971-03-18 Farbenfabriken Bayer AG, 5090 Le verkusen Verfahren zum herstellen thermoplastischer polykondensations produkte
DE2315492A1 (de) 1972-04-24 1973-11-08 Kuraray Co Verfahren und vorrichtung zur erniedrigung des druckes an der polykondensationszone zur herstellung linearer polyester oder copolyester
US4008048A (en) 1973-07-06 1977-02-15 Agfa-Gevaert N.V. Installation for the discontinuous production of polyethylene terephthalate
DE2334852C3 (de) 1972-07-10 1980-06-19 Mitsubishi Gas Chemical Co., Inc., Tokio Verfahren zur Herstellung aromatischer Polycarbonate
US4294994A (en) 1980-04-21 1981-10-13 General Electric Company Purification of bisphenol-A
EP1018529A1 (de) 1999-01-06 2000-07-12 Teijin Limited Verfahren zur Herstellung von Polycarbonaten
WO2002044244A1 (de) 2000-12-01 2002-06-06 Zimmer Ag Verfahren zum erzeugen von polycarbonaten

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820514A (en) 1955-08-26 1958-01-21 John P Travis Folding flue window
US3516198A (en) * 1969-01-21 1970-06-23 Robert J Lyons Emergency release latch mechanism for smoke hatch
US4262448A (en) * 1979-06-20 1981-04-21 Justrite Manufacturing Company Safety storage cabinet
US4619076A (en) * 1985-04-15 1986-10-28 Justrite Manufacturing Company Safety cabinet latching system
US5061022A (en) * 1990-06-11 1991-10-29 The Louis Berkman Company Door closing mechanism
US5722202A (en) * 1996-04-26 1998-03-03 Safe-T-Way Sequential door closing mechanism
US5944399A (en) * 1998-07-06 1999-08-31 Eagle Manufacturing Company Safety cabinet with self-closing and sequencing door mechanism
US5992098A (en) * 1998-12-09 1999-11-30 Justrite Manufacturing Company, Llc Safety cabinet latching system
KR100613641B1 (ko) * 1999-03-03 2006-08-17 우베 고산 가부시키가이샤 폴리카보네이트의 제조 방법
US6729701B2 (en) * 2001-06-29 2004-05-04 Justrite Manufacturing Company Llc Safety cabinet
DE10316656B8 (de) 2003-04-11 2004-09-16 Asecos Gmbh Sicherheit Und Umweltschutz Sicherheitsschrank
DE202004004855U1 (de) 2004-03-25 2004-08-12 Asecos Gmbh Sicherheitsschrank
DE102004021912A1 (de) 2004-03-25 2005-10-13 Asecos Gmbh Sicherheitsschrank

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167531A (en) 1962-01-24 1965-01-26 Monsanto Co Continuous process for the manufacture of bis(2-hydroxyethyl) terephthalate and low molecular weight polymers thereof
DE1495730B2 (de) 1963-07-24 1971-03-18 Farbenfabriken Bayer AG, 5090 Le verkusen Verfahren zum herstellen thermoplastischer polykondensations produkte
DE2315492A1 (de) 1972-04-24 1973-11-08 Kuraray Co Verfahren und vorrichtung zur erniedrigung des druckes an der polykondensationszone zur herstellung linearer polyester oder copolyester
DE2334852C3 (de) 1972-07-10 1980-06-19 Mitsubishi Gas Chemical Co., Inc., Tokio Verfahren zur Herstellung aromatischer Polycarbonate
US4008048A (en) 1973-07-06 1977-02-15 Agfa-Gevaert N.V. Installation for the discontinuous production of polyethylene terephthalate
US4294994A (en) 1980-04-21 1981-10-13 General Electric Company Purification of bisphenol-A
EP1018529A1 (de) 1999-01-06 2000-07-12 Teijin Limited Verfahren zur Herstellung von Polycarbonaten
WO2002044244A1 (de) 2000-12-01 2002-06-06 Zimmer Ag Verfahren zum erzeugen von polycarbonaten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350651A (ja) * 2004-05-11 2005-12-22 Jsr Corp 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
WO2014191314A1 (de) * 2013-05-31 2014-12-04 Aquafil Engineering Gmbh Verfahren zur aufarbeitung eines bei polykondensationsprozessen anfallenden gemisches und eine anlage zur durchführung des verfahrens
CN105246943A (zh) * 2013-05-31 2016-01-13 阿卡费尔工程有限公司 用于处理在缩聚过程中产生的混合物的方法和用于执行该方法的设备

Also Published As

Publication number Publication date
US8029079B2 (en) 2011-10-04
JP2008535980A (ja) 2008-09-04
KR20080015406A (ko) 2008-02-19
US20090134756A1 (en) 2009-05-28
EP1869102A1 (de) 2007-12-26
US20090114523A1 (en) 2009-05-07
DE102005017427A1 (de) 2006-10-19
CN101160341A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
WO2006108469A1 (de) Verfahren zur aufbereitung von kondensaten aus der polykondensation
EP0000918B1 (de) Verfahren zur Herstellung von linearen hochmolekularen Polyestern
EP1221454B1 (de) Verfahren zur Herstellung von Polycarbonat
US8507729B2 (en) Cyclohexanone production process with multiple post-distillation
DE1186874B (de) Kontinuierliches Verfahren zur Herstellung von 2, 2-Bis-(4-hydroxyphenyl)-propan
DE10006903A1 (de) Verfahren zur kontinuierlichen Herstellung monomerer Komponenten aus aromatischem Polyester
DE3047898A1 (de) Verfahren zur kontinuierlichen thermischen spaltung von carbamidsaeureestern und die verwendung von hierbei anfallenden isocyanate und carbamidsaeureester aufweisenden gemischen zur herstellung von isocyanaten
WO2010062482A2 (en) Process for recovering phenol from a bpa waste stream
EP1265944B1 (de) Verfahren zur herstellung von hochreinem polycarbonat
DE102007001427A1 (de) Kristallisationsverfahren zur Herstellung von Bisphenol A
EP1383821A2 (de) Verfahren zur herstellung von polycarbonaten
DE2426510A1 (de) Verfahren zur herstellung von polyarylenestern
CN1095820C (zh) 双酚生产后的母液的加工方法
EP1765752B1 (de) Verfahren zur abtrennung von phenol aus phenolhaltigen strömen aus der herstellung von bisphenol a
EP1237834B1 (de) Bisphenol-herstellung
DE2932959A1 (de) Verfahren zur herstellung von isopropenylphenol
EP1240232B1 (de) Verfahren zur herstellung von polycarbonat
DE10015864A1 (de) Stoffgemisch enthaltend Bisphenol A
DE2336026C3 (de) Verfahren zur Herstellung von modifizierten Polyalkylenterephthalaten
EP0984912A1 (de) Verfahren zur kontinuierlichen herstellung von dihydroxydiphenylalkanen
RU2816663C2 (ru) Способ получения полиэфиртерефталата, включающий процесс деполимеризации
DE1570371C (de) Verfahren zur Herstellung von poly meren Mercaptalen
DE2214225C2 (de) Verfahren zur Gewinnung von Trimellitsäureanhydrid
RU2021125480A (ru) Способ получения полиэфиртерефталата, включающий процесс деполимеризации
WO2002016469A1 (de) Reaktivrektifikation

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006707287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008505746

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680012603.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077026506

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006707287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11918636

Country of ref document: US