WO2006103892A9 - 送信装置、受信装置および通信システム - Google Patents

送信装置、受信装置および通信システム

Info

Publication number
WO2006103892A9
WO2006103892A9 PCT/JP2006/304547 JP2006304547W WO2006103892A9 WO 2006103892 A9 WO2006103892 A9 WO 2006103892A9 JP 2006304547 W JP2006304547 W JP 2006304547W WO 2006103892 A9 WO2006103892 A9 WO 2006103892A9
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
circuit
signal
peak power
synchronization
Prior art date
Application number
PCT/JP2006/304547
Other languages
English (en)
French (fr)
Other versions
WO2006103892A1 (ja
Inventor
Suguru Fujita
Masahiro Mimura
Kazuaki Takahashi
Yoshinori Kunieda
Noriyuki Ueki
Original Assignee
Matsushita Electric Ind Co Ltd
Suguru Fujita
Masahiro Mimura
Kazuaki Takahashi
Yoshinori Kunieda
Noriyuki Ueki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, Suguru Fujita, Masahiro Mimura, Kazuaki Takahashi, Yoshinori Kunieda, Noriyuki Ueki filed Critical Matsushita Electric Ind Co Ltd
Priority to CN2006800080508A priority Critical patent/CN101138213B/zh
Priority to US11/908,862 priority patent/US8254437B2/en
Publication of WO2006103892A1 publication Critical patent/WO2006103892A1/ja
Publication of WO2006103892A9 publication Critical patent/WO2006103892A9/ja
Priority to US13/552,055 priority patent/US20120281740A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/717Pulse-related aspects
    • H04B1/7174Pulse generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation

Definitions

  • the present invention relates to a transmitter, a receiver, and a communication system using a wideband signal such as a pulse waveform.
  • LAN Wireless local area network
  • IEEE802.IIb standard established by the Institute of Electrical and Electronics Engineers, Inc.
  • AV audiovisual
  • Ultra-wide band (Ultra Wide B and (below) using a pulse-like modulation signal is one of the technologies that can realize the device in a small size and can realize high-speed data communication and high-accuracy distance measurement. , UWB))) has attracted attention.
  • UWB communication and ranging are performed by using short pulses less than Ins and using a wide frequency band of several hundred MHz or more.
  • communication by increasing the repetition cycle of short pulses and assigning one symbol to each short pulse or multiple short pulses, high-speed communication exceeding several hundred Mbps can be realized.
  • ranging it is possible to measure with high accuracy by measuring the arrival time using short pulses.
  • FIG. 9 is a block diagram showing a configuration of a conventional receiving apparatus.
  • SZN signal-to-noise ratio
  • the voltage addition circuit 702 adds up the voltage to increase the signal voltage.
  • the sync pulse detection circuit 703 extracts sync pulses.
  • a demodulation circuit 704 demodulates the received signal using the extracted synchronous pulse to obtain a demodulated signal (received data).
  • This conventional configuration is disclosed, for example, in Japanese Patent Application Laid-Open No. 5-284128.
  • the effect of SZN improvement may be low because synchronous addition alone adds noise power as well as the received signal.
  • the effective throughput may be reduced because time is taken to synchronize the spread signal.
  • many circuits for spread signal synchronization are required, and the circuit may be complicated. As a result, the size of the equipment can be increased, and the power consumption can also be increased.
  • the present invention does not reduce the effective throughput at which the SZN improvement effect is large at the receiving device side, does not require a large number of spread signal synchronization circuits, does not complicate the circuits, and increases the size of the device.
  • the transmission apparatus of the present invention has a configuration including a pulse generation circuit, a pulse repetition cycle determination circuit, a peak power determination circuit, and a modulator.
  • the pulse generation circuit generates a pulse train.
  • the pulse repetition cycle determination circuit determines the pulse repetition cycle of the pulse train generated by the pulse generation circuit based on the clock signal.
  • the peak power determination circuit determines the pulse peak power of the pulse train generated by the pulse generation circuit.
  • the modulator modulates the pulse train generated by the pulse generation circuit with transmission data to generate a transmission signal.
  • the pulse repetition period and the pulse peak are controlled so that the pulse repetition period determination circuit and the peak power determination circuit interlock with each other so that the average power of the transmission signal becomes constant.
  • the value power may be determined. According to this, it is possible to transmit a large pulse of peak power while keeping the average transmission power constant.
  • the transmission signal may be composed of at least two types of pulses having different peak powers. According to this, it is possible to appropriately transmit the signal required by the receiving device that receives the signal from the transmitting device.
  • the modulator may be configured to allocate at least a part of the synchronization information to a pulse having a large pulse peak power. According to this, on the side of the receiving device that receives the signal from the transmitting device, it becomes easy to capture and keep the pulse synchronized.
  • the modulator may be configured to assign a signal for distance measurement to a pulse having a large pulse peak power. According to this, not only data communication but also distance measurement can be easily realized.
  • the modulation scheme of the modulator may be any of pulse position modulation, pulse phase modulation, and pulse amplitude modulation. According to this, it is possible to realize high-speed communication and high-accuracy ranging with short pulses with a simple configuration.
  • the transmission device of the present invention further includes a random number generation circuit that generates a random number, and the peak power determination circuit determines the pulse peak power based on the random number generated by the random number generation circuit. It may be. According to this, it is possible to avoid the deterioration of the communication state such as interference in a specific state, and to realize communication and distance measurement by at least a pulse with a large peak power.
  • the transmission device of the present invention may further include a timer circuit, and the peak value power determination circuit may determine the pulse peak power based on a time interval specified by the timer circuit. .
  • the receiving side of the communication partner can receive a large pulse of peak power every certain time, and it becomes easy to estimate the arrival time of the pulse, and it is easy to capture and keep the synchronization. Become.
  • pulse repetition is performed based on the information received by the receiver. At least one of the pulse repetition cycle determined by the cycle determination circuit and the pulse peak power determined by the peak power determination circuit may be changed. According to this, appropriate transmission conditions can be set according to the reception state.
  • the transmission device of the present invention may be configured such that the information received by the reception device is information indicating the reception status from the device of the communication partner that has transmitted the transmission signal. According to this, appropriate transmission conditions can be set according to the reception state of the communication partner.
  • the transmission device of the present invention may be configured such that the information received by the reception device is information of device power other than the communication partner that has transmitted the transmission signal. According to this, transmission conditions can be optimized to reduce interference with other devices.
  • the receiver of the present invention includes a reception pulse signal generation circuit, a selection circuit, a synchronization circuit, and a demodulation circuit.
  • the reception pulse signal generation circuit reproduces a short pulse based on the reception signal to generate a reception pulse signal.
  • the sorting circuit sorts pulses based on the magnitude of the pulse peak power of the received pulse signal.
  • the synchronization circuit synchronizes the clock signal with the reception pulse signal selected by the selection circuit to generate a synchronization output signal.
  • the demodulation circuit generates a demodulation signal from the synchronization output signal from the synchronization circuit and the received pulse signal of the sorting circuit.
  • the sorting circuit sorts out the large pulses of the pulse peak power, and the synchronization circuit makes the clock signal by the large pulses of the pulse peak power sorted out by the sorting circuit.
  • the synchronization circuit may be configured to receive and demodulate pulses with small pulse peak power in synchronization with the demodulation circuit. According to this, it becomes easy to capture and keep synchronization, and the effective throughput which SZN improvement effect is large does not decrease, and a large number of spread signal synchronization circuits are not required, and the circuit does not become complicated. The equipment does not grow in size, and the power consumption does not increase.
  • the sorting circuit sorts out the large pulses of the pulse peak power, and the synchronization circuit synchronizes the spread signal with the large pulses of the pulse peak power sorted by the sorting circuit.
  • the configuration may be taken. According to this, it becomes easy to synchronize the spread signal, SZ
  • the receiving device of the present invention may be configured to include a time difference signal generating circuit and a signal flight distance estimating circuit.
  • the time difference signal generation circuit may generate a time difference signal from the time difference between the clock signal and the received pulse signal.
  • the signal flight distance estimation circuit may estimate the signal flight distance from the time difference signal generated by the time difference signal generation circuit! /. According to this, the circuit does not become complicated, the device does not become large, the power consumption does not increase, and the distance measurement can be easily realized.
  • the receiving device of the present invention may be configured to output the reception information of another device acquired by the demodulation circuit to the transmitting device. According to this, the reception state of another device can be transmitted to the transmitting device.
  • the receiving device of the present invention may be configured such that the received information of the acquired other device is the received information of the device of the communication partner that has transmitted the transmission signal from the transmitting device. According to this, it is possible to transmit the reception state of the communication partner of the transmission apparatus to the transmission apparatus.
  • the receiving device of the present invention may be configured such that the received information of the acquired other device is received information of a device other than the communication partner that has transmitted the transmission signal from the transmitting device. According to this, information such as interference with another device can be transmitted to the transmitting device.
  • FIG. 1 is a block diagram showing a configuration of a transmitter, a receiver and a communication system in a first embodiment of the present invention.
  • FIG. 2 is a view showing pulse waveforms transmitted by the transmitting apparatus in the same embodiment and received by the receiving apparatus.
  • FIG. 3 is a block diagram showing the configuration of another transmitting device, receiving device and communication system in the same embodiment.
  • FIG. 4 is a block diagram showing the configuration of a transmitter in the same embodiment.
  • FIG. 5 is a view showing another noise waveform transmitted by the transmission apparatus in the same embodiment and received by the reception apparatus.
  • FIG. 6 is a diagram showing another noise waveform transmitted by the transmission apparatus in the same embodiment and received by the reception apparatus.
  • FIG. 7 shows a transmitter, a receiver and a communication system in a second embodiment of the present invention. It is a block diagram showing composition.
  • FIG. 8 is a block diagram showing the configuration of a transmitter, a receiver and a communication system in a third embodiment of the present invention.
  • FIG. 9 is a block diagram showing the configuration of a conventional receiving apparatus.
  • FIG. 1 is a block diagram showing the configuration of a transmitter, a receiver and a communication system in the first embodiment of the present invention.
  • the communication system of this embodiment includes a transmitter 101 and a receiver 110.
  • the transmitter 101 includes a transmission clock circuit 102, a pulse repetition period determination circuit 103, a peak power determination circuit 104, a pulse generation circuit 105, a modulator 106, a transmission adjustment circuit 107, and a band limiting filter 108A. And.
  • the transmit clock circuit 102 generates a transmit clock signal.
  • the pulse repetition period determination circuit 103 determines the pulse repetition period.
  • the peak power determination circuit 104 determines pulse peak power.
  • the pulse generation circuit 105 generates a transmission pulse train.
  • the modulator 106 modulates the transmission pulse train using transmission data. Transmission adjustment circuit 107
  • the band limiting filter 108A limits the transmission band.
  • the transmission signal is transmitted from the antenna 109A.
  • the transmission clock signal generated by the transmission clock circuit is used as a reference.
  • the repetition cycle determined by the pulse repetition cycle determination circuit 103 and the pulse peak power determined by the peak power determination circuit 104 are input to the pulse generation circuit 105. Change the pulse repetition period of the transmission pulse train and the peak power of each pulse as appropriate.
  • As a method of determining the pulse peak power it may be determined according to the importance of information of transmission data. Important information includes, for example, communication request information, information for device recognition, and information for synchronization.
  • the pulse peak power may be determined according to the state of the communication channel.
  • the state of the communication path includes the intensity and density of multipath waves.
  • the modulation scheme is not limited.
  • the modulation method may be realized using pulse position modulation, pulse phase modulation, pulse amplitude modulation, pulse shear modulation, etc., which are generally used in pulse communication methods.
  • the pulses with different peak powers are explained using the pulse train in Fig.2.
  • FIG. 2 is a diagram showing a pulse waveform when the receiver receives the pulse waveform transmitted from the transmitter according to this embodiment.
  • pulses 601A to 601D with low peak power and pulses 603 with high peak power are mixed.
  • communication request information is added to the pulse 603 with high peak power
  • communication information to be transmitted is added to the pulses 601A to 601D with low peak power.
  • the power described in the case of two types of pulse having high peak power and low pulse is not limited thereto.
  • the present invention is not limited to this, and is configured by at least two types of pulses having different peak powers. Just do it.
  • reception of pulse 603A having a high peak power while receiving pulse 601A to 601D having a low peak power is performed.
  • This enables higher SZN demodulation.
  • at least communication request information can be received even in communication through a path with large noise and multipath signals.
  • the position 602 where no pulse exists is a time position where no pulse is output in order to output a pulse 603 with high peak power while keeping the average transmission power constant.
  • the setting of the position 602 where no pulse is present is to change the pulse cycle by the cycle determination in the pulse repetition cycle determination circuit 103, or to change the peak power to 0 in the peak power determination circuit 104. It can be implemented by either method of setting it small enough to be regarded as zero). As described above, the pulse repetition cycle determination circuit and the peak power determination circuit interlock and determine the pulse repetition cycle and the pulse peak power so that the average power of the transmission signal becomes constant. .
  • the transmission signal generated by modulator 106 is transmitted through transmission adjustment circuit 107 and a band limiting filter.
  • the power value and frequency band are adjusted at 108A and transmitted from the antenna 109A.
  • the transmission adjustment circuit 107 is a signal of an arbitrary frequency band using not only the adjustment of the power value by the amplifier and the attenuator but also the combination of a local oscillator and a mixer, switches, and a circuit that performs frequency conversion by direct modulation of the oscillator. Frequency conversion may be performed.
  • the receiver 110 includes a band-limiting filter 108 B, a reception adjustment circuit 111, a reception pulse signal generation circuit 112, a clock recovery circuit 113, a synchronization circuit 114, and a demodulation circuit 115.
  • Band-limiting filter 108B removes out-of-band unwanted signals from the signal received at antenna 109B.
  • the reception adjustment circuit 111 adjusts the power value of the received signal.
  • the reception pulse signal generation circuit 112 performs pulse shaping of the reception signal.
  • the clock recovery circuit 113 also extracts the synchronization signal from the received noise signal power.
  • the synchronization circuit 114 generates a synchronization output signal which is synchronized with the reception clock signal generated by the reception clock circuit 117.
  • the demodulation circuit 115 outputs a demodulation signal, that is, received data.
  • the operation of the receiving apparatus 110 configured as described above will be described.
  • the signal received by the antenna 1 09 B is subjected to band adjustment filter 108 B to remove unnecessary out-of-band signals, and then the reception adjustment circuit 111 adjusts the power value.
  • the reception adjustment circuit 111 as in the transmission adjustment circuit 107 described above, not only the adjustment of the power value but also the low pass filter (hereinafter referred to as LPF), the local oscillator and mixer, the envelope detector, and the correlation template High frequency components may be removed by differential detection using synchronous detection or delayed correlation used.
  • LPF low pass filter
  • the reception signal adjusted by the reception adjustment circuit 111 is input to the reception pulse signal generation circuit 112.
  • the reception pulse signal generation circuit 112 performs pulse shaping of the reception signal for clock regeneration and demodulation. As pulse shaping, for example, extraction of a signal component by comparison circuit or oversampling, adjustment of pulse width, etc. are given.
  • the reception pulse signal is output from the reception pulse signal generation circuit 112, and is input to the demodulation circuit 115 and the clock recovery circuit 113.
  • the clock recovery circuit 113 extracts the synchronization signal.
  • the synchronization circuit 114 generates a synchronization output signal which is synchronized with the reception clock signal from the reception clock circuit 117. Demodulation processing is performed by the demodulation circuit 115, and a demodulated signal (received data) is output.
  • a received signal in which noise or a multipath signal propagates through a large path has a low SZN.
  • the difference between the comparison reference voltage and the noise voltage is small, so the noise component is misrecognized as a signal component, or the signal component is overlooked immediately and a received signal with many errors is generated immediately. Resulting in.
  • the clock recovery circuit 113 can obtain received data accurately including small pulses of peak power by selecting and using a large pulse of peak power as a reference.
  • the transmitting apparatus side appropriately sets the pulse repetition period of the transmission signal and the peak power of each pulse.
  • the effective throughput with which the SZN improvement effect is large does not decrease on the receiving device side, and a large number of spread signal synchronization circuits are not required, and the circuits are not complicated, and pulses are easily captured.
  • the synchronization can be maintained, and the miniaturization of the device and the reduction of the power consumption can be realized.
  • FIG. 3 is another block diagram showing the configurations of a transmitter, a receiver and a communication system in the present embodiment.
  • the communication system of this embodiment includes a transmitter 201 and a receiver 203.
  • the same components as in FIG. 1 will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the transmitting apparatus is provided with the synchronization information extraction circuit 202
  • the receiving apparatus is provided with the selection circuit 205.
  • the reception pulse signal generation circuit 204 generates a reception pulse signal from the output of the reception adjustment circuit 111, and outputs the reception pulse signal to the selection circuit 205.
  • the clock recovery circuit 206 recovers the clock by the synchronous pulse signal from the selection circuit 205.
  • transmission data input to transmitting apparatus 201 Is input to the synchronization information extraction circuit 202 to extract the timing of the synchronization information, and based on this, the peak power determination circuit 104 determines the peak power of the pulse.
  • the receiver 203 extracts only large pulses of peak power to which synchronization information has been assigned.
  • a sorting circuit 205 is provided to perform clock regeneration by generating a sync pulse signal. As a result, the receiver 203 can obtain accurate synchronization timing, and even if the received pulse signal having a small SZN ratio is demodulated by sampling the reception pulse signal at the accurate synchronization timing, a demodulation error is generated. The occurrence can be suppressed low.
  • the synchronization of the clock signal is performed using a large peak power power pulse.
  • the present invention is not limited to this, and in a transmitting apparatus and a receiving apparatus provided with a spread spectrum communication function, the code synchronization can be made short by giving the start time position of the spreading code to a large peak power pulse. It may be implemented to realize in time.
  • FIG. 4 is another block diagram showing the configuration of the transmitting apparatus in this embodiment.
  • the same reference numerals are used for the same components as in FIG. 1, and the description is omitted.
  • the transmitting apparatus 401 of this embodiment has a pulse peak power setting circuit 402, and based on the timing set by this circuit, the application of a large pulse of peak power is the determination of peak power. It is implemented by the circuit 104.
  • a timer circuit 402A that sets a large pulse of peak power at a constant time interval, a random number generation circuit generating random numbers, and a peak is generated at random.
  • a random timing generation function circuit 402 B or the like which sets a pulse having a large initial value power.
  • the timer circuit 402A since the receiver receives a large pulse of peak power every certain time, estimation of the arrival time of the pulse becomes easy, and acquisition and synchronization of the pulse are easy. It becomes.
  • random timing generation function circuit 402B it is possible to prevent periodic signals from being canceled in a specific multipath environment or constantly interfering with periodic signals emitted by other devices. Become. As a result, it is possible to realize low error pulse acquisition and synchronization in the receiver.
  • the random timing generation function circuit may switch to 402B and operate.
  • the case where the transmitting device and the receiving device are provided with the clock circuit has been described, but when the transmitting device and the receiving device are close to each other, the transmitting clock circuit and the receiving clock are included.
  • the clock circuit may be the same as the clock circuit.
  • FIG. 5 and FIG. 6 are diagrams showing other pulse waveforms transmitted by the transmission apparatus in the present embodiment and received by the reception apparatus.
  • the transmission signal 801A is an OOK modulated signal, and represents '1' and '0' depending on the presence or absence of the pulse 802.
  • Received signal 801 B represents a signal accompanied with multipath wave 803.
  • a signal 801 C indicates a signal obtained by envelope-detecting the reception signal 801 B.
  • the signal after detection 801 C is evaluated at a predetermined threshold value 8 04, and a signal larger than this is determined as “1”, and if smaller, it is determined as “0”.
  • the signal 801 D is a signal obtained by AZD conversion (binarization) in which there is a signal when a signal exceeding the threshold 804 is input, and there is no signal when a signal below this is input.
  • the signal 801 E is a signal when AZD conversion can ideally be performed without multipath, and when the signal 801 D and the signal 801 E are compared, a detection timing deviation occurrence 805 exists.
  • FIG. 6 an embodiment is shown in which the deterioration in communication quality is improved by mixing pulses 902 having large peak power.
  • a pulse 902 with a large peak power is inserted, for example, once every four times.
  • envelope detection is performed on a received signal 901B including multipath waves to obtain a signal 901C after detection. This is judged by the threshold value 9 03.
  • the threshold value 903 in this case may be a value larger than the threshold value 804 in FIG.
  • signal 901D is obtained, and compared with signal 801D in FIG.
  • the detection timing deviation occurrence 904 has a smaller deviation (solid arrow in the figure) from the signal 901E when there is no multi-noise compared with that of the signal in FIG. 5 (dotted arrow in the figure). Become.
  • a pulse having a large peak power may be inserted when the synchronous jitter is evaluated by the reception state estimation circuit and it is detected that the predetermined threshold value is exceeded. Also, set multiple threshold values for the insertion period and insertion power, and if the jitter is large, control to insert higher-power pulses so that the period is shorter.
  • FIG. 7 is a block diagram showing configurations of a transmitter, a receiver and a communication system in the second embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the communication function and the distance measuring function are provided.
  • the communication system of the present embodiment includes a transmitter 301 and a receiver 308.
  • the transmitting apparatus 301 uses the peak power determination circuit 303 to transmit a mixture of a large peak power pulse and a small peak power pulse.
  • data for distance measurement is given to a pulse having a large peak power
  • data for communication is given to a pulse having a small peak power.
  • the present invention is used for both distance measurement and communication by providing information that can be used not only for distance measurement data but also for communication, such as synchronization data, to a pulse with a large initial power value. It can also be implemented as
  • the data for communication and the data for distance measurement are both input to the transmission data generation circuit 302 and output as transmission data.
  • the transmission data is input to the peak power determination circuit 303, and as described above, according to the timing of the communication data and the distance measurement data, the peak power is determined.
  • the pressure is determined and input to the pulse generation circuit 304, which outputs different pulses of peak voltage.
  • the respective data are input together to the modulator 305, modulated by an appropriate modulation method to generate a transmission signal, and transmitted through the transmission adjustment circuit 107 and the band limiting filter 108A to transmit the antenna 109A.
  • the communication signal is received by the other device 306, and processing of the signal as a communicator is performed, for example, as described in detail in the first embodiment.
  • the returned signal is received by the antenna 109 B of the receiving device 308, passes through the band limiting filter 108 B and the reception adjustment circuit 111, and is input to the reception pulse signal generation circuit 309 as a reception signal.
  • the reception pulse signal generated by the reception pulse signal generation circuit 309 passes through the clock recovery circuit 310 and the synchronization circuit 114, and is input to the demodulation circuit 115 as a synchronization output signal, and the demodulation circuit 115 receives the demodulation signal (reception data). Output).
  • the ranging signal transmitted from the transmitting device 301 reaches the object to be measured 307, is reflected, and is received by the antenna 109B of the receiving device 308 as a reflected signal.
  • This reflected signal is also output as a received pulse signal by the received pulse signal generation circuit 309, as with the communication signal, but is sorted by the sorting circuit 205 and output as a received distance measurement signal.
  • the selection method for example, a method based on the power difference of received pulse signals, a method using different spreading codes for distance measurement data and communication data, distance measurement data based on the transmission time of the transmission apparatus, etc.
  • the delay time calculation circuit 312 generates a time difference signal from the time difference between the clock signal and the received pulse signal.
  • a time difference signal generation circuit and a signal flight distance estimation circuit for estimating the signal flight distance from the time difference signal generated by the time difference signal generation circuit.
  • the reception measurement signal selected by the selection circuit 205 is input to a delay time calculation circuit 312, which calculates a time difference from the transmission signal to obtain a distance, and outputs it as a demodulated signal (distance measurement data).
  • a signal obtained by adjusting the signal of the pulse generation circuit 315 by the delay correction circuit 311 that corrects the delay time is used.
  • the pulse repetition period of the transmission signal and peak power of each pulse are appropriately changed, and distance measurement to the object is performed with a large peak power signal.
  • communication and distance measurement can be realized with a simple circuit configuration.
  • FIG. 8 is a block diagram showing configurations of a transmitting device, a receiving device and a communication system in the third embodiment of the present invention.
  • the present embodiment differs from the first embodiment in that the transmitting device adjusts at least one of the pulse repetition period and the pulse peak power in response to a request from the receiving device.
  • the combined power of the transmitting device 501 A and the receiving device 502 A is shown, which mainly shows the communication system on the transmission side.
  • the combined strength of the transmitting device 501 B and the receiving device 502 B mainly shows a communication system on the receiving side.
  • the transmission clock circuits 102 a-b have the same configuration as the transmission clock circuit 102.
  • the pulse repetition cycle determination circuits 103a and 103b have the same configuration as the pulse repetition cycle determination circuit 103.
  • the peak power determination circuits 104 a-b have the same configuration as the peak power determination circuit 104.
  • the pulse generation circuits 105 a-b have the same configuration as the pulse generation circuit 105.
  • Modulators 106 a-b have the same configuration as modulator 106.
  • the transmission adjustment circuits 107a and 107b have the same configuration as the transmission adjustment circuit 107.
  • the band limiting filters 108c to 108d have the same configuration as the band limiting filters 108a to 108b.
  • the antennas 109c-d have the same configuration as the antennas 109a-b.
  • the reception adjustment circuit ll la-b has the same configuration as the reception adjustment circuit 111.
  • the reception pulse signal generation circuits 112a and 112b have the same configuration as the reception pulse signal generation circuit 112.
  • the clock recovery circuits 113a and 113b have the same configuration as the clock recovery circuit 113.
  • the synchronous circuits 114a-b have the same configuration as the synchronous circuit 114.
  • the demodulation circuits 115a-b have the same configuration as the demodulation circuit 115. The difference is that the reception state estimation circuit 503A, 503B is provided. Receiving device 502B that has received the signal transmitted from transmitting device 501A estimates the reception state of the output of demodulation circuit 115B in reception state estimation circuit 503B. Alternatively, the reception state is estimated based on, for example, the average value of the phase change of the synchronization output signal generated by the synchronization circuit 114B. According to the estimated reception condition, the pulse repetition frequency and pulse peak power of the own station are determined and sent back.
  • ACK acknowledgment
  • the pulse peak power setting information estimated by the reception state estimation circuit 503 B and the pulse repetition frequency setting information are added to transmission data via the transmission data generation circuit 505.
  • the reception state estimation circuit 503A of the reception apparatus 502A that has received the reply acquires the reception state information of the communication partner, and in the case of an ACK signal, for example, communication continues with the repetition cycle and peak power.
  • the pulse peak power is increased by decreasing the repetition cycle to enable reception of pulses with larger peak power by the reception device 502B. If the signal indicates too much received power, reduce the peak power.
  • the pulse repetition cycle from the transmitting device 501A to the receiving device 502B in the initial state is performed with an initial value previously determined, or any device changes the setting value as appropriate to match the communication partner. Let me make it happen! ,.
  • the pulse repetition period of the transmission signal and the peak value of each pulse according to the reception state of the communication partner Communication is performed by appropriately changing at least one of the powers. As a result, it is possible to realize pulse capture and synchronization in a simple circuit configuration, and to miniaturize the device and reduce power consumption.
  • reception state estimation circuit 503A detects a signal from the transmitting device 501B that is the communication partner, and acquires reception state information. Ming is not limited to this. For example, radio waves from other devices sharing a frequency band may be detected, and the repetition period and peak power may be changed so as not to interfere with the radio waves.
  • the transmitter includes the pulse generation circuit, the pulse repetition cycle determination circuit, the peak power determination circuit, and the modulation.
  • the receiver includes a reception pulse signal generation circuit, a selection circuit, a synchronization circuit, and a demodulation circuit.
  • the pulse generation circuit generates a pulse train.
  • the pulse repetition cycle determination circuit determines the pulse repetition cycle of the pulse train generated by the pulse generation circuit based on the clock signal.
  • the peak power determination circuit determines the pulse peak power of the pulse train generated by the pulse generation circuit.
  • the modulator modulates the pulse train generated by the pulse generation circuit with transmission data to generate a transmission signal.
  • the reception pulse signal generation circuit reproduces a short pulse based on the reception signal to generate a reception pulse signal.
  • the sorting circuit sorts pulses based on the magnitude of the pulse peak power of the received pulse signal.
  • the synchronization circuit synchronizes the clock signal with the reception pulse signal selected by the selection circuit to generate a synchronization output signal.
  • the demodulation circuit generates a demodulation signal from the synchronization output signal from the synchronization circuit and the received pulse signal from the selection circuit.
  • the effective throughput in which the SZN improvement effect is large does not decrease, and a large number of spread signal synchronization circuits are not required, the circuits do not become complicated, and the devices do not become large. It has the effect of not boosting.
  • the present invention is useful as, for example, a transmitter, a receiver, and a communication system using a wideband signal such as a pulse waveform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Transmitters (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 受信装置側で、S/N改善効果が大きく、実効的なスループットが低下せず、拡散信号同期用回路を多数必要としない、送信装置、受信装置および通信システムが開示されていて、この送信装置は、パルス発生回路と、パルス繰り返し周期決定回路と、尖頭値電力決定回路と、変調器と、を含む構成を有している。パルス発生回路は、パルス列を発生する。パルス繰り返し周期決定回路は、クロック信号をもとに、パルス発生回路が発生するパルス列の、パルス繰り返し周期を決定する。尖頭値電力決定回路は、パルス発生回路が発生するパルス列の、パルス尖頭値電力を決定する。変調器は、パルス発生回路が発生したパルス列を送信データで変調して送信信号を生成する。

Description

明 細 書
送信装置、受信装置および通信システム
技術分野
[0001] 本発明は、例えばパルス波形のような広帯域信号を用いた送信装置、受信装置お よび通信システムに関する。
背景技術
[0002] 米国に本部がある電気電子学会が制定した IEEE802. l ib規格に代表される無 線ローカルエリアネットワーク(以下、 LANと記す)機器が、急速に普及してきている。 さら〖こ、音響映像 (以下、 AVと記す)機器やパーソナルコンピュータを、相互に無線 接続することによって、シームレスなネットワークが確立された社会が予想されている 。そこで、小型かつ高速のデータ無線装置を、安価に実現する技術の確立が急務と なっている。また、通信応用として、超音波センサーやミリ波センサーに代表される無 線を用いた測距技術も、車の衝突防止、人体検出による侵入者監視といった様々な 用途に用いられており、今後、その応用範囲の拡大が見込まれている。
[0003] 機器を小型に実現でき、かつ高速のデータ通信と高精度な測距とを実現できる技 術の一つとして、パルス状の変調信号を用いたウルトラワイドバンド(Ultra Wide B and (以下、 UWBと記す))と呼ばれる無線方式が注目されている。 UWBでは、 Ins 以下の短パルスを用い、数百 MHz以上の広い周波数帯域を使うことによって、通信 や測距を行なう。通信においては、短パルスの繰り返し周期を高め、 1シンボルを各 短パルスまたは複数の短パルスに割り当てることにより、数百 Mbpsを上回る高速通 信の実現が可能となる。測距では、短パルスを用いた到達時間測定を行なうことで、 高精度の測距が可能となる。
[0004] 図 9は、従来の受信装置の構成を示すブロック図である。前述の通り、 UWBでは 1 ns以下の非常に短いパルスを用いるため、信号の捕捉、同期確立が課題であるが、 本従来例では、同期加算と呼ばれる技術で信号の捕捉、同期の誤りを抑圧している 。無線伝搬路を経て受信された信号は、信号の減衰、雑音、マルチパスの影響によ つて信号対雑音比 (以下、 SZNと記す)が劣化する。 [0005] そこで、受信信号を、複数の遅延回路 701A、 701Bを用いて、既知のパルス間隔 で遅延させる。それを、電圧加算回路 702で電圧加算することで、信号電圧を高める 。この信号より、同期パルス検出回路 703で、同期ノ ルスを抽出しする。抽出した同 期パルスを用いて、復調回路 704で受信信号を復調し、復調信号 (受信データ)を得 る。この従来の構成は、例えば、特開平 5— 284128号に開示されている。
[0006] また、特に図を用いた説明は省略するが、送信装置からの信号を、受信装置でス ぺクトラム拡散技術を適用し、拡散利得によって SZNを改善して、受信 (復調)する ことも開示されている。この従来の構成は、例えば、特開 2003— 143109号〖こ開示 されている。
[0007] し力しながら、上記従来の送信装置、受信装置および通信システムにお 、ては、以 下の課題が生じる場合があり得る。同期加算だけでは、受信信号と共に雑音電力も 加算してしまうため、 SZN改善効果は低くなり得る。また、スペクトル拡散技術を適用 する方法では、拡散信号の同期に時間が力かるため、実効的なスループットが低下 し得る。さらに、拡散信号同期用の回路が多数必要となり、回路が複雑ィ匕し得る。よ つて、機器が大型化し、消費電力も増加し得る。
発明の開示
[0008] 本発明は、受信装置側で、 SZN改善効果が大きぐ実効的なスループットが低下 せず、拡散信号同期用回路を多数必要とせず、回路は複雑化せず、機器は大型化 せず、消費電力も増加しない、送信装置、受信装置および通信システムを提供する
[0009] 本発明の送信装置は、パルス発生回路と、パルス繰り返し周期決定回路と、尖頭値 電力決定回路と、変調器と、を含む構成を有している。パルス発生回路は、パルス列 を発生する。パルス繰り返し周期決定回路は、クロック信号をもと〖こ、ノ ルス発生回路 が発生するパルス列の、パルス繰り返し周期を決定する。尖頭値電力決定回路は、 パルス発生回路が発生するパルス列のパルス尖頭値電力を決定する。変調器は、パ ルス発生回路が発生したパルス列を送信データで変調して送信信号を生成する。
[0010] この構成により、通信相手の受信装置側で、 SZN改善効果が大きぐ実効的なス ループットが低下せず、拡散信号同期用回路を多数必要とせず、回路は複雑ィ匕せ ず、機器は大型化せず、消費電力も増加しない。
[0011] また、本発明の送信装置は、パルス繰り返し周期決定回路と尖頭値電力決定回路 とが連動して、送信信号の平均電力が一定となるように、パルス繰り返し周期とパル ス尖頭値電力とを決定する構成であってもよい。これによれば、平均送信電力を一定 のまま、尖頭値電力の大きなパルスを送信できる。
[0012] また、本発明の送信装置は、送信信号が、少なくとも尖頭値電力の異なる 2種類の パルスより構成されていてもよい。これによれば、送信装置からの信号を受信する受 信装置側が必要とする信号を適切に送信することができる。
[0013] また、本発明の送信装置は、変調器が、パルス尖頭値電力の大きなパルスに同期 情報の少なくとも一部を割り当てる構成であってもよい。これによれば、送信装置から の信号を受信する受信装置側で、パルスの捕捉、同期保持が容易となる。
[0014] また、本発明の送信装置は、変調器が、パルス尖頭値電力の大きなパルスに距離 測定用の信号を割り当てる構成であってもよい。これによれば、データ通信のみなら ず、距離測定も容易に実現できる。
[0015] また、本発明の送信装置は、変調器の変調方式が、パルス位置変調、パルス位相 変調、パルス振幅変調のいずれかである構成であってもよい。これによれば、簡易な 構成で、短パルスによる高速通信および高精度測距を実現できる。
[0016] また、本発明の送信装置は、乱数を発生する乱数発生回路をさらに含み、乱数発 生回路が発生する乱数に基づき尖頭値電力決定回路がパルス尖頭値電力を決定 する構成であってもよい。これによれば、特定の状態における混信等の通信状態の 劣化を回避し、少なくとも尖頭値電力の大きなパルスによる通信や測距を実現できる
[0017] また、本発明の送信装置は、タイマ回路をさらに含み、タイマ回路が指定する時間 間隔に基づき、尖頭値電力決定回路が、パルス尖頭値電力を決定する構成であつ てもよい。これによれば、通信相手の受信装置側で、一定時間毎に尖頭値電力の大 きなパルスを受信でき、パルスの到着時刻の推定が容易となり、ノ ルスの捕捉、同期 保持が容易となる。
[0018] また、本発明の送信装置は、受信装置が受信した情報に基づいて、パルス繰り返し 周期決定回路で決定するパルス繰り返し周期と尖頭値電力決定回路で決定するパ ルス尖頭値電力との少なくとも一方を変更する構成であってもよい。これによれば、 受信状態に応じて適切な送信条件を設定できる。
[0019] また、本発明の送信装置は、受信装置が受信した情報が、送信信号を送信した通 信相手の装置からの受信状態を示す情報である構成であってもよ!、。これによれば、 通信相手の受信状態に応じて適切な送信条件を設定できる。
[0020] また、本発明の送信装置は、受信装置が受信した情報が、送信信号を送信した通 信相手以外の装置力 の情報である構成であってもよい。これによれば、他の装置 に対する干渉を軽減するように送信条件を最適化できる。
[0021] 本発明の受信装置は、受信パルス信号生成回路と、選別回路と、同期回路と、復 調回路と、を備えている。受信パルス信号生成回路は、受信信号に基づき短パルス を再現して受信パルス信号を生成する。選別回路は、受信パルス信号のパルス尖頭 値電力の大きさに基づきパルスを選別する。同期回路は、クロック信号を選別回路が 選別した受信パルス信号により同期して同期出力信号を生成する。復調回路は、同 期回路からの同期出力信号と選別回路力 の受信パルス信号とにより復調信号を生 成する。この構成により、パルス尖頭値電力の大きなパルスで SZNを大幅に改善で き、回路は複雑化せず、機器は大型化せず、消費電力も増加しない。
[0022] また、本発明の受信装置は、選別回路がパルス尖頭値電力の大きなパルスを選別 し、同期回路で、選別回路が選別したパルス尖頭値電力の大きなノ ルスでクロック信 号を同期し、復調回路がパルス尖頭値電力の小さなパルスの受信復調処理を行なう 構成であってもよい。これによれば、ノ ルスの捕捉、同期保持が容易となり、 SZN改 善効果が大きぐ実効的なスループットが低下せず、拡散信号同期用回路を多数必 要とせず、回路は複雑化せず、機器は大型化せず、消費電力も増加しない。
[0023] また、本発明の受信装置は、選別回路がパルス尖頭値電力の大きなパルスを選別 し、同期回路で、選別回路が選別したパルス尖頭値電力の大きなノ ルスで拡散信号 の同期を取る構成であってもよい。これによれば、拡散信号の同期が容易となり、 SZ
N改善効果が大きぐ実効的なスループットが低下せず、拡散信号同期用回路を多 数必要とせず、回路は複雑化せず、機器は大型化せず、消費電力も増加しない。 [0024] また、本発明の受信装置は、時間差信号生成回路と、信号飛行距離推定回路とを 備える構成であってもよい。時間差信号生成回路は、クロック信号と受信パルス信号 との時間差より時間差信号を生成してもよい。信号飛行距離推定回路は、時間差信 号生成回路が生成した時間差信号より信号飛行距離を推定してもよ!/、。これによれ ば、回路は複雑化せず、機器は大型化せず、消費電力も増加せず、容易に距離の 測定を実現できる。
[0025] また、本発明の受信装置は、復調回路で取得した他の装置の受信情報を送信装 置に出力する構成であってもよい。これによれば、他の装置の受信状態を送信装置 に伝達することができる。
[0026] また、本発明の受信装置は、取得した他の装置の受信情報が、送信装置から送信 信号を送信した通信相手の装置の受信情報である構成であってもよ 、。これによれ ば、送信装置の通信相手の受信状態を送信装置に伝達することができる。
[0027] さらに、本発明の受信装置は、取得した他の装置の受信情報が、送信装置から送 信信号を送信した通信相手以外の装置の受信情報である構成であってもよ 、。これ によれば、他の装置に対する干渉等の情報を送信装置に伝達することができる。 図面の簡単な説明
[0028] [図 1]図 1は本発明の第 1実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。
[図 2]図 2は同実施例における送信装置が送信し、受信装置が受信したパルス波形 を示す図である。
[図 3]図 3は同実施例におけるもう一つの送信装置、受信装置および通信システムの 構成を示すブロック図である。
[図 4]図 4は同実施例における送信装置の構成を示すブロック図である。
[図 5]図 5は同実施例における送信装置が送信し、受信装置が受信した他のノ ルス 波形を示す図である。
[図 6]図 6は同実施例における送信装置が送信し、受信装置が受信した他のノ ルス 波形を示す図である。
[図 7]図 7は本発明の第 2実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。
[図 8]図 8は本発明の第 3実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。
[図 9]図 9は従来の受信装置の構成を示すブロック図である。
符号の説明
101, 201, 301, 401, 501A, 501B 送信装置
102, 102A, 102B 送信クロック回路
103, 103A, 103B パルス繰り返し周期決定回路
104, 104A, 104B, 303 尖頭値電力決定回路
105, 105A, 105B, 304, 315 パルス発生回路
106, 106A, 106B, 305 変調器
107, 107A, 107B 送信調整回路
108A, 108B, 108C, 108D 帯域制限フィルタ
109A, 109B, 109C, 109D アンテナ
110, 203, 308, 502A, 502B 受信装置
111, 111A, 111B 受信調整回路
112, 112A, 112B, 204, 309 受信ノ ルス信号生成回路
113, 113A, 113B, 206, 310 クロック再生回路
114, 114A, 114B 同期回路
115, 115A, 115B 復調回路
117 受信クロック回路
202 同期情報抽出回路
205 選別回路
302, 505 送信データ生成回路
306 他の装置
307 測距対象物体
311 遅延補正回路
312 遅延時間算出回路 402 パルス尖頭値電力設定回路
402A タイマ回路
402B ランダムタイミング発生機能回路ほ L数発生回路)
402C 切替部
503A, 503B 受信状態推定回路
601A, 601B, 601C, 601D 尖頭値電力の低 ヽノ ノレス
602 パルスの存在しない位置
603 尖頭値電力の高いパルス
発明を実施するための最良の形態
[0030] 以下、本発明の実施例について、図面を参照しながら説明する。
[0031] (第 1実施例)
図 1は、本発明の第 1実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。本実施例の通信システムは、送信装置 101と、受信装 置 110とを含む。送信装置 101は、送信クロック回路 102と、パルス繰り返し周期決 定回路 103と、尖頭値電力決定回路 104と、パルス発生回路 105と、変調器 106と、 送信調整回路 107と、帯域制限フィルタ 108Aと、を備える。
[0032] 送信クロック回路 102は、送信クロック信号を生成する。パルス繰り返し周期決定回 路 103は、パルスの繰り返し周期を決定する。尖頭値電力決定回路 104は、パルス 尖頭値電力を決定する。パルス発生回路 105は、送信用パルス列を発生する。変調 器 106は、送信用パルス列を、送信データを用いて変調する。送信調整回路 107は
、送信信号を調整する。帯域制限フィルタ 108Aは、送信帯域を制限する。送信信号 は、アンテナ 109Aより送信される。
[0033] 以上のように構成された送信装置について、図 1を用いて、その動作を説明する。
パルス発生回路 105が送信用パルス列を発生する際に、送信クロック回路が生成す る送信クロック信号を基準とする。パルス繰り返し周期決定回路 103が決定した繰り 返し周期と尖頭値電力決定回路 104が決定したパルス尖頭値電力とを、パルス発生 回路 105に入力する。適宜送信用パルス列のパルス繰り返し周期と各パルスの尖頭 値電力とを変更していく。 [0034] パルス尖頭値電力の決定方法としては、送信データの情報の重要度によって決定 してもよい。重要な情報としては、例えば、通信要求情報、機器認識用情報、同期用 情報などがある。また、パルス尖頭値電力を、通信路の状態に応じて決定しても良い 。通信路の状態としては、マルチパス波の、強度や密度などがある。
[0035] 本実施例では、変調方式を限定しな!、。変調方式は、パルス通信方式にて一般的 に用いられる、例えばパルス位置変調、パルス位相変調、パルス振幅変調、パルス シエープ変調を用 、て実現しても良 、。尖頭値電力の異なるノ ルスについて図 2の パルス列を用いて説明する。図 2は、本実施例における送信装置カゝら送信されたパ ルス波形を、受信装置が受信した場合のパルス波形を示す図である。
[0036] 図 2には、尖頭値電力の低いパルス 601A〜601Dと、尖頭値電力の高いパルス 6 03とが混在している。例えば、尖頭値電力の高いパルス 603に、通信要求情報を付 与し、尖頭値電力の低いパルス 601A〜601Dには、伝送する通信情報を付与する 。なお、ここでは、尖頭値電力が高いパルスと低いパルスとの 2種類の場合で説明す る力 本発明はこれに限定されず、尖頭値電力が異なる少なくとも 2種類のパルスで 構成されていればよい。
[0037] これによつて、送信装置 101から送られた送信信号を受信する装置では、尖頭値 電力の低いパルス 601A〜601Dの受信に対し、尖頭値電力の高いパルス 603の受 信では、より高い SZNでの復調が可能となる。これにより、雑音やマルチパス信号が 大きな経路での通信においても、少なくとも通信要求情報の受信が可能となる。なお 、 ノ ルスの存在しない位置 602は、平均的な送信電力を一定に保ちながら尖頭値電 力の高いパルス 603を出力するために、ノ ルスを出力しない時間的な位置である。
[0038] パルスの存在しない位置 602の設定は、パルス繰り返し周期決定回路 103での周 期決定でパルスの周期を変えること、または、尖頭値電力決定回路 104で尖頭値電 力を 0 (零)とみなせる程度に小さく設定すること、のいずれの方法でも実施可能であ る。以上の様にして、パルス繰り返し周期決定回路と前記尖頭値電力決定回路とが 連動して、送信信号の平均電力が一定となるように、パルス繰り返し周期とパルス尖 頭値電力とを決定する。
[0039] 変調器 106で生成された送信信号は、送信調整回路 107および帯域制限フィルタ 108Aで電力値、周波数帯域を調整して、アンテナ 109Aから送信される。送信調整 回路 107は、増幅器や減衰器による電力値の調整のみならず、局部発振器とミキサ 、スィッチの組み合わせや、発振器の直接変調による周波数変換を行う回路などを 用いて、任意の周波数帯域の信号に周波数変換する構成にしてもよい。
[0040] 受信装置 110は、帯域制限フィルタ 108Bと、受信調整回路 111と、受信パルス信 号生成回路 112と、クロック再生回路 113と、同期回路 114と、復調回路 115とを備 える。帯域制限フィルタ 108Bは、アンテナ 109Bで受信した信号から帯域外の不要 信号を除去する。受信調整回路 111は、受信した信号の電力値を調整する。受信パ ルス信号生成回路 112は、受信信号のパルス整形を行なう。クロック再生回路 113は 、受信ノ ルス信号力も同期信号を抽出する。同期回路 114は、受信クロック回路 117 で生成した受信クロック信号との同期調整が行なわれた同期出力信号を生成する。 復調回路 115は、復調信号、すなわち受信データ、を出力する。
[0041] 以上のように構成された受信装置 110について、その動作を説明する。アンテナ 1 09Bで受信した信号を、帯域制限フィルタ 108Bで帯域外の不要信号を除去した後 、受信調整回路 111で電力値の調整を行う。受信調整回路 111では、前述の送信調 整回路 107と同様に、電力値の調整のみならず、低域通過フィルタ(以下、 LPFと記 す)、局部発振器とミキサ、エンベロープ検波器、相関テンプレートを用いた同期検 波や遅延相関による遅延検波によって、高周波成分の除去を行なってもよい。受信 調整回路 111で調整された受信信号は、受信パルス信号生成回路 112に入力され る。
[0042] 受信パルス信号生成回路 112は、クロック再生や復調用に、受信信号のパルス整 形を行なう。パルス整形としては、例えば比較回路やオーバーサンプリングによる信 号成分の抽出や、パルス幅の調整などがある。受信パルス信号生成回路 112からは 受信パルス信号が出力され、復調回路 115およびクロック再生回路 113に入力され る。クロック再生回路 113では同期信号が抽出される。同期回路 114にて、受信クロ ック回路 117からの受信クロック信号との同期調整が行なわれた同期出力信号が生 成される。復調回路 115にて復調処理が行われ、復調信号 (受信データ)が出力され る。 [0043] 以上の受信装置 110の動作において、送信装置 101の動作説明でも記載したが、 雑音やマルチパス信号が大きな経路を伝搬した受信信号は SZNが低ぐ例えば受 信調整回路 111で比較回路を用いた信号検波を行なった場合、比較基準電圧と雑 音電圧の差が小さいため、雑音成分を信号成分として誤認識したり、信号成分の見 落としをしやすぐ誤りの多い受信信号を生成してしまう。
[0044] これに対し尖頭値電力の大きなパルスは、比較基準電圧と雑音電圧の差を大きくと ることができるため、誤りの少ない受信信号を生成することが可能である。クロック再 生回路 113は、尖頭値電力の大きなパルスを選別して基準とすることで、尖頭値電 力の小さなパルスを含め、正確に受信データを得ることができる。
[0045] 以上のように、本発明の第 1実施例の送信装置、受信装置および通信システムによ れば、送信装置側で、送信信号のパルス繰り返し周期と各パルスの尖頭値電力を適 宜変更することで、受信装置側で、 SZN改善効果が大きぐ実効的なスループットが 低下せず、拡散信号同期用回路を多数必要とせず、回路は複雑化せず、容易にパ ルスの捕捉、同期保持を実現し、機器の小型化、低消費電力化を実現できる。
[0046] なお、以上の説明では、尖頭値電力の大きなパルスに付与する情報を限定しない 例で説明したが、同期情報を付与した場合の例について、図 3を用いて説明する。 図 3は、本実施例における送信装置、受信装置および通信システムの構成を示すも う一つのブロック図である。本実施例の通信システムは、送信装置 201と、受信装置 203とを含む。図 3において、図 1と同じ構成については同じ符号を用い、説明を省 略する。本実施例では、送信装置に同期情報抽出回路 202を、受信装置に選別回 路 205を設けている。受信パルス信号生成回路 204は、受信調整回路 111の出力 により、受信パルス信号を生成し、選別回路 205に出力する。クロック再生回路 206 は、選別回路 205からの同期パルス信号によりクロックを再生する。
[0047] 以上のように構成された送信装置、受信装置および通信システムにお 、て、例えば 、同期情報が送信データの一部として生成される場合では、送信装置 201に入力さ れた送信データは、同期情報抽出回路 202に入力されて同期情報のタイミングを抽 出し、これをもとに尖頭値電力決定回路 104がパルスの尖頭値電力を決定する。受 信装置 203〖こは、同期情報が付与された尖頭値電力の大きなパルスのみを抽出す る選別回路 205が備えられて 、て、ここで同期パルス信号を生成することでクロック再 生を行なう。これにより、受信装置 203では正確な同期タイミングを得ることができ、正 確な同期タイミングで受信ノ ルス信号をサンプリングすることによって、 SZN比の小 さな受信パルス信号を復調しても、復調誤り発生を低く抑えることができる。
[0048] また、以上の説明では、クロック信号の同期を尖頭値電力の大きなノ ルスを用いて 行なう例を示した。本発明はこれに限定されず、スペクトル拡散通信の機能を備えた 送信装置および受信装置において、拡散符号の開始時間位置を尖頭値電力の大き なノ ルスに付与することで、符号同期を短時間で実現するように実施してもよい。
[0049] また、以上の説明では、同期情報等の選定された情報に尖頭値電力の大きなパル スを付与する例で説明したが、図 4に示す構成とすることで送信データとは無関係に 尖頭値電力大きなパルスを適当に付与する構成としてもよい。図 4は、本実施例にお ける送信装置の構成を示すもう一つのブロック図である。図 4において、図 1と同じ構 成については同じ符号を用い、説明を省略する。図 4において、本実施例の送信装 置 401は、パルス尖頭値電力設定回路 402を有し、この回路が設定するタイミングに 基づき、尖頭値電力の大きなパルスの付与が尖頭値電力決定回路 104により実施さ れる。
[0050] パルス尖頭値電力設定回路 402としては、例えば、一定の時間ごとに尖頭値電力 の大きなノ ルスを設定するタイマ回路 402Aや、乱数発生回路である乱数を発生しラ ンダムに尖頭値電力の大きなパルスを設定するランダムタイミング発生機能回路 402 Bなどがある。例えばタイマ回路 402Aであれば、受信装置では一定の時間ごとに尖 頭値電力の大きなパルスが受信されるため、パルスの到達時間の推定が容易になり 、 ノ《ルスの捕捉、同期保持が簡単となる。ランダムタイミング発生機能回路 402Bであ れば、周期的な信号が、特定のマルチパス環境で相殺されたり、他の機器が発する 周期的な信号と常に干渉してしまうことを回避することが可能となる。これらにより、受 信装置で低誤りでのパルスの捕捉、同期保持を実現することができる。
[0051] あるいは、まずタイマ回路 402Aにて周期的に尖頭値電力の大きなパルスを送信し 、前述のマルチパス環境や他機器との干渉の問題が起きた場合に、ランダムタイミン グ発生機能回路 402Bに、切替部 402Cで切り替えて動作してもよい。 [0052] また、以上の説明では、送信装置と受信装置とに、クロック回路を備えた場合で説 明したが、送信装置と受信装置とが近接している場合は、送信クロック回路と受信クロ ック回路とは同一のクロック回路としてもよい。
[0053] 以上の説明では通信情報の重要度によってパルスの周期および尖頭値電力を変 更する例を示したが、前述のように通信路の状態に応じてこれを決定しても良い。以 下に、通信路の状態として、マルチノ ス波の強度や密度によるパルスの周期および 尖頭値電力の変更の実施例について図 5、図 6を用いて説明する。図 5および図 6は 、本形態例における送信装置が送信し、受信装置が受信した他のパルス波形を示す 図である。送信信号 801Aは、 OOK変調した信号であり、パルス 802の有無によって ' 1 'と' 0'を表している。
[0054] 受信信号 801Bは、マルチパス波 803を伴った信号を示す。信号 801Cは、受信信 号 801Bをエンベロープ検波した信号を示す。検波後信号 801Cを所定のしきい値 8 04で評価し、これより大きい信号を' 1 '、小さければ' 0'と判定する。信号 801Dは、 しきい値 804を超える信号が入力された場合を信号あり、これを下回る信号が入力さ れた場合は信号なしとする AZD変換 (2値化)した信号である。信号 801Eは、マル チパスがなぐ理想的に AZD変換できた場合の信号であり、信号 801Dと信号 801 Eとを比較すると、検出タイミングずれ発生 805が存在する。
[0055] これはマルチパス波 803によってシンボル間干渉が発生し、パルス波形が歪んだ ためである。検出タイミングずれ 805が発生すると、 AZD変換後の信号 801Dをもと に行なう同期追従のジッタ増加による復調誤りの増加となる。また、このジッタが大きく なると、同期引き込みができなくなったり、一度引き込めても同期が外れたりと、通信 品質の大きな劣化につながる。
[0056] 図 6に示すように、尖頭値電力の大きいパルス 902を混在させることで、前記の通 信品質劣化を改善する実施例を示す。送信信号 901Aでは、尖頭値電力の大きい パルス 902を、例えば、 4回に 1回挿入している。図 5と同様、マルチパス波を含む受 信信号 901Bをエンベロープ検波し、検波後の信号 901Cを得る。これを、しきい値 9 03で判定する。なお、この場合のしきい値 903は、図 5中のしきい値 804よりも大きい 値としてもよい。 AZD変換後は信号 901Dとなり、図 5での信号 801Dと比べると、パ ルス数は減るものの、検出タイミングずれ発生 904は、図 5での信号のそれ(図中の 破線矢印)と比べ、マルチノ スがない場合の信号 901Eとのずれ(図中の実線矢印) が小さくなる。
[0057] これは、尖頭値電力の大きいパルス 902では、前のパルスからのシンボル間干渉が 小さくなるため、その影響が小さくなり、ノ ルス波形歪が小さくなるためである。以上に 説明したように、尖頭値電力の大きなノ ルスを所定の間隔で挿入することにより、マ ルチパス波が存在する環境でも通信品質の劣化を防ぎ、短時間での同期引き込み、 精度の高い同期追従を実現できる。なお、尖頭値電力の大きいパルスは、同期ジッ タを受信状態推定回路で評価し、所定のしき 、値を越えたことを検出した場合に挿 入するようにしても良い。また、挿入する周期、挿入するノ ルスの電力についても、し きい値を複数設定し、ジッタが大きければ、より大電力のノ ルスを、周期を短く挿入す るように制御してちょい。
[0058] (第 2実施例)
図 7は、本発明の第 2実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。本実施例が第 1実施例と異なるのは、通信機能と共に 測距機能を備えた構成としている点である。本実施例の通信システムは、送信装置 3 01と、受信装置 308とを含む。
[0059] 第 1実施例と同様に、送信装置 301では尖頭値電力決定回路 303を用いて尖頭値 電力の大きなノ ルスと、尖頭値電力の小さなパルスを混在して送信する。この際に、 本実施例では、尖頭値電力の大きなパルスに測距用のデータ、尖頭値電力の小さな パルスに通信用のデータを付与する。なお、以下の説明では、尖頭値電力の大きな パルスに測距用のデータのみを与えた例について説明する。しかし、本発明は、先 頭値電力の大きなパルスに測距用のデータのみならず、例えば同期用データのよう な通信にも利用できる情報を与えることで、測距と通信との両方に利用するように実 施することも可能である。
[0060] 通信用のデータと測距用のデータとは、共に送信データ生成回路 302に入力され て送信データとして出力される。送信データは、尖頭値電力決定回路 303に入力さ れて、前述のように、通信用データと測距用データのタイミングにあわせて尖頭値電 圧が決定され、パルス発生回路 304に入力され、尖頭値電圧の異なるパルスが出力 される。それぞれのデータは、合わせて変調器 305に入力され、適当な変調方式に て変調され送信信号が生成され、送信調整回路 107、帯域制限フィルタ 108Aを経 て、アンテナ 109A力 送信される。
[0061] 通信信号は、他の装置 306に受信され、例えば、第 1実施例にて詳細に記載され たように、通信機としての信号の処理が行なわれる。返送された信号が、受信装置 30 8のアンテナ 109Bで受信され、帯域制限フィルタ 108B、受信調整回路 111を経て、 受信信号として受信パルス信号生成回路 309に入力される。受信パルス信号生成回 路 309で生成された受信パルス信号は、クロック再生回路 310、同期回路 114を経 て、同期出力信号として復調回路 115に入力され、復調回路 115は、復調信号 (受 信データ)を出力する。
[0062] 次に測距動作について説明する。ここでは、測距対象物体 307からの反射信号を 用いて、距離を測定する例について記述する。送信装置 301から送信された測距信 号は、測距対象物体 307に到達し、反射して反射信号として受信装置 308のアンテ ナ 109Bで受信される。この反射信号も通信信号と同様、受信パルス信号生成回路 3 09で受信ノ ルス信号として出力されるが、選別回路 205にて選別され、受信測距用 信号として出力される。
[0063] なお、選別方法としては例えば、簡単に受信パルス信号の電力差による方法や、 測距用データと通信データとに異なる拡散コードを用いる方法や、送信装置の送信 時間より測距用データの反射信号到達時間を推定する方法などがある。遅延時間算 出回路 312は、クロック信号と受信パルス信号との時間差より時間差信号を生成する 時間差信号生成回路と、時間差信号生成回路が生成した時間差信号より信号飛行 距離を推定する信号飛行距離推定回路とを含む。選別回路 205で選別された受信 測定用信号は、遅延時間算出回路 312に入力され、送信信号との時間差を算出す ることによって距離を求め、復調信号 (測距データ)として出力する。この際の送信信 号としては、パルス発生回路 315の信号を、遅延時間を補正する遅延補正回路 311 で調整した信号を用いる。
[0064] 以上のように、本発明の第 2実施例の送信装置、受信装置および通信システムによ れば、送信信号のパルス繰り返し周期と各パルスの尖頭値電力とを適宜変更し、尖 頭値電力の大きな信号で対象物までの測距を行な 、、尖頭値電力の小さな信号で 他機器との通信を行なうことで、簡単な回路構成で、通信と測距とを実現できる。
[0065] なお、以上の説明では、送信信号と測距対象物体からの反射信号との時間差をも とに距離を計算する例について記載したが、通信相手が受信して力も返信するまで の時間を既知とすることで、送信信号と通信相手力ゝらの返信との時間差をもとに距離 を計算しても同様に実施可能である。
[0066] (第 3実施例)
図 8は、本発明の第 3実施例における送信装置、受信装置および通信システムの 構成を示すブロック図である。本実施例が第 1実施例と異なるのは、送信装置が受信 装置からの要求に応じて、パルス繰り返し周期とパルス尖頭値電力との少なくとも一 方を調整する構成として ヽる点である。
[0067] 図 8において、送信装置 501Aと受信装置 502Aとの組み合わせ力 主に送信を行 なう側の通信システムを示して 、る。送信装置 501Bと受信装置 502Bとの組み合わ せ力 主に受信を行う側の通信システムを示している。これらは、大きくは第 1実施例 と同様の構成となっている。送信クロック回路 102a〜bは、送信クロック回路 102と、 同様の構成である。パルス繰り返し周期決定回路 103a〜bは、パルス繰り返し周期 決定回路 103と、同様の構成である。尖頭値電力決定回路 104a〜bは、尖頭値電 力決定回路 104と、同様の構成である。パルス発生回路 105a〜bは、パルス発生回 路 105と、同様の構成である。
[0068] 変調器 106a〜bは、変調器 106と、同様の構成である。送信調整回路 107a〜bは 、送信調整回路 107と、同様の構成である。帯域制限フィルタ 108c〜dは、帯域制 限フィルタ 108a〜bと、同様の構成である。アンテナ 109c〜dは、アンテナ 109a〜b と、同様の構成である。受信調整回路 l l la〜bは、受信調整回路 111と、同様の構 成である。受信パルス信号生成回路 112a〜bは、受信パルス信号生成回路 112と、 同様の構成である。クロック再生回路 113a〜bは、クロック再生回路 113と、同様の 構成である。同期回路 114a〜bは、同期回路 114と、同様の構成である。復調回路 1 15a〜bは、復調回路 115と、同様の構成である。 [0069] 異なるのは、受信状態推定回路 503A、 503Bを備えて 、ることである。送信装置 5 01Aから送信された信号を受信した受信装置 502Bが、復調回路 115Bの出力を受 信状態推定回路 503Bにて受信状態を推定する。あるいは、同期回路 114Bで生成 する同期出力信号の位相変化の例えば平均値をもとに、受信状態を推定する。推定 した受信状態に応じて、自局のパルス繰り返し周波数とパルス尖頭値電力とを決定し 、返信する。
[0070] 返信としては、例えば確認 (Acknowledgement:以下、 ACKと記す)信号による 通信継続や、現状の繰り返し周期とパルス尖頭値での同期との可否を知らせる信号 などがある。受信状態推定回路 503Bで推定したパルス尖頭値電力設定情報や、パ ルス繰り返し周波数設定情報を、送信データ生成回路 505を介して送信データに加 える。返信を受信した受信装置 502Aの受信状態推定回路 503Aにて、通信相手の 受信状態情報を取得し、例えば ACK信号であれば、そのままの繰り返し周期と尖頭 値電力とで通信を継続する。また、例えば低受信電力を知らせる信号であれば、繰り 返し周期を下げることでパルス尖頭値電力を大きくして、受信装置 502Bでより大きな 尖頭値電力のパルスの受信を可能とする。受信電力過多を知らせる信号であれば、 尖頭値電力を下げる。
[0071] また、受信装置 502Bが処理可能なデータレートについても、対応可能なデータレ ートが高ければ、ノ ルス繰り返し周期を上げ、データレートが低ければ、繰り返し周期 を下げる、などを行なう。なお、初期状態での送信装置 501Aから受信装置 502Bへ のパルス繰り返し周期は、あら力じめ取り決めた初期値にて行なうことや、いずれかの 装置が適宜設定値を変更して通信相手と一致させるようにしてもよ!、。
[0072] 以上のように、本発明の第 3実施例の送信装置、受信装置および通信システムによ れば、通信相手の受信状態に応じて送信信号のパルス繰り返し周期および各パルス の尖頭値電力の少なくとも一方を適宜変更して通信を行なう。これにより、簡単な回 路構成でのパルスの捕捉、同期保持を実現し、機器の小型化、低消費電力化を実 現できる。
[0073] なお、以上の説明では、受信状態推定回路 503Aにて、通信相手である送信装置 501Bからの信号を検出し、受信状態情報を取得する例について記載したが、本発 明は、これに限定されない。例えば、周波数帯域を共用する他の機器からの電波を 検出し、これに干渉しな 、ように繰り返し周期や尖頭値電力を変更するようにしてもよ い。
産業上の利用可能性
[0074] 以上のように、本発明に力かる送信装置と受信装置とを含む通信システムは、送信 装置が、パルス発生回路と、パルス繰り返し周期決定回路と、尖頭値電力決定回路 と、変調器とを含む構成とし、受信装置が、受信パルス信号生成回路と、選別回路と 、同期回路と、復調回路とを備える。パルス発生回路は、パルス列を発生する。パル ス繰り返し周期決定回路は、パルス発生回路が発生するパルス列のパルス繰り返し 周期をクロック信号に基づき決定する。
[0075] 尖頭値電力決定回路は、パルス発生回路が発生するパルス列のパルス尖頭値電 力を決定する。変調器は、パルス発生回路が発生したパルス列を送信データで変調 して送信信号を生成する。受信パルス信号生成回路は、受信信号に基づき短パルス を再現して受信パルス信号を生成する。選別回路は、受信パルス信号のパルス尖頭 値電力の大きさに基づきパルスを選別する。同期回路は、クロック信号を選別回路が 選別した受信パルス信号により同期して同期出力信号を生成する。
[0076] 復調回路は、同期回路からの同期出力信号と選別回路からの受信パルス信号とに より復調信号を生成する。これにより、受信装置側で、 SZN改善効果が大きぐ実効 的なスループットが低下せず、拡散信号同期回路を多数必要とせず、回路は複雑化 せず、機器は大型化せず、消費電力も増力 tlしないという効果を有する。本発明は、例 えばパルス波形のような広帯域信号を用いた送信装置、受信装置および通信システ ム等として有用である。

Claims

請求の範囲
[1] パルス列を発生するパルス発生回路と、
前記パルス列のパルス繰り返し周期を、クロック信号をもとに決定するパルス繰り返し 周期決定回路と、
前記パルス列のパルス尖頭値電力を決定する尖頭値電力決定回路と、
前記パルス列を送信データで変調して送信信号を生成する変調器と、
を含む送信装置。
[2] 前記パルス繰り返し周期決定回路と前記尖頭値電力決定回路とが連動して、前記送 信信号の平均電力が一定となるように、前記パルス繰り返し周期と前記パルス尖頭 値電力とを決定する請求項 1に記載の送信装置。
[3] 前記送信信号が、少なくとも尖頭値電力の異なる 2種類のパルスより構成されている 請求項 1に記載の送信装置。
[4] 前記変調器は、前記パルス尖頭値電力の大きなパルスに同期情報の少なくとも一部 を割り当てる請求項 1に記載の送信装置。
[5] 前記変調器は、前記パルス尖頭値電力の大きなパルスに距離測定用の信号を割り 当てる請求項 1に記載の送信装置。
[6] 前記変調器は、変調方式が、パルス位置変調、パルス位相変調、パルス振幅変調の
V、ずれかである請求項 1に記載の送信装置。
[7] 乱数を発生する乱数発生回路をさらに含み、
前記尖頭値電力決定回路は、前記乱数に基づき、前記パルス尖頭値電力を決定す る請求項 1に記載の送信装置。
[8] 時間間隔を指定するタイマ回路をさらに含み、
前記尖頭値電力決定回路は、前記指定された時間間隔に基づき、前記パルス尖頭 値電力を決定する
請求項 1に記載の送信装置。
[9] 前記送信装置は、
受信装置が受信した情報に基づ!、て、前記パルス繰り返し周期決定回路で決定す るパルス繰り返し周期と前記尖頭値電力決定回路で決定するパルス尖頭値電力との 少なくとも一方を変更する請求項 1に記載の送信装置。
[10] 前記受信装置が受信した情報は、前記送信信号を送信した通信相手の装置からの 受信状態を示す情報である請求項 9に記載の送信装置。
[11] 前記受信装置が受信した情報は、前記送信信号を送信した通信相手以外の装置か らの情報である請求項 9に記載の送信装置。
[12] 受信信号に基づき短パルスを再現して受信パルス信号を生成する受信パルス信号 生成回路と、
前記受信パルス信号のパルス尖頭値電力の大きさに基づきパルスを選別する選別 回路と、
前記選別回路が選別した受信パルス信号により、クロック信号を同期して、同期出力 信号を生成する同期回路と、
前記同期回路からの同期出力信号と前記選別回路力 の受信パルス信号とにより復 調信号を生成する復調回路と、
を備える受信装置。
[13] 前記選別回路は、パルス尖頭値電力の大きなパルスを選別し、
前記同期回路は、前記選別回路が選別したパルス尖頭値電力の大きなパルスで前 記クロック信号を同期し、
前記復調回路は、前記パルス尖頭値電力の小さなパルスの受信復調処理を行なう 請求項 12に記載の受信装置。
[14] 前記選別回路は、パルス尖頭値電力の大きなパルスを選別し、
前記同期回路は、前記選別回路が選別したパルス尖頭値電力の大きなパルスで拡 散信号の同期を取る
請求項 12に記載の受信装置。
[15] 前記クロック信号と前記受信パルス信号との時間差から時間差信号を生成する時間 差信号生成回路と、
前記時間差信号を用いて、信号飛行距離を推定する信号飛行距離推定回路と、 を備える請求項 12に記載の受信装置。
[16] 前記復調回路で取得した他の装置の受信情報を、送信装置に出力する請求項 12 に記載の受信装置。
[17] 前記他の装置は、前記送信装置の通信相手の装置である請求項 16に記載の受信 装置。
[18] 前記他の装置は、前記送信装置の通信相手以外の装置である請求項 16に記載の 受信装置。
[19] 請求項 1乃至請求項 11のいずれか 1項に記載の送信装置と、
請求項 12乃至請求項 18のいずれか 1項に記載の受信装置と、
を含む通信システム。
[20] 前記受信装置が、前記同期回路で生成する同期出力信号の位相変化をもとに、通 信状態を推定する受信状態推定回路を有し、
前記受信状態推定回路が、前記位相変化をもとに、前記送信装置が送信する前記 尖頭値電力の大きいパルスの尖頭値電力および前記パルス繰り返し周期の少なくと も一方を決定する
請求項 19に記載の通信システム。
[21] 前記同期回路が生成する同期出力信号の位相変化の平均値をもとに、前記パルス の尖頭値電力および前記パルス繰り返し周期の少なくとも一方を決定する請求項 20 に記載の通信システム。
PCT/JP2006/304547 2005-03-29 2006-03-09 送信装置、受信装置および通信システム WO2006103892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800080508A CN101138213B (zh) 2005-03-29 2006-03-09 发送装置、接收装置和通信系统
US11/908,862 US8254437B2 (en) 2005-03-29 2006-03-09 Transmitting apparatus, receiving apparatus and communication system
US13/552,055 US20120281740A1 (en) 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005094252 2005-03-29
JP2005-094252 2005-03-29
JP2006060854A JP4821375B2 (ja) 2005-03-29 2006-03-07 送信装置および通信システム
JP2006-060854 2006-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/552,055 Continuation US20120281740A1 (en) 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system

Publications (2)

Publication Number Publication Date
WO2006103892A1 WO2006103892A1 (ja) 2006-10-05
WO2006103892A9 true WO2006103892A9 (ja) 2007-04-26

Family

ID=37053158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304547 WO2006103892A1 (ja) 2005-03-29 2006-03-09 送信装置、受信装置および通信システム

Country Status (4)

Country Link
US (2) US8254437B2 (ja)
JP (1) JP4821375B2 (ja)
CN (1) CN101138213B (ja)
WO (1) WO2006103892A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109668B2 (ja) 2007-03-09 2012-12-26 セイコーエプソン株式会社 受信装置および受信方法
JP5355936B2 (ja) * 2007-06-28 2013-11-27 日本信号株式会社 リーダライタ、及び物品仕分システム
JP4995034B2 (ja) * 2007-10-26 2012-08-08 パナソニック株式会社 Uwb無線通信システムおよびそれを用いる非接触idシステム
EP2509233A3 (en) * 2008-05-27 2012-12-26 Panasonic Corporation Reception device
US9503213B2 (en) 2012-12-24 2016-11-22 Intel Corporation Systems and methods for data rate optimization in a WCAN system with injection-locked clocking
US9172424B2 (en) * 2014-03-04 2015-10-27 Qualcomm Incorporated Network self-synchronization using ultra wide band (UWB) impulse radio (IR) pulse train with unique repetition rates
US9781022B2 (en) * 2014-04-18 2017-10-03 Sital Technology Ltd. Fault detection in communication system
CN104617929B (zh) * 2014-12-26 2017-12-19 矽力杰半导体技术(杭州)有限公司 数据信号检测电路、方法和非接触供电装置
EP3382969A1 (en) * 2017-03-31 2018-10-03 Intel IP Corporation Modulation circuit and apparatus, demodulation circuit and apparatus, transmitter, receiver, system, radio frequency circuit, mobile terminal, methods and computer programs for modulating and demodulating
JP2019175626A (ja) * 2018-03-27 2019-10-10 パナソニックIpマネジメント株式会社 機器制御システム、及び、判定方法
CN111427052B (zh) * 2020-06-09 2020-11-27 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和相关测距系统
US11799549B2 (en) 2021-08-13 2023-10-24 Ciena Corporation Express mesh intersatellite optical coherent networking
US11711270B1 (en) 2022-04-19 2023-07-25 Ciena Corporation Creating an optimal node interconnect topology given certain constraints

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888011B2 (ja) 1992-02-12 1999-05-10 日本電気株式会社 パルス通信方式
CN1195310A (zh) * 1996-04-26 1998-10-07 标记和编辑整理工业服务有限公司 用于标记或穿孔的系统和工序
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US6661820B1 (en) * 1999-08-09 2003-12-09 Perceptron, Inc. Method and system for maximizing safe laser power of structured laser light projectors used with imaging sensors
DE10005975A1 (de) * 2000-02-09 2001-08-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsverfahren für eine Entladungslampe mit mindestens einer dielektrisch behinderten Elektrode
JP3538358B2 (ja) * 2000-02-17 2004-06-14 三菱電機株式会社 プログラマブル・コントローラ
US6959031B2 (en) * 2000-07-06 2005-10-25 Time Domain Corporation Method and system for fast acquisition of pulsed signals
US6560463B1 (en) * 2000-09-29 2003-05-06 Pulse-Link, Inc. Communication system
KR100403614B1 (ko) * 2000-11-29 2003-11-01 삼성전자주식회사 고밀도 광기록을 위한 적응적 기록 제어 방법
TW560805U (en) 2001-04-16 2003-11-01 Interdigital Tech Corp A time division duplex/code division multiple access (FDD/CDMA) user equipment
JP2003060618A (ja) * 2001-08-17 2003-02-28 Sony Corp 送信機、受信機、無線通信システム、無線送信方法、無線受信方法、プログラム並びにプログラム記録媒体
US7609608B2 (en) * 2001-09-26 2009-10-27 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
JP2003143109A (ja) 2001-11-02 2003-05-16 Sony Corp 受信装置およびその方法
US7103109B2 (en) * 2003-02-10 2006-09-05 Mitsubishi Electric Research Laboratories, Inc. Randomly inverting pulse polarity in an UWB signal for power spectrum density shaping
JP2004266585A (ja) * 2003-03-03 2004-09-24 Hitachi Ltd 無線通信システム及びその送信電力並びにデータレート制御方法
JP2005006291A (ja) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd パルス変調型無線通信装置
JP4265332B2 (ja) * 2003-07-28 2009-05-20 パナソニック株式会社 Uwb装置
TW200534655A (en) * 2004-01-26 2005-10-16 Seiko Epson Corp Information transmission method, electronic apparatus, and wireless communication terminal
WO2005096279A1 (ja) * 2004-03-30 2005-10-13 Matsushita Electric Industrial Co., Ltd. 情報記録方法、情報記録装置および情報記録媒体
JP2006087023A (ja) * 2004-09-17 2006-03-30 Toshiba Corp 無線通信装置、および情報処理装置

Also Published As

Publication number Publication date
JP2006311511A (ja) 2006-11-09
US20120281740A1 (en) 2012-11-08
JP4821375B2 (ja) 2011-11-24
US20100040168A1 (en) 2010-02-18
CN101138213A (zh) 2008-03-05
CN101138213B (zh) 2011-09-21
WO2006103892A1 (ja) 2006-10-05
US8254437B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
WO2006103892A9 (ja) 送信装置、受信装置および通信システム
US7664160B2 (en) Transmitting device, receiving device, and communication system
US7548576B2 (en) Self organization of wireless sensor networks using ultra-wideband radios
US20030108133A1 (en) Apparatus and method for increasing received signal-to-noise ratio in a transmit reference ultra-wideband system
US7590198B2 (en) Impulse-based communication system
US7796686B2 (en) Adaptive ultrawideband receiver and method of use
US8175274B2 (en) Range measurement apparatus and method using chaotic UWB wireless communication
US20040042561A1 (en) Method and apparatus for receiving differential ultra wideband signals
US20110069738A1 (en) Reception device
US7822159B2 (en) Master side communication apparatus and slave side communication apparatus
US8054915B2 (en) Method and device for adjusting a pulse detection threshold, and pulse detection and corresponding receiver
US8036259B2 (en) Interactive wireless communication device
US8451888B2 (en) Communication apparatus
US7342972B1 (en) Timing synchronization using dirty templates in ultra wideband (UWB) communications
KR100818173B1 (ko) 고속 디지털 샘플러 및 이를 이용한 근거리 임펄스 비동기무선 통신 시스템
US7573933B2 (en) Adaptive delay adjustment for transmitted reference impulse radio systems
US20090154541A1 (en) Transmitter, receiver and communication terminal system
JP4710733B2 (ja) 無線受信装置
JP2008072502A (ja) 送信装置、無線通信システム、タイミング調整方法、および受信装置
Dan et al. A novel presence detector for burst signals based on the fluctuation of the correlation function
JP2004208112A (ja) 無線通信システム、受信装置および情報受信方法
KR100714918B1 (ko) 확산 대역 패킷 무선 시스템을 위한 적응적 패킷 통신 방법 및 패킷 수신 장치
JPH09238091A (ja) スペクトラム拡散通信方法および装置
JP2003032162A (ja) 受信方法、送信方法並びに受信装置、送信装置並びに無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008050.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11908862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728814

Country of ref document: EP

Kind code of ref document: A1