WO2006103846A1 - 電子内視鏡用信号処理装置及び電子内視鏡装置 - Google Patents

電子内視鏡用信号処理装置及び電子内視鏡装置 Download PDF

Info

Publication number
WO2006103846A1
WO2006103846A1 PCT/JP2006/303074 JP2006303074W WO2006103846A1 WO 2006103846 A1 WO2006103846 A1 WO 2006103846A1 JP 2006303074 W JP2006303074 W JP 2006303074W WO 2006103846 A1 WO2006103846 A1 WO 2006103846A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic endoscope
solid
signal
information
state imaging
Prior art date
Application number
PCT/JP2006/303074
Other languages
English (en)
French (fr)
Inventor
Takashi Takemura
Original Assignee
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp. filed Critical Olympus Medical Systems Corp.
Priority to CA002602242A priority Critical patent/CA2602242A1/en
Priority to US11/887,315 priority patent/US20090027489A1/en
Priority to AU2006229031A priority patent/AU2006229031A1/en
Priority to EP06714214A priority patent/EP1864605A1/en
Publication of WO2006103846A1 publication Critical patent/WO2006103846A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to an electronic endoscope signal processing device and an electronic endoscope device that perform signal processing on an electronic endoscope that includes a plurality of solid-state imaging devices.
  • An electronic endoscope provided with a solid-state image sensor at the distal end of an insertion portion has been widely adopted for endoscopy in medical fields, treatment with a treatment tool, and the like.
  • Japanese Unexamined Patent Application Publication No. 2003-26410 displays information on a treatment instrument channel of an electronic endoscope on a monitor screen.
  • the preceding example allows the user to divide the outer diameter of the treatment tool such as forceps that can be used and which direction force treatment tool comes out on the endoscope screen.
  • the solid-state image sensor force used for observation is switched to the other solid-state image sensor or selected.
  • the position of the distal end opening of the treatment instrument channel changes with respect to the switched solid-state imaging device. For this reason, in the preceding example, even when the same forceps are used, the direction in which the forceps appear in the observation visual field is different, which is different from the information on the displayed treatment instrument channel.
  • the present invention has been made in view of the above-described points.
  • one solid-state image sensor actually used in an electronic endoscope equipped with a plurality of solid-state image sensors is selected, the selection is performed. It is an object of the present invention to provide an electronic endoscope signal processing device and an electronic endoscope device that enable display of appropriately corresponding information.
  • the signal processing apparatus for an electronic endoscope of the present invention includes an endoscope connecting portion to which an electronic endoscope provided with at least a plurality of solid-state imaging elements is connected,
  • a signal processing circuit for performing a signal processing on an output signal of one selected solid-state imaging device based on the selection signal and generating a video signal
  • An information switching control unit that switches information related to the electronic endoscope displayed on a display device corresponding to one solid-state imaging device for which the output signal is selected;
  • the information switching control unit can make appropriate information related to the electronic endoscope displayed on the display device corresponding to the case of the actually selected solid-state imaging device. .
  • the electronic endoscope apparatus of the present invention includes an electronic endoscope provided with a plurality of solid-state imaging elements, and at least one output signal of the plurality of solid-state imaging elements provided in the electronic endoscope.
  • a signal processing circuit for performing a signal processing on an output signal of one selected solid-state imaging device based on the selection signal and generating a video signal
  • An information switching control unit that switches information related to the electronic endoscope displayed on a display device corresponding to one solid-state imaging device for which the output signal is selected;
  • the information switching control unit can make appropriate information related to the electronic endoscope displayed on the display device corresponding to the case of the actually selected solid-state imaging device.
  • FIG. 1 is a block diagram showing the overall configuration of an electronic endoscope apparatus provided with Embodiment 1 of the present invention.
  • FIG. 2 is a front view of the tip.
  • FIG. 3 is a diagram showing a configuration of a rotary filter, filter characteristics, and the like.
  • FIG. 4 is a flowchart showing the operation contents in the present embodiment.
  • FIG. 5A is a diagram showing a monitor display screen in the normal observation mode.
  • FIG. 5B is a diagram showing a monitor display screen in the fluorescence observation mode.
  • An object of the present invention is to provide an electronic endoscope signal processing device and an electronic endoscope device capable of appropriately displaying information related to the electronic endoscope.
  • an electronic endoscope apparatus 1 including Example 1 of the present invention is inserted into a body cavity, and an electronic endoscope 2 for observing and treating a subject such as an affected part, and the electronic endoscope A light source device 3 that supplies RGB light for special observation and special light for special observation to the mirror 2, and an electronic device that generates a video signal by performing signal processing on the endoscope video signal imaged by the electronic endoscope 2
  • the processor 4 as an endoscope signal processing device, the video signal output from the processor 4 being input, the monitor 5 displaying an endoscopic image corresponding to the video signal, and the video signal Equipped with a VTR40 as a video signal recording device that records video
  • the electronic endoscope 2 includes an insertion portion 6 that is inserted into the body cavity of a patient, and an operation portion 7 that is provided at the rear end of the insertion portion 6. 8 is extended.
  • a light guide 9 for transmitting illumination light is inserted into the insertion portion 6, and a light guide connector 10 a at the rear end is detachably connected to the light source device 3.
  • This light guide 9 transmits illumination light from the light source device 3 (excitation light at the time of fluorescence observation in the special light observation mode), and the light guide tip attached to the illumination window at the tip 11 of the insertion portion 6
  • Illumination light is emitted from the surfaces 9a and 9b (see FIG. 2) to illuminate a subject such as an affected area (excitation light is irradiated during fluorescence observation).
  • first and second charge-coupled devices (abbreviated as CCD) 13A and 13B are disposed as solid-state image sensors at the imaging positions of the objective lens systems 12A and 12B, respectively.
  • the second CCD 13B is a high-sensitivity CCD having an amplification function inside the CCD element, and is used only in the fluorescence observation mode in the special light observation mode.
  • the first CCD13A is used in the normal observation mode (visible observation mode) for observation in the visible region, and in the infrared light observation mode and the narrowband light observation mode (except for the fluorescence observation mode) in the special light observation mode. used.
  • the objective lens systems 12A and 12B are zoom optical systems in which a zoom magnification can be changed by moving a part of the lenses of the objective lens systems 12A and 12B in the optical axis direction by driving means (not shown). Is formed.
  • the objective lens systems 12A and 12B may be of a zoom optical system or may not be a zoom optical system.
  • the excitation light cut filter 14 is provided in front of the CCD 13B in order to observe the fluorescence by cutting the excitation light.
  • the signal lines 15a and 15b having one end connected to both CCDs 13A and 13B are passed through the insertion portion 6, the operation portion 7 and the universal cable 8, and the other end reaches the signal connector 10b at the end of the universal cable 8. .
  • the signal connector 10b is detachably connected to the signal connector receiver 4a of the processor 4.
  • This signal connector receiver 4a constitutes an endoscope connecting portion to which the electronic endoscope 2 is detachably connected.
  • switching switches 16a and 16b that can be switched in conjunction with each other are provided in the signal connector 10b. Then, by switching the signal lines 15a and 15b connected to both the CCDs 13A and 13B via the switching switches 16a and 16b, one CCD to be actually used for imaging can be selected according to the observation mode. .
  • the switching means for switching both the CCDs 13A and 13B is provided in the electronic endoscope 2. However, the CCD to be driven on the processor 4 side may be switched without providing the switching means. Good.
  • a channel 17 is provided in the insertion portion 6, and this channel 17 is opened at a treatment tool penetration port 18 near the front end of the operation portion 7.
  • the treatment tool 19 can be inserted from the pier 18.
  • the channel 17 is opened as a tip opening 17 a on the tip surface of the tip portion 11. Then, the surgeon can project the distal end side of the treatment tool 19 inserted through the channel 17 from the distal opening 17a to collect the affected tissue, or perform a treatment such as excision of the lesioned part with the treatment tool. it can.
  • an air / water supply pipe (not shown) is provided in the insertion portion 6, and the nozzle 20 at the tip of the air / water supply pipe is, for example, an objective lens system 12B and its extension destination as shown in FIG. It faces the objective lens system 12A. Then, the surgeon can remove the adhered matter that obstructs the observation field of view attached to the outer surface of the objective lens system 12B and the objective lens system 12A by performing an air supply or water supply operation.
  • the operation unit 7 of the electronic endoscope 2 is provided with a scope switch unit 21 that also has a plurality of operation switch forces.
  • the scope switch unit 21 has an observation mode selection switch for switching or selecting an observation mode. 21a etc. are provided.
  • the observation mode selection operation means such as the observation mode selection switch 21a has a function of an observation mode selection signal for selecting an observation mode, and a CCD actually used corresponding to the observation mode. Also functions as a CCD selection signal.
  • a scope information storage unit 22 that stores information unique to the electronic endoscope 2 is provided in the signal connector 10b of the electronic endoscope 2, for example.
  • the scope information storage unit 22 includes a memory 22a serving as a storage unit (storage unit) that stores scope information, and a CPU 22b that performs processing such as storing information in the memory 22a and reading stored information. Become.
  • the memory 22a stores a plurality of (for example, 38) white balance setting value data, and the specific data structure of the data is, for example, "Light source device serial number” + "Color filter type data” + "White balance setting value”
  • the memory 22a stores data related to the solid-state image sensor as described below.
  • Endoscope treatment tool channel information (channel inner diameter, solid-state image sensor direction position relative to the imaging field range, applicable treatment tool identification color information)
  • the light source device 3 includes a lamp 23 that generates illumination light including visible light.
  • the illumination light emitted from the lamp 23 is incident on the band switching filter 25 through the diaphragm 24 disposed in the optical path.
  • the light transmitted through the band switching filter 25 is incident on the rotary filter 27.
  • the light that has passed through the rotary filter 27 is collected by the condenser lens and is incident on the incident end of the light guide 9.
  • the rotary filter 27 is moved together with a motor 26 that rotates the rotary filter 27 around the optical axis of the illumination light, for example, by a plunger 31 in a direction orthogonal to the optical path of the illumination light (in the direction of the arrow indicated by symbol A in FIG. 1).
  • the motor 26 is attached to the end of the arm of the plunger 31 and the amount of protrusion of the arm is made variable so that the rotary filter 27 and the motor 26 are orthogonal to the optical path of the illumination light (reference A in FIG. 1). (In the direction of the arrow).
  • the band switching filter 25 is rotatably attached to the rotating shaft of the motor 32, and the motor 32 is driven by a filter & aperture driving circuit 33. Further, the filter & aperture driving circuit 33 drives the aperture 24 and also drives the plunger 31.
  • the filter & aperture driving circuit 33 is controlled by a light source control circuit 34 provided in the light source device 3.
  • the light source control circuit 34 includes a CPU 35 as control means and a memory 36 that stores information unique to the light source device 3 and the like.
  • the memory 36 stores the following data.
  • Light source device usage data (light source device usage count, usage time, total lamp lighting time, RGB filter Z total usage count Z time for each special light filter).
  • the CPU 35 is connected to a connector 38 provided in the processor 4 via a connector 37 provided in the light source device 3 through a communication signal line.
  • the CPU 35 can perform two-way communication with the CPU 41 as a control means provided in the processor 4.
  • the CPU 41 when an operation such as switching (or selecting) the observation mode is performed by the user operating the observation mode selection switch 21a or the like, the CPU 41 performs the function of the illumination light emission control means in the light source device 3. Communicates with CPU35. Then, the CPU 41 controls the illumination light corresponding to the observation mode to be supplied (exited) to the light guide 9 of the electronic endoscope 2 via the CPU 35.
  • the light source device 3 is provided with a front panel 42.
  • the front panel 42 has a plurality of operation switches 43 for switching or selecting illumination light (also referred to as observation light) used for observation, as well as power and intensity of observation light that can be selected in the case of the light source device 3.
  • An LED (abbreviated as L in Fig. 1) 44 is provided to notify the user when the power is on and off.
  • the operation switch 43 and the LED 44 are connected to the CPU 35 via a signal line.
  • a plurality of operation switches 43 provided on the front panel 42 of the light source device 3 are also provided with a mode switching switch for switching the observation mode, and when the mode switching switch is operated, In this case, the observation mode is switched.
  • FIG. 3 is an explanatory diagram of the structure of the filter used in the electronic endoscope 2 and the characteristics of each filter.
  • the RBG filter 28 for normal observation is arranged on the inner circumference side of the concentric circle, and the fluorescence observation filter 29 is arranged on the outer circumference side of the concentric circle. . Then, one of the filters is selected according to the observation mode and is inserted on the optical path of the illumination light.
  • the RGB filter 28 for normal observation arranged on the inner peripheral side is composed of an R filter 28a, a G filter 28b, and a B filter 28c. These filters are shown in FIG. Thus, it has a transmission characteristic that covers the visible wavelength region.
  • the R filter 28a is set to transmit the 600 nm to 700 nm red wavelength band
  • the G filter 28b is set to transmit the 500 nm to 600 nm green wavelength band
  • the B filter 28c is set to transmit the 400 nm to 500 nm blue wavelength band. ing.
  • RGB filter 28 is also used for infrared light observation
  • R filter 28a and G filter 28b pass through the 790nm-820nm wavelength band
  • B filter 28c passes through the 900nm-980nm wavelength band. Respectively.
  • the fluorescence observation filter 29 for fluorescence observation arranged on the outer peripheral side includes a G2 filter 29a, an E filter 29b, and an R2 filter 29c, and each filter has a transmission as shown in FIG. It has characteristics.
  • the G2 filter 29a is set to transmit a wavelength band of 540 nm to 560 nm
  • the E filter 29b is set to transmit a wavelength band of 400 nm to 470 nm
  • the R2 filter 29c is set to transmit a wavelength band of 600 nm to 660 nm.
  • the transmission characteristics of the G2 filter 29a and the R2 filter 29c are set to a low level, and the green and red color signals (hereinafter referred to as G2 signal and R2 respectively) captured under these narrow-band illumination lights.
  • the band switching filter 25 includes a normal fluorescence observation filter 25a, a narrowband light observation filter 25b, and an infrared light observation filter 25c arranged on concentric circles.
  • One of the filters is selected according to the observation mode and inserted into the optical path of the illumination light.
  • the fluorescence observation filter 25a is set to transmit a wavelength band around 400nm-660nm
  • the infrared light observation filter 25c is 780nm- It is set to transmit the wavelength band near 950 nm.
  • the narrowband light observation filter 25b is composed of a three-peak filter.
  • the electronic endoscope apparatus 1 equipped with the present embodiment by limiting the wavelength band of the irradiation light, there are three types of narrow band light observation, infrared light observation, and fluorescence observation corresponding to normal observation and special light observation. It is possible to observe the subject in four different observation modes. More specifically, in the case of normal observation, imaging is performed under frame sequential light in the visible light region by R, G, and B, and a normal endoscopic image is generated for the captured signal. .
  • observation modes are set by the user operating selection operation means such as the observation mode selection switch 21a.
  • the observation mode selection switch 21a When the observation mode selection switch 21a is operated, an instruction signal is output to the CPU 41 constituting the control means in the processor 4.
  • the CPU 41 sends an instruction signal (more specifically, a mode selection signal) from the observation mode selection switch 21a to the CPU 35 of the light source device 3.
  • the CPU 35 controls the amount of rotation (rotation angle) of the plunger 31 and the motor 32 via the filter & aperture drive circuit 33, and is arranged in the illumination optical path of the lamp 23 according to the instructed observation mode.
  • the filter is switched to the RGB filter 28 or the fluorescence observation filter 29, and the band switching filter 25 is selected and controlled. Specifically, when the normal observation mode, the narrow-band light observation mode, and the infrared light observation mode are set, the RGB filter 28 disposed on the inner peripheral side of the rotary filter 27 is illuminated. It is inserted into the optical path of light. When the fluorescence observation mode is set, the fluorescence observation filter 29 arranged on the outer peripheral side of the rotary filter 27 is inserted in the optical path of the illumination light.
  • the normal fluorescence observation filter 25a is inserted in the optical path of the illumination light.
  • the narrow-band light observation filter 25b is inserted into the optical path of the illumination light.
  • the infrared light observation filter 25c is inserted in the optical path of the illumination light.
  • the illumination light emitted from the lamp 23 is the normal 'fluorescence observation filter 25a having the characteristics shown in FIG. 3 (F) and the RGB filter 28 having the characteristics shown in FIG. 3 (B). , Only light in the red, green, and blue wavelength bands is filtered and sequentially emitted from the light source device 3 to the light guide 9.
  • the illumination light emitted from the lamp 23 includes a narrow-band light observation filter 25b having the characteristics shown in FIG. 3 (G) and an RGB having the characteristics shown in FIG.
  • a narrow-band light observation filter 25b having the characteristics shown in FIG. 3 (G) and an RGB having the characteristics shown in FIG.
  • the finoleta 28 By passing through the finoleta 28, only light in the wavelength bands of 600 nm—630 nm, 530 nm—560 nm, and 400 ⁇ m—430 nm is filtered and sequentially emitted from the light source device 3 to the light guide 9.
  • the illumination light emitted from the lamp 23 includes an infrared light observation filter 25c having the characteristics shown in FIG. 3 (F) and an RG having the characteristics shown in FIG. 3 (B).
  • the B filter 28 By passing through the B filter 28, only light in the wavelength bands of 790 nm—820 nm, 790 nm—820 nm, 900 nm—980 nm is filtered and sequentially emitted from the light source device 3 to the light guide 9.
  • the illumination light intensity emitted from the lamp 23 is a normal fluorescence observation filter 25a having the characteristics shown in Fig. 3 (F), and the fluorescence having the characteristics shown in Fig. 3 (C).
  • the light observation finalizer 29 By passing through the light observation finalizer 29, only light in the wavelength bands of 540 nm-560 nm, 390 nm-450 nm, 600 nm-620 nm is filtered and sequentially emitted from the light source device 3 to the light guide 9.
  • light having a wavelength band of 390 nm to 450 nm is used as excitation light for exciting autofluorescence from a living tissue.
  • the illumination light incident on the light guide 9 is, as shown in FIG.
  • the light is emitted from b and irradiated to a subject such as a region to be inspected.
  • the subject In the normal observation mode, the subject is irradiated with R, G, B plane sequential illumination light, and in the fluorescence observation mode, the subject is irradiated with G2, E, R2 plane sequential illumination light (E Illumination light is used as excitation light).
  • the CCD 13B In the fluorescence observation mode, the CCD 13B is used, and an excitation light cut filter 14 is disposed on the optical path between the CCD 13B and the objective lens system 12B, and the excitation light of 390 nm to 450 nm out of the reflected light from the subject. To extract fluorescence.
  • the excitation light cut filter 14 is set so as to transmit a wavelength band of 470 nm or more, and is set so as not to overlap with the transmission characteristics of the E filter 29b. .
  • the surface-sequential illumination light is irradiated, and scattered light, reflected light, or fluorescence is generated from the subject. These lights pass through the excitation light cut filter 14, are imaged on the photoelectric conversion surface of the CCD 13B by the objective lens system 12B, and are photoelectrically converted by the CCD 13B.
  • the image signal corresponding to the irradiation light that has passed through each filter of the rotary filter 27 is also sequentially output to the processor 4 in time series as the CCD 13A or 13B force.
  • the image signals (imaging signals) output in time series are R, B, and G color signals in the normal observation mode, and are imaged under the G2 illumination light in the fluorescence observation mode.
  • the signals are in accordance with the order of the respective illumination lights.
  • a CCD drive circuit 45 for driving the CCDs 13A and 13B is provided.
  • the CPU 41 controls the CCD drive circuit 45 so that the CCD is driven according to the selection (switching) of the observation mode.
  • the CPU 41 has a CCD drive control function 41a for selecting and controlling the CCD to be driven.
  • the CCDs 13A and 13B are different types of CCDs and have a different number of pixels, so when the observation mode is selected by the user, the CPU 41 drives the CCD corresponding to the observation.
  • the CCD drive circuit 45 is controlled so as to output a signal. Ma
  • the CPU 41 also controls switching of the switching switches 16a and 16b in response to selection of the observation mode.
  • an amplification factor control circuit 46 is provided in the processor 4, and during the period in which fluorescence observation is selected and actual fluorescence imaging is performed, together with the CCD drive signal from the CCD drive circuit 45 to the CCD 13B.
  • the amplification factor control circuit 46 outputs an amplification factor control signal.
  • the CPU 41 sends a control signal to the amplification factor control circuit 46 during the actual fluorescence imaging period (period during which fluorescence imaging is performed by irradiating the excitation light with the E filter 29b).
  • An amplification rate control signal set to a standard amplification rate corresponding to the fluorescence observation is output.
  • This gain control signal is superimposed on the CCD drive signal and applied to the CCD 13B.
  • the signal photoelectrically converted inside the CCD 13B element is multiplied by the gain control signal, and the amplified signal is output from the CCD 13B.
  • the user can change the amplification factor by transmitting an instruction signal for setting an arbitrary amplification factor from the keyboard 47 to the CPU 41.
  • the amplification factor can be changed by transmitting to the CPU 41 an instruction signal from an operation switch that increases or decreases the operation factor assigned to the plurality of operation switches of the scope switch unit 21.
  • the CPU 41 sends the corresponding control signal to the amplification factor control circuit 46 by these instruction signals and sets the designated amplification factor.
  • the CCD 13A or CCD 13B outputs a photoelectrically converted imaging signal when a CCD drive signal is applied.
  • This imaging signal is input to the video signal preprocessing circuit 51 in the processor 4, and the video signal preprocessing circuit 51 performs CDS processing and the like.
  • the output signal of the video signal preprocessing circuit 51 is input to an AZD conversion circuit 52 that converts an analog signal into a digital signal.
  • the video signal converted into a digital signal is input to a white balance circuit (abbreviated as WZB balance in Fig. 1) 53 that performs white balance processing.
  • the output signal of the white balance circuit 53 is input to an image processing circuit 54 that performs image processing such as structure enhancement and color enhancement.
  • the output signal of the image processing circuit 54 is a video signal output circuit 5 that synthesizes and outputs this output signal and video signals corresponding to various images generated by the display controller 56. Input to 5.
  • the output signal of the video signal output circuit 55 is input to the DZA conversion circuit 57, converted into an analog video signal, and output to the monitor 5.
  • the output signal of the AZD conversion circuit 52 is input to the photometry circuit 58 that measures the brightness on the image and is measured by the photometry circuit 58 in order to automatically control the illumination light quantity.
  • the metering modes include peak metering for detecting the peak brightness of the image, average metering for detecting the average brightness, and auto metering for detecting the brightness near the center.
  • the photometry circuit 58 or the CPU 41 to which the photometric signal is inputted is compared with a reference value (brightness) to set the photometric signal, and a dimming signal is generated so as to reduce the difference. To do.
  • This dimming signal is sent to the CPU 35 in the light source device 3 via the connectors 38 and 37.
  • the CPU 35 adjusts the opening amount of the diaphragm 24 via the filter & diaphragm driving circuit 33 and corresponds to the reference value. Adjust the brightness automatically to obtain the appropriate brightness.
  • a memory 61 for storing various types of information is provided in the processor 4, and the CPU 41 refers to display information 61a and the like stored in the memory 61 to display information to be displayed on the monitor 5.
  • the switching control is performed. That is, the CPU 41 has a display information switching control function of 4 lb. The switching of display information displayed on the monitor 5 will be described later.
  • the processor 4 includes a memory 61 for storing various types of information.
  • the CPU 41 refers to the information stored in the memory 61 and refers to the front panel (operation panel) provided on the front of the processor 4. ) Controls whether or not it is possible to execute the function assigned to the multiple operation switches 63 of 62 by displaying the lighting of the LED 64 and the display of the Z lighting off.
  • the operation switch 63 and the LED 64 are connected to the CPU 41 via a signal line.
  • the CPU 41 controls the operation of the image processing circuit 54 in response to the operation of the operation switch 63.
  • the CPU 41 controls the white balance circuit 53, the display controller 56, and the like in addition to the image processing circuit 54.
  • the memory 22a provided in the electronic endoscope 2 stores information on the type of the electronic endoscope 2 detachably connected to the processor 4.
  • the CPU 41 temporarily reads the read information in the memory 61. If the electronic endoscope 2 has multiple CCDs, the CPU 41 has a function of a switching determination unit that determines whether to switch the CCD to be driven according to the selection of the observation mode by the user.
  • the CPU 41 controls display information switching so that the display information displayed on the monitor 5 corresponds to the CCD according to the switching. It has become.
  • the CPU 41 or the CPU 35 is set to a state in which the illumination light in the normal observation mode is supplied to the endoscope (electronic endoscope or fiberscope), and the signal processing system of the processor 4 is also set. Set to the state corresponding to the normal observation mode.
  • the CPU 35 of the light source device 3 and the CPU 41 of the processor 4 read, for example, a program stored in an internal ROM or the like, and perform an initial setting process as shown in step S 1.
  • the CPU 41 uses the information stored in the memory 22a provided inside the electronic endoscope 2 connected to the processor 4 in order to determine the type of the electronic endoscope 2 connected to the processor 4. By reading out, the endoscope information is read out.
  • step S2 the CPU 41 determines from the information read from the memory 22a that the electronic endoscope 2 is an electronic endoscope having two CCDs 13A and 13B. Control to set the state.
  • the CPU 41 controls the switching switches 16a and 16b to drive the CCD 13A and communicates with the CPU 35 of the light source device 3. Under the control of the CPU 35, the illumination light of the light source device 3 is normally observed. The mode illumination light is supplied to the electronic endoscope 2.
  • the CPU 41 performs information related to the information related to the electronic endoscope 2, more specifically, the power in a state corresponding to the CCD 13A actually driven by the electronic endoscope 2. Control of display information for displaying information related to the child endoscope 2 on the monitor 5 or switching control of display information is performed.
  • treatment information on the inner diameter of the treatment instrument channel 17 of the electronic endoscope 2 connected to the processor 4 and the treatment instrument in the case of the CCD 13A in the operating state (specifically, the CCD 13A in the normal observation mode).
  • Treatment information such as treatment tool direction information that appears in the imaging range (field-of-view range) and the current zoom scale by the objective lens system 12A that forms an image on the CCD 13A are displayed.
  • FIG. 5A A display example on the monitor 5 in this case is shown in FIG. 5A.
  • Fig. 5A there is an endoscopic image display area 5a that displays the endoscopic image captured by the CCD13A near the center of the display surface of the monitor 5 (upper right).
  • a patient information display area 5b where patient information is displayed.
  • a treatment tool information display area 5c in which the size of the endoscope image display area 5a is reduced is provided in a part of the patient information display area 5b.
  • information A and the treatment instrument of the inner diameter of the treatment instrument channel 17 of the electronic endoscope 2 are within the imaging range.
  • Treatment tool direction information that appears in B The treatment tool information is displayed under the control of the CPU 41.
  • an image is picked up by the currently driven CCD 13A using the objective lens system 12A and displayed in the endoscope image display area 5a.
  • a zoom scale 71 representing an approximate scale in the endoscopic image is displayed under the control of the CPU 41.
  • This zoom scale 71 is composed of a far-point scale 71a and a near-point scale 71b that indicate how many mm on the screen can be seen when an object of size lmm, for example, is observed at the maximum magnification.
  • 71b displays under the control of the CPU 41 based on the information of the optical magnification observation stored in the memory 22a.
  • the zoom scale 71 represents how long a predetermined length at the time of maximum enlargement is actually displayed on the screen.
  • the zoom scale 71 is the maximum. This is the two forces of the near-point scale 71a (the range is also the foremost side) and the far-point scale 71b (the last side) of the depth (focus range) at the time of large magnification.
  • the endoscope image display area 5a Since a scale that can evaluate (measure) the length in the image is displayed on the lower side, the user can grasp the size of the image part such as the affected part by referring to the scale, and can easily perform the diagnosis. .
  • the image of the treatment tool information display area 5c and the display image of the zoom scale 71 are generated by the display controller 56 under the control of the CPU 41.
  • the video signal of the generated display image is mixed (synthesized) with the video signal of the endoscopic image captured by the CCD 13A in the video signal output circuit 55, and the synthesized image is displayed on the monitor 5 as shown in FIG. 5A. Is displayed.
  • the display surface of the monitor 5 corresponds to information related to the electronic endoscope 2 actually connected to the processor 4, more specifically, to the CCD 13A actually used (electronic internal Information related to scope 2 is displayed.
  • the CPU 41 determines whether or not there is an instruction to switch to the fluorescence observation mode in the special light observation mode, in other words, whether there is an instruction to switch to the second CCD 13B. Then, the CPU 41 maintains the display state until this switching instruction is issued. However, when a zoom change instruction operation is performed, the zoom scale 71 corresponding to the zoom change is displayed.
  • the surgeon performs an operation of selecting the fluorescence observation mode by using, for example, the observation mode selection switch 21a when observing the affected part and the like and further observing the lesion part in the fluorescence observation mode.
  • step S5 When an operation for switching to the fluorescence observation mode is performed, as shown in step S5, the CPU 41 and the like perform a switching process so as to perform illumination corresponding to the fluorescence observation mode. Specifically, the CPU 41 receives an instruction 3 ⁇ 4 that causes the CPU 35 of the light source device 3 to switch to the fluorescence observation mode.
  • the light source device 3 is in a state of supplying illumination light corresponding to the fluorescence observation mode to the electronic endoscope 2. Further, the CPU 41 switches the switching switches 16a and 16b and controls the CCD drive signal output from the CCD drive circuit 45 so as to drive the CCD 13B, and controls the amplification factor control circuit 46.
  • the gain control circuit 46 In the period for performing fluorescence imaging (that is, the period for performing fluorescence imaging by irradiating the excitation light that has passed through the E filter 29b in FIG. 3A), the gain control circuit 46 outputs the CCD drive signal. The gain control signal is superimposed and applied to the CCD 13B. As a result, the signal level of the fluorescence imaging signal obtained by fluorescence imaging is close to the signal level obtained by imaging with other reflected light.
  • the CPU 41 displays information on the electronic endoscope 2 corresponding to the CCD 13B that is switched and actually driven on the monitor 5 in conjunction with the switching of the CCD that is driven from the CCD 13A to the CCD 13B.
  • Display control processing is performed (in terms of the relationship between before and after switching, switching control of displayed information is performed).
  • the CPU 41 displays the treatment tool information such as the treatment tool direction information in which the treatment tool appears in the imaging range in the case of this CCD 13B, and the current zoom scale and the like in the case of using this CCD 13B on the monitor 5. Perform display processing.
  • the display content of the information related to the electronic endoscope 2 corresponding to the case of the CCD 13B actually used for imaging is changed.
  • the display contents are switched corresponding to the switching from CCD13A to CCD13B in the case of FIG. 5A.
  • the treatment tool information and the current zoom scale 71 by the objective lens system 12B and the CCD 13B are displayed on the monitor 5.
  • the information A on the inner diameter of the treatment instrument channel 17 of the electronic endoscope 2 is the same as that in Fig. 5A, but the treatment instrument direction information B in which the treatment instrument appears in the imaging range is different from that in Fig. 5A.
  • the display is compatible with CCD13B. That is, in FIG. 5A, the treatment instrument direction information B is a force in which the treatment instrument is directed from the upper right side to the center. In FIG. 5B, the treatment instrument direction information B is obtained from the lower right side of the treatment tool. The direction is suitable for.
  • the zoom scale 71 displayed immediately below the endoscopic image is changed to a value by the objective lens system 12B that connects the image to the CCD 13B that is currently used for imaging. In the example of FIG. 5B, it is smaller than the objective lens system 12A!
  • step S6 after step S5, the CPU 41 waits for switching to the normal observation mode (CCD13A). When switching to the normal observation mode is performed, the process returns to step S2.
  • the mouth set 4 is connected to the electronic endoscope 2 stored in the memory 22 a built in the electronic endoscope 2.
  • Information about mirror 2 is read out and displayed on monitor 5 using that information.
  • unique identification information of the electronic endoscope 2 may be stored in the memory 22a, and information related to the electronic endoscope 2 corresponding to the identification information may be stored on the processor 4 side.
  • the CCD 13B can be applied to a CCD having a different number of pixels from the force CCD 13A described in the case of a CCD having a signal amplification function inside the CCD element.
  • the CCD 13A may have a signal amplification function inside a CCD element such as the CCD 13B.
  • a CCD drive circuit that generates a drive signal for driving the CCD having the larger number of pixels may be employed.
  • the information related to the electronic endoscope output to the display means can be made to correspond to the switched solid-state imaging device, and the operability is improved. improves.

Abstract

 複数の固体撮像素子が設けられた電子内視鏡は、電子内視鏡用信号処理装置の内視鏡接続部に接続される。電子内視鏡用信号処理装置は、内視鏡接続部に接続された電子内視鏡に設けられた複数の固体撮像素子の少なくとも1つの出力信号の選択を行わせる選択信号を発生する操作を行うための選択操作部と、選択信号に基づき、選択された1つの固体撮像素子の出力信号に対する信号処理を行い、映像信号を生成する信号処理回路と、出力信号が選択された1つの固体撮像素子に対応して、表示装置に表示される電子内視鏡に関する情報の切替を行う情報切替制御部とを具備する。

Description

明 細 書
電子内視鏡用信号処理装置及び電子内視鏡装置
技術分野
[0001] 本発明は、複数の固体撮像素子を備えた電子内視鏡に対して信号処理を行う電 子内視鏡用信号処理装置及び電子内視鏡装置に関する。
背景技術
[0002] 挿入部の先端部に固体撮像素子を設けた電子内視鏡は、医療用分野における内 視鏡検査、処置具による処置等に広く採用されるようになっている。
例えば先行例としての日本国特開 2003— 26410号公報には、モニタの画面上に 電子内視鏡の処置具チャンネルの情報を表示する。この表示により先行例は、ユー ザに対して、使用できる鉗子等の処置具の外径や、内視鏡画面上においてどの方向 力 処置具が出てくるか等を分力るようにして 、る。
[0003] しかし、上記先行例は、挿入部の先端部に 2つの固体撮像素子を搭載した電子内 視鏡に対しては適切に対応できない。
上記先行例を 2つの固体撮像素子を搭載した電子内視鏡の場合に対して適用す ると、観察に使用している固体撮像素子力 他方の固体撮像素子へと使用を切り替 えた場合或いは選択した場合、切り替えられた固体撮像素子に対して処置具チャン ネルの先端開口の位置が変化する。このため、先行例においては、同じ鉗子を用い ていた場合においても鉗子が観察視野に現れる方向が異なり、表示している処置具 チャンネルの情報と異なってしまう。
また、上記先行例では、内視鏡画面にズームスケールを表示した場合、異なる固体 撮像素子間での使用を切り替えた場合には、その大きさがずれた値になってしまう。
[0004] 本発明は上述した点に鑑みてなされたもので、複数の固体撮像素子を搭載した電 子内視鏡における実際に使用する 1つの固体撮像素子の選択を行った場合、その 選択に適切に対応した情報の表示を可能にする電子内視鏡用信号処理装置及び 電子内視鏡装置を提供することを目的とする。
発明の開示 課題を解決するための手段
[0005] 本発明の電子内視鏡用信号処理装置は、少なくとも複数の固体撮像素子が設けら れた電子内視鏡が接続される内視鏡接続部と、
前記内視鏡接続部に接続された前記電子内視鏡に設けられた前記複数の固体撮 像素子の少なくとも 1つの出力信号の選択を行わせる選択信号を発生する操作を行 うための選択操作部と、
前記選択信号に基づき、選択された 1つの固体撮像素子の出力信号に対する信 号処理を行い、映像信号を生成する信号処理回路と、
前記出力信号が選択された 1つの固体撮像素子に対応して、表示装置に表示され る前記電子内視鏡に関する情報の切替を行う情報切替制御部と、
を具備したことを特徴とする。
[0006] 上記構成により、情報切替制御部により、実際に選択された固体撮像素子の場合 に対応して表示装置に表示される電子内視鏡に関する情報を適切なものにできるよ うにしている。
[0007] 本発明の電子内視鏡装置は、複数の固体撮像素子が設けられた電子内視鏡と、 前記電子内視鏡に設けられた前記複数の固体撮像素子の少なくとも 1つの出力信 号の選択を行わせる選択信号を発生する操作を行うための選択操作部と、
前記選択信号に基づき、選択された 1つの固体撮像素子の出力信号に対する信 号処理を行い、映像信号を生成する信号処理回路と、
前記出力信号が選択された 1つの固体撮像素子に対応して、表示装置に表示され る前記電子内視鏡に関する情報の切替を行う情報切替制御部と、
を具備したことを特徴とする。
上記構成により、情報切替制御部により、実際に選択された固体撮像素子の場合 に対応して表示装置に表示される電子内視鏡に関する情報を適切なものにできるよ うにしている。
図面の簡単な説明
[0008] [図 1]図 1は本発明の実施例 1を備えた電子内視鏡装置の全体構成を示すブロック 図。 [図 2]図 2は先端部の正面図。
[図 3]図 3は回転フィルタの構成やフィルタ特性等を示す図。
[図 4]図 4は本実施例における動作内容を示すフローチャート図。
[図 5A]図 5Aは通常観察モード時におけるモニタの表示画面を示す図。
[図 5B]図 5Bは蛍光観察モード時におけるモニタの表示画面を示す図。
発明を実施するための最良の形態
[0009] 以下、図面を参照して本発明の実施例を説明する。
(実施例 1)
図 1から図 5を参照して本発明の実施例 1を説明する。
本実施例は、種類が異なる 2つの固体撮像素子を搭載した電子内視鏡において、 駆動する固体撮像素子を切り替えた場合にも、切替前後で実際に駆動される固体撮 像素子に対応して電子内視鏡に関する情報を適切に表示することができる電子内視 鏡用信号処理装置及び電子内視鏡装置を提供することを目的とする。
図 1に示すように、本発明の実施例 1を備えた電子内視鏡装置 1は、体腔内に挿入 され、患部等の被写体を観察及び処置する電子内視鏡 2と、この電子内視鏡 2に通 常観察用の RGB光及び特殊観察用の特殊光を供給する光源装置 3と、電子内視鏡 2により撮像された内視鏡映像信号を信号処理して映像信号を生成する電子内視鏡 用信号処理装置としてのプロセッサ 4と、このプロセッサ 4から出力される映像信号が 入力されることにより、この映像信号に対応する内視鏡画像を表示するモニタ 5と、映 像信号を動画で記録する映像信号記録装置としての例えば VTR40とを備えている
[0010] なお、表示手段を構成するモニタ 5には、観察モードの選択 (若しくは切替)操作が 行われた場合には、実際に選択使用された固体撮像素子で撮像された内視鏡画像 と共に、実際に切り替えられた固体撮像素子に関連する情報が表示される。
[0011] 電子内視鏡 2は、患者の体腔内に挿入される挿入部 6と、この挿入部 6の後端に設 けられた操作部 7とを有し、この操作部 7からユニバーサルケーブル 8が延出されてい る。 この挿入部 6内には照明光を伝送するライトガイド 9が挿通されており、この後 端のライトガイドコネクタ 10aは、光源装置 3に着脱自在に接続される。 [0012] このライトガイド 9は、光源装置 3からの照明光 (特殊光観察モードにおける蛍光観 察時には励起光)を伝送し、挿入部 6の先端部 11の照明窓に取り付けられたライトガ イド先端面 9a, 9b (図 2参照)から外部に照明光を出射し、患部等の被写体を照明( 蛍光観察時には励起光を照射)する。
図 2に示すように照明窓に隣接して 2つの観察窓 (撮像窓)が設けられ、これら 2つ の観察窓にはそれぞれ対物レンズ系 12A、 12Bが取り付けられている。そして、図 1 に示すように対物レンズ系 12A、 12Bの各結像位置にはそれぞれ固体撮像素子とし て第 1及び第 2の電荷結合素子 (CCDと略記) 13A、 13Bが配置されている。
[0013] なお、第 2の CCD13Bは、 CCD素子内部に増幅機能を備えた高感度 CCDであり 、特殊光観察モードにおける蛍光観察モード時にのみ用いられる。これに対して第 1 の CCD13Aは、可視領域で観察する通常観察モード(可視観察モード)時及び特 殊光観察モードにおける (蛍光観察モードを除く)赤外光観察モード及び狭帯域光 観察モード時に使用される。
なお、対物レンズ系 12A、 12Bとしては、図示しない駆動手段により対物レンズ系 1 2A、 12Bの一部のレンズを光軸方向に移動し、ズーム倍率を変更できるようにしたズ ーム光学系が形成されている。電子内視鏡 2は、その種類により、対物レンズ系 12A 、 12Bがズーム光学系のものと、ズーム光学系でないものとがある。
上記のように第 2の CCD13Bは、蛍光観察モード時において、励起光をカットして 蛍光観察するために、 CCD13Bの前に励起光カットフィルタ 14が設けてある。
これら両 CCD13A、 13Bに一端が接続された信号線 15a、 15bは、挿入部 6、操作 部 7及びユニバーサルケーブル 8内を揷通され、その他端がユニバーサルケーブル 8の端部の信号コネクタ 10bに至る。そして、この信号コネクタ 10bは、プロセッサ 4の 信号コネクタ受け 4aに着脱自在に接続される。この信号コネクタ受け 4aは、電子内 視鏡 2が着脱自在に接続される内視鏡接続部を構成する。
[0014] また、信号コネクタ 10b内には連動して切り替えられ得る切替スィッチ 16a, 16bが 設けてある。そして、両 CCD13A、 13Bに接続された信号線 15a、 15bを切替スイツ チ 16a、 16bを介して切り替えることにより観察モードに応じて実際に撮像に使用する 一方の CCDを選択できるようにして 、る。 なお、本実施例においては、両 CCD13A, 13Bを切り替える切替手段を電子内視 鏡 2内に設けているが、切替手段を設けないで、プロセッサ 4側において駆動する C CDを切り替えるようにしても良 、。
[0015] また、挿入部 6内には、チャンネル 17が設けてあり、このチャンネル 17は、操作部 7 の前端付近の処置具揷通口 18で開口しており、術者は、この処置具揷通口 18から 処置具 19を挿入することができる。このチャンネル 17は、先端部 11の先端面におい て先端開口 17aとして開口している。そして、術者は、チャンネル 17に挿通された処 置具 19の先端側を先端開口 17aから突出させて、患部組織を採取したり、処置具で 病変部を切除する等の処置を行うことができる。
また、挿入部 6内には、図示しない送気送水管路が設けてあり、この送気送水管路 の先端のノズル 20は、例えば図 2に示すように対物レンズ系 12B及びその延長先の 対物レンズ系 12Aに対向している。そして、術者は、送気或いは送水の操作をするこ とにより、対物レンズ系 12B及び対物レンズ系 12Aの外表面に付着した観察視野の 邪魔になる付着物の除去等を行うことができる。
また、この電子内視鏡 2の例えば操作部 7には、複数の操作スィッチ力もなるスコー プスィッチ部 21が設けてあり、このスコープスィッチ部 21には観察モードを切り替え る若しくは選択する観察モード選択スィッチ 21a等が設けてある。
[0016] また、後述するように観察モード選択スィッチ 21a等の観察モード選択操作手段は 、観察モードを選択する観察モード選択信号の機能を有すると共に、観察モードに 対応して実際に使用される CCDを選択 (切替)する CCD選択信号としても機能する
[0017] また、この電子内視鏡 2の例えば信号コネクタ 10b内には、この電子内視鏡 2の固 有の情報を格納したスコープ情報格納部 22が設けてある。
このスコープ情報格納部 22は、スコープ情報を格納した格納手段 (記憶手段)とし てのメモリ 22aと、このメモリ 22aに情報を格納したり、格納された情報を読み出す等 の処理を行う CPU22bとからなる。
なお、このメモリ 22aには、ホワイトバランス設定値のデータが複数 (例えば 38個)格 納されており、データの具体的なデータ構成は例えば、 「光源装置シリアルナンバー」 +「色フィルタ種別データ」 +「ホワイトバランス設定値
J
という形式であって、このような構成のデータカ モリ 22aに格納されている。
また、メモリ 22aには上記ホワイトバランス設定値のデータ以外に下記のように、固 体撮像素子に関連するデータ等が格納されている。
[0018] 1)内視鏡機種名
2)内視鏡シリアルナンバー
3)内視鏡が対応する観察光の種類データ
4)内視鏡に設けられた固体撮像素子の数及び種類のデータ
5)内視鏡に設けられた各固体撮像素子の画素数のデータ
6)内視鏡の光学拡大観察への対応有無を示すデータ
7)内視鏡の処置具チャンネルの情報 (チャンネルの内径、固体撮像素子の撮像視 野範囲に対する方向位置、適用できる処置具の識別色情報)
8)内視鏡の先端部外径データ
9)内視鏡の挿入部外径データ
10)内視鏡が光学拡大観察に対応している場合、最大拡大時に lmmの大きさの物 体を観察した時、画面上何 mmで見えるかを示すスケールデータ(固体撮像素子毎) 一方、光源装置 3は、可視光を含む照明光を発生するランプ 23を有する。
[0019] このランプ 23から射出された照明光は、その光路中に配置された絞り 24を経て、帯 域切替フィルタ 25に入射される。帯域切替フィルタ 25を透過した光は、回転フィルタ 27に入射される。回転フィルタ 27を透過した光は、集光レンズによって集光され、ラ イトガイド 9の入射端に入射される。
回転フィルタ 27は、この回転フィルタ 27を照明光の光軸周りに回転させるモータ 26 と共に、例えばプランジャ 31によって照明光の光路と直交する方向(図 1の符号 Aで 示す矢印の方向)に移動される。例えば、モータ 26は、プランジャ 31のアームの端部 に取り付けられ、アームの突出量を可変にすることにより、回転フィルタ 27とモータ 26 とが照明光の光路と直交する方向(図 1の符号 Aの矢印の方向)に移動される。 [0020] なお、帯域切替フィルタ 25は、モータ 32の回転軸に回動自在に取り付けられてお り、このモータ 32は、フィルタ &絞り駆動回路 33により駆動される。また、このフィルタ &絞り駆動回路 33は、絞り 24を駆動すると共に、プランジャ 31の駆動も行う。このフ ィルタ&絞り駆動回路 33は、光源装置 3に設けられた光源制御回路 34により制御さ れる。
この光源制御回路 34は、制御手段としての CPU35と、光源装置 3の固有の情報 等を格納したメモリ 36とを有する。
このメモリ 36には下記データが格納されている。
[0021] 1)光源装置のシリアルナンバー
2)光源装置に搭載されて 、る特殊光フィルタの識別情報
3)光源装置の使用状況データ (光源装置の使用回数、使用時間、ランプの総点灯 時間、 RGBフィルタ Z各特殊光フィルタの総使用回数 Z時間) .
上記 CPU35は、光源装置 3に設けられたコネクタ 37を介してプロセッサ 4に設けら れたコネクタ 38と通信用の信号線で接続される。そして、 CPU35は、プロセッサ 4の 内部に設けられた制御手段としての CPU41と双方向の通信を行うことができるように なっている。
後述するように、 CPU41は、ユーザによる観察モード選択スィッチ 21a等の操作に より、観察モードの切替 (或いは選択)等の操作が行われると、光源装置 3内の照明 光出射制御手段の機能を持つ CPU35と通信する。そして、 CPU41は、 CPU35を 介して観察モードに対応した照明光を電子内視鏡 2のライトガイド 9に供給(出射)す るように制御する。
[0022] また光源装置 3には、フロントパネル 42が設けてある。このフロントパネル 42には観 察に用いられる照明光 (観察光ともいう)の切替或いは選択操作などを行う複数の操 作スィッチ 43と共に、この光源装置 3の場合に選択できる観察光である力否力をユー ザに点灯 Z消灯でユーザに告知する LED (図 1では Lで略記) 44が設けてある。
[0023] 操作スィッチ 43及び LED44は、信号線を介して CPU35と接続されている。なお、 光源装置 3のフロントパネル 42に設けられた複数の操作スィッチ 43にも、観察モード を切り替えるモード切替スィッチが設けてあり、そのモード切替スィッチを操作した場 合にも観察モードの切替が行われる。
次に図 3を参照して、光源装置 3に設けられた回転フィルタ 27及び帯域切替フィル タ 25の構造と特性について説明する。図 3は、電子内視鏡 2で使用されるフィルタの 構造と、各フィルタの特性についての説明図である。
図 3 (A)に示すように、回転フィルタ 27は、同心円状の内周側に通常観察用の RG Bフィルタ 28が配置され、同心円状の外周側に蛍光観察用フィルタ 29が配置されて いる。そして、観察モードに応じていずれかのフィルタが選択され、照明光の光路上 に挿入される。
[0024] 内周側に配置された、通常観察用の RGBフィルタ 28は、 Rフィルタ 28aと、 Gフィル タ 28bと、 Bフィルタ 28cとから構成され、これらのフィルタは図 3 (B)に示すように可視 の波長領域をカバーする透過特性を有して ヽる。
すなわち、 Rフィルタ 28aは、 600nm— 700nmの赤の波長帯域、 Gフィルタ 28bは 500nm—600nmの緑の波長帯域、 Bフィルタ 28cは 400nm—500nmの青の波長 帯域を透過するように、それぞれ設定されている。
また、 RGBフィルタ 28は、赤外光観察用にも使用されるため、 Rフィルタ 28aと Gフ ィルタ 28bとは 790nm— 820nmの波長帯域、 Bフィルタ 28cは 900nm—980nmの 波長帯域も透過するように、それぞれ設定されている。
外周側に配置された、蛍光観察用の蛍光観察用フィルタ 29は、 G2フィルタ 29aと、 Eフィルタ 29bと、 R2フィルタ 29cとから構成され、各フィルタは、図 3 (C)に示すような 透過特性を有している。
[0025] すなわち、 G2フィルタ 29aは、 540nm— 560nmの波長帯域、 Eフィルタ 29bは 40 0nm—470nmの波長帯域、 R2フィルタ 29cは 600nm—660nmの波長帯域を透過 するように、それぞれ設定されている。尚、 G2フィルタ 29aと R2フィルタ 29cとの透過 特性は低いレベルに設定されており、これらの狭帯域の照明光のもとで撮像された 緑及び赤の色信号 (以下、それぞれ G2信号、 R2信号と示す)と蛍光信号とを合成す ることで、蛍光観察用にカラー表示できるようにして 、る。
また、図 3 (E)に示すように、帯域切替フィルタ 25は、同心円上に通常 ·蛍光観察用 フィルタ 25a、狭帯域光観察用フィルタ 25b、赤外光観察用フィルタ 25cが配置され ており、観察モードに応じていずれかのフィルタが選択され、照明光の光路上に挿入 される。
[0026] 図 3 (F)に示すように、通常.蛍光観察用フィルタ 25aは、 400nm— 660nm付近の 波長帯域を透過するように設定されており、赤外光観察用フィルタ 25cは、 780nm — 950nm付近の波長帯域を透過するように設定されている。また、狭帯域光観察用 フィルタ 25bは 3峰性のフィルタで構成されており、図 3 (G)〖こ示すように、 400nm— 430nm付近、 530nm— 550nm付近、 600nm— 630nm付近の、 3つの離散的な 波長帯域を透過するように設定されて 、る。
本実施例を備えた電子内視鏡装置 1では、照射光の波長帯域を制限することで、 通常観察と特殊光観察に対応する狭帯域光観察、赤外光観察、及び蛍光観察の 3 種類の計 4種類の観察モードで被写体を観察することが可能である。より具体的には 、通常観察の場合には、 R, G, Bによる可視光領域の面順次光のもとで撮像を行い 、撮像された信号に対して通常の内視鏡画像を生成する。
[0027] これに対して、狭帯域光観察、赤外光観察、及び蛍光観察の場合には、照明或い は撮像に使用される波長の帯域制限等をしてそれぞれに対応する画像を生成する。 また、本実施例においては、特に蛍光観察の場合における蛍光強度が他の観察時 に比べて非常に弱いため、上述した CCD素子内部に信号増幅 (信号増倍)機能を 備えた高感度の CCD13Bに切り替えて使用するようにして 、る。
[0028] これらの観察モードは、ユーザが観察モード選択スィッチ 21a等の選択操作手段を 操作することで設定される。観察モード選択スィッチ 21aが操作されると、プロセッサ 4 内の制御手段を構成する CPU41に指示信号が出力される。
CPU41は、観察モード選択スィッチ 21aの指示信号 (より具体的にはモード選択 信号)を光源装置 3の CPU35に送る。そして、 CPU35はフィルタ &絞り駆動回路 33 を介してプランジャ 31やモータ 32の回転量(回転角)を制御して、指示された観察モ ードに応じて、ランプ 23の照明光路中に配置されるフィルタを RGBフィルタ 28もしく は蛍光観察用フィルタ 29等へ切り替えたり、帯域切替フィルタ 25を選択制御する。 具体的には、通常観察モード、狭帯域光観察モード、及び赤外光観察モードに設 定された場合には、回転フィルタ 27の内周側に配置された RGBフィルタ 28が照明 光の光路上に挿入される。蛍光観察モードが設定された場合には、回転フィルタ 27 の外周側に配置された蛍光観察用フィルタ 29が照明光の光路上に挿入される。
[0029] また、通常観察モード及び蛍光観察モードに設定された場合には、通常'蛍光観 察用フィルタ 25aが照明光の光路上に挿入される。狭帯域光観察モードに設定され た場合には、狭帯域光観察用フィルタ 25bが照明光の光路上に挿入される。赤外光 観察モードに設定された場合には、赤外光観察用フィルタ 25cが照明光の光路上に 挿入される。
すなわち、通常観察モードにおいては、ランプ 23から射出された照明光が、図 3 (F )に示す特性を有する通常'蛍光観察用フィルタ 25aと、図 3 (B)に示す特性を有する RGBフィルタ 28とを透過することで、赤、緑、青の波長帯域の光のみがフィルタリング されて、光源装置 3からライトガイド 9へ順次射出される。
また、狭帯域光観察モードにおいては、ランプ 23から射出された照明光が、図 3 (G )に示す特性を有する狭帯域光観察用フィルタ 25bと、図 3 (B)に示す特性を有する RGBフィノレタ 28とを透過することで、 600nm— 630nm、 530nm— 560nm、 400η m— 430nmの波長帯域の光のみがフィルタリングされて、光源装置 3からライトガイド 9へ順次射出される。
また、赤外光観察モードにおいては、ランプ 23から射出された照明光が、図 3 (F) に示す特性を有する赤外光観察用フィルタ 25cと、図 3 (B)に示す特性を有する RG Bフィルタ 28とを透過することで、 790nm— 820nm、 790nm— 820nm、 900nm— 980nmの波長帯域の光のみがフィルタリングされて、光源装置 3からライトガイド 9へ 順次射出される。
[0030] また、蛍光観察モードにおいては、ランプ 23から射出された照明光力 図 3 (F)に 示す特性を有する通常'蛍光観察用フィルタ 25aと、図 3 (C)に示す特性を有する蛍 光観察用フイノレタ 29とを透過することで、 540nm— 560nm、 390nm— 450nm、 60 0nm—620nmの波長帯域の光のみがフィルタリングされて、光源装置 3からライトガ イド 9へ順次射出される。ここで、 390nm— 450nmの波長帯域の光は、生体組織か ら自家蛍光を励起するための励起光として使用される。
ライトガイド 9に入射された照明光は、図 3に示すようにライトガイド 9の先端面 9a、 9 bから出射され、被検査対象部位等の被写体に照射される。通常観察モードにおい ては、 R、 G、 Bの面順次の照明光が被写体に照射され、蛍光観察モードにおいては 、 G2、 E、 R2の面順次の照明光が被写体に照射される (Eの照明光は、励起光とし て使用される)。
蛍光観察モードにおいては、 CCD13Bが使用され、この CCD13Bと、対物レンズ 系 12Bの間の光路上には励起光カットフィルタ 14が配置されており、被写体からの 反射光のうち 390nm— 450nmの励起光を遮断して蛍光を抽出する。
[0031] 励起光カットフィルタ 14は、図 3 (D)に示すように、 470nm以上の波長帯域を透過 するように設定されており、 Eフィルタ 29bの透過特性と重ならないように設定されて いる。
面順次の照明光が照射されて、被写体から散乱光、反射光、或いは蛍光が発生す る。これらの光は、励起光カットフィルタ 14を透過し、対物レンズ系 12Bによって CCD 13Bの光電変換面に結像され、 CCD13Bにおいて光電変換される。
本実施例にぉ 、ては、回転フィルタ 27のそれぞれのフィルタを通過した照射光に 対応する画像信号が、 CCD13A、或いは 13B力もプロセッサ 4へ時系列で順次出力 される。
[0032] 尚、時系列で出力される画像信号 (撮像信号)は、通常観察モードにぉ ヽては R、 B 、 Gの色信号となり、蛍光観察モードにおいては G2の照明光の下で撮像された G2 信号、 Eの励起光の下で撮像された蛍光信号、 R2信号の照明光の下で撮像された 信号となる。また、狭帯域光観察モードと赤外光観察モードとにおいては、それぞれ の照明光の順番に応じた信号となる。
次に図 1を参照してプロセッサ 4の内部構成を説明する。プロセッサ 4内には、 CCD 13A及び 13Bを駆動する CCD駆動回路 45が設けてある。 CPU41は、観察モード の選択 (切替)に応じた CCDが駆動されるように、 CCD駆動回路 45を制御する。つ まり、 CPU41は、駆動する CCDを選択制御する CCD駆動制御機能 41aを持つ。 より具体的には、 CCD13Aと 13Bとは、種類が異なる CCDであると共に、画素数が 異なるため、ユーザにより観察モードが選択されると、 CPU41はその観察に対応し た CCDを駆動する CCD駆動信号を出力するように CCD駆動回路 45を制御する。ま た、 CPU41は、観察モードの選択に対応して切替スィッチ 16a、 16bの切替も制御 する。
[0033] また、プロセッサ 4内には増幅率制御回路 46が設けてあり、蛍光観察時が選択され て実際に蛍光撮像を行う期間においては、 CCD駆動回路 45からの CCD13Bへの CCD駆動信号と共に、増幅率制御回路 46は増幅率制御信号を出力する。
CPU41は、実際に蛍光撮像を行う期間(上記 Eフィルタ 29bで励起光を照射して 蛍光撮像を行う期間)においては、この増幅率制御回路 46に対して制御信号を送り 、例えば、予め設定された蛍光観察に対応した標準の増幅率に設定する増幅率制 御信号を出力させる。
この増幅率制御信号は、 CCD駆動信号に重畳されて CCD13Bに印加され、 CCD 13Bの素子内部において光電変換された信号は、増幅率制御信号により増倍され、 CCD13Bから増幅された信号が出力される。
なお、ユーザは、例えばキーボード 47から任意の増幅率に設定する指示信号を C PU41に送信することにより、増幅率を変更することができる。また、スコープスィッチ 部 21の複数の操作スィッチに割り当てた増幅率をアップ或 、はダウンする操作スイツ チによる指示信号を CPU41に送信することにより増幅率を変更することもできる。こ の場合にも、 CPU41は、これらの指示信号により、対応する制御信号を増幅率制御 回路 46に送り、指示された増幅率に設定する。
[0034] 上記 CCD13A或いは CCD13Bは、 CCD駆動信号が印加されることにより、光電 変換した撮像信号を出力する。この撮像信号は、プロセッサ 4内の映像信号前処理 回路 51に入力され、この映像信号前処理回路 51により CDS処理などが行われる。
[0035] この映像信号前処理回路 51の出力信号は、アナログ信号をデジタル信号に変換 する AZD変換回路 52に入力される。デジタル信号に変換された映像信号は、ホヮ イトバランス処理を施すホワイトバランス回路(図 1では WZBバランスと略記) 53に入 力される。このホワイトバランス回路 53の出力信号は、例えば構造強調及び色彩強 調等の画像処理を行う画像処理回路 54に入力される。
この画像処理回路 54の出力信号は、この出力信号と表示コントローラ 56により生 成される各種の画像に対応する映像信号とを合成して出力する映像信号出力回路 5 5に入力される。この映像信号出力回路 55の出力信号は、 DZA変換回路 57に入 力され、アナログの映像信号に変換されてモニタ 5に出力される。
[0036] また、 AZD変換回路 52の出力信号は、照明光量の自動制御を行うために、画像 上での明るさを測定する測光回路 58に入力され、この測光回路 58により測光される 。測光するモードとしては、画像の明るさのピークを検出するピーク測光と、平均の明 るさを検出する平均測光と、中央付近の明るさを検出するオート測光とがある。
この測光回路 58或いはこの測光された信号が入力される CPU41は、測光された 信号を設定しょうとする(明るさの)基準値と比較し、その差を小さくするように調光信 号を生成する。そして、この調光信号は、コネクタ 38、 37を経て光源装置 3内の CPU 35に送られ、この CPU35はフィルタ &絞り駆動回路 33を介して絞り 24の開口量を 調整し、基準値に相当する適切な明るさとなるように自動調光する。
[0037] また、プロセッサ 4内には、各種の情報を格納するメモリ 61が設けてあり、 CPU41 は、このメモリ 61に格納された表示情報 61a等を参照して、モニタ 5に表示する表示 情報の切替制御を行う。つまり、 CPU41は、表示情報切替制御 4 lbの機能を持つ。 なお、モニタ 5に表示する表示情報の切替については後述する。
また、プロセッサ 4内には、各種の情報を格納するメモリ 61が設けてあり、 CPU41 は、このメモリ 61に格納された情報を参照して、プロセッサ 4の前面に設けられたフロ ントパネル (操作パネル) 62の複数の操作スィッチ 63に割り付けられた機能を実行さ せることが可能な状態力否かを LED64の点灯 Z消灯の表示で告知させるように、制 御する。
操作スィッチ 63及び LED64は、信号線を介して CPU41と接続されている。 CPU 41は、操作スィッチ 63の操作に対応して画像処理回路 54の動作制御を行う。
[0038] この CPU41は、画像処理回路 54の他に、ホワイトバランス回路 53及び表示コント ローラ 56等を制御する。
このような構成の本実施例におけるプロセッサ 4には、このプロセッサ 4に着脱自在 で接続される電子内視鏡 2の種類等に関する情報を、その電子内視鏡 2内に設けら れたメモリ 22aから読み出す CPU41を有し、この CPU41は、読み出した情報をメモ リ 61に一時格納する。また、電子内視鏡 2が複数の CCDを内蔵した場合には、 CPU 41は、ユーザによる観察モードの選択に応じて、駆動する CCDを切り替えるか否か の判定を行う切替判定部の機能を持つ。
[0039] そして、駆動する CCDを切り替える場合には、 CPU41はその切替に応じてモニタ 5に表示する表示情報を CCDに対応したものとなるように表示情報の切替制御を行 うことが特徴となっている。なお、電源投入による初期状態では、 CPU41或いは CP U35は、通常観察モードの照明光を内視鏡 (電子内視鏡或いはファイバスコープ)に 供給する状態に設定すると共に、プロセッサ 4の信号処理系も通常観察モードに対 応した状態にする。
次に、このように構成された本実施例の電子内視鏡装置 1における接続された電子 内視鏡 2に関連する情報を表示する作用について図 4を参照して説明する。
図 1に示すように電子内視鏡が光源装置 3とプロセッサ 4に接続された状態で、光 源装置 3及びプロセッサ 4の電源が投入されると、光源装置 3及びプロセッサ 4は動作 状態になる。
[0040] すると、光源装置 3の CPU35とプロセッサ 4の CPU41は、例えば内部の ROM等 に格納されたプログラムを読み込み、ステップ S 1に示すように初期設定の処理を行う この初期設定の処理において、例えば CPU41は、プロセッサ 4に接続された電子 内視鏡 2の種別などを判定するために、プロセッサ 4に接続された電子内視鏡 2の内 部に設けられたメモリ 22aに格納された情報を読み出すことにより、内視鏡情報の読 み出し処理を行う。
そして、ステップ S2に示すように CPU41は、メモリ 22aから読み出した情報から、こ の電子内視鏡 2が 2つの CCD13A、 13Bを備えた電子内視鏡であることを判定し、 通常観察モードの状態に設定する制御を行う。
[0041] このため、 CPU41は、 CCD13Aを駆動する状態に切替スィッチ 16a、 16bを制御 すると共に、光源装置 3の CPU35と通信を行い、 CPU35の制御下で、光源装置 3 の照明光が通常観察モードの照明光を電子内視鏡 2に供給する状態にする。
また、次のステップ S3において CPU41は、電子内視鏡 2に関連する情報、より具 体的には、その電子内視鏡 2で実際に駆動される CCD 13Aに対応した状態での電 子内視鏡 2に関連する情報をモニタ 5に表示する表示情報の制御ないしは表示情報 の切替制御を行う。
この場合、プロセッサ 4に接続されたこの電子内視鏡 2の処置具チャンネル 17の内 径の情報、及びその動作状態における CCD13A (具体的には通常観察モード時で の CCD13A)の場合における処置具が撮像範囲 (視野範囲)に現れる処置具方向 情報等の処置具情報と、 CCD 13Aに結像する対物レンズ系 12Aによる現在のズー ムスケール等をモニタ 5に表示する表示情報の制御処理を行う。
[0042] この場合のモニタ 5での表示例を図 5Aに示す。図 5Aに示すように、モニタ 5の表示 面における略中央付近 (若干右寄り上部側)に CCD13Aで撮像された内視鏡画像 を表示する内視鏡画像表示エリア 5aがあり、その左横には、患者情報等が表示され る患者情報等表示エリア 5bがある。
この患者情報等表示エリア 5bの一部のエリア中に、内視鏡画像表示エリア 5aのサ ィズを小さくした処置具情報表示エリア 5cが設けられている。そして、この処置具情 報表示エリア 5cにおいてこの電子内視鏡 2の処置具チャンネル 17の内径(図 5A中 の 3. 7mmであることを示す 3. 7)の情報 A及び処置具が撮像範囲に現れる処置具 方向情報 B力 なる処置具情報が CPU41の制御下で表示される。
[0043] また、この内視鏡画像表示エリア 5aの下側には、現在駆動されている CCD13Aに より対物レンズ系 12Aを用いて撮像され、内視鏡画像表示エリア 5aで表示されて ヽ る内視鏡画像における概略のスケールを表すズームスケール 71が CPU41の制御 下で表示される。
このズームスケール 71は、最大拡大時に例えば lmmの大きさの物体を観察した時 、画面上何 mmで見えるかを示す遠点側スケール 71aと、近点側スケール 71bとから なり、両スケール 71a、 71bはメモリ 22aに格納された光学拡大観察の情報に基づい て CPU41の制御下で表示する。
[0044] さらに説明すると、ズームスケール 71は、最大拡大時における所定の長さが画面上 で実際に表示される際、どの程度の長さになるかを表すものであり、本実施例では最 大拡大時における深度 (ピントの合う範囲)の近点側スケール 71a (範囲も最前側)、 遠点側スケール 71b (最後側)との 2つ力 成る。このように内視鏡画像表示エリア 5a の下側に画像中における長さを評価 (測定)できるスケールが表示されるので、ユー ザはそのスケールを参照することにより、患部等の画像部分のサイズを把握でき、診 断を行い易くなる。
[0045] 上記処置具情報表示エリア 5cの画像及びズームスケール 71の表示用の画像は、 CPU41の制御下で、表示コントローラ 56により生成される。生成された表示用の画 像の映像信号は、映像信号出力回路 55において CCD13Aにより撮像された内視 鏡画像の映像信号と混合 (合成)され、合成された画像がモニタ 5に図 5Aのように表 示される。 このようにモニタ 5の表示面には、プロセッサ 4に実際に接続されている電 子内視鏡 2に関連する情報、より具体的には実際に使用されている CCD13Aに対 応した (電子内視鏡 2に関連する)情報が表示される。
その後、次のステップ S4において CPU41は、特殊光観察モードにおける蛍光観 察モードへの切替指示、換言すると第 2の CCD13Bへの切替指示がある力否かの 判定を行う。そして、 CPU41は、この切替指示があるまでその表示状態を持続する。 但し、ズーム変更の指示操作が行われると、そのズーム変更に対応したズームスケー ル 71の表示を行う。
術者は、通常観察モードにおいて、患部等を観察し、さらに病変部分を蛍光観察 モードで観察したいような場合には、例えば観察モード選択スィッチ 21aにより蛍光 観察モードを選択する操作を行う。
[0046] 蛍光観察モードへの切替指示の操作が行われると、ステップ S5に示すように CPU 41等は、蛍光観察モードに対応した照明等を行うように切替処理を行う。具体的に は、 CPU41は、光源装置 3の CPU35に蛍光観察モードへの切替を行わせる指示 ¾号 达る。
そして、光源装置 3は、蛍光観察モードに対応した照明光を電子内視鏡 2に供給す る状態になる。また、 CPU41は、切替スィッチ 16a、 16bを切り替え、かつ CCD駆動 回路 45から出力される CCD駆動信号を CCD13Bを駆動するものとなるように制御 すると共に、増幅率制御回路 46を制御する。
そして、蛍光撮像を行う期間(つまり、図 3 (A)の Eフィルタ 29bを通した励起光を照 射して蛍光撮像を行う期間)においては、 CCD駆動信号に増幅率制御回路 46から の増幅率制御信号が重畳されて CCD13Bに印加される。これにより、蛍光撮像した 蛍光撮像信号の信号レベルは他の反射光で撮像した信号レベルに近 ヽものにする
[0047] また、 CPU41は、 CCD13Aから CCD13Bへと駆動する CCDの切替に連動して、 切り替えられて実際に駆動されている CCD13Bに対応する電子内視鏡 2に関する情 報をモニタ 5に表示する表示制御処理を行う(切替の前と後との関係で言うと、表示さ れる情報の切替制御を行う)。
具体的には、 CPU41は、この CCD13Bの場合における処置具が撮像範囲に現れ る処置具方向情報等の処置具情報と、この CCD13Bを用いた場合における現在の ズームスケール等をモニタ 5に表示する表示処理を行う。
図 5Bに示すようにこの蛍光観察モード時には、実際に撮像に使用されている CCD 13Bの場合に対応した電子内視鏡 2に関連する情報の表示内容に変更される。 つまり、図 5Aの場合における CCD13Aから CCD13Bへの切替に対応して、表示 内容が切り替えられる。具体的には、処置具情報及び対物レンズ系 12B及び CCD 1 3Bによる現在のズームスケール 71等がモニタ 5に表示される。
[0048] この場合、電子内視鏡 2の処置具チャンネル 17の内径の情報 Aは、図 5Aと同じで あるが、処置具が撮像範囲に現れる処置具方向情報 Bは、図 5Aとは異なる状態で、 CCD13Bに対応した表示となる。つまり、図 5Aでは、処置具方向情報 Bは、処置具 が右側の上側から中央に向いた方向となっている力 図 5Bでは、処置具方向情報 B は、処置具が右側の下側から中央に向いた方向となっている。
また、内視鏡画像の直下に表示されるズームスケール 71は、現在撮像に使用され ている CCD13Bに像を結ぶ対物レンズ系 12Bによる値に変更される。図 5Bの例で は、対物レンズ系 12Aの場合よりも小さ!/、ズームスケール 71として表示されて!、る。
[0049] ステップ S5の後のステップ S6において CPU41は、通常観察モード(CCD13A) への切替を待つ状態となる。そして、通常観察モードへの切替操作が行われると、ス テツプ S2に戻ることになる。
[0050] 本実施例によれば、 2つの CCD13A、 13Bを搭載した電子内視鏡 2の場合におい て、一方力 他方に CCDを切り替えて使用した場合においても、その切替に応じて 切り替えられた CCDに対応した電子内視鏡 2に関連する情報が適切に表示されるよ うになる。
従って、処置具による処置が行い易くなると共に、患部等を拡大観察等する場合に も、その大きさの把握がし易くなり、診断が行い易くなる。つまり、術者が内視鏡検査 や処置具による処置などを行う場合、使い勝手の良い状態で行うことができる。つまり 、良好な操作性を確保できる。
[0051] なお、上述の説明においては、プロセッサ 4に電子内視鏡 2が接続された場合、プ 口セッサ 4は、電子内視鏡 2に内蔵されたメモリ 22aに格納されたその電子内視鏡 2に 関する情報を読み出し、その情報を利用してモニタ 5で表示するようにしている。 この場合、メモリ 22aには、電子内視鏡 2の固有の識別情報を格納しておき、その 識別情報に対応したその電子内視鏡 2に関する情報をプロセッサ 4側に格納しても 良い。
[0052] なお、上述の説明では、例えば CCD13Bは、 CCD素子内部に信号増幅機能を備 えた CCDの場合で説明した力 CCD13Aと画素数等が異なる CCDの場合にも適 用できる。また、 CCD13Aとして、 CCD13Bのような CCD素子内部に信号増幅機能 を備えたものとしても良い。
[0053] なお、上述の説明においては、観察モードの選択に応じて駆動する 1つの CCDを 選択 (切替)する場合で説明したが、共通の駆動信号で複数の CCDを駆動できる場 合を考慮すると、共通の駆動信号で複数の CCDを常時駆動するようにしても良い。 そして、観察モードの選択に応じて、複数の CCDの出力信号における 1つを選択す る構成にしても良い。
[0054] 共通の駆動信号で複数の CCDを駆動する場合には、画素数の大きい方の CCDを 駆動する駆動信号を発生する CCD駆動回路を採用すれば良い。
[0055] 本発明によれば、固体撮像素子を切り替える前と後で、表示手段に出力される前 記電子内視鏡に関する情報を、切り替える固体撮像素子に対応させることができ、操 作性が向上する。
産業上の利用可能性
[0056] 観察モードの選択操作等に応じて 2つの CCD力 対応する CCDを選択して使用 すると共に、使用される CCDに対応した電子内視鏡に関連する情報を表示すること により、より使い勝手の良い状態で内視鏡検査及び処置具を用いた処置等を行うこと ができる。

Claims

請求の範囲
[1] 少なくとも複数の固体撮像素子が設けられた電子内視鏡が接続される内視鏡接続 部と、
前記内視鏡接続部に接続された前記電子内視鏡に設けられた前記複数の固体撮 像素子の少なくとも 1つの出力信号の選択を行わせる選択信号を発生する操作を行 うための選択操作部と、
前記選択信号に基づき、選択された 1つの固体撮像素子の出力信号に対する信 号処理を行い、映像信号を生成する信号処理回路と、
前記出力信号が選択された 1つの固体撮像素子に対応して、表示装置に表示され る前記電子内視鏡に関する情報の切替を行う情報切替制御部と、
を具備したことを特徴とする電子内視鏡用信号処理装置。
[2] 前記選択信号に基づき、選択された 1つの固体撮像素子に対して駆動信号を印加 する駆動信号発生回路を有することを特徴とする請求項 1記載の電子内視鏡用信号 処理装置。
[3] 前記電子内視鏡に関する情報は、前記複数の固体撮像素子それぞれに関連する 固体撮像素子関連情報であることを特徴とする請求項 1記載の電子内視鏡用信号 処理装置。
[4] 前記電子内視鏡に関する情報は、前記複数の固体撮像素子それぞれで撮像され た各画像が前記表示装置に表示される際の長さを評価するためのスケールの情報 であることを特徴とする請求項 1記載の電子内視鏡用信号処理装置。
[5] 前記電子内視鏡に関する情報は、前記電子内視鏡の先端部に配置される前記複 数の固体撮像素子の周辺部に配置された処置具チャンネルの先端開口力 突出さ れる処置具が、前記複数の固体撮像素子の撮像範囲にそれぞれ現れる方向に関す る処置具関連情報であることを特徴とする請求項 3記載の電子内視鏡用信号処理装 置。
[6] 前記処置具関連情報は、前記処置具チャンネルの内径の情報を含むことを特徴と する請求項 5記載の電子内視鏡用信号処理装置。
[7] 前記内視鏡接続部に接続された前記電子内視鏡から前記電子内視鏡内の情報格 納部に格納された格納情報を読み出す読み出し部を有することを特徴とする請求項
1記載の電子内視鏡用信号処理装置。
[8] 前記電子内視鏡用信号処理装置は、さらに、可視領域で観察する第 1の観察モー ドに対応した可視領域の第 1の照明光と、前記第 1の照明光とは少なくとも波長が異 なる第 2の観察モードに対応した第 2の照明光とを含む複数種類の照明光を選択的 に出射する光源装置と電気的に接続されることを特徴とする請求項 1記載の電子内 視鏡用信号処理装置。
[9] 前記選択操作部は、前記選択信号として、前記第 1若しくは第 2の観察モードを選 択するモード選択信号を発生する観察モード選択部であることを特徴とする請求項 8 記載の電子内視鏡装置。
[10] 前記光源装置は、前記モード選択信号により前記第 1若しくは第 2の観察モードに 対応する第 1若しくは第 2の照明光を選択的に出射することを特徴とする請求項 9記 載の電子内視鏡装置。
[11] 前記モード選択信号の発生により、前記モード選択信号の発生前に選択された 1 つの固体撮像素子から他の固体撮像素子の出力信号を選択するための切替を行う か否かの切替判定を行うことを特徴とする請求項 9記載の電子内視鏡装置。
[12] 複数の固体撮像素子が設けられた電子内視鏡と、
前記電子内視鏡に設けられた前記複数の固体撮像素子の少なくとも 1つの出力信 号の選択を行う選択信号を発生する操作を行うための選択操作部と、
前記選択信号に基づき、選択された 1つの固体撮像素子の出力信号に対する信 号処理を行い、映像信号を生成する信号処理回路と、
前記出力信号が選択された 1つの固体撮像素子に対応して、表示装置に表示され る前記電子内視鏡に関する情報の切替を行う情報切替制御部と、
を具備したことを特徴とする電子内視鏡装置。
[13] 前記選択信号に基づき、選択された 1つの固体撮像素子に対して駆動信号を印加 する駆動信号発生回路を有することを特徴とする請求項 12記載の電子内視鏡装置
[14] 前記電子内視鏡に関する情報は、前記複数の固体撮像素子それぞれに関連する 固体撮像素子関連情報であることを特徴とする請求項 12記載の電子内視鏡装置。
[15] 前記電子内視鏡に関する情報は、前記複数の固体撮像素子それぞれで撮像され た各画像が前記表示装置に表示される際の長さを評価するためのスケールの情報 であることを特
徴とする請求項 12記載の電子内視鏡装置。
[16] 前記複数の固体撮像素子における少なくとも 1つは、信号増幅機能を内蔵した固 体撮像素子であることを特徴とする請求項 12記載の電子内視鏡装置。
[17] 前記電子内視鏡は、前記電子内視鏡に関する内視鏡情報を格納する情報格納部 を有することを特徴とする請求項 12記載の電子内視鏡装置。
[18] 前記情報切替制御部は、前記情報格納部から読み出した内視鏡情報を用いて前 記電子内視鏡に関する情報を生成することを特徴とする請求項 17記載の電子内視 鏡装置。
[19] さらに前記電子内視鏡装置は、可視領域で観察する第 1の観察モードに対応した 可視領域の第 1の照明光と、前記第 1の照明光とは少なくとも波長が異なる第 2の観 察モードに対応した第 2の照明光とを含む複数種類の照明光を選択的に出射する光 源装置を含むことを特徴とする請求項 12記載の電子内視鏡装置。
[20] 前記選択操作部は、前記選択信号として、前記第 1若しくは第 2の観察モードを選 択するモード選択信号を発生する観察モード選択部であり、前記光源装置は、前記 モード選択信号により前記第 1若しくは第 2の観察モードに対応する第 1若しくは第 2 の照明光を選択的に出射することを特徴とする請求項 19記載の電子内視鏡装置。
[21] 前記モード選択信号の発生により、前記モード選択信号の発生前に選択された 1 つの固体撮像素子から他の固体撮像素子の出力信号を選択するための切替を行う か否かの切替判定を行うことを特徴とする請求項 19記載の電子内視鏡装置。
PCT/JP2006/303074 2005-03-29 2006-02-21 電子内視鏡用信号処理装置及び電子内視鏡装置 WO2006103846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002602242A CA2602242A1 (en) 2005-03-29 2006-02-21 Signal processing apparatus for electronic endoscope and electronic endoscope apparatus
US11/887,315 US20090027489A1 (en) 2005-03-29 2006-02-21 Signal Processing Apparatus for Electronic Endoscope and Electronic Endoscope Apparatus
AU2006229031A AU2006229031A1 (en) 2005-03-29 2006-02-21 Signal processing device for electronic endoscope, and electronic endoscope device
EP06714214A EP1864605A1 (en) 2005-03-29 2006-02-21 Signal processing device for electronic endoscope, and electronic endoscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-095716 2005-03-29
JP2005095716A JP4989036B2 (ja) 2005-03-29 2005-03-29 電子内視鏡用信号処理装置及び電子内視鏡装置

Publications (1)

Publication Number Publication Date
WO2006103846A1 true WO2006103846A1 (ja) 2006-10-05

Family

ID=37053115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303074 WO2006103846A1 (ja) 2005-03-29 2006-02-21 電子内視鏡用信号処理装置及び電子内視鏡装置

Country Status (8)

Country Link
US (1) US20090027489A1 (ja)
EP (1) EP1864605A1 (ja)
JP (1) JP4989036B2 (ja)
KR (1) KR20070110893A (ja)
CN (1) CN101141913A (ja)
AU (1) AU2006229031A1 (ja)
CA (1) CA2602242A1 (ja)
WO (1) WO2006103846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090358A1 (ja) * 2019-11-05 2021-05-14 オリンパス株式会社 内視鏡装置、表示用画像出力方法、及びプログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980453B2 (en) 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
JP4847250B2 (ja) * 2006-08-03 2011-12-28 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5114170B2 (ja) * 2007-11-22 2013-01-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
US20130158349A1 (en) * 2011-07-08 2013-06-20 Fujifilm Corporation Insertion and extraction assisting device and endoscope system
JP6021369B2 (ja) * 2012-03-21 2016-11-09 Hoya株式会社 内視鏡システム
CN105007798A (zh) * 2013-02-13 2015-10-28 奥林巴斯株式会社 荧光观察装置
US10869592B2 (en) 2015-02-23 2020-12-22 Uroviu Corp. Handheld surgical endoscope
US11832797B2 (en) 2016-09-25 2023-12-05 Micronvision Corp. Endoscopic fluorescence imaging
US11684248B2 (en) 2017-09-25 2023-06-27 Micronvision Corp. Endoscopy/stereo colposcopy medical instrument
US11330973B2 (en) * 2017-09-25 2022-05-17 Micronvision Corp Portable and ergonomic endoscope with disposable cannula
US11771304B1 (en) 2020-11-12 2023-10-03 Micronvision Corp. Minimally invasive endoscope
EP4003138A4 (en) 2019-07-25 2023-08-30 Uroviu Corp. DISPOSABLE ENDOSCOPY CANNULA WITH INTEGRATED FORCEPS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969721A (ja) * 1982-10-15 1984-04-20 Olympus Optical Co Ltd 内視鏡計測装置
JPH11104070A (ja) * 1997-10-02 1999-04-20 Olympus Optical Co Ltd 内視鏡
JP2003116772A (ja) * 2001-10-18 2003-04-22 Olympus Optical Co Ltd 内視鏡装置及び内視鏡用フード部材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816909A (en) * 1986-12-17 1989-03-28 Olympus Optical Co., Ltd. Video endoscope system for use with different sizes of solid state devices
US4928172A (en) * 1988-01-07 1990-05-22 Olympus Optical Co., Ltd. Endoscope output signal control device and endoscope apparatus making use of the same
US5058603A (en) * 1988-08-09 1991-10-22 Asahi Kogaku Kogyo K.K. Length-measuring device and reference color display device for color tone adjustment for use in combination with endoscope
JP3041099B2 (ja) * 1991-02-01 2000-05-15 オリンパス光学工業株式会社 電子内視鏡装置
US5614943A (en) * 1991-12-19 1997-03-25 Olympus Optical Co., Ltd. Dissimilar endoscopes usable with a common control unit
US5412478A (en) * 1992-09-30 1995-05-02 Olympus Optical Co., Ltd. Endoscope system which changes over switches in interlocking relation to each other within video processor and image display apparatus to perform display of endoscope image
JPH0829701A (ja) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd 立体視内視鏡システム
US6217510B1 (en) * 1997-10-02 2001-04-17 Olympus Optical Co., Ltd. Endoscopes and endoscope devices which image regular observation images and fluorescent images as well as which provide easier operation of treatment tools
US7386339B2 (en) * 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
JP2002045328A (ja) * 2000-08-01 2002-02-12 Fuji Photo Film Co Ltd 蛍光診断画像表示装置
JP4855586B2 (ja) * 2001-05-16 2012-01-18 オリンパス株式会社 内視鏡装置
JP4197879B2 (ja) * 2002-03-15 2008-12-17 オリンパス株式会社 内視鏡装置
US7630752B2 (en) * 2002-08-06 2009-12-08 Stereotaxis, Inc. Remote control of medical devices using a virtual device interface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969721A (ja) * 1982-10-15 1984-04-20 Olympus Optical Co Ltd 内視鏡計測装置
JPH11104070A (ja) * 1997-10-02 1999-04-20 Olympus Optical Co Ltd 内視鏡
JP2003116772A (ja) * 2001-10-18 2003-04-22 Olympus Optical Co Ltd 内視鏡装置及び内視鏡用フード部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090358A1 (ja) * 2019-11-05 2021-05-14 オリンパス株式会社 内視鏡装置、表示用画像出力方法、及びプログラム
JPWO2021090358A1 (ja) * 2019-11-05 2021-05-14
JP7210765B2 (ja) 2019-11-05 2023-01-23 オリンパス株式会社 内視鏡装置、表示用画像出力方法、プログラム、及び内視鏡システム

Also Published As

Publication number Publication date
CN101141913A (zh) 2008-03-12
JP4989036B2 (ja) 2012-08-01
KR20070110893A (ko) 2007-11-20
JP2006271709A (ja) 2006-10-12
EP1864605A1 (en) 2007-12-12
CA2602242A1 (en) 2006-10-05
AU2006229031A1 (en) 2006-10-05
US20090027489A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4989036B2 (ja) 電子内視鏡用信号処理装置及び電子内視鏡装置
JP5887350B2 (ja) 内視鏡システム及びその作動方法
JP4855728B2 (ja) 照明装置及び観察装置
JP5914496B2 (ja) 内視鏡システム及びプロセッサ装置並びに内視鏡システムの作動方法
JP5222934B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP5226403B2 (ja) 光源装置及びこの光源装置を用いた内視鏡装置
WO2007010709A1 (ja) 内視鏡及び内視鏡装置
CN107105987B (zh) 图像处理装置及其工作方法、记录介质和内窥镜装置
JP2005131129A (ja) 撮像装置及び内視鏡装置
JP2007075445A (ja) 撮像システム
JP4575208B2 (ja) 電子内視鏡装置
JP3884265B2 (ja) 内視鏡装置
JP5766773B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP2012081048A (ja) 電子内視鏡システム、電子内視鏡、及び励起光照射方法
JP5331394B2 (ja) 内視鏡装置
JP6017670B2 (ja) 内視鏡システム及びその作動方法並びにプロセッサ装置
JP4242578B2 (ja) 内視鏡装置
JP2004305382A (ja) 特殊光観察システム
JP4426225B2 (ja) 蛍光観察内視鏡システム及び蛍光観察内視鏡用光源装置
JP5518686B2 (ja) 内視鏡システム
JP4526322B2 (ja) 内視鏡装置
JP5371941B2 (ja) 内視鏡システム
KR20180070133A (ko) 전자 내시경 시스템
JP4373726B2 (ja) 自家蛍光観察装置
JP2005087450A (ja) 蛍光観察内視鏡システム及び蛍光観察内視鏡用光源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008863.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006229031

Country of ref document: AU

Ref document number: 2602242

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006714214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887315

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077022148

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006229031

Country of ref document: AU

Date of ref document: 20060221

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006229031

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006714214

Country of ref document: EP