WO2006103812A1 - Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification - Google Patents

Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification Download PDF

Info

Publication number
WO2006103812A1
WO2006103812A1 PCT/JP2005/022523 JP2005022523W WO2006103812A1 WO 2006103812 A1 WO2006103812 A1 WO 2006103812A1 JP 2005022523 W JP2005022523 W JP 2005022523W WO 2006103812 A1 WO2006103812 A1 WO 2006103812A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
absorption
pressure
absorption tower
Prior art date
Application number
PCT/JP2005/022523
Other languages
French (fr)
Japanese (ja)
Inventor
Wenbin Dai
Ryohei Mori
Kenjun Den
Kazuaki Ota
Akio Umemura
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005094450A external-priority patent/JP4687184B2/en
Priority claimed from JP2005212054A external-priority patent/JP4826156B2/en
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Publication of WO2006103812A1 publication Critical patent/WO2006103812A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/526Mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • an ionic liquid or an organic solvent is used to absorb CO 2, H 2 S, CO
  • Acid gases such as S, SO, SO, NO, CS, HCN, NH, mercaptan, and H, CH
  • the present invention relates to a gas purification method and apparatus for separating and recovering the acid gas from the gas, and an acid gas absorption liquid used for the separation and recovery of the acid gas. More specifically, acid gas contained in synthesis gas, natural gas, etc. by fossil fuel gasification, reforming or partial oxidation, and acidity contained in exhaust gas from thermal power plants, cement plants, steel plants, chemical plants, etc.
  • the present invention relates to a gas purification method and apparatus for separating and recovering gas directly in a liquid state, and an acid gas absorbing solution used therefor. It also relates to the purification of hydrogen gas supplied to hydrogen stations and fuel cell vehicles, and the separation and recovery of liquid CO.
  • the acidic gas of 2 is separated and recovered, and this separation and recovery method includes a method of absorbing the acidic gas, a method of distilling the mixed gas, a method of adsorbing the acidic gas, a method of separating the mixed gas by membrane separation, and these methods.
  • the method which combined these is mentioned.
  • the lectisol process and the methyljetylamine process (hereinafter referred to as the MDEA process) are methods that are often used industrially (for example, see Non-Patent Document 1).
  • the lectisol process is a physical absorption process, using methanol as an absorbent, and CO contained in various gases such as synthesis gas by fossil fuel gasification, reforming or partial oxidation, ammonia synthesis gas, and natural gas. It is a method of absorbing and separating acid gases such as. Na
  • the absorption temperature of acid gas is set in the range of -10 to -75 ° C, and the absorption pressure is set in the range of 7 to 8MPa.
  • This lectizol process (physical absorption process) requires less regeneration energy than the MDEA process (chemical absorption process)! Have signs.
  • the absorption mechanism is based on the dissolution of gas in the absorption liquid, so the amount of acid gas dissolved is proportional to the acid gas partial pressure in the absorption tower. For this reason, the acid gas in the mixed gas is separated by the difference in the partial pressure of the acid gas in the absorption tower and the regeneration tower.
  • methanol is inexpensive and the absorption capacity for acid gas is 3 to 6 times the absorption capacity for acid gas in other physical absorption processes, so that a large amount of acid gas can be processed under high pressure by physical absorption! /
  • MDEA process is a chemical absorption process, some methyl oxygenate chill ⁇ Min aqueous tertiary Amin of 30 weight 0/0 as an absorbing liquid alone, when used in conjunction with active agent, the exhaust gas from the combustion of fossil fuels
  • This is a method for absorbing and separating acidic gas contained in various gases such as natural gas.
  • the absorption temperature of acid gas is set in the range of 30-60 ° C, and the absorption pressure is set in the range of 2-3MPa.
  • the absorption mechanism is a reversible reaction between an acid gas and an absorption liquid, and a compound is formed at low temperature and high pressure (the absorption liquid proceeds in the direction of absorbing the acid gas in the absorption tower). Decomposes into acid gas and absorption liquid at low pressure (advanced in the direction of releasing acid gas in the regeneration tower;).
  • the MDEA process is characterized by the fact that the regenerative energy of the absorbing solution is less than 1Z7 ⁇ : LZ2 of other chemical absorption processes and has a high ability to absorb acid gases.
  • Non-Patent Document 1 Editor: Japan Petroleum Institute, edited by Kodansha Scientific, Inc., “Oil Refinery Process”, Kodansha Co., Ltd., May 1998, p. 360-361)
  • the lectisol process shown in the above-mentioned conventional non-patent document 1 has a methanol loss.
  • the absorption temperature In order to suppress loss and increase the amount of acid gas absorbed per unit volume of the absorbent, the absorption temperature must be set low, a refrigerator is required, and the absorbent has vapor pressure.
  • the specific gravity is almost the same as the specific gravity of liquid CO.
  • the lectizol process and the MDEA process leave a small amount of absorbing liquid in the separated and collected acid gas.
  • the acid gas is CO used for food addition. If there is, high purity 99.99% by volume or more high purity CO
  • the first object of the present invention is to separate and recover acidic gas with high efficiency and low cost, and to increase the amount of acidic gas absorbed per unit volume of the absorbing liquid, and to further reduce the circulating amount of the absorbing liquid.
  • Another object of the present invention is to provide a gas purification method and apparatus capable of saving circulating energy.
  • the second object of the present invention is to use an absorption liquid having a low vapor pressure, so that the absorption liquid can be regenerated relatively easily and at a low cost, and the absorption liquid can be regenerated at a temperature lower than that of the conventional method.
  • Another object of the present invention is to provide a gas purification method and apparatus capable of reducing the regeneration energy.
  • the third object of the present invention is to reduce the evaporation port of the absorbing solution by using the absorbing solution having a low vapor pressure, and the absorbing solution does not remain in the separated and recovered CO gas.
  • the fourth object of the present invention is to efficiently recover CO in a liquid state, which makes the process easier than before.
  • Another object of the present invention is to provide a gas purification method and an apparatus therefor.
  • the fifth object of the present invention is to absorb acidic gas at a temperature higher than room temperature, thereby eliminating the need for a refrigerator and refrigeration energy, reducing costs, saving energy, and reducing the size of the gas. It is to provide a purification apparatus.
  • An ionic liquid is an organic salt that is melted without crystallization even at room temperature.
  • Ionic liquids have high heat resistance with low vapor pressure despite being liquid (thermally stable even at 400 ° C or higher), and have a wide temperature range of liquid – 100 to 300 ° C), low viscosity
  • it is highly polar and has unique properties such as being chemically stable and nonflammable.
  • the inventors of the present invention have the ability to absorb acidic gas such as CO per unit volume of ionic liquid under pressure.
  • an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the gas, and the mixed gas is brought into contact with the absorbing liquid, thereby absorbing the acidic gas into the absorbing liquid and separating the non-acidic gas from the acidic gas.
  • the acidic gas is recovered from the step of recovering the acidic gas from the absorption tower 13 and the upper part of the regeneration tower 16 maintained at a temperature equal to or higher than the temperature in the absorption tower 13 and lower than the pressure in the absorption tower 13.
  • an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • non-acidic gas and acidic gas can be combined with the mixed gas power. Efficient separation and recovery.
  • the invention according to claim 2 is an absorption liquid mainly composed of one or both of an organic solvent and water at the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure.
  • a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the absorption tower 13, and the mixed gas is brought into contact with the absorbing liquid 42 so that the absorbing gas 42 absorbs the acidic gas and the non-acidic gas is absorbed.
  • the liquid acid gas 41 is separated from the liquid 42 by the mutual insolubility and specific gravity difference between the liquid liquid 41 and the liquid 42.
  • a process to recover from the regenerator 46 and to regenerate the absorbent 42 And a method of purifying a mixed gas containing an acidic gas, including the step of supplying the regenerated absorbing liquid 42 to the upper portion of the absorption tower 13.
  • the organic solvent or water is used as the main component at the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • the absorbing liquid 42 is supplied and a mixed gas containing acidic gas and non-acidic gas is supplied to the lower part of the absorption tower 13, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed by the absorbing liquid 42. Separated into non-acid gas and acid gas, the non-acid gas is recovered from the absorption tower 13.
  • the absorption liquid 42 that has absorbed the acid gas is supplied to the separation regenerator 46 that is maintained at the same level, the acid gas is liquefied in the separation regenerator 46, and the mutual insolubility between the liquid acid gas 41 and the absorption liquid 42 and The liquid acid gas 41 is separated from the absorbent 42 by the difference in specific gravity and recovered from the separation regenerator 46, and the absorbent 42 is regenerated and reused.
  • the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range.
  • the acidic gas is liquefied in a temperature range lower than the predetermined temperature range, and the liquid acidic gas
  • the acidic gas 41 is recovered as a gas and then cooled by cooling to form a liquid.
  • the mixed gas force non-acidic gas and liquid acidic gas 41 can be separated and recovered efficiently.
  • an absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of 13 and bringing the mixed liquid into contact with the absorbing liquid 42 ⁇ .
  • the absorbing gas 42 absorbs the acidic gas and the non-acidic gas and the acidic gas
  • the non-acidic gas is recovered from the absorption tower 13 and the separation regenerator 46 maintained at a predetermined pressure and lower than the temperature in the absorption tower 13 is supplied with the absorbing liquid that has absorbed the acidic gas.
  • the acid gas is liquefied, and the liquid acid gas 41 is separated from the absorbing liquid 42 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and recovered from the separation regenerator 46 and absorbed.
  • Step of regenerating liquid 42 and the regenerated absorbent And a step of supplying 42 to the upper part of the absorption tower 13.
  • the absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. If a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the absorption tower 13, the mixed gas comes into contact with the absorbent 42 and the acidic gas is absorbed by the absorbent 42. The non-acidic gas is recovered from the absorption tower 13. Maintain the same pressure as that in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13 and a temperature lower than the temperature in the absorption tower 13.
  • the separation / regenerator 46 When the absorption liquid that has absorbed the acid gas is supplied to the maintained separation / regenerator 46, the separation / regenerator 46 liquefies the acid gas, and the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 are reduced.
  • the liquid acid gas 41 is separated from the absorbing liquid 42 and recovered from the separation regenerator 46, and the absorbing liquid 42 is regenerated and reused. That is, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range.
  • the acid gas 41 is recovered in the liquid state directly rather than being pressurized and cooled after being recovered as a gas. Since the recovery is performed, the non-acidic gas and the liquid acidic gas 41 can be efficiently separated and recovered by using the mixed gas power.
  • a liquid membrane 51 in which a porous membrane is impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in a membrane separator 52.
  • the membrane separator 52 is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set to a pressure higher than that of the second chamber 52b, and the first chamber 52a is a mixed gas containing acidic gas and non-acidic gas.
  • the non-acid gas remains in the first chamber 52a, passes through the liquid film 51 and moves to the low-pressure second chamber 52b, and recovers the non-acid gas from the first chamber 52a.
  • it is a gas purification method for recovering acid gas from the second chamber 52b.
  • the invention according to claim 8 is the invention according to any one of claims 1, 3, or 4, and is characterized in that the absorbing liquid containing an ionic liquid as a main component is neutral or alkaline. And In the gas purification method described in claim 8, since the absorbing solution is neutral or alkaline, the acidic gas is easily dissolved in the absorbing solution, and the solubility thereof is larger than that of the acidic absorbing solution.
  • the invention according to claim 9 is the invention according to claim 1 or 3, further comprising a step of dehumidifying the mixed gas before supplying the mixed gas to the absorption tower 13, as shown in FIG. It is a feature.
  • the invention according to claim 10 is the invention according to claim 4, further comprising a step of dehumidifying the mixed gas before introducing the mixed gas into the membrane separator 52, as shown in FIG. It is a feature.
  • the acid gas is absorbed into the absorption liquid.
  • the solubility of the acidic gas in the absorbing liquid or the permeability to the liquid film 51 is increased.
  • the absorption liquid force that absorbed the acid gas is lower than 0 ° C. in order to separate the acid gas in a liquid state, the acid gas that does not freeze water is quickly separated from the absorption liquid.
  • the invention according to claim 13 is the invention according to claim 2 or 3, and as shown in FIG. 2 or 3, the temperature discharged from the absorption tower 13 and lower than the temperature in the absorption tower 13. Before the absorption liquid 42 containing the acidic gas cooled to the separation regenerator 46 is supplied to the separation regenerator 46, it further includes a step of centrifugation or stirring.
  • the acidic gas in the absorbing liquid 42 is liquefied by cooling the absorbing liquid 42 containing the acidic gas to a temperature lower than the temperature in the absorber 13.
  • the absorption liquid 42 including the liquid acid gas 41 is obtained by centrifuging or stirring before being supplied to the separation regenerator 46.
  • the separator / regenerator 46 the liquid acid gas and the absorbing liquid are quickly separated into phases.
  • the invention according to claim 14 is the invention according to claim 2 or 3, wherein, as shown in FIG. 7 or FIG. 8, the absorbing liquid 42 has magnetism, and a magnet 61 is provided below the separation regenerator 46. It is provided.
  • the pressure is almost the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13,
  • the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 which is maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13.
  • the liquid acid gas 41 and the absorption liquid 42 are quickly separated into the absorption liquid 42 and the liquid acid gas 41 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 and the attractive force of the magnetic absorption liquid 42 by the magnet 61.
  • the invention according to claim 15 is the invention according to any one of claims 1 to 3, and further includes water, alcohols, ethers and phenols as shown in FIG. 9 or FIG.
  • One or two or more additives 71 selected from the group consisting of these are added to the absorbent 42.
  • the viscosity of the absorbing liquid 42 can be reduced by adding the additive 71 to the absorbing liquid 42.
  • the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the absorption gas can be absorbed by the absorption tower 13 without substantially reducing the ability of the additive-containing absorption liquid 75 to absorb the acid gas.
  • the contained absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily.
  • the invention according to claim 16 is the invention according to claim 2 or 3, further comprising one or two selected from the group consisting of water, alcohols and ethers as shown in FIG. 11 or FIG.
  • the specific gravity of the liquid acidic gas 41 and the additive-containing absorbent 75 in the separation regenerator 46 is adjusted.
  • the additive-containing absorption liquid 75 discharged from the separation / regenerator 46 is supplied to the distillation separator 83 and the inside of the distillation separator 83 is heated to a predetermined temperature to absorb the additive-containing absorption. And a step of distilling and separating the additive 71 in the liquid 75 from the absorbing liquid 42.
  • the additive 71 is separated into the separation regenerator 46 together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the pressure and temperature in the separation regenerator 46 are adjusted.
  • the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and the additive having the mutual solubility in the absorbing liquid 42 and the mutual insolubility in the liquid acidic gas 41 71 By replacing the liquid acidic gas 41 dispersed in the absorbent 42 by the additive 71 with the additive 71, the liquid acidic gas 41 and the additive-containing absorbent 75 are quickly separated.
  • the additive-containing absorbent 75 discharged from the separator / regenerator 46 is supplied to the distillation separator 83 while the inside of the distillation separator 83 is heated to a predetermined temperature, the additive in the additive-containing absorbent 75 is added. 71 is distilled off from the absorbent 42. As a result, the absorption liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, so that the absorption gas 13 can absorb the acid gas without reducing the ability of the absorption liquid 42 to absorb the acid gas.
  • the invention according to claim 17 is the invention according to claim 2 or 3, characterized in that a flocculant is further added to the absorbing liquid containing liquid acidic gas in the separation regenerator.
  • the liquid acid gas dispersed in the absorption liquid by adding the flocculant to the absorption liquid containing the liquid acid gas in the separation regenerator. Since the (dispersed liquid) can be agglomerated, it is quickly separated into the aggregating agent-containing absorbing liquid and the liquid acidic gas due to the difference in specific gravity between the aggregating agent-containing absorbing liquid and the liquid acid gas in the separation regenerator. Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
  • the invention according to claim 18 is the invention according to claim 2 or 3, wherein the acidic gas is CO gas and the separation regenerator is maintained at a pressure of 4 to 25 MPa as shown in FIG. 13 or FIG. Four
  • Water is supplied into the absorption liquid 42 containing liquid CO 41 in 6.
  • the separation regenerator 46 is kept in the absorbing liquid 42 containing the liquid CO 41 in the separation regenerator 46 while the inside of the separation regenerator 46 is kept at a high pressure of 4 to 25 MPa.
  • the invention according to claim 19 includes a compressor 12 for compressing a mixed gas containing an acidic gas and a non-acidic gas, a compressed mixed gas supplied at the lower part, and an organic solvent or water at the upper part.
  • the absorbing liquid 42 containing either or both of the main components is supplied, and the mixed gas is brought into contact with the absorbing liquid 42 to absorb the acidic gas into the absorbing liquid 42 to separate and recover the non-acidic gas from the acidic gas.
  • Absorption tower 13 cooler 47 that cools the absorption liquid that has absorbed the acid gas, and absorption liquid that has been cooled and absorbed the acid gas are supplied, and due to the mutual insolubility and specific gravity difference between liquid acid gas 41 and absorption liquid 42 Separating and recovering the liquid acid gas 41 from the absorbing liquid 42 and regenerating and reusing the absorbing liquid 42, the separating regenerator 46 and the absorbing liquid 42 discharged from the separating regenerator 46, And a circulation pump 17 for supplying to the upper part.
  • it is a purification apparatus for a mixed gas containing acid gas.
  • an absorption liquid mainly composed of one or both of an organic solvent and water is provided above the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • a mixed gas containing acidic gas and non-acidic gas is compressed and supplied to the lower part of the absorption tower 13 with the compressor 12, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed into the absorbing liquid 42. Therefore, the non-acid gas is separated from the acid gas column and recovered from the absorption tower 13.
  • the separation regenerator 46 From the same pressure as in the absorption tower 13 above, the pressure in the absorption tower 13 If the absorption liquid that has absorbed the acid gas is supplied to the separation regenerator 46 maintained at a slightly lower pressure or slightly higher than the pressure in the absorption tower 13 after being cooled by the cooler 47, the separation regenerator 46 Thus, the acid gas is liquidized, and the liquid acid gas 41 is separated from the absorbing liquid 42 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and collected from the separation regenerator 46. In addition, the absorbing liquid 42 regenerated by removing the liquid acid gas is supplied to the upper portion of the absorption tower 13 by the circulation pump 17 and reused.
  • the invention according to claim 20 includes a dehumidifier 11 for dehumidifying a mixed gas containing an acidic gas and a non-acidic gas, a compressor 12 for compressing the dehumidified mixed gas, and a lower portion of the compressed gas.
  • the mixed liquid is supplied, and the upper part is supplied with an absorbing liquid 42 containing an ionic liquid as a main component, and the mixed gas is brought into contact with the absorbing liquid 42 to absorb the acidic gas into the absorbing liquid 42 to thereby remove the non-acidic gas.
  • Absorption tower 13 that separates and recovers acid gas from the tank, cooler 47 that cools the absorption liquid that has absorbed the acid gas, and liquid insoluble gas 41 and absorption liquid 42 that are supplied with cooled absorption liquid 42 are mutually insoluble.
  • the liquid acid gas 41 is separated and recovered from the absorbent 42 due to the difference in specific gravity, and at the same time, the separator / regenerator 46 that regenerates and reuses the absorbent 42 and the absorbent 42 discharged from the separator / regenerator 46 remain at high pressure And a circulation pump 17 to be supplied to the upper part of the absorption tower 13. And an apparatus for purifying gases.
  • an absorption liquid 42 containing an ionic liquid as a main component is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively.
  • a mixed gas containing acidic gas and non-acidic gas dehumidified by the dehumidifier 11 is compressed and supplied to the lower part of the dehumidifier 11 by the compressor 12, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas becomes the absorbing liquid 42. As it is absorbed, the non-acid gas is separated from the acid gas column and recovered in the absorption tower.
  • Acid gas is fed to the separation regenerator 46 maintained at the same pressure as the pressure in the absorption tower 13 or slightly lower than the pressure in the absorption tower 13 or slightly higher than the pressure in the absorption tower 13.
  • the acidic gas is liquefied by the separator / regenerator 46.
  • the absorption liquid 42 Liquid acid gas 41 is separated and recovered from separation regenerator 46.
  • the absorbent 42 regenerated by removing the liquid acid gas is supplied to the upper part of the absorption tower 13 by the circulation pump 17 and reused.
  • the invention according to claim 21 is the invention according to claim 19 or 20, further comprising an absorption tower 13, a cooler 47, and a separation regenerator 46 as shown in FIG. 4 or FIG. It is characterized by that.
  • the apparatus can be miniaturized.
  • the invention according to claim 22 is the invention according to any one of claims 19 to 21, and further between the cooler 47 and the separation regenerator 46 as shown in FIG. 2 or FIG. A centrifuge 48 or a stirrer is provided in the interior.
  • the acidic gas in the absorbing liquid 42 is cooled by cooling the absorbing liquid containing acidic gas to a temperature lower than the temperature in the absorption tower 13 by the cooler 47.
  • this liquid acid gas 41 is dispersed in the absorbing liquid, the liquid acid gas 41 is centrifuged or stirred with a centrifuge 48 or a stirrer before being supplied to the separation regenerator 46.
  • the absorbing liquid 42 contained in the acidic gas 41 is quickly phase-separated into the liquid acidic gas 41 and the absorbing liquid 42 in the separation regenerator 46.
  • the invention according to claim 23 is the invention according to any one of claims 19 to 22, and as shown in FIG. 7 or FIG. 8, the absorbing liquid 42 has magnetism, and the separation regenerator 46 A magnet 61 is provided in the lower part.
  • the pressure is almost the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13,
  • the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 which is maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13.
  • the liquid acid gas 41 and the absorption liquid 42 are quickly separated into the absorption liquid 42 and the liquid acid gas 41 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 and the attractive force of the magnetic absorption liquid 42 by the magnet 61.
  • the invention according to claim 24 is the invention according to any one of claims 19 to 23, and further includes water, alcohols, ethers and phenols as shown in FIG. 9 or FIG.
  • Absorbing liquid 42 to which one or two or more additives 71 selected from the group are added is stored, and an absorbing liquid storage tank 72 is provided for supplying the additive-containing absorbing liquid 75 to the absorption tower 13. It is characterized by that.
  • the viscosity of the absorbent 42 can be reduced.
  • the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the absorption gas 13 can absorb the acid gas without substantially reducing the ability of the additive-containing absorption liquid 75 to absorb the acid gas.
  • the additive-containing absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily.
  • the invention according to claim 25 is the invention according to any one of claims 19 to 23, and is further selected from the group consisting of water, alcohols and ethers as shown in FIG. 11 or FIG.
  • One or two or more additives 71 are stored and the additive storage tank 81 connected to the upper part of the separation regenerator 46, and pressure adjusting means for adjusting the pressure in the separation regenerator 46 provided in the separation regenerator 46 82, a distillation separator 83 for storing an additive-containing absorbent 75 that is connected to the lower part of the separation regenerator 46, separated by specific gravity in the separation regenerator 46, and transferred to the lower phase thereof, and a distillation separator 83.
  • a heating means 84 for heating the inside of the distillation separator 83 to a predetermined temperature is further provided.
  • the additive is used together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the temperature and pressure in the separation regenerator 46 are adjusted by the cooler 47 and the pressure adjusting means 82.
  • the separator / regenerator 46 When 71 is supplied to the separator / regenerator 46, the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and the mutual solubility with respect to the absorbing liquid 42 and the liquid acid gas 41 are mutually exclusive.
  • the liquid acid gas 41 is transferred to the upper phase of the separation regenerator 46 and The additive-containing absorbent 75 is transferred to the lower phase of the separation regenerator 46, and the liquid acidic gas 41 and the additive-containing absorbent 75 are quickly separated.
  • the distillation separator 83 is heated to a predetermined temperature by the heating means 84, the additive-containing absorbing liquid 75 from which the lower force of the separation regenerator 46 is discharged is supplied to the distillation separator 83.
  • the additive 71 in the absorbent 75 is separated from the absorbent 42 by distillation.
  • the invention according to claim 26 is the invention according to any one of claims 19 to 23, further characterized in that a flocculant tank for storing the flocculant is connected to the separation regenerator. .
  • the flocculant stored in the flocculant tank is dispersed in the absorbent by adding it to the absorbent containing the liquid acidic gas in the separation regenerator.
  • the liquid acid gas (dispersed liquid) can be agglomerated, so that it is quickly separated into the flocculant-containing absorption liquid and the liquid acid gas due to the difference in specific gravity between the flocculant-containing absorption liquid and the liquid acid gas. The Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
  • the invention according to claim 27 is the invention according to any one of claims 19 to 23, and further, as shown in FIG. 13 or FIG. 14, the acidic gas is CO gas, Pressure
  • a pressure adjusting means 82 for keeping the force at 4 to 25 MPa is provided in the separation regenerator 46, and a water storage tank 91 in which water is stored is connected to the lower part of the separation regenerator 46.
  • water is separated from the water storage tank 91 in the separation regenerator 46 while the pressure in the separation regenerator 46 is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means 82.
  • the pressure in the separation regenerator 46 is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means 82.
  • the invention according to claim 29 is, as shown in FIG. 15, one or more selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas and natural gas. After reforming the fuel, transforming CO and removing CO to make a mixed gas of H and CO
  • gas purification apparatus described in claim 1 using the mixed gas purification method described in claim 1 or the gas purifying method described in claim 19 or claim 1 is used. Is used to separate and collect H and CO, and this separated and collected H is supplied to the hydrogen station.
  • high pressure H is not produced from various fuels.
  • the invention according to claim 30 is an on-vehicle reforming type using a fuel cell as a drive source. Installed in vehicles, desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquid oil, natural gas, and one or more fuels selected from the group consisting of reforming, CO conversion and CO After removing it to make a mixed gas of H and CO, this mixed gas is charged.
  • the system described in claim 30 can be miniaturized to such an extent that it can be mounted on a vehicle, and liquid CO can be efficiently recovered while producing high-pressure H with various fuel forces.
  • an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and acidic gas and non-acidic gas are supplied to the lower part of the absorption tower.
  • the mixed gas is supplied, the mixed gas is brought into contact with the absorbing liquid, and the acidic gas is absorbed into the absorbing liquid, and is maintained at a temperature equal to or higher than the temperature in the absorbing tower and lower than the pressure in the absorbing tower. Since the absorption liquid that has absorbed the acid gas is supplied to the upper part of the regeneration tower that is maintained at the above, the non-acid gas can be separated from the acid gas column by the absorption tower and recovered, and the acid gas can be recovered by the regeneration tower.
  • the absorption liquid force can be separated by separating and recovered, and the regeneration tower force can be recovered.
  • the absorption liquid can be regenerated, and by supplying the regenerated absorption liquid to the upper part of the absorption tower, the absorption liquid can be reused.
  • non-acidic gas and acidic gas can be combined with the mixed gas power.
  • the absorption amount of the acidic gas per unit volume of the absorption liquid can be increased, the circulation volume of the absorption liquid can be reduced, and the circulation energy can be saved.
  • the regeneration tower can be made relatively simple, and the absorption liquid can be regenerated relatively easily and at a low cost. This can reduce the regeneration energy of the absorbing liquid.
  • the absorption liquid Evaporation loss can be eliminated, and there is no absorption liquid remaining in the separated and collected acid gas, making it possible to easily produce high-purity acid gas.
  • an absorption liquid mainly composed of one or both of an organic solvent and water is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and an acid gas is supplied to the lower part of the absorption tower.
  • a mixed gas containing non-acidic gas is supplied, and the mixed gas is brought into contact with the absorbing liquid so that the absorbing gas absorbs the acidic gas, and is maintained at a predetermined pressure and maintained at a temperature lower than the temperature in the absorption tower.
  • the non-acid gas can be separated from the acid gas column in the absorption tower and recovered from the absorption tower, and the liquid acid gas and the absorption liquid can be separated by the separation regenerator.
  • the liquid acid gas can be separated from the absorption liquid by the mutual insolubility and specific gravity difference and recovered from the separator / regenerator, and the absorption liquid can be regenerated.
  • the regenerated absorption liquid is supplied to the upper part of the absorption tower with high pressure. By doing so, the absorbent can be reused.
  • the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range.
  • the acid gas is recovered directly in the liquid state rather than being recovered by pressurization and cooling after the acid gas is recovered as a gas. Therefore, the non-acidic gas and the liquid acidic gas can be separated and recovered efficiently and at low cost in addition to the mixed gas power.
  • the process can be simplified compared to the conventional method, and there is no significant fluctuation in temperature and pressure throughout the process, and the regenerative energy of the absorbent is eliminated, and the recompression energy when returning the regenerated absorbent to the absorption tower is unnecessary. Energy saving can be achieved.
  • an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and acidic gas and non-acidic gas are contained in the lower part of the absorption tower.
  • a separation / regenerator that supplies the mixed gas to the absorbent and contacts the mixed gas so that the acidic gas is absorbed by the absorbent, and is maintained at a predetermined pressure and lower than the temperature in the absorption tower.
  • the non-acidic gas can be separated from the acidic gas by the absorption tower and recovered from the absorption tower, and the separation regenerator can be used due to the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorbing liquid.
  • Absorbing liquid power Separation and regenerator power can be recovered by separating liquid acid gas
  • the absorbing solution can be regenerated, and the regenerated absorbing solution can be reused by supplying the regenerated absorbing solution to the upper part of the absorption tower with high pressure.
  • the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range.
  • the acidic gas is directly in a liquid state rather than being recovered by pressurization and cooling after being collected as a gas.
  • the non-acid gas and the liquid acid gas can be separated and recovered from the mixed gas efficiently and at low cost.
  • the process can be simplified compared to the conventional method, and there is no significant fluctuation in temperature and pressure during the entire process, and the regeneration energy of the absorption liquid is eliminated, and the recompression energy is not required when returning the regenerated absorption liquid to the absorption tower. Energy saving can be achieved.
  • a liquid membrane impregnated with a porous membrane impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in the membrane separator to partition the membrane separator into a first chamber and a second chamber. If one chamber is set to a pressure higher than that of the second chamber and a mixed gas containing acidic gas and non-acidic gas is introduced into the first chamber, the acidic gas will leave the liquid film while the non-acidic gas remains in the first chamber. Since it permeates and flows into the low pressure second chamber, the mixed gas can be separated into acidic gas and non-acidic gas and recovered from the membrane separator.
  • the absorbing liquid mainly composed of an ionic liquid is neutral or alkaline, the acidic gas is easily dissolved in the absorbing liquid, and the solubility is higher than that of the acidic absorbing liquid.
  • the solubility of the acidic gas in the absorbing liquid can be increased, and the mixed gas is removed before the mixed gas is introduced into the membrane separator.
  • the permeability of the acid gas to the liquid film can be increased.
  • the absorption liquid containing the acid gas discharged and cooled to a temperature lower than the temperature in the absorption tower is centrifuged or stirred before being supplied to the separation / regenerator, the absorption liquid can be contained in the absorption liquid. Since the dispersed liquid acid gas is almost separated into the liquid acid gas and the absorbing liquid before being supplied to the separation / regenerator, the liquid acid gas and the absorbing liquid can be quickly separated into the liquid acid gas and the absorbing liquid in the separation / regenerator. As a result, the phase separation time between the liquid acidic gas and the absorbing liquid can be shortened, and the liquid acidic gas can be efficiently recovered.
  • the pressure in the absorption tower If the absorption liquid has magnetism and a magnet is provided at the bottom of the separation regenerator, the pressure in the absorption tower If an absorption liquid containing liquid acidic gas is supplied to a separation regenerator that is maintained at the same pressure as that of the absorption tower and lower than the temperature in the absorption tower, the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorption liquid And the absorption force of the magnetic absorption liquid by the magnets cause rapid separation into the absorption liquid and the liquid acidic gas. As a result, the liquid acid gas can be quickly recovered from the separation regenerator, and the absorbing liquid can be quickly regenerated and reused.
  • the viscosity of the absorbing solution can be reduced by adding one or more additives selected from the group consisting of water, alcohols, ethers and phenols to the absorbing solution.
  • the additive-containing absorption liquid is supplied to the absorption tower, so that the additive-containing absorption liquid can absorb the acid gas in the absorption tower without substantially reducing the ability to absorb the acid gas, and the additive-containing absorption liquid
  • the absorption liquid flows smoothly and handling of the additive-containing absorption liquid becomes easy.
  • the additive-containing absorbent discharged from the separator / regenerator is supplied to the distillation separator to absorb the additive in the additive-containing absorbent. If the liquid is separated by distillation, the additive and the absorbent can be recovered in a separated state. As a result, the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank, so that the absorption liquid and the additive can be reused immediately.
  • the absorption gas can be absorbed by the absorption tower without reducing the ability of the absorption liquid to absorb the acid gas.
  • the liquid acidic gas (dispersed liquid) dispersed in the absorbing liquid can be aggregated.
  • the specific gravity difference between the liquid acidic gas and the flocculant-containing absorbent can be rapidly advanced in the separation regenerator, and then the flocculant-containing absorbent is separated by distillation. Liquid and Can be further separated.
  • the acid gas is CO gas, and the liquid in the separation regenerator is kept at a pressure of 4-25 MPa.
  • o can be separated by absorbing fluid force.
  • the above mixed gas is compressed by a compressor and supplied to the lower part of the absorption tower, and an absorption liquid mainly composed of one or both of an organic solvent and water is supplied from the upper part of the absorption tower to the absorption liquid.
  • the absorbing gas absorbs the acidic gas
  • the absorbing liquid that has absorbed the acidic gas is cooled by a cooler and supplied to the separation / regenerator. It can be separated and recovered from the absorption tower, and it can be separated and regenerated by separating the regenerator power in a state where the acid gas is liquefied in the separation regenerator. If the acidic gas is absorbed at the temperature of, a refrigerator can be eliminated.
  • the mixed gas is dehumidified by a dehumidifier and compressed by a compressor and supplied to the lower part of the absorption tower, and the absorbing liquid is supplied from the upper part of the absorbing tower, and the mixed gas is brought into contact with the absorbing liquid.
  • the absorption gas can be recovered by separating the non-acid gas from the acid gas in the absorption tower.
  • the separation regenerator the absorption liquid force can be separated and recovered from the separation regenerator while it is in the liquid state, and the absorption liquid can be regenerated and reused to absorb the acid gas at a temperature above room temperature. , Refrigerator can be eliminated.
  • the apparatus can be reduced in size. Also, there is a centrifuge between the cooler and the separator / regenerator! If a stirrer is provided, the absorption liquid containing acid gas is cooled to a temperature lower than the temperature in the absorption tower with a cooler, so that the acid gas in the absorption liquid becomes liquid and the absorption liquid Therefore, the absorption liquid containing the liquid acid gas is separated into the liquid acid gas and the absorption liquid before being supplied to the separation regenerator by centrifuging or stirring with a centrifuge or a stirrer. The As a result, liquid acid gas and absorption liquid can be phase-separated quickly in the separation regenerator, so that the liquid acid gas and absorption liquid And the liquid acid gas can be efficiently recovered.
  • the separation is maintained at a pressure substantially the same as the pressure in the absorption tower and lower than the temperature in the absorption tower.
  • an absorption liquid containing liquid acid gas is supplied to the regenerator, the absorption liquid and liquid acid gas are caused by the mutual insolubility and specific gravity difference between the liquid acid gas and the absorption liquid and the suction force of the magnetic absorption liquid by the magnet.
  • the liquid acid gas can be quickly recovered from the separation regenerator, and the regenerated absorption liquid after the liquid acid gas is removed is supplied to the upper part of the absorption tower by the circulation pump and can be reused quickly. .
  • an absorption liquid containing one or more additives selected from the group consisting of water, alcohols, ethers and phenols is stored, and this additive-containing absorption liquid is supplied to the absorption tower.
  • an absorption liquid tank is provided, the viscosity of the absorption liquid can be reduced by adding an additive to the absorption liquid in the absorption liquid tank.
  • the additive-containing absorption liquid can absorb the acid gas in the absorption tower with almost no decrease in the ability to absorb the acid gas, and the additive-containing absorption liquid flows smoothly and the additive-containing absorption liquid is handled. Becomes easier.
  • the additive storage tank in which the additive is stored is connected to the upper part of the separation regenerator, and a pressure adjusting means for adjusting the pressure in the separation regenerator is provided in the separation regenerator.
  • a pressure adjusting means for adjusting the pressure in the separation regenerator is provided in the separation regenerator.
  • the additive-containing absorbent that has also been discharged from the lower force of the separation regenerator is supplied to the distillation separator while the inside of the distillation separator is heated to a predetermined temperature by the heating means, the additive in the additive-containing absorbent is removed.
  • Absorption fluid power Is separated.
  • the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank.
  • the absorption liquid and the additive can be reused immediately after being supplied, and the absorption gas can be absorbed in the absorption tower without reducing the ability of the absorption liquid to absorb the acid gas at all.
  • the flocculant tank for storing the flocculant is connected to the separation regenerator, the flocculant stored in the flocculant tank is added to the absorbent containing the liquid acidic gas in the separation regenerator,
  • the liquid acidic gas (dispersed liquid) can be agglomerated by being dispersed in the absorbing liquid.
  • the specific gravity difference between the liquid acidic gas and the flocculant-containing absorbing liquid can be rapidly advanced in the separation regenerator, and then the flocculant-containing absorbing liquid can be separated by distillation. And can be further separated.
  • the acid gas is CO gas
  • the pressure is adjusted to maintain the pressure in the separation regenerator at 4 to 25 MPa.
  • the regulating means is installed in the separation regenerator and the water storage tank in which water is stored is connected to the lower part of the separation regenerator, the water is stored in the state where the pressure in the separation regenerator is kept at a high pressure of 4 to 25 MPa.
  • liquid C When water is supplied from the tank to the absorption liquid containing liquid CO in the regenerator, liquid C
  • this is a system installed in an on-vehicle reforming vehicle that uses a fuel cell as a drive source.
  • the fuel is reformed on the vehicle, converted to CO and removed to form a mixed gas of H and CO.
  • FIG. 1 is a cross-sectional configuration diagram of a gas purification method and apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional configuration diagram corresponding to FIG. 1 showing a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional configuration diagram corresponding to FIG. 4 showing a fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional configuration diagram corresponding to FIG. 1 showing a sixth embodiment of the present invention.
  • FIG. 7 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a seventh embodiment of the present invention.
  • FIG. 8 is a cross-sectional configuration diagram corresponding to FIG. 7 showing an eighth embodiment of the present invention.
  • FIG. 9 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a ninth embodiment of the present invention.
  • FIG. 10 is a cross-sectional configuration diagram corresponding to FIG. 9 showing a tenth embodiment of the present invention.
  • FIG. 11 is a cross-sectional configuration diagram corresponding to FIG. 9 showing an eleventh embodiment of the present invention.
  • FIG. 12 is a cross-sectional configuration diagram corresponding to FIG. 11 showing a twelfth embodiment of the present invention.
  • FIG. 13 is a cross-sectional configuration diagram corresponding to FIG. 11 showing a thirteenth embodiment of the present invention.
  • FIG. 14 is a cross-sectional configuration diagram corresponding to FIG. 13 showing a fourteenth embodiment of the present invention.
  • FIG. 15 is a block diagram showing a system according to a fifteenth embodiment of the present invention.
  • FIG. 16 is a configuration diagram showing a system according to a sixteenth embodiment of the present invention.
  • Fig. 17 shows the solubility of CO gas in the absorbent of Example 1 at a measurement temperature of 35 ° C.
  • FIG. 18 shows H 2 S gas and COS in the absorption liquid of Example 1 at a measurement temperature of 35 ° C.
  • Fig. 19 shows the H gas, CH gas, and the like in the absorption liquid of Example 1 at a measurement temperature of 35 ° C.
  • Fig.20 shows the phase separation between the absorbing liquid (polyethylene glycol) and liquid CO FIG.
  • Fig. 21 shows the solubility of CO in the absorbents of Examples 2 to 5 at a measurement temperature of 35 ° C.
  • FIG. 2 is a diagram showing changes associated with pressure changes.
  • Fig. 22 shows the solubility of CO in the absorbing solutions of Examples 2 to 5 at a measurement temperature of 45 ° C.
  • FIG. 2 is a diagram showing changes associated with pressure changes.
  • FIG. 23 shows the solubility of CO in the absorbing solutions of Examples 2 to 5 at a measurement temperature of 55 ° C.
  • FIG. 2 is a diagram showing changes associated with pressure changes.
  • FIG. 24 is a graph showing a change in the solubility of the non-acidic gas in the absorbing liquid of Example 2 at a measurement temperature of 35 ° C. with a change in pressure.
  • FIG. 25 shows CO 2, H 2 S and CO into the absorption liquid of Example 2 at a measurement temperature of 35 ° C.
  • FIG. 26 is a photographic diagram showing the state of phase separation between the absorbing liquid (ionic liquid) and liquid CO.
  • the refining device is provided with a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas, a compressor 12 for compressing the dehumidified mixed gas, and extending in the vertical direction. Absorbed by supplying the gas mixture compressed in the lower part and absorbing liquid in the upper part, bringing the mixed gas into contact with the absorbing liquid to absorb the acidic gas into the absorbing liquid and separating the non-acidic gas by the acidic gas force The tower 13 and the absorbing liquid that has absorbed the acid gas are expanded and depressurized. The expansion turbine 14 is supplied with the expanded and depressurized absorbing liquid. In addition, a regeneration tower 16 that regenerates the absorption liquid and a circulation pump 17 that supplies the regenerated absorption liquid to the upper part of the absorption tower 13 are provided.
  • the mixed gas is a fuel gas such as a synthetic gas obtained by gasification, reforming or partial oxidation of fossil fuel, natural gas, or an exhaust gas discharged from a thermal power plant, a cement plant, a steel plant, a chemical plant, etc.
  • Acid gas is CO, H S, COS, SO, SO, NO, CS, HCN,
  • Gas is a group consisting of ⁇ , CH, CO, ⁇ , ⁇ , and hydrocarbon compounds with 2 to 10 carbon atoms.
  • hydrocarbon compound having 2 to L0 carbon atoms examples include C H, C H, C H, C H, C H, and C H. Also
  • the absorbing liquid is an ionic liquid or a composition containing the same as the main component. Has on and key-on.
  • the cation is [R, R, -NCH] ( ⁇ , ⁇ , -dialkylimid
  • R and R in the cation are alkyl groups having 1 to 18 carbon atoms or hydrogen, and X in the cation is 1) To 3), preferably [R, R'-NCH] + (+, ⁇ , -alkyl having an alkyl group of 1 to 10 carbon atoms)
  • Anions are also PF-, BF-, NO-, EtSO-, A1C1- and AlBr "
  • a gas supply pipe 18 that connects the compressor 12 and the absorption tower 13 in communication is provided with a precooler 19, and the mixed gas is brought to a predetermined temperature and a predetermined pressure by the compressor 12 and the precooler 19.
  • Each is maintained and supplied to the lower part of the absorption tower 13.
  • the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to: L00 ° C., preferably 30 to 50 ° C., and is supplied to the absorption tower 13.
  • the pressure of the mixed gas, that is, the pressure in the absorption tower 13 is set to 1 to 25 MPa, preferably 4 to 10 MPa.
  • the temperature in the absorption tower 13 is limited to the range of 0 to L00 ° C.
  • a refrigerator is required if the temperature is less than 0 ° C, and if it exceeds 100 ° C, the energy required for raising the temperature is increased.
  • the pressure in the absorption tower 13 is limited to the range of l to 25MPa because the absorption amount of the acid gas absorption solution is less than IMPa, and if it exceeds 25MPa, the absorption tower 13 with high pressure resistance is required. This is because the cost increases.
  • the absorption tower 13 may be an absorption drum, it is desirable to use a multistage absorption tower 13 in order to improve the absorption efficiency of acid gas.
  • the regeneration tower 16 may be a regeneration drum, but it improves the regeneration efficiency of the absorption liquid. Therefore, it is desirable to use a multistage regeneration tower 16.
  • the first communication pipe 21 that connects the lower end of the absorption tower 13 and the expansion turbine 14 is provided with a pressure reducing valve 23, a flash drum 24, and a heat exchanger 26 in order from the absorption tower 13 side.
  • the absorbing liquid containing the acidic gas discharged from the lower end force of the absorption tower 13 by the pressure reducing valve 2 3 and the flash drum 24 is depressurized by a predetermined pressure, for example, 0.1 to 0.5 MPa from the pressure in the absorption tower 13.
  • the This dissipates only non-acidic gases such as H, CH, CO, O, and N contained in the absorbent.
  • the heat exchanger 26 is configured such that the high-temperature absorbent discharged from the lower end of the regeneration tower 16 gives heat to the low-temperature absorbent containing the acid gas discharged from the lower end of the flash drum 24. That is, the heat exchanger 26 is configured to heat the absorbing liquid containing the acidic gas from which the lower end force of the flash drum 24 is also discharged and to cool the high temperature absorbing liquid from which the lower end force of the regeneration tower 16 is also discharged. Is done.
  • the second communication pipe 22 that connects the expansion turbine 14 and the regeneration tower 16 to each other is provided with a heater 28, and the expansion turbine 14 and the heater 28 allow the absorption liquid containing the acid gas to be absorbed in the absorption tower 13. It is supplied to the upper part of the regeneration tower 16 while being maintained at a temperature equal to or higher than the temperature in the absorption tower 13 and maintained at a pressure lower than the pressure in the absorption tower 13. Specifically, the absorption liquid supplied to the regeneration tower 16 is set to a temperature of 30 to 200 ° C., preferably 30 to 100 ° C. The pressure of the liquid, that is, the pressure in the regeneration tower 16 is set to 0.1 to 5 MPa, preferably 0.1 to 3 MPa.
  • the temperature in the regeneration tower 16 is limited to the range of 30 to 200 ° C.
  • the temperature is lower than 30 ° C, it is disadvantageous for acid gas emission, and when it exceeds 200 ° C, the temperature rise energy increases.
  • the pressure in the regenerator 16 is limited to the range of 0.1 to 5 MPa because the pressure in the regenerator 16 becomes negative and the equipment becomes complicated if it is less than IMPa. This is because it is disadvantageous for the emission of acid gas.
  • the absorbing solution is preferably neutral or alkaline. This is because if the absorbing liquid is acidic, the amount of acidic gas absorbed per unit volume, that is, the solubility of the acidic gas is reduced. In order to make the absorption liquid alkaline, an alkaline ionic liquid is used, or alkali is added to the absorption liquid. [0041] A method for purifying a gas using the thus configured purifying apparatus will be described.
  • the circulation pump 17 and the auxiliary compressor 27 are operated in advance, and a refrigerant such as water, air, or ammonia is allowed to flow through the precooler 19 and the aftercooler 29, and the heater 28
  • the heater is energized to circulate the absorption liquid, and the temperature of the absorption liquid supplied to the absorption tower 13 and the regeneration tower 16 is set to a predetermined temperature.
  • the mixed gas is dehumidified by the dehumidifier 11. As a result, water that reduces the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas column, and the solubility of the acid gas in the absorbing liquid can be increased.
  • the dehumidified mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and supplied to the lower part of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure.
  • the mixed gas comes into contact with the absorbing solution and the acidic gas is absorbed into the absorbing solution, so that the non-acidic gas is separated from the acidic gas column and recovered from the upper end column of the absorption tower 13.
  • the above non-acid gas mixed gas of H, CH, CO, O, N, etc.
  • the non-acidic gas is once depressurized using an expansion turbine or an adiabatic expansion valve.
  • this low-temperature non-acidic gas can be used as the refrigerant of the precooler 19 or the aftercooler 29.
  • an expansion turbine is used for decompression of the non-acidic gas, power can be generated by this expansion turbine, so that the electric power can be used for consumption in the V where the refining device of this embodiment is installed.
  • the absorbing liquid containing a large amount of acidic gas and a small amount of non-acidic gas discharged from the lower end of the absorption tower 13 is depressurized by a predetermined pressure by the pressure reducing valve 23 and the flash drum 24.
  • the pressure reducing valve 23 and the flash drum 24 As a result, only non-acidic gases such as H, CH, CO, O, and N contained in the absorbing solution are diffused and
  • the dissipated non-acid gas also discharges the upper end force of the flash drum 24 and is further pressurized by the auxiliary compressor 27 and returned to the absorption tower 13 again.
  • the absorption liquid containing the acid gas discharged from the lower end force of the flash drum 24 is heated by the regenerated absorption liquid by heat exchange, then expanded and depressurized by the expansion turbine 14, and further heated to a predetermined temperature by the heater 28. , Supplied to the upper part of the regeneration tower 16. That is, the absorption liquid heated by the heat exchanger 26 is equal to the temperature in the absorption tower 13 by the expansion turbine 14 and the heater 28.
  • the regeneration tower 16 is supplied to the upper portion of the regeneration tower 16 while maintaining a temperature higher than the temperature in the absorption tower 13 and maintaining a pressure lower than the pressure in the absorption tower 13.
  • the absorption liquid is set to such a pressure and temperature
  • the acid gas contained in the absorption liquid is released in the second communication pipe 22 or the regeneration tower 16, so that the acid gas is separated by the absorption liquid force and the regeneration tower 16 The upper end force of is recovered.
  • the regenerated absorption liquid that does not contain the acidic gas discharged from the bottom end of the regeneration tower 16 is conveyed by the circulation pump 17 and cooled to a predetermined temperature by the heat exchanger 26 and the after cooler 29. , Supplied to the upper part of the absorption tower 13 and reused.
  • Acid gas is CO gas
  • the refining device is supplied with a compressor 12 that compresses a mixed gas containing acidic gas and non-acidic gas, and a mixed gas that extends in the vertical direction and is compressed in the lower part.
  • the absorption liquid 42 is supplied to the absorption liquid 42, and the mixed gas is brought into contact with the absorption liquid 42 to absorb the acidic gas into the absorption liquid 42, and the non-acidic gas is separated and recovered, and the absorption tower 13 absorbs the acidic gas.
  • the cooler 47 that cools the absorbed liquid 42 and the cooled absorbent 42 are supplied to separate the liquid acidic gas 41 from the absorbent 42 due to the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42.
  • a regenerator 46 that regenerates and reuses the absorbing liquid 42 and a circulation pump 17 that supplies the regenerated absorbing liquid 42 to the upper portion of the absorption tower 13 with high pressure.
  • the mixed gas is the same as the mixed gas of the first embodiment.
  • the absorbing liquid is a liquid excluding an ionic liquid, and specifically, a liquid composed of one or both of an organic solvent and water, or an organic solvent or water, or one or both of them as a main component. It is a liquid.
  • the organic solvent use a polar organic solvent that has a large absorption capacity for acid gas and does not dissolve in liquid acid gas (liquid CO, etc.) with high density and low vapor pressure.
  • the organic solvent is preferably one or two or more polymers selected from the group consisting of polyethylene glycol, polybutyl alcohol, polyether, polyester, polyalkane and polyolefin ion.
  • water is acid It has a relatively large absorption capacity for chemical gases, and does not dissolve much with liquid acid gases (liquid CO, etc.) with relatively high density and relatively low vapor pressure.
  • a gas supply pipe 18 that connects the compressor 12 and the absorption tower 13 in communication is provided with a precooler 19, and the mixed gas is brought to a predetermined temperature and a predetermined pressure by the compressor 12 and the precooler 19.
  • Each is maintained and supplied to the lower part of the absorption tower 13.
  • the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to: L00 ° C., preferably 30 to 50 ° C., and is supplied to the absorption tower 13.
  • the pressure of the mixed gas, that is, the pressure in the absorption tower 13 is set to 4 to 25 MPa, preferably 6 to 10 MPa.
  • the temperature in the absorption tower 13 is limited to the range of 0 to L00 ° C.
  • a refrigerator is required if the temperature is less than 0 ° C, and if it exceeds 100 ° C, the energy required for raising the temperature is increased.
  • the pressure in the absorption tower 13 is limited to the range of 4 to 25 MPa. If the pressure is less than 4 MPa, the amount of absorption by the absorbing solution of the acidic gas decreases, and if it exceeds 25 MPa, the absorption tower 13 with high pressure resistance is required. This is because the cost increases.
  • the absorption tower 13 may be an absorption drum, it is desirable to use a multistage absorption tower 13 in order to improve the absorption efficiency of acid gas.
  • the first communication pipe 21 that connects the lower end of the absorption tower 13 and the cooler 47 is provided with a pressure reducing valve 23, a flash drum 24, and a heat exchanger 26 in order from the absorption tower 13 side.
  • the absorbing solution containing the acidic gas discharged from the lower end force of the absorption tower 13 by the pressure reducing valve 23 and the flash drum 24 is depressurized by a predetermined pressure, for example, 0.1 to 0.5 MPa from the pressure in the absorption tower 13. This is because of the H, CH, CO, O, N, and carbon compounds from 2 to L0 contained in the absorbent.
  • the heat exchanger 26 is configured such that the high-temperature absorption liquid discharged from the lower end of the separation regenerator 46 gives heat to the low-temperature absorption liquid containing acid gas discharged from the lower end of the flash drum 24. The That is, the heat exchanger 26 heats the absorption liquid containing the acid gas discharged from the lower end of the flash drum 24 and cools the high-temperature absorption liquid discharged from the lower end force of the separation regenerator 46. Configured.
  • the cooler 47 causes the absorption liquid 42 containing acid gas to be almost the same as the pressure in the absorption tower 13. And supplied to the separation regenerator 46 while being cooled to a temperature lower than that in the absorption tower 13. Specifically, the pressure of the absorption liquid 42 supplied to the separation regenerator 46, that is, the pressure in the separation regenerator 46 is the same as the pressure in the absorption tower 13, which is slightly higher than the pressure in the absorption tower 13.
  • Pressure or slightly lower than the pressure in the absorption tower 13 4 to 25 MPa, preferably 6 to:
  • the temperature of is lower than the temperature in the absorption tower 13-30 to 30 ° C, preferably 0 to 20 ° C.
  • the pressure in the separation regenerator 46 is the same as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13 to 4 to 25 MPa.
  • the reason for limiting to this range is to liquefy the acid gas and to reduce the consumption of circulating energy of the absorbing liquid.
  • the reason why the temperature in the separation regenerator 46 is limited to the range of 30 to 30 ° C is that the cooling energy increases when the temperature is lower than 30 ° C, and the acidic gas such as CO becomes liquid when the temperature exceeds 30 ° C. Because it becomes difficult. Note that the separation regenerator 46
  • the pressure difference is within the range of 0.1 to 3MPa, where the acidic gas can be liquefied by the above temperature drop.
  • the pressure difference is preferably in the range of 0.1 to 3 MPa at which the acidic gas can be liquefied by the temperature drop.
  • liquid acid gas 41 is liquid CO, and
  • the specific gravity of the absorbing liquid is 1.2 to 1.6
  • the specific gravity of liquid CO is 0.8.
  • the heat exchanger 26 is configured such that the lower temperature absorbent 42 discharged from the lower end force of the separation regenerator 46 takes heat away from the low temperature absorbent containing the acid gas from which the lower end force of the flash drum 24 is also discharged. Is done. That is, the heat exchanger 26 further cools the absorbing liquid 42 containing the acid gas discharged from the lower end of the flash drum 24 and the lower temperature absorbing liquid discharged from the lower end force of the separation regenerator 46. Configured to heat 42.
  • a centrifuge 48 is provided in the second communication pipe 22 between the cooler 47 and the separation regenerator 46.
  • the lower end of the separator / regenerator 46 is connected to the upper portion of the absorption tower 13 by a second return pipe 32, and the circulating pump 17 is provided in the second return pipe 32.
  • a stirrer may be installed in the centrifuge.
  • the circulation pump 17 and the auxiliary compressor 27 are operated in advance, and a refrigerant such as water, air, or ammonia is allowed to flow through the pre-cooler 19 and the cooler 47. 48 is rotated to circulate the absorption liquid, and the temperature of the absorption liquid 42 supplied to the absorption tower 13 and the separation regenerator 46 is set to a predetermined temperature.
  • the mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and supplied to the lower part of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure.
  • the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed by the absorbing liquid 42, so that the non-acidic gas is separated from the acidic gas and the upper end force of the absorption tower 13 is also recovered. If the pressure of the recovered non-acid gas is higher than the pressure required on the user side, for example, the non-acid gas (H, CH, CO, O, N
  • the absorbing liquid containing a large amount of acidic gas and a small amount of non-acidic gas discharged from the lower end of the absorption tower 13 is depressurized by a predetermined pressure by the pressure reducing valve 23 and the flash drum 24.
  • H, CH, CO, O, N, carbon number 2 ⁇ hydrocarbon compounds up to L0 contained in the absorption liquid
  • the dissipated non-acid gas also discharges the upper end force of the flash drum 24 and is further pressurized by the auxiliary compressor 27 and returned to the absorption tower 13 again.
  • the lower end force of the flash drum 24 The discharged absorbing liquid 42 containing acid gas is cooled by the regenerated absorbing liquid by heat exchange 26, and further cooled by a cooler 47. At this time, the acidic gas in the absorbing liquid is liquidated and dispersed in the absorbing liquid 42. .
  • the absorption liquid 42 containing the liquid acid gas 41 is substantially separated into the liquid acid gas 41 and the absorption liquid 42 by the centrifugal separator 48 due to the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42, and is then supplied to the separation regenerator 46. Supplied.
  • the liquid acid gas 41 has a lower specific gravity than the absorption liquid 42, so the liquid acid gas 41 moves in a direction away from the rotation center force of the centrifuge 48, and the absorption liquid 42 moves to the rotation center of the centrifuge 48. Move in the direction you approach.
  • the absorption liquid 42 is kept almost the same as the pressure in the absorption tower 13 by the heat exchanger 26 and the cooler 47 and is made lower than the temperature in the absorption tower 13, so that the gas in the absorption liquid 42 becomes liquid. Then, the liquid is further separated into the liquid acid gas 41 and the absorbing liquid 42 by the centrifuge 48, and then supplied to the separation regenerator 46.
  • the absorption liquid 42 containing the liquid acid gas 41 supplied to the separation regenerator 46 in a state of being substantially separated into the liquid acid gas 41 and the absorption liquid 42 is the mutual insolubility and specific gravity of the liquid acid gas 41 and the absorption liquid 42. Due to the difference, the liquid acid gas 41 and the absorbing liquid 42 are rapidly phase-separated.
  • the specific gravity of the liquid acid gas 41 is smaller than that of the absorbing liquid 42, so that the liquid acidic gas 41 quickly floats and shifts to the upper phase, and the absorbing liquid 42 quickly sinks and shifts to the lower phase.
  • the liquid acid gas 41 is separated from the absorbing liquid 42 and the upper force of the separation regenerator 46 is efficiently recovered in a relatively short time.
  • the regenerated absorbent 42 containing no acid gas discharged from the lower end force of the separation regenerator 46 is transported by the circulation pump 17 and heated to a predetermined temperature by heat exchange 26, and then It is supplied to the upper part and reused.
  • the liquid acidic gas 41 is liquid CO
  • part or all of the recovered liquid CO is opened in the pressure reducing valve.
  • FIG. 3 shows a third embodiment.
  • the same reference numerals as those in FIG. 2 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12.
  • the configuration is the same as that of the second embodiment except for the above.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 In addition, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas column, and the solubility of the acid gas in the absorbing liquid can be increased.
  • FIG. 4 shows a fourth embodiment.
  • the same reference numerals as those in FIG. 2 denote the same parts.
  • the pressure reducing valve, the flash drum, the auxiliary compressor, and the heat exchanger of the second embodiment are not used, and the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are the same.
  • the upward force is also provided integrally in a state of being aligned vertically in the downward direction.
  • the absorbing liquid 42 a liquid having either or both of an organic solvent and water, or a liquid mainly containing either or both of the organic solvent and water is used.
  • the configuration other than the above is the same as that of the second embodiment.
  • the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are integrally provided, so that the apparatus can be downsized. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.
  • the liquid acidic gas 41 is liquid CO, part or all of the recovered liquid CO is opened in the pressure reducing valve.
  • FIG. 5 shows a fifth embodiment.
  • the same reference numerals as those in FIG. 4 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12.
  • the configuration is the same as that of the fourth embodiment except for the above.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the fourth embodiment, the repeated description is omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do.
  • FIG. 6 shows a sixth embodiment.
  • a porous membrane is impregnated with an ionic liquid or an absorption liquid containing the ionic liquid as a main component to form a liquid membrane 51.
  • the liquid membrane 51 is stretched in a membrane separator 52 to form a membrane fraction.
  • the separator 52 is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set to a pressure higher than that of the second chamber 52b, and a mixed gas containing acidic gas and non-acidic gas in the first chamber 52a. Is configured to be introduced.
  • the gas supply pipe 18 is provided with a compressor 12 and a precooler 19. A method for purifying a gas using the purification apparatus configured as described above will be described.
  • the mixed gas is introduced into the first chamber 52a of the membrane separator 52 while being pressurized to a predetermined pressure by the compressor 12 and the precooler 19.
  • the non-acidic gas remains in the first chamber 52a, and the acidic gas passes through the liquid film 51 and flows into the second chamber 52b, so that the mixed gas is separated into acidic gas and non-acidic gas.
  • FIG. 7 shows a seventh embodiment.
  • the absorbing liquid 42 which is a liquid composed mainly of one or both of an organic solvent and water, or a liquid mainly composed of one or both of the organic solvent and water, has magnetism.
  • a magnet 61 is provided at the lower part of the separation regenerator 46.
  • the absorbing liquid 42 having magnetism include a low-temperature molten salt (normal temperature molten salt) containing Fe element in the ion.
  • the magnet 61 is provided on the lower inner surface of the separation regenerator 46.
  • the separation regenerator 46 is preferably formed of a nonmagnetic material so as not to be affected by the magnet 61.
  • the configuration other than the above is the same as that of the second embodiment.
  • the absorption liquid 42 containing the liquid acidic gas 41 When the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 maintained at a pressure almost the same as the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13, the absorption The liquid acid gas 41 has a lower specific gravity than the liquid 42. Therefore, the liquid acid gas 41 and the absorbing liquid 42 are absorbed by the mutual insolubility and specific gravity difference of the liquid acid gas 41 and the magnet 61 of the absorbing liquid 42 having magnetism. It is quickly separated into liquid 42 and liquid acid gas 41. That is, the liquid acidic gas 41 quickly moves to the upper phase, and the absorbing liquid 42 quickly moves to the lower phase.
  • the liquid acid gas 41 can be quickly recovered from the separator / regenerator 46, and the regenerated absorbent 42 after the liquid acid gas 41 is removed is supplied to the upper portion of the absorption tower 13 by the circulation pump 17. Can be reused promptly. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.
  • FIG. 8 shows an eighth embodiment.
  • the same reference numerals as those in FIG. 7 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. Except for this, the configuration is the same as that of the seventh embodiment.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the seventh embodiment, repeated description will be omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do.
  • FIG. 9 shows a ninth embodiment.
  • an absorption liquid storage tank 72 in which the absorption liquid 42 to which the additive 71 is added is stored.
  • the absorbing liquid 42 either an organic solvent or water or a liquid having a bi-directional force, or a liquid mainly containing either or both of an organic solvent and water is used.
  • the additive 71 includes one or more additives selected from the group consisting of water, alcohols, ethers and phenols.
  • the additive 71 may be one or more additives selected from the group consisting of alcohols, ethers and phenols.
  • examples of alcohols include methanol and ethanol
  • examples of ethers include dimethyl ether and ethyl ether
  • examples of phenols include phenol and the like.
  • These additives 71 should hardly interfere with the ability of the absorbent 42 to absorb acid gases.
  • the absorbent 42 in the absorbent reservoir 72 is added with 1 to 50% by weight, preferably 5 to 10% by weight, of the additive with respect to 100% by weight of the absorbent.
  • the additive was limited to the range of 1 to 50% by weight. If the amount is less than 1% by weight, the effect of reducing the viscosity of the absorbent 42 cannot be obtained so much. This is an adverse effect on the absorption performance of acid gas by the absorbent 42.
  • a stirrer 73 is provided in order to uniformly disperse the additive 71 in the absorbing liquid.
  • the lower part of the absorption liquid storage tank 72 is connected to the upper part of the absorption tower 13 by an absorption liquid supply pipe 74.
  • the absorption liquid supply pipe 74 includes an absorption liquid supply pump 76 for supplying the additive-containing absorption liquid 75 in the absorption liquid storage tank 72 to the upper part of the absorption tower 13, and an on-off valve for opening and closing the absorption liquid supply pipe 74 7 7 And force S is provided.
  • the configuration other than the above is the same as that of the second embodiment.
  • the additive 71 is added to the absorbent 42 in the absorbent reservoir 72 and mixed by the stirrer 73, the additive 71 is dispersed in the absorbent 42 and the viscosity of the absorbent 42 decreases.
  • the opening / closing valve 77 is opened, and the additive-containing absorbing liquid 75 is supplied to the upper portion of the absorption tower 13 by the absorbing liquid supply pump 76, and then the opening / closing valve 77 is closed.
  • the additive-containing absorption liquid 75 is circulated between the absorption tower 13 and the separation regenerator 46 by the circulation pump 17.
  • the absorption tower 13 As a result, it is possible to absorb the acid gas in the absorption tower 13 without substantially reducing the ability of the additive-containing absorbing liquid 75 to absorb the acid gas.
  • the low-viscosity additive-containing absorption liquid 75 smoothly circulates between the absorption tower 13 and the separation regenerator 46, so that the absorption liquid can be handled easily. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.
  • FIG. 10 shows a tenth embodiment.
  • the same reference numerals as those in FIG. 9 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. It is done.
  • Additive 71 includes polar solvents, that is, one or more additives selected from the group consisting of water, alcohols, ethers, and phenols. Specifically, methanol and ethanol are exemplified as alcohols, dimethyl ether and ethyl ether are exemplified as ethers, and phenol and the like are exemplified as phenols.
  • the configuration other than the above is the same as that of the ninth embodiment.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the fourth embodiment, the repeated description is omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do.
  • water as the additive 71 is circulated in the absorption tower 13. Therefore, before supplying the water to the absorption tower 13, acid gas containing CO gas is removed by the dehumidifier 11. No need to dehumidify
  • the dehumidifier 11 is not provided, the dehumidifier 11 is provided when the amount of water in the absorbent 42 circulated to the absorption tower 13 increases beyond the range of the additive amount added. Better. As a result, it is possible to prevent a significant decrease in the ability to absorb CO by the absorbent 42.
  • FIG. 11 shows an eleventh embodiment.
  • the same reference numerals as those in FIG. 9 denote the same parts.
  • an additive storage tank 81 in which the additive 71 is stored is connected to the upper part of the separation regenerator 46, the pressure adjusting means 82 is provided in the separation regenerator 46, and a distillation is performed at the lower part of the separation regenerator 82.
  • a separator 83 is connected, and the distillation separator 83 is provided with heating means 84.
  • the absorbing liquid 42 a liquid having either or both of an organic solvent and water, or a liquid mainly containing either or both of the organic solvent and water is used.
  • the additive 71 includes one or more additives selected from the group consisting of water, alcohols and ethers.
  • the additive 71 includes one or both of alcohols and ethers.
  • the lower part of the distillation separator 83 is connected to the suction port of the circulation pump 17 by the second return pipe 32.
  • the pressure in the separation regenerator 46 is adjusted to 4 to 25 MPa, preferably 6 to: LOMPa by the pressure adjusting means 82.
  • the temperature in the distillation separator 83 is adjusted to 50 to 250 ° C, preferably 100 to 150 ° C by the heating means 84.
  • the reason why the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa is that a gas phase may be generated if the pressure is less than 4 MPa, and if it exceeds 25 MPa, the equipment cost is increased.
  • the temperature in the distillation separator 83 adjusted by the heating means 84 is limited to the range of 50 to 250 ° C. It is difficult to completely separate the additive 71 below 50 ° C. It is because the energy of this is needed.
  • a check valve 86 is provided in the second communication pipe 22 between the centrifuge 48 and the separation regenerator 46.
  • This check valve 86 permits the flow of the additive-containing absorbent 75 from the centrifuge 48 to the separator / regenerator 46, and allows the additive-containing absorbent 75 to flow from the separator / regenerator 46 to the centrifuge 48. Configured to block flow.
  • the phenolic power of the sixth embodiment S The additive power of the seventh embodiment is also excluded because it is separated by a distillation operation where the boiling point of phenols is high ( This is because it cannot be completely separated without heating. Other than the above, the configuration is the same as that of the ninth embodiment.
  • the temperature in the separation regenerator 46 is adjusted to the range of 0 to 30 ° C by the cooler 47, and the pressure in the separation regenerator 46 is adjusted to the range of 4 to 25 MPa by the pressure force adjusting means 82.
  • additive 71 is supplied to separator / regenerator 46 together with absorption liquid 42 containing gas 41, mutual insolubility and specific gravity difference between liquid acid gas 41 and additive-containing absorption liquid 75, and mutual dissolution with respect to absorption liquid 42. And regenerating by replacing the liquid acid gas 41 dispersed in the absorption liquid 42 with the additive 71 with the additive 71, which is soluble and mutually insoluble in the liquid acid gas 41.
  • Liquid acid gas 41 is transferred to the upper phase of the vessel 46, and the additive-containing absorbent 75 is transferred to the lower phase of the separator / regenerator 46, so that the liquid acid gas 41 and the additive-containing absorbent 75 are rapidly separated.
  • the additive-containing absorbent 75 discharged from the lower part of the separator / regenerator 46 while the inside of the distillation separator 83 is heated to a temperature of 50 to 250 ° C., preferably 100 to 150 ° C. by the heating means 84. Is fed to the distillation separator 83, the additive 71 in the additive-containing absorbent 75 is distilled and separated from the absorbent 42.
  • the additive 71 and the absorbing liquid 42 can be recovered in a separated state, the absorbing liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, and the additive 71 from which the absorbing liquid 42 has been removed is added.
  • the absorbent 42 and the additive 71 can be reused immediately after being supplied to the agent storage tank 81, and the absorption gas 13 is absorbed in the absorption tower 13 without degrading the ability of the absorbent 42 to absorb the acid gas. can do. Since operations other than those described above are substantially the same as those of the second embodiment, repeated description will be omitted. ⁇ Twelfth Embodiment>
  • FIG. 12 shows a twelfth embodiment.
  • the same reference numerals as those in FIG. 11 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. It is done.
  • the additive storage tank 81 stores a polar solvent, that is, one or more additives 71 selected from the group consisting of water, alcohols and ethers. The configuration other than the above is the same as that of the eleventh embodiment.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the eleventh embodiment, repeated description will be omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank. Solubility can be increased.
  • FIG. 13 shows a thirteenth embodiment.
  • the same reference numerals as those in FIG. 11 denote the same parts.
  • the acidic gas is CO gas
  • the pressure in the separation regenerator 46 is 4 to 2
  • a pressure adjusting means 82 for maintaining LOMPa is provided in the separation regenerator 46, and a water storage tank 91 in which water is stored is connected to the lower part of the separation regenerator 46.
  • a solid-liquid separator 92 is connected to the separation regenerator 46, and a sub-separation regenerator 93 is connected to the upper part of the solid-liquid separator 92.
  • the lower part of the sub separation regenerator 93 is connected to the suction port of the circulation pump 17 by the second return pipe 32.
  • the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa. If the pressure is less than 4 MPa, CO hydrate is generated.
  • Examples of the solid-liquid separator 92 include a filter and a centrifugal separator.
  • a liquid composed of one or both of an organic solvent and water, or a liquid mainly composed of one or both of the organic solvent and water is used.
  • the configuration other than the above is the same as that of the eleventh embodiment. A method for purifying a gas using the purification apparatus configured as described above will be described.
  • liquid CO and absorption liquid in the solid-liquid separator 92 are sub-separated and regenerated.
  • the liquid CO 41 and the absorbing liquid 42 are insoluble in each other and due to the difference in specific gravity.
  • the liquid CO 41 can be separated from the absorbing liquid 42 more quickly.
  • FIG. 14 shows a fourteenth embodiment.
  • the same reference numerals as those in FIG. 13 denote the same parts.
  • an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. Except for this, the configuration is the same as that of the thirteenth embodiment.
  • the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the thirteenth embodiment, the repeated description is omitted.
  • dehumidifying the mixed gas with the dehumidifier 11 moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank. Solubility can be increased.
  • FIG. 15 shows a fifteenth embodiment.
  • the fuel is reformed, CO transformed and CO removed to mix H and CO.
  • this mixed gas is separated and recovered into H and CO using any of the gas purification methods or gas purification apparatuses of the first to fourteenth embodiments described above, and this separation circuit is further recovered.
  • the collected H is supplied to the hydrogen station, and the separated and recovered CO is adiabatically expanded. And configured to produce dry ice (solid CO 2).
  • solid CO 2 dry ice
  • fuels selected from the group consisting of hydrogen, naphtha, kerosene, methanol, dimethyl ether, liquid petroleum gas, and natural gas.
  • This reforming of fuel is steam reforming, partial oxidation, or supercritical water reforming.
  • the remaining CO is removed.
  • the remaining mixed gas of H and CO is the above first to 14th.
  • High pressure H is a hydrogen station
  • part or all of the recovered liquid CO is adiabatic and expanded by opening the pressure reducing valve.
  • CO is in a gaseous state
  • Part or all of CO is sold as a product by adiabatic expansion by opening the pressure reducing valve.
  • FIG. 16 shows a sixteenth embodiment.
  • the fuel is reformed on the vehicle, CO is transformed, and CO is removed to remove H and CO.
  • the mixed gas of 2 2 is obtained, the mixed gas is separated and recovered into H and CO by using either the gas purification method or the gas purification apparatus of the first to fourteenth embodiments, and further this
  • the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquid petroleum gas, and natural gas.
  • the reforming of this fuel is steam reforming, and the fuel is reformed into H and CO by this steam reforming. Also, most of CO is transformed into CO by CO transformation
  • the combined gas is separated into high-pressure H and liquid CO using any of the gas purification methods or gas purification apparatuses of the first to fourteenth embodiments. Furthermore, the high pressure H is supplied to the fuel cell.
  • liquid CO is temporarily stored in the vehicle and later collected. This As a result, liquid CO can be efficiently recovered while producing various types of fuel-powered high-pressure H.
  • One or more additives selected from the group consisting of water, alcohols, ethers and phenols may be added to the absorbent of the purification apparatus shown in the first embodiment.
  • the absorption liquid smoothly flows without reducing the ability of the absorption liquid to absorb the acidic gas, making it easy to handle the absorption liquid and reducing the viscosity due to the additive. Can be separated by distillation.
  • a flocculant to the absorption liquid containing the liquid acidic gas in a separation regenerator.
  • a flocculant tank for storing the flocculant is connected to the separation regenerator.
  • the flocculant stored in the flocculant tank to the absorbent containing the liquid acidic gas in the separation regenerator, the liquid acidic gas (dispersed liquid) dispersed in the absorbent is agglomerated or minutely dispersed.
  • the pressure in the separation regenerator is set to 4 to 25 MPa, and the temperature is set to 0 to 30 ° C, the inside of the separation regenerator Since the specific gravity difference separation between the liquid acid gas and the flocculant-containing absorption liquid proceeds promptly, the liquid acid gas and the flocculant-containing absorption liquid are quickly separated, and the flocculant-containing absorption liquid is supplied to the distillation separator.
  • the lower part of the separation regenerator is connected to a distillation separator with heating means, the lower part of the distillation separator is connected to the inlet of the circulation pump, and the upper part of the distillation separator is further connected to the flocculant tank. Separation of specific gravity between the liquid acidic gas and the flocculant-containing absorbent proceeds rapidly in the regenerator, and the flocculant in the distillation separator is separated from the absorbent by distillation. It is quickly separated from the liquid and only the absorption liquid is supplied to the absorption tower.
  • the refining method or refining apparatus of the second to fifth and seventh to fourteenth embodiments described above is applied to a high-pressure gas source discharged from a petroleum refinery plant or an ammonia plant, steel exhaust gas with high CO (
  • these gas sources may be supplied to the absorption tower of the purification method or purification apparatus of the first to fourteenth embodiments to produce liquid CO or dry ice. 2-5 and 7 above
  • the purification method or purification apparatus of the embodiment of -14 basically uses a physical absorption method. Therefore, it accounts for 70-80% of the running cost of a conventional (existing) liquid CO production plant
  • Example 1 Commercially available primary polyethylene glycol having an average molecular weight of 200 was used as the absorbing solution. This absorbing solution was designated as Example 1.
  • Example 1 The absorption liquid of Example 1 was contacted with high purity CO gas having a purity of 99.99% by volume.
  • the constant temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 0.5 MPa. From the total amount of CO gas that is the raw material gas and the amount of CO gas that has not been absorbed, the absorption of CO gas
  • the purity of S gas was as high as 99.9% by volume. Specifically, using a high-pressure gas-liquid equilibrium measurement device, the solubility of the above HS gas and COS gas in the absorbing solution
  • a gas-liquid equilibrium test with a non-acid gas was carried out separately for each type of gas.
  • the purity of H gas is 99.99% by volume or higher, and the purity of CH gas is 99.97% by volume or higher.
  • the purity of CO gas is 99.97 volume% or more, and the purity of N gas is 99.999 volume
  • the constant temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 0.5 MPa. From the amount of various gases and the amount of various gases that were not absorbed, H gas, CH gas, CO gas, and N
  • the above absorption liquid and liquid CO 2 are placed in a high-pressure container (formed by a transparent member visible from the outside) set at a temperature of 20 ° C and a pressure of 7 MPa.
  • Figure 20 shows the state of the absorbing liquid and liquid CO in the high-pressure vessel after standing still.
  • Example 2 An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium hexafluorophosphate (1-n-decy ⁇ 3-methylimidazo hum
  • Example 2 Heated to 0 ° C. to dry and degas.
  • the water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 2.
  • An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium tetrafluoroborate ((1-n-decy ⁇ 3-methylimidazolium tetrafluoroborate) [DMIM] [BF] was used as the ionic liquid. This absorbent is 70 in a vacuum of 1 X 10 _4 Pa.
  • Example 3 Dried and degassed by heating to ° C. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 3.
  • Example 4 Dry and degassed. The water content in the absorbing solution after deaeration was 0.2% by weight or less. This absorbent solution was designated as Example 4.
  • N-ethy pyridinium tetrafluoroborate N-ethy ⁇ pyridinium
  • a high-purity CO gas (acid gas) with a purity of 99.99% by volume was contacted with the absorbing solutions of Examples 2 to 5.
  • the resolution was measured.
  • the measurement temperature is constant at 35 ° C, 45 ° C and 55 ° C, respectively, and the pressure is large.
  • the pressure was changed stepwise from atmospheric pressure to lOMPa.
  • the solubility in the collected liquid was measured.
  • the measurement temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 10 MPa.
  • the amount of various gases and the amount of various gases that have not been absorbed also affect the solubility of H gas, CH gas, CO gas, and N gas in the absorbing solution.
  • the absorption liquid contains H gas and CH gas.
  • the degree of solubility was calculated in terms of solubility per unit volume (Nm 3 Zm 3 ), and the results are shown in FIG.
  • the solubility per unit volume increases as the pressure increases, and the solubility of H 2 S gas increases.
  • the largest COS gas has the next highest CO gas solubility.
  • the above absorption liquid and liquid CO were respectively injected into a high-pressure vessel (formed by a transparent member visible from the outside) set at a pressure of 7 MPa at a temperature of 20 ° C. did.
  • the injected absorption liquid (specific gravity 1.37) and liquid CO (specific gravity 0.81) are in phase.
  • Fig. 26 shows the absorption liquid and liquid CO in the high-pressure vessel after standing.
  • the two forces are considered to have been separated into two liquid phases promptly because they are insoluble in each other and the specific gravity difference is large.
  • the liquid level of the two liquid phases before stirring and the liquid level of the two liquid phases after stirring and standing were the same level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

An acid gas is efficiently separated and recovered from a gas mixture at a low cost. The amount of an acid gas to be absorbed per unit volume of an absorbing liquid is increased and the amount of the absorbing liquid to be circulated is reduced to save the circulatory energy. An absorbing liquid comprising an ionic liquid as the main ingredient is supplied to an upper part of an absorption column (13) kept at a given temperature and a given pressure, while a gas mixture comprising an acid gas and a nonacid gas is supplied to a lower part of the absorption column (13) to bring the gas mixture into contact with the absorbing liquid. Thus, the acid gas is absorbed in the absorbing liquid and the nonacid gas is separated from the acid gas and recovered from the absorption column (13). The absorbing liquid containing the acid gas absorbed therein is supplied to an upper part of a regeneration column (16) kept at a temperature which is equal to or higher than the temperature of the inside of the absorption column (13) and at a pressure lower than the pressure of the absorption column (13). The acid gas is thus released from the absorbing liquid and recovered from the regeneration column (16) simultaneously with the regeneration of the absorbing liquid. The absorbing liquid regenerated is supplied to the upper part of the absorption column (13).

Description

ガスの精製方法及びその装置並びにその精製に用いられる酸性ガスの 吸収液  Gas purification method and apparatus, and acid gas absorbing solution used for the purification
技術分野  Technical field
[0001] 本発明は、イオン性液体や有機溶剤等力もなる吸収液を用いて、 CO , H S, CO  [0001] In the present invention, an ionic liquid or an organic solvent is used to absorb CO 2, H 2 S, CO
2 2 twenty two
S, SO, SO, NO, CS, HCN, NH,メルカプタン等の酸性ガスと、 H, CH Acid gases such as S, SO, SO, NO, CS, HCN, NH, mercaptan, and H, CH
2 2 3 , C 2 2 3, C
2 3 2 42 3 2 4
O, O , N ,炭素数 2〜 10までの炭化水素化合物等の非酸性ガスが含まれる混合ガMixed gas containing non-acidic gases such as O, O, N and hydrocarbon compounds with 2 to 10 carbon atoms
2 2 twenty two
スから上記酸性ガスを分離回収するガスの精製方法及びその装置と、その酸性ガス の分離回収に用いられる酸性ガスの吸収液に関する。更に詳しくは、化石燃料のガ ス化、改質又は部分酸化による合成ガス、天然ガス等に含まれる酸性ガスや、火力 発電所、セメントプラント、鉄鋼プラント、化学プラント等の排ガス中に含まれる酸性ガ スを直接液体状態で分離回収するガスの精製方法及びその装置並びにこれに用い られる酸性ガスの吸収液に関する。更に水素ステーションや燃料電池自動車に供給 される水素ガスの精製及び液体 COの分離回収に関するものである。  The present invention relates to a gas purification method and apparatus for separating and recovering the acid gas from the gas, and an acid gas absorption liquid used for the separation and recovery of the acid gas. More specifically, acid gas contained in synthesis gas, natural gas, etc. by fossil fuel gasification, reforming or partial oxidation, and acidity contained in exhaust gas from thermal power plants, cement plants, steel plants, chemical plants, etc. The present invention relates to a gas purification method and apparatus for separating and recovering gas directly in a liquid state, and an acid gas absorbing solution used therefor. It also relates to the purification of hydrogen gas supplied to hydrogen stations and fuel cell vehicles, and the separation and recovery of liquid CO.
2  2
背景技術  Background art
[0002] 従来、天然ガス、製油所ガス、アンモニア合成ガスなどを精製するときに、 COなど  [0002] Conventionally, when purifying natural gas, refinery gas, ammonia synthesis gas, etc., CO, etc.
2 の酸性ガスが分離回収され、この分離回収方法としては、酸性ガスを吸収する方法、 混合ガスを蒸留する方法、酸性ガスを吸着する方法、混合ガスを膜分離により分離 する方法及びこれらの方法を組合せた方法が挙げられる。これらのうちレクチゾール プロセスとメチルジェチルァミンプロセス(以下、 MDEAプロセスという。)は工業的に よく用いられる方法である (例えば、非特許文献 1参照。 ) o  The acidic gas of 2 is separated and recovered, and this separation and recovery method includes a method of absorbing the acidic gas, a method of distilling the mixed gas, a method of adsorbing the acidic gas, a method of separating the mixed gas by membrane separation, and these methods. The method which combined these is mentioned. Of these, the lectisol process and the methyljetylamine process (hereinafter referred to as the MDEA process) are methods that are often used industrially (for example, see Non-Patent Document 1).
[0003] レクチゾールプロセスは物理吸収プロセスであり、メタノールを吸収液として用い、 化石燃料のガス化、改質又は部分酸化による合成ガス、アンモニア合成ガス、天然 ガスなどの各種ガス中に含まれる COなどの酸性ガスを吸収分離する方法である。な [0003] The lectisol process is a physical absorption process, using methanol as an absorbent, and CO contained in various gases such as synthesis gas by fossil fuel gasification, reforming or partial oxidation, ammonia synthesis gas, and natural gas. It is a method of absorbing and separating acid gases such as. Na
2  2
お、酸性ガスの吸収温度は— 10〜― 75°Cの範囲に設定され、吸収圧力は 7〜8M Paの範囲に設定される。このレクチゾールプロセス(物理吸収プロセス)は MDEAプ ロセス (化学吸収プロセス)に比べて吸収液の再生エネルギが少なくて済むと!、ぅ特 徴を有する。 The absorption temperature of acid gas is set in the range of -10 to -75 ° C, and the absorption pressure is set in the range of 7 to 8MPa. This lectizol process (physical absorption process) requires less regeneration energy than the MDEA process (chemical absorption process)! Have signs.
このレクチゾールプロセスでは、その吸収機構が吸収液へのガスの溶解によるため 、酸性ガスの溶解量が吸収塔内の酸性ガス分圧に比例する。このため吸収塔と再生 塔内の酸性ガスの分圧の差によって混合ガス中の酸性ガスを分離する。またメタノー ルが安価でかつ酸性ガスに対する吸収能力が他の物理吸収プロセスにおける酸性 ガスに対する吸収能力の 3〜6倍であり、大量の酸性ガスを物理吸収によって高圧下 で処理できるようになって!/、る。  In this lectizol process, the absorption mechanism is based on the dissolution of gas in the absorption liquid, so the amount of acid gas dissolved is proportional to the acid gas partial pressure in the absorption tower. For this reason, the acid gas in the mixed gas is separated by the difference in the partial pressure of the acid gas in the absorption tower and the regeneration tower. In addition, methanol is inexpensive and the absorption capacity for acid gas is 3 to 6 times the absorption capacity for acid gas in other physical absorption processes, so that a large amount of acid gas can be processed under high pressure by physical absorption! /
[0004] 一方、 MDEAプロセスは化学吸収プロセスであり、吸収液として 30重量0 /0の三級 ァミンのメチルジェチルァミン水溶液を単独で或 、は活性剤とともに用い、化石燃料 の燃焼による排ガス、天然ガスなど各種ガス中に含まれる酸性ガスを吸収分離する 方法である。なお、酸性ガスの吸収温度は 30〜60°Cの範囲に設定され、吸収圧力 は 2〜3MPaの範囲に設定される。 [0004] On the other hand, MDEA process is a chemical absorption process, some methyl oxygenate chill § Min aqueous tertiary Amin of 30 weight 0/0 as an absorbing liquid alone, when used in conjunction with active agent, the exhaust gas from the combustion of fossil fuels This is a method for absorbing and separating acidic gas contained in various gases such as natural gas. The absorption temperature of acid gas is set in the range of 30-60 ° C, and the absorption pressure is set in the range of 2-3MPa.
上記 MDEAプロセスでは、吸収機構が酸性ガスと吸収液の可逆反応であり、低温 かつ高圧でィ匕合物を作り(吸収塔内で吸収液が酸性ガスを吸収する方向に進む。)、 高温かつ低圧で酸性ガスと吸収液に分解する (再生塔内で吸収液が酸性ガスを放 出する方向に進む。;)。 MDEAプロセスは、吸収液の再生エネルギが他の化学吸収 プロセスの 1Z7〜: LZ2と少なぐまた酸性ガスの吸収能力が高いという特徴を有す る。  In the MDEA process described above, the absorption mechanism is a reversible reaction between an acid gas and an absorption liquid, and a compound is formed at low temperature and high pressure (the absorption liquid proceeds in the direction of absorbing the acid gas in the absorption tower). Decomposes into acid gas and absorption liquid at low pressure (advanced in the direction of releasing acid gas in the regeneration tower;). The MDEA process is characterized by the fact that the regenerative energy of the absorbing solution is less than 1Z7 ~: LZ2 of other chemical absorption processes and has a high ability to absorb acid gases.
非特許文献 1:編者:社団法人石油学会,編集:株式会社講談社サイェンティフイク, 「石油精製プロセス」,株式会社講談社, 1998年 5月, p. 360- 361)  Non-Patent Document 1: Editor: Japan Petroleum Institute, edited by Kodansha Scientific, Inc., “Oil Refinery Process”, Kodansha Co., Ltd., May 1998, p. 360-361)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力し、上記従来の非特許文献 1に示されたレクチゾールプロセス及び MDEAプロ セスでは、吸収液の単位体積当りの酸性ガスの吸収量が少ないため、吸収液の循環 量及び循環エネルギが多ぐ装置が大型化し、また吸収液の再生に蒸留塔を用いて いるため、再生工程が複雑となり、更に高温で再生しているため、再生エネルギを多 く使用する不具合があった。 [0005] However, in the above-described conventional lectizol process and MDEA process shown in Non-Patent Document 1, the absorption amount of the acid liquid per unit volume of the absorption liquid is small, so the circulation amount and circulation of the absorption liquid Since the apparatus with a large amount of energy is enlarged and the distillation tower is used for the regeneration of the absorbing solution, the regeneration process is complicated, and the regeneration is performed at a high temperature.
また、上記従来の非特許文献 1に示されたレクチゾールプロセスでは、メタノール損 失を抑え、かつ吸収液の単位体積当りの酸性ガスの吸収量を増大するために、吸収 温度が低く設定しなければならず、冷凍機を必要とし、吸収液が蒸気圧を有するためIn addition, the lectisol process shown in the above-mentioned conventional non-patent document 1 has a methanol loss. In order to suppress loss and increase the amount of acid gas absorbed per unit volume of the absorbent, the absorption temperature must be set low, a refrigerator is required, and the absorbent has vapor pressure.
、吸収液の蒸発ロスが多ぐ更に酸性ガスが COである場合、メタノール(吸収液)の If there is a lot of evaporation loss in the absorption liquid and the acidic gas is CO, methanol (absorption liquid)
2  2
比重が液体 COの比重と殆ど変わらないため、比重による分相 ·分離ができず、 CO The specific gravity is almost the same as the specific gravity of liquid CO.
2 2 を液体の状態で分離回収できな 、問題点もあった。  There was also a problem that 2 2 could not be separated and recovered in the liquid state.
また、上記従来の非特許文献 1に示されたレクチゾールプロセス及び MDEAプロ セスでは、分離回収した酸性ガス中に吸収液が少量残ってしまい、例えば、酸性ガス が食品添加用に用いられる COである場合、純度 99. 99体積%以上の高純度 CO  In addition, in the above-described conventional non-patent document 1, the lectizol process and the MDEA process leave a small amount of absorbing liquid in the separated and collected acid gas. For example, the acid gas is CO used for food addition. If there is, high purity 99.99% by volume or more high purity CO
2 2 が得られず、更なる精製が必要となる問題点もあった。  There was a problem that 2 2 was not obtained and further purification was required.
更に、上記従来の非特許文献 1に示された MDEAプロセスでは、化学吸収である ため、吸収液が劣化することがあり、低圧 ·高温条件下で吸収液を再生して酸性ガス を分離回収するため、酸性ガスを液体の状態で分離回収できない問題点もあった。 本発明の第 1の目的は、混合ガス力も酸性ガスを高効率かつ低コストで分離回収で き、また吸収液の単位体積当りの酸性ガス吸収量を増大でき、更に吸収液の循環量 を低減できるとともに、循環エネルギを節約できる、ガスの精製方法及びその装置を 提供することにある。  Furthermore, in the MDEA process shown in the above-mentioned conventional non-patent document 1, because of chemical absorption, the absorbing solution may deteriorate, and the absorbing solution is regenerated under low pressure and high temperature conditions to separate and recover the acid gas. For this reason, there is a problem that the acidic gas cannot be separated and recovered in a liquid state. The first object of the present invention is to separate and recover acidic gas with high efficiency and low cost, and to increase the amount of acidic gas absorbed per unit volume of the absorbing liquid, and to further reduce the circulating amount of the absorbing liquid. Another object of the present invention is to provide a gas purification method and apparatus capable of saving circulating energy.
本発明の第 2の目的は、蒸気圧が低い吸収液を用いることにより、比較的簡単にか つ低コストで吸収液を再生でき、また従来法より低い温度で吸収液を再生でき、吸収 液の再生エネルギを低減できる、ガスの精製方法及びその装置を提供することにあ る。  The second object of the present invention is to use an absorption liquid having a low vapor pressure, so that the absorption liquid can be regenerated relatively easily and at a low cost, and the absorption liquid can be regenerated at a temperature lower than that of the conventional method. Another object of the present invention is to provide a gas purification method and apparatus capable of reducing the regeneration energy.
本発明の第 3の目的は、蒸気圧の低い吸収液を用いることにより、吸収液の蒸発口 スを少なくすることができるとともに、分離回収した COガス中に吸収液が残存せず、  The third object of the present invention is to reduce the evaporation port of the absorbing solution by using the absorbing solution having a low vapor pressure, and the absorbing solution does not remain in the separated and recovered CO gas.
2  2
高純度の COガスを容易に製造できる、ガスの精製方法及びその装置を提供するこ To provide a gas purification method and apparatus capable of easily producing high-purity CO gas.
2  2
とにある。 It is in.
本発明の第 4の目的は、効率良く COを液体の状態で回収でき、従来より工程を簡  The fourth object of the present invention is to efficiently recover CO in a liquid state, which makes the process easier than before.
2  2
略化でき、また全工程中での温度及び圧力の大きな変動がなぐ再生された吸収液 を高圧のまま吸収塔に戻すことにより、吸収液の循環エネルギが少なくて済み、かつ 吸収液を再生するエネルギを不要にすることにより、省エネルギ化を図ることができる 、ガスの精製方法及びその装置を提供することにある。 By returning the regenerated absorption liquid, which can be simplified, and without large fluctuations in temperature and pressure during the entire process, to the absorption tower while maintaining a high pressure, it is possible to reduce the circulating energy of the absorption liquid and regenerate the absorption liquid. Energy can be saved by making energy unnecessary. Another object of the present invention is to provide a gas purification method and an apparatus therefor.
本発明の第 5の目的は、室温以上の温度で酸性ガスを吸収することにより、冷凍機 や冷凍エネルギを不要にでき、低コスト化、省エネルギ化及び小型化を図ることがで きる、ガスの精製装置を提供することにある。  The fifth object of the present invention is to absorb acidic gas at a temperature higher than room temperature, thereby eliminating the need for a refrigerator and refrigeration energy, reducing costs, saving energy, and reducing the size of the gas. It is to provide a purification apparatus.
課題を解決するための手段 Means for solving the problem
イオン性液体とは、常温でも結晶化せずに溶融している有機塩である。近年、この ような室温で液状の塩は注目を浴びている。イオン性液体は、液体でありながら蒸気 圧がなぐ耐熱性が高く(400°C以上でも熱的に安定である。)、また液体である温度 範囲が広 ― 100〜300°C)、低粘性かつ高極性であって、更に化学的に安定であ り、非燃性である等の特異な性質を有する。本発明者らは、加圧下におけるイオン性 液体の単位体積当りの COなどの酸性ガスの吸収量力メタノールゃメチルジェチル  An ionic liquid is an organic salt that is melted without crystallization even at room temperature. In recent years, such liquid salts at room temperature have attracted attention. Ionic liquids have high heat resistance with low vapor pressure despite being liquid (thermally stable even at 400 ° C or higher), and have a wide temperature range of liquid – 100 to 300 ° C), low viscosity In addition, it is highly polar and has unique properties such as being chemically stable and nonflammable. The inventors of the present invention have the ability to absorb acidic gas such as CO per unit volume of ionic liquid under pressure.
2  2
ァミン等より多ぐかつ非酸性ガス (H , CH , CO, Nなど)に対して溶解度が非常 High solubility in non-acidic gases (H, CH, CO, N, etc.)
2 4 2  2 4 2
に小さいことを見出し、本発明をなすに至った。 As a result, the present invention was made.
請求項 1に係る発明は、図 1に示すように、所定の温度及び所定の圧力にそれぞれ 維持した吸収塔 13の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔 13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合 ガスを接触させることにより、酸性ガスを吸収液に吸収させて非酸性ガスと酸性ガスと を分離し非酸性ガスを吸収塔 13から回収する工程と、吸収塔 13内の温度と同一又 は高い温度に維持しかつ吸収塔 13内の圧力より低い圧力に維持した再生塔 16の 上部に、酸性ガスを吸収した吸収液を供給することにより、酸性ガスを放散させて吸 収液力 分離し再生塔 16から回収するとともに吸収液を再生する工程と、この再生さ れた吸収液を吸収塔 13の上部に供給する工程とを含むガスの精製方法である。 この請求項 1に記載されたガスの精製方法では、所定の温度及び所定の圧力にそ れぞれ維持した吸収塔 13の上部に、イオン性液体を主成分とする吸収液を供給し、 吸収塔 13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給すると、吸収液 に混合ガスが接触して酸性ガスが吸収液に吸収されるので、非酸性ガスと酸性ガスと に分離されて非酸性ガスが吸収塔 13から回収される。上記吸収塔 13内の温度と同 一又は高い温度に維持しかつ吸収塔 13内の圧力より低い圧力に維持した再生塔 1 6の上部に、上記酸性ガスを吸収した吸収液を供給すると、再生塔 16で酸性ガスが 放散するので、酸性ガスが吸収液力も分離し再生塔 16から回収されるとともに、吸収 液が再生されて再利用される。即ち、高圧下で酸性ガスに対する溶解度が非常に大 きくなり、低圧下で酸性ガスに対する溶解度が非常に小さくなるという特性を利用す ることにより、混合ガス力ゝら非酸性ガスと酸性ガスとを効率良く分離回収する。 In the invention according to claim 1, as shown in FIG. 1, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. A mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the gas, and the mixed gas is brought into contact with the absorbing liquid, thereby absorbing the acidic gas into the absorbing liquid and separating the non-acidic gas from the acidic gas. The acidic gas is recovered from the step of recovering the acidic gas from the absorption tower 13 and the upper part of the regeneration tower 16 maintained at a temperature equal to or higher than the temperature in the absorption tower 13 and lower than the pressure in the absorption tower 13. By supplying the absorbed absorption liquid, acid gas is dissipated, the absorption liquid power is separated and recovered from the regeneration tower 16 and the absorption liquid is regenerated, and the regenerated absorption liquid is recovered at the top of the absorption tower 13. And a step of supplying the gas to the gas. In the gas purification method described in claim 1, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the tower 13, the mixed gas comes into contact with the absorbing liquid and the acidic gas is absorbed by the absorbing liquid, so that it is separated into a non-acidic gas and an acidic gas. Thus, non-acidic gas is recovered from the absorption tower 13. Regeneration tower 1 maintained at a temperature equal to or higher than the temperature in absorption tower 13 and lower than the pressure in absorption tower 13 When the absorption liquid that has absorbed the acid gas is supplied to the upper part of 6, the acid gas is released in the regeneration tower 16, so that the acid gas is also separated from the absorption liquid force and recovered from the regeneration tower 16, and the absorption liquid is regenerated. To be reused. In other words, by utilizing the characteristics that the solubility in acidic gas becomes very high under high pressure and the solubility in acidic gas becomes very low under low pressure, non-acidic gas and acidic gas can be combined with the mixed gas power. Efficient separation and recovery.
請求項 2に係る発明は、図 2に示すように、所定の温度及び所定の圧力にそれぞれ 維持した吸収塔 13の上部に、有機溶剤又は水のいずれか一方又は双方を主成分と する吸収液 42を供給し、吸収塔 13の下部に、酸性ガス及び非酸性ガスを含む混合 ガスを供給して、吸収液 42に混合ガスを接触させることにより、酸性ガスを吸収液 42 に吸収させて非酸性ガスと酸性ガスとを分離し非酸性ガスを吸収塔 13から回収する 工程と、所定の圧力に維持しかつ吸収塔 13内の温度より低い温度に維持した分離 再生器 46に、酸性ガスを吸収した吸収液を供給することにより、酸性ガスを液ィ匕しこ の液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差により吸収液 42から液 体酸性ガス 41を分離して分離再生器 46から回収するとともに吸収液 42を再生する 工程と、この再生された吸収液 42を吸収塔 13の上部に供給する工程とを含む、酸 性ガスを含む混合ガスの精製方法である。  As shown in FIG. 2, the invention according to claim 2 is an absorption liquid mainly composed of one or both of an organic solvent and water at the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure. 42, a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the absorption tower 13, and the mixed gas is brought into contact with the absorbing liquid 42 so that the absorbing gas 42 absorbs the acidic gas and the non-acidic gas is absorbed. A process of separating the acidic gas from the acidic gas and recovering the non-acidic gas from the absorption tower 13, and a separation regenerator 46 maintained at a predetermined pressure and lower than the temperature in the absorption tower 13 By supplying the absorbed liquid, the liquid acid gas 41 is separated from the liquid 42 by the mutual insolubility and specific gravity difference between the liquid liquid 41 and the liquid 42. A process to recover from the regenerator 46 and to regenerate the absorbent 42 And a method of purifying a mixed gas containing an acidic gas, including the step of supplying the regenerated absorbing liquid 42 to the upper portion of the absorption tower 13.
この請求項 2に記載されたガスの精製方法では、所定の温度及び所定の圧力にそ れぞれ維持した吸収塔 13の上部に、有機溶剤又は水のいずれか一方又は双方を 主成分とする吸収液 42を供給し、吸収塔 13の下部に、酸性ガス及び非酸性ガスを 含む混合ガスを供給すると、吸収液 42に混合ガスが接触して酸性ガスが吸収液 42 に吸収されるので、非酸性ガスと酸性ガスとに分離され非酸性ガスが吸収塔 13から 回収される。上記吸収塔 13内の圧力と同一の圧力、吸収塔 13内の圧力より僅かに 高い圧力、或いは吸収塔 13内の圧力より僅かに低い圧力に維持しかつ吸収塔 13内 の温度より低 、温度に維持した分離再生器 46に、酸性ガスを吸収した吸収液 42を 供給すると、分離再生器 46で酸性ガスが液ィ匕され、この液体酸性ガス 41と吸収液 4 2の相互不溶解性及び比重差により吸収液 42から液体酸性ガス 41が分離されて分 離再生器 46から回収されるとともに、吸収液 42が再生されて再利用される。即ち、加 圧下かつ所定の温度範囲で酸性ガスに対する溶解度が非常に大きくなり、加圧下か つ上記所定の温度範囲より低 、温度範囲で酸性ガスが液ィ匕され、この液体酸性ガスIn the gas purification method described in claim 2, the organic solvent or water is used as the main component at the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When the absorbing liquid 42 is supplied and a mixed gas containing acidic gas and non-acidic gas is supplied to the lower part of the absorption tower 13, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed by the absorbing liquid 42. Separated into non-acid gas and acid gas, the non-acid gas is recovered from the absorption tower 13. Maintain the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13 or a pressure slightly lower than the pressure in the absorption tower 13 and a temperature lower than the temperature in the absorption tower 13. When the absorption liquid 42 that has absorbed the acid gas is supplied to the separation regenerator 46 that is maintained at the same level, the acid gas is liquefied in the separation regenerator 46, and the mutual insolubility between the liquid acid gas 41 and the absorption liquid 42 and The liquid acid gas 41 is separated from the absorbent 42 by the difference in specific gravity and recovered from the separation regenerator 46, and the absorbent 42 is regenerated and reused. In other words, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range. The acidic gas is liquefied in a temperature range lower than the predetermined temperature range, and the liquid acidic gas
41と吸収液 42の相互不溶解性及び比重差により吸収液 42から液体酸性ガス 41が 分かれるという特性を利用することにより、酸性ガスをガスとして回収した後に加圧冷 却して液体にするのではなぐ酸性ガスを直接液体状態で回収するので、混合ガス 力 非酸性ガスと液体酸性ガス 41とを効率良く分離回収できる。 By utilizing the property that the liquid acid gas 41 is separated from the absorbing liquid 42 due to the mutual insolubility and specific gravity difference between the absorbing liquid 41 and the absorbing liquid 42, the acidic gas is recovered as a gas and then cooled by cooling to form a liquid. However, since the acidic gas is directly recovered in the liquid state, the mixed gas force non-acidic gas and liquid acidic gas 41 can be separated and recovered efficiently.
請求項 3に係る発明は、図 3に示すように、所定の温度及び所定の圧力にそれぞれ 維持した吸収塔 13の上部に、イオン性液体を主成分とする吸収液 42を供給し、吸収 塔 13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液 42〖こ 混合ガスを接触させることにより、酸性ガスを吸収液 42に吸収させて非酸性ガスと酸 性ガスとを分離し非酸性ガスを吸収塔 13から回収する工程と、所定の圧力に維持し かつ吸収塔 13内の温度より低い温度に維持した分離再生器 46に、酸性ガスを吸収 した吸収液を供給することにより、酸性ガスを液化しこの液体酸性ガス 41と吸収液42 の相互不溶解性及び比重差により吸収液 42から液体酸性ガス 41を分離して分離再 生器 46から回収するとともに吸収液 42を再生する工程と、この再生された吸収液 42 を吸収塔 13の上部に供給する工程とを含むガスの精製方法である。 In the invention according to claim 3, as shown in FIG. 3, an absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. By supplying a mixed gas containing an acidic gas and a non-acidic gas to the lower part of 13 and bringing the mixed liquid into contact with the absorbing liquid 42 酸性, the absorbing gas 42 absorbs the acidic gas and the non-acidic gas and the acidic gas And the non-acidic gas is recovered from the absorption tower 13 and the separation regenerator 46 maintained at a predetermined pressure and lower than the temperature in the absorption tower 13 is supplied with the absorbing liquid that has absorbed the acidic gas. By supplying, the acid gas is liquefied, and the liquid acid gas 41 is separated from the absorbing liquid 42 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and recovered from the separation regenerator 46 and absorbed. Step of regenerating liquid 42 and the regenerated absorbent And a step of supplying 42 to the upper part of the absorption tower 13.
この請求項 3に記載されたガスの精製方法では、所定の温度及び所定の圧力にそ れぞれ維持した吸収塔 13の上部に、イオン性液体を主成分とする吸収液 42を供給 し、吸収塔 13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給すると、吸 収液 42に混合ガスが接触して酸性ガスが吸収液 42に吸収されるので、非酸性ガス と酸性ガスとに分離され非酸性ガスが吸収塔 13から回収される。上記吸収塔 13内の 圧力と同一の圧力、吸収塔 13内の圧力より僅かに高い圧力、或いは吸収塔 13内の 圧力より僅かに低い圧力に維持しかつ吸収塔 13内の温度より低い温度に維持した 分離再生器 46に、酸性ガスを吸収した吸収液を供給すると、分離再生器 46で酸性 ガスが液ィ匕され、この液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差によ り吸収液 42から液体酸性ガス 41が分離されて分離再生器 46から回収されるとともに 、吸収液 42が再生されて再利用される。即ち、加圧下かつ所定の温度範囲で酸性 ガスに対する溶解度が非常に大きくなり、加圧下かつ上記所定の温度範囲より低い 温度範囲で酸性ガスが液ィ匕され、この液体酸性ガス 41と吸収液 42の相互不溶解性 及び比重差により吸収液 42から液体酸性ガス 41が分かれるという特性を利用するこ とにより、酸性ガスをガスとして回収した後に加圧冷却して液体にするのではなぐ酸 性ガスを直接液体状態で回収するので、混合ガス力ゝら非酸性ガスと液体酸性ガス 41 とを効率良く分離回収できる。 In the gas purification method described in claim 3, the absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. If a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the absorption tower 13, the mixed gas comes into contact with the absorbent 42 and the acidic gas is absorbed by the absorbent 42. The non-acidic gas is recovered from the absorption tower 13. Maintain the same pressure as that in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13 and a temperature lower than the temperature in the absorption tower 13. When the absorption liquid that has absorbed the acid gas is supplied to the maintained separation / regenerator 46, the separation / regenerator 46 liquefies the acid gas, and the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 are reduced. Thus, the liquid acid gas 41 is separated from the absorbing liquid 42 and recovered from the separation regenerator 46, and the absorbing liquid 42 is regenerated and reused. That is, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range. Mutual insolubility of In addition, by utilizing the characteristic that the liquid acid gas 41 is separated from the absorbing liquid 42 due to the difference in specific gravity, the acid gas is recovered in the liquid state directly rather than being pressurized and cooled after being recovered as a gas. Since the recovery is performed, the non-acidic gas and the liquid acidic gas 41 can be efficiently separated and recovered by using the mixed gas power.
[0010] 請求項 4に係る発明は、図 6に示すように、多孔質膜にイオン性液体を主成分とす る吸収液を含浸した液体膜 51を膜分離器 52内に張設して膜分離器 52を第 1室 52a と第 2室 52bとに区画し、第 1室 52aを第 2室 52bより高圧に設定して、第 1室 52aに 酸性ガス及び非酸性ガスを含む混合ガスを導入することにより、非酸性ガスを第 1室 52aに残留させたまま、酸性ガスを液体膜 51に透過させて低圧の第 2室 52bへ移動 させ、第 1室 52aから非酸性ガスを回収するとともに第 2室 52bから酸性ガスを回収す るガスの精製方法である。  In the invention according to claim 4, as shown in FIG. 6, a liquid membrane 51 in which a porous membrane is impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in a membrane separator 52. The membrane separator 52 is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set to a pressure higher than that of the second chamber 52b, and the first chamber 52a is a mixed gas containing acidic gas and non-acidic gas. In this way, the non-acid gas remains in the first chamber 52a, passes through the liquid film 51 and moves to the low-pressure second chamber 52b, and recovers the non-acid gas from the first chamber 52a. At the same time, it is a gas purification method for recovering acid gas from the second chamber 52b.
この請求項 4に記載されたガスの精製方法では、液体膜 51を張設した膜分離器 52 の高圧の第 1室 52aに酸性ガス及び非酸性ガスを含む混合ガスを導入すると、非酸 性ガスが第 1室 52aに残留しかつ酸性ガスが液体膜 51を透過して低圧の第 2室 52b に流入するので、混合ガスが液体膜 51で酸性ガス及び非酸性ガスに分離されて膜 分離器 52から回収される。  In the gas purification method described in claim 4, when a mixed gas containing acidic gas and non-acidic gas is introduced into the high-pressure first chamber 52a of the membrane separator 52 in which the liquid membrane 51 is stretched, the non-acidic gas is introduced. Gas remains in the first chamber 52a and acidic gas permeates the liquid membrane 51 and flows into the low-pressure second chamber 52b, so that the mixed gas is separated into acidic gas and non-acidic gas by the liquid membrane 51 and membrane separation is performed. Recovered from vessel 52.
[0011] 請求項 8に係る発明は、請求項 1、 3又は 4いずれか 1項に係る発明であって、更に イオン性液体を主成分とする吸収液が中性又はアルカリ性であることを特徴とする。 この請求項 8に記載されたガスの精製方法では、吸収液が中性又はアルカリ性であ るので、酸性ガスが吸収液に溶け込み易くなり、その溶解度も酸性の吸収液より大き くなる。  [0011] The invention according to claim 8 is the invention according to any one of claims 1, 3, or 4, and is characterized in that the absorbing liquid containing an ionic liquid as a main component is neutral or alkaline. And In the gas purification method described in claim 8, since the absorbing solution is neutral or alkaline, the acidic gas is easily dissolved in the absorbing solution, and the solubility thereof is larger than that of the acidic absorbing solution.
請求項 9に係る発明は、請求項 1又は 3に係る発明であって、更に図 1に示すように 、混合ガスを吸収塔 13に供給する前に混合ガスを除湿する工程を更に含むことを特 徴とする。  The invention according to claim 9 is the invention according to claim 1 or 3, further comprising a step of dehumidifying the mixed gas before supplying the mixed gas to the absorption tower 13, as shown in FIG. It is a feature.
請求項 10に係る発明は、請求項 4に係る発明であって、更に図 6に示すように、混 合ガスを膜分離器 52に導入する前に混合ガスを除湿する工程を更に含むことを特 徴とする。  The invention according to claim 10 is the invention according to claim 4, further comprising a step of dehumidifying the mixed gas before introducing the mixed gas into the membrane separator 52, as shown in FIG. It is a feature.
これら請求項 9又は 10に記載されたガスの精製方法では、酸性ガスの吸収液への 溶解度又は液体膜 51への透過率を小さくしてしまう水分を混合ガス力も予め除去す ることにより、酸性ガスの吸収液への溶解度又は液体膜 51への透過率を大きくする。 また酸性ガスを吸収した吸収液力も酸性ガスを液体の状態で分離するために 0°Cより 低くしても、水分が凍ってしまうことがなぐ酸性ガスが吸収液から速やかに分離され る。 In the gas purification method described in claim 9 or 10, the acid gas is absorbed into the absorption liquid. By removing the water content that decreases the solubility or the permeability to the liquid film 51 in advance, the solubility of the acidic gas in the absorbing liquid or the permeability to the liquid film 51 is increased. Moreover, even if the absorption liquid force that absorbed the acid gas is lower than 0 ° C. in order to separate the acid gas in a liquid state, the acid gas that does not freeze water is quickly separated from the absorption liquid.
[0012] 請求項 13に係る発明は、請求項 2又は 3に係る発明であって、更に図 2又は図 3に 示すように、吸収塔 13から排出されかつ吸収塔 13内の温度より低い温度に冷却され た酸性ガスを含む吸収液 42を、分離再生器 46に供給する前に、遠心分離或いは撹 拌する工程を更に含むことを特徴とする。  [0012] The invention according to claim 13 is the invention according to claim 2 or 3, and as shown in FIG. 2 or 3, the temperature discharged from the absorption tower 13 and lower than the temperature in the absorption tower 13. Before the absorption liquid 42 containing the acidic gas cooled to the separation regenerator 46 is supplied to the separation regenerator 46, it further includes a step of centrifugation or stirring.
この請求項 13に記載されたガスの精製方法では、酸性ガスを含む吸収液 42を吸 収塔 13内の温度より低い温度に冷却することにより、吸収液 42内の酸性ガスが液ィ匕 するけれども、この液体酸性ガス 41は吸収液 42中に分散しているため、分離再生器 46に供給する前に遠心分離或!ヽは撹拌することにより、液体酸性ガス 41を含む吸 収液 42が分離再生器 46内で速やかに液体酸性ガスと吸収液に分相される。  In the gas purification method described in claim 13, the acidic gas in the absorbing liquid 42 is liquefied by cooling the absorbing liquid 42 containing the acidic gas to a temperature lower than the temperature in the absorber 13. However, since the liquid acid gas 41 is dispersed in the absorption liquid 42, the absorption liquid 42 including the liquid acid gas 41 is obtained by centrifuging or stirring before being supplied to the separation regenerator 46. In the separator / regenerator 46, the liquid acid gas and the absorbing liquid are quickly separated into phases.
請求項 14に係る発明は、請求項 2又は 3に係る発明であって、更に図 7又は図 8に 示すように、吸収液 42が磁性を有し、分離再生器 46の下部に磁石 61を設けたことを 特徴とする。  The invention according to claim 14 is the invention according to claim 2 or 3, wherein, as shown in FIG. 7 or FIG. 8, the absorbing liquid 42 has magnetism, and a magnet 61 is provided below the separation regenerator 46. It is provided.
この請求項 14に記載されたガスの精製方法では、吸収塔 13内の圧力とほぼ同一 の圧力、即ち吸収塔 13内の圧力と同一の圧力、吸収塔 13内の圧力より僅かに高い 圧力、或いは吸収塔 13内の圧力より僅かに低い圧力に維持し、かつ吸収塔 13内の 温度より低 、温度に維持した分離再生器 46に、液体酸性ガス 41を含む吸収液 42が 供給されると、液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差と、磁性を 有する吸収液 42の磁石 61による吸引力とにより、吸収液 42と液体酸性ガス 41とに 速やかに分離される。  In the gas purification method described in claim 14, the pressure is almost the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, Alternatively, when the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 which is maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13. The liquid acid gas 41 and the absorption liquid 42 are quickly separated into the absorption liquid 42 and the liquid acid gas 41 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 and the attractive force of the magnetic absorption liquid 42 by the magnet 61.
[0013] 請求項 15に係る発明は、請求項 1ないし 3いずれか 1項に係る発明であって、更に 図 9又は図 10に示すように、水、アルコール類、エーテル類及びフ ノール類力もな る群より選ばれた 1種又は 2種以上の添加剤 71を吸収液 42に添加することを特徴と する。 この請求項 15に記載されたガスの精製方法では、上記添加剤 71を吸収液 42に添 加することにより、吸収液 42の粘性を低下させることができる。これにより添加剤含有 吸収液 75が吸収塔 13に供給されるので、添加剤含有吸収液 75が酸性ガスを吸収 する能力を殆ど低下させずに吸収塔 13で酸性ガスを吸収できるとともに、添加剤含 有吸収液 75がスムーズに流れ、添加剤含有吸収液 75の取扱いが容易になる。 請求項 16に係る発明は、請求項 2又は 3に係る発明であって、更に図 11又は図 12 に示すように、水、アルコール類及びエーテル類力もなる群より選ばれた 1種又は 2 種以上の添加剤 71を分離再生器 46に供給するとともに、分離再生器 46内の圧力 及び温度を調整することにより、分離再生器 46内で液体酸性ガス 41と添加剤含有 吸収液 75とに比重差分離する工程と、分離再生器 46から排出された添加剤含有吸 収液 75を蒸留分離器 83に供給するとともに、蒸留分離器 83内を所定の温度に加熱 することにより、添加剤含有吸収液 75中の添加剤 71を吸収液 42から蒸留分離する 工程とを更に含むことを特徴とする。 [0013] The invention according to claim 15 is the invention according to any one of claims 1 to 3, and further includes water, alcohols, ethers and phenols as shown in FIG. 9 or FIG. One or two or more additives 71 selected from the group consisting of these are added to the absorbent 42. In the gas purification method according to the fifteenth aspect, the viscosity of the absorbing liquid 42 can be reduced by adding the additive 71 to the absorbing liquid 42. As a result, the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the absorption gas can be absorbed by the absorption tower 13 without substantially reducing the ability of the additive-containing absorption liquid 75 to absorb the acid gas. The contained absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily. The invention according to claim 16 is the invention according to claim 2 or 3, further comprising one or two selected from the group consisting of water, alcohols and ethers as shown in FIG. 11 or FIG. By supplying the above additive 71 to the separation regenerator 46 and adjusting the pressure and temperature in the separation regenerator 46, the specific gravity of the liquid acidic gas 41 and the additive-containing absorbent 75 in the separation regenerator 46 is adjusted. The additive-containing absorption liquid 75 discharged from the separation / regenerator 46 is supplied to the distillation separator 83 and the inside of the distillation separator 83 is heated to a predetermined temperature to absorb the additive-containing absorption. And a step of distilling and separating the additive 71 in the liquid 75 from the absorbing liquid 42.
この請求項 16に記載されたガスの精製方法では、分離再生器 46内の圧力及び温 度が調整された状態で、液体酸性ガス 41を含む吸収液 42とともに添加剤 71を分離 再生器 46に供給すると、液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差と 、吸収液 42に対して相互溶解性を有しかつ液体酸性ガス 41に対して相互不溶解性 を有する添加剤 71の添カ卩による吸収液 42中に分散する液体酸性ガス 41の添加剤 7 1への置換とにより、液体酸性ガス 41と添加剤含有吸収液 75とが速やかに分離され る。次に蒸留分離器 83内を所定の温度に加熱した状態で、分離再生器 46から排出 された添加剤含有吸収液 75を蒸留分離器 83に供給すると、添加剤含有吸収液 75 中の添加剤 71が吸収液 42から蒸留分離される。これにより添加剤 71が除去された 吸収液 42が吸収塔 13に供給されるので、吸収液 42が酸性ガスを吸収する能力を全 く低下させずに吸収塔 13で酸性ガスを吸収できる。  In the gas purification method described in claim 16, the additive 71 is separated into the separation regenerator 46 together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the pressure and temperature in the separation regenerator 46 are adjusted. When supplied, the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and the additive having the mutual solubility in the absorbing liquid 42 and the mutual insolubility in the liquid acidic gas 41 71 By replacing the liquid acidic gas 41 dispersed in the absorbent 42 by the additive 71 with the additive 71, the liquid acidic gas 41 and the additive-containing absorbent 75 are quickly separated. Next, when the additive-containing absorbent 75 discharged from the separator / regenerator 46 is supplied to the distillation separator 83 while the inside of the distillation separator 83 is heated to a predetermined temperature, the additive in the additive-containing absorbent 75 is added. 71 is distilled off from the absorbent 42. As a result, the absorption liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, so that the absorption gas 13 can absorb the acid gas without reducing the ability of the absorption liquid 42 to absorb the acid gas.
請求項 17に係る発明は、請求項 2又は 3に係る発明であって、更に凝集剤を分離 再生器内の液体酸性ガスを含む吸収液に添加することを特徴とする。  The invention according to claim 17 is the invention according to claim 2 or 3, characterized in that a flocculant is further added to the absorbing liquid containing liquid acidic gas in the separation regenerator.
この請求項 17に記載されたガスの精製方法では、凝集剤を分離再生器内の液体 酸性ガスを含む吸収液に添加することにより、吸収液中に分散して ヽる液体酸性ガス (分散液体)を凝集させることができるので、分離再生器内で凝集剤含有吸収液と液 体酸性ガスとの比重差により凝集剤含有吸収液と液体酸性ガスとに速やかに分離さ れる。その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液とに更に分離 される。 In the gas purification method according to claim 17, the liquid acid gas dispersed in the absorption liquid by adding the flocculant to the absorption liquid containing the liquid acid gas in the separation regenerator. Since the (dispersed liquid) can be agglomerated, it is quickly separated into the aggregating agent-containing absorbing liquid and the liquid acidic gas due to the difference in specific gravity between the aggregating agent-containing absorbing liquid and the liquid acid gas in the separation regenerator. Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
請求項 18に係る発明は、請求項 2又は 3に係る発明であって、更に図 13又は図 14 に示すように、酸性ガスが COガスであり、 4〜25MPaの圧力に保った分離再生器 4  The invention according to claim 18 is the invention according to claim 2 or 3, wherein the acidic gas is CO gas and the separation regenerator is maintained at a pressure of 4 to 25 MPa as shown in FIG. 13 or FIG. Four
2  2
6内の液体 CO 41を含む吸収液 42中に水を供給することを特徴とする。  Water is supplied into the absorption liquid 42 containing liquid CO 41 in 6.
2  2
この請求項 18に記載されたガスの精製方法では、分離再生器 46内を 4〜25MPa という高圧に保った状態で、分離再生器 46内の液体 CO 41を含む吸収液 42中に  In the gas purification method described in claim 18, the separation regenerator 46 is kept in the absorbing liquid 42 containing the liquid CO 41 in the separation regenerator 46 while the inside of the separation regenerator 46 is kept at a high pressure of 4 to 25 MPa.
2  2
水を供給すると、液体 CO 41の When water is supplied, liquid CO 41
2 一部がハイドレート化(雪状又はシャーベット状に固 ィ匕)するため、分離再生器 46内で液体 CO 41と COハイドレートと吸収液 42とに分  2 Since some of the hydrates are hardened (solid like snow or sherbet), they are separated into liquid CO 41, CO hydrate and absorbent 42 in the separation regenerator 46.
2 2  twenty two
離する。 Release.
請求項 19に係る発明は、図 2に示すように、酸性ガス及び非酸性ガスを含む混合 ガスを圧縮する圧縮機 12と、下部に圧縮された混合ガスが供給されかつ上部に有機 溶剤又は水のいずれか一方又は双方を主成分とする吸収液 42が供給されて吸収液 42に混合ガスを接触させることにより酸性ガスを吸収液 42に吸収させて非酸性ガス を酸性ガスから分離し回収する吸収塔 13と、酸性ガスを吸収した吸収液を冷却する 冷却器 47と、冷却されかつ酸性ガスを吸収した吸収液が供給され液体酸性ガス 41と 吸収液 42の相互不溶解性及び比重差により吸収液 42から液体酸性ガス 41を分離 して回収するとともに吸収液 42を再生し再利用する分離再生器 46と、分離再生器 4 6から排出された吸収液 42を高圧のまま吸収塔 13の上部に供給する循環ポンプ 17 とを備えた、酸性ガスを含む混合ガスの精製装置である。  As shown in FIG. 2, the invention according to claim 19 includes a compressor 12 for compressing a mixed gas containing an acidic gas and a non-acidic gas, a compressed mixed gas supplied at the lower part, and an organic solvent or water at the upper part. The absorbing liquid 42 containing either or both of the main components is supplied, and the mixed gas is brought into contact with the absorbing liquid 42 to absorb the acidic gas into the absorbing liquid 42 to separate and recover the non-acidic gas from the acidic gas. Absorption tower 13, cooler 47 that cools the absorption liquid that has absorbed the acid gas, and absorption liquid that has been cooled and absorbed the acid gas are supplied, and due to the mutual insolubility and specific gravity difference between liquid acid gas 41 and absorption liquid 42 Separating and recovering the liquid acid gas 41 from the absorbing liquid 42 and regenerating and reusing the absorbing liquid 42, the separating regenerator 46 and the absorbing liquid 42 discharged from the separating regenerator 46, And a circulation pump 17 for supplying to the upper part. In addition, it is a purification apparatus for a mixed gas containing acid gas.
この請求項 19に記載されたガスの精製装置では、所定の温度及び所定の圧力に それぞれ維持した吸収塔 13の上部に、有機溶剤又は水のいずれか一方又は双方を 主成分とする吸収液 42を供給し、吸収塔 13の下部に、酸性ガス及び非酸性ガスを 含む混合ガスを圧縮機 12で圧縮して供給すると、吸収液 42に混合ガスが接触して 酸性ガスが吸収液 42に吸収されるので、非酸性ガスが酸性ガスカゝら分離して吸収塔 13から回収される。上記吸収塔 13内の圧力と同一の圧力、吸収塔 13内の圧力より 僅かに低い圧力、或いは吸収塔 13内の圧力より僅かに高い圧力に維持した分離再 生器 46に、酸性ガスを吸収した吸収液を冷却器 47で冷却した後に供給すると、分 離再生器 46で酸性ガスが液ィ匕され、この液体酸性ガス 41と吸収液 42の相互不溶解 性及び比重差より吸収液 42から液体酸性ガス 41が分離されて分離再生器 46から回 収される。また液体酸性ガスが取除かれて再生された吸収液 42は循環ポンプ 17に より吸収塔 13の上部に供給されて再利用される。 In the gas purifier described in claim 19, an absorption liquid mainly composed of one or both of an organic solvent and water is provided above the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When a mixed gas containing acidic gas and non-acidic gas is compressed and supplied to the lower part of the absorption tower 13 with the compressor 12, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed into the absorbing liquid 42. Therefore, the non-acid gas is separated from the acid gas column and recovered from the absorption tower 13. From the same pressure as in the absorption tower 13 above, the pressure in the absorption tower 13 If the absorption liquid that has absorbed the acid gas is supplied to the separation regenerator 46 maintained at a slightly lower pressure or slightly higher than the pressure in the absorption tower 13 after being cooled by the cooler 47, the separation regenerator 46 Thus, the acid gas is liquidized, and the liquid acid gas 41 is separated from the absorbing liquid 42 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and collected from the separation regenerator 46. In addition, the absorbing liquid 42 regenerated by removing the liquid acid gas is supplied to the upper portion of the absorption tower 13 by the circulation pump 17 and reused.
請求項 20に係る発明は、図 3に示すように、酸性ガス及び非酸性ガスを含む混合 ガスを除湿する除湿器 11と、除湿された混合ガスを圧縮する圧縮機 12と、下部に圧 縮された混合ガスが供給されかつ上部にイオン性液体を主成分とする吸収液 42が 供給されて吸収液 42に混合ガスを接触させることにより酸性ガスを吸収液 42に吸収 させて非酸性ガスを酸性ガスカゝら分離し回収する吸収塔 13と、酸性ガスを吸収した 吸収液を冷却する冷却器 47と、冷却された吸収液 42が供給され液体酸性ガス 41と 吸収液 42の相互不溶解性及び比重差により吸収液 42から液体酸性ガス 41を分離 して回収するとともに吸収液 42を再生し再利用する分離再生器 46と、分離再生器 4 6から排出された吸収液 42を高圧のまま吸収塔 13の上部に供給する循環ポンプ 17 とを備えたガスの精製装置である。  As shown in FIG. 3, the invention according to claim 20 includes a dehumidifier 11 for dehumidifying a mixed gas containing an acidic gas and a non-acidic gas, a compressor 12 for compressing the dehumidified mixed gas, and a lower portion of the compressed gas. The mixed liquid is supplied, and the upper part is supplied with an absorbing liquid 42 containing an ionic liquid as a main component, and the mixed gas is brought into contact with the absorbing liquid 42 to absorb the acidic gas into the absorbing liquid 42 to thereby remove the non-acidic gas. Absorption tower 13 that separates and recovers acid gas from the tank, cooler 47 that cools the absorption liquid that has absorbed the acid gas, and liquid insoluble gas 41 and absorption liquid 42 that are supplied with cooled absorption liquid 42 are mutually insoluble. In addition, the liquid acid gas 41 is separated and recovered from the absorbent 42 due to the difference in specific gravity, and at the same time, the separator / regenerator 46 that regenerates and reuses the absorbent 42 and the absorbent 42 discharged from the separator / regenerator 46 remain at high pressure And a circulation pump 17 to be supplied to the upper part of the absorption tower 13. And an apparatus for purifying gases.
この請求項 20に記載されたガスの精製装置では、所定の温度及び所定の圧力に それぞれ維持した吸収塔 13の上部に、イオン性液体を主成分とする吸収液 42を供 給し、吸収塔 13の下部に、除湿器 11にて除湿した酸性ガス及び非酸性ガスを含む 混合ガスを圧縮機 12で圧縮して供給すると、吸収液 42に混合ガスが接触して酸性 ガスが吸収液 42に吸収されるので、非酸性ガスが酸性ガスカゝら分離して吸収塔 13 力 回収される。上記吸収塔 13内の圧力と同一の圧力、又は吸収塔 13内の圧力よ り僅かに低い圧力、或いは吸収塔 13内の圧力より僅かに高い圧力に維持した分離 再生器 46に、酸性ガスを吸収した吸収液を冷却器 47で冷却した後に供給すると、 分離再生器 46で酸性ガスが液ィ匕され、この液体酸性ガス 41と吸収液 42の相互不溶 解性及び比重差より吸収液 42から液体酸性ガス 41が分離されて分離再生器 46から 回収される。また液体酸性ガスが取除かれて再生された吸収液 42は循環ポンプ 17 により吸収塔 13の上部に供給されて再利用される。 請求項 21に係る発明は、請求項 19又は 20に係る発明であって、更に図 4又は図 5 に示すように、吸収塔 13と冷却器 47と分離再生器 46がー体的に設けられたことを特 徴とする。 In the gas purification apparatus described in claim 20, an absorption liquid 42 containing an ionic liquid as a main component is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When a mixed gas containing acidic gas and non-acidic gas dehumidified by the dehumidifier 11 is compressed and supplied to the lower part of the dehumidifier 11 by the compressor 12, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas becomes the absorbing liquid 42. As it is absorbed, the non-acid gas is separated from the acid gas column and recovered in the absorption tower. Acid gas is fed to the separation regenerator 46 maintained at the same pressure as the pressure in the absorption tower 13 or slightly lower than the pressure in the absorption tower 13 or slightly higher than the pressure in the absorption tower 13. When the absorbed liquid is supplied after being cooled by the cooler 47, the acidic gas is liquefied by the separator / regenerator 46. From the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42, the absorption liquid 42 Liquid acid gas 41 is separated and recovered from separation regenerator 46. Also, the absorbent 42 regenerated by removing the liquid acid gas is supplied to the upper part of the absorption tower 13 by the circulation pump 17 and reused. The invention according to claim 21 is the invention according to claim 19 or 20, further comprising an absorption tower 13, a cooler 47, and a separation regenerator 46 as shown in FIG. 4 or FIG. It is characterized by that.
この請求項 21に記載されたガスの精製装置では、吸収塔 13と冷却器 47と分離再 生器 46を一体的に設けたので、装置を小型化できる。  In the gas purifier according to claim 21, since the absorption tower 13, the cooler 47, and the separation regenerator 46 are integrally provided, the apparatus can be miniaturized.
[0017] 請求項 22に係る発明は、請求項 19ないし 21いずれか 1項に係る発明であって、更 に図 2又は図 3に示すように、冷却器 47と分離再生器 46との間に遠心分離器 48或 いは撹拌機が設けられたことを特徴とする。 [0017] The invention according to claim 22 is the invention according to any one of claims 19 to 21, and further between the cooler 47 and the separation regenerator 46 as shown in FIG. 2 or FIG. A centrifuge 48 or a stirrer is provided in the interior.
この請求項 22に記載されたガスの精製装置では、酸性ガスを含む吸収液を冷却器 47にて吸収塔 13内の温度より低 、温度に冷却することにより、吸収液 42内の酸性 ガスが液ィ匕するけれども、この液体酸性ガス 41は吸収液中に分散しているため、分 離再生器 46に供給する前に遠心分離器 48或いは撹拌機により遠心分離或いは撹 拌することにより、液体酸性ガス 41が含む吸収液 42が分離再生器 46内で速やかに 液体酸性ガス 41と吸収液 42に分相される。  In the gas purification apparatus described in claim 22, the acidic gas in the absorbing liquid 42 is cooled by cooling the absorbing liquid containing acidic gas to a temperature lower than the temperature in the absorption tower 13 by the cooler 47. However, since this liquid acid gas 41 is dispersed in the absorbing liquid, the liquid acid gas 41 is centrifuged or stirred with a centrifuge 48 or a stirrer before being supplied to the separation regenerator 46. The absorbing liquid 42 contained in the acidic gas 41 is quickly phase-separated into the liquid acidic gas 41 and the absorbing liquid 42 in the separation regenerator 46.
請求項 23に係る発明は、請求項 19ないし 22いずれか 1項に係る発明であって、更 に図 7又は図 8に示すように、吸収液 42が磁性を有し、分離再生器 46の下部に磁石 61が設けられたことを特徴とする。  The invention according to claim 23 is the invention according to any one of claims 19 to 22, and as shown in FIG. 7 or FIG. 8, the absorbing liquid 42 has magnetism, and the separation regenerator 46 A magnet 61 is provided in the lower part.
この請求項 23に記載されたガスの精製装置では、吸収塔 13内の圧力とほぼ同一 の圧力、即ち吸収塔 13内の圧力と同一の圧力、吸収塔 13内の圧力より僅かに高い 圧力、或いは吸収塔 13内の圧力より僅かに低い圧力に維持し、かつ吸収塔 13内の 温度より低 、温度に維持した分離再生器 46に、液体酸性ガス 41を含む吸収液 42が 供給されると、液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差と、磁性を 有する吸収液 42の磁石 61による吸引力とにより、吸収液 42と液体酸性ガス 41とに 速やかに分離される。  In the gas purifying apparatus described in claim 23, the pressure is almost the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, Alternatively, when the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 which is maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13. The liquid acid gas 41 and the absorption liquid 42 are quickly separated into the absorption liquid 42 and the liquid acid gas 41 by the mutual insolubility and the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 and the attractive force of the magnetic absorption liquid 42 by the magnet 61.
[0018] 請求項 24に係る発明は、請求項 19ないし 23いずれか 1項に係る発明であって、更 に図 9又は図 10に示すように、水、アルコール類、エーテル類及びフエノール類から なる群より選ばれた 1種又は 2種以上の添加剤 71を添加した吸収液 42が貯留されこ の添加剤含有吸収液 75を吸収塔 13に供給するための吸収液貯留槽 72が設けられ たことを特徴とする。 [0018] The invention according to claim 24 is the invention according to any one of claims 19 to 23, and further includes water, alcohols, ethers and phenols as shown in FIG. 9 or FIG. Absorbing liquid 42 to which one or two or more additives 71 selected from the group are added is stored, and an absorbing liquid storage tank 72 is provided for supplying the additive-containing absorbing liquid 75 to the absorption tower 13. It is characterized by that.
この請求項 24に記載されたガスの精製装置では、吸収液貯留槽 72内で吸収液 42 に添加剤 71を添加すると、吸収液 42の粘性を低下させることができる。これにより添 加剤含有吸収液 75が吸収塔 13に供給されるので、添加剤含有吸収液 75が酸性ガ スを吸収する能力を殆ど低下させずに吸収塔 13で酸性ガスを吸収できるとともに、添 加剤含有吸収液 75がスムーズに流れ、添加剤含有吸収液 75の取扱 、が容易にな る。  In the gas purifier according to claim 24, when the additive 71 is added to the absorbent 42 in the absorbent reservoir 72, the viscosity of the absorbent 42 can be reduced. As a result, the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the absorption gas 13 can absorb the acid gas without substantially reducing the ability of the additive-containing absorption liquid 75 to absorb the acid gas. The additive-containing absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily.
請求項 25に係る発明は、請求項 19ないし 23いずれか 1項に係る発明であって、更 に図 11又は図 12に示すように、水、アルコール類及びエーテル類力もなる群より選 ばれた 1種又は 2種以上の添加剤 71が貯留され分離再生器 46の上部に接続された 添加剤貯留槽 81と、分離再生器 46に設けられ分離再生器 46内の圧力を調節する 圧力調節手段 82と、分離再生器 46の下部に接続され分離再生器 46で比重差分離 されてその下相に移行した添加剤含有吸収液 75を貯留する蒸留分離器 83と、蒸留 分離器 83に設けられ蒸留分離器 83内を所定の温度に加熱する加熱手段 84とを更 に備えたことを特徴とする。  The invention according to claim 25 is the invention according to any one of claims 19 to 23, and is further selected from the group consisting of water, alcohols and ethers as shown in FIG. 11 or FIG. One or two or more additives 71 are stored and the additive storage tank 81 connected to the upper part of the separation regenerator 46, and pressure adjusting means for adjusting the pressure in the separation regenerator 46 provided in the separation regenerator 46 82, a distillation separator 83 for storing an additive-containing absorbent 75 that is connected to the lower part of the separation regenerator 46, separated by specific gravity in the separation regenerator 46, and transferred to the lower phase thereof, and a distillation separator 83. A heating means 84 for heating the inside of the distillation separator 83 to a predetermined temperature is further provided.
この請求項 25に記載されたガスの精製装置では、冷却器 47及び圧力調整手段 82 により分離再生器 46内の温度及び圧力を調整した状態で、液体酸性ガス 41を含む 吸収液 42とともに添加剤 71を分離再生器 46に供給すると、液体酸性ガス 41と吸収 液 42の相互不溶解性及び比重差と、吸収液 42に対して相互溶解性を有しかつ液 体酸性ガス 41に対して相互不溶解性を有する添加剤 71の添カ卩による吸収液 42中 に分散する液体酸性ガス 41の添加剤 71への置換とにより、分離再生器 46の上相に 液体酸性ガス 41が移行しかつ分離再生器 46の下相に添加剤含有吸収液 75が移 行して、液体酸性ガス 41と添加剤含有吸収液 75とが速やかに分離される。次に加 熱手段 84により蒸留分離器 83内を所定の温度に加熱した状態で、分離再生器 46 の下部力も排出された添加剤含有吸収液 75を蒸留分離器 83に供給すると、添加剤 含有吸収液 75中の添加剤 71が吸収液 42から蒸留分離される。これにより添加剤 71 が除去された吸収液 42が吸収塔 13に供給されるので、吸収液 42が酸性ガスを吸収 する能力を全く低下させずに吸収塔 13で酸性ガスを吸収できる。 [0019] 請求項 26に係る発明は、請求項 19ないし 23いずれか 1項に係る発明であって、更 に凝集剤を貯留する凝集剤槽が分離再生器に接続されたことを特徴とする。 In the gas purification apparatus described in claim 25, the additive is used together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the temperature and pressure in the separation regenerator 46 are adjusted by the cooler 47 and the pressure adjusting means 82. When 71 is supplied to the separator / regenerator 46, the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and the mutual solubility with respect to the absorbing liquid 42 and the liquid acid gas 41 are mutually exclusive. By replacing the liquid acid gas 41 dispersed in the absorbent 42 by the addition of the insoluble additive 71 with the additive 71, the liquid acid gas 41 is transferred to the upper phase of the separation regenerator 46 and The additive-containing absorbent 75 is transferred to the lower phase of the separation regenerator 46, and the liquid acidic gas 41 and the additive-containing absorbent 75 are quickly separated. Next, in the state where the distillation separator 83 is heated to a predetermined temperature by the heating means 84, the additive-containing absorbing liquid 75 from which the lower force of the separation regenerator 46 is discharged is supplied to the distillation separator 83. The additive 71 in the absorbent 75 is separated from the absorbent 42 by distillation. As a result, the absorption liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, so that the absorption gas 13 can absorb the acid gas without reducing the ability of the absorption liquid 42 to absorb the acid gas at all. [0019] The invention according to claim 26 is the invention according to any one of claims 19 to 23, further characterized in that a flocculant tank for storing the flocculant is connected to the separation regenerator. .
この請求項 26に記載されたガスの精製装置では、凝集剤槽に貯留された凝集剤を 分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収液中に分散 して 、る液体酸性ガス (分散液体)を凝集させることができるので、分離再生器内で 凝集剤含有吸収液と液体酸性ガスとの比重差により凝集剤含有吸収液と液体酸性 ガスとに速やかに分離される。その後、凝集剤含有吸収液を蒸留分離すれば、凝集 剤と吸収液とに更に分離される。  In the gas purifier described in claim 26, the flocculant stored in the flocculant tank is dispersed in the absorbent by adding it to the absorbent containing the liquid acidic gas in the separation regenerator. The liquid acid gas (dispersed liquid) can be agglomerated, so that it is quickly separated into the flocculant-containing absorption liquid and the liquid acid gas due to the difference in specific gravity between the flocculant-containing absorption liquid and the liquid acid gas. The Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
請求項 27に係る発明は、請求項 19ないし 23いずれか 1項に係る発明であって、更 に図 13又は図 14に示すように、酸性ガスが COガスであり、分離再生器 46内の圧  The invention according to claim 27 is the invention according to any one of claims 19 to 23, and further, as shown in FIG. 13 or FIG. 14, the acidic gas is CO gas, Pressure
2  2
力を 4〜25MPaに保つ圧力調整手段 82が分離再生器 46に設けられ、水が貯留さ れた水貯留槽 91が分離再生器 46の下部に接続されたことを特徴とする。  A pressure adjusting means 82 for keeping the force at 4 to 25 MPa is provided in the separation regenerator 46, and a water storage tank 91 in which water is stored is connected to the lower part of the separation regenerator 46.
この請求項 27に記載されたガスの精製装置では、圧力調整手段 82により分離再 生器 46内を 4〜25MPaという高圧に保った状態で、水貯留槽 91から水を分離再生 器 46内の液体 CO 41を含む吸収液 42中に供給すると、液体 CO 41の一部がハイ  In the gas purifier described in claim 27, water is separated from the water storage tank 91 in the separation regenerator 46 while the pressure in the separation regenerator 46 is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means 82. When supplied into absorbent 42 containing liquid CO 41, a portion of liquid CO 41 is high.
2 2  twenty two
ドレート化(雪状又はシャーベット状に固ィ匕)するので、分離再生器 46内で液体 CO  Since it is made into a drate (solid like snow or sherbet), liquid CO in the separation regenerator 46
2 2
41と COハイドレートと吸収液 42とに分離する。 Separated into 41, CO hydrate and absorbent 42.
2  2
[0020] 請求項 29に係る発明は、図 15に示すように、脱硫ガソリン、ナフサ、灯油、メタノー ル、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた 1種又は 2種以上の燃料を改質、 CO変成及び CO除去して H及び COの混合ガスとした後  [0020] The invention according to claim 29 is, as shown in FIG. 15, one or more selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas and natural gas. After reforming the fuel, transforming CO and removing CO to make a mixed gas of H and CO
2 2  twenty two
に、この混合ガスを請求項 1な ヽし 18 ヽずれか 1項に記載されたガスの精製方法を 用いて或いは請求項 19な ヽし 27 、ずれか 1項に記載されたガスの精製装置を用い て H及び COに分離回収し、更にこの分離回収された Hを水素ステーションに供給 In addition, the gas purification apparatus described in claim 1 using the mixed gas purification method described in claim 1 or the gas purifying method described in claim 19 or claim 1 is used. Is used to separate and collect H and CO, and this separated and collected H is supplied to the hydrogen station.
2 2 2 2 2 2
するとともに、分離回収された COを断熱膨張させてドライアイスを製造するシステム  System that produces dry ice by adiabatic expansion of the separated and recovered CO
2  2
である。  It is.
この請求項 29に記載されたシステムでは、種々の燃料から高圧の Hを製造しなが  In the system described in claim 29, high pressure H is not produced from various fuels.
2  2
ら、 COを効率良く回収できる。  CO can be recovered efficiently.
2  2
[0021] 請求項 30に係る発明は、図 16に示すように、燃料電池を駆動源とする車上改質型 車両に搭載され、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液ィ匕 石油ガス及び天然ガス力 なる群より選ばれた 1種又は 2種以上の燃料を車上で改 質、 CO変成及び CO除去して H及び COの混合ガスとした後に、この混合ガスを請 [0021] As shown in FIG. 16, the invention according to claim 30 is an on-vehicle reforming type using a fuel cell as a drive source. Installed in vehicles, desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquid oil, natural gas, and one or more fuels selected from the group consisting of reforming, CO conversion and CO After removing it to make a mixed gas of H and CO, this mixed gas is charged.
2 2  twenty two
求項 2、 3、 5、 6、 7、 8、 9、 11ないし 18いずれ力 1項に記載されたガスの精製方法或 いは請求項 19な 、し 27 、ずれか 1項に記載されたガスの精製装置を用いて H及び Claim 2, 3, 5, 6, 7, 8, 9, 11 to 18 Any force of gas purification method described in item 1 or claim 19 or 27 Using gas purification equipment H and
2 液体 COに分離回収し、更にこの分離回収された Hを燃料電池に供給するとともに  2 Separated and recovered into liquid CO, and further supplied the separated and recovered H to the fuel cell.
2 2  twenty two
、液体 COを一時的に上記車両に貯留し後でまとめて降ろすシステムである。  This is a system that temporarily stores liquid CO in the above vehicle and collects it later.
2  2
この請求項 30に記載されたシステムでは、車両に搭載できる程度に小型化でき、 種々の燃料力も高圧の Hを製造しながら、液体 COを効率良く回収できる。即ち、 C  The system described in claim 30 can be miniaturized to such an extent that it can be mounted on a vehicle, and liquid CO can be efficiently recovered while producing high-pressure H with various fuel forces. C
2 2  twenty two
Oを液状で回収し、一時的に車上に貯留することにより、 COゼロェミッション自動車 By collecting O in liquid form and temporarily storing it on the vehicle, CO Zero Emission Vehicle
2 2 twenty two
を実現できる。 Can be realized.
発明の効果 The invention's effect
以上述べたように、所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部 に、イオン性液体を主成分とする吸収液を供給し、吸収塔の下部に、酸性ガス及び 非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させて酸性ガスを 吸収液に吸収させ、上記吸収塔内の温度と同一又は高い温度に維持しかつ吸収塔 内の圧力より低 、圧力に維持した再生塔の上部に、上記酸性ガスを吸収した吸収液 を供給したので、吸収塔で非酸性ガスを酸性ガスカゝら分離して吸収塔カゝら回収でき、 再生塔で酸性ガスを放散させて吸収液力も分離して再生塔力 回収できるとともに、 吸収液を再生でき、この再生された吸収液を吸収塔の上部に供給することにより、吸 収液を再利用できる。即ち、高圧下で酸性ガスに対する溶解度が非常に大きくなり、 低圧下で酸性ガスに対する溶解度が非常に小さくなるという特性を利用することによ り、混合ガス力ゝら非酸性ガスと酸性ガスとを効率良くかつ低コストで分離回収すること ができるとともに、吸収液の単位体積当りの酸性ガス吸収量を増大でき、更に吸収液 の循環量を低減できるとともに、循環エネルギを節約できる。また蒸気圧のない吸収 液を用いることにより、再生塔を比較的簡単な構造にすることができ、比較的簡単に かつ低コストで吸収液を再生でき、従来法より低い温度で吸収液を再生でき、吸収液 の再生エネルギを低減できる。また蒸気圧のない吸収液を用いることにより、吸収液 の蒸発ロスをなくすことができるとともに、分離回収した酸性ガス中に吸収液が残存 せず、高純度の酸性ガスを容易に製造でき、酸性ガスが COであれば、そのまま食 As described above, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and acidic gas and non-acidic gas are supplied to the lower part of the absorption tower. The mixed gas is supplied, the mixed gas is brought into contact with the absorbing liquid, and the acidic gas is absorbed into the absorbing liquid, and is maintained at a temperature equal to or higher than the temperature in the absorbing tower and lower than the pressure in the absorbing tower. Since the absorption liquid that has absorbed the acid gas is supplied to the upper part of the regeneration tower that is maintained at the above, the non-acid gas can be separated from the acid gas column by the absorption tower and recovered, and the acid gas can be recovered by the regeneration tower. The absorption liquid force can be separated by separating and recovered, and the regeneration tower force can be recovered. The absorption liquid can be regenerated, and by supplying the regenerated absorption liquid to the upper part of the absorption tower, the absorption liquid can be reused. In other words, by utilizing the property that the solubility in acidic gas becomes very high under high pressure and the solubility in acidic gas becomes very low under low pressure, non-acidic gas and acidic gas can be combined with the mixed gas power. In addition to being able to be separated and recovered efficiently and at a low cost, the absorption amount of the acidic gas per unit volume of the absorption liquid can be increased, the circulation volume of the absorption liquid can be reduced, and the circulation energy can be saved. In addition, by using an absorption liquid without vapor pressure, the regeneration tower can be made relatively simple, and the absorption liquid can be regenerated relatively easily and at a low cost. This can reduce the regeneration energy of the absorbing liquid. In addition, by using an absorption liquid without vapor pressure, the absorption liquid Evaporation loss can be eliminated, and there is no absorption liquid remaining in the separated and collected acid gas, making it possible to easily produce high-purity acid gas.
2  2
品添加用ガスに用いることができる。  It can be used as a product addition gas.
[0023] また所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部に、有機溶剤 又は水のいずれか一方又は双方を主成分とする吸収液を供給し、吸収塔の下部に 、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触さ せて酸性ガスを吸収液に吸収させ、所定の圧力に維持しかつ吸収塔内の温度より低 い温度に維持した分離再生器に、酸性ガスを吸収した吸収液を供給すれば、吸収 塔で非酸性ガスを酸性ガスカゝら分離して吸収塔から回収でき、分離再生器で液体酸 性ガスと吸収液の相互不溶解性及び比重差により吸収液カゝら液体酸性ガスを分離し て分離再生器から回収できるとともに、吸収液を再生でき、この再生された吸収液を 高圧のまま吸収塔の上部に供給することにより、吸収液を再利用できる。即ち、加圧 下かつ所定の温度範囲で酸性ガスに対する溶解度が非常に大きくなり、加圧下かつ 上記所定の温度範囲より低 、温度範囲で酸性ガスが液化され、この液体酸性ガスと 吸収液の相互不溶解性及び比重差により吸収液力 液体酸性ガスが分かれるという 特性を利用することにより、酸性ガスをガスとして回収した後に加圧冷却して液体に するのではなぐ酸性ガスを直接液体状態で回収するので、混合ガス力ゝら非酸性ガス と液体酸性ガスとを効率良くかつ低コストで分離回収することができる。また従来より 工程を簡略化でき、全工程中での温度及び圧力の大きな変動がなぐかつ吸収液の 再生エネルギゃ再生した吸収液を吸収塔に戻すときの再圧縮エネルギを不要にす ることにより、省エネルギ化を図ることができる。  [0023] Further, an absorption liquid mainly composed of one or both of an organic solvent and water is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and an acid gas is supplied to the lower part of the absorption tower. In addition, a mixed gas containing non-acidic gas is supplied, and the mixed gas is brought into contact with the absorbing liquid so that the absorbing gas absorbs the acidic gas, and is maintained at a predetermined pressure and maintained at a temperature lower than the temperature in the absorption tower. If the absorption liquid that has absorbed the acid gas is supplied to the separated regenerator, the non-acid gas can be separated from the acid gas column in the absorption tower and recovered from the absorption tower, and the liquid acid gas and the absorption liquid can be separated by the separation regenerator. The liquid acid gas can be separated from the absorption liquid by the mutual insolubility and specific gravity difference and recovered from the separator / regenerator, and the absorption liquid can be regenerated. The regenerated absorption liquid is supplied to the upper part of the absorption tower with high pressure. By doing so, the absorbent can be reused. That is, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range. By utilizing the characteristic that the absorbed liquid force and liquid acid gas are separated due to insolubility and specific gravity difference, the acid gas is recovered directly in the liquid state rather than being recovered by pressurization and cooling after the acid gas is recovered as a gas. Therefore, the non-acidic gas and the liquid acidic gas can be separated and recovered efficiently and at low cost in addition to the mixed gas power. In addition, the process can be simplified compared to the conventional method, and there is no significant fluctuation in temperature and pressure throughout the process, and the regenerative energy of the absorbent is eliminated, and the recompression energy when returning the regenerated absorbent to the absorption tower is unnecessary. Energy saving can be achieved.
[0024] また所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部に、イオン性液 体を主成分とする吸収液を供給し、吸収塔の下部に、酸性ガス及び非酸性ガスを含 む混合ガスを供給して、吸収液に混合ガスを接触させて酸性ガスを吸収液に吸収さ せ、所定の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生器 に、酸性ガスを吸収した吸収液を供給すれば、吸収塔で非酸性ガスを酸性ガスから 分離して吸収塔から回収でき、分離再生器で液体酸性ガスと吸収液の相互不溶解 性及び比重差により吸収液力 液体酸性ガスを分離して分離再生器力 回収できる とともに、吸収液を再生でき、この再生された吸収液を高圧のまま吸収塔の上部に供 給することにより、吸収液を再利用できる。即ち、加圧下かつ所定の温度範囲で酸性 ガスに対する溶解度が非常に大きくなり、加圧下かつ上記所定の温度範囲より低い 温度範囲で酸性ガスが液ィ匕され、この液体酸性ガスと吸収液の相互不溶解性及び 比重差により吸収液力 液体酸性ガスが分かれるという特性を利用することにより、酸 性ガスをガスとして回収した後に加圧冷却して液体にするのではなぐ酸性ガスを直 接液体状態で回収するので、混合ガスから非酸性ガスと液体酸性ガスとを効率良く かつ低コストで分離回収することができる。また従来より工程を簡略化でき、全工程中 での温度及び圧力の大きな変動がなぐかつ吸収液の再生エネルギゃ再生した吸 収液を吸収塔に戻すときの再圧縮エネルギを不要にすることにより、省エネルギ化を 図ることができる。 [0024] Further, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and acidic gas and non-acidic gas are contained in the lower part of the absorption tower. A separation / regenerator that supplies the mixed gas to the absorbent and contacts the mixed gas so that the acidic gas is absorbed by the absorbent, and is maintained at a predetermined pressure and lower than the temperature in the absorption tower. If an absorbing liquid that has absorbed acidic gas is supplied, the non-acidic gas can be separated from the acidic gas by the absorption tower and recovered from the absorption tower, and the separation regenerator can be used due to the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorbing liquid. Absorbing liquid power Separation and regenerator power can be recovered by separating liquid acid gas At the same time, the absorbing solution can be regenerated, and the regenerated absorbing solution can be reused by supplying the regenerated absorbing solution to the upper part of the absorption tower with high pressure. That is, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range. By utilizing the characteristics of liquid acid gas being separated due to insolubility and difference in specific gravity, the acidic gas is directly in a liquid state rather than being recovered by pressurization and cooling after being collected as a gas. Thus, the non-acid gas and the liquid acid gas can be separated and recovered from the mixed gas efficiently and at low cost. In addition, the process can be simplified compared to the conventional method, and there is no significant fluctuation in temperature and pressure during the entire process, and the regeneration energy of the absorption liquid is eliminated, and the recompression energy is not required when returning the regenerated absorption liquid to the absorption tower. Energy saving can be achieved.
[0025] また多孔質膜にイオン性液体を主成分とする吸収液を含浸した液体膜を膜分離器 内に張設して膜分離器を第 1室と第 2室とに区画し、第 1室を第 2室より高圧に設定し て、第 1室に酸性ガス及び非酸性ガスを含む混合ガスを導入すれば、非酸性ガスが 第 1室に残留したまま、酸性ガスが液体膜を透過して低圧の第 2室に流入するので、 混合ガスを酸性ガス及び非酸性ガスに分離して膜分離器カゝら回収できる。  [0025] Further, a liquid membrane impregnated with a porous membrane impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in the membrane separator to partition the membrane separator into a first chamber and a second chamber. If one chamber is set to a pressure higher than that of the second chamber and a mixed gas containing acidic gas and non-acidic gas is introduced into the first chamber, the acidic gas will leave the liquid film while the non-acidic gas remains in the first chamber. Since it permeates and flows into the low pressure second chamber, the mixed gas can be separated into acidic gas and non-acidic gas and recovered from the membrane separator.
またイオン性液体を主成分とする吸収液が中性又はアルカリ性であれば、酸性ガス が吸収液に溶け込み易くなり、その溶解度も酸性の吸収液より大きくなる。  Further, if the absorbing liquid mainly composed of an ionic liquid is neutral or alkaline, the acidic gas is easily dissolved in the absorbing liquid, and the solubility is higher than that of the acidic absorbing liquid.
また混合ガスを吸収塔に供給する前に、混合ガスを除湿すれば、酸性ガスの吸収 液への溶解度を大きくすることができ、混合ガスを膜分離器に導入する前に、混合ガ スを除湿すれば、酸性ガスの液体膜への透過率を大きくすることができる。  In addition, if the mixed gas is dehumidified before the mixed gas is supplied to the absorption tower, the solubility of the acidic gas in the absorbing liquid can be increased, and the mixed gas is removed before the mixed gas is introduced into the membrane separator. By dehumidifying, the permeability of the acid gas to the liquid film can be increased.
[0026] また吸収塔力 排出されかつ吸収塔内の温度より低い温度に冷却された酸性ガス を含む吸収液を、分離再生器に供給する前に、遠心分離或いは撹拌すれば、吸収 液中に分散して ヽる液体酸性ガスが分離再生器に供給される前に液体酸性ガスと吸 収液にほぼ分離されるので、分離再生器内で速やかに液体酸性ガスと吸収液に分 相できる。この結果、液体酸性ガスと吸収液との分相時間を短縮でき、効率良く液体 酸性ガスを回収できる。 [0026] Further, if the absorption liquid containing the acid gas discharged and cooled to a temperature lower than the temperature in the absorption tower is centrifuged or stirred before being supplied to the separation / regenerator, the absorption liquid can be contained in the absorption liquid. Since the dispersed liquid acid gas is almost separated into the liquid acid gas and the absorbing liquid before being supplied to the separation / regenerator, the liquid acid gas and the absorbing liquid can be quickly separated into the liquid acid gas and the absorbing liquid in the separation / regenerator. As a result, the phase separation time between the liquid acidic gas and the absorbing liquid can be shortened, and the liquid acidic gas can be efficiently recovered.
また吸収液が磁性を有し、分離再生器の下部に磁石を設ければ、吸収塔内の圧力 とほぼ同一の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生 器に、液体酸性ガスを含む吸収液を供給すると、液体酸性ガスと吸収液の相互不溶 解性及び比重差と、磁性を有する吸収液の磁石による吸引力とにより、吸収液と液体 酸性ガスとに速やかに分離される。この結果、液体酸性ガスを分離再生器から速や かに回収できるとともに、吸収液を速やかに再生して再利用できる。 If the absorption liquid has magnetism and a magnet is provided at the bottom of the separation regenerator, the pressure in the absorption tower If an absorption liquid containing liquid acidic gas is supplied to a separation regenerator that is maintained at the same pressure as that of the absorption tower and lower than the temperature in the absorption tower, the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorption liquid And the absorption force of the magnetic absorption liquid by the magnets cause rapid separation into the absorption liquid and the liquid acidic gas. As a result, the liquid acid gas can be quickly recovered from the separation regenerator, and the absorbing liquid can be quickly regenerated and reused.
また水、アルコール類、エーテル類及びフエノール類からなる群より選ばれた 1種又 は 2種以上の添加剤を吸収液に添加すれば、吸収液の粘性を低下させることができ る。この結果、添加剤含有吸収液が吸収塔に供給されるので、添加剤含有吸収液が 酸性ガスを吸収する能力を殆ど低下させずに吸収塔で酸性ガスを吸収できるととも に、添加剤含有吸収液がスムーズに流れ、添加剤含有吸収液の取扱いが容易にな る。  Moreover, the viscosity of the absorbing solution can be reduced by adding one or more additives selected from the group consisting of water, alcohols, ethers and phenols to the absorbing solution. As a result, the additive-containing absorption liquid is supplied to the absorption tower, so that the additive-containing absorption liquid can absorb the acid gas in the absorption tower without substantially reducing the ability to absorb the acid gas, and the additive-containing absorption liquid The absorption liquid flows smoothly and handling of the additive-containing absorption liquid becomes easy.
また上記添加剤を分離再生器に供給するとともに、分離再生器内の圧力及び温度 を調整することにより、分離再生器内で液体酸性ガスと添加剤含有吸収液とに比重 差分離すれば、吸収液に対して相互溶解性を有しかつ液体酸性ガスに対して相互 不溶解性を有する添加剤の添加による吸収液中に分散する液体酸性ガスの添加剤 への置換により、分離再生器の上相に液体酸性ガスが移行しかつ分離再生器の下 相に添加剤含有吸収液が移行して、液体酸性ガスと添加剤含有吸収液とが速やか に分離される。そして蒸留分離器内を所定の温度に加熱した状態で、分離再生器か ら排出された添加剤含有吸収液を蒸留分離器に供給することにより、添加剤含有吸 収液中の添加剤を吸収液力 蒸留分離すれば、添加剤と吸収液を分離した状態で 回収することができる。この結果、添加剤が除去された吸収液が吸収塔に供給され、 吸収液が除去された添加剤が添加剤貯留槽に供給されるので、吸収液及び添加剤 をそれぞれ直ぐに再利用できるとともに、吸収液が酸性ガスを吸収する能力を全く低 下させずに吸収塔で酸性ガスを吸収できる。  In addition to supplying the above additives to the separation regenerator and adjusting the pressure and temperature in the separation regenerator, if the specific gravity difference separation between the liquid acidic gas and the additive-containing absorption liquid is performed in the separation regenerator, the absorption is achieved. By replacing the liquid acid gas dispersed in the absorption liquid with an additive that is mutually soluble in the liquid and mutually insoluble in the liquid acid gas, The liquid acidic gas is transferred to the phase and the additive-containing absorbent is transferred to the lower phase of the separation regenerator, so that the liquid acidic gas and the additive-containing absorbent are rapidly separated. Then, while the distillation separator is heated to a predetermined temperature, the additive-containing absorbent discharged from the separator / regenerator is supplied to the distillation separator to absorb the additive in the additive-containing absorbent. If the liquid is separated by distillation, the additive and the absorbent can be recovered in a separated state. As a result, the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank, so that the absorption liquid and the additive can be reused immediately. The absorption gas can be absorbed by the absorption tower without reducing the ability of the absorption liquid to absorb the acid gas.
また凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加すれば、吸収液 中に分散している液体酸性ガス (分散液体)を凝集させることができる。この結果、分 離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離を速やかに進行さ せることができ、その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液と に更に分離できる。 If a flocculant is added to the absorbing liquid containing liquid acidic gas in the separation regenerator, the liquid acidic gas (dispersed liquid) dispersed in the absorbing liquid can be aggregated. As a result, the specific gravity difference between the liquid acidic gas and the flocculant-containing absorbent can be rapidly advanced in the separation regenerator, and then the flocculant-containing absorbent is separated by distillation. Liquid and Can be further separated.
また酸性ガスが COガスであり、 4〜25MPaの圧力に保った分離再生器内の液体  The acid gas is CO gas, and the liquid in the separation regenerator is kept at a pressure of 4-25 MPa.
2  2
COを含む吸収液中に水を供給すれば、液体 COの  If water is supplied to the absorbent containing CO, the liquid CO
2 一部がハイドレート  2 Some hydrate
2 化(雪状又 はシャーベット状に固ィ匕)するので、分離再生器内で液体 COと COハイドレートと吸  Since it is made into two parts (snow or sherbet), liquid CO, CO hydrate and absorption in the separation regenerator
2 2  twenty two
収液とに分離する。この結果、固液分離及び比重差分離の操作により、液体 COとじ Separated into collected liquid. As a result, it is possible to perform liquid CO
2 oノ、イドレートと吸収液をそれぞれ分離して回収できる。従って、より速やかに液体 C 2o, idrate and absorbent can be separated and recovered. Therefore, liquid C
2 2
oを吸収液力 分離できる。 o can be separated by absorbing fluid force.
2  2
また上記混合ガスを圧縮機で圧縮して吸収塔の下部に供給し、かつ吸収塔の上部 から有機溶剤又は水のいずれか一方又は双方を主成分とする吸収液を供給して、 吸収液に混合ガスを接触させることにより酸性ガスを吸収液に吸収させ、この酸性ガ スを吸収した吸収液を冷却器で冷却して分離再生器に供給すれば、吸収塔で非酸 性ガスを酸性ガスカゝら分離して吸収塔から回収でき、分離再生器で酸性ガスを液ィ匕 した状態で吸収液力 分離して分離再生器力 回収できるとともに、吸収液を再生し て再利用でき、室温以上の温度で酸性ガスを吸収すれば、冷凍機を不要にできる。 また上記混合ガスを除湿器で除湿しかつ圧縮機で圧縮して吸収塔の下部に供給し 、かつ吸収塔の上部から吸収液を供給して、吸収液に混合ガスを接触させることによ り酸性ガスを吸収液に吸収させ、この酸性ガスを吸収した吸収液を冷却器で冷却し て分離再生器に供給すれば、吸収塔で非酸性ガスを酸性ガスから分離して吸収塔 力 回収でき、分離再生器で酸性ガスを液ィ匕した状態で吸収液力 分離して分離再 生器から回収できるとともに、吸収液を再生して再利用でき、室温以上の温度で酸性 ガスを吸収すれば、冷凍機を不要にできる。  Further, the above mixed gas is compressed by a compressor and supplied to the lower part of the absorption tower, and an absorption liquid mainly composed of one or both of an organic solvent and water is supplied from the upper part of the absorption tower to the absorption liquid. When the mixed gas is contacted, the absorbing gas absorbs the acidic gas, and the absorbing liquid that has absorbed the acidic gas is cooled by a cooler and supplied to the separation / regenerator. It can be separated and recovered from the absorption tower, and it can be separated and regenerated by separating the regenerator power in a state where the acid gas is liquefied in the separation regenerator. If the acidic gas is absorbed at the temperature of, a refrigerator can be eliminated. Further, the mixed gas is dehumidified by a dehumidifier and compressed by a compressor and supplied to the lower part of the absorption tower, and the absorbing liquid is supplied from the upper part of the absorbing tower, and the mixed gas is brought into contact with the absorbing liquid. By absorbing the acid gas into the absorption liquid, cooling the absorption liquid that has absorbed the acid gas with a cooler, and supplying it to the separation / regenerator, the absorption gas can be recovered by separating the non-acid gas from the acid gas in the absorption tower. In the separation regenerator, the absorption liquid force can be separated and recovered from the separation regenerator while it is in the liquid state, and the absorption liquid can be regenerated and reused to absorb the acid gas at a temperature above room temperature. , Refrigerator can be eliminated.
また吸収塔と冷却器と分離再生器を一体的に設ければ、装置を小型化できる。 また冷却器と分離再生器との間に遠心分離器或!ヽは撹拌機を設ければ、酸性ガス を含む吸収液を冷却器にて吸収塔内の温度より低い温度に冷却することにより、吸 収液中の酸性ガスが液ィ匕して吸収液中に分散するので、この液体酸性ガスを含む吸 収液を遠心分離器或いは撹拌機により遠心分離或いは撹拌することにより、分離再 生器に供給される前に液体酸性ガスと吸収液にほぼ分離される。この結果、分離再 生器内で速やかに液体酸性ガスと吸収液に分相できるので、液体酸性ガスと吸収液 との分相時間を短縮でき、効率良く液体酸性ガスを回収できる。 If the absorption tower, the cooler, and the separation / regenerator are integrally provided, the apparatus can be reduced in size. Also, there is a centrifuge between the cooler and the separator / regenerator! If a stirrer is provided, the absorption liquid containing acid gas is cooled to a temperature lower than the temperature in the absorption tower with a cooler, so that the acid gas in the absorption liquid becomes liquid and the absorption liquid Therefore, the absorption liquid containing the liquid acid gas is separated into the liquid acid gas and the absorption liquid before being supplied to the separation regenerator by centrifuging or stirring with a centrifuge or a stirrer. The As a result, liquid acid gas and absorption liquid can be phase-separated quickly in the separation regenerator, so that the liquid acid gas and absorption liquid And the liquid acid gas can be efficiently recovered.
[0029] また吸収液が磁性を有し、分離再生器の下部に磁石を設ければ、吸収塔内の圧力 とほぼ同一の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生 器に、液体酸性ガスを含む吸収液を供給すると、液体酸性ガスと吸収液の相互不溶 解性及び比重差と、磁性を有する吸収液の磁石による吸引力とにより、吸収液と液体 酸性ガスとに速やかに分離される。この結果、液体酸性ガスを分離再生器から速や かに回収できるとともに、液体酸性ガスが取除かれて再生された吸収液が循環ボン プにより吸収塔の上部に供給されて速やかに再利用できる。  [0029] If the absorption liquid has magnetism and a magnet is provided at the bottom of the separation / regenerator, the separation is maintained at a pressure substantially the same as the pressure in the absorption tower and lower than the temperature in the absorption tower. When an absorption liquid containing liquid acid gas is supplied to the regenerator, the absorption liquid and liquid acid gas are caused by the mutual insolubility and specific gravity difference between the liquid acid gas and the absorption liquid and the suction force of the magnetic absorption liquid by the magnet. Quickly separated. As a result, the liquid acid gas can be quickly recovered from the separation regenerator, and the regenerated absorption liquid after the liquid acid gas is removed is supplied to the upper part of the absorption tower by the circulation pump and can be reused quickly. .
また水、アルコール類、エーテル類及びフエノール類からなる群より選ばれた 1種又 は 2種以上の添加剤を添加した吸収液が貯留されこの添加剤含有吸収液を吸収塔 に供給するための吸収液槽を設ければ、吸収液槽内で吸収液に添加剤を添加する ことにより、吸収液の粘性を低下させることができる。この結果、添加剤含有吸収液が 酸性ガスを吸収する能力を殆ど低下させずに吸収塔で酸性ガスを吸収できるととも に、添加剤含有吸収液がスムーズに流れ、添加剤含有吸収液の取扱いが容易にな る。  In addition, an absorption liquid containing one or more additives selected from the group consisting of water, alcohols, ethers and phenols is stored, and this additive-containing absorption liquid is supplied to the absorption tower. If an absorption liquid tank is provided, the viscosity of the absorption liquid can be reduced by adding an additive to the absorption liquid in the absorption liquid tank. As a result, the additive-containing absorption liquid can absorb the acid gas in the absorption tower with almost no decrease in the ability to absorb the acid gas, and the additive-containing absorption liquid flows smoothly and the additive-containing absorption liquid is handled. Becomes easier.
[0030] また上記添加剤が貯留された添加剤貯留槽を分離再生器の上部に接続し、分離 再生器内の圧力を調節する圧力調節手段を分離再生器に設け、分離再生器で比重 差分離されてその下相に移行した液体を貯留する蒸留分離器を分離再生器の下部 に接続し、蒸留分離器内を所定の温度に加熱する加熱手段を蒸留分離器に設けれ ば、冷却器及び圧力調整手段により分離再生器内の温度及び圧力を調整した状態 で、液体酸性ガスを含む吸収液とともに添加剤を分離再生器に供給すると、液体酸 性ガスと吸収液の相互不溶解性及び比重差と、吸収液に対して相互溶解性を有し かつ液体酸性ガスに対して相互不溶解性を有する添加剤の添カ卩による吸収液中に 分散する液体酸性ガスの添加剤への置換とにより、分離再生器の上相に液体酸性 ガスが移行しかつ分離再生器の下相に添加剤含有吸収液が移行して、液体酸性ガ スと添加剤含有吸収液とが速やかに分離される。そして加熱手段により蒸留分離器 内を所定の温度に加熱した状態で、分離再生器の下部力も排出された添加剤含有 吸収液を蒸留分離器に供給すると、添加剤含有吸収液中の添加剤が吸収液力 蒸 留分離される。この結果、添加剤と吸収液を分離した状態で回収することができるの で、添加剤が除去された吸収液が吸収塔に供給され、吸収液が除去された添加剤 が添加剤貯留槽に供給されて、吸収液及び添加剤をそれぞれ直ぐに再利用できると ともに、吸収液が酸性ガスを吸収する能力を全く低下させずに吸収塔で酸性ガスを 吸収できる。 [0030] Further, the additive storage tank in which the additive is stored is connected to the upper part of the separation regenerator, and a pressure adjusting means for adjusting the pressure in the separation regenerator is provided in the separation regenerator. If the distillation separator that stores the separated and transferred liquid in the lower phase is connected to the lower part of the separation regenerator and heating means for heating the inside of the distillation separator to a predetermined temperature is provided in the distillation separator, the When the additive and the absorbent containing the liquid acidic gas are supplied to the separator / regenerator with the temperature and pressure inside the separator / regenerator adjusted by the pressure adjusting means, the mutual insolubility between the liquid acidic gas and the absorbent and Difference in specific gravity and replacement of liquid acid gas dispersed in the absorption liquid with additives by adding additives that are mutually soluble in the absorption liquid and mutually insoluble in the liquid acid gas Liquid acid gas in the upper phase of the separation regenerator The additive-containing absorption liquid is transferred to the lower phase of the separation regenerator, and the liquid acidic gas and the additive-containing absorption liquid are quickly separated. Then, when the additive-containing absorbent that has also been discharged from the lower force of the separation regenerator is supplied to the distillation separator while the inside of the distillation separator is heated to a predetermined temperature by the heating means, the additive in the additive-containing absorbent is removed. Absorption fluid power Is separated. As a result, since the additive and the absorption liquid can be recovered in a separated state, the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank. The absorption liquid and the additive can be reused immediately after being supplied, and the absorption gas can be absorbed in the absorption tower without reducing the ability of the absorption liquid to absorb the acid gas at all.
[0031] また凝集剤を貯留する凝集剤槽を分離再生器に接続すれば、凝集剤槽に貯留さ れた凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸 収液中に分散して 、る液体酸性ガス (分散液体)を凝集させることができる。この結果 、分離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離を速やかに進 行させることができ、その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収 液とに更に分離できる。  [0031] If the flocculant tank for storing the flocculant is connected to the separation regenerator, the flocculant stored in the flocculant tank is added to the absorbent containing the liquid acidic gas in the separation regenerator, The liquid acidic gas (dispersed liquid) can be agglomerated by being dispersed in the absorbing liquid. As a result, the specific gravity difference between the liquid acidic gas and the flocculant-containing absorbing liquid can be rapidly advanced in the separation regenerator, and then the flocculant-containing absorbing liquid can be separated by distillation. And can be further separated.
また酸性ガスが COガスであり、分離再生器内の圧力を 4〜25MPaに保つ圧力調  In addition, the acid gas is CO gas, and the pressure is adjusted to maintain the pressure in the separation regenerator at 4 to 25 MPa.
2  2
整手段を分離再生器に設け、水が貯留された水貯留槽を分離再生器の下部に接続 すれば、圧力調整手段により分離再生器内を 4〜25MPaという高圧に保った状態で 、水貯留槽から水を分離再生器内の液体 COを含む吸収液中に供給すると、液体 C  If the regulating means is installed in the separation regenerator and the water storage tank in which water is stored is connected to the lower part of the separation regenerator, the water is stored in the state where the pressure in the separation regenerator is kept at a high pressure of 4 to 25 MPa. When water is supplied from the tank to the absorption liquid containing liquid CO in the regenerator, liquid C
2  2
o  o
2の一部がハイドレート化(雪状又はシャーベット状に固ィ匕)する。この結果、固液分 離及び比重差分離の操作により、液体 CO  Part of 2 becomes hydrated (solid like snow or sherbet). As a result, liquid CO and liquid specific gravity separation can be
2と COノ、  2 and CO,
2 イドレートと吸収液をそれぞれ分 離して回収できる。従って、より速やかに液体 COを吸収液力も分離できる。  2 Idrate and absorbent can be separated and recovered. Therefore, the liquid CO can be separated from the absorbing liquid force more quickly.
2  2
[0032] また燃料を改質、 CO変成及び CO除去して H及び COの混合ガスとした後に、こ  [0032] After the fuel is reformed, CO converted and CO removed to form a mixed gas of H and CO,
2 2  twenty two
の混合ガスを上記ガスの精製方法或いはガスの精製装置を用いて H及び COに分  Is mixed into H and CO using the above gas purification method or gas purification device.
2 2 離回収し、更にこの分離回収された Hを水素ステーションに供給するとともに、分離  2 2 Separated and recovered, and this separated and recovered H is supplied to the hydrogen station and separated.
2  2
回収された COを断熱膨張させてドライアイスを製造すれば、種々の燃料カゝら高圧の  If dry ice is produced by adiabatic expansion of the recovered CO, various fuel tanks with high pressure
2  2
Hを製造しながら、 COを効率良く回収できる。  CO can be efficiently recovered while producing H.
2 2  twenty two
更に燃料電池を駆動源とする車上改質型車両に搭載されたシステムであって、燃 料を車上で改質、 CO変成及び CO除去して H及び COの混合ガスとした後に、この  Furthermore, this is a system installed in an on-vehicle reforming vehicle that uses a fuel cell as a drive source. The fuel is reformed on the vehicle, converted to CO and removed to form a mixed gas of H and CO.
2 2  twenty two
混合ガスを上記ガスの精製方法或いはガスの精製装置を用いて H及び液体 COに  Convert mixed gas into H and liquid CO using the above gas purification method or gas purification device.
2 2 分離回収し、更にこの分離回収された Hを燃料電池に供給するとともに、液体 CO  2 2 Separated and recovered, and this separated and recovered H is supplied to the fuel cell and liquid CO
2 2 を一時的に車両に貯留し後でまとめて降ろせば、車両に搭載できる程度に小型化で き、種々の燃料力も高圧の Hを製造しながら、 COを効率良く回収できる。即ち、 CIf 2 2 is temporarily stored in the vehicle and then unloaded later, the size can be reduced to the extent that it can be mounted on the vehicle. In addition, various fuel power can efficiently capture CO while producing high-pressure H. C
2 2 twenty two
Oを液状で回収し、一時的に車上に貯留することにより、 COゼロェミッション自動車 By collecting O in liquid form and temporarily storing it on the vehicle, CO Zero Emission Vehicle
2 2 twenty two
を実現できる。 Can be realized.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は本発明第 1実施形態のガスの精製方法及びその装置の断面構成図であ る。 FIG. 1 is a cross-sectional configuration diagram of a gas purification method and apparatus according to a first embodiment of the present invention.
[図 2]図 2は本発明の第 2実施形態を示す図 1に対応する断面構成図である。  FIG. 2 is a cross-sectional configuration diagram corresponding to FIG. 1 showing a second embodiment of the present invention.
[図 3]図 3は本発明の第 3実施形態を示す図 2に対応する断面構成図である。  FIG. 3 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a third embodiment of the present invention.
[図 4]図 4は本発明の第 4実施形態を示す図 2に対応する断面構成図である。  FIG. 4 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a fourth embodiment of the present invention.
[図 5]図 5は本発明の第 5実施形態を示す図 4に対応する断面構成図である。  FIG. 5 is a cross-sectional configuration diagram corresponding to FIG. 4 showing a fifth embodiment of the present invention.
[図 6]図 6は本発明の第 6実施形態を示す図 1に対応する断面構成図である。  FIG. 6 is a cross-sectional configuration diagram corresponding to FIG. 1 showing a sixth embodiment of the present invention.
[図 7]図 7は本発明の第 7実施形態を示す図 2に対応する断面構成図である。  FIG. 7 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a seventh embodiment of the present invention.
[図 8]図 8は本発明の第 8実施形態を示す図 7に対応する断面構成図である。  FIG. 8 is a cross-sectional configuration diagram corresponding to FIG. 7 showing an eighth embodiment of the present invention.
[図 9]図 9は本発明の第 9実施形態を示す図 2に対応する断面構成図である。  FIG. 9 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a ninth embodiment of the present invention.
[図 10]図 10は本発明の第 10実施形態を示す図 9に対応する断面構成図である。  FIG. 10 is a cross-sectional configuration diagram corresponding to FIG. 9 showing a tenth embodiment of the present invention.
[図 11]図 11は本発明の第 11実施形態を示す図 9に対応する断面構成図である。  FIG. 11 is a cross-sectional configuration diagram corresponding to FIG. 9 showing an eleventh embodiment of the present invention.
[図 12]図 12は本発明の第 12実施形態を示す図 11に対応する断面構成図である。  FIG. 12 is a cross-sectional configuration diagram corresponding to FIG. 11 showing a twelfth embodiment of the present invention.
[図 13]図 13は本発明の第 13実施形態を示す図 11に対応する断面構成図である。  FIG. 13 is a cross-sectional configuration diagram corresponding to FIG. 11 showing a thirteenth embodiment of the present invention.
[図 14]図 14は本発明の第 14実施形態を示す図 13に対応する断面構成図である。  FIG. 14 is a cross-sectional configuration diagram corresponding to FIG. 13 showing a fourteenth embodiment of the present invention.
[図 15]図 15は本発明の第 15実施形態のシステムを示す構成図である。  FIG. 15 is a block diagram showing a system according to a fifteenth embodiment of the present invention.
[図 16]図 16は本発明の第 16実施形態のシステムを示す構成図である。  FIG. 16 is a configuration diagram showing a system according to a sixteenth embodiment of the present invention.
[図 17]図 17は測定温度 35°Cにおける実施例 1の吸収液中への COガスの溶解度の  [Fig. 17] Fig. 17 shows the solubility of CO gas in the absorbent of Example 1 at a measurement temperature of 35 ° C.
2  2
圧力変化に伴う変化を示す図である。 It is a figure which shows the change accompanying a pressure change.
[図 18]図 18は測定温度 35°Cにおける実施例 1の吸収液中への H Sガス及び COS  [FIG. 18] FIG. 18 shows H 2 S gas and COS in the absorption liquid of Example 1 at a measurement temperature of 35 ° C.
2  2
ガスの溶解度の圧力変化に伴う変化を示す図である。 It is a figure which shows the change accompanying the pressure change of the solubility of gas.
[図 19]図 19は測定温度 35°Cにおける実施例 1の吸収液中への Hガス, CHガス,  [Fig. 19] Fig. 19 shows the H gas, CH gas, and the like in the absorption liquid of Example 1 at a measurement temperature of 35 ° C.
2 4 twenty four
COガス及び Nガスの溶解度の圧力変化に伴う変化を示す図である。 It is a figure which shows the change accompanying the pressure change of the solubility of CO gas and N gas.
2  2
[図 20]図 20は吸収液 (ポリエチレングリコール)と液体 COとの相分離の様子を示す 写真図である。 [Fig.20] Fig.20 shows the phase separation between the absorbing liquid (polyethylene glycol) and liquid CO FIG.
[図 21]図 21は測定温度 35°Cにおける実施例 2〜5の吸収液中への COの溶解度の  [Fig. 21] Fig. 21 shows the solubility of CO in the absorbents of Examples 2 to 5 at a measurement temperature of 35 ° C.
2 圧力変化に伴う変化を示す図である。  FIG. 2 is a diagram showing changes associated with pressure changes.
[図 22]図 22は測定温度 45°Cにおける実施例 2〜5の吸収液中への COの溶解度の  [Fig. 22] Fig. 22 shows the solubility of CO in the absorbing solutions of Examples 2 to 5 at a measurement temperature of 45 ° C.
2 圧力変化に伴う変化を示す図である。  FIG. 2 is a diagram showing changes associated with pressure changes.
[図 23]図 23は測定温度 55°Cにおける実施例 2〜5の吸収液中への COの溶解度の  [FIG. 23] FIG. 23 shows the solubility of CO in the absorbing solutions of Examples 2 to 5 at a measurement temperature of 55 ° C.
2 圧力変化に伴う変化を示す図である。  FIG. 2 is a diagram showing changes associated with pressure changes.
[図 24]図 24は測定温度 35°Cにおける実施例 2の吸収液中への非酸性ガスの溶解 度の圧力変化に伴う変化を示す図である。  [FIG. 24] FIG. 24 is a graph showing a change in the solubility of the non-acidic gas in the absorbing liquid of Example 2 at a measurement temperature of 35 ° C. with a change in pressure.
[図 25]図 25は測定温度 35°Cにおける実施例 2の吸収液中への CO , H S及び CO  [FIG. 25] FIG. 25 shows CO 2, H 2 S and CO into the absorption liquid of Example 2 at a measurement temperature of 35 ° C.
2 2 sの溶解度の圧力変化に伴う変化を示す図である。  It is a figure which shows the change accompanying the pressure change of the solubility of 2 2 s.
[図 26]図 26は吸収液 (イオン性液体)と液体 COとの相分離の様子を示す写真図で ある。  FIG. 26 is a photographic diagram showing the state of phase separation between the absorbing liquid (ionic liquid) and liquid CO.
符号の説明 Explanation of symbols
11 除湿器  11 Dehumidifier
12 圧縮機  12 Compressor
13 吸収塔  13 Absorption tower
16 再生塔  16 regeneration tower
17 循環ポンプ  17 Circulation pump
41 液体酸性ガス、液体 CO  41 Liquid acid gas, liquid CO
42 吸収液  42 Absorbent
46 分離再生器  46 Separate regenerator
47 冷却器  47 Cooler
48 遠心分離器  48 Centrifuge
51 機体膜  51 Airframe
52 膜分離器  52 Membrane separator
52a 第 1室  52a Room 1
52b 第 2室 61 磁石 52b Room 2 61 magnet
71 添加剤  71 Additive
72 吸収液貯留槽  72 Absorption liquid storage tank
75 添加剤含有吸収液  75 Absorbent containing additive
81 添加剤貯留槽  81 Additive storage tank
82 圧力調整手段  82 Pressure adjustment means
83 蒸留分離器  83 Distillation separator
84 加熱手段  84 Heating means
91 水貯留槽  91 Water storage tank
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 次に本発明を実施するための最良の形態を図面に基づいて説明する。 Next, the best mode for carrying out the present invention will be described with reference to the drawings.
<第 1の実施の形態 >  <First embodiment>
図 1に示すように、精製装置は、酸性ガス及び非酸性ガスを含む混合ガスを除湿す る除湿器 11と、除湿された混合ガスを圧縮する圧縮機 12と、鉛直方向に延びて設け られ下部に圧縮された混合ガスが供給されかつ上部に吸収液が供給されて吸収液 に混合ガスを接触させることにより酸性ガスを吸収液に吸収させて非酸性ガスを酸性 ガス力 分離し回収する吸収塔 13と、酸性ガスを吸収した吸収液を膨張'減圧させる 膨張タービン 14と、この膨張'減圧された吸収液が供給されこの吸収液力も酸性ガス を放散させて吸収液力も分離し回収するとともに吸収液を再生する再生塔 16と、この 再生された吸収液を吸収塔 13の上部に供給する循環ポンプ 17とを備える。  As shown in FIG. 1, the refining device is provided with a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas, a compressor 12 for compressing the dehumidified mixed gas, and extending in the vertical direction. Absorbed by supplying the gas mixture compressed in the lower part and absorbing liquid in the upper part, bringing the mixed gas into contact with the absorbing liquid to absorb the acidic gas into the absorbing liquid and separating the non-acidic gas by the acidic gas force The tower 13 and the absorbing liquid that has absorbed the acid gas are expanded and depressurized.The expansion turbine 14 is supplied with the expanded and depressurized absorbing liquid. In addition, a regeneration tower 16 that regenerates the absorption liquid and a circulation pump 17 that supplies the regenerated absorption liquid to the upper part of the absorption tower 13 are provided.
[0036] 混合ガスは、化石燃料のガス化、改質又は部分酸化による合成ガス、天然ガス等 の燃料ガスや、火力発電所、セメントプラント、鉄鋼プラント、化学プラント等力 排出 される排ガスである。酸性ガスは CO , H S, COS, SO , SO , NO , CS , HCN, [0036] The mixed gas is a fuel gas such as a synthetic gas obtained by gasification, reforming or partial oxidation of fossil fuel, natural gas, or an exhaust gas discharged from a thermal power plant, a cement plant, a steel plant, a chemical plant, etc. . Acid gas is CO, H S, COS, SO, SO, NO, CS, HCN,
2 2 2 3 2 2 2 2 2 3 2 2
ΝΗ及びメルカブタン力 なる群より選ばれた 1種又は 2種以上のガスであり、非酸性One or more gases selected from the group consisting of soot and mercabtan force, and are non-acidic
3 Three
ガスは Η , CH , CO, Ο , Ν及び炭素数 2〜 10までの炭化水素化合物力もなる群 Gas is a group consisting of Η, CH, CO, Ο, 力, and hydrocarbon compounds with 2 to 10 carbon atoms.
2 4 2 2 2 4 2 2
より選ばれた 1種又は 2種以上のガスである。ここで、炭素数 2〜: L0までの炭化水素 化合物としては、 C H、C H、C H、C H、C H、C H などが挙げられる。また  One or more gases selected from the above. Here, examples of the hydrocarbon compound having 2 to L0 carbon atoms include C H, C H, C H, C H, C H, and C H. Also
2 4 2 6 3 6 3 8 4 8 4 10  2 4 2 6 3 6 3 8 4 8 4 10
吸収液はイオン性液体又はこれを主成分とする組成物であり、イオン性液体はカチ オン及びァ-オンを有する。カチオンは、 [R,R, -N C H ] (Ν,Ν,-ジアルキルイミ The absorbing liquid is an ionic liquid or a composition containing the same as the main component. Has on and key-on. The cation is [R, R, -NCH] (Ν, Ν, -dialkylimid
2 3 3  2 3 3
ダゾリゥム)、 [NR Η ]+ (アルキルアンモ-ゥム)、 [R— NC Η ]+ (Ν-アルキルピリ  Dazolym), [NR Η] + (Alkyl ammonium), [R— NC Η] + (Ν-Alkylpyrim
X 4-Χ 5 5  X 4-Χ 5 5
ジ-ゥム)、 [R-NC Η ]+ (Ν-アルキルピロリジ-ゥム)及び [PR H ]+ (アルキルフ  ), [R-NC Η] + (Ν-alkyl pyrrolidinium) and [PR H] + (alkyl
4 8 X 4-X  4 8 X 4-X
ォスフォ-ゥム)力もなる群より選ばれた 1種又は 2種以上のカチオンであり(カチオン 中の R及び R,は炭素数 1〜18のアルキル基又は水素であり、カチオン中の Xが 1〜 3である。)、好ましくは [R,R' -N C H ]+ (アルキル基炭素数 1〜10の Ν,Ν,-アルキ  1) or 2 or more types of cations selected from the group that also has force (R and R in the cation are alkyl groups having 1 to 18 carbon atoms or hydrogen, and X in the cation is 1) To 3), preferably [R, R'-NCH] + (+, Ν, -alkyl having an alkyl group of 1 to 10 carbon atoms)
2 3 3  2 3 3
ルイミダゾリゥム)又は [R— NC Η ]+ (Ν-アルキルピリジ-ゥム)のいずれか一方又は  Ruimidazolium) or [R— NC Η] + (Ν-alkyl pyridi-um) or
5 5  5 5
双方である。またァニオンは、 PF―、 BF―、 NO―、 EtSO―、 A1C1—及び AlBr "  Both. Anions are also PF-, BF-, NO-, EtSO-, A1C1- and AlBr "
6 4 3 4 4 4 力 なる群より選ばれた 1種又は 2種以上のァ-オンであり、好ましくは PF—又は BF  6 4 3 4 4 4 One or more key ions selected from the group consisting of: PF— or BF
6 4 6 4
—の 、ずれか一方又は双方である。 — Of, either or both.
[0037] 圧縮機 12と吸収塔 13を連通接続するガス供給管 18にはプリ冷却器 19が設けられ 、上記圧縮機 12及びプリ冷却器 19により、混合ガスが所定の温度及び所定の圧力 にそれぞれ維持された状態で吸収塔 13の下部に供給される。具体的には、吸収塔 1 3に供給される混合ガスの温度、即ち吸収塔 13内の温度は 0〜: L00°C、好ましくは 3 0〜50°Cに設定され、吸収塔 13に供給される混合ガスの圧力、即ち吸収塔 13内の 圧力は l〜25MPa、好ましくは 4〜10MPaに設定される。ここで、吸収塔 13内の温 度を 0〜: L00°Cの範囲に限定したのは、 0°C未満では冷凍機が必要になり、 100°Cを 越えると昇温に必要なエネルギが増大し酸性ガスの吸収液による吸収量が少なくな る力らである。また吸収塔 13内の圧力を l〜25MPaの範囲に限定したのは、 IMPa 未満では酸性ガスの吸収液による吸収量が少なくなり、 25MPaを越えると耐圧性の 高い吸収塔 13が必要になり設備費が増大するからである。吸収塔 13は吸収ドラム缶 でもよいが、酸性ガスの吸収効率を向上するために、多段の吸収塔 13を用いること が望ましぐ再生塔 16は再生ドラム缶でもよいが、吸収液の再生効率を向上するため に、多段の再生塔 16を用いることが望ましい。  A gas supply pipe 18 that connects the compressor 12 and the absorption tower 13 in communication is provided with a precooler 19, and the mixed gas is brought to a predetermined temperature and a predetermined pressure by the compressor 12 and the precooler 19. Each is maintained and supplied to the lower part of the absorption tower 13. Specifically, the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to: L00 ° C., preferably 30 to 50 ° C., and is supplied to the absorption tower 13. The pressure of the mixed gas, that is, the pressure in the absorption tower 13 is set to 1 to 25 MPa, preferably 4 to 10 MPa. Here, the temperature in the absorption tower 13 is limited to the range of 0 to L00 ° C. A refrigerator is required if the temperature is less than 0 ° C, and if it exceeds 100 ° C, the energy required for raising the temperature is increased. The power that increases and reduces the amount of acid gas absorbed by the absorbent. Also, the pressure in the absorption tower 13 is limited to the range of l to 25MPa because the absorption amount of the acid gas absorption solution is less than IMPa, and if it exceeds 25MPa, the absorption tower 13 with high pressure resistance is required. This is because the cost increases. Although the absorption tower 13 may be an absorption drum, it is desirable to use a multistage absorption tower 13 in order to improve the absorption efficiency of acid gas. The regeneration tower 16 may be a regeneration drum, but it improves the regeneration efficiency of the absorption liquid. Therefore, it is desirable to use a multistage regeneration tower 16.
[0038] 吸収塔 13の下端と膨張タービン 14とを連通接続する第 1連通管 21には、吸収塔 1 3側から順に減圧弁 23、フラッシュドラム 24及び熱交 26が設けられる。減圧弁 2 3及びフラッシュドラム 24により吸収塔 13の下端力も排出された酸性ガスを含む吸収 液が所定の圧力だけ、例えば吸収塔 13内の圧力より 0. 1〜0. 5MPaだけ減圧され る。これは吸収液に含まれる H , CH , CO, O , Nなどの非酸性ガスのみを放散し [0038] The first communication pipe 21 that connects the lower end of the absorption tower 13 and the expansion turbine 14 is provided with a pressure reducing valve 23, a flash drum 24, and a heat exchanger 26 in order from the absorption tower 13 side. The absorbing liquid containing the acidic gas discharged from the lower end force of the absorption tower 13 by the pressure reducing valve 2 3 and the flash drum 24 is depressurized by a predetermined pressure, for example, 0.1 to 0.5 MPa from the pressure in the absorption tower 13. The This dissipates only non-acidic gases such as H, CH, CO, O, and N contained in the absorbent.
2 4 2 2  2 4 2 2
て吸収塔 13に戻すためである。フラッシュドラム 24の上端と吸収塔 13の下部とは第 1戻り管 31により連通接続され、この第 1戻り管 31には補助圧縮機 27が設けられる。 また熱交 26は、フラッシュドラム 24の下端カゝら排出された酸性ガスを含む低温 の吸収液に、再生塔 16の下端力 排出された高温の吸収液が熱を与えるように構成 される。即ち、熱交翻 26は、上記フラッシュドラム 24の下端力も排出された酸性ガ スを含む吸収液を加熱し、かつ再生塔 16の下端力も排出された高温の吸収液を冷 却するように構成される。  This is for returning to the absorption tower 13. The upper end of the flash drum 24 and the lower part of the absorption tower 13 are connected in communication by a first return pipe 31, and an auxiliary compressor 27 is provided in the first return pipe 31. The heat exchanger 26 is configured such that the high-temperature absorbent discharged from the lower end of the regeneration tower 16 gives heat to the low-temperature absorbent containing the acid gas discharged from the lower end of the flash drum 24. That is, the heat exchanger 26 is configured to heat the absorbing liquid containing the acidic gas from which the lower end force of the flash drum 24 is also discharged and to cool the high temperature absorbing liquid from which the lower end force of the regeneration tower 16 is also discharged. Is done.
[0039] 膨張タービン 14と再生塔 16を連通接続する第 2連通管 22には加熱器 28が設けら れ、上記膨張タービン 14及び加熱器 28により、酸性ガスを含む吸収液が吸収塔 13 内の温度と同一又は吸収塔 13内の温度より高い温度に維持されかつ吸収塔 13内 の圧力より低い圧力に維持された状態で再生塔 16の上部に供給される。具体的に は、再生塔 16に供給される吸収液の温度、即ち再生塔 16内の温度は 30〜200°C、 好ましくは 30〜100°Cに設定され、再生塔 16に供給される吸収液の圧力、即ち再生 塔 16内の圧力は 0. l〜5MPa、好ましくは 0. l〜3MPaに設定される。ここで、再生 塔 16内の温度を 30〜200°Cの範囲に限定したのは、 30°C未満では酸性ガスの放 散に不利になり、 200°Cを越えると昇温エネルギが増大するからである。また再生塔 16内の圧力を 0. l〜5MPaの範囲に限定したのは、 0. IMPa未満では再生塔 16 内が負圧になり装置が複雑になってコストが増大し、 5MPaを越えると酸性ガスの放 散に不利なるからである。  [0039] The second communication pipe 22 that connects the expansion turbine 14 and the regeneration tower 16 to each other is provided with a heater 28, and the expansion turbine 14 and the heater 28 allow the absorption liquid containing the acid gas to be absorbed in the absorption tower 13. It is supplied to the upper part of the regeneration tower 16 while being maintained at a temperature equal to or higher than the temperature in the absorption tower 13 and maintained at a pressure lower than the pressure in the absorption tower 13. Specifically, the absorption liquid supplied to the regeneration tower 16 is set to a temperature of 30 to 200 ° C., preferably 30 to 100 ° C. The pressure of the liquid, that is, the pressure in the regeneration tower 16 is set to 0.1 to 5 MPa, preferably 0.1 to 3 MPa. Here, the temperature in the regeneration tower 16 is limited to the range of 30 to 200 ° C. When the temperature is lower than 30 ° C, it is disadvantageous for acid gas emission, and when it exceeds 200 ° C, the temperature rise energy increases. Because. The pressure in the regenerator 16 is limited to the range of 0.1 to 5 MPa because the pressure in the regenerator 16 becomes negative and the equipment becomes complicated if it is less than IMPa. This is because it is disadvantageous for the emission of acid gas.
[0040] なお、再生塔 16の下端は第 2戻り管 32により吸収塔 13の上部に接続され、上記循 環ポンプ 17は第 2戻り管 32に設けられる。循環ポンプ 17の吐出口と吸収塔 13の上 部とを連通接続する第 2戻り管 32にはァフタ冷却器 29が設けられ、このァフタ冷却 器 29により吸収液の温度が所定の温度になるように調整される。また吸収液は中性 又はアルカリ性であることが好ましい。これは、吸収液が酸性であると、単位体積当た りの酸性ガス吸収量、即ち酸性ガスの溶解度が低下してしまうためである。吸収液を アルカリ性にするには、アルカリ性のイオン性液体を用いたり、或いはアルカリを吸収 液に添加することにより行われる。 [0041] このように構成された精製装置を用いてガスを精製する方法を説明する。 Note that the lower end of the regeneration tower 16 is connected to the upper part of the absorption tower 13 by a second return pipe 32, and the circulation pump 17 is provided in the second return pipe 32. The second return pipe 32 that connects the discharge port of the circulation pump 17 and the upper part of the absorption tower 13 is provided with a after cooler 29, and the after cooler 29 allows the temperature of the absorbing liquid to reach a predetermined temperature. Adjusted to The absorbing solution is preferably neutral or alkaline. This is because if the absorbing liquid is acidic, the amount of acidic gas absorbed per unit volume, that is, the solubility of the acidic gas is reduced. In order to make the absorption liquid alkaline, an alkaline ionic liquid is used, or alkali is added to the absorption liquid. [0041] A method for purifying a gas using the thus configured purifying apparatus will be described.
混合ガスを吸収塔 13に供給する前に、予め循環ポンプ 17及び補助圧縮機 27を作 動させ、プリ冷却器 19及びァフタ冷却器 29に水や空気やアンモニアなどの冷媒を 流し、加熱器 28のヒータに通電して、吸収液を循環させるとともに、吸収塔 13及び再 生塔 16に供給される吸収液の温度をそれぞれ所定の温度にしておく。先ず混合ガ スは除湿器 11で除湿される。これにより酸性ガスの吸収液への溶解度を小さくしてし まう水分を混合ガスカゝら予め除去することができ、酸性ガスの吸収液への溶解度を大 きくすることができる。この除湿された混合ガスは圧縮機 12及びプリ冷却器 19により 所定の温度に加熱又は冷却されかつ所定の圧力に昇圧された状態で吸収塔 13の 下部に供給される。これにより吸収液に混合ガスが接触して酸性ガスが吸収液に吸 収されるので、非酸性ガスが酸性ガスカゝら分離されて吸収塔 13の上端カゝら回収され る。この回収された非酸性ガスの圧力がユーザ側に必要な圧力より高い場合、例え ば上記非酸性ガス (H , CH , CO, O , Nなどの混合ガス)をガスタービンに用いる  Before supplying the mixed gas to the absorption tower 13, the circulation pump 17 and the auxiliary compressor 27 are operated in advance, and a refrigerant such as water, air, or ammonia is allowed to flow through the precooler 19 and the aftercooler 29, and the heater 28 The heater is energized to circulate the absorption liquid, and the temperature of the absorption liquid supplied to the absorption tower 13 and the regeneration tower 16 is set to a predetermined temperature. First, the mixed gas is dehumidified by the dehumidifier 11. As a result, water that reduces the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas column, and the solubility of the acid gas in the absorbing liquid can be increased. The dehumidified mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and supplied to the lower part of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure. As a result, the mixed gas comes into contact with the absorbing solution and the acidic gas is absorbed into the absorbing solution, so that the non-acidic gas is separated from the acidic gas column and recovered from the upper end column of the absorption tower 13. When the pressure of the recovered non-acid gas is higher than the pressure required on the user side, for example, the above non-acid gas (mixed gas of H, CH, CO, O, N, etc.) is used for the gas turbine.
2 4 2 2  2 4 2 2
場合、現状では 3MPa程度の低圧であるため、上記非酸性ガスを一旦膨張タービン 又は断熱膨張弁を用いて減圧する。このとき減圧後の非酸性ガスの温度は低くなる ので、この低温の非酸性ガスをプリ冷却器 19又はァフタ冷却器 29の冷媒として用い ることができる。なお、上記非酸性ガスの減圧に膨張タービンを用いた場合、この膨 張タービンで発電できるので、その電力はこの実施の形態の精製装置の設置されて V、る所内の消費に用いることができる。  In this case, since the current pressure is about 3 MPa, the non-acidic gas is once depressurized using an expansion turbine or an adiabatic expansion valve. At this time, since the temperature of the non-acidic gas after decompression is lowered, this low-temperature non-acidic gas can be used as the refrigerant of the precooler 19 or the aftercooler 29. In addition, when an expansion turbine is used for decompression of the non-acidic gas, power can be generated by this expansion turbine, so that the electric power can be used for consumption in the V where the refining device of this embodiment is installed. .
[0042] 一方、吸収塔 13の下端カゝら排出された多量の酸性ガスと微量の非酸性ガスを含む 吸収液は減圧弁 23及びフラッシュドラム 24で所定の圧力だけ減圧される。これにより 吸収液に含まれる H , CH , CO, O , Nなどの非酸性ガスのみが放散されて、酸 On the other hand, the absorbing liquid containing a large amount of acidic gas and a small amount of non-acidic gas discharged from the lower end of the absorption tower 13 is depressurized by a predetermined pressure by the pressure reducing valve 23 and the flash drum 24. As a result, only non-acidic gases such as H, CH, CO, O, and N contained in the absorbing solution are diffused and
2 4 2 2  2 4 2 2
性ガスを含む吸収液と分離される。この放散された非酸性ガスはフラッシュドラム 24 の上端力も排出され更に補助圧縮機 27により加圧されて再び吸収塔 13に戻される 。フラッシュドラム 24の下端力も排出された酸性ガスを含む吸収液は熱交 で 再生吸収液により加熱された後に、膨張タービン 14で膨張'減圧され、更に加熱器 2 8で所定の温度に加熱されて、再生塔 16の上部に供給される。即ち、熱交換器 26で 加熱された吸収液は膨張タービン 14及び加熱器 28により吸収塔 13内の温度と同一 又は吸収塔 13内の温度より高い温度に維持しかつ吸収塔 13内の圧力より低い圧力 に維持した状態で再生塔 16の上部に供給される。吸収液をこのような圧力及び温度 に設定すると、吸収液に含まれる酸性ガスが第 2連通管 22内又は再生塔 16内で放 散するので、酸性ガスが吸収液力 分離されて再生塔 16の上端力 回収される。一 方、再生塔 16の下端力も排出された酸性ガスを含まない再生された吸収液は、循環 ポンプ 17により搬送され、熱交翻26及びァフタ冷却器 29で所定の温度に冷却さ れた後に、吸収塔 13の上部に供給されて再利用される。なお、酸性ガスが COガス Separated from the absorbing liquid containing the sexual gas. The dissipated non-acid gas also discharges the upper end force of the flash drum 24 and is further pressurized by the auxiliary compressor 27 and returned to the absorption tower 13 again. The absorption liquid containing the acid gas discharged from the lower end force of the flash drum 24 is heated by the regenerated absorption liquid by heat exchange, then expanded and depressurized by the expansion turbine 14, and further heated to a predetermined temperature by the heater 28. , Supplied to the upper part of the regeneration tower 16. That is, the absorption liquid heated by the heat exchanger 26 is equal to the temperature in the absorption tower 13 by the expansion turbine 14 and the heater 28. Alternatively, it is supplied to the upper portion of the regeneration tower 16 while maintaining a temperature higher than the temperature in the absorption tower 13 and maintaining a pressure lower than the pressure in the absorption tower 13. When the absorption liquid is set to such a pressure and temperature, the acid gas contained in the absorption liquid is released in the second communication pipe 22 or the regeneration tower 16, so that the acid gas is separated by the absorption liquid force and the regeneration tower 16 The upper end force of is recovered. On the other hand, the regenerated absorption liquid that does not contain the acidic gas discharged from the bottom end of the regeneration tower 16 is conveyed by the circulation pump 17 and cooled to a predetermined temperature by the heat exchanger 26 and the after cooler 29. , Supplied to the upper part of the absorption tower 13 and reused. Acid gas is CO gas
2 である場合、回収された COガスを加圧して液体 COにした後に、この液体 COの  2, after the recovered CO gas is pressurized to liquid CO, the liquid CO
2 2 2 一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可 能なドライアイス(固体 CO )を製造できる。  2 2 2 Dry ice (solid CO) that can be sold as a product can be manufactured by adiabatically expanding part or all of it by opening the pressure reducing valve.
2  2
[0043] <第 2の実施の形態 >  [0043] <Second embodiment>
図 2に示すように、精製装置は、酸性ガス及び非酸性ガスを含む混合ガスを圧縮す る圧縮機 12と、鉛直方向に延びて設けられ下部に圧縮された混合ガスが供給されか つ上部に吸収液 42が供給されて吸収液 42に混合ガスを接触させることにより酸性ガ スを吸収液 42に吸収させて非酸性ガスを酸性ガス力も分離し回収する吸収塔 13と、 酸性ガスを吸収した吸収液 42を冷却する冷却器 47と、この冷却された吸収液 42が 供給され液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差により吸収液 42 から液体酸性ガス 41を分離して回収するとともに吸収液 42を再生し再利用する分離 再生器 46と、この再生された吸収液 42を高圧のまま吸収塔 13の上部に供給する循 環ポンプ 17とを備える。  As shown in Fig. 2, the refining device is supplied with a compressor 12 that compresses a mixed gas containing acidic gas and non-acidic gas, and a mixed gas that extends in the vertical direction and is compressed in the lower part. The absorption liquid 42 is supplied to the absorption liquid 42, and the mixed gas is brought into contact with the absorption liquid 42 to absorb the acidic gas into the absorption liquid 42, and the non-acidic gas is separated and recovered, and the absorption tower 13 absorbs the acidic gas. The cooler 47 that cools the absorbed liquid 42 and the cooled absorbent 42 are supplied to separate the liquid acidic gas 41 from the absorbent 42 due to the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42. And a regenerator 46 that regenerates and reuses the absorbing liquid 42 and a circulation pump 17 that supplies the regenerated absorbing liquid 42 to the upper portion of the absorption tower 13 with high pressure.
[0044] 混合ガスは、第 1の実施の形態の混合ガスと同一である。また吸収液は、イオン性 液体を除く液体であり、具体的には、有機溶剤又は水のいずれか一方又は双方から なる液体、或いは有機溶剤又は水の 、ずれか一方又は双方を主成分とする液体で ある。有機溶剤としては、酸性ガスに対して大きな吸収能力を有し、密度が大きぐ蒸 気圧が低ぐ液体酸性ガス (液体 CO等)とあまり相互溶解しない極性有機溶剤を用  [0044] The mixed gas is the same as the mixed gas of the first embodiment. Further, the absorbing liquid is a liquid excluding an ionic liquid, and specifically, a liquid composed of one or both of an organic solvent and water, or an organic solvent or water, or one or both of them as a main component. It is a liquid. As the organic solvent, use a polar organic solvent that has a large absorption capacity for acid gas and does not dissolve in liquid acid gas (liquid CO, etc.) with high density and low vapor pressure.
2  2
いることが好ましい。具体的には、有機溶剤は、ポリエチレングリコール、ポリビュルァ ルコール、ポリエーテル、ポリエステル、ポリアルカン及びポリオレフインイオンからな る群より選ばれた 1種又は 2種以上のポリマーであることが好ましい。一方、水は、酸 性ガスに対して比較的大きな吸収能力を有し、密度が比較的大きぐ蒸気圧が比較 的低ぐ液体酸性ガス (液体 CO等)とあまり相互溶解しない。 Preferably it is. Specifically, the organic solvent is preferably one or two or more polymers selected from the group consisting of polyethylene glycol, polybutyl alcohol, polyether, polyester, polyalkane and polyolefin ion. On the other hand, water is acid It has a relatively large absorption capacity for chemical gases, and does not dissolve much with liquid acid gases (liquid CO, etc.) with relatively high density and relatively low vapor pressure.
2  2
[0045] 圧縮機 12と吸収塔 13を連通接続するガス供給管 18にはプリ冷却器 19が設けられ 、上記圧縮機 12及びプリ冷却器 19により、混合ガスが所定の温度及び所定の圧力 にそれぞれ維持された状態で吸収塔 13の下部に供給される。具体的には、吸収塔 1 3に供給される混合ガスの温度、即ち吸収塔 13内の温度は 0〜: L00°C、好ましくは 3 0〜50°Cに設定され、吸収塔 13に供給される混合ガスの圧力、即ち吸収塔 13内の 圧力は 4〜25MPa、好ましくは 6〜10MPaに設定される。ここで、吸収塔 13内の温 度を 0〜: L00°Cの範囲に限定したのは、 0°C未満では冷凍機が必要になり、 100°Cを 越えると昇温に必要なエネルギが増大し酸性ガスの吸収液による吸収量が少なくな る力らである。また吸収塔 13内の圧力を 4〜25MPaの範囲に限定したのは、 4MPa 未満では酸性ガスの吸収液による吸収量が少なくなり、 25MPaを越えると耐圧性の 高い吸収塔 13が必要になり設備費が増大するからである。吸収塔 13は吸収ドラム缶 でもよいが、酸性ガスの吸収効率を向上するために、多段の吸収塔 13を用いること が望ましい。  A gas supply pipe 18 that connects the compressor 12 and the absorption tower 13 in communication is provided with a precooler 19, and the mixed gas is brought to a predetermined temperature and a predetermined pressure by the compressor 12 and the precooler 19. Each is maintained and supplied to the lower part of the absorption tower 13. Specifically, the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to: L00 ° C., preferably 30 to 50 ° C., and is supplied to the absorption tower 13. The pressure of the mixed gas, that is, the pressure in the absorption tower 13 is set to 4 to 25 MPa, preferably 6 to 10 MPa. Here, the temperature in the absorption tower 13 is limited to the range of 0 to L00 ° C. A refrigerator is required if the temperature is less than 0 ° C, and if it exceeds 100 ° C, the energy required for raising the temperature is increased. The power that increases and reduces the amount of acid gas absorbed by the absorbent. The pressure in the absorption tower 13 is limited to the range of 4 to 25 MPa. If the pressure is less than 4 MPa, the amount of absorption by the absorbing solution of the acidic gas decreases, and if it exceeds 25 MPa, the absorption tower 13 with high pressure resistance is required. This is because the cost increases. Although the absorption tower 13 may be an absorption drum, it is desirable to use a multistage absorption tower 13 in order to improve the absorption efficiency of acid gas.
[0046] 吸収塔 13の下端と冷却器 47とを連通接続する第 1連通管 21には、吸収塔 13側か ら順に減圧弁 23、フラッシュドラム 24及び熱交 26が設けられる。減圧弁 23及び フラッシュドラム 24により吸収塔 13の下端力も排出された酸性ガスを含む吸収液が 所定の圧力だけ、例えば吸収塔 13内の圧力より 0. 1〜0. 5MPaだけ減圧される。こ れは吸収液に含まれる H , CH , CO, O , N ,炭素数 2〜: L0までの炭化水素化合  [0046] The first communication pipe 21 that connects the lower end of the absorption tower 13 and the cooler 47 is provided with a pressure reducing valve 23, a flash drum 24, and a heat exchanger 26 in order from the absorption tower 13 side. The absorbing solution containing the acidic gas discharged from the lower end force of the absorption tower 13 by the pressure reducing valve 23 and the flash drum 24 is depressurized by a predetermined pressure, for example, 0.1 to 0.5 MPa from the pressure in the absorption tower 13. This is because of the H, CH, CO, O, N, and carbon compounds from 2 to L0 contained in the absorbent.
2 4 2 2  2 4 2 2
物などの非酸性ガスのみを放散して吸収塔 13に戻すためである。フラッシュドラム 24 の上端と吸収塔 13の下部とは第 1戻り管 31により連通接続され、この第 1戻り管 31に は補助圧縮機 27が設けられる。また熱交翻26は、フラッシュドラム 24の下端から 排出された酸性ガスを含む低温の吸収液に、分離再生器 46の下端カゝら排出された 高温の吸収液が熱を与えるように構成される。即ち、熱交翻26は、上記フラッシュ ドラム 24の下端カゝら排出された酸性ガスを含む吸収液を加熱し、かつ分離再生器 4 6の下端力 排出された高温の吸収液を冷却するように構成される。  This is because only non-acidic gases such as substances are diffused and returned to the absorption tower 13. The upper end of the flash drum 24 and the lower part of the absorption tower 13 are connected in communication by a first return pipe 31, and an auxiliary compressor 27 is provided in the first return pipe 31. The heat exchanger 26 is configured such that the high-temperature absorption liquid discharged from the lower end of the separation regenerator 46 gives heat to the low-temperature absorption liquid containing acid gas discharged from the lower end of the flash drum 24. The That is, the heat exchanger 26 heats the absorption liquid containing the acid gas discharged from the lower end of the flash drum 24 and cools the high-temperature absorption liquid discharged from the lower end force of the separation regenerator 46. Configured.
[0047] 一方、冷却器 47により、酸性ガスを含む吸収液 42が吸収塔 13内の圧力とほぼ同 一に保ちかつ吸収塔 13内の温度より低い温度に冷却した状態で分離再生器 46に 供給される。具体的には、分離再生器 46に供給される吸収液 42の圧力、即ち分離 再生器 46内の圧力は吸収塔 13内の圧力と同一の圧力、吸収塔 13内の圧力より僅 力に高い圧力、或いは吸収塔 13内の圧力より僅かに低い圧力の 4〜25MPa、好ま しくは 6〜: LOMPaに設定され、分離再生器 46に供給される吸収液 42の温度、即ち 分離再生器 46内の温度は吸収塔 13内の温度より低い— 30〜30°C、好ましくは 0〜 20°Cに設定される。ここで、分離再生器 46内の圧力を吸収塔 13内の圧力と同一の 圧力、吸収塔 13内の圧力より僅かに高い圧力、或いは吸収塔 13内の圧力より僅か に低い圧力の 4〜25MPaの範囲に限定したのは、酸性ガスを液ィ匕するためと吸収 液の循環エネルギの消費を低減するためである。また分離再生器 46内の温度を 3 0〜30°Cの範囲に限定したのは、 30°C未満では冷却エネルギが増大し、 30°Cを 越えると COなどの酸性ガスが液ィ匕し難くなるからである。なお、分離再生器 46内の [0047] On the other hand, the cooler 47 causes the absorption liquid 42 containing acid gas to be almost the same as the pressure in the absorption tower 13. And supplied to the separation regenerator 46 while being cooled to a temperature lower than that in the absorption tower 13. Specifically, the pressure of the absorption liquid 42 supplied to the separation regenerator 46, that is, the pressure in the separation regenerator 46 is the same as the pressure in the absorption tower 13, which is slightly higher than the pressure in the absorption tower 13. Pressure, or slightly lower than the pressure in the absorption tower 13 4 to 25 MPa, preferably 6 to: The temperature of the absorbing liquid 42 set to LOMPa and supplied to the separation regenerator 46, that is, in the separation regenerator 46 The temperature of is lower than the temperature in the absorption tower 13-30 to 30 ° C, preferably 0 to 20 ° C. Here, the pressure in the separation regenerator 46 is the same as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13 to 4 to 25 MPa. The reason for limiting to this range is to liquefy the acid gas and to reduce the consumption of circulating energy of the absorbing liquid. The reason why the temperature in the separation regenerator 46 is limited to the range of 30 to 30 ° C is that the cooling energy increases when the temperature is lower than 30 ° C, and the acidic gas such as CO becomes liquid when the temperature exceeds 30 ° C. Because it becomes difficult. Note that the separation regenerator 46
2  2
圧力を吸収塔 13内の圧力より高くする場合、その圧力差は上記温度低下により酸性 ガスを液ィ匕できる 0. l〜3MPaの範囲内であることが好ましぐ分離再生器 46内の圧 力を吸収塔 13内の圧力より低くする場合、その圧力差は上記温度低下により酸性ガ スを液化できる 0. l〜3MPaの範囲内であることが好ましい。 When the pressure is higher than the pressure in the absorption tower 13, the pressure difference is within the range of 0.1 to 3MPa, where the acidic gas can be liquefied by the above temperature drop. When the force is made lower than the pressure in the absorption tower 13, the pressure difference is preferably in the range of 0.1 to 3 MPa at which the acidic gas can be liquefied by the temperature drop.
このように分離再生器 46内の圧力及び温度を調整することにより、分離再生器 46 内で液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差により吸収液 42から 液体酸性ガス 41が分離される。具体的には、液体酸性ガス 41が液体 COであり、分  By adjusting the pressure and temperature in the separation regenerator 46 in this way, the liquid acid gas 41 is absorbed from the absorbing liquid 42 by the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbing liquid 42 in the separation regenerator 46. To be separated. Specifically, liquid acid gas 41 is liquid CO, and
2 離再生器 46内の圧力が 8MPaである場合、液体 COが吸収液に対して不溶性とな  2 When the pressure in the separator / regenerator 46 is 8 MPa, liquid CO becomes insoluble in the absorbent.
2  2
るとともに、吸収液の比重が 1. 2〜1. 6であり、液体 COの比重が 0. 8であるため、 In addition, the specific gravity of the absorbing liquid is 1.2 to 1.6, and the specific gravity of liquid CO is 0.8.
2  2
液体 CO及び吸収液の相互不溶解性及び比重差により吸収液が沈み液体 COが Absorption liquid sinks due to mutual insolubility and specific gravity difference between liquid CO and absorption liquid.
2 2 浮いて分離される。また熱交翻26は、フラッシュドラム 24の下端力も排出された酸 性ガスを含む低温の吸収液から、分離再生器 46の下端力 排出された更に低温の 吸収液 42が熱を奪うように構成される。即ち、熱交翻 26は、上記フラッシュドラム 2 4の下端カゝら排出された酸性ガスを含む吸収液 42を更に冷却し、かつ分離再生器 4 6の下端力 排出された更に低温の吸収液 42を加熱するように構成される。また冷 却器 47と分離再生器 46との間の第 2連通管 22には遠心分離器 48が設けられる。更 に分離再生器 46の下端は第 2戻り管 32により吸収塔 13の上部に接続され、上記循 環ポンプ 17は第 2戻り管 32に設けられる。なお、遠心分離器ではなぐ撹拌機を設 けてもよい。 2 2 Floating and separated. The heat exchanger 26 is configured such that the lower temperature absorbent 42 discharged from the lower end force of the separation regenerator 46 takes heat away from the low temperature absorbent containing the acid gas from which the lower end force of the flash drum 24 is also discharged. Is done. That is, the heat exchanger 26 further cools the absorbing liquid 42 containing the acid gas discharged from the lower end of the flash drum 24 and the lower temperature absorbing liquid discharged from the lower end force of the separation regenerator 46. Configured to heat 42. A centrifuge 48 is provided in the second communication pipe 22 between the cooler 47 and the separation regenerator 46. Further The lower end of the separator / regenerator 46 is connected to the upper portion of the absorption tower 13 by a second return pipe 32, and the circulating pump 17 is provided in the second return pipe 32. In addition, a stirrer may be installed in the centrifuge.
[0049] このように構成された精製装置を用いてガスを精製する方法を説明する。  [0049] A method for purifying a gas using the thus configured purifying apparatus will be described.
混合ガスを吸収塔 13に供給する前に、予め循環ポンプ 17及び補助圧縮機 27を作 動させ、プリ冷却器 19及び冷却器 47に水や空気やアンモニアなどの冷媒を流し、遠 心分離器 48を回転させて、吸収液を循環させるとともに、吸収塔 13及び分離再生器 46に供給される吸収液 42の温度をそれぞれ所定の温度にしておく。先ず混合ガス は圧縮機 12及びプリ冷却器 19により所定の温度に加熱又は冷却されかつ所定の圧 力に昇圧された状態で吸収塔 13の下部に供給される。これにより吸収液 42に混合 ガスが接触して酸性ガスが吸収液 42に吸収されるので、非酸性ガスが酸性ガスから 分離されて吸収塔 13の上端力も回収される。この回収された非酸性ガスの圧力がュ 一ザ側に必要な圧力より高い場合、例えば上記非酸性ガス (H , CH , CO, O , N  Before supplying the mixed gas to the absorption tower 13, the circulation pump 17 and the auxiliary compressor 27 are operated in advance, and a refrigerant such as water, air, or ammonia is allowed to flow through the pre-cooler 19 and the cooler 47. 48 is rotated to circulate the absorption liquid, and the temperature of the absorption liquid 42 supplied to the absorption tower 13 and the separation regenerator 46 is set to a predetermined temperature. First, the mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and supplied to the lower part of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure. As a result, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed by the absorbing liquid 42, so that the non-acidic gas is separated from the acidic gas and the upper end force of the absorption tower 13 is also recovered. If the pressure of the recovered non-acid gas is higher than the pressure required on the user side, for example, the non-acid gas (H, CH, CO, O, N
2 4 2 2 2 4 2 2
,炭素数 2〜10までの炭化水素化合物等の混合ガス)をガスタービンに用いる場合、 現状では 3MPa程度の低圧であるため、上記非酸性ガスを一旦膨張タービン又は断 熱膨張弁を用いて減圧する。このとき減圧後の非酸性ガスの温度は低くなるので、こ の低温の非酸性ガスをプリ冷却器 19及び冷却器 47の冷媒として用いることができる 。なお、上記非酸性ガスの減圧に膨張タービンを用いた場合、この膨張タービンで発 電できるので、その電力はこの実施の形態の精製装置の設置されている所内の消費 に用いることができる。 , Mixed gas of hydrocarbon compounds with 2 to 10 carbon atoms, etc.) is used in gas turbines, because it is currently at a low pressure of about 3 MPa, the non-acid gas is once decompressed using an expansion turbine or a thermal expansion valve. To do. At this time, since the temperature of the non-acidic gas after the pressure reduction becomes low, this low-temperature non-acidic gas can be used as a refrigerant for the precooler 19 and the cooler 47. Note that when an expansion turbine is used for decompressing the non-acidic gas, power can be generated by the expansion turbine, and the power can be used for consumption in the place where the purification apparatus of this embodiment is installed.
[0050] 一方、吸収塔 13の下端カゝら排出された多量の酸性ガスと微量の非酸性ガスを含む 吸収液は減圧弁 23及びフラッシュドラム 24で所定の圧力だけ減圧される。これにより 吸収液に含まれる H , CH , CO, O , N ,炭素数 2〜: L0までの炭化水素化合物な  On the other hand, the absorbing liquid containing a large amount of acidic gas and a small amount of non-acidic gas discharged from the lower end of the absorption tower 13 is depressurized by a predetermined pressure by the pressure reducing valve 23 and the flash drum 24. As a result, H, CH, CO, O, N, carbon number 2 ~: hydrocarbon compounds up to L0 contained in the absorption liquid
2 4 2 2  2 4 2 2
どの非酸性ガスのみが放散されて、酸性ガスを含む吸収液と分離される。この放散さ れた非酸性ガスはフラッシュドラム 24の上端力も排出され更に補助圧縮機 27により 加圧されて再び吸収塔 13に戻される。フラッシュドラム 24の下端力 排出された酸性 ガスを含む吸収液 42は熱交翻26で再生吸収液により冷却された後に、冷却器 47 で更に冷却される。このとき吸収液中の酸性ガスが液ィ匕して吸収液 42中に分散する 。この液体酸性ガス 41を含む吸収液 42は遠心分離器 48で液体酸性ガス 41と吸収 液 42との比重差により液体酸性ガス 41と吸収液 42にほぼ分離された後に、分離再 生器 46に供給される。通常、吸収液 42より液体酸性ガス 41の方が比重が小さいの で、液体酸性ガス 41が遠心分離器 48の回転中心力も離れる方向に移動し、吸収液 42が遠心分離器 48の回転中心に近付く方向に移動する。即ち、吸収液 42は、熱交 換器 26及び冷却器 47で吸収塔 13内の圧力とほぼ同一に保たれかつ吸収塔 13内 の温度より低くされることにより吸収液 42中のガスが液ィ匕され、更に遠心分離器 48で 液体酸性ガス 41と吸収液 42にほぼ分離された状態で、分離再生器 46に供給される 。液体酸性ガス 41と吸収液 42にほぼ分離された状態で分離再生器 46に供給された 液体酸性ガス 41を含む吸収液 42は、液体酸性ガス 41と吸収液 42との相互不溶解 性及び比重差により液体酸性ガス 41と吸収液 42に速やかに分相される。通常、吸 収液 42より液体酸性ガス 41の方が比重が小さ 、ので、液体酸性ガス 41が速やかに 浮いて上相に移行し、吸収液 42が速やかに沈んで下相に移行する。これにより液体 酸性ガス 41が吸収液 42から分離されて分離再生器 46の上部力も比較的短時間に 効率良く回収される。また分離再生器 46の下端力 排出された酸性ガスを含まな 、 再生された吸収液 42は、循環ポンプ 17により搬送され、熱交翻26で所定の温度 に加熱された後に、吸収塔 13の上部に供給されて再利用される。なお、液体酸性ガ ス 41が液体 COである場合、回収された液体 COの一部或いは全部を減圧弁の開 Only non-acidic gases are diffused and separated from the absorbing liquid containing acidic gases. The dissipated non-acid gas also discharges the upper end force of the flash drum 24 and is further pressurized by the auxiliary compressor 27 and returned to the absorption tower 13 again. The lower end force of the flash drum 24 The discharged absorbing liquid 42 containing acid gas is cooled by the regenerated absorbing liquid by heat exchange 26, and further cooled by a cooler 47. At this time, the acidic gas in the absorbing liquid is liquidated and dispersed in the absorbing liquid 42. . The absorption liquid 42 containing the liquid acid gas 41 is substantially separated into the liquid acid gas 41 and the absorption liquid 42 by the centrifugal separator 48 due to the specific gravity difference between the liquid acid gas 41 and the absorption liquid 42, and is then supplied to the separation regenerator 46. Supplied. Normally, the liquid acid gas 41 has a lower specific gravity than the absorption liquid 42, so the liquid acid gas 41 moves in a direction away from the rotation center force of the centrifuge 48, and the absorption liquid 42 moves to the rotation center of the centrifuge 48. Move in the direction you approach. That is, the absorption liquid 42 is kept almost the same as the pressure in the absorption tower 13 by the heat exchanger 26 and the cooler 47 and is made lower than the temperature in the absorption tower 13, so that the gas in the absorption liquid 42 becomes liquid. Then, the liquid is further separated into the liquid acid gas 41 and the absorbing liquid 42 by the centrifuge 48, and then supplied to the separation regenerator 46. The absorption liquid 42 containing the liquid acid gas 41 supplied to the separation regenerator 46 in a state of being substantially separated into the liquid acid gas 41 and the absorption liquid 42 is the mutual insolubility and specific gravity of the liquid acid gas 41 and the absorption liquid 42. Due to the difference, the liquid acid gas 41 and the absorbing liquid 42 are rapidly phase-separated. Usually, the specific gravity of the liquid acid gas 41 is smaller than that of the absorbing liquid 42, so that the liquid acidic gas 41 quickly floats and shifts to the upper phase, and the absorbing liquid 42 quickly sinks and shifts to the lower phase. As a result, the liquid acid gas 41 is separated from the absorbing liquid 42 and the upper force of the separation regenerator 46 is efficiently recovered in a relatively short time. Further, the regenerated absorbent 42 containing no acid gas discharged from the lower end force of the separation regenerator 46 is transported by the circulation pump 17 and heated to a predetermined temperature by heat exchange 26, and then It is supplied to the upper part and reused. When the liquid acidic gas 41 is liquid CO, part or all of the recovered liquid CO is opened in the pressure reducing valve.
2 2  twenty two
放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体 CO )を製 By making adiabatic expansion, the dry ice (solid CO) that can be sold as a product is manufactured.
2 造できる。  2 Can build.
<第 3の実施の形態 >  <Third embodiment>
図 3は第 3の実施の形態を示す。図 3において図 2と同一符号は同一部品を示す。 この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられること以外は第 2の実施の形態と同一に構成される。  FIG. 3 shows a third embodiment. In FIG. 3, the same reference numerals as those in FIG. 2 denote the same parts. In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. The configuration is the same as that of the second embodiment except for the above.
このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 1の実施の形態の動作と略同様であ るので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することにより 、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去する ことができ、酸性ガスの吸収液への溶解度を大きくすることができる。 In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11 In addition, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas column, and the solubility of the acid gas in the absorbing liquid can be increased.
[0052] <第 4の実施の形態 >  [0052] <Fourth embodiment>
図 4は第 4の実施の形態を示す。図 4において図 2と同一符号は同一部品を示す。 この実施の形態では、第 2の実施の形態の減圧弁、フラッシュドラム、補助圧縮機 及び熱交換器が用いられず、吸収塔 13、冷却器 47、遠心分離器 48及び分離再生 器 46がこの順に上方力も下方に向って鉛直方向に並んだ状態で一体的に設けられ る。また吸収液 42としては、有機溶剤又は水のいずれか一方又は双方力もなる液体 、或 、は有機溶剤又は水の 、ずれか一方又は双方を主成分とする液体が用いられ る。上記以外は第 2の実施の形態と同一に構成される。  FIG. 4 shows a fourth embodiment. In FIG. 4, the same reference numerals as those in FIG. 2 denote the same parts. In this embodiment, the pressure reducing valve, the flash drum, the auxiliary compressor, and the heat exchanger of the second embodiment are not used, and the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are the same. In order, the upward force is also provided integrally in a state of being aligned vertically in the downward direction. Further, as the absorbing liquid 42, a liquid having either or both of an organic solvent and water, or a liquid mainly containing either or both of the organic solvent and water is used. The configuration other than the above is the same as that of the second embodiment.
このように構成された精製装置では、吸収塔 13と冷却器 47と遠心分離器 48と分離 再生器 46を一体的に設けたので、装置を小型化できる。上記以外の動作は第 2の実 施の形態の動作と略同様であるので、繰返しの説明を省略する。なお、液体酸性ガ ス 41が液体 COである場合、回収された液体 COの一部或いは全部を減圧弁の開  In the purification apparatus configured as described above, the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are integrally provided, so that the apparatus can be downsized. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted. When the liquid acidic gas 41 is liquid CO, part or all of the recovered liquid CO is opened in the pressure reducing valve.
2 2  twenty two
放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体 CO )を製  By making adiabatic expansion, the dry ice (solid CO) that can be sold as a product is manufactured.
2 造できる。  2 Can build.
[0053] <第 5の実施の形態 > <Fifth embodiment>
図 5は第 5の実施の形態を示す。図 5において図 4と同一符号は同一部品を示す。 この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられること以外は第 4の実施の形態と同一に構成される。  FIG. 5 shows a fifth embodiment. In FIG. 5, the same reference numerals as those in FIG. 4 denote the same parts. In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. The configuration is the same as that of the fourth embodiment except for the above.
このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 4の実施の形態の動作と略同様であ るので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することにより 、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去する ことができ、酸性ガスの吸収液への溶解度を大きくすることができる。  In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the fourth embodiment, the repeated description is omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do.
[0054] <第 6の実施の形態 > <Sixth Embodiment>
図 6は第 6の実施の形態を示す。図 6において図 1と同一符号は同一部品を示す。 この実施の形態では、多孔質膜にイオン性液体又はこれを主成分とする吸収液を 含浸して液体膜 51が形成され、この液体膜 51が膜分離器 52内に張設されて膜分 離器 52が第 1室 52aと第 2室 52bとに区画され、第 1室 52aが第 2室 52bより高圧に設 定され、更に第 1室 52aに酸性ガス及び非酸性ガスを含む混合ガスが導入されるよう に構成される。またガス供給管 18には圧縮機 12及びプリ冷却器 19が設けられる。 このように構成された精製装置を用いてガスを精製する方法を説明する。 FIG. 6 shows a sixth embodiment. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same parts. In this embodiment, a porous membrane is impregnated with an ionic liquid or an absorption liquid containing the ionic liquid as a main component to form a liquid membrane 51. The liquid membrane 51 is stretched in a membrane separator 52 to form a membrane fraction. The separator 52 is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set to a pressure higher than that of the second chamber 52b, and a mixed gas containing acidic gas and non-acidic gas in the first chamber 52a. Is configured to be introduced. The gas supply pipe 18 is provided with a compressor 12 and a precooler 19. A method for purifying a gas using the purification apparatus configured as described above will be described.
先ず混合ガスは圧縮機 12及びプリ冷却器 19により所定の圧力に昇圧された状態 で膜分離器 52の第 1室 52aに導入される。このとき非酸性ガスは第 1室 52aに残留し 、かつ酸性ガスは液体膜 51を透過して第 2室 52bに流入するので、混合ガスは酸性 ガス及び非酸性ガスに分離される。  First, the mixed gas is introduced into the first chamber 52a of the membrane separator 52 while being pressurized to a predetermined pressure by the compressor 12 and the precooler 19. At this time, the non-acidic gas remains in the first chamber 52a, and the acidic gas passes through the liquid film 51 and flows into the second chamber 52b, so that the mixed gas is separated into acidic gas and non-acidic gas.
<第 7の実施の形態 >  <Seventh embodiment>
図 7は第 7の実施の形態を示す。図 7において図 2と同一符号は同一部品を示す。 この実施の形態では、有機溶剤又は水のいずれか一方又は双方からなる液体、或 いは有機溶剤又は水の 、ずれか一方又は双方を主成分とする液体である吸収液 42 が磁性を有し、分離再生器 46の下部に磁石 61が設けられる。磁性を有する吸収液 42としては、ァ-オン中に Fe元素を含む低温溶融塩(常温溶融塩)が挙げられる。ま た磁石 61は分離再生器 46の下部内面に設けることが好ましぐ分離再生器 46は磁 石 61の影響を受けないように非磁性材料で形成されることが好ましい。上記以外は 第 2の実施の形態と同一に構成される。  FIG. 7 shows a seventh embodiment. In FIG. 7, the same reference numerals as those in FIG. 2 denote the same parts. In this embodiment, the absorbing liquid 42, which is a liquid composed mainly of one or both of an organic solvent and water, or a liquid mainly composed of one or both of the organic solvent and water, has magnetism. A magnet 61 is provided at the lower part of the separation regenerator 46. Examples of the absorbing liquid 42 having magnetism include a low-temperature molten salt (normal temperature molten salt) containing Fe element in the ion. Further, it is preferable that the magnet 61 is provided on the lower inner surface of the separation regenerator 46. The separation regenerator 46 is preferably formed of a nonmagnetic material so as not to be affected by the magnet 61. The configuration other than the above is the same as that of the second embodiment.
このように構成された精製装置を用いてガスを精製する方法を説明する。  A method for purifying a gas using the purification apparatus configured as described above will be described.
吸収塔 13内の圧力とほぼ同一の圧力に維持しかつ吸収塔 13内の温度より低い温 度に維持した分離再生器 46に、液体酸性ガス 41を含む吸収液 42が供給されると、 吸収液 42より液体酸性ガス 41の方が比重が小さ 、ので、液体酸性ガス 41と吸収液 42の相互不溶解性及び比重差と、磁性を有する吸収液 42の磁石 61による吸引力と により、吸収液 42と液体酸性ガス 41とに速やかに分離される。即ち、液体酸性ガス 4 1が速やかに上相に移行し、吸収液 42が速やかに下相に移行する。この結果、液体 酸性ガス 41を分離再生器 46から速やかに回収できるとともに、液体酸性ガス 41が取 除かれて再生された吸収液 42が循環ポンプ 17により吸収塔 13の上部に供給されて 速やかに再利用できる。上記以外の動作は第 2の実施の形態の動作と略同様である ので、繰返しの説明を省略する。 When the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 maintained at a pressure almost the same as the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13, the absorption The liquid acid gas 41 has a lower specific gravity than the liquid 42. Therefore, the liquid acid gas 41 and the absorbing liquid 42 are absorbed by the mutual insolubility and specific gravity difference of the liquid acid gas 41 and the magnet 61 of the absorbing liquid 42 having magnetism. It is quickly separated into liquid 42 and liquid acid gas 41. That is, the liquid acidic gas 41 quickly moves to the upper phase, and the absorbing liquid 42 quickly moves to the lower phase. As a result, the liquid acid gas 41 can be quickly recovered from the separator / regenerator 46, and the regenerated absorbent 42 after the liquid acid gas 41 is removed is supplied to the upper portion of the absorption tower 13 by the circulation pump 17. Can be reused promptly. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.
[0056] <第 8の実施の形態 > [Eighth embodiment]
図 8は第 8の実施の形態を示す。図 8において図 7と同一符号は同一部品を示す。 この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられること以外は第 7の実施の形態と同一に構成される。  FIG. 8 shows an eighth embodiment. In FIG. 8, the same reference numerals as those in FIG. 7 denote the same parts. In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. Except for this, the configuration is the same as that of the seventh embodiment.
このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 7の実施の形態の動作と略同様であ るので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することにより 、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去する ことができ、酸性ガスの吸収液への溶解度を大きくすることができる。  In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the seventh embodiment, repeated description will be omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do.
[0057] <第 9の実施の形態 > <Ninth embodiment>
図 9は第 9の実施の形態を示す。図 9において図 2と同一符号は同一部品を示す。 この実施の形態では、添加剤 71を添加した吸収液 42が貯留された吸収液貯留槽 72が設けられる。また吸収液 42としては、有機溶剤又は水のいずれか一方又は双 方力 なる液体、或いは有機溶剤又は水の 、ずれか一方又は双方を主成分とする 液体が用いられる。吸収液として有機溶剤を用いる場合には、添加剤 71としては、水 、アルコール類、エーテル類及びフエノール類力もなる群より選ばれた 1種又は 2種 以上の添加剤が挙げられる。一方、吸収液として水を用いる場合には、添加剤 71と しては、アルコール類、エーテル類及びフエノール類力もなる群より選ばれた 1種又 は 2種以上の添加剤が挙げられる。具体的には、アルコール類としては、メタノール、 エタノール等が例示され、エーテル類としては、ジメチルエーテル、ェチルエーテル 等が例示され、フエノール類としては、フエノール等が例示される。これらの添加剤 71 は吸収液 42の酸性ガスを吸収する能力を殆ど妨げな ヽ。また吸収液貯留槽 72内の 吸収液 42〖こは、吸収液 100重量%に対して添加剤が 1〜50重量%、好ましくは 5〜 10重量%添加される。ここで添加剤を 1〜50重量%の範囲に限定したのは、 1重量 %未満では吸収液 42の粘性を低減する効果があまり得られず、 50重量%を越えると 吸収液 42による酸性ガスの吸収性能に悪影響を及ぼすカゝらである。吸収液貯留槽 7 2には、添加剤 71を吸収液 42に均一に分散させるために撹拌機 73が設けられる。ま た吸収液貯留槽 72の下部は吸収液供給管 74により吸収塔 13の上部に接続される 。更に吸収液供給管 74には、吸収液貯留槽 72内の添加剤含有吸収液 75を吸収塔 13の上部に供給する吸収液供給ポンプ 76と、吸収液供給管 74を開閉する開閉弁 7 7と力 S設けられる。上記以外は第 2の実施の形態と同一に構成される。 FIG. 9 shows a ninth embodiment. In FIG. 9, the same reference numerals as those in FIG. 2 denote the same parts. In this embodiment, an absorption liquid storage tank 72 in which the absorption liquid 42 to which the additive 71 is added is stored. Further, as the absorbing liquid 42, either an organic solvent or water or a liquid having a bi-directional force, or a liquid mainly containing either or both of an organic solvent and water is used. When an organic solvent is used as the absorbing liquid, the additive 71 includes one or more additives selected from the group consisting of water, alcohols, ethers and phenols. On the other hand, when water is used as the absorbent, the additive 71 may be one or more additives selected from the group consisting of alcohols, ethers and phenols. Specifically, examples of alcohols include methanol and ethanol, examples of ethers include dimethyl ether and ethyl ether, and examples of phenols include phenol and the like. These additives 71 should hardly interfere with the ability of the absorbent 42 to absorb acid gases. Further, the absorbent 42 in the absorbent reservoir 72 is added with 1 to 50% by weight, preferably 5 to 10% by weight, of the additive with respect to 100% by weight of the absorbent. Here, the additive was limited to the range of 1 to 50% by weight. If the amount is less than 1% by weight, the effect of reducing the viscosity of the absorbent 42 cannot be obtained so much. This is an adverse effect on the absorption performance of acid gas by the absorbent 42. In the absorbing liquid storage tank 72, a stirrer 73 is provided in order to uniformly disperse the additive 71 in the absorbing liquid. The lower part of the absorption liquid storage tank 72 is connected to the upper part of the absorption tower 13 by an absorption liquid supply pipe 74. Further, the absorption liquid supply pipe 74 includes an absorption liquid supply pump 76 for supplying the additive-containing absorption liquid 75 in the absorption liquid storage tank 72 to the upper part of the absorption tower 13, and an on-off valve for opening and closing the absorption liquid supply pipe 74 7 7 And force S is provided. The configuration other than the above is the same as that of the second embodiment.
このように構成された精製装置を用いてガスを精製する方法を説明する。  A method for purifying a gas using the purification apparatus configured as described above will be described.
先ず吸収液貯留槽 72内で吸収液 42に添加剤 71を添加して攪拌機 73により混合 すると、吸収液 42に添加剤 71が分散されて、吸収液 42の粘性が低下する。次に開 閉弁 77を開いて添加剤含有吸収液 75を吸収液供給ポンプ 76により吸収塔 13の上 部に所定量だけ供給した後に、開閉弁 77を閉じる。更に循環ポンプ 17により、第 2 の実施の形態の吸収液に代えて、添加剤含有吸収液 75を吸収塔 13と分離再生器 4 6との間を循環させる。この結果、添加剤含有吸収液 75が酸性ガスを吸収する能力 を殆ど低下させずに吸収塔 13で酸性ガスを吸収することができる。また粘度の低!ヽ 添加剤含有吸収液 75が吸収塔 13と分離再生器 46との間をスムーズに循環するの で、吸収液の取扱いが容易になる。上記以外の動作は第 1の実施の形態の動作と略 同様であるので、繰返しの説明を省略する。  First, when the additive 71 is added to the absorbent 42 in the absorbent reservoir 72 and mixed by the stirrer 73, the additive 71 is dispersed in the absorbent 42 and the viscosity of the absorbent 42 decreases. Next, the opening / closing valve 77 is opened, and the additive-containing absorbing liquid 75 is supplied to the upper portion of the absorption tower 13 by the absorbing liquid supply pump 76, and then the opening / closing valve 77 is closed. Furthermore, instead of the absorption liquid of the second embodiment, the additive-containing absorption liquid 75 is circulated between the absorption tower 13 and the separation regenerator 46 by the circulation pump 17. As a result, it is possible to absorb the acid gas in the absorption tower 13 without substantially reducing the ability of the additive-containing absorbing liquid 75 to absorb the acid gas. In addition, the low-viscosity additive-containing absorption liquid 75 smoothly circulates between the absorption tower 13 and the separation regenerator 46, so that the absorption liquid can be handled easily. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.
<第 10の実施の形態 >  <Tenth embodiment>
図 10は第 10の実施の形態を示す。図 10において図 9と同一符号は同一部品を示 す。  FIG. 10 shows a tenth embodiment. In FIG. 10, the same reference numerals as those in FIG. 9 denote the same parts.
この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられる。また添加剤 71としては、極性溶剤、即ち、水、アルコール類、ェ 一テル類及びフエノール類力 なる群より選ばれた 1種又は 2種以上の添加剤が挙 げられる。具体的には、アルコール類としては、メタノール、エタノール等が例示され 、エーテル類としては、ジメチルエーテル、ェチルエーテル等が例示され、フエノール 類としては、フエノール等が例示される。上記以外は第 9の実施の形態と同一に構成 される。 このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 4の実施の形態の動作と略同様であ るので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することにより 、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去する ことができ、酸性ガスの吸収液への溶解度を大きくすることができる。また、添加剤 71 として水を用いる場合には、吸収塔 13に添加剤 71としての水が循環されるため、吸 収塔 13に供給する前に、 COガスを含む酸性ガスを除湿器 11で除湿しなくてもよい In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. It is done. Additive 71 includes polar solvents, that is, one or more additives selected from the group consisting of water, alcohols, ethers, and phenols. Specifically, methanol and ethanol are exemplified as alcohols, dimethyl ether and ethyl ether are exemplified as ethers, and phenol and the like are exemplified as phenols. The configuration other than the above is the same as that of the ninth embodiment. In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the fourth embodiment, the repeated description is omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank, and the solubility of the acidic gas in the absorbing liquid is increased. can do. In addition, when water is used as the additive 71, the water as the additive 71 is circulated in the absorption tower 13. Therefore, before supplying the water to the absorption tower 13, acid gas containing CO gas is removed by the dehumidifier 11. No need to dehumidify
2  2
。但し、除湿器 11を設けないと、吸収塔 13に循環される吸収液 42中の水の量が上 記添加剤の添加量の範囲を越えて増大する場合には、除湿器 11を設けた方がよい 。これにより吸収液 42による COの吸収能力の著しい低下を防止できる。  . However, if the dehumidifier 11 is not provided, the dehumidifier 11 is provided when the amount of water in the absorbent 42 circulated to the absorption tower 13 increases beyond the range of the additive amount added. Better. As a result, it is possible to prevent a significant decrease in the ability to absorb CO by the absorbent 42.
2  2
く第 11の実施の形態 >  <Embodiment 11>
図 11は第 11の実施の形態を示す。図 11において図 9と同一符号は同一部品を示 す。  FIG. 11 shows an eleventh embodiment. In FIG. 11, the same reference numerals as those in FIG. 9 denote the same parts.
この実施の形態では、添加剤 71が貯留された添加剤貯留槽 81が分離再生器 46 の上部に接続され、分離再生器 46に圧力調整手段 82が設けられ、分離再生器 82 の下部に蒸留分離器 83が接続され、蒸留分離器 83に加熱手段 84が設けられる。ま た吸収液 42としては、有機溶剤又は水のいずれか一方又は双方力もなる液体、或い は有機溶剤又は水の 、ずれか一方又は双方を主成分とする液体が用いられる。吸 収液 42として有機溶剤を用いる場合には、添加剤 71としては、水、アルコール類及 びエーテル類力 なる群より選ばれた 1種又は 2種以上の添加剤が挙げられ、吸収 液として水を用いる場合には、添加剤 71としては、アルコール類又はエーテル類の いずれか一方又は双方の添加剤が挙げられる。また蒸留分離器 83の下部は第 2戻 り管 32により循環ポンプ 17の吸入口に接続される。圧力調整手段 82により分離再生 器 46内の圧力が 4〜25MPa、好ましくは 6〜: LOMPaに調整される。また加熱手段 8 4により蒸留分離器 83内の温度が 50〜250°C、好ましくは 100〜150°Cに調整され る。ここで、圧力調整手段 82により調整される分離再生器 46内の圧力を 4〜25MPa の範囲に限定したのは、 4MPa未満では気相が生成されるおそれがあり、 25MPaを 越えると設備コストが高くなり液体酸性ガス 41の密度が吸収液 42の密度に近づいて しまうからである。また加熱手段 84により調整される蒸留分離器 83内の温度を 50〜 250°Cの範囲に限定したのは、 50°C未満では添加剤 71の完全分離が難ぐ 250°C を越えると多くのエネルギが必要となるからである。更に遠心分離器 48と分離再生器 46との間の第 2連通管 22には逆止弁 86が設けられる。この逆止弁 86は、添加剤含 有吸収液 75の遠心分離器 48から分離再生器 46への流れを許容し、添加剤含有吸 収液 75の分離再生器 46から遠心分離器 48への流れを阻止するように構成される。 なお、第 6の実施の形態のフエノール類力 Sこの第 7の実施の形態の添加剤力も除か れているのは、フエノール類の沸点が高ぐ蒸留操作で分離する場合、かなりの高温 (250°C程度)〖こ加熱しないと完全に分離できないからである。上記以外は第 9の実 施の形態と同一に構成される。 In this embodiment, an additive storage tank 81 in which the additive 71 is stored is connected to the upper part of the separation regenerator 46, the pressure adjusting means 82 is provided in the separation regenerator 46, and a distillation is performed at the lower part of the separation regenerator 82. A separator 83 is connected, and the distillation separator 83 is provided with heating means 84. Further, as the absorbing liquid 42, a liquid having either or both of an organic solvent and water, or a liquid mainly containing either or both of the organic solvent and water is used. When an organic solvent is used as the absorbing liquid 42, the additive 71 includes one or more additives selected from the group consisting of water, alcohols and ethers. In the case of using water, the additive 71 includes one or both of alcohols and ethers. The lower part of the distillation separator 83 is connected to the suction port of the circulation pump 17 by the second return pipe 32. The pressure in the separation regenerator 46 is adjusted to 4 to 25 MPa, preferably 6 to: LOMPa by the pressure adjusting means 82. Further, the temperature in the distillation separator 83 is adjusted to 50 to 250 ° C, preferably 100 to 150 ° C by the heating means 84. Here, the reason why the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa is that a gas phase may be generated if the pressure is less than 4 MPa, and if it exceeds 25 MPa, the equipment cost is increased. The density of the liquid acid gas 41 becomes higher and the density of the absorbing liquid 42 approaches. Because it ends up. In addition, the temperature in the distillation separator 83 adjusted by the heating means 84 is limited to the range of 50 to 250 ° C. It is difficult to completely separate the additive 71 below 50 ° C. It is because the energy of this is needed. Further, a check valve 86 is provided in the second communication pipe 22 between the centrifuge 48 and the separation regenerator 46. This check valve 86 permits the flow of the additive-containing absorbent 75 from the centrifuge 48 to the separator / regenerator 46, and allows the additive-containing absorbent 75 to flow from the separator / regenerator 46 to the centrifuge 48. Configured to block flow. The phenolic power of the sixth embodiment S The additive power of the seventh embodiment is also excluded because it is separated by a distillation operation where the boiling point of phenols is high ( This is because it cannot be completely separated without heating. Other than the above, the configuration is the same as that of the ninth embodiment.
このように構成された精製装置を用いてガスを精製する方法を説明する。  A method for purifying a gas using the purification apparatus configured as described above will be described.
冷却器 47により分離再生器 46内の温度を 0〜30°Cの範囲に調整し、圧力力調整 手段 82により分離再生器 46内の圧力を 4〜25MPaの範囲に調整した状態で、液体 酸性ガス 41を含む吸収液 42とともに添加剤 71を分離再生器 46に供給すると、液体 酸性ガス 41と添加剤含有吸収液 75の相互不溶解性及び比重差と、吸収液 42に対 して相互溶解性を有しかつ液体酸性ガス 41に対して相互不溶解性を有する添加剤 71の添カ卩による吸収液 42中に分散する液体酸性ガス 41の添加剤 71への置換とに より、分離再生器 46の上相に液体酸性ガス 41が移行しかつ分離再生器 46の下相 に添加剤含有吸収液 75が移行して、液体酸性ガス 41と添加剤含有吸収液 75とが 速やかに分離される。次に加熱手段 84により蒸留分離器 83内を 50〜250°C、好ま しくは 100〜150°Cの温度に加熱した状態で、分離再生器 46の下部から排出された 添加剤含有吸収液 75を蒸留分離器 83に供給すると、添加剤含有吸収液 75中の添 加剤 71が吸収液 42から蒸留分離される。この結果、添加剤 71と吸収液 42を分離し た状態で回収できるので、添加剤 71の除去された吸収液 42が吸収塔 13に供給され 、吸収液 42が除去された添加剤 71が添加剤貯留槽 81に供給されて、吸収液 42及 び添加剤 71をそれぞれ直ぐに再利用できるとともに、吸収液 42が酸性ガスを吸収す る能力を全く低下させずに吸収塔 13で酸性ガスを吸収することができる。上記以外 の動作は第 2の実施の形態の動作と略同様であるので、繰返しの説明を省略する。 [0060] <第 12の実施の形態 > The temperature in the separation regenerator 46 is adjusted to the range of 0 to 30 ° C by the cooler 47, and the pressure in the separation regenerator 46 is adjusted to the range of 4 to 25 MPa by the pressure force adjusting means 82. When additive 71 is supplied to separator / regenerator 46 together with absorption liquid 42 containing gas 41, mutual insolubility and specific gravity difference between liquid acid gas 41 and additive-containing absorption liquid 75, and mutual dissolution with respect to absorption liquid 42. And regenerating by replacing the liquid acid gas 41 dispersed in the absorption liquid 42 with the additive 71 with the additive 71, which is soluble and mutually insoluble in the liquid acid gas 41. Liquid acid gas 41 is transferred to the upper phase of the vessel 46, and the additive-containing absorbent 75 is transferred to the lower phase of the separator / regenerator 46, so that the liquid acid gas 41 and the additive-containing absorbent 75 are rapidly separated. The Next, the additive-containing absorbent 75 discharged from the lower part of the separator / regenerator 46 while the inside of the distillation separator 83 is heated to a temperature of 50 to 250 ° C., preferably 100 to 150 ° C. by the heating means 84. Is fed to the distillation separator 83, the additive 71 in the additive-containing absorbent 75 is distilled and separated from the absorbent 42. As a result, since the additive 71 and the absorbing liquid 42 can be recovered in a separated state, the absorbing liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, and the additive 71 from which the absorbing liquid 42 has been removed is added. The absorbent 42 and the additive 71 can be reused immediately after being supplied to the agent storage tank 81, and the absorption gas 13 is absorbed in the absorption tower 13 without degrading the ability of the absorbent 42 to absorb the acid gas. can do. Since operations other than those described above are substantially the same as those of the second embodiment, repeated description will be omitted. <Twelfth Embodiment>
図 12は第 12の実施の形態を示す。図 12において図 11と同一符号は同一部品を 示す。  FIG. 12 shows a twelfth embodiment. In FIG. 12, the same reference numerals as those in FIG. 11 denote the same parts.
この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられる。また添加剤貯留槽 81には、極性溶剤、即ち、水、アルコール類 及びエーテル類カゝらなる群より選ばれた 1種又は 2種以上の添加剤 71が貯留される 。上記以外は第 11の実施の形態と同一に構成される。  In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. It is done. The additive storage tank 81 stores a polar solvent, that is, one or more additives 71 selected from the group consisting of water, alcohols and ethers. The configuration other than the above is the same as that of the eleventh embodiment.
このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 11の実施の形態の動作と略同様で あるので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することによ り、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去す ることができ、酸性ガスの吸収液への溶解度を大きくすることができる。  In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the eleventh embodiment, repeated description will be omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank. Solubility can be increased.
[0061] <第 13の実施の形態 > <Thirteenth embodiment>
図 13は第 13の実施の形態を示す。図 13において図 11と同一符号は同一部品を 示す。  FIG. 13 shows a thirteenth embodiment. In FIG. 13, the same reference numerals as those in FIG. 11 denote the same parts.
この実施の形態では、酸性ガスが COガスであり、分離再生器 46内の圧力を 4〜2  In this embodiment, the acidic gas is CO gas, and the pressure in the separation regenerator 46 is 4 to 2
2  2
5MPa、好ましくは 6〜: LOMPaに保つ圧力調整手段 82が分離再生器 46に設けられ 、水が貯留された水貯留槽 91が分離再生器 46の下部に接続される。また分離再生 器 46には固液分離器 92が接続され、固液分離器 92の上部にはサブ分離再生器 9 3が接続される。サブ分離再生器 93の下部は第 2戻り管 32により循環ポンプ 17の吸 入口に接続される。ここで、圧力調整手段 82により調整される分離再生器 46内の圧 力を 4〜25MPaの範囲に限定したのは、 4MPa未満では COハイドレートを生成し  5 MPa, preferably 6 to: A pressure adjusting means 82 for maintaining LOMPa is provided in the separation regenerator 46, and a water storage tank 91 in which water is stored is connected to the lower part of the separation regenerator 46. A solid-liquid separator 92 is connected to the separation regenerator 46, and a sub-separation regenerator 93 is connected to the upper part of the solid-liquid separator 92. The lower part of the sub separation regenerator 93 is connected to the suction port of the circulation pump 17 by the second return pipe 32. Here, the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa. If the pressure is less than 4 MPa, CO hydrate is generated.
2  2
難ぐ 25MPaを越えると設備コストが高くなり液体 CO 41の密度が吸収液 42の密度  If it exceeds 25MPa, the equipment cost will increase, and the density of liquid CO 41 will be the density of absorbing liquid 42.
2  2
に近づいてしまうからである。また固液分離器 92としては、フィルタ、遠心分離器等が 挙げられる。また吸収液 42としては、有機溶剤又は水のいずれか一方又は双方から なる液体、或いは有機溶剤又は水の ヽずれか一方又は双方を主成分とする液体が 用いられる。上記以外は第 11の実施の形態と同一に構成される。 このように構成された精製装置を用いてガスを精製する方法を説明する。 Because it approaches. Examples of the solid-liquid separator 92 include a filter and a centrifugal separator. As the absorbing liquid 42, a liquid composed of one or both of an organic solvent and water, or a liquid mainly composed of one or both of the organic solvent and water is used. The configuration other than the above is the same as that of the eleventh embodiment. A method for purifying a gas using the purification apparatus configured as described above will be described.
圧力調整手段 82により分離再生器 46内を 4〜25MPaという高圧に保った状態で 、水貯留槽 91から水を分離再生器 46内の液体 COを含む吸収液中に供給すると、  When water is supplied from the water storage tank 91 into the absorption liquid containing liquid CO in the separation regenerator 46 while the pressure in the separation regenerator 46 is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means 82,
2  2
液体 COの  Liquid CO
2 一部がハイドレートイ匕する、即ち雪状又はシャーベット状に固化する。こ の COノ、イドレート及び液体 COを含む吸収液を固液分離器 92に供給すると、 CO 2 Some hydrate, ie solidify into snow or sherbet. When the absorption liquid containing CO, idrate and liquid CO is supplied to the solid-liquid separator 92, CO
2 2 2 ハイドレートと液体 COと吸収液とに分離され、 COハイドレートは固液分離器 92の 2 2 2 Hydrate and liquid Separated into CO and absorption liquid.
2 2  twenty two
下部から排出される。一方、固液分離器 92内の液体 COと吸収液をサブ分離再生  It is discharged from the bottom. On the other hand, liquid CO and absorption liquid in the solid-liquid separator 92 are sub-separated and regenerated.
2  2
器 93に供給すると、液体 CO 41と吸収液 42の相互不溶解性及び比重差により、液  When supplied to the vessel 93, the liquid CO 41 and the absorbing liquid 42 are insoluble in each other and due to the difference in specific gravity.
2  2
体 CO 41と吸収液 42とに分離される。このように COハイドレートを生成させることに It is separated into body CO 41 and absorbent 42. In this way, to generate CO hydrate
2 2 twenty two
より、より速やかに液体 CO 41を吸収液 42から分離することができる。上記以外の動  Thus, the liquid CO 41 can be separated from the absorbing liquid 42 more quickly. Other than the above
2  2
作は第 2の実施の形態の動作と略同様であるので、繰返しの説明を省略する。  Since the operation is substantially the same as the operation of the second embodiment, repeated description is omitted.
[0062] <第 14の実施の形態 > <Fourteenth embodiment>
図 14は第 14の実施の形態を示す。図 14において図 13と同一符号は同一部品を 示す。  FIG. 14 shows a fourteenth embodiment. In FIG. 14, the same reference numerals as those in FIG. 13 denote the same parts.
この実施の形態では、吸収液としてイオン性液体又はこれを主成分とする液体が用 いられ、圧縮機 12の前に、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿 器 11が設けられること以外は第 13の実施の形態と同一に構成される。  In this embodiment, an ionic liquid or a liquid mainly composed of an ionic liquid is used as an absorbing liquid, and a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas is provided in front of the compressor 12. Except for this, the configuration is the same as that of the thirteenth embodiment.
このように構成された精製装置では、混合ガスを除湿器 11で除湿し、吸収液 42とし てイオン性液体を用いる。上記以外の動作は第 13の実施の形態の動作と略同様で あるので、繰返しの説明を省略する。なお、混合ガスを除湿器 11で除湿することによ り、酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスカゝら予め除去す ることができ、酸性ガスの吸収液への溶解度を大きくすることができる。  In the purification apparatus configured as described above, the mixed gas is dehumidified by the dehumidifier 11 and an ionic liquid is used as the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the thirteenth embodiment, the repeated description is omitted. In addition, by dehumidifying the mixed gas with the dehumidifier 11, moisture that decreases the solubility of the acid gas in the absorbing liquid can be removed in advance from the mixed gas tank. Solubility can be increased.
[0063] <第 15の実施の形態 > [0063] <15th embodiment>
図 15は第 15の実施の形態を示す。  FIG. 15 shows a fifteenth embodiment.
この実施の形態では、燃料を改質、 CO変成及び CO除去して H及び COの混合  In this embodiment, the fuel is reformed, CO transformed and CO removed to mix H and CO.
2 2 ガスとした後に、この混合ガスを上記第 1〜第 14の実施の形態のガスの精製方法又 はガスの精製装置のいずれかを用いて H及び COに分離回収し、更にこの分離回  22 After making the gas, this mixed gas is separated and recovered into H and CO using any of the gas purification methods or gas purification apparatuses of the first to fourteenth embodiments described above, and this separation circuit is further recovered.
2 2  twenty two
収された Hを水素ステーションに供給するとともに、分離回収された COを断熱膨張 させてドライアイス(固体 CO )を製造するように構成される。燃料としては、脱硫ガソリThe collected H is supplied to the hydrogen station, and the separated and recovered CO is adiabatically expanded. And configured to produce dry ice (solid CO 2). As fuel, desulfurization gas
2 2
ン、ナフサ、灯油、メタノール、ジメチルエーテル、液ィ匕石油ガス及び天然ガス力ゝらな る群より選ばれた 1種又は 2種以上の燃料が挙げられる。この燃料の改質はスチーム 改質、部分酸化、或いは超臨界水改質であり、上記改質により燃料が H及び COに And one or more fuels selected from the group consisting of hydrogen, naphtha, kerosene, methanol, dimethyl ether, liquid petroleum gas, and natural gas. This reforming of fuel is steam reforming, partial oxidation, or supercritical water reforming.
2 改質される。また CO変成により大部分の COが COに変成され、 CO除去により僅か  2 Modified. Also, most of CO is converted to CO by CO conversion, and a little by CO removal
2  2
に残った COが除去される。そして残った H及び COの混合ガスは上記第 1〜第 14 The remaining CO is removed. The remaining mixed gas of H and CO is the above first to 14th.
2 2  twenty two
の実施の形態のガスの精製方法又はガスの精製装置の 、ずれかを用いて高圧 H Of the gas purification method or gas purification apparatus of the embodiment of
2 及び気体状態又は液体状態の COに分離される。更に高圧 Hは水素ステーション  2 and CO in gaseous or liquid state. High pressure H is a hydrogen station
2 2  twenty two
に供給され、水素燃料電池自動車の燃料となる。一方、 COを液体状態で回収する To be used as a fuel for hydrogen fuel cell vehicles. Meanwhile, CO is recovered in a liquid state
2  2
場合、この回収された液体 COの一部或いは全部を減圧弁の開放にて断熱膨張さ In this case, part or all of the recovered liquid CO is adiabatic and expanded by opening the pressure reducing valve.
2  2
せることにより、製品として販売可能なドライアイスを製造できる。また COを気体状態 Can produce dry ice that can be sold as a product. CO is in a gaseous state
2 で回収する場合、この回収された COガスを加圧して液体 COにした後に、この液体  2), the recovered CO gas is pressurized to liquid CO and then the liquid
2 2  twenty two
COの一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販 Part or all of CO is sold as a product by adiabatic expansion by opening the pressure reducing valve.
2 2
売可能なドライアイス(固体 CO )を製造できる。 Produces sellable dry ice (solid CO 2).
2  2
<第 16の実施の形態 >  <Sixteenth embodiment>
図 16は第 16の実施の形態を示す。  FIG. 16 shows a sixteenth embodiment.
この実施の形態では、燃料を車上で改質、 CO変成及び CO除去して H及び CO  In this embodiment, the fuel is reformed on the vehicle, CO is transformed, and CO is removed to remove H and CO.
2 2 の混合ガスとした後に、この混合ガスを上記第 1〜第 14の実施の形態のガスの精製 方法又はガスの精製装置のいずれかを用いて H及び COに分離回収し、更にこの  After the mixed gas of 2 2 is obtained, the mixed gas is separated and recovered into H and CO by using either the gas purification method or the gas purification apparatus of the first to fourteenth embodiments, and further this
2 2  twenty two
分離回収された Hを燃料電池に供給するシステムが、燃料電池を駆動源とする車上 The system that supplies the separated and recovered H to the fuel cell
2  2
改質型車両に搭載される。燃料としては、脱硫ガソリン、ナフサ、灯油、メタノール、ジ メチルエーテル、液ィ匕石油ガス及び天然ガスカゝらなる群より選ばれた 1種又は 2種以 上の燃料が挙げられる。この燃料の改質はスチーム改質であり、このスチーム改質に より燃料が H及び COに改質される。また CO変成により大部分の COが COに変成 Installed in reformed vehicles. Examples of the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquid petroleum gas, and natural gas. The reforming of this fuel is steam reforming, and the fuel is reformed into H and CO by this steam reforming. Also, most of CO is transformed into CO by CO transformation
2 2 され、 CO除去により僅かに残った COが除去される。そして残った H及び COの混  2 2 and CO removal removes a little residual CO. And the remaining mixture of H and CO
2 2 合ガスは上記第 1〜第 14の実施の形態のガスの精製方法又はガスの精製装置のい ずれかを用いて高圧 H及び液体 COに分離される。更に高圧 Hは燃料電池に供  2 2 The combined gas is separated into high-pressure H and liquid CO using any of the gas purification methods or gas purification apparatuses of the first to fourteenth embodiments. Furthermore, the high pressure H is supplied to the fuel cell.
2 2 2  2 2 2
給されるとともに、液体 COは一時的に車両に貯留され後でまとめて降ろされる。この 結果、種々の燃料力 高圧の Hを製造しながら、液体 COを効率良く回収できる。 In addition to being supplied, liquid CO is temporarily stored in the vehicle and later collected. this As a result, liquid CO can be efficiently recovered while producing various types of fuel-powered high-pressure H.
2 2  twenty two
即ち、 COを液状で回収し、一時的に車上に貯留することにより、 COゼロエミッショ That is, by collecting CO in liquid form and temporarily storing it on the vehicle, CO zero emission
2 2  twenty two
ン自動車を実現できる。 Can be realized.
なお、水、アルコール類、エーテル類及びフエノール類からなる群より選ばれた 1種 又は 2種以上の添加剤を第 1の実施の形態に示す精製装置の吸収液に添加しても よい。この場合、吸収液の酸性ガスを吸収する能力を低下させることなぐ吸収液がス ムーズに流れて吸収液の取扱いが容易になるとともに、添加剤により粘性の低下した 吸収液力 酸性ガスをスムーズに蒸留分離できる。  One or more additives selected from the group consisting of water, alcohols, ethers and phenols may be added to the absorbent of the purification apparatus shown in the first embodiment. In this case, the absorption liquid smoothly flows without reducing the ability of the absorption liquid to absorb the acidic gas, making it easy to handle the absorption liquid and reducing the viscosity due to the additive. Can be separated by distillation.
また、凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加してもよい。この 場合、凝集剤を貯留する凝集剤槽を分離再生器に接続する。凝集剤槽に貯留され た凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収 液中に分散して 、る液体酸性ガス (分散液体)を凝集させるか或いは微小液体にす ることができる。このため、分離再生器の下部を循環ポンプの吸入口に接続し、分離 再生器内の圧力を 4〜25MPaに設定しかつ温度を 0〜30°Cに設定すれば、分離再 生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離が速やかに進行するの で、液体酸性ガスと凝集剤含有吸収液とに速やかに分離され、凝集剤含有吸収液が 蒸留分離器に供給される。一方、分離再生器の下部を加熱手段付きの蒸留分離器 に接続し、蒸留分離器の下部を循環ポンプの吸入口に接続し、更に蒸留分離器の 上部を凝集剤槽に接続すれば、分離再生器内で液体酸性ガスと凝集剤含有吸収液 との比重差分離が速やかに進行するとともに、蒸留分離器内の凝集剤が吸収液から 蒸留分離されるので、液体酸性ガスと凝集剤と吸収液とに速やかに分離され、吸収 液のみが吸収塔に供給される。  Moreover, you may add a flocculant to the absorption liquid containing the liquid acidic gas in a separation regenerator. In this case, a flocculant tank for storing the flocculant is connected to the separation regenerator. By adding the flocculant stored in the flocculant tank to the absorbent containing the liquid acidic gas in the separation regenerator, the liquid acidic gas (dispersed liquid) dispersed in the absorbent is agglomerated or minutely dispersed. Can be liquid. Therefore, if the lower part of the separation regenerator is connected to the suction port of the circulation pump, the pressure in the separation regenerator is set to 4 to 25 MPa, and the temperature is set to 0 to 30 ° C, the inside of the separation regenerator Since the specific gravity difference separation between the liquid acid gas and the flocculant-containing absorption liquid proceeds promptly, the liquid acid gas and the flocculant-containing absorption liquid are quickly separated, and the flocculant-containing absorption liquid is supplied to the distillation separator. The On the other hand, the lower part of the separation regenerator is connected to a distillation separator with heating means, the lower part of the distillation separator is connected to the inlet of the circulation pump, and the upper part of the distillation separator is further connected to the flocculant tank. Separation of specific gravity between the liquid acidic gas and the flocculant-containing absorbent proceeds rapidly in the regenerator, and the flocculant in the distillation separator is separated from the absorbent by distillation. It is quickly separated from the liquid and only the absorption liquid is supplied to the absorption tower.
更に、上記第 2〜5及び 7〜14の実施の形態の精製方法又は精製装置を、石油精 製プラントやアンモニアプラントから排出される高圧ガス源、 COの高い鉄鋼排ガス(  Further, the refining method or refining apparatus of the second to fifth and seventh to fourteenth embodiments described above is applied to a high-pressure gas source discharged from a petroleum refinery plant or an ammonia plant, steel exhaust gas with high CO (
2  2
CO濃度:約 27%)や発酵ガス (CO濃度:約 30〜40%)等の低圧ガス源に適用し (CO concentration: approx. 27%) and fermentation gas (CO concentration: approx. 30-40%)
2 2 twenty two
て、即ち、これらのガス源を上記第 1〜14の実施の形態の精製方法又は精製装置の 吸収塔に供給して、液体 CO又はドライアイスを製造してもよい。上記第 2〜5及び 7 That is, these gas sources may be supplied to the absorption tower of the purification method or purification apparatus of the first to fourteenth embodiments to produce liquid CO or dry ice. 2-5 and 7 above
2  2
〜14の実施の形態の精製方法又は精製装置は、基本的には物理吸収法を用いて いるため、従来(既存)の液体 CO生産プラントのランニングコストの 70〜80%を占 The purification method or purification apparatus of the embodiment of -14 basically uses a physical absorption method. Therefore, it accounts for 70-80% of the running cost of a conventional (existing) liquid CO production plant
2  2
めている再生エネルギコスト、再生ガス(CO )圧縮コスト、再生ガス(CO )の冷凍コ  Renewable energy costs, regenerative gas (CO 2) compression costs, regenerative gas (CO 2) freezing costs
2 2 スト及び再生吸収液の再圧縮コスト等をほぼ不要にできる。この結果、減価償却があ る程度済んだ液体 CO製造設備に対しては、このまま現有設備を運転し続けるより、  2 2 Costs for recompression of the strike and regenerated absorbent can be made almost unnecessary. As a result, for liquid CO production facilities that have already been depreciated to a certain degree,
2  2
上記第 2〜5及び 7〜14の実施の形態の精製方法又は精製装置を採用した設備に 置き換えた方がコストの上でメリットがある。  There is a merit in terms of cost if it is replaced with the equipment adopting the purification method or purification apparatus of the second to fifth and seventh to fourteenth embodiments.
実施例  Example
[0066] 次に本発明の実施例を詳しく説明する。  Next, examples of the present invention will be described in detail.
<実施例 1 >  <Example 1>
平均分子量 200の市販の一級ポリエチレングリコールを吸収液として用いた。この 吸収液を実施例 1とした。  Commercially available primary polyethylene glycol having an average molecular weight of 200 was used as the absorbing solution. This absorbing solution was designated as Example 1.
<試験 1及び評価 >  <Test 1 and evaluation>
実施例 1の吸収液に純度 99. 99体積%の高純度の COガスを接触させた。具体  The absorption liquid of Example 1 was contacted with high purity CO gas having a purity of 99.99% by volume. Concrete
2  2
的には、気液平衡測定装置を用いて、 COガスの吸収液への溶解度を測定した。測  Specifically, the solubility of CO gas in the absorbing solution was measured using a vapor-liquid equilibrium measurement device. Measurement
2  2
定温度は 35°Cに一定にし、圧力は大気圧〜 0. 5MPaまで段階的に変化させた。原 料ガスである COガスの総量や吸収されなかった COガスの量から、 COガスの吸  The constant temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 0.5 MPa. From the total amount of CO gas that is the raw material gas and the amount of CO gas that has not been absorbed, the absorption of CO gas
2 2 2 収液への溶解度を算出し、その結果を図 17に示す。  2 2 2 The solubility in the collected liquid was calculated, and the results are shown in Fig. 17.
図 17から明らかなように、 COガスの吸収液への溶解度は大きぐかつ圧力が上昇  As is clear from Fig. 17, the solubility of CO gas in the absorption liquid is large and the pressure increases.
2  2
するに従って増大することが分力つた。  As it did, it became a component to increase.
[0067] <試験 2及び評価 > [0067] <Test 2 and evaluation>
実施例 1の吸収液を用いて、 H Sガス及び COSガスの各種ガス(酸性ガス)との気  Using the absorption liquid of Example 1, gas with various gases (acid gases) of H 2 S gas and COS gas
2  2
液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上記 H Sガス及び CO  Liquid equilibrium tests were performed separately for each type of gas. H S gas and CO
2  2
Sガスの純度はそれぞれ 99. 9体積%と高純度であった。具体的には、高圧気液平 衡測定装置を用いて、上記 H Sガス及び COSガスの各種ガスの吸収液への溶解度  The purity of S gas was as high as 99.9% by volume. Specifically, using a high-pressure gas-liquid equilibrium measurement device, the solubility of the above HS gas and COS gas in the absorbing solution
2  2
をそれぞれ測定した。測定温度は 35°Cに一定にし、圧力は大気圧〜 0. 25MPaに 段階的に変化させた。各種ガスの量や吸収されな力つた各種ガスの量から、 H S  Was measured respectively. The measurement temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 0.25 MPa. From the amount of various gases and the amount of various gases absorbed, H S
2 ガ ス及び COSガスの各種ガスの吸収液への溶解度をそれぞれ算出し、その結果を図 1 8に示す。 図 18から明らかなように、 H Sガス及び COSガスの各種ガスの吸収液への溶解度 The solubilities of 2 gas and COS gas in the absorbent are calculated, and the results are shown in Fig. 18. As is clear from Fig. 18, the solubility of various gases of HS gas and COS gas in the absorbing solution
2  2
は非常に大きぐかつ圧力が上昇するに従って増大することが分力つた。  Was very large and increased with increasing pressure.
[0068] <試験 3及び評価 > [0068] <Test 3 and evaluation>
実施例 1の吸収液を用いて、 Hガス, CHガス, COガス及び Nガスの各種ガス(  Using the absorption liquid of Example 1, various gases of H gas, CH gas, CO gas and N gas (
2 4 2  2 4 2
非酸性ガス)との気液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上 記 Hガスの純度は 99. 99体積%以上であり、 CHガスの純度は 99. 97体積%以上 A gas-liquid equilibrium test with a non-acid gas was carried out separately for each type of gas. The purity of H gas is 99.99% by volume or higher, and the purity of CH gas is 99.97% by volume or higher.
2 4 twenty four
であり、 COガスの純度は 99. 97体積%以上であり、 Nガスの純度は 99. 999体積  The purity of CO gas is 99.97 volume% or more, and the purity of N gas is 99.999 volume
2  2
%以上であった。具体的には、高圧気液平衡測定装置を用いて、上記 Hガス, CH  It was more than%. Specifically, using a high-pressure vapor-liquid equilibrium measurement device, the above H gas, CH
2 4 ガス, COガス及び Nガスの各種ガスの吸収液への溶解度をそれぞれ測定した。測  The solubility of various gases, gas, CO gas and N gas, in the absorbing solution was measured. Measurement
2  2
定温度は 35°Cに一定にし、圧力は大気圧〜 0. 5MPaに段階的に変化させた。各種 ガスの量や吸収されなかった各種ガスの量から、 Hガス, CHガス, COガス及び N  The constant temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 0.5 MPa. From the amount of various gases and the amount of various gases that were not absorbed, H gas, CH gas, CO gas, and N
2 4 2 ガスの各種ガスの吸収液への溶解度をそれぞれ算出し、その結果を図 19に示す。 図 19から明らかなように、 Hガス, CHガス, COガス及び Nガスの各種ガスの吸  2 4 2 Solubility of various gases in the absorbent is calculated, and the results are shown in Fig. 19. As is clear from Fig. 19, the absorption of various gases such as H gas, CH gas, CO gas, and N gas.
2 4 2  2 4 2
収液への溶解度は非常に小さぐ殆ど吸収されないことが分力つた。  It was found that the solubility in the collected liquid was very small and hardly absorbed.
[0069] <試験 4及び評価 >  [0069] <Test 4 and evaluation>
実施例 1の吸収液を用いて、液体 COとの相互不溶解性及び比重差による相分離  Using the absorption liquid of Example 1, phase separation due to mutual insolubility with liquid CO and specific gravity difference
2  2
の度合 、を確認するために、温度 20°Cで圧力 7MPaに設定した高圧容器 (外部から 視認可能な透明部材により形成される。)に、上記吸収液と液体 CO  In order to confirm the degree, the above absorption liquid and liquid CO 2 are placed in a high-pressure container (formed by a transparent member visible from the outside) set at a temperature of 20 ° C and a pressure of 7 MPa.
2をそれぞれ注入 した。注入した吸収液 (比重 1. 13)と液体 CO (比重 0. 81)は相互不溶解性及び比  2 were injected respectively. The injected absorption liquid (specific gravity 1.13) and liquid CO (specific gravity 0.81) are mutually insoluble and
2  2
重差により 2相になっていた。次に上記高圧容器内の吸収液と液体 COを、攪拌機  There were two phases due to the heavy difference. Next, the absorbent and liquid CO in the high-pressure vessel are
2  2
により 5分間撹拌し、均一相になった後に、攪拌機を停止し、 10分間静置した。この 静置した後の高圧容器内の吸収液と液体 COの様子を図 20に示す。  The mixture was stirred for 5 minutes to obtain a homogeneous phase, and then the stirrer was stopped and allowed to stand for 10 minutes. Figure 20 shows the state of the absorbing liquid and liquid CO in the high-pressure vessel after standing still.
2  2
図 20から明らかなように、撹拌した後に静置することにより、吸収液と液体 COは再  As can be seen from Fig. 20, the absorption liquid and liquid CO are re-established by allowing to stand after stirring.
2 び分相することが分かった。これは、吸収液と液体 CO力 相互に不溶解でありかつ  Two phases were found to be separated. This is because the absorbent and liquid CO forces are insoluble in each other and
2  2
比重差が大きいために、速やかに 2相に分離されたものと考えられる。また撹拌する 前の 2相の液面と、撹拌して静置した後の 2相の液面はそれぞれ全く同じレベルであ つた o  Due to the large specific gravity difference, it is considered that the two phases were promptly separated. In addition, the two-phase liquid level before stirring and the two-phase liquid level after stirring and standing are at the same level.
[0070] <実施例 2 > イオン性液体のみカゝらなる吸収液を用いた。具体的には、イオン性液体として 1-n- デシル -3-メチルイミダゾリゥム ·へキサフルォロリン酸塩( 1- n-decy卜 3-methylimidazo hum <Example 2> An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium hexafluorophosphate (1-n-decy 卜 3-methylimidazo hum
hexafluorophosphate) [DMIM][PF ]を用いた。この吸収液を 1 X 10_4Paの真空中で 7 hexafluorophosphate) [DMIM] [PF] was used. This absorbing solution is 7 in a vacuum of 1 X 10 _4 Pa.
6  6
0°Cに加熱して乾燥'脱気した。脱気後の吸収液中の水分量は 0. 2重量%以下であ つた。この吸収液を実施例 2とした。  Heated to 0 ° C. to dry and degas. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 2.
<実施例 3 >  <Example 3>
イオン性液体のみカゝらなる吸収液を用いた。具体的には、イオン性液体として 1-n- デシル -3-メチルイミダゾリゥム ·四フッ化ホウ酸塩((1- n-decy卜 3-methylimidazolium tetrafluoroborate) [DMIM][BF ]を用いた。この吸収液を 1 X 10_4Paの真空中で 70 An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium tetrafluoroborate ((1-n-decy 卜 3-methylimidazolium tetrafluoroborate) [DMIM] [BF] was used as the ionic liquid. This absorbent is 70 in a vacuum of 1 X 10 _4 Pa.
4  Four
°Cに加熱して乾燥'脱気した。脱気後の吸収液中の水分量は 0. 2重量%以下であつ た。この吸収液を実施例 3とした。  Dried and degassed by heating to ° C. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 3.
[0071] <実施例 4> <Example 4>
イオン性液体のみカゝらなる吸収液を用いた。具体的には、イオン性液体として(1-n -ォクチル- 3-メチルイミダゾリゥム ·硝酸塩(1- n- octy卜 3- methylimidazolium nitrate) [OMIM][NO ]を用いた。この吸収液を 1 X 10_4Paの真空中で 70°Cに加熱し An absorbing solution consisting only of an ionic liquid was used. Specifically, (1-n-octyl-3-methylimidazolium nitrate [OMIM] [NO] was used as the ionic liquid. Heat to 70 ° C in a vacuum of 1 X 10 _4 Pa
3  Three
て乾燥'脱気した。脱気後の吸収液中の水分量は 0. 2重量%以下であった。この吸 収液を実施例 4とした。  Dry and degassed. The water content in the absorbing solution after deaeration was 0.2% by weight or less. This absorbent solution was designated as Example 4.
<実施例 5 >  <Example 5>
イオン性液体のみカゝらなる吸収液を用いた。具体的には、イオン性液体として N-ェ チル-ピリジ-ゥム ·四フッ化ホウ酸塩(N-ethy卜 pyridinium  An absorbing solution consisting only of an ionic liquid was used. Specifically, as an ionic liquid, N-ethy pyridinium tetrafluoroborate (N-ethy 卜 pyridinium
tetrafluoroborate) [N-ETPY][PF6]を用いた。この吸収液を 1 X 10_4Paの真空中で 7 0°Cに加熱して乾燥'脱気した。脱気後の吸収液中の水分量は 0. 2重量%以下であ つた。この吸収液を実施例 5とした。 tetrafluoroborate) [N-ETPY] [PF6] was used. This absorbent was dried and degassed by heating to 70 ° C. in a vacuum of 1 × 10 −4 Pa. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 5.
[0072] <試験 5及び評価 > [0072] <Test 5 and evaluation>
実施例 2〜5の吸収液に純度 99. 99体積%の高純度の COガス (酸性ガス)を接  A high-purity CO gas (acid gas) with a purity of 99.99% by volume was contacted with the absorbing solutions of Examples 2 to 5.
2  2
触させた。具体的には、高圧気液平衡測定装置を用いて、 COガスの吸収液への溶  Touched. Specifically, using a high-pressure vapor-liquid equilibrium measurement device, the solution of CO gas in the absorption liquid is dissolved.
2  2
解度を測定した。測定温度は 35°C、 45°C及び 55°Cにそれぞれ一定にし、圧力は大 気圧〜 lOMPaに段階的に変化させた。原料ガスである COガスの総量や吸収され The resolution was measured. The measurement temperature is constant at 35 ° C, 45 ° C and 55 ° C, respectively, and the pressure is large. The pressure was changed stepwise from atmospheric pressure to lOMPa. The total amount of CO gas that is the source gas
2  2
なかった COガスの量から、 COガスの吸収液への溶解度をモル分率で算出し、そ  From the amount of CO gas that was not present, the solubility of the CO gas in the absorbent was calculated as a mole fraction and
2 2  twenty two
の結果を図 21〜図 23に示す。  The results are shown in Figs.
吸収液に溶け込んだ COを減圧操作によって回収することにより、回収された CO  By recovering the CO dissolved in the absorbent by decompression, the recovered CO
2 2 ガス中には吸収液は検出されず、純粋な COガスであることを確認できた。また図 21  2 2 Absorbed liquid was not detected in the gas, confirming that it was pure CO gas. Figure 21
2  2
〜図 23から明らかなように、 COガスの吸収液への溶解度は、圧力が上昇するに従  ~ As is clear from Fig. 23, the solubility of CO gas in the absorbing solution increases as the pressure increases.
2  2
つて増大することが分力つた。  It has become a force to increase.
[0073] <試験 6及び評価 > [0073] <Test 6 and evaluation>
実施例 2の吸収液を用いて、 Hガス, CHガス, COガス及び Nガスの各種ガス(  Using the absorption liquid of Example 2, various gases of H gas, CH gas, CO gas and N gas (
2 4 2  2 4 2
非酸性ガス)との気液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上 記 Hガス, CHガス, COガス及び Nガスの純度は、それぞれ 99. 99体積0 /0、 99. A gas-liquid equilibrium test with a non-acid gas was carried out separately for each type of gas. Upper Symbol H gas, CH gas, the purity of the CO gas and N 2 gas are respectively 99.99 volume 0/0, 99.
2 4 2  2 4 2
97体積%、 99. 97体積%及び 99. 999体積%であった。具体的には、高圧気液平 衡測定装置を用いて、上記 Hガス, CHガス, COガス及び Nガスの各種ガスの吸  97% by volume, 99.97% by volume and 99.999% by volume. Specifically, using a high-pressure gas-liquid equilibrium measurement device, the various gases such as H gas, CH gas, CO gas, and N gas are absorbed.
2 4 2  2 4 2
収液への溶解度をそれぞれ測定した。測定温度は 35°Cに一定にし、圧力は大気圧 〜10MPaに段階的に変化させた。各種ガスの量や吸収されな力つた各種ガスの量 力も、 Hガス, CHガス, COガス及び Nガスの各種ガスの吸収液への溶解度をモ The solubility in the collected liquid was measured. The measurement temperature was kept constant at 35 ° C, and the pressure was changed stepwise from atmospheric pressure to 10 MPa. The amount of various gases and the amount of various gases that have not been absorbed also affect the solubility of H gas, CH gas, CO gas, and N gas in the absorbing solution.
2 4 2 2 4 2
ル分率でそれぞれ算出し、その結果を図 24に示す。  Figure 24 shows the results.
吸収液に溶け込んだ Hガス, CHガス, COガス及び Nガスの各種ガスを減圧操  Various gases such as H gas, CH gas, CO gas, and N gas dissolved in the absorbent are decompressed.
2 4 2  2 4 2
作によってそれぞれ回収することにより、回収された Hガス, CHガス, COガス及び  By collecting each by operation, recovered H gas, CH gas, CO gas and
2 4  twenty four
Nガス中には吸収液が検出されず、純粋な Hガス, CHガス, COガス及び Nガス Absorbed liquid is not detected in N gas, pure H gas, CH gas, CO gas and N gas
2 2 4 2 であることを確認できた。また図 24から明らかなように、吸収液には Hガス, CHガス 2 2 4 2 was confirmed. As is clear from Fig. 24, the absorption liquid contains H gas and CH gas.
2 4 twenty four
, COガス及び Nガスは殆ど吸収されないことが分かった。 , CO gas and N gas were hardly absorbed.
2  2
[0074] <試験 7及び評価 >  [0074] <Test 7 and evaluation>
実施例 2の吸収液を用いて、 COガス、 H Sガス及び COSガスの各種ガス(酸性ガ  Using the absorption liquid of Example 2, CO gas, H 2 S gas, and COS gas (acid gas)
2 2  twenty two
ス)との気液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上記 COガ  The gas-liquid equilibrium test was conducted separately for each type of gas. CO gas
2 ス、 H Sガス及び COSガスの純度は全て 99. 9体積%以上と高純度であった。具体 The purity of all gases, H 2 S gas, and COS gas were all 99.9% by volume or higher. Concrete
2 2
的には、高圧気液平衡測定装置を用いて、上記 COガス、 H Sガス及び COSガスの  Specifically, using a high-pressure vapor-liquid equilibrium measurement device, the above-mentioned CO gas, H 2 S gas, and COS gas
2 2  twenty two
各種ガスの吸収液への溶解度をそれぞれ測定した。測定温度は 35°Cに一定にし、 圧力は大気圧〜 lOMPaに段階的に変化させた。各種ガスの量や吸収されなかった 各種ガスの量から、 COガス、 H Sガス及び COSガスの各種ガスの吸収液への溶解 The solubility of various gases in the absorbing solution was measured. Keep the measurement temperature at 35 ° C, The pressure was changed stepwise from atmospheric pressure to lOMPa. Dissolve CO gas, HS gas, and COS gas into the absorption liquid from the amount of various gases and the amount of various gases that were not absorbed
2 2  twenty two
度を単位体積当たりの溶解度 (Nm3Zm3)でそれぞれ算出し、その結果を図 25に示 す。 The degree of solubility was calculated in terms of solubility per unit volume (Nm 3 Zm 3 ), and the results are shown in FIG.
図 25から明らかなように、 COガス、 H Sガス及び COSガスの各種ガスの吸収液へ  As is clear from Fig. 25, the absorption liquids for various gases such as CO gas, H 2 S gas, and COS gas
2 2  twenty two
の単位体積当たりの溶解度は圧力が上昇するに従って増大し、 H Sガスの溶解度が The solubility per unit volume increases as the pressure increases, and the solubility of H 2 S gas increases.
2  2
最も大きぐ COSガスの溶解度が次に大きぐ COガスの溶解度が最も小さいことが The largest COS gas has the next highest CO gas solubility.
2  2
分かった。 I understood.
<試験 8及び評価 >  <Test 8 and evaluation>
実施例 2の吸収液 (イオン性液体)を用いて、液体 COとの相互不溶解性及び比重  Using the absorbing liquid (ionic liquid) of Example 2, mutual insolubility and specific gravity with liquid CO
2  2
差による相分離の度合いを確認するために、温度 20°Cで圧力 7MPaに設定した高 圧容器 (外部から視認可能な透明部材により形成される。)に、上記吸収液と液体 C Oをそれぞれ注入した。注入した吸収液 (比重 1. 37)と液体 CO (比重 0. 81)は相In order to confirm the degree of phase separation due to the difference, the above absorption liquid and liquid CO were respectively injected into a high-pressure vessel (formed by a transparent member visible from the outside) set at a pressure of 7 MPa at a temperature of 20 ° C. did. The injected absorption liquid (specific gravity 1.37) and liquid CO (specific gravity 0.81) are in phase.
2 2 twenty two
互不溶解性及び比重差により 2液相になっていた。次に上記高圧容器内の吸収液と 液体 COを、攪拌機により 5分間撹拌し均一相になった後に、攪拌機を停止し、 10 Due to the mutual insolubility and specific gravity difference, it became a two-liquid phase. Next, the absorbent and liquid CO in the high-pressure vessel were stirred for 5 minutes with a stirrer to form a homogeneous phase, and then the stirrer was stopped.
2  2
分間静置した。この静置した後の高圧容器内の吸収液と液体 COの様子を図 26に Let stand for a minute. Fig. 26 shows the absorption liquid and liquid CO in the high-pressure vessel after standing.
2  2
示す。 Show.
図 26から明らかなように、撹拌した後に静置することにより、吸収液と液体 COは再  As is clear from Fig. 26, the absorption liquid and liquid CO are re-established by allowing to stand after stirring.
2 び分相することが分かった。これは、吸収液と液体 CO  Two phases were found to be separated. This is because absorption liquid and liquid CO
2力 相互に不溶解でありかつ 比重差が大きいために、速やかに 2液相に分離されたものと考えられる。また撹拌す る前の 2液相の液面と、撹拌して静置した後の 2液相の液面はそれぞれ全く同じレべ ルであった。  The two forces are considered to have been separated into two liquid phases promptly because they are insoluble in each other and the specific gravity difference is large. In addition, the liquid level of the two liquid phases before stirring and the liquid level of the two liquid phases after stirring and standing still were the same level.

Claims

請求の範囲 The scope of the claims
[1] 所定の温度及び所定の圧力にそれぞれ維持した吸収塔 (13)の上部に、イオン性液 体を主成分とする吸収液を供給し、前記吸収塔 (13)の下部に、酸性ガス及び非酸性 ガスを含む混合ガスを供給して、前記吸収液に前記混合ガスを接触させることにより 、前記酸性ガスを前記吸収液に吸収させて前記非酸性ガスと前記酸性ガスとを分離 し前記非酸性ガスを前記吸収塔 (13)から回収する工程と、  [1] An absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower (13) maintained at a predetermined temperature and a predetermined pressure, and an acid gas is supplied to the lower part of the absorption tower (13). And supplying the mixed gas containing the non-acidic gas and bringing the mixed gas into contact with the absorbing liquid, thereby absorbing the acidic gas into the absorbing liquid and separating the non-acidic gas and the acidic gas, Recovering non-acidic gas from the absorption tower (13);
前記吸収塔 (13)内の温度と同一又は高い温度に維持しかつ前記吸収塔 (13)内の 圧力より低 、圧力に維持した再生塔 (16)の上部に、前記酸性ガスを吸収した吸収液 を供給することにより、前記酸性ガスを放散させて前記吸収液力 分離し前記再生塔 (16)から回収するとともに前記吸収液を再生する工程と、  Absorption in which the acidic gas is absorbed in the upper part of the regeneration tower (16) maintained at a temperature equal to or higher than the temperature in the absorption tower (13) and lower than the pressure in the absorption tower (13). Supplying the liquid to dissipate the acidic gas to separate the absorbing liquid force and recover it from the regeneration tower (16) and regenerate the absorbing liquid;
前記再生された吸収液を前記吸収塔 (13)の上部に供給する工程と  Supplying the regenerated absorption liquid to the upper part of the absorption tower (13);
を含むガスの精製方法。  A method for purifying gas comprising:
[2] 所定の温度及び所定の圧力にそれぞれ維持した吸収塔 (13)の上部に、有機溶剤 又は水の!/ヽずれか一方又は双方を主成分とする吸収液 (42)を供給し、前記吸収塔 (1 3)の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、前記吸収液 (42) に前記混合ガスを接触させることにより、前記酸性ガスを前記吸収液 (42)に吸収させ て前記非酸性ガスと前記酸性ガスとを分離し前記非酸性ガスを前記吸収塔 (13)から 回収する工程と、 [2] An absorption liquid (42) mainly composed of either or both of organic solvent and water is supplied to the upper part of the absorption tower (13) maintained at a predetermined temperature and a predetermined pressure, A mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the absorption tower (13), and the mixed gas is brought into contact with the absorbing liquid (42), whereby the acidic gas is converted into the absorbing liquid ( 42) absorbing the non-acid gas and the acid gas and recovering the non-acid gas from the absorption tower (13);
所定の圧力に維持しかつ前記吸収塔 (13)内の温度より低い温度に維持した分離再 生器 (46)に、前記酸性ガスを吸収した吸収液を供給することにより、前記酸性ガスを 液ィ匕しこの液体酸性ガス (41)と前記吸収液 (42)の相互不溶解性及び比重差により前 記吸収液 (42)から前記液体酸性ガス (41)を分離して前記分離再生器 (46)力も回収す るとともに前記吸収液 (42)を再生する工程と、  The acidic gas is liquefied by supplying the absorbing liquid that has absorbed the acidic gas to the separation regenerator (46) maintained at a predetermined pressure and maintained at a temperature lower than the temperature in the absorption tower (13). The liquid acidic gas (41) is separated from the absorbing liquid (42) by the mutual insolubility and specific gravity difference between the liquid acidic gas (41) and the absorbing liquid (42). 46) recovering the force and regenerating the absorbent (42);
前記再生された吸収液 (42)を前記吸収塔 (13)の上部に供給する工程と  Supplying the regenerated absorption liquid (42) to an upper portion of the absorption tower (13);
を含むガスの精製方法。  A method for purifying gas comprising:
[3] 所定の温度及び所定の圧力にそれぞれ維持した吸収塔 (13)の上部に、イオン性液 体を主成分とする吸収液 (42)を供給し、前記吸収塔 (13)の下部に、酸性ガス及び非 酸性ガスを含む混合ガスを供給して、前記吸収液 (42)に前記混合ガスを接触させる ことにより、前記酸性ガスを前記吸収液 (42)に吸収させて前記非酸性ガスと前記酸性 ガスとを分離し前記非酸性ガスを前記吸収塔 (13)から回収する工程と、 [3] An absorption liquid (42) mainly composed of an ionic liquid is supplied to the upper part of the absorption tower (13) maintained at a predetermined temperature and a predetermined pressure, and the lower part of the absorption tower (13) is supplied. Then, a mixed gas containing acidic gas and non-acidic gas is supplied, and the mixed gas is brought into contact with the absorbing liquid (42). A step of absorbing the acidic gas into the absorption liquid (42) to separate the non-acidic gas and the acidic gas and recovering the non-acidic gas from the absorption tower (13);
所定の圧力に維持しかつ前記吸収塔 (13)内の温度より低い温度に維持した分離再 生器 (46)に、前記酸性ガスを吸収した吸収液を供給することにより、前記酸性ガスを 液ィ匕しこの液体酸性ガス (41)と前記吸収液 (42)の相互不溶解性及び比重差により前 記吸収液 (42)から前記液体酸性ガス (41)を分離して前記分離再生器 (46)力も回収す るとともに前記吸収液 (42)を再生する工程と、  The acidic gas is liquefied by supplying the absorbing liquid that has absorbed the acidic gas to the separation regenerator (46) maintained at a predetermined pressure and maintained at a temperature lower than the temperature in the absorption tower (13). The liquid acidic gas (41) is separated from the absorbing liquid (42) by the mutual insolubility and specific gravity difference between the liquid acidic gas (41) and the absorbing liquid (42). 46) recovering the force and regenerating the absorbent (42);
前記再生された吸収液を前記吸収塔 (13)の上部に供給する工程と  Supplying the regenerated absorption liquid to the upper part of the absorption tower (13);
を含むガスの精製方法。  A method for purifying gas comprising:
[4] 多孔質膜にイオン性液体を主成分とする吸収液を含浸した液体膜 (51)を膜分離器 ( 52)内に張設して前記膜分離器 (52)を第 1室 (52a)と第 2室 (52b)とに区画し、前記第 1 室 (52a)を前記第 2室 (52b)より高圧に設定して、前記第 1室 (52a)に酸性ガス及び非酸 性ガスを含む混合ガスを導入することにより、前記非酸性ガスを前記第 1室 (51a)に残 留させたまま、前記酸性ガスを前記液体膜 (51)に透過させて低圧の前記第 2室 (52b) へ移動させ、前記第 1室 (52a)から非酸性ガスを回収するとともに前記第 2室 (52b)から 酸性ガスを回収するガスの精製方法。 [4] A liquid membrane (51) in which a porous membrane is impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in the membrane separator (52), and the membrane separator (52) is placed in the first chamber ( 52a) and a second chamber (52b), and the first chamber (52a) is set to a pressure higher than that of the second chamber (52b). By introducing a mixed gas containing gas, the acidic gas is permeated through the liquid film (51) while the non-acidic gas remains in the first chamber (51a), and the low pressure second chamber is obtained. (52b) A gas purification method in which non-acidic gas is recovered from the first chamber (52a) and acidic gas is recovered from the second chamber (52b).
[5] 酸性ガスが CO , H S, COS, SO , SO , NO , CS , HCN, ΝΗ及びメルカプ [5] Acid gas is CO, H S, COS, SO, SO, NO, CS, HCN, soot and mercap
2 2 2 3 2 2 3  2 2 2 3 2 2 3
タン力もなる群より選ばれた 1種又は 2種以上のガスであり、非酸性ガスが Η , CH ,  One or more gases selected from the group that also has tongue power, and non-acidic gases are Η, CH,
2 4 twenty four
CO, Ο , Ν及び炭素数 2〜: L0までの炭化水素化合物力もなる群より選ばれた 1種CO, ,, Ν, and carbon number 2 ~: 1 type selected from the group consisting of hydrocarbon compounds up to L0
2 2 twenty two
又は 2種以上のガスである請求項 1な 、し 4 、ずれか 1項に記載のガスの精製方法。  The method for purifying a gas according to claim 1, wherein the gas is a gas of two or more types.
[6] 吸収液がポリエチレングリコール、ポリビュルアルコール、ポリエーテル、ポリエステ ル、ポリアルカン及びポリオレフインイオンからなる群より選ばれた 1種又は 2種以上の ポリマーである請求項 2記載のガスの精製方法。 6. The gas purification method according to claim 2, wherein the absorbing liquid is one or more polymers selected from the group consisting of polyethylene glycol, polybutyl alcohol, polyether, polyester, polyalkane, and polyolefin ions. .
[7] イオン性液体がカチオン及びァ-オンを有し、 [7] the ionic liquid has a cation and a cation,
前記カチオンが、 [R,R, -N C H ]+ (N,N,-ジアルキルイミダゾリウム)、 [NR H  The cation is [R, R, -N C H] + (N, N, -dialkylimidazolium), [NR H
2 3 3 X 4-X 2 3 3 X 4-X
]+ (アルキルアンモ-ゥム)、 [R— NC H ]+ (N-アルキルピリジ-ゥム)、 [R— NC H ] ] + (Alkyl ammonium), [R—NC H] + (N-alkyl pyridinium), [R—NC H]
5 5 4 8 5 5 4 8
+ (N-アルキルピロリジ-ゥム)及び [PR H ]+ (アルキルフォスフォ-ゥム)からなる + (N-alkyl pyrrolidinium) and [PR H] + (alkyl phosphorous)
X 4-X  X 4-X
群より選ばれた 1種又は 2種以上のカチオンであり、 前記ァニオン力 PF―、 BF―、 NO―、 EtSO―、 A1C1—及び AlBr—力らなる群よ One or more cations selected from the group, Anion force PF-, BF-, NO-, EtSO-, A1C1- and AlBr- groups of forces
6 4 3 4 4 4  6 4 3 4 4 4
り選ばれた 1種又は 2種以上のァニオンであり、  One or more selected anions,
前記カチオン中の R及び R'が炭素数 1〜18のアルキル基又は水素であり、 前記カチオン中の Xが 1〜3である請求項 1、 3又は 4いずれ力 1項に記載のガスの 精製方法。  5. The gas purification according to claim 1, wherein R and R ′ in the cation are an alkyl group having 1 to 18 carbon atoms or hydrogen, and X in the cation is 1 to 3. Method.
[8] イオン性液体を主成分とする吸収液 (42)が中性又はアルカリ性である請求項 1、 3 又は 4 、ずれか 1項に記載のガスの精製方法。  [8] The method for purifying a gas according to [1], [3] or [4], wherein the absorbing liquid (42) containing an ionic liquid as a main component is neutral or alkaline.
[9] 混合ガスを吸収塔 (13)に供給する前に前記混合ガスを除湿する工程を更に含む請 求項 1又は 3記載のガスの精製方法。 [9] The gas purification method according to claim 1 or 3, further comprising a step of dehumidifying the mixed gas before supplying the mixed gas to the absorption tower (13).
[10] 混合ガスを膜分離器 (52)に導入する前に前記混合ガスを除湿する工程を更に含む 請求項 4記載のガスの精製方法。 10. The gas purification method according to claim 4, further comprising a step of dehumidifying the mixed gas before introducing the mixed gas into the membrane separator (52).
[11] 吸収塔 (13)内の温度を 0〜100°Cに維持しかつ圧力を l〜25MPaに維持し、再生 塔 (16)内の温度を前記吸収塔 (13)内の温度と同一又は前記吸収塔 (13)内の温度より 高い 30〜200°Cに維持した状態で圧力を前記吸収塔 (13)内の圧力より低い 0. 1〜5[11] The temperature in the absorption tower (13) is maintained at 0 to 100 ° C. and the pressure is maintained at 1 to 25 MPa, and the temperature in the regeneration tower (16) is the same as the temperature in the absorption tower (13). Alternatively, the pressure is lower than the pressure in the absorption tower (13) while being maintained at 30 to 200 ° C., which is higher than the temperature in the absorption tower (13).
MPaに維持する請求項 1記載のガスの精製方法。 The gas purification method according to claim 1, wherein the gas is maintained at MPa.
[12] 吸収塔 (13)内の圧力を 4〜25MPaに維持しかつ温度を 0〜100°Cに維持し、分離 再生器 (46)内の圧力を 4〜25MPaに維持した状態で温度を前記吸収塔 (13)内の温 度より低い— 30〜30°Cに維持する請求項 2又は 3記載のガスの精製方法。 [12] Maintain the pressure in the absorption tower (13) at 4-25 MPa, maintain the temperature at 0-100 ° C, and maintain the pressure in the separation regenerator (46) at 4-25 MPa. The method for purifying a gas according to claim 2 or 3, wherein the temperature is kept at 30 to 30 ° C lower than the temperature in the absorption tower (13).
[13] 吸収塔 (13)から排出されかつ前記吸収塔 (13)内の温度より低い温度に冷却された 酸性ガスを含む吸収液を、分離再生器 (46)に供給する前に、遠心分離或いは撹拌 する工程を更に含む請求項 2又は 3記載のガスの精製方法。 [13] Before supplying the absorption liquid containing the acid gas discharged from the absorption tower (13) and cooled to a temperature lower than the temperature in the absorption tower (13) to the separation regenerator (46), centrifugal separation is performed. 4. The gas purification method according to claim 2 or 3, further comprising a stirring step.
[14] 吸収液 (42)が磁性を有し、分離再生器 (46)の下部に磁石 (61)を設けた請求項 2又は[14] The absorbent according to claim 2 or 2, wherein the absorbing liquid (42) has magnetism and a magnet (61) is provided below the separation regenerator (46).
3記載のガスの精製方法。 3. The gas purification method according to 3.
[15] 水、アルコール類、エーテル類及びフエノール類力もなる群より選ばれた 1種又は 2 種以上の添加剤 (71)を吸収液 (42)に添加する請求項 1ないし 3いずれか 1項に記載 のガスの精製方法。 [15] Any one of claims 1 to 3, wherein one or more additives (71) selected from the group consisting of water, alcohols, ethers and phenols are added to the absorbent (42). A gas purification method as described in 1.
[16] 水、アルコール類及びエーテル類カゝらなる群より選ばれた 1種又は 2種以上の添カロ 剤 (71)を分離再生器 (46)に供給するとともに、前記分離再生器 (46)内の圧力及び温 度を調整することにより、前記分離再生器 (46)内で液体酸性ガス (41)と添加剤含有吸 収液 (75)とに比重差分離する工程と、前記分離再生器 (46)から排出された添加剤含 有吸収液 (75)を蒸留分離器 (83)に供給するとともに、前記蒸留分離器 (83)内を所定 の温度に加熱することにより、前記添加剤含有吸収液 (75)中の添加剤 (71)を吸収液( 42)から蒸留分離する工程とを更に含む請求項 2又は 3記載のガスの精製方法。 [16] One or more additives selected from the group consisting of water, alcohols and ethers are supplied to the separation regenerator (46), and the separation regenerator (46 ) Pressure and temperature By adjusting the degree of difference in specific gravity difference between the liquid acid gas (41) and the additive-containing absorbent (75) in the separation regenerator (46), and the separation regenerator (46). The additive-containing absorbent liquid (75) is supplied to the distillation separator (83), and the interior of the distillation separator (83) is heated to a predetermined temperature, whereby the additive-containing absorbent liquid (75) The method for purifying a gas according to claim 2 or 3, further comprising a step of distilling and separating the additive (71) therein from the absorption liquid (42).
[17] 凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加する請求項 2又は 3 記載のガスの精製方法。  [17] The method for purifying a gas according to [2] or [3], wherein the flocculant is added to the absorbent containing the liquid acidic gas in the separation regenerator.
[18] 酸性ガスが COガスであり、 4〜25MPaの圧力に保った分離再生器 (46)内の液体  [18] Liquid in the separation regenerator (46) where the acid gas is CO gas and maintained at a pressure of 4-25 MPa
2  2
CO (41)を含む吸収液 (42)中に水を供給する請求項 2又は 3記載のガスの精製方法 The method for purifying a gas according to claim 2 or 3, wherein water is supplied into the absorbing liquid (42) containing CO (41).
2 2
[19] 酸性ガス及び非酸性ガスを含む混合ガスを圧縮する圧縮機 (12)と、 [19] a compressor (12) for compressing a mixed gas containing acidic gas and non-acidic gas;
下部に前記圧縮された混合ガスが供給されかつ上部に有機溶剤又は水のいずれ か一方又は双方を主成分とする吸収液 (42)が供給されて前記吸収液 (42)に前記混 合ガスを接触させることにより前記酸性ガスを前記吸収液 (42)に吸収させて前記非酸 性ガスを前記酸性ガス力 分離し回収する吸収塔 (13)と、  The compressed mixed gas is supplied to the lower portion, and the upper part is supplied with an absorbing liquid (42) mainly composed of one or both of an organic solvent and water, and the mixed gas is supplied to the absorbing liquid (42). An absorption tower (13) for absorbing the acidic gas into the absorbing liquid (42) by contacting the non-acidic gas and separating and recovering the non-acidic gas;
前記酸性ガスを吸収した吸収液 (42)を冷却する冷却器 (47)と、  A cooler (47) for cooling the absorbing liquid (42) that has absorbed the acid gas;
前記冷却された吸収液 (42)が供給され液体酸性ガス (41)と前記吸収液 (42)の相互 不溶解性及び比重差により前記吸収液 (42)から前記液体酸性ガス (41)を分離して回 収するとともに前記吸収液 (42)を再生し再利用する分離再生器 (46)と、  The cooled absorption liquid (42) is supplied, and the liquid acid gas (41) is separated from the absorption liquid (42) by the mutual insolubility and specific gravity difference between the liquid acid gas (41) and the absorption liquid (42). A separation regenerator (46) that collects and recovers and reuses the absorbent (42);
前記分離再生器 (46)から排出された前記吸収液 (42)を高圧のまま前記吸収塔 (13) の上部に供給する循環ポンプ (17)と  A circulation pump (17) for supplying the absorption liquid (42) discharged from the separation regenerator (46) to the upper part of the absorption tower (13) with a high pressure;
を備えたガスの精製装置。  Gas purification device equipped with.
[20] 酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿器 (11)と、 [20] a dehumidifier (11) for dehumidifying a mixed gas containing acidic gas and non-acidic gas;
前記除湿された混合ガスを圧縮する圧縮機 (12)と、  A compressor (12) for compressing the dehumidified mixed gas;
下部に前記圧縮された混合ガスが供給されかつ上部にイオン性液体を主成分とす る吸収液 (42)が供給されて前記吸収液 (42)に前記混合ガスを接触させることにより前 記酸性ガスを前記吸収液 (42)に吸収させて前記非酸性ガスを前記酸性ガスカゝら分離 し回収する吸収塔 (13)と、 前記酸性ガスを吸収した吸収液 (42)を冷却する冷却器 (47)と、 The compressed mixed gas is supplied to the lower part and the upper part is supplied with the absorbing liquid (42) mainly composed of an ionic liquid, and the mixed gas is brought into contact with the absorbing liquid (42) to thereby increase the acidity. An absorption tower (13) for absorbing gas into the absorption liquid (42) to separate and recover the non-acid gas from the acid gas column; A cooler (47) for cooling the absorbing liquid (42) that has absorbed the acid gas;
前記冷却された吸収液 (42)が供給され液体酸性ガス (41)と前記吸収液 (42)の相互 不溶解性及び比重差により前記吸収液 (42)から前記液体酸性ガス (41)を分離して回 収するとともに前記吸収液 (42)を再生し再利用する分離再生器 (46)と、  The cooled absorption liquid (42) is supplied, and the liquid acid gas (41) is separated from the absorption liquid (42) by the mutual insolubility and specific gravity difference between the liquid acid gas (41) and the absorption liquid (42). A separation regenerator (46) that collects and recovers and reuses the absorbent (42);
前記分離再生器 (46)から排出された前記吸収液 (42)を高圧のまま前記吸収塔 (13) の上部に供給する循環ポンプ (17)と  A circulation pump (17) for supplying the absorption liquid (42) discharged from the separation regenerator (46) to the upper part of the absorption tower (13) with a high pressure;
を備えたガスの精製装置。  Gas purification device equipped with.
[21] 吸収塔 (13)と冷却器 (47)と分離再生器 (46)がー体的に設けられた請求項 19又は 20 記載のガスの精製装置。  21. The gas purifier according to claim 19 or 20, wherein the absorption tower (13), the cooler (47), and the separation regenerator (46) are provided as a whole.
[22] 冷却器 (47)と分離再生器 (46)との間に遠心分離器 (48)或いは撹拌機が設けられた 請求項 19な 、し 2 、ずれか 1項に記載のガスの精製装置。  [22] The gas purification according to claim 19, wherein a centrifuge (48) or a stirrer is provided between the cooler (47) and the separation regenerator (46). apparatus.
[23] 吸収液 (42)が磁性を有し、分離再生器 (46)の下部に磁石 (61)が設けられた請求項 1 9な 、し 22 、ずれか 1項に記載のガスの精製装置。  [23] The gas purification according to claim 19, wherein the absorbing liquid (42) has magnetism and a magnet (61) is provided at a lower portion of the separation regenerator (46). apparatus.
[24] 水、アルコール類、エーテル類及びフ ノール類力 なる群より選ばれた 1種又は 2 種以上の添加剤 (71)を添加した吸収液 (42)が貯留されこの添加剤含有吸収液 (75)を 吸収塔 (13)に供給するための吸収液貯留槽 (81)が設けられた請求項 19ないし 23い ずれ力 1項に記載のガスの精製装置。  [24] Absorption liquid (42) containing one or more additives (71) selected from the group consisting of water, alcohols, ethers and phenols is stored and this additive-containing absorption liquid 24. The gas purifier according to any one of claims 19 to 23, further comprising an absorption liquid storage tank (81) for supplying (75) to the absorption tower (13).
[25] 水、アルコール類及びエーテル類カゝらなる群より選ばれた 1種又は 2種以上の添カロ 剤 (71)が貯留され分離再生器 (46)の上部に接続された添加剤貯留槽 (81)と、前記分 離再生器 (46)に設けられ前記分離再生器 (46)内の圧力を調節する圧力調節手段 (82 )と、前記分離再生器 (46)の下部に接続され前記分離再生器 (46)で比重差分離され てその下相に移行した添加剤含有吸収液 (75)を貯留する蒸留分離器 (83)と、前記蒸 留分離器 (83)に設けられ前記蒸留分離器 (83)内を所定の温度に加熱する加熱手段( 84)とを更に備えた請求項 19ないし 23いずれか 1項に記載のガスの精製装置。  [25] One or two or more types of additive (71) selected from the group consisting of water, alcohols and ethers are stored and connected to the upper part of the separation regenerator (46) A tank (81), pressure adjusting means (82) provided in the separation regenerator (46) for adjusting the pressure in the separation regenerator (46), and connected to a lower part of the separation regenerator (46); The distillation separator (83) for storing the additive-containing absorbent (75) separated in specific gravity by the separation regenerator (46) and transferred to the lower phase thereof, and the distillation separator (83) provided with the above The gas purification device according to any one of claims 19 to 23, further comprising heating means (84) for heating the inside of the distillation separator (83) to a predetermined temperature.
[26] 凝集剤を貯留する凝集剤槽が分離再生器に接続された請求項 19ないし 23いずれ 力 1項に記載のガスの精製装置。  [26] The gas purifier according to any one of [19] to [23], wherein the flocculant tank for storing the flocculant is connected to the separation regenerator.
[27] 酸性ガスが COガスであり、分離再生器 (46)内の圧力を 4〜25MPaに保つ圧力調  [27] Pressure control that keeps the pressure in the separation regenerator (46) at 4-25 MPa when the acid gas is CO gas
2  2
整手段 (82)が前記分離再生器 (46)に設けられ、水が貯留された水貯留槽 (91)が前記 分離再生器 (46)の下部に接続された請求項 19ないし 23いずれか 1項に記載のガス の精製装置。 An adjusting means (82) is provided in the separation regenerator (46), and a water storage tank (91) in which water is stored is The gas purifier according to any one of claims 19 to 23, which is connected to a lower portion of the separation regenerator (46).
[28] 請求項 1な!ヽし 18 ヽずれか 1項に記載されたガスの精製方法に用いられ或!、は請 求項 19な ヽし 27 、ずれか 1項に記載されたガスの精製装置に用いられる酸性ガス の吸収液。  [28] Claim 1 is used for the gas purification method described in Item 1 or 18 is used for the gas purification method described in Item 1 or is used for the gas purification method described in Claim 19. Acid gas absorbent used in purification equipment.
[29] 脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天 然ガス力 なる群より選ばれた 1種又は 2種以上の燃料を改質、 CO変成及び CO除 去して H及び COの混合ガスとした後に、この混合ガスを請求項 1ないし 18いずれ [29] Desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and one or more fuels selected from the group consisting of natural gas power reforming, CO conversion and CO removal to reduce H and After making a mixed gas of CO, this mixed gas is any one of claims 1 to 18.
2 2 twenty two
力 1項に記載されたガスの精製方法を用いて或 、は請求項 19な 、し 27 、ずれか 1 項に記載されたガスの精製装置を用いて H及び COに分離回収し、更にこの分離  Using the gas purification method described in item 1 or in the method described in claim 19 or 27, the gas purification device described in item 1 is used to separate and recover H and CO. Separation
2 2  twenty two
回収された Hを水素ステーションに供給するとともに、前記分離回収された COを断  The recovered H is supplied to the hydrogen station, and the separated and recovered CO is disconnected.
2 2 熱膨張させてドライアイスを製造するシステム。  2 2 System for producing dry ice by thermal expansion.
[30] 燃料電池を駆動源とする車上改質型車両に搭載され、脱硫ガソリン、ナフサ、灯油 、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた 1種又は 2種以上の燃料を車上で改質、 CO変成及び CO除去して H及び COの混 [30] One or more selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas, mounted on an on-vehicle reforming vehicle that uses a fuel cell as a drive source Reforming on-vehicle fuel, CO conversion and CO removal to mix H and CO
2 2 合ガスとした後に、この混合ガスを請求項 2、 3、 5、 6、 7、 8、 9、 11な!ヽし 181/、ずれ 力 1項に記載されたガスの精製方法を用いて或 、は請求項 19な 、し 27 、ずれか 1 項に記載されたガスの精製装置を用いて H及び液体 COに分離回収し、更にこの  2 2 After making the combined gas, use the gas purification method described in claim 2, 3, 5, 6, 7, 8, 9, 11, 11 Alternatively, it can be separated and recovered into H and liquid CO using the gas purifier described in claim 19 and 27, and
2 2  twenty two
分離回収された Hを前記燃料電池に供給するとともに、前記液体 COを一時的に  The separated and recovered H is supplied to the fuel cell, and the liquid CO is temporarily
2 2  twenty two
前記車両に貯留し後でまとめて降ろすシステム。  A system for storing in the vehicle and then unloading it later.
PCT/JP2005/022523 2005-03-28 2005-12-08 Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification WO2006103812A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-090837 2005-03-28
JP2005090837 2005-03-28
JP2005094450A JP4687184B2 (en) 2005-03-29 2005-03-29 Method and apparatus for purifying mixed gas containing acid gas
JP2005-094450 2005-03-29
JP2005212054A JP4826156B2 (en) 2004-07-28 2005-07-22 CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification
JP2005-212054 2005-07-22

Publications (1)

Publication Number Publication Date
WO2006103812A1 true WO2006103812A1 (en) 2006-10-05

Family

ID=37053081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022523 WO2006103812A1 (en) 2005-03-28 2005-12-08 Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification

Country Status (1)

Country Link
WO (1) WO2006103812A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178764A (en) * 2007-01-23 2008-08-07 Mitsubishi Materials Corp Separation and regeneration apparatus of absorbing liquid and liquid carbon dioxide, and gas refining apparatus using the separation and regeneration apparatus
WO2008138832A1 (en) * 2007-05-11 2008-11-20 Basf Se Absorption-type heat pumps, absorption-type refrigeration machines and heat transformers with sulfur dioxide as coolant
FR2923727A1 (en) * 2007-11-16 2009-05-22 Inst Francais Du Petrole METHOD FOR LIQUEFACTING A GASEOUS EFFLUENT
WO2010081657A1 (en) * 2009-01-15 2010-07-22 Vtu Holding Gmbh Method of use of an ionic liquid for storing hydrogen
WO2011061385A1 (en) * 2009-11-20 2011-05-26 Nokia Corporation Trapping nanostructures
WO2012033973A1 (en) * 2010-09-09 2012-03-15 Exxonmobil Research And Engineering Company Ionic liquids for removal of carbon dioxide
JP2012170842A (en) * 2011-02-17 2012-09-10 National Institute Of Advanced Industrial Science & Technology Low volatile solution absorbing carbon dioxide and gas separation method
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
CN104174263A (en) * 2014-08-18 2014-12-03 南京信息工程大学 Ionic liquid for removing SO2 and preparation method and application thereof
WO2015167729A1 (en) * 2014-05-02 2015-11-05 Exxonmobil Research And Engineering Company Carbon dioxide scrubbing process
CN109011983A (en) * 2018-08-24 2018-12-18 郑州釜鼎热能技术有限公司 A kind of dedusting decontamination device of magnetic liquid purifying contaminated gas
CN109794153A (en) * 2019-03-14 2019-05-24 中国铝业股份有限公司 A kind of gas disposal method in aluminium cell slag from delining innocent treatment procedure
CN111803857A (en) * 2020-05-28 2020-10-23 南通大学 Aluminum ash harmless treatment recycling system and working method thereof
IT202000002353A1 (en) * 2020-02-06 2021-08-06 Eni Spa PROCESS AND PLANT FOR THE TREATMENT OF GAS MIXTURES CONTAINING ACID GASES
WO2022129974A1 (en) * 2020-12-17 2022-06-23 Totalenergies Onetech Method for the selective removal of hydrogen sulfide from a gas stream

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164612A (en) * 1983-03-11 1984-09-17 Tokyo Gas Co Ltd Production of gaseous carbon dioxide using waste gas containing gaseous carbon dioxide
JPH0669466A (en) * 1992-08-21 1994-03-11 Ricoh Co Ltd Semiconductor memory device
US20020189444A1 (en) * 2001-03-30 2002-12-19 Brennecke Joan F. Purification of gas with liquid ionic compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164612A (en) * 1983-03-11 1984-09-17 Tokyo Gas Co Ltd Production of gaseous carbon dioxide using waste gas containing gaseous carbon dioxide
JPH0669466A (en) * 1992-08-21 1994-03-11 Ricoh Co Ltd Semiconductor memory device
US20020189444A1 (en) * 2001-03-30 2002-12-19 Brennecke Joan F. Purification of gas with liquid ionic compounds

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178764A (en) * 2007-01-23 2008-08-07 Mitsubishi Materials Corp Separation and regeneration apparatus of absorbing liquid and liquid carbon dioxide, and gas refining apparatus using the separation and regeneration apparatus
WO2008138832A1 (en) * 2007-05-11 2008-11-20 Basf Se Absorption-type heat pumps, absorption-type refrigeration machines and heat transformers with sulfur dioxide as coolant
FR2923727A1 (en) * 2007-11-16 2009-05-22 Inst Francais Du Petrole METHOD FOR LIQUEFACTING A GASEOUS EFFLUENT
FR2923728A1 (en) * 2007-11-16 2009-05-22 Inst Francais Du Petrole Liquefying gaseous effluent rich in e.g. carbon dioxide, comprises e.g. introducing feed gas and two immiscible liquid phases mixture in contactor, setting up pressure and temperature and transporting hydrate into dispersion
WO2010081657A1 (en) * 2009-01-15 2010-07-22 Vtu Holding Gmbh Method of use of an ionic liquid for storing hydrogen
US9580311B2 (en) 2009-01-15 2017-02-28 Proionic Gmbh Method of use of an ionic liquid for storing hydrogen
US9051182B2 (en) 2009-01-15 2015-06-09 Vtu Holding Gmbh Method of use of an ionic liquid for storing hydrogen
US8784663B2 (en) 2009-11-20 2014-07-22 Nokia Corporation Trapping nanostructures
WO2011061385A1 (en) * 2009-11-20 2011-05-26 Nokia Corporation Trapping nanostructures
US9028785B2 (en) 2010-09-09 2015-05-12 Exxonmobil Reseach And Engineering Company High CO2 to amine adsorption capacity CO2 scrubbing processes
US9186616B2 (en) 2010-09-09 2015-11-17 Exxonmobil Research And Engineering Company Ionic liquids for removal of carbon dioxide
US9713788B2 (en) 2010-09-09 2017-07-25 Exxonmobil Research And Engineering Company Non-aqueous amine scrubbing for removal of carbon dioxide
WO2012033973A1 (en) * 2010-09-09 2012-03-15 Exxonmobil Research And Engineering Company Ionic liquids for removal of carbon dioxide
US9034288B2 (en) 2010-09-09 2015-05-19 Exxonmobil Research And Engineering Company Alkanolamine CO2 scrubbing process
US8715397B2 (en) 2010-09-09 2014-05-06 Exxonmobil Research And Engineering Company Mixed amine and non-nucleophilic base CO2 scrubbing process for improved adsorption at increased temperatures
US9186618B2 (en) 2010-09-09 2015-11-17 Exxonmobil Research And Engineering Company Ionic liquids as amine promoter solvents for removal of carbon dioxide
US9186617B2 (en) 2010-09-09 2015-11-17 Exxonmobil Research And Engineering Company Non-aqueous amine scrubbing for removal of carbon dioxide
JP2012170842A (en) * 2011-02-17 2012-09-10 National Institute Of Advanced Industrial Science & Technology Low volatile solution absorbing carbon dioxide and gas separation method
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
WO2015167729A1 (en) * 2014-05-02 2015-11-05 Exxonmobil Research And Engineering Company Carbon dioxide scrubbing process
CN104174263A (en) * 2014-08-18 2014-12-03 南京信息工程大学 Ionic liquid for removing SO2 and preparation method and application thereof
CN109011983A (en) * 2018-08-24 2018-12-18 郑州釜鼎热能技术有限公司 A kind of dedusting decontamination device of magnetic liquid purifying contaminated gas
CN109794153A (en) * 2019-03-14 2019-05-24 中国铝业股份有限公司 A kind of gas disposal method in aluminium cell slag from delining innocent treatment procedure
IT202000002353A1 (en) * 2020-02-06 2021-08-06 Eni Spa PROCESS AND PLANT FOR THE TREATMENT OF GAS MIXTURES CONTAINING ACID GASES
WO2021156814A3 (en) * 2020-02-06 2021-09-23 Eni S.P.A. Process and plant for gas mixtures containing acid gas treatment
CN111803857A (en) * 2020-05-28 2020-10-23 南通大学 Aluminum ash harmless treatment recycling system and working method thereof
WO2022129974A1 (en) * 2020-12-17 2022-06-23 Totalenergies Onetech Method for the selective removal of hydrogen sulfide from a gas stream

Similar Documents

Publication Publication Date Title
WO2006103812A1 (en) Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification
JP4826156B2 (en) CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification
JP4687184B2 (en) Method and apparatus for purifying mixed gas containing acid gas
JP5023512B2 (en) Gas separation and recovery method and apparatus
KR101332480B1 (en) On-Board Recovery and Storage of CO2 From Motor Vehicle Exhaust Gases
JP4771663B2 (en) Configuration and method for improved acid gas removal
KR20160030128A (en) Method and station for filling gas tanks
EP3411139A1 (en) Integrated process for capturing carbon dioxide
JP2006509622A5 (en)
JP2006509622A (en) Composition and method of acid gas removal
JP2006036950A (en) Gas purification process and absorbent solution used in the same
CN110124466B (en) Method and system for simultaneously removing water and carbon dioxide in gas phase by compounding ionic liquid
WO2009118876A1 (en) Gaseous hydrocarbon treating/recovering apparatus and method
US20230149852A1 (en) Carbon dioxide recovery device
CN104918680A (en) Method and device for removing absorbable gases from pressurized industrial gases contaminated with absorbable gases, wihout supplying cooling energy
CN104194852B (en) Low pressure natural gas height yield methods of light hydrocarbon recovery
CN101637694B (en) Method for separating and recycling CO2 from mixed gas containing CO2
JP4730312B2 (en) Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus
JP5736916B2 (en) Method for recovering and liquefying carbon dioxide from mixed gas
JPH07124440A (en) Carbon dioxide separating device
JP5504675B2 (en) Gas separation method and gas separation equipment using membrane separation and hydrate separation
CN217628265U (en) Cooling pipeline and biogas purification device decarbonization system
WO2024024572A1 (en) Co2 separation system
CN111085085A (en) Methyl cellulose ether tail gas recovery device and method
CN117225389A (en) Activated carbon regeneration system and method based on supercritical water gasification byproduct carbon dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05814148

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814148

Country of ref document: EP