JP4730312B2 - Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus - Google Patents

Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus Download PDF

Info

Publication number
JP4730312B2
JP4730312B2 JP2007012395A JP2007012395A JP4730312B2 JP 4730312 B2 JP4730312 B2 JP 4730312B2 JP 2007012395 A JP2007012395 A JP 2007012395A JP 2007012395 A JP2007012395 A JP 2007012395A JP 4730312 B2 JP4730312 B2 JP 4730312B2
Authority
JP
Japan
Prior art keywords
liquid
separation
carbon dioxide
gas
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012395A
Other languages
Japanese (ja)
Other versions
JP2008178764A (en
Inventor
建順 傳
俊柱 王
文斌 戴
良平 森
博道 小泉
健 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007012395A priority Critical patent/JP4730312B2/en
Publication of JP2008178764A publication Critical patent/JP2008178764A/en
Application granted granted Critical
Publication of JP4730312B2 publication Critical patent/JP4730312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Fuel Cell (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素ガスを吸収した吸収液から二酸化炭素ガスを液体二酸化炭素として分離するとともに吸収液を再生する装置と、この分離再生装置を用いたガスの精製装置に関するものである。   The present invention relates to an apparatus that separates carbon dioxide gas as liquid carbon dioxide from an absorbing liquid that has absorbed carbon dioxide gas and regenerates the absorbing liquid, and a gas purification apparatus that uses the separating and reproducing apparatus.

従来、ガスの精製装置として、圧縮機により圧縮された二酸化炭素ガス等の酸性ガスとH2等の非酸性ガスとを含む混合ガスが吸収塔の下部に供給されかつ吸収塔の上部に有機溶剤又は水のいずれか一方又は双方を主成分とする吸収液が供給されて吸収液に混合ガスを接触させることにより、酸性ガスを吸収液に吸収させて非酸性ガスを酸性ガスから分離・回収し、酸性ガスを吸収した吸収液が冷却器により冷却された後に分離再生器に供給されて、液体酸性ガスと吸収液の相互不溶解性及び比重差により吸収液から液体酸性ガスを分離して回収するとともに、吸収液を再生し再利用するガスの精製装置が開示されている(例えば、特許文献1参照。)。このガスの精製装置では、分離再生器から排出された吸収液が循環ポンプにより高圧のまま吸収塔の上部に供給されるように構成される。
このように構成されたガスの精製装置では、所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部に、有機溶剤又は水のいずれか一方又は双方を主成分とする吸収液を供給し、吸収塔の下部に、酸性ガス及び非酸性ガスを含む混合ガスを圧縮機で圧縮して供給すると、吸収液に混合ガスが接触して酸性ガスが吸収液に吸収されるので、非酸性ガスが酸性ガスから分離して吸収塔から回収される。上記吸収塔内の圧力と同一の圧力、吸収塔内の圧力より僅かに低い圧力、或いは吸収塔内の圧力より僅かに高い圧力に維持した分離再生器に、酸性ガスを吸収した吸収液を冷却器で冷却した後に供給すると、分離再生器で酸性ガスが液化され、この液体酸性ガスと吸収液との相互不溶解性及び比重差より吸収液から液体酸性ガスが分相されて分離再生器から回収される。また液体酸性ガスが取除かれて再生された吸収液は循環ポンプにより吸収塔の上部に供給されて再利用されるようになっている。
国際公開第2006/103812号パンフレット(請求項19、段落[0015]、図2)
Conventionally, as a gas purification apparatus, a mixed gas containing an acidic gas such as carbon dioxide gas compressed by a compressor and a non-acidic gas such as H 2 is supplied to the lower part of the absorption tower, and an organic solvent is provided to the upper part of the absorption tower. Alternatively, an absorption liquid mainly composed of one or both of water is supplied, and the mixed gas is brought into contact with the absorption liquid, thereby absorbing the acidic gas into the absorption liquid and separating and recovering the non-acidic gas from the acidic gas. The absorption liquid that has absorbed the acid gas is cooled by the cooler and then supplied to the separation / regenerator, and the liquid acid gas is separated from the absorption liquid and recovered by the mutual insolubility and specific gravity difference between the liquid acid gas and the absorption liquid. In addition, a gas purification device that regenerates and reuses the absorbent is disclosed (for example, see Patent Document 1). This gas purification apparatus is configured such that the absorption liquid discharged from the separation regenerator is supplied to the upper part of the absorption tower with a high pressure by a circulation pump.
In the gas purification apparatus configured as described above, an absorption liquid mainly composed of one or both of an organic solvent and water is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, When a mixed gas containing acidic gas and non-acidic gas is compressed and supplied to the lower part of the absorption tower, the mixed gas comes into contact with the absorbing liquid and the acidic gas is absorbed by the absorbing liquid. It is separated from the acid gas and recovered from the absorption tower. The absorption liquid that has absorbed the acid gas is cooled in a separation regenerator maintained at the same pressure as the pressure in the absorption tower, slightly lower than the pressure in the absorption tower, or slightly higher than the pressure in the absorption tower. When it is supplied after being cooled by the regenerator, the acidic gas is liquefied by the separation regenerator, and the liquid acidic gas is separated from the absorbing liquid due to the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorbing liquid. To be recovered. The absorption liquid regenerated by removing the liquid acid gas is supplied to the upper part of the absorption tower by a circulation pump and reused.
WO 2006/103812 pamphlet (claim 19, paragraph [0015], FIG. 2)

しかし、上記従来の特許文献1に示されたガスの精製装置では、分離再生器内が非圧縮性液体である液体酸性ガス(液体二酸化炭素等)及び吸収液で満たされた状態で圧力が変動すると、その圧力変動は極めて大きくなり、分離再生器内の液体酸性ガスと吸収液との分相効率が低下してしまう不具合があった。
また、上記従来の特許文献1に示されたガスの精製装置では、分離再生器内で液体酸性ガス(液体二酸化炭素等)と吸収液との相互不溶解性及び比重差より吸収液から液体酸性ガスを分相しているけれども、液体酸性ガスと吸収液との相互不溶解性及び比重差だけでは、分離再生器を大型化しなければ、吸収液から液体酸性ガスを分相するのに多くの時間を要する問題点もあった。
本発明の第1の目的は、分離再生器内の圧力変動をバッファタンク内の二酸化炭素ガスにて吸収することにより、分離再生器内の吸収液及び液体二酸化炭素の分相効率の低下を防止できる、吸収液と液体二酸化炭素の分離再生装置及びこの分離再生装置を用いたガスの精製装置を提供することにある。
本発明の第2の目的は、分離再生器のコンパクト化を図ることができるとともに、分離再生器内で吸収液から液体二酸化炭素を効率良く分相できる、吸収液と液体二酸化炭素の分離再生装置及びこの分離再生装置を用いたガスの精製装置を提供することにある。
本発明の第3の目的は、分離再生器内の液体二酸化炭素の気化を確実に防止できる、吸収液と液体二酸化炭素の分離再生装置及びこの分離再生装置を用いたガスの精製装置を提供することにある。
本発明の第4の目的は、比較的コンパクトに構成できるとともに、二酸化炭素ガス及び非酸性ガスを含む混合ガスから二酸化炭素ガスを液体二酸化炭素として効率良く分離できる、吸収液と液体二酸化炭素の分離再生装置を用いたガスの精製装置を提供することにある。
However, in the conventional gas purification apparatus disclosed in Patent Document 1, the pressure fluctuates in a state where the separation regenerator is filled with an incompressible liquid acidic gas (such as liquid carbon dioxide) and an absorbing liquid. Then, the pressure fluctuation becomes extremely large, and there is a problem that the phase separation efficiency between the liquid acidic gas and the absorbing liquid in the separation regenerator is lowered.
Further, in the gas purification apparatus disclosed in the above-mentioned conventional patent document 1, the liquid acidity from the absorbing liquid is determined from the mutual insolubility and specific gravity difference between the liquid acidic gas (liquid carbon dioxide, etc.) and the absorbing liquid in the separation regenerator. Even if the gas is phase-separated, only the insolubility and the specific gravity difference between the liquid acid gas and the absorption liquid are required to separate the liquid acid gas from the absorption liquid without increasing the size of the separation regenerator. There were also problems that took time.
The first object of the present invention is to prevent a decrease in the phase separation efficiency of the absorption liquid and liquid carbon dioxide in the separation regenerator by absorbing the pressure fluctuation in the separation regenerator with the carbon dioxide gas in the buffer tank. An object of the present invention is to provide a separation / regeneration apparatus for absorbing liquid and liquid carbon dioxide and a gas purification apparatus using this separation / regeneration apparatus.
The second object of the present invention is to provide a separation / regeneration apparatus for absorbing liquid and liquid carbon dioxide that can reduce the size of the separation / regenerator and can efficiently separate liquid carbon dioxide from the absorption liquid in the separation / regenerator. Another object of the present invention is to provide a gas purification apparatus using this separation and regeneration apparatus.
The third object of the present invention is to provide an absorption liquid and liquid carbon dioxide separation / regeneration apparatus and a gas purification apparatus using the separation / regeneration apparatus, which can reliably prevent vaporization of liquid carbon dioxide in the separation / regeneration apparatus. There is.
The fourth object of the present invention is to separate the absorbing liquid from the liquid carbon dioxide, which can be configured relatively compactly and can efficiently separate the carbon dioxide gas from the mixed gas containing carbon dioxide gas and non-acidic gas as liquid carbon dioxide. An object of the present invention is to provide a gas purification apparatus using a regenerator.

請求項1に係る発明は、図1及び図2に示すように、二酸化炭素ガスを吸収した吸収液11を冷却して遊離液滴状の液体二酸化炭素13が分散した吸収液11にする冷却器26と、冷却器26により冷却された吸収液11から液体二酸化炭素13を分離するとともに吸収液11を再生する分離再生器23と、分離再生器23の上部に接続され分離再生器23内で分離されて進入した液体二酸化炭素13の一部又は全部を気化するバッファタンク27とを備えた分離再生装置であって、分離再生器23内に鉛直方向に延びて設けられ分離再生器23内を分離室23bと静置室23cとに区画するとともに分離室23b及び静置室23cを上部及び下部でそれぞれ連通するアッパ連通孔23d及びロア連通孔23eが形成された隔離板23aと、分離室23bの中央に設けられ吸収液11に分散した遊離液滴状の液体二酸化炭素13を捕捉し凝集して粗大化させる分離促進部23fとを備えたことを特徴とする。
この請求項1に記載された吸収液と液体二酸化炭素の分離再生装置では、分離再生器23内が吸収液11及び液体二酸化炭素13で満たされた状態で圧力変動が生じても、バッファタンク27内の二酸化炭素ガスが上記分離再生器23内に満たされた吸収液11及び液体二酸化炭素13の圧力変動を吸収して低減するので、分離再生器23内の吸収液11及び液体二酸化炭素13の圧力を安定的に維持できる。この結果、分離再生器23内の圧力変動による吸収液11及び液体二酸化炭素13の分相効率の低下を防止できる。
また吸収液11に分散した遊離液滴状の液体二酸化炭素13を分離促進部23fで捕捉し凝集して粗大化させるので、吸収液11から液体二酸化炭素13を迅速に分相できるとともに、隔離板23aにより区画された静置室23cに上記分相された吸収液11及び液体二酸化炭素13が静置室23cに流入しても、吸収液11及び液体二酸化炭素13に対流が殆ど発生しないので、吸収液11及び液体二酸化炭素13が静置室23cで再混合されることはなく、また静置室23c内の吸収液11及び液体二酸化炭素13が分離室23bに還流することもない。この結果、分離再生器23が比較的小型であっても、分離再生器23内で吸収液11から液体二酸化炭素13を効率良く分相できる。
As shown in FIGS. 1 and 2, the invention according to claim 1 cools the absorption liquid 11 that has absorbed carbon dioxide gas to form an absorption liquid 11 in which liquid carbon dioxide 13 in the form of free droplets is dispersed. 26, a separation regenerator 23 that separates the liquid carbon dioxide 13 from the absorption liquid 11 cooled by the cooler 26 and regenerates the absorption liquid 11, and a separation regenerator 23 that is connected to the top of the separation regenerator 23 and is separated in the separation regenerator 23 The separation / regeneration apparatus includes a buffer tank 27 that vaporizes a part or all of the liquid carbon dioxide 13 that has entered, and extends in the vertical direction in the separation / regenerator 23 and separates the separation / regeneration unit 23. A separation plate 23a having an upper communication hole 23d and a lower communication hole 23e that are divided into a chamber 23b and a stationary chamber 23c and communicate with the separation chamber 23b and the stationary chamber 23c at the upper and lower portions, respectively. Characterized by comprising a separation promotion portion 23f which is provided at the center to capture the free drop-shaped liquid carbon dioxide 13 dispersed in the absorption liquid 11 aggregated coarsened of Hanareshitsu 23b.
In the separation / regeneration apparatus for absorbing liquid and liquid carbon dioxide described in claim 1, even if pressure fluctuation occurs in the state where the separation / regenerator 23 is filled with the absorbing liquid 11 and liquid carbon dioxide 13, the buffer tank 27 Since the carbon dioxide gas in the absorber absorbs and reduces the pressure fluctuations of the absorption liquid 11 and the liquid carbon dioxide 13 filled in the separation regenerator 23, the absorption liquid 11 and the liquid carbon dioxide 13 in the separation regenerator 23 are reduced. The pressure can be stably maintained. As a result, it is possible to prevent a decrease in the phase separation efficiency of the absorbing liquid 11 and the liquid carbon dioxide 13 due to the pressure fluctuation in the separation / regenerator 23.
Further, since the liquid carbon dioxide 13 in the form of free droplets dispersed in the absorbing liquid 11 is captured by the separation promoting unit 23f and aggregated to be coarsened, the liquid carbon dioxide 13 can be rapidly phase-separated from the absorbing liquid 11, and the separator Even if the phase-separated absorbing liquid 11 and liquid carbon dioxide 13 flow into the stationary chamber 23c into the stationary chamber 23c partitioned by 23a, almost no convection occurs in the absorbing liquid 11 and liquid carbon dioxide 13, The absorbing liquid 11 and the liquid carbon dioxide 13 are not remixed in the stationary chamber 23c, and the absorbing liquid 11 and the liquid carbon dioxide 13 in the stationary chamber 23c are not refluxed to the separation chamber 23b. As a result, even if the separation regenerator 23 is relatively small, the liquid carbon dioxide 13 can be efficiently separated from the absorbent 11 in the separation regenerator 23.

請求項2に係る発明は、請求項1に係る発明であって、更に図1に示すように、分離再生器23の外周面を囲むように設けられたジャケット槽31の内部に冷却器26から排出された冷却液が流通するように構成されたことを特徴とする。
この請求項2に記載された吸収液と液体二酸化炭素の分離再生装置では、ジャケット槽31の内部に冷却器26から排出された冷却液を流通させると、分離再生器23内の吸収液11及び液体二酸化炭素13を所定の温度に維持できるので、液体二酸化炭素13の気化を確実に防止できるとともに、分離再生器23を大型化せずに済む。
The invention according to claim 2 is the invention according to claim 1, and further, as shown in FIG. 1, from the cooler 26 inside the jacket tank 31 provided so as to surround the outer peripheral surface of the separation regenerator 23. A feature is that the discharged coolant flows.
In the separation / regeneration apparatus for absorbing liquid and liquid carbon dioxide described in claim 2, when the cooling liquid discharged from the cooler 26 is circulated in the jacket tank 31, the absorbing liquid 11 in the separation / regenerator 23 and Since the liquid carbon dioxide 13 can be maintained at a predetermined temperature, vaporization of the liquid carbon dioxide 13 can be reliably prevented, and the separation regenerator 23 does not need to be enlarged.

請求項3に係る発明は、請求項1に係る発明であって、更に図4に示すように、分離再生器23の分離室23bに螺旋状に設けられた冷却コイル61の内部に冷却器26から排出された冷却液が流通するように構成されたことを特徴とする。
この請求項3に記載された吸収液と液体二酸化炭素の分離再生装置では、冷却コイル61の内部に冷却器26から排出された冷却液を流通させると、分離再生器23内の吸収液11及び液体二酸化炭素13を上記請求項2のジャケット槽より効率良く所定の温度に維持できるので、液体二酸化炭素13の気化を更に確実に防止できる。
The invention according to claim 3 is the invention according to claim 1, and further, as shown in FIG. 4, the cooler 26 is provided inside the cooling coil 61 spirally provided in the separation chamber 23 b of the separation regenerator 23. The cooling liquid discharged from the tank is configured to circulate.
In the separation / regeneration apparatus for absorbing liquid and liquid carbon dioxide described in claim 3, when the cooling liquid discharged from the cooler 26 is circulated inside the cooling coil 61, the absorbing liquid 11 in the separation / regenerator 23 and Since the liquid carbon dioxide 13 can be maintained at a predetermined temperature more efficiently than the jacket tank of the second aspect, vaporization of the liquid carbon dioxide 13 can be prevented more reliably.

請求項6に係る発明は、図1及び図3に示すように、二酸化炭素ガス及び非酸性ガスを含む混合ガスを圧縮して吸収液11に接触させることにより、二酸化炭素ガスを吸収液11に吸収させる吸収装置12と、この吸収装置12から排出され二酸化炭素ガスを吸収した吸収液11を冷却して二酸化炭素ガスを液体二酸化炭素13として分離するとともに吸収液11を再生する請求項1ないし5いずれか1項に記載の分離再生装置14とを備えたガスの精製装置である。
この請求項6に記載されたガスの精製装置では、請求項1ないし5いずれか1項に記載の分離再生装置14を小型化できるので、ガスの精製装置10も比較的コンパクトに構成できる。また上記分離再生装置14により吸収液11に吸収された二酸化炭素ガスを効率良く液体二酸化炭素13として分離できるので、ガスの精製装置10を用いて二酸化炭素ガス及び非酸性ガスを含む混合ガスから二酸化炭素ガスを液体二酸化炭素13として効率良く分離できる。
As shown in FIGS. 1 and 3, the invention according to claim 6 compresses a mixed gas containing carbon dioxide gas and a non-acidic gas so as to contact the absorbing liquid 11, thereby converting the carbon dioxide gas into the absorbing liquid 11. The absorption device 12 to be absorbed and the absorption liquid 11 discharged from the absorption device 12 and absorbing the carbon dioxide gas are cooled to separate the carbon dioxide gas as liquid carbon dioxide 13 and to regenerate the absorption liquid 11. A gas purification device comprising the separation and regeneration device 14 according to any one of the above items.
In the gas purification apparatus according to the sixth aspect, since the separation and regeneration apparatus 14 according to any one of the first to fifth aspects can be reduced in size, the gas purification apparatus 10 can also be configured to be relatively compact. Further, since the carbon dioxide gas absorbed in the absorbing liquid 11 by the separation / regeneration device 14 can be efficiently separated as the liquid carbon dioxide 13, the gas purification device 10 is used to remove carbon dioxide from a mixed gas containing carbon dioxide gas and non-acidic gas. Carbon gas can be efficiently separated as liquid carbon dioxide 13.

請求項7に係る発明は、図5に示すように、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を改質、CO変性及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項6に記載された精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するシステムである。
この請求項7に記載されたシステムでは、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。
As shown in FIG. 5, the invention according to claim 7 reforms one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. After CO modification and CO removal to obtain a mixed gas of H 2 and CO 2 , this mixed gas is separated and recovered into H 2 and liquid CO 2 using the purifier according to claim 6, and further separated. This is a system for supplying recovered H 2 to a hydrogen station.
In the system according to the seventh aspect, CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels.

請求項8に係る発明は、図6に示すように、燃料電池を駆動源とする車上改質型車両に搭載され、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を車上で改質、CO変性及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項6に記載された精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するとともに、液体CO2を貯留容器に収容するシステムである。
この請求項8に記載されたシステムでは、車両に搭載できる程度に小型化でき、種々の燃料から高圧のH2を製造しながら、液体CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
As shown in FIG. 6, the invention according to claim 8 is mounted on an on-vehicle reforming type vehicle using a fuel cell as a driving source, and is made of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. 7. One or more kinds of fuel selected from the group consisting of reforming, CO modification and CO removal on a vehicle to form a mixed gas of H 2 and CO 2 , and then the mixed gas is described in claim 6. This is a system that separates and collects H 2 and liquid CO 2 using a purification apparatus, supplies the separated and collected H 2 to the fuel cell, and stores the liquid CO 2 in a storage container.
In the system according to the eighth aspect of the present invention, the system can be miniaturized to the extent that it can be mounted on a vehicle, and liquid CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

本発明によれば、冷却器が二酸化炭素ガスを吸収した吸収液を冷却して遊離液滴状の液体二酸化炭素の分散した吸収液にし、分離再生器が冷却器により冷却された吸収液から液体二酸化炭素を分離するとともに吸収液を再生し、分離再生器の上部に接続されたバッファタンクが分離再生器内で分離されてこのタンク内に進入した液体二酸化炭素の一部又は全部を気化するので、分離再生器内が吸収液及び液体二酸化炭素で満たされた状態で圧力変動が生じても、バッファタンク内の二酸化炭素ガスが上記分離再生器内に満たされた吸収液及び液体二酸化炭素の圧力変動を吸収して低減する。この結果、分離再生器内の吸収液及び液体二酸化炭素の圧力を安定的に維持できるので、分離再生器内の圧力変動による吸収液及び液体二酸化炭素の分相効率の低下を防止できる。
また分離再生器内に鉛直方向に延びて設けられた隔離板が分離再生器内を分離室と静置室とに区画するとともに、隔離板に形成されたアッパ連通孔及びロア連通孔が分離室及び静置室を上部及び下部でそれぞれ連通し、分離室の中央に設けられた分離促進部が吸収液に分散した遊離液滴状の液体二酸化炭素を捕捉し凝集して粗大化させるので、吸収液から液体二酸化炭素を迅速に分相できる。また隔離板により区画された静置室に上記分相された吸収液及び液体二酸化炭素が静置室に流入しても、吸収液及び液体二酸化炭素に対流が殆ど発生しないので、吸収液及び液体二酸化炭素が静置室で再混合されることはなく、また静置室内の吸収液及び液体二酸化炭素が分離室に還流することもない。この結果、分離再生器が比較的小型であっても、分離再生器内で吸収液から液体二酸化炭素を効率良く分相できる。
According to the present invention, the cooler absorbs the carbon dioxide gas-absorbed absorption liquid to form a liquid liquid dispersion in which the liquid carbon dioxide is dispersed in the form of free droplets, and the separation / regenerator is liquidized from the absorption liquid cooled by the cooler. Since the carbon dioxide is separated and the absorbing liquid is regenerated, the buffer tank connected to the upper part of the separation regenerator is separated in the separation regenerator and vaporizes part or all of the liquid carbon dioxide entering the tank. Even if pressure fluctuation occurs in the state where the separation regenerator is filled with the absorption liquid and liquid carbon dioxide, the pressure of the absorption liquid and liquid carbon dioxide in which the carbon dioxide gas in the buffer tank is filled in the separation regenerator Absorb fluctuations and reduce. As a result, the pressure of the absorption liquid and the liquid carbon dioxide in the separation / regenerator can be stably maintained, so that a decrease in the phase separation efficiency of the absorption liquid and the liquid carbon dioxide due to the pressure fluctuation in the separation / regeneration unit can be prevented.
In addition, a separator plate extending in the vertical direction in the separation regenerator divides the separation regenerator into a separation chamber and a stationary chamber, and an upper communication hole and a lower communication hole formed in the separation plate are provided in the separation chamber. And the stationary chamber communicate with each other at the top and bottom, and the separation promoting part provided in the center of the separation chamber captures and aggregates the liquid carbon dioxide in the form of free droplets dispersed in the absorption liquid, so that absorption Liquid carbon dioxide can be rapidly phase-separated from the liquid. Further, even if the phase-separated absorption liquid and liquid carbon dioxide flow into the stationary chamber partitioned by the separator, almost no convection occurs in the absorption liquid and liquid carbon dioxide. Carbon dioxide is not remixed in the stationary chamber, and the absorbing liquid and liquid carbon dioxide in the stationary chamber are not refluxed to the separation chamber. As a result, even if the separation / regenerator is relatively small, liquid carbon dioxide can be efficiently separated from the absorbent in the separation / regeneration unit.

また分離再生器の外周面を囲むように設けられたジャケット槽の内部に冷却液が流通するように構成すれば、分離再生器内の吸収液及び液体二酸化炭素を所定の温度に維持できるので、液体二酸化炭素の気化を確実に防止できるとともに、分離再生器を大型化せずに済む。
また分離再生器の分離室に螺旋状に設けられた冷却コイルの内部に冷却液が流通するように構成すれば、分離再生器内の吸収液及び液体二酸化炭素を上記ジャケット槽より効率良く所定の温度に維持できるので、液体二酸化炭素の気化を更に確実に防止できる。
またガスの精製装置が、二酸化炭素ガス及び非酸性ガスを含む混合ガスを圧縮して吸収液に接触させることにより二酸化炭素ガスを吸収液に吸収させる吸収装置と、この吸収装置から排出され二酸化炭素ガスを吸収した吸収液を冷却して二酸化炭素ガスを液体二酸化炭素として分離するとともに吸収液を再生する上記分離再生装置とを備えれば、分離再生装置を小型化できるので、ガスの精製装置も比較的コンパクトに構成できるとともに、上記分離再生装置により吸収液に吸収された二酸化炭素ガスを効率良く液体二酸化炭素として分離できるので、ガスの精製装置を用いて二酸化炭素ガス及び非酸性ガスを含む混合ガスから二酸化炭素ガスを液体二酸化炭素として効率良く分離できる。
Further, if the cooling liquid is configured to flow inside the jacket tank provided so as to surround the outer peripheral surface of the separation regenerator, the absorption liquid and liquid carbon dioxide in the separation regenerator can be maintained at a predetermined temperature. Liquid carbon dioxide can be reliably prevented from being vaporized, and the separation regenerator does not need to be enlarged.
Further, if the cooling liquid is configured to circulate inside the cooling coil spirally provided in the separation chamber of the separation regenerator, the absorption liquid and the liquid carbon dioxide in the separation regenerator are more efficiently given to the predetermined tank tank than the jacket tank. Since the temperature can be maintained, vaporization of liquid carbon dioxide can be more reliably prevented.
In addition, the gas purification device compresses the mixed gas containing carbon dioxide gas and non-acidic gas and contacts the absorption liquid to absorb the carbon dioxide gas into the absorption liquid, and the carbon dioxide discharged from the absorption apparatus Since the separation / regeneration device can be miniaturized by cooling the absorption liquid that has absorbed the gas and separating the carbon dioxide gas as liquid carbon dioxide and regenerating the absorption liquid, the gas purification apparatus can be reduced in size. Since the carbon dioxide gas absorbed in the absorption liquid by the separation / regeneration device can be efficiently separated as liquid carbon dioxide while being able to be configured relatively compactly, mixing containing carbon dioxide gas and non-acidic gas using a gas purification device Carbon dioxide gas can be efficiently separated from gas as liquid carbon dioxide.

また燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記ガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、分離回収された液体CO2を断熱膨張させてドライアイスを製造すれば、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。
更に燃料電池を駆動源とする車上改質型車両に搭載されたシステムであって、燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記ガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するとともに、液体CO2を貯留容器に収容すれば、車両に搭載できる程度に小型化でき、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
The fuel is reformed, CO converted and CO removed to form a mixed gas of H 2 and CO 2 , and then the mixed gas is separated and recovered into H 2 and liquid CO 2 using the above-described gas purification apparatus. By supplying the separated and recovered H 2 to the hydrogen station and producing dry ice by adiabatic expansion of the separated and collected liquid CO 2 , CO 2 is efficiently produced while producing high-pressure H 2 from various fuels. It can be recovered well.
Further, the system is mounted on an on-vehicle reforming type vehicle using a fuel cell as a driving source, and after reforming the fuel on the vehicle, CO conversion and CO removal to form a mixed gas of H 2 and CO 2 , If this mixed gas is separated and recovered into H 2 and liquid CO 2 using the above gas purification apparatus, and further, the separated and recovered H 2 is supplied to the fuel cell and the liquid CO 2 is accommodated in a storage container, It can be made small enough to be mounted on a vehicle, and CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
<第1の実施の形態>
図3に示すように、ガスの精製装置10は、二酸化炭素ガス及び非酸性ガスを含む混合ガスを圧縮して吸収液に接触させることにより、二酸化炭素ガスを吸収液に吸収させる吸収装置12と、この吸収装置12から排出され二酸化炭素ガスを吸収した吸収液を冷却して二酸化炭素ガスを液体二酸化炭素として分離するとともに吸収液を再生する分離再生装置14とを備える。吸収装置12は、二酸化炭素ガス及び非酸性ガスを含む混合ガスを圧縮する圧縮機16と、鉛直方向に延びて設けられ下部に圧縮された混合ガスが供給されかつ上部に吸収液が供給されて吸収液に混合ガスを接触させることにより二酸化炭素ガスを吸収液に吸収させて非酸性ガスを二酸化炭素ガスから分離し回収する吸収塔17とを備える。非酸性ガスはH2,CH4,CO,O2,N2及び炭素数2〜10までの炭化水素化合物からなる群より選ばれた1種又は2種以上のガスである。ここで、炭素数2〜10までの炭化水素化合物としては、C24、C26、C36、C38、C48、C410などが挙げられる。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIG. 3, the gas purification device 10 includes an absorption device 12 that absorbs carbon dioxide gas into the absorption liquid by compressing a mixed gas containing carbon dioxide gas and a non-acidic gas and bringing the mixed gas into contact with the absorption liquid. And a separation / regeneration device 14 for cooling the absorption liquid discharged from the absorption device 12 and absorbing the carbon dioxide gas to separate the carbon dioxide gas as liquid carbon dioxide and regenerating the absorption liquid. The absorption device 12 includes a compressor 16 that compresses a mixed gas containing carbon dioxide gas and non-acidic gas, a vertically extending mixed gas supplied to the lower portion, and an upper portion supplied with an absorbing liquid. An absorption tower 17 is provided that absorbs carbon dioxide gas into the absorption liquid by bringing the mixed gas into contact with the absorption liquid and separates and recovers the non-acidic gas from the carbon dioxide gas. Non-acidic gas is H 2, CH 4, CO, O 2, N 2 and one or more gases selected from the group consisting of hydrocarbon compounds to 10 carbon atoms. Here, examples of the hydrocarbon compound having 2 to 10 carbon atoms include C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , C 4 H 8 , and C 4 H 10 .

また吸収液はイオン性液体又はこれを主成分とする組成物であり、イオン性液体はカチオン及びアニオンを有する。カチオンは、[R,R’−N233]+(N,N’-ジアルキルイミダゾリウム)、[NRX4-X]+(アルキルアンモニウム)、[R−NC55]+(N-アルキルピリジニウム)、[R−NC48]+(N-アルキルピロリジニウム)及び[PRX4-X]+(アルキルフォスフォニウム)からなる群より選ばれた1種又は2種以上のカチオンであり(カチオン中のR及びR’は炭素数1〜18のアルキル基又は水素であり、カチオン中のXが1〜3である。)、好ましくは[R,R’−N233]+(アルキル基炭素数1〜10のN,N’-アルキルイミダゾリウム)又は[R−NC55]+(N-アルキルピリジニウム)のいずれか一方又は双方である。またアニオンは、PF6 -、BF4 -、NO3 -、EtSO4 -、AlCl4 -及びAlBr4 -からなる群より選ばれた1種又は2種以上のアニオンであり、好ましくはPF6 -又はBF4 -のいずれか一方又は双方である。なお、吸収液として、有機溶剤又は水のいずれか一方又は双方からなる液体、或いは有機溶剤又は水のいずれか一方又は双方を主成分とする液体を用いてもよい。有機溶剤としては、二酸化炭素ガスに対して大きな吸収能力を有し、液体二酸化炭素との密度差が大きく、蒸気圧が低く、液体二酸化炭素とあまり相互溶解しない極性有機溶剤を用いることが好ましい。具体的には、有機溶剤は、ポリエチレングリコール、ポリビニルアルコール、ポリエーテル、ポリエステル、ポリアルカン及びポリオレフィンイオンからなる群より選ばれた1種又は2種以上のポリマーであることが好ましい。一方、水は、二酸化炭素ガスに対して比較的大きな吸収能力を有し、液体二酸化炭素との密度差が比較的大きく、蒸気圧が比較的低く、液体二酸化炭素とあまり相互溶解しない。 Moreover, an absorption liquid is an ionic liquid or a composition which has this as a main component, and an ionic liquid has a cation and an anion. The cations are [R, R′-N 2 C 3 H 3 ] + (N, N′-dialkylimidazolium), [NR X H 4−X ] + (alkylammonium), [R—NC 5 H 5 ]. One selected from the group consisting of + (N-alkylpyridinium), [R-NC 4 H 8 ] + (N-alkylpyrrolidinium) and [PR X H 4-X ] + (alkylphosphonium) Or two or more cations (R and R ′ in the cation are alkyl groups having 1 to 18 carbon atoms or hydrogen, and X in the cation is 1 to 3), preferably [R, R ′ —N 2 C 3 H 3 ] + (N, N′-alkylimidazolium having 1 to 10 alkyl groups) or [R—NC 5 H 5 ] + (N-alkylpyridinium) or both is there. The anion is one or more anions selected from the group consisting of PF 6 , BF 4 , NO 3 , EtSO 4 , AlCl 4 and AlBr 4 , preferably PF 6 −. or BF 4 - is either or both of the. In addition, as an absorption liquid, you may use the liquid which consists of any one or both of an organic solvent or water, or the liquid which has any one or both of an organic solvent or water as a main component. As the organic solvent, it is preferable to use a polar organic solvent that has a large absorption capacity for carbon dioxide gas, has a large density difference from liquid carbon dioxide, has a low vapor pressure, and does not mutually dissolve in liquid carbon dioxide. Specifically, the organic solvent is preferably one or more polymers selected from the group consisting of polyethylene glycol, polyvinyl alcohol, polyether, polyester, polyalkane and polyolefin ion. On the other hand, water has a relatively large absorption capacity for carbon dioxide gas, has a relatively large density difference from liquid carbon dioxide, has a relatively low vapor pressure, and does not dissolve much with liquid carbon dioxide.

圧縮機16は、吸収塔17の下部側面に接続されたガス供給管18に設けられ、圧縮機16と吸収塔17の間のガス供給管18にはプリ冷却器19が設けられる(図3)。上記圧縮機16及びプリ冷却器19により、混合ガスが所定の温度及び所定の圧力にそれぞれ維持された状態で吸収塔17の下部に供給される。具体的には、吸収塔17に供給される混合ガスの温度、即ち吸収塔17内の温度は0〜100℃、好ましくは30〜50℃に設定され、吸収塔17に供給される混合ガスの圧力、即ち吸収塔17内の圧力は4〜25MPa、好ましくは6〜10MPaに設定される。吸収塔17は吸収ドラム缶でもよいが、二酸化炭素ガスの吸収効率を向上するために、多段の吸収塔17を用いることが望ましい。また吸収塔17の上端には非酸性ガス排出管21の一端が接続され、吸収塔17の下端には連通管22の一端が接続される。連通管22の他端は後述する分離再生器23に接続され、この連通管22には熱交換器24が設けられる。この熱交換器24は、吸収塔17から排出され二酸化炭素ガスを吸収した吸収液が流通し蛇行管状に形成された第1流通部24aと、この第1流通部24aを液密状態で収容する第2流通部24bとを有する。この熱交換器24では、吸収塔17から排出され二酸化炭素ガスを吸収した吸収液が第1流通部24aを通過し、分離再生器23の下端から排出された吸収液が第2流通部24bを通過することにより、吸収塔17から排出され二酸化炭素ガスを吸収した吸収液を冷却し、かつ分離再生器23の下端から排出された吸収液を加熱するように構成される。   The compressor 16 is provided in a gas supply pipe 18 connected to the lower side surface of the absorption tower 17, and a precooler 19 is provided in the gas supply pipe 18 between the compressor 16 and the absorption tower 17 (FIG. 3). . The mixed gas is supplied to the lower part of the absorption tower 17 by the compressor 16 and the precooler 19 while being maintained at a predetermined temperature and a predetermined pressure, respectively. Specifically, the temperature of the mixed gas supplied to the absorption tower 17, that is, the temperature in the absorption tower 17 is set to 0 to 100 ° C., preferably 30 to 50 ° C. The pressure, that is, the pressure in the absorption tower 17 is set to 4 to 25 MPa, preferably 6 to 10 MPa. Although the absorption tower 17 may be an absorption drum, it is desirable to use a multistage absorption tower 17 in order to improve the absorption efficiency of carbon dioxide gas. One end of a non-acidic gas discharge pipe 21 is connected to the upper end of the absorption tower 17, and one end of a communication pipe 22 is connected to the lower end of the absorption tower 17. The other end of the communication pipe 22 is connected to a separation regenerator 23 described later, and a heat exchanger 24 is provided in the communication pipe 22. The heat exchanger 24 accommodates the first circulation part 24a formed in a meandering tubular shape through which the absorption liquid discharged from the absorption tower 17 and absorbing the carbon dioxide gas flows, and the first circulation part 24a in a liquid-tight state. And a second distribution part 24b. In this heat exchanger 24, the absorption liquid discharged from the absorption tower 17 and absorbing the carbon dioxide gas passes through the first circulation part 24a, and the absorption liquid discharged from the lower end of the separation regenerator 23 passes through the second circulation part 24b. By passing, the absorption liquid discharged from the absorption tower 17 and absorbing the carbon dioxide gas is cooled, and the absorption liquid discharged from the lower end of the separation regenerator 23 is heated.

一方、分離再生装置14は、図1及び図2に示すように、二酸化炭素ガスを吸収した吸収液11を冷却して遊離液滴状の液体二酸化炭素13が分散した吸収液11にする冷却器26と、この冷却器26により冷却された吸収液11から液体二酸化炭素13を分離するとともに吸収液11を再生する分離再生器23と、分離再生器23の上部に接続され分離再生器23内で分離されて進入した液体二酸化炭素13の一部又は全部を気化するバッファタンク27とを備える。冷却器26は、熱交換器24の第1流通部24aと分離再生器23との間の連通管22に設けられる。この冷却器26は、二酸化炭素ガスを吸収した吸収液11が流通する蛇行管状の被冷却液流通部26aと、この被冷却液流通部26aを液密状態で収容し冷媒が流通する冷媒流通部26bとを有する。冷媒流通部26bの一端側上部には冷媒供給管28の一端が接続され、冷媒供給管28の他端は冷媒タンク(図示せず)に接続される。また冷媒流通部26bの他端側下部には冷媒連通管29の一端が接続される。冷媒としては、水、アルコール、エチレングリコール水溶液等が挙げられる。この冷却器26は、熱交換器24の第1流通部24aから排出され二酸化炭素ガスを吸収した吸収液11に、冷却液を間接的に接触させることにより、上記二酸化炭素ガスを吸収した吸収液11を冷却するように構成される。また分離再生器23の外周面には、この外周面を囲むようにジャケット槽31が設けられる。このジャケット槽31の下部には冷媒連通管29の他端が接続され、ジャケット槽31の上部には冷媒排出管32の一端が接続される。冷却器26の冷媒流通部26bを流通した冷媒は冷却連通管29を通ってジャケット槽31内部を流通した後に冷媒排出管32から排出されるように構成される。   On the other hand, as shown in FIGS. 1 and 2, the separation / regeneration device 14 cools the absorption liquid 11 that has absorbed the carbon dioxide gas to form the absorption liquid 11 in which the liquid carbon dioxide 13 in the form of free droplets is dispersed. 26, a separation regenerator 23 that separates the liquid carbon dioxide 13 from the absorption liquid 11 cooled by the cooler 26 and regenerates the absorption liquid 11, and a separation regenerator 23 that is connected to the upper part of the separation regenerator 23. A buffer tank 27 that vaporizes a part or all of the liquid carbon dioxide 13 that has entered after being separated. The cooler 26 is provided in the communication pipe 22 between the first circulation part 24 a of the heat exchanger 24 and the separation regenerator 23. The cooler 26 includes a meandering-tube cooled liquid circulation part 26a through which the absorption liquid 11 that has absorbed carbon dioxide gas flows, and a refrigerant circulation part that accommodates the cooled liquid circulation part 26a in a liquid-tight state and through which refrigerant flows. 26b. One end of the refrigerant supply pipe 28 is connected to the upper part on one end side of the refrigerant circulation portion 26b, and the other end of the refrigerant supply pipe 28 is connected to a refrigerant tank (not shown). One end of the refrigerant communication pipe 29 is connected to the lower part on the other end side of the refrigerant circulation portion 26b. Examples of the refrigerant include water, alcohol, ethylene glycol aqueous solution, and the like. The cooler 26 absorbs the carbon dioxide gas by indirectly contacting the coolant with the absorbent 11 that has been discharged from the first flow part 24a of the heat exchanger 24 and absorbed the carbon dioxide gas. 11 is configured to cool. A jacket tank 31 is provided on the outer peripheral surface of the separation / regenerator 23 so as to surround the outer peripheral surface. The other end of the refrigerant communication pipe 29 is connected to the lower part of the jacket tank 31, and one end of the refrigerant discharge pipe 32 is connected to the upper part of the jacket tank 31. The refrigerant that has flowed through the refrigerant flow portion 26 b of the cooler 26 is configured to be discharged from the refrigerant discharge pipe 32 after flowing through the inside of the jacket tank 31 through the cooling communication pipe 29.

上記冷却器26により、二酸化炭素ガスを吸収した吸収液11が吸収塔17内の圧力とほぼ同一に保ちかつ吸収塔17内の温度より低い温度に冷却した状態で分離再生器23に供給される(図1〜図3)。具体的には、分離再生器23に供給される吸収液11の圧力、即ち分離再生器23内の圧力は吸収塔17内の圧力と同一の圧力、吸収塔17内の圧力より僅かに高い圧力、或いは吸収塔17内の圧力より僅かに低い圧力の4〜25MPa、好ましくは6〜10MPaに設定され、分離再生器23に供給される吸収液11の温度、即ち分離再生器23内の温度は吸収塔17内の温度より低い−30〜30℃、好ましくは0〜20℃、更に好ましくは0〜10℃に設定される。また上記ジャケット槽31に冷媒を流通させることにより、分離再生器23内の温度が上記−30〜30℃、好ましくは0〜20℃に確実に維持される。ここで、分離再生器23内の圧力を吸収塔17内の圧力と同一の圧力、吸収塔17内の圧力より僅かに高い圧力、或いは吸収塔17内の圧力より僅かに低い圧力の4〜25MPaの範囲に限定したのは、二酸化炭素ガスを液化するためと吸収液11の循環エネルギの消費を低減するためである。また分離再生器23内の温度を−30〜30℃の範囲に限定したのは、−30℃未満では冷却エネルギが増大しかつ吸収液の流動性が低下してしまい、30℃を越えると二酸化炭素ガスが遊離液滴状の液体二酸化炭素13になり難くなるからである。なお、分離再生器23内の圧力を吸収塔17内の圧力より高くする場合、その圧力差は上記温度低下により二酸化炭素ガスを遊離液滴状の液体二酸化炭素13にすることができる0.1〜3MPaの範囲内であることが好ましく、分離再生器23内の圧力を吸収塔17内の圧力より低くする場合、その圧力差は上記温度低下により二酸化炭素ガスを遊離液滴状の液体二酸化炭素13にすることができる0.1〜3MPaの範囲内であることが好ましい。   The absorption liquid 11 that has absorbed the carbon dioxide gas is supplied to the separation regenerator 23 in a state where the absorption liquid 11 that has absorbed the carbon dioxide gas is kept substantially the same as the pressure in the absorption tower 17 and cooled to a temperature lower than the temperature in the absorption tower 17. (FIGS. 1-3). Specifically, the pressure of the absorption liquid 11 supplied to the separation regenerator 23, that is, the pressure in the separation regenerator 23 is the same as the pressure in the absorption tower 17, and a pressure slightly higher than the pressure in the absorption tower 17. Alternatively, the pressure of 4 to 25 MPa, preferably 6 to 10 MPa, which is slightly lower than the pressure in the absorption tower 17, and the temperature of the absorption liquid 11 supplied to the separation regenerator 23, that is, the temperature in the separation regenerator 23 is It is set to −30 to 30 ° C., preferably 0 to 20 ° C., more preferably 0 to 10 ° C., which is lower than the temperature in the absorption tower 17. Further, by circulating the refrigerant in the jacket tank 31, the temperature in the separation regenerator 23 is reliably maintained at the above-described -30 to 30 ° C, preferably 0 to 20 ° C. Here, the pressure in the separation regenerator 23 is 4 to 25 MPa, which is the same pressure as the pressure in the absorption tower 17, a pressure slightly higher than the pressure in the absorption tower 17, or a pressure slightly lower than the pressure in the absorption tower 17. The reason for limiting to this range is to liquefy the carbon dioxide gas and to reduce the consumption of circulating energy of the absorbing liquid 11. Further, the temperature in the separation / regenerator 23 is limited to the range of -30 to 30 ° C because the cooling energy increases and the fluidity of the absorbing solution decreases when the temperature is lower than -30 ° C. This is because it becomes difficult for the carbon gas to become liquid carbon dioxide 13 in the form of free droplets. Note that when the pressure in the separation regenerator 23 is made higher than the pressure in the absorption tower 17, the pressure difference is 0.1. It is preferable that the pressure in the separation regenerator 23 is lower than the pressure in the absorption tower 17, and the pressure difference causes the carbon dioxide gas to be converted into free liquid droplets of liquid carbon dioxide due to the temperature drop. It is preferable to be within a range of 0.1 to 3 MPa, which can be 13.

上記分離再生器23は鉛直方向に延びる筒状に形成され、この分離再生器23内には隔離板23aが鉛直方向に延びて設けられる。この隔離板23aにより分離再生器23内が分離室23bと静置室23cとに区画される。また隔離板23aの上部にはアッパ連通孔23dが形成され、隔離板23aの下部にはロア連通孔23eが形成される。アッパ連通孔23dにより分離再生器23内の上部で分離室23b及び静置室23cが連通され、ロア連通孔23eにより分離再生器23内の下部で分離室23b及び静置室23cが連通されるように構成される。更に分離室23bの中央には分離促進部23fが設けられる。この分離促進部23fは、所定のメッシュの金網やパンチングメタル板等により形成され鉛直方向に所定の間隔をあけて隔離板23aにそれぞれ固定された一対の区画板23g,23gと、これらの区画板23g,23gにより分離室23bを区画する分離促進室23hと、この分離促進室23hに充填された樹脂繊維又はステンレスウールからなる充填物23iとを有する。上記一対の区画板23g,23gは、吸収液11及び液体二酸化炭素13が通過可能であって、充填物23iが通過不能であるように構成される。ここで、隔離板23aの高さをHとするとき、アッパ連通孔23dの高さH1は(0.05〜0.3)H、好ましくは(0.1〜0.2)Hに設定され、ロア連通孔23eの高さH2は(0.05〜0.3)H、好ましくは(0.1〜0.2)Hに設定され、更に一対の区画板23g,23gの間隔H3は(0.1〜0.4)H、好ましくは(0.2〜0.3)Hに設定される。ここで、アッパ連通孔23dの高さH1を(0.05〜0.3)Hの範囲内に限定したのは、0.05H未満では液体二酸化炭素の流通性が低下してしまい、0.3Hを越えると分離室23bと静置室23cとの隔離効果が低下してしまうからである。またロア連通孔23eの高さH2を(0.05〜0.3)Hの範囲内に限定したのは、0.05H未満では液体二酸化炭素の流通性が低下してしまい、0.3Hを越えると分離室23bと静置室23cとの隔離効果が低下してしまうからである。更に一対の区画板23g,23gの間隔H3を(0.1〜0.4)Hの範囲内に限定したのは、0.1H未満では分離促進が不十分となり、0.4Hを越えると余分な体積が増大してしまうからである。 The separation regenerator 23 is formed in a cylindrical shape extending in the vertical direction, and a separating plate 23 a is provided in the separation regenerator 23 so as to extend in the vertical direction. The separation plate 23a partitions the separation / regenerator 23 into a separation chamber 23b and a stationary chamber 23c. An upper communication hole 23d is formed in the upper part of the separator plate 23a, and a lower communication hole 23e is formed in the lower part of the separator plate 23a. The upper communication hole 23d allows the separation chamber 23b and the stationary chamber 23c to communicate with each other in the upper part of the separation / regenerator 23, and the lower communication hole 23e allows the separation chamber 23b and the stationary chamber 23c to communicate with each other at the lower part of the separation / regenerator 23. Configured as follows. Further, a separation promoting portion 23f is provided in the center of the separation chamber 23b. The separation accelerating portion 23f includes a pair of partition plates 23g and 23g formed by a predetermined mesh wire netting, a punching metal plate or the like and fixed to the separator plate 23a with a predetermined interval in the vertical direction, and these partition plates. The separation promoting chamber 23h divides the separation chamber 23b by 23g and 23g, and a filler 23i made of resin fiber or stainless wool filled in the separation promoting chamber 23h. The pair of partition plates 23g and 23g are configured such that the absorbing liquid 11 and the liquid carbon dioxide 13 can pass therethrough and the filling material 23i cannot pass through. Here, when the height of the separator 23a and H, the height H 1 of the upper hole 23d is (0.05 to 0.3) H, set to preferably (0.1 to 0.2) H The height H 2 of the lower communication hole 23e is set to (0.05 to 0.3) H, preferably (0.1 to 0.2) H, and the distance H between the pair of partition plates 23g and 23g. 3 is set to (0.1 to 0.4) H, preferably (0.2 to 0.3) H. Here, the reason why the height H 1 of the upper communication hole 23d is limited to the range of (0.05 to 0.3) H is that if it is less than 0.05H, the flowability of the liquid carbon dioxide is reduced. This is because the isolation effect between the separation chamber 23b and the stationary chamber 23c is lowered when the temperature exceeds 3H. Further, the reason why the height H 2 of the lower communication hole 23e is limited to the range of (0.05 to 0.3) H is that if it is less than 0.05H, the flowability of liquid carbon dioxide decreases, and 0.3H This is because the separation effect between the separation chamber 23b and the stationary chamber 23c is reduced. Further, the distance H 3 between the pair of partition plates 23g and 23g is limited to the range of (0.1 to 0.4) H. If the distance H is less than 0.1H, the separation promotion is insufficient. This is because the extra volume increases.

充填物23iとしては、ヒドロキシル基、カルボキシル基、オキシ基、エポキシ基、グリシジル基、オキシカルボニル基、カルボニルオキシ基、カルボニル基、アミノ基、エステル基、ハロゲン基、シアノ基、アミド基、イミド基、スルホニル基などの極性を有する樹脂繊維や、スチレン系、オレフィン系などの極性を有しない樹脂繊維や、又はステンレスウールが挙げられる。また上記充填物23iの平均直径は100〜1000μm、好ましくは200〜500μmであり、この充填物23iは分離促進室23h内の全体にわたって多数の連通する隙間を有するように充填される。ここで、充填物23iの平均直径を100〜1000μmの範囲内に限定したのは、100μm未満では流通時の圧損が高くなり、1000μmを越えると分離促進効果が低下してしまうからである。   Examples of the filling material 23i include hydroxyl group, carboxyl group, oxy group, epoxy group, glycidyl group, oxycarbonyl group, carbonyloxy group, carbonyl group, amino group, ester group, halogen group, cyano group, amide group, imide group, Examples thereof include resin fibers having a polarity such as a sulfonyl group, resin fibers having no polarity such as styrene and olefin, and stainless wool. The filling 23i has an average diameter of 100 to 1000 μm, preferably 200 to 500 μm, and the filling 23i is filled so as to have a large number of communicating gaps throughout the separation promoting chamber 23h. Here, the reason why the average diameter of the packing material 23i is limited to the range of 100 to 1000 μm is that if it is less than 100 μm, the pressure loss during distribution increases, and if it exceeds 1000 μm, the effect of promoting separation is reduced.

一方、バッファタンク27は分離再生器23の分離室23b側の上面に短管34を通して接続され、バッファタンク27の外周面にはバッファタンク27内の液体二酸化炭素13の一部又は全部を気化するための加熱手段36が設けられる。加熱手段36はこの実施の形態ではヒータである。バッファタンク27の容積は分離再生器23の容積の5〜50体積%、好ましくは10〜30体積%に設定される。ここで、バッファタンク27の容積を分離再生器23の容積の5〜50体積%の範囲内に限定したのは、5体積%未満では分離再生器23内の圧力変動を十分に抑制できず、50体積%を越えるとバッファタンク27が必要以上に大型化してしまい製造コストの増大を招くからである。またバッファタンク27内の温度は、ヒータ36によりバッファタンク27内を低密度の二酸化炭素ガス相に維持する温度、即ち二酸化炭素の臨界温度以上の温度、具体的には35〜100℃、好ましくは40〜80℃に維持される。   On the other hand, the buffer tank 27 is connected to the upper surface on the separation chamber 23 b side of the separation regenerator 23 through a short tube 34, and a part or all of the liquid carbon dioxide 13 in the buffer tank 27 is vaporized on the outer peripheral surface of the buffer tank 27. Heating means 36 are provided. The heating means 36 is a heater in this embodiment. The volume of the buffer tank 27 is set to 5 to 50% by volume, preferably 10 to 30% by volume, of the separation regenerator 23. Here, the volume of the buffer tank 27 is limited to the range of 5 to 50% by volume of the separation regenerator 23. If the volume is less than 5% by volume, the pressure fluctuation in the separation regenerator 23 cannot be sufficiently suppressed. This is because if the volume exceeds 50% by volume, the buffer tank 27 will be unnecessarily large and the manufacturing cost will increase. The temperature inside the buffer tank 27 is a temperature at which the inside of the buffer tank 27 is maintained in a low-density carbon dioxide gas phase by the heater 36, that is, a temperature higher than the critical temperature of carbon dioxide, specifically 35-100 ° C., preferably Maintained at 40-80 ° C.

分離再生器23の静置室23c側の上面には吸収液11から分離された液体二酸化炭素13を排出する二酸化炭素排出管37の一端が接続され、分離再生器23の静置室23c側の下面には液体二酸化炭素13が除去されて再生された吸収液11を吸収塔17に戻す吸収液戻し管38の一端が接続され、分離再生器23の静置室23c側の下部側面には吸収液11を静置室23c内に補給する吸収液補給管39の一端が接続される。吸収液戻し管38の他端は吸収塔17の上部側面に接続され、吸収液戻し管38の途中に熱交換器24の第2流通部24bが接続される。また二酸化炭素排出管37にはアッパ流量調整弁41が設けられ、バッファタンク27の上面には圧力センサ42が接続される。圧力センサ42の検出出力は圧力コントローラ43の制御入力に接続され、圧力コントローラ43の制御出力はアッパ流量調整弁41に接続される。更に吸収液補充管39にはロア流量調整弁44が設けられ、分離再生器23の静置室23c側の中央には液面センサ46が接続される。液面センサ46の検出出力は液面コントローラ47の制御入力に接続され、液面コントローラ47の制御出力はロア流量調整弁44に接続される。なお、図3の符号48は吸収液を吸収塔17と熱交換器24と分離再生器23とに循環させる循環ポンプである。   One end of a carbon dioxide discharge pipe 37 for discharging the liquid carbon dioxide 13 separated from the absorbing liquid 11 is connected to the upper surface of the separation regenerator 23 on the stationary chamber 23c side, and the separation regenerator 23 on the stationary chamber 23c side is connected. One end of an absorption liquid return pipe 38 for returning the regenerated absorption liquid 11 from the liquid carbon dioxide 13 to the absorption tower 17 is connected to the lower surface, and absorption is performed on the lower side surface of the separation regenerator 23 on the stationary chamber 23c side. One end of an absorption liquid supply pipe 39 for supplying the liquid 11 into the stationary chamber 23c is connected. The other end of the absorption liquid return pipe 38 is connected to the upper side surface of the absorption tower 17, and the second flow part 24 b of the heat exchanger 24 is connected to the absorption liquid return pipe 38. The carbon dioxide discharge pipe 37 is provided with an upper flow rate adjustment valve 41, and a pressure sensor 42 is connected to the upper surface of the buffer tank 27. The detection output of the pressure sensor 42 is connected to the control input of the pressure controller 43, and the control output of the pressure controller 43 is connected to the upper flow rate adjustment valve 41. Further, the absorbent replenishment pipe 39 is provided with a lower flow rate adjustment valve 44, and a liquid level sensor 46 is connected to the center of the separation regenerator 23 on the stationary chamber 23c side. The detection output of the liquid level sensor 46 is connected to the control input of the liquid level controller 47, and the control output of the liquid level controller 47 is connected to the lower flow rate adjustment valve 44. 3 is a circulation pump that circulates the absorption liquid to the absorption tower 17, the heat exchanger 24, and the separation regenerator 23.

このように構成された精製装置10及び分離再生装置14を用いてガスを精製する方法を説明する。
混合ガスを吸収塔17に供給する前に、予め循環ポンプ48を作動させ、プリ冷却器19及び冷却器26に水、アルコール、エチレングリコール水溶液などの冷媒を流して、吸収液を循環させるとともに、吸収塔17及び分離再生器23に供給される吸収液の温度をそれぞれ所定の温度にしておく。先ず混合ガスは圧縮機16及びプリ冷却器19により所定の温度に加熱又は冷却されかつ所定の圧力に昇圧された状態で吸収塔17の下部に供給される。これにより吸収液に混合ガスが接触して二酸化炭素ガスが吸収液に吸収されるので、非酸性ガスが二酸化炭素ガスから分離されて吸収塔17の上端から非酸性ガス排出管21を通って回収される。この回収された非酸性ガスの圧力がユーザ側に必要な圧力より高い場合、例えば上記非酸性ガス(H2,CH4,CO,O2,N2,炭素数2〜10までの炭化水素化合物等の混合ガス)をガスタービンに用いる場合、現状では3MPa程度の低圧であるため、上記非酸性ガスを一旦膨張タービン又は断熱膨張弁を用いて減圧する。
A method for purifying a gas using the purification apparatus 10 and the separation / regeneration apparatus 14 configured as described above will be described.
Before supplying the mixed gas to the absorption tower 17, the circulation pump 48 is operated in advance, and a refrigerant such as water, alcohol, ethylene glycol aqueous solution is passed through the precooler 19 and the cooler 26 to circulate the absorption liquid, The temperature of the absorption liquid supplied to the absorption tower 17 and the separation regenerator 23 is set to a predetermined temperature. First, the mixed gas is heated or cooled to a predetermined temperature by the compressor 16 and the precooler 19 and is supplied to the lower part of the absorption tower 17 in a state where the pressure is increased to a predetermined pressure. As a result, the mixed gas comes into contact with the absorbing liquid and the carbon dioxide gas is absorbed by the absorbing liquid, so that the non-acidic gas is separated from the carbon dioxide gas and recovered from the upper end of the absorption tower 17 through the non-acidic gas discharge pipe 21. Is done. When the pressure of the recovered non-acid gas is higher than the pressure required on the user side, for example, the non-acid gas (H 2 , CH 4 , CO, O 2 , N 2 , hydrocarbon compound having 2 to 10 carbon atoms) When the gas mixture is used in a gas turbine, the non-acid gas is once decompressed using an expansion turbine or an adiabatic expansion valve.

一方、吸収塔17の下端から排出され二酸化炭素ガスを吸収した吸収液は熱交換器24で再生吸収液11により冷却された後に、冷却器26で更に冷却される。このとき吸収液中の二酸化炭素ガスが遊離液滴状の液体二酸化炭素となって吸収液中に分散する。この遊離液滴状の液体二酸化炭素を含む吸収液は分離再生器23の分離促進室23h内に供給される。このとき分離促進室23h内の充填物23iが、吸収液に分散した遊離液滴状の液体二酸化炭素を捕捉し凝集して粗大化させるので、吸収液11から液体二酸化炭素13を迅速に分相できる。そして液体二酸化炭素13は上側の区画板23gの細孔を通過して分離室23b内を上昇し、アッパ連通孔23dを通って静置室23cに流入する。吸収液11は下側の区画板23gの細孔を通過して分離室23b内を下降し、ロア連通孔23eを通って静置室23cに流入する。静置室23c内の吸収液11及び液体二酸化炭素13には対流が殆ど発生しないので、吸収液11及び液体二酸化炭素13が静置室23cで再混合されることはなく、また静置室23c内の吸収液11及び液体二酸化炭素13が分離室に還流することもない。この結果、分離再生器23内で吸収液11から液体二酸化炭素13を効率良く分相できる。   On the other hand, the absorption liquid discharged from the lower end of the absorption tower 17 and absorbing the carbon dioxide gas is cooled by the regenerated absorption liquid 11 by the heat exchanger 24 and further cooled by the cooler 26. At this time, the carbon dioxide gas in the absorbing liquid becomes free droplet-like liquid carbon dioxide and is dispersed in the absorbing liquid. The absorbing liquid containing the liquid carbon dioxide in the form of free droplets is supplied into the separation promoting chamber 23h of the separation regenerator 23. At this time, the filling material 23i in the separation promoting chamber 23h captures and aggregates the liquid droplets of the liquid droplets dispersed in the absorption liquid so that the liquid carbon dioxide 13 is rapidly separated from the absorption liquid 11. it can. The liquid carbon dioxide 13 passes through the pores of the upper partition plate 23g, rises in the separation chamber 23b, and flows into the stationary chamber 23c through the upper communication hole 23d. The absorbing liquid 11 passes through the pores of the lower partition plate 23g, descends in the separation chamber 23b, and flows into the stationary chamber 23c through the lower communication hole 23e. Since almost no convection occurs in the absorbing liquid 11 and the liquid carbon dioxide 13 in the stationary chamber 23c, the absorbing liquid 11 and the liquid carbon dioxide 13 are not remixed in the stationary chamber 23c, and the stationary chamber 23c. The absorption liquid 11 and the liquid carbon dioxide 13 inside are not refluxed to the separation chamber. As a result, the liquid carbon dioxide 13 can be separated efficiently from the absorbent 11 in the separation / regenerator 23.

また分離再生器23内の吸収液11及び液体二酸化炭素13に圧力変動が生じても、バッファタンク27内の二酸化炭素ガスが上記分離再生器23内に満たされた吸収液11及び液体二酸化炭素13の圧力変動を吸収して低減する。この結果、分離再生器23内の吸収液11及び液体二酸化炭素13の圧力を安定的に維持できるので、分離再生器23内の圧力変動による吸収液11及び液体二酸化炭素13の分相効率の低下を防止できる。また冷却器26の冷媒流通部26bから排出された冷媒はジャケット槽31の内部を流通するので、分離再生器23内の吸収液11及び液体二酸化炭素13を更に−30〜30℃、好ましくは0〜20℃、更に好ましくは0〜10℃に維持でき、分離再生器23内の液体二酸化炭素13の気化を確実に防止できる。なお、ジャケット槽31の厚さは比較的薄いので、分離再生器23を大型化せずに済む。   Further, even if pressure fluctuation occurs in the absorption liquid 11 and the liquid carbon dioxide 13 in the separation regenerator 23, the absorption liquid 11 and the liquid carbon dioxide 13 in which the carbon dioxide gas in the buffer tank 27 is filled in the separation regenerator 23. Absorbs and reduces pressure fluctuations. As a result, the pressures of the absorption liquid 11 and the liquid carbon dioxide 13 in the separation / regenerator 23 can be stably maintained. Can be prevented. Moreover, since the refrigerant | coolant discharged | emitted from the refrigerant | coolant distribution part 26b of the cooler 26 distribute | circulates the inside of the jacket tank 31, the absorption liquid 11 and the liquid carbon dioxide 13 in the separation regenerator 23 are further -30-30 degreeC, Preferably it is 0 It can be maintained at -20 ° C, more preferably 0-10 ° C, and the vaporization of the liquid carbon dioxide 13 in the separation regenerator 23 can be reliably prevented. In addition, since the thickness of the jacket tank 31 is relatively thin, it is not necessary to increase the size of the separation / regenerator 23.

静置室23c内の液体二酸化炭素13は二酸化炭素排出管37を通って排出される。具体的には、分離再生器23内の圧力変動はバッファタンク27で吸収されるけれども、分離再生器23内及びバッファタンク27内の圧力を所定の圧力に維持した状態で、圧力コントローラ43が圧力センサ42の検出出力に基づいてアッパ流量調整弁41の開度を調整することにより、静置室23cから液体二酸化炭素13が二酸化炭素排出管37を通って排出される。また静置室23c内の吸収液11は循環ポンプ48により吸収液戻し管38及び熱交換器24の第2流通部24bを通って吸収塔17に戻される。なお、静置室23cから二酸化炭素排出管37を通って排出される液体二酸化炭素13には僅かに吸収液11が含まれるため、静置室23c内の吸収液11の液面は次第に低下する。このため吸収液11の液面が設定液面から所定量低下したことを液面センサ46が検出すると、液面コントローラ47が液面センサ46の検出出力に基づいてロア流量調整弁44を所定の開度で開いて静置室23cに吸収液11を補充する。そして静置室23cの吸収液11の液面が設定液面まで上昇したことを液面センサ46が検出したときに、液面コントローラ47が液面センサ46の検出出力に基づいてロア流量調整弁44を閉止する。   The liquid carbon dioxide 13 in the stationary chamber 23 c is exhausted through the carbon dioxide exhaust pipe 37. Specifically, although the pressure fluctuation in the separation regenerator 23 is absorbed by the buffer tank 27, the pressure controller 43 performs pressure adjustment while maintaining the pressure in the separation regenerator 23 and the buffer tank 27 at a predetermined pressure. The liquid carbon dioxide 13 is discharged from the stationary chamber 23 c through the carbon dioxide discharge pipe 37 by adjusting the opening of the upper flow rate adjustment valve 41 based on the detection output of the sensor 42. The absorbent 11 in the stationary chamber 23 c is returned to the absorption tower 17 by the circulation pump 48 through the absorbent return pipe 38 and the second circulation part 24 b of the heat exchanger 24. Since the liquid carbon dioxide 13 discharged from the stationary chamber 23c through the carbon dioxide discharge pipe 37 contains a slight amount of the absorbing liquid 11, the liquid level of the absorbing liquid 11 in the stationary chamber 23c gradually decreases. . For this reason, when the liquid level sensor 46 detects that the liquid level of the absorbing liquid 11 has decreased by a predetermined amount from the set liquid level, the liquid level controller 47 sets the lower flow rate adjustment valve 44 to a predetermined level based on the detection output of the liquid level sensor 46. It opens at the opening and replenishes the absorbing liquid 11 to the stationary chamber 23c. When the liquid level sensor 46 detects that the liquid level of the absorbing liquid 11 in the stationary chamber 23c has risen to the set liquid level, the liquid level controller 47 controls the lower flow rate adjustment valve based on the detection output of the liquid level sensor 46. 44 is closed.

<第2の実施の形態>
図4は本発明の第2の実施の形態を示す。図4において図1と同一符号は同一部品を示す。
この実施の形態では、第1の実施の形態のジャケット槽に代えて、分離再生器23の分離室23b内に冷却コイル61が設けられる。この冷却コイル61の下端は冷媒連通管29の他端に接続され、冷却コイル61の上端は冷媒排出管32の一端に接続させる。上記以外は第1の実施の形態と同一に構成される。
このように構成された精製装置及び分離再生装置では、分離再生器23内の吸収液11及び液体二酸化炭素13を第1の実施の形態のジャケット槽より効率良く所定の温度、即ち−30〜30℃、好ましくは0〜20℃、更に好ましくは0〜10℃に維持できるので、液体二酸化炭素13の気化を更に確実に防止できる。上記以外の動作は第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。
<Second Embodiment>
FIG. 4 shows a second embodiment of the present invention. 4, the same reference numerals as those in FIG. 1 denote the same components.
In this embodiment, a cooling coil 61 is provided in the separation chamber 23b of the separation regenerator 23 in place of the jacket tank of the first embodiment. The lower end of the cooling coil 61 is connected to the other end of the refrigerant communication pipe 29, and the upper end of the cooling coil 61 is connected to one end of the refrigerant discharge pipe 32. The configuration other than the above is the same as that of the first embodiment.
In the purification apparatus and the separation / regeneration apparatus configured as described above, the absorption liquid 11 and the liquid carbon dioxide 13 in the separation / regenerator 23 are more efficiently heated to a predetermined temperature, that is, −30 to 30 than the jacket tank of the first embodiment. Since it can maintain at 0 degreeC, Preferably it is 0-20 degreeC, More preferably, it is 0-10 degreeC, Therefore The vaporization of the liquid carbon dioxide 13 can be prevented further reliably. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

<第3の実施の形態>
図5は本発明の第3の実施の形態を示す。
この実施の形態では、燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記第1及び2の実施の形態のガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、分離回収された液体CO2を断熱膨張させてドライアイス(固体CO2)を製造するように構成される。燃料としては、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料が挙げられる。この燃料の改質はスチーム改質、部分酸化、或いは超臨界水改質であり、上記改質により燃料がH2及びCOに改質される。またCO変成により大部分のCOがCO2に変成され、CO除去により僅かに残ったCOが除去される。そして残ったH2及びCO2の混合ガスは上記第1及び第2の実施の形態のガスの精製装置を用いて高圧H2及び液体CO2に分離される。更に高圧H2は水素ステーションに供給され、水素燃料電池自動車の燃料となる。一方、液体CO2を回収する場合、この回収された液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイスを製造できる。
<Third Embodiment>
FIG. 5 shows a third embodiment of the present invention.
In this embodiment, after the fuel is reformed, CO-modified, and CO removed to form a mixed gas of H 2 and CO 2 , this mixed gas is used in the gas purification apparatus of the first and second embodiments. The H 2 and liquid CO 2 are separated and recovered, and the separated and recovered H 2 is supplied to the hydrogen station, and the separated and recovered liquid CO 2 is adiabatically expanded to produce dry ice (solid CO 2 ). Configured as follows. Examples of the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. The reforming of the fuel is steam reforming, partial oxidation, or supercritical water reforming, and the fuel is reformed into H 2 and CO by the reforming. Also, most of CO is converted to CO 2 by CO conversion, and a little remaining CO is removed by CO removal. And the remaining mixed gas of H 2 and CO 2 is separated into the high pressure H 2 and liquid CO 2 using the apparatus for purifying gas in the first and second embodiments. Further, the high pressure H 2 is supplied to the hydrogen station and becomes a fuel for a hydrogen fuel cell vehicle. On the other hand, when the recovery of liquid CO 2, by adiabatic expansion of part or all of the recovered liquid CO 2 at the opening of the pressure reducing valve can be produced salable dry ice as a product.

<第4の実施の形態>
図6は本発明の第4の実施の形態を示す。
この実施の形態では、燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記第1及び第2の実施の形態のガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するシステムが、燃料電池を駆動源とする車上改質型車両に搭載される。燃料としては、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料が挙げられる。この燃料の改質はスチーム改質であり、このスチーム改質により燃料がH2及びCOに改質される。またCO変成により大部分のCOがCO2に変成され、CO除去により僅かに残ったCOが除去される。そして残ったH2及びCO2の混合ガスは上記第1及び第2の実施の形態のガスの精製装置を用いて高圧H2及び液体CO2に分離される。更に高圧H2は燃料電池に供給されるとともに、液体CO2は貯留容器に収容される。この結果、種々の燃料から高圧のH2を製造しながら、液体CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
<Fourth embodiment>
FIG. 6 shows a fourth embodiment of the present invention.
In this embodiment, after reforming the fuel on the vehicle, CO conversion and CO removal to obtain a mixed gas of H 2 and CO 2 , this mixed gas is used for the gas of the first and second embodiments. A system that separates and collects H 2 and liquid CO 2 using a refining device and supplies the separated and collected H 2 to the fuel cell is mounted on an on-vehicle reforming vehicle that uses the fuel cell as a drive source. . Examples of the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. The reforming of the fuel is steam reforming, and the fuel is reformed into H 2 and CO by the steam reforming. Also, most of CO is converted to CO 2 by CO conversion, and a little remaining CO is removed by CO removal. And the remaining mixed gas of H 2 and CO 2 is separated into the high pressure H 2 and liquid CO 2 using the apparatus for purifying gas in the first and second embodiments. Further, the high pressure H 2 is supplied to the fuel cell, and the liquid CO 2 is stored in the storage container. As a result, liquid CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1及び図2に示すように、冷却器26と、容積5リットルの分離再生器23と、容積0.5リットルのバッファタンク27とを備えた分離再生装置14を用いた。また吸収液11として1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートを用い、分離再生器23の分離促進室23fに平均直径300μmのステンレスウール製の充填物23iを充填した。更に隔離板23aの高さHは1000mmであり、アッパ連通孔23dの高さは150mm(0.15H)であり、ロア連通孔23eの高さは150mm(0.15H)であり、一対の区画板23g,23gの間隔は200mm(0.2H)であった。なお、吸収液戻し管38を図示しない循環ポンプを通して連通管22に接続し、吸収液11を循環させた。この分離再生装置14を実施例1とした。
<比較例1>
分離再生器の分離促進室に充填物を充填しなかったこと以外は、実施例1と同一の分離再生装置を用いた。この分離再生装置を比較例1とした。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
As shown in FIGS. 1 and 2, a separation / regeneration device 14 including a cooler 26, a separation / regeneration unit 23 having a capacity of 5 liters, and a buffer tank 27 having a capacity of 0.5 liters was used. Further, 1-butyl-3-methylimidazolium hexafluorophosphate was used as the absorbing liquid 11, and the separation promoting chamber 23f of the separation regenerator 23 was filled with a packing material 23i made of stainless wool having an average diameter of 300 μm. Further, the height H of the separator plate 23a is 1000 mm, the height of the upper communication hole 23d is 150 mm (0.15H), the height of the lower communication hole 23e is 150 mm (0.15H), and a pair of partitions The distance between the plates 23g and 23g was 200 mm (0.2H). The absorbing liquid return pipe 38 was connected to the communication pipe 22 through a circulation pump (not shown), and the absorbing liquid 11 was circulated. This separation / reproduction device 14 was referred to as Example 1.
<Comparative Example 1>
The same separation and regeneration apparatus as in Example 1 was used except that the separation promoting chamber of the separation and regenerator was not filled with a filler. This separation and regeneration apparatus was designated as Comparative Example 1.

<比較試験1及び評価>
吸収液1molに対して二酸化炭素ガスを0.3mol吸収させた後に、この二酸化炭素ガスを吸収した吸収液を、実施例1及び比較例1の冷却器に供給した。またこれらの冷却により、二酸化炭素ガスを吸収した吸収液を10℃に冷却して分離再生器にそれぞれ供給した。
その結果、比較例1の装置では、吸収液と液体二酸化炭素とを分離するのに10分と比較的長時間を要したが、実施例1の装置では、吸収液と液体二酸化炭素とを0.5分と極めて短時間で分離できた。
<Comparative test 1 and evaluation>
After absorbing 0.3 mol of carbon dioxide gas with respect to 1 mol of the absorbing solution, the absorbing solution that absorbed the carbon dioxide gas was supplied to the coolers of Example 1 and Comparative Example 1. Moreover, the cooling liquid which absorbed the carbon dioxide gas by these cooling was cooled to 10 degreeC, and each was supplied to the separation regenerator.
As a result, in the apparatus of Comparative Example 1, it took a relatively long time of 10 minutes to separate the absorbing liquid and the liquid carbon dioxide, but in the apparatus of Example 1, the absorbing liquid and the liquid carbon dioxide were reduced to 0. Separation was possible in an extremely short time of 5 minutes.

本発明第1実施形態の吸収液と液体二酸化炭素の分離再生装置の構成図である。1 is a configuration diagram of an absorption liquid and liquid carbon dioxide separation / regeneration apparatus according to a first embodiment of the present invention. FIG. その分離再生装置の分離再生器内の状態を示す要部斜視図である。It is a principal part perspective view which shows the state in the separation regenerator of the separation reproduction | regeneration apparatus. その分離再生装置を用いたガスの精製装置の構成図である。It is a block diagram of the refiner | purifier of the gas using the separation / regeneration apparatus. 本発明第2実施形態の吸収液と液体二酸化炭素の分離再生装置の構成図である。It is a block diagram of the separation / regeneration apparatus of the absorption liquid and liquid carbon dioxide of 2nd Embodiment of this invention. 本発明第3実施形態のガスの精製装置を用いたシステムを示す構成図である。It is a block diagram which shows the system using the refiner | purifier of the gas of 3rd Embodiment of this invention. 本発明第4実施形態のガスの精製装置を用いたシステムを示す構成図である。It is a block diagram which shows the system using the refiner | purifier of the gas of 4th Embodiment of this invention.

符号の説明Explanation of symbols

10 ガスの精製装置
11 吸収液
12 吸収装置
13 液体二酸化炭素
14 分離再生装置
23 分離再生器
23a 隔離板
23b 分離室
23c 静置室
23d アッパ連通孔
23e ロア連通孔
23f 分離促進部
23i 充填物
26 冷却器
27 バッファタンク
31 ジャケット槽
61 冷却コイル
DESCRIPTION OF SYMBOLS 10 Gas purification apparatus 11 Absorption liquid 12 Absorption apparatus 13 Liquid carbon dioxide 14 Separation / regeneration apparatus 23 Separation / regeneration unit 23a Separating plate 23b Separation chamber 23c Standing chamber 23d Upper communication hole 23e Lower communication hole 23f Separation promotion part 23i Filler 26 Cooling Equipment 27 Buffer tank 31 Jacket tank 61 Cooling coil

Claims (8)

二酸化炭素ガスを吸収した吸収液を冷却して遊離液滴状の液体二酸化炭素が分散した吸収液にする冷却器と、
前記冷却器により冷却された前記吸収液から前記液体二酸化炭素を分離するとともに前記吸収液を再生する分離再生器と、
前記分離再生器の上部に接続され前記分離再生器内で分離されて進入した液体二酸化炭素の一部又は全部を気化するバッファタンクと
を備えた分離再生装置であって、
前記分離再生器内に鉛直方向に延びて設けられ前記分離再生器内を分離室と静置室とに区画するとともに前記分離室及び前記静置室を上部及び下部でそれぞれ連通するアッパ連通孔及びロア連通孔が形成された隔離板と、
前記分離室の中央に設けられ前記吸収液に分散した遊離液滴状の前記液体二酸化炭素を捕捉し凝集して粗大化させる分離促進部と
を備えたことを特徴とする吸収液と液体二酸化炭素の分離再生装置。
A cooler that cools the absorption liquid that has absorbed carbon dioxide gas to form an absorption liquid in which liquid carbon dioxide in the form of free droplets is dispersed;
A separation regenerator for separating the liquid carbon dioxide from the absorption liquid cooled by the cooler and regenerating the absorption liquid;
A separation / regeneration apparatus comprising a buffer tank connected to an upper part of the separation / regenerator and vaporizing part or all of the liquid carbon dioxide separated and entered in the separation / regenerator,
An upper communication hole which extends in the vertical direction in the separation regenerator, divides the inside of the separation regenerator into a separation chamber and a stationary chamber, and communicates the separation chamber and the stationary chamber with an upper portion and a lower portion, respectively; A separator formed with a lower communication hole;
An absorption liquid and liquid carbon dioxide, comprising: a separation promoting part that is provided in the center of the separation chamber and captures, aggregates, and coarsens the liquid carbon dioxide in the form of free droplets dispersed in the absorption liquid Separation and regeneration device.
分離再生器の外周面を囲むように設けられたジャケット槽の内部に冷却器から排出された冷却液が流通するように構成された請求項1記載の吸収液と液体二酸化炭素の分離再生装置。   The apparatus for separating and regenerating an absorbing liquid and liquid carbon dioxide according to claim 1, wherein the cooling liquid discharged from the cooler is circulated in a jacket tank provided so as to surround the outer peripheral surface of the separating and regenerator. 分離再生器の分離室に螺旋状に設けられた冷却コイルの内部に冷却器から排出された冷却液が流通するように構成された請求項1記載の吸収液と液体二酸化炭素の分離再生装置。   The apparatus for separating and regenerating an absorbing liquid and liquid carbon dioxide according to claim 1, wherein the cooling liquid discharged from the cooler circulates inside a cooling coil spirally provided in the separation chamber of the separation regenerator. 分離促進部に平均直径100〜1000μmの樹脂繊維又はステンレスウールからなる充填物が充填された請求項1記載の吸収液と液体二酸化炭素の分離再生装置。
The apparatus for separating and regenerating an absorbent and liquid carbon dioxide according to claim 1, wherein the separation promoting part is filled with a filler made of resin fibers or stainless wool having an average diameter of 100 to 1000 µm.
吸収液がイオン性液体、有機溶剤又は水のいずれかである請求項1記載の吸収液と液体二酸化炭素の分離再生装置。   The apparatus for separating and regenerating an absorbent and liquid carbon dioxide according to claim 1, wherein the absorbent is one of an ionic liquid, an organic solvent, and water. 二酸化炭素ガス及び非酸性ガスを含む混合ガスを圧縮して吸収液に接触させることにより、二酸化炭素ガスを吸収液に吸収させる吸収装置と、この吸収装置から排出され前記二酸化炭素ガスを吸収した吸収液を冷却して前記二酸化炭素ガスを液体二酸化炭素として分離するとともに前記吸収液を再生する請求項1ないし5いずれか1項に記載の分離再生装置とを備えたガスの精製装置。   An absorption device that absorbs carbon dioxide gas into the absorption liquid by compressing a mixed gas containing carbon dioxide gas and a non-acidic gas and bringing it into contact with the absorption liquid, and absorption that absorbs the carbon dioxide gas discharged from the absorption apparatus A gas purification apparatus comprising the separation and regeneration device according to any one of claims 1 to 5, wherein a liquid is cooled to separate the carbon dioxide gas into liquid carbon dioxide and the absorbent is regenerated. 脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を改質、CO変性及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項6に記載された精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するシステム。 One or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas and natural gas are reformed, CO modified and CO removed to mix H 2 and CO 2 A system in which the mixed gas is separated and recovered into H 2 and liquid CO 2 by using the purifier described in claim 6 after the gas is formed, and the separated and recovered H 2 is supplied to the hydrogen station. 燃料電池を駆動源とする車上改質型車両に搭載され、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を車上で改質、CO変性及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項6に記載された精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を前記燃料電池に供給するとともに、前記液体CO2を貯留容器に収容するシステム。 One or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas are installed in an on-vehicle reforming vehicle that uses a fuel cell as a drive source. After reforming, CO modification and CO removal on the vehicle to form a mixed gas of H 2 and CO 2 , this mixed gas is separated and recovered into H 2 and liquid CO 2 using the purifier described in claim 6. Further, a system for supplying the separated and recovered H 2 to the fuel cell and storing the liquid CO 2 in a storage container.
JP2007012395A 2007-01-23 2007-01-23 Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus Expired - Fee Related JP4730312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012395A JP4730312B2 (en) 2007-01-23 2007-01-23 Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012395A JP4730312B2 (en) 2007-01-23 2007-01-23 Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus

Publications (2)

Publication Number Publication Date
JP2008178764A JP2008178764A (en) 2008-08-07
JP4730312B2 true JP4730312B2 (en) 2011-07-20

Family

ID=39723074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012395A Expired - Fee Related JP4730312B2 (en) 2007-01-23 2007-01-23 Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus

Country Status (1)

Country Link
JP (1) JP4730312B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459790B1 (en) 2009-02-17 2014-11-10 현대자동차주식회사 Pyrrolidinium- and piperidinium-based ioic liquids for carbon dioxide absorption
KR101066970B1 (en) * 2009-02-24 2011-09-22 고려대학교 산학협력단 Hydrogen reforming method using ionic liquid membrane
KR102634991B1 (en) * 2021-11-18 2024-02-08 조선대학교산학협력단 Capture system of carbon dioxide using the ionic liquid
CN114904365B (en) * 2022-05-31 2023-10-03 西南化工研究设计院有限公司 Liquid-liquid phase-splitting absorbent for separating carbon dioxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272143A (en) * 2005-03-29 2006-10-12 Mitsubishi Materials Corp Purification method of mixed gas containing acidic gas and its apparatus as well as absorption liquid of acidic gas used therefor
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103812A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Materials Corporation Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification
JP2006272143A (en) * 2005-03-29 2006-10-12 Mitsubishi Materials Corp Purification method of mixed gas containing acidic gas and its apparatus as well as absorption liquid of acidic gas used therefor

Also Published As

Publication number Publication date
JP2008178764A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4826156B2 (en) CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification
JP4687184B2 (en) Method and apparatus for purifying mixed gas containing acid gas
JP5023512B2 (en) Gas separation and recovery method and apparatus
WO2006103812A1 (en) Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification
CN102527191B (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
CN101104825B (en) Method for producing liquefied natural gas of mine gas
WO2013000953A2 (en) An amine absorbent and a method for co2 capture
JP4730312B2 (en) Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus
KR100733038B1 (en) Continuous production method of high purity hydrogen and apparatus therefor
JP2006036950A (en) Gas purification process and absorbent solution used in the same
WO2022018832A1 (en) Carbon dioxide gas recovery system
CN102836617B (en) Carbon dioxide recovering apparatus and process for carbon dioxide recovery
CN110124466B (en) Method and system for simultaneously removing water and carbon dioxide in gas phase by compounding ionic liquid
JP6906766B2 (en) Gas treatment method and gas treatment equipment
JP5586358B2 (en) Carbon dioxide separation and recovery system and operation method thereof
JP2010229360A (en) Synthetic method of liquid hydrocarbon and synthesis system of liquid hydrocarbon
CN103285713B (en) Carbon dioxide separation recovery system and method for operation thereof
US20200386142A1 (en) Vehicle
CN106039931A (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
KR101777119B1 (en) Apparatus for removing moisture from natural gas and the method for removing moisture from natural gas by using the same
CN100411711C (en) Method for removing hydrocarbons from a vapour-gas medium formed during petroleum product storage and a tank filling therewith
RU2003118273A (en) METHOD FOR CLEANING HYDROCARBONS OF A STEAM-GAS MEDIUM FORMING WHEN STORING AN OIL PRODUCT AND WHEN FILLING THE CAPACITY (OPTIONS) AND INSTALLATION FOR ITS IMPLEMENTATION
EP1967248B1 (en) Method for removing hydrocarbons from a vapour-gas mixture and a device for carrying out said method
WO2020121820A1 (en) Acidic gas absorption apparatus and acidic gas absorption method
JP2017032016A (en) Hydrogen gas supplying method and hydrogen station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees