JP2006305544A - Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification - Google Patents

Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification Download PDF

Info

Publication number
JP2006305544A
JP2006305544A JP2005212054A JP2005212054A JP2006305544A JP 2006305544 A JP2006305544 A JP 2006305544A JP 2005212054 A JP2005212054 A JP 2005212054A JP 2005212054 A JP2005212054 A JP 2005212054A JP 2006305544 A JP2006305544 A JP 2006305544A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorption
pressure
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005212054A
Other languages
Japanese (ja)
Other versions
JP4826156B2 (en
Inventor
Bunhin Tai
文斌 戴
Ryohei Mori
良平 森
Akio Umemura
昭男 梅村
Takeyoshi Den
建順 傳
Kazuaki Ota
和明 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005212054A priority Critical patent/JP4826156B2/en
Priority to PCT/JP2005/022523 priority patent/WO2006103812A1/en
Publication of JP2006305544A publication Critical patent/JP2006305544A/en
Application granted granted Critical
Publication of JP4826156B2 publication Critical patent/JP4826156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save circulation energy by separating and recovering acidic gas from mixed gas with high efficiency at low cost, increasing absorbing amount of the acidic gas per unit volume of an absorbing liquid, and reducing circulation amount of the absorbing liquid. <P>SOLUTION: The absorbing liquid having ionic liquid as a main component is supplied to the top of an absorption column 13 maintained at a given temperature and a pressure, and mixed gas containing acidic gas and non-acidic gas is supplied to the lower part of the column 13 to bring the mixed gas into contact with the absorbing liquid. Thus, the acidic gas is absorbed into the absorbing liquid to recover the non-acidic gas from the absorbing column 13 by separating it from the acidic gas. The absorbing liquid having absorbed the acidic gas is supplied to the top of a regeneration column 16 maintained at the same temperature of the absorbing column 13 or higher, and at a pressure lower than that of the absorbing column. Thus, the acidic gas is released, separated from the absorbing liquid, and recovered from the regeneration column 16 to regenerate the absorbing liquid. The regenerated liquid is supplied to the top of the absorbing column 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CO2,H2S,COS,SO2,SO3,NO2,CS2,HCN,NH3,メルカプタン等の酸性ガスと、H2,CH4,CO,O2,N2,炭素数2〜10までの炭化水素化合物等の非酸性ガスが含まれる混合ガスから上記酸性ガスを分離回収するガスの精製方法及びその装置と、その酸性ガスの分離回収に用いられる酸性ガスの吸収液に関する。更に詳しくは、化石燃料のガス化、改質又は部分酸化による合成ガス、天然ガス等に含まれる酸性ガスや、火力発電所、セメントプラント、鉄鋼プラント、化学プラント等の排ガス中に含まれる酸性ガスを分離回収するガスの精製方法及びその装置並びにこれに用いられる酸性ガスの吸収液に関する。更に水素ステーションや燃料電池自動車に供給される水素ガスの精製システムや、CO2などの酸性ガスを直接液体状態で分離回収する方法及び装置に関するものである。 The present invention relates to an acidic gas such as CO 2 , H 2 S, COS, SO 2 , SO 3 , NO 2 , CS 2 , HCN, NH 3 , mercaptan, and H 2 , CH 4 , CO, O 2 , N 2. , A gas purification method and apparatus for separating and recovering the acidic gas from a mixed gas containing a non-acidic gas such as a hydrocarbon compound having 2 to 10 carbon atoms, and an acidic gas used for the separation and recovery of the acidic gas It relates to the absorption liquid. More specifically, acid gas contained in synthesis gas, natural gas, etc. by gasification, reforming or partial oxidation of fossil fuel, and acid gas contained in exhaust gas from thermal power plant, cement plant, steel plant, chemical plant, etc. The present invention relates to a gas purification method and apparatus for separating and recovering gas and an acid gas absorbing solution used therefor. Further, the present invention relates to a purification system for hydrogen gas supplied to a hydrogen station or a fuel cell vehicle, and a method and apparatus for separating and recovering an acidic gas such as CO 2 directly in a liquid state.

従来、天然ガス、製油所ガス、アンモニア合成ガスなどを精製するときに、CO2などの酸性ガスが分離回収され、この分離回収方法としては、酸性ガスを吸収する方法、混合ガスを蒸留する方法、酸性ガスを吸着する方法、混合ガスを膜分離により分離する方法及びこれらの方法を組合せた方法が挙げられる。これらのうちレクチゾールプロセスとメチルジエチルアミンプロセス(以下、MDEAプロセスという。)は工業的によく用いられる方法である(例えば、非特許文献1参照。)。 Conventionally, when refining natural gas, refinery gas, ammonia synthesis gas, etc., acidic gas such as CO 2 is separated and recovered, and this separation and recovery method includes a method of absorbing acidic gas, a method of distilling mixed gas And a method of adsorbing an acid gas, a method of separating a mixed gas by membrane separation, and a method of combining these methods. Of these, the lectizol process and the methyldiethylamine process (hereinafter referred to as MDEA process) are industrially frequently used methods (see, for example, Non-Patent Document 1).

レクチゾールプロセスは物理吸収プロセスであり、メタノールを吸収液として用い、化石燃料のガス化、改質又は部分酸化による合成ガス、アンモニア合成ガス、天然ガスなどの各種ガス中に含まれるCO2などの酸性ガスを吸収分離する方法である。なお、酸性ガスの吸収温度は−10〜−75℃の範囲に設定され、吸収圧力は7〜8MPaの範囲に設定される。このレクチゾールプロセス(物理吸収プロセス)はMDEAプロセス(化学吸収プロセス)に比べて吸収液の再生エネルギが少なくて済むという特徴を有する。
このレクチゾールプロセスでは、その吸収機構が吸収液へのガスの溶解によるため、酸性ガスの溶解量が吸収塔内の酸性ガス分圧に比例する。このため吸収塔と再生塔内の酸性ガスの分圧の差によって混合ガス中の酸性ガスを分離する。またメタノールが安価でかつ酸性ガスに対する吸収能力が他の物理吸収プロセスにおける酸性ガスに対する吸収能力の3〜6倍であり、大量の酸性ガスを物理吸収によって高圧下で処理できるようになっている。
The lectisol process is a physical absorption process, using methanol as an absorption liquid, such as CO 2 contained in various gases such as synthesis gas by fossil fuel gasification, reforming or partial oxidation, ammonia synthesis gas, natural gas, etc. This is a method for absorbing and separating acidic gas. The absorption temperature of the acid gas is set in the range of −10 to −75 ° C., and the absorption pressure is set in the range of 7 to 8 MPa. This lectisol process (physical absorption process) has a feature that the regenerative energy of the absorbing solution is less than that of the MDEA process (chemical absorption process).
In this lectisol process, the absorption mechanism is based on the dissolution of the gas in the absorption liquid, so that the dissolved amount of the acidic gas is proportional to the acidic gas partial pressure in the absorption tower. For this reason, the acid gas in the mixed gas is separated by the difference in the partial pressure of the acid gas in the absorption tower and the regeneration tower. Further, methanol is inexpensive and the absorption capacity for acid gas is 3 to 6 times the absorption capacity for acid gas in other physical absorption processes, so that a large amount of acid gas can be treated under high pressure by physical absorption.

一方、MDEAプロセスは化学吸収プロセスであり、吸収液として30重量%の三級アミンのメチルジエチルアミン水溶液を単独で或いは活性剤とともに用い、化石燃料の燃焼による排ガス、天然ガスなど各種ガス中に含まれる酸性ガスを吸収分離する方法である。なお、酸性ガスの吸収温度は30〜60℃の範囲に設定され、吸収圧力は2〜3MPaの範囲に設定される。
上記MDEAプロセスでは、吸収機構が酸性ガスと吸収液の可逆反応であり、低温かつ高圧で化合物を作り(吸収塔内で吸収液が酸性ガスを吸収する方向に進む。)、高温かつ低圧で酸性ガスと吸収液に分解する(再生塔内で吸収液が酸性ガスを放出する方向に進む。)。MDEAプロセスは、吸収液の再生エネルギが他の化学吸収プロセスの1/7〜1/2と少なく、また酸性ガスの吸収能力が高いという特徴を有する。
編者:社団法人石油学会,編集:株式会社講談社サイエンティフィク,「石油精製プロセス」,株式会社講談社,1998年5月,p.360−361)
On the other hand, the MDEA process is a chemical absorption process, and an aqueous 30% by weight methylamine amine solution of tertiary amine is used alone or in combination with an activator, and is contained in various gases such as exhaust gas and natural gas by fossil fuel combustion. This is a method for absorbing and separating acidic gas. In addition, the absorption temperature of acidic gas is set to the range of 30-60 degreeC, and the absorption pressure is set to the range of 2-3 MPa.
In the MDEA process, the absorption mechanism is a reversible reaction between an acidic gas and an absorbing liquid, and a compound is formed at a low temperature and high pressure (the absorption liquid absorbs the acidic gas in the absorption tower). Decomposes into gas and absorption liquid (the absorption liquid proceeds in the direction of releasing acid gas in the regeneration tower). The MDEA process is characterized in that the regeneration energy of the absorbing solution is as low as 1/7 to 1/2 that of other chemical absorption processes, and the absorption capacity of acid gas is high.
Editor: Japan Petroleum Institute, edited by Kodansha Scientific Co., Ltd., “Oil Refinery Process”, Kodansha Co., Ltd., May 1998, p. 360-361)

しかし、上記従来の非特許文献1に示されたレクチゾールプロセス及びMDEAプロセスでは、吸収液の単位体積当りの酸性ガスの吸収量が少ないため、吸収液の循環量及び循環エネルギが多く、装置が大型化し、また吸収液の再生に蒸留塔を用いているため、再生工程が複雑となり、更に高温で再生しているため、再生エネルギを多く使用する不具合があった。
また、上記従来の非特許文献1に示されたレクチゾールプロセスでは、メタノール損失を抑え、かつ吸収液の単位体積当りの酸性ガスの吸収量を増大するために、吸収温度が低く設定しなければならず、冷凍機を必要とし、吸収液が蒸気圧を有するため、吸収液の蒸発ロスが多く、更に酸性ガスがCO2である場合、メタノール(吸収液)の比重が液体CO2の比重と殆ど変わらないため、比重による分相・分離ができず、CO2を液体の状態で分離回収できない問題点もあった。
また、上記従来の非特許文献1に示されたレクチゾールプロセス及びMDEAプロセスでは、分離回収した酸性ガス中に吸収液が少量残ってしまい、例えば、酸性ガスが食品添加用に用いられるCO2である場合、純度99.99体積%以上の高純度CO2が得られず、更なる精製が必要となる問題点もあった。
更に、上記従来の非特許文献1に示されたMDEAプロセスでは、化学吸収であるため、吸収液が劣化することがあり、低圧・高温条件下で吸収液を再生して酸性ガスを分離回収するため、酸性ガスを液体の状態で分離回収できない問題点もあった。
However, in the conventional lectizol process and MDEA process shown in the above-mentioned Non-Patent Document 1, since the absorption amount of the acidic gas per unit volume of the absorption liquid is small, the circulation amount and the circulation energy of the absorption liquid are large, and the apparatus is Since the distillation tower is increased in size and the absorption liquid is regenerated, the regeneration process is complicated, and since the regeneration is performed at a higher temperature, there is a problem in that much regeneration energy is used.
Further, in the above-described conventional non-patent document 1, in the rectizol process, in order to suppress methanol loss and increase the amount of acid gas absorbed per unit volume of the absorbing solution, the absorption temperature must be set low. In addition, since a refrigerating machine is required and the absorption liquid has a vapor pressure, the absorption loss of the absorption liquid is large, and when the acidic gas is CO 2 , the specific gravity of methanol (absorption liquid) is the specific gravity of the liquid CO 2 . Since there was almost no change, phase separation / separation by specific gravity could not be performed, and CO 2 could not be separated and recovered in a liquid state.
Moreover, in the lectizol process and MDEA process shown in the above-mentioned conventional non-patent document 1, a small amount of absorption liquid remains in the separated and collected acid gas. For example, the acid gas is CO 2 used for food addition. In some cases, high-purity CO 2 having a purity of 99.99% by volume or more cannot be obtained, and there is a problem that further purification is required.
Furthermore, in the MDEA process shown in the above-mentioned conventional Non-Patent Document 1, since it is chemical absorption, the absorption liquid may deteriorate, and the absorption liquid is regenerated under low pressure and high temperature conditions to separate and recover the acid gas. For this reason, there is a problem that the acidic gas cannot be separated and recovered in a liquid state.

本発明の第1の目的は、混合ガスから酸性ガスを高効率かつ低コストで分離回収でき、また吸収液の単位体積当りの酸性ガス吸収量を増大でき、更に吸収液の循環量を低減できるとともに、循環エネルギを節約できる、ガスの精製方法及びその装置を提供することにある。
本発明の第2の目的は、蒸気圧のない吸収液を用いることにより、再生塔を比較的簡単な構造にすることができ、比較的簡単にかつ低コストで吸収液を再生でき、また従来法より低い温度で吸収液を再生でき、吸収液の再生エネルギを低減できる、ガスの精製方法及びその装置を提供することにある。
本発明の第3の目的は、蒸気圧のない吸収液を用いることにより、吸収液の蒸発ロスをなくすことができるとともに、分離回収したCO2ガス中に吸収液が残存せず、高純度のCO2ガスを容易に製造できる、ガスの精製方法及びその装置を提供することにある。
本発明の第4の目的は、効率良くCO2を液体の状態で回収でき、従来より工程を簡略化でき、また全工程中での温度及び圧力の大きな変動がなく、再生された吸収液を高圧のまま吸収塔に戻すことにより、吸収液の循環エネルギが少なくて済み、かつ吸収液を再生するエネルギを不要にすることにより、省エネルギ化を図ることができる、ガスの精製方法及びその装置を提供することにある。
本発明の第5の目的は、室温以上の温度で酸性ガスを吸収することにより、冷凍機や冷凍エネルギを不要にでき、低コスト化、省エネルギ化及び小型化を図ることができる、ガスの精製装置を提供することにある。
The first object of the present invention is to separate and recover acidic gas from a mixed gas with high efficiency and low cost, to increase the amount of acidic gas absorbed per unit volume of the absorbing liquid, and to further reduce the circulating amount of the absorbing liquid. Another object is to provide a gas purification method and apparatus that can save circulating energy.
The second object of the present invention is to use an absorption liquid having no vapor pressure, so that the regeneration tower can be made relatively simple, and the absorption liquid can be regenerated relatively easily and at low cost. It is an object of the present invention to provide a gas purification method and apparatus capable of regenerating an absorbing solution at a temperature lower than that of the method and reducing the regeneration energy of the absorbing solution.
The third object of the present invention is to eliminate the evaporation loss of the absorbing liquid by using the absorbing liquid having no vapor pressure, and the absorbing liquid does not remain in the separated and recovered CO 2 gas. It is an object of the present invention to provide a gas purification method and apparatus for easily producing CO 2 gas.
The fourth object of the present invention is that CO 2 can be efficiently recovered in a liquid state, the process can be simplified as compared with the conventional method, and the regenerated absorbent liquid is not greatly changed in temperature and pressure during the entire process. By returning to the absorption tower while maintaining a high pressure, the circulating energy of the absorbing liquid can be reduced, and the energy for regenerating the absorbing liquid is not required, so that energy can be saved, and a gas purification method and apparatus therefor Is to provide.
A fifth object of the present invention is to eliminate the need for a refrigerator or refrigeration energy by absorbing acidic gas at a temperature of room temperature or higher, thereby reducing costs, saving energy, and reducing the size of the gas. It is to provide a purification apparatus.

イオン性液体とは、常温でも結晶化せずに溶融している有機塩である。近年、このような室温で液状の塩は注目を浴びている。イオン性液体は、液体でありながら蒸気圧がなく、耐熱性が高く(400℃以上でも熱的に安定である。)、また液体である温度範囲が広く(−100〜300℃)、低粘性かつ高極性であって、更に化学的に安定であり、非燃性である等の特異な性質を有する。本発明者らは、加圧下におけるイオン性液体の単位体積当りのCO2などの酸性ガスの吸収量がメタノールやメチルジエチルアミン等より多く、かつ非酸性ガス(H2,CH4,CO,N2など)に対して溶解度が非常に小さいことを見出し、本発明をなすに至った。 An ionic liquid is an organic salt that is melted without crystallization even at room temperature. In recent years, such a liquid salt at room temperature has attracted attention. An ionic liquid is a liquid but has no vapor pressure, high heat resistance (thermally stable at 400 ° C. or higher), a wide temperature range (−100 to 300 ° C.), and low viscosity. In addition, it has a unique property such as high polarity, chemical stability and nonflammability. The present inventors have absorbed more acidic gas such as CO 2 per unit volume of the ionic liquid under pressure than methanol, methyldiethylamine, etc., and non-acidic gases (H 2 , CH 4 , CO, N 2). Etc.) and the present invention was made.

請求項1に係る発明は、図1に示すように、所定の温度及び所定の圧力にそれぞれ維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させることにより、酸性ガスを吸収液に吸収させて非酸性ガスと酸性ガスとを分離し非酸性ガスを吸収塔13から回収する工程と、吸収塔13内の温度と同一又は高い温度に維持しかつ吸収塔13内の圧力より低い圧力に維持した再生塔16の上部に、酸性ガスを吸収した吸収液を供給することにより、酸性ガスを放散させて吸収液から分離し再生塔16から回収するとともに吸収液を再生する工程と、この再生された吸収液を吸収塔13の上部に供給する工程とを含むガスの精製方法である。
この請求項1に記載されたガスの精製方法では、所定の温度及び所定の圧力にそれぞれ維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給すると、吸収液に混合ガスが接触して酸性ガスが吸収液に吸収されるので、非酸性ガスと酸性ガスとに分離されて非酸性ガスが吸収塔13から回収される。上記吸収塔13内の温度と同一又は高い温度に維持しかつ吸収塔13内の圧力より低い圧力に維持した再生塔16の上部に、上記酸性ガスを吸収した吸収液を供給すると、再生塔16で酸性ガスが放散するので、酸性ガスが吸収液から分離し再生塔16から回収されるとともに、吸収液が再生されて再利用される。即ち、高圧下で酸性ガスに対する溶解度が非常に大きくなり、低圧下で酸性ガスに対する溶解度が非常に小さくなるという特性を利用することにより、混合ガスから非酸性ガスと酸性ガスとを効率良く分離回収する。
In the invention according to claim 1, as shown in FIG. 1, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure. A mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower portion of the gas, and the mixed gas is brought into contact with the absorbing liquid, thereby absorbing the acidic gas into the absorbing liquid and separating the non-acidic gas from the acidic gas. The step of recovering the acid gas from the absorption tower 13 and the upper part of the regeneration tower 16 maintained at a temperature equal to or higher than the temperature in the absorption tower 13 and lower than the pressure in the absorption tower 13 absorb the acid gas. By supplying the absorbed liquid, the acid gas is diffused to be separated from the absorbent and recovered from the regeneration tower 16, and the absorbent is regenerated, and the regenerated absorbent is supplied to the upper portion of the absorber 13. Gas purification including process It is the law.
In the gas purification method described in claim 1, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure. When a mixed gas containing acidic gas and non-acidic gas is supplied to the lower part, the mixed gas comes into contact with the absorbing liquid and the acidic gas is absorbed by the absorbing liquid. Gas is recovered from the absorption tower 13. When the absorbing liquid that has absorbed the acidic gas is supplied to the upper part of the regeneration tower 16 that is maintained at the same temperature as or higher than the temperature in the absorption tower 13 and that is lower than the pressure in the absorption tower 13, the regeneration tower 16 Thus, the acid gas is diffused, so that the acid gas is separated from the absorption liquid and recovered from the regeneration tower 16, and the absorption liquid is regenerated and reused. In other words, the non-acid gas and the acid gas are efficiently separated and recovered from the mixed gas by utilizing the property that the solubility in the acid gas becomes very high under high pressure and the solubility in the acid gas becomes very low under low pressure. To do.

請求項2に係る発明は、図2に示すように、所定の温度及び所定の圧力にそれぞれ維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液42を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液42に混合ガスを接触させることにより、酸性ガスを吸収液42に吸収させて非酸性ガスと酸性ガスとを分離し非酸性ガスを吸収塔13から回収する工程と、所定の圧力に維持しかつ吸収塔13内の温度より低い温度に維持した分離再生器46に、酸性ガスを吸収した吸収液を供給することにより、酸性ガスを液化しこの液体酸性ガス41と吸収液42の相互不溶解性及び比重差により吸収液42から液体酸性ガス41を分離して分離再生器46から回収するとともに吸収液42を再生する工程と、この再生された吸収液42を吸収塔13の上部に供給する工程とを含むガスの精製方法である。
この請求項2に記載されたガスの精製方法では、所定の温度及び所定の圧力にそれぞれ維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液42を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給すると、吸収液42に混合ガスが接触して酸性ガスが吸収液42に吸収されるので、非酸性ガスと酸性ガスとに分離され非酸性ガスが吸収塔13から回収される。上記吸収塔13内の圧力と同一の圧力、吸収塔13内の圧力より僅かに高い圧力、或いは吸収塔13内の圧力より僅かに低い圧力に維持しかつ吸収塔13内の温度より低い温度に維持した分離再生器46に、酸性ガスを吸収した吸収液を供給すると、分離再生器46で酸性ガスが液化され、この液体酸性ガス41と吸収液42の相互不溶解性及び比重差により吸収液42から液体酸性ガス41が分離されて分離再生器46から回収されるとともに、吸収液42が再生されて再利用される。即ち、加圧下かつ所定の温度範囲で酸性ガスに対する溶解度が非常に大きくなり、加圧下かつ上記所定の温度範囲より低い温度範囲で酸性ガスが液化され、この液体酸性ガス41と吸収液42の相互不溶解性及び比重差により吸収液42から液体酸性ガス41が分かれるという特性を利用することにより、酸性ガスをガスとして回収した後に加圧冷却して液体にするのではなく、酸性ガスを直接液体状態で回収するので、混合ガスから非酸性ガスと液体酸性ガス41とを効率良く分離回収できる。
In the invention according to claim 2, as shown in FIG. 2, an absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure. The mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of 13, and the mixed gas is brought into contact with the absorbing liquid 42, so that the absorbing liquid 42 absorbs the acidic gas and the non-acidic gas and the acidic gas are mixed. The step of separating and recovering the non-acidic gas from the absorption tower 13 and the separation regenerator 46 maintained at a predetermined pressure and lower than the temperature in the absorption tower 13 are supplied with the absorbing liquid that has absorbed the acidic gas. As a result, the acidic gas is liquefied, and the liquid acidic gas 41 is separated from the absorbent 42 by the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42 and recovered from the separation regenerator 46 and the absorbent 42 is removed. Process to regenerate A method for purifying a gas and a step for supplying the absorption liquid 42 which is the reproduction at the top of the absorption tower 13.
In the gas purification method described in claim 2, an absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When a mixed gas containing an acidic gas and a non-acidic gas is supplied to the lower part of the gas, the mixed gas comes into contact with the absorbing liquid 42 and the acidic gas is absorbed by the absorbing liquid 42, so that it is separated into a non-acidic gas and an acidic gas. Non-acidic gas is recovered from the absorption tower 13. Maintain the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13 and a temperature lower than the temperature in the absorption tower 13. When the absorbing liquid that has absorbed the acid gas is supplied to the maintained separator / regenerator 46, the acid gas is liquefied by the separator / regenerator 46. The liquid acidic gas 41 is separated from 42 and recovered from the separation regenerator 46, and the absorbing liquid 42 is regenerated and reused. That is, the solubility with respect to the acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range. By utilizing the property that the liquid acidic gas 41 is separated from the absorbing liquid 42 due to the insolubility and the specific gravity difference, the acidic gas is directly liquid instead of being recovered by pressurizing and cooling to a liquid after recovering the acidic gas as a gas. Since the recovery is performed in a state, the non-acidic gas and the liquid acidic gas 41 can be efficiently separated and recovered from the mixed gas.

請求項3に係る発明は、図4に示すように、多孔質膜にイオン性液体を主成分とする吸収液を含浸した液体膜51を膜分離器52内に張設して膜分離器52を第1室52aと第2室52bとに区画し、第1室52aを第2室52bより高圧に設定して、第1室52aに酸性ガス及び非酸性ガスを含む混合ガスを導入することにより、非酸性ガスを第1室52aに残留させたまま、酸性ガスを液体膜51に透過させて低圧の第2室52bへ移動させ、第1室52aから非酸性ガスを回収するとともに第2室52bから酸性ガスを回収するガスの精製方法である。
この請求項3に記載されたガスの精製方法では、液体膜51を張設した膜分離器52の高圧の第1室52aに酸性ガス及び非酸性ガスを含む混合ガスを導入すると、非酸性ガスが第1室52aに残留しかつ酸性ガスが液体膜51を透過して低圧の第2室52bに流入するので、混合ガスが液体膜51で酸性ガス及び非酸性ガスに分離されて膜分離器52から回収される。
In the invention according to claim 3, as shown in FIG. 4, a liquid membrane 51 in which a porous membrane is impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in a membrane separator 52 to form a membrane separator 52. Is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set at a higher pressure than the second chamber 52b, and a mixed gas containing acidic gas and non-acidic gas is introduced into the first chamber 52a. Thus, while the non-acid gas remains in the first chamber 52a, the acid gas permeates the liquid film 51 and moves to the low-pressure second chamber 52b, and the non-acid gas is recovered from the first chamber 52a and the second chamber 52a. This is a gas purification method for recovering acid gas from the chamber 52b.
In the gas purification method described in claim 3, when a mixed gas containing acidic gas and non-acidic gas is introduced into the high-pressure first chamber 52 a of the membrane separator 52 in which the liquid membrane 51 is stretched, non-acidic gas is introduced. Remains in the first chamber 52a and the acidic gas permeates the liquid membrane 51 and flows into the low pressure second chamber 52b, so that the mixed gas is separated into acidic gas and non-acidic gas by the liquid membrane 51, and the membrane separator 52.

請求項6に係る発明は、請求項1ないし3いずれか1項に係る発明であって、更にイオン性液体を主成分とする吸収液が中性又はアルカリ性であることを特徴とする。
この請求項6に記載されたガスの精製方法では、吸収液が中性又はアルカリ性であるので、酸性ガスが吸収液に溶け込み易くなり、その溶解度も酸性の吸収液より大きくなる。
請求項7に係る発明は、請求項1又は2に係る発明であって、更に図1に示すように、混合ガスを吸収塔13に供給する前に混合ガスを除湿する工程を更に含むことを特徴とする。
請求項8に係る発明は、請求項3に係る発明であって、更に図4に示すように、混合ガスを膜分離器52に導入する前に混合ガスを除湿する工程を更に含むことを特徴とする。
これら請求項7又は8に記載されたガスの精製方法では、酸性ガスの吸収液への溶解度又は液体膜51への透過率を小さくしてしまう水分を混合ガスから予め除去することにより、酸性ガスの吸収液への溶解度又は液体膜51への透過率を大きくする。また酸性ガスを吸収した吸収液から酸性ガスを液体の状態で分離するために0℃より低くしても、水分が凍ってしまうことがなく、酸性ガスが吸収液から速やかに分離される。
The invention according to claim 6 is the invention according to any one of claims 1 to 3, characterized in that the absorbing liquid mainly composed of an ionic liquid is neutral or alkaline.
In the gas purification method described in claim 6, since the absorbing solution is neutral or alkaline, the acidic gas is easily dissolved in the absorbing solution, and the solubility thereof is larger than that of the acidic absorbing solution.
The invention according to claim 7 is the invention according to claim 1 or 2, further comprising a step of dehumidifying the mixed gas before supplying the mixed gas to the absorption tower 13, as shown in FIG. Features.
The invention according to claim 8 is the invention according to claim 3, further comprising a step of dehumidifying the mixed gas before introducing the mixed gas into the membrane separator 52, as shown in FIG. And
In the gas purification method described in claim 7 or 8, the acid gas is obtained by removing in advance from the mixed gas moisture that decreases the solubility of the acid gas in the absorbing liquid or the permeability to the liquid film 51. The solubility in the absorbing solution or the transmittance to the liquid film 51 is increased. Further, in order to separate the acidic gas in the liquid state from the absorbing liquid that has absorbed the acidic gas, even if the temperature is lower than 0 ° C., the moisture is not frozen and the acidic gas is quickly separated from the absorbing liquid.

請求項11に係る発明は、請求項2に係る発明であって、更に図2に示すように、吸収塔13から排出されかつ吸収塔13内の温度より低い温度に冷却された酸性ガスを含む吸収液42を、分離再生器46に供給する前に、遠心分離或いは撹拌する工程を更に含むことを特徴とする。
この請求項11に記載されたガスの精製方法では、酸性ガスを含む吸収液42を吸収塔13内の温度より低い温度に冷却することにより、吸収液42内の酸性ガスが液化するけれども、この液体酸性ガス41は吸収液42中に分散しているため、分離再生器46に供給する前に遠心分離或いは撹拌することにより、液体酸性ガス41を含む吸収液42が分離再生器46内で速やかに液体酸性ガスと吸収液に分相される。
請求項12に係る発明は、請求項2に係る発明であって、更に図5に示すように、イオン性液体を主成分とする吸収液42が磁性を有し、分離再生器46の下部に磁石61を設けたことを特徴とする。
この請求項12に記載されたガスの精製方法では、吸収塔13内の圧力とほぼ同一の圧力、即ち吸収塔13内の圧力と同一の圧力、吸収塔13内の圧力より僅かに高い圧力、或いは吸収塔13内の圧力より僅かに低い圧力に維持し、かつ吸収塔13内の温度より低い温度に維持した分離再生器46に、液体酸性ガス41を含む吸収液42が供給されると、液体酸性ガス41と吸収液42の相互不溶解性及び比重差と、磁性を有する吸収液42の磁石61による吸引力とにより、吸収液42と液体酸性ガス41とに速やかに分離される。
The invention according to claim 11 is the invention according to claim 2, further comprising an acidic gas discharged from the absorption tower 13 and cooled to a temperature lower than the temperature in the absorption tower 13, as shown in FIG. Before the absorption liquid 42 is supplied to the separation / regenerator 46, it further includes a step of centrifugal separation or stirring.
In the gas purification method according to the eleventh aspect, the acidic gas in the absorbing liquid 42 is liquefied by cooling the absorbing liquid 42 containing the acidic gas to a temperature lower than the temperature in the absorption tower 13. Since the liquid acidic gas 41 is dispersed in the absorption liquid 42, the absorption liquid 42 containing the liquid acidic gas 41 is quickly brought into the separation regenerator 46 by being centrifuged or stirred before being supplied to the separation regenerator 46. The liquid acid gas and the absorption liquid are phase-separated.
The invention according to claim 12 is the invention according to claim 2, and further, as shown in FIG. 5, the absorbing liquid 42 containing ionic liquid as a main component has magnetism, and is provided below the separation regenerator 46. A magnet 61 is provided.
In the gas purification method described in claim 12, the pressure almost the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, Alternatively, when the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13, Due to the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbing liquid 42 and the attractive force of the magnetic absorbing liquid 42 by the magnet 61, the absorbing liquid 42 and the liquid acidic gas 41 are quickly separated.

請求項13に係る発明は、請求項1又は2に係る発明であって、更に図6に示すように、水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤71を吸収液42に添加することを特徴とする。
この請求項13に記載されたガスの精製方法では、上記添加剤71を吸収液42に添加することにより、吸収液42の粘性を低下させることができる。これにより添加剤含有吸収液75が吸収塔13に供給されるので、添加剤含有吸収液75が酸性ガスを吸収する能力を殆ど低下させずに吸収塔13で酸性ガスを吸収できるとともに、添加剤含有吸収液75がスムーズに流れ、添加剤含有吸収液75の取扱いが容易になる。
請求項14に係る発明は、請求項2に係る発明であって、更に図7に示すように、水、アルコール類及びエーテル類からなる群より選ばれた1種又は2種以上の添加剤71を分離再生器46に供給するとともに、分離再生器46内の圧力及び温度を調整することにより、分離再生器46内で液体酸性ガス41と添加剤含有吸収液75とに比重差分離する工程と、分離再生器46から排出された添加剤含有吸収液75を蒸留分離器83に供給するとともに、蒸留分離器83内を所定の温度に加熱することにより、添加剤含有吸収液75中の添加剤71を吸収液42から蒸留分離する工程とを更に含むことを特徴とする。
この請求項14に記載されたガスの精製方法では、分離再生器46内の圧力及び温度が調整された状態で、液体酸性ガス41を含む吸収液42とともに添加剤71を分離再生器46に供給すると、液体酸性ガス41と吸収液42の相互不溶解性及び比重差と、吸収液42に対して相互溶解性を有しかつ液体酸性ガス41に対して相互不溶解性を有する添加剤71の添加による吸収液42中に分散する液体酸性ガス41の添加剤71への置換とにより、液体酸性ガス41と添加剤含有吸収液75とが速やかに分離される。次に蒸留分離器83内を所定の温度に加熱した状態で、分離再生器46から排出された添加剤含有吸収液75を蒸留分離器83に供給すると、添加剤含有吸収液75中の添加剤71が吸収液42から蒸留分離される。これにより添加剤71が除去された吸収液42が吸収塔13に供給されるので、吸収液42が酸性ガスを吸収する能力を全く低下させずに吸収塔13で酸性ガスを吸収できる。
The invention according to claim 13 is the invention according to claim 1 or 2, and further, as shown in FIG. 6, one or two selected from the group consisting of water, alcohols, ethers and phenols The above additive 71 is added to the absorbent 42.
In the gas purification method according to the thirteenth aspect, the viscosity of the absorbing liquid 42 can be reduced by adding the additive 71 to the absorbing liquid 42. As a result, the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the additive-containing absorption liquid 75 can absorb the acidic gas in the absorption tower 13 without substantially reducing the ability of the acidic gas to be absorbed. The contained absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily.
The invention according to claim 14 is the invention according to claim 2, and further, as shown in FIG. 7, one or more additives 71 selected from the group consisting of water, alcohols and ethers. To the separation regenerator 46 and by adjusting the pressure and temperature in the separation regenerator 46 to separate the specific gravity difference into the liquid acidic gas 41 and the additive-containing absorbing liquid 75 in the separation regenerator 46; The additive-containing absorbent 75 discharged from the separator / regenerator 46 is supplied to the distillation separator 83 and the interior of the distillation separator 83 is heated to a predetermined temperature, whereby the additive in the additive-containing absorbent 75 is added. A step of distilling 71 from the absorbing liquid 42 by distillation.
In the gas purification method described in claim 14, the additive 71 is supplied to the separation regenerator 46 together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the pressure and temperature in the separation regenerator 46 are adjusted. Then, the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorbing liquid 42 and the additive 71 having the mutual solubility with respect to the absorbing liquid 42 and the mutual insolubility with respect to the liquid acidic gas 41. By replacing the liquid acidic gas 41 dispersed in the absorbing liquid 42 by the addition with the additive 71, the liquid acidic gas 41 and the additive-containing absorbing liquid 75 are quickly separated. Next, when the additive-containing absorption liquid 75 discharged from the separation regenerator 46 is supplied to the distillation separator 83 with the inside of the distillation separator 83 heated to a predetermined temperature, the additive in the additive-containing absorption liquid 75 is supplied. 71 is separated from the absorbent 42 by distillation. As a result, the absorption liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, so that the absorption gas can be absorbed by the absorption tower 13 without reducing the ability of the absorption liquid 42 to absorb the acid gas.

請求項15に係る発明は、請求項2に係る発明であって、更に凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することを特徴とする。
この請求項15に記載されたガスの精製方法では、凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収液中に分散している液体酸性ガス(分散液体)を凝集させることができるので、分離再生器内で凝集剤含有吸収液と液体酸性ガスとの比重差により凝集剤含有吸収液と液体酸性ガスとに速やかに分離される。その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液とに更に分離される。
請求項16に係る発明は、請求項2に係る発明であって、更に図8に示すように、酸性ガスがCO2ガスであり、4〜25MPaの圧力に保った分離再生器46内の液体CO241を含む吸収液42中に水を供給することを特徴とする。
この請求項16に記載されたガスの精製方法では、分離再生器46内を4〜25MPaという高圧に保った状態で、分離再生器46内の液体CO241を含む吸収液42中に水を供給すると、液体CO241の一部がハイドレート化(雪状又はシャーベット状に固化)するため、分離再生器46内で液体CO241とCO2ハイドレートと吸収液42とに分離する。
The invention according to claim 15 is the invention according to claim 2, characterized in that a flocculant is further added to the absorbing liquid containing liquid acidic gas in the separation regenerator.
In the gas purification method described in claim 15, the liquid acidic gas (dispersed liquid) dispersed in the absorbing liquid by adding the flocculant to the absorbing liquid containing the liquid acidic gas in the separation regenerator. In the separation / regenerator, the flocculant-containing absorbing liquid and the liquid acidic gas are rapidly separated into the flocculant-containing absorbing liquid and the liquid acidic gas. Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
The invention according to claim 16 is the invention according to claim 2, and further, as shown in FIG. 8, the liquid in the separation regenerator 46 in which the acidic gas is CO 2 gas and is maintained at a pressure of 4 to 25 MPa. Water is supplied into the absorbing liquid 42 containing CO 2 41.
In the gas purification method according to the sixteenth aspect of the present invention, water is introduced into the absorbing liquid 42 containing the liquid CO 2 41 in the separation regenerator 46 while the separation regenerator 46 is kept at a high pressure of 4 to 25 MPa. When supplied, a part of the liquid CO 2 41 is hydrated (solidified into a snow shape or a sherbet shape), and thus is separated into the liquid CO 2 41, the CO 2 hydrate, and the absorbing liquid 42 in the separation regenerator 46.

請求項17に係る発明は、図2に示すように、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿器11と、除湿された混合ガスを圧縮する圧縮機12と、下部に圧縮された混合ガスが供給されかつ上部にイオン性液体を主成分とする吸収液42が供給されて吸収液42に混合ガスを接触させることにより酸性ガスを吸収液42に吸収させて非酸性ガスを酸性ガスから分離し回収する吸収塔13と、酸性ガスを吸収した吸収液を冷却する冷却器47と、冷却された吸収液42が供給され液体酸性ガス41と吸収液42の相互不溶解性及び比重差により吸収液42から液体酸性ガス41を分離して回収するとともに吸収液42を再生し再利用する分離再生器46と、分離再生器46から排出された吸収液42を高圧のまま吸収塔13の上部に供給する循環ポンプ17とを備えたガスの精製装置である。
この請求項17に記載されたガスの精製装置では、所定の温度及び所定の圧力にそれぞれ維持した吸収塔13の上部に、イオン性液体を主成分とする吸収液42を供給し、吸収塔13の下部に、除湿器11にて除湿した酸性ガス及び非酸性ガスを含む混合ガスを圧縮機12で圧縮して供給すると、吸収液42に混合ガスが接触して酸性ガスが吸収液42に吸収されるので、非酸性ガスが酸性ガスから分離して吸収塔13から回収される。上記吸収塔13内の圧力と同一の圧力、又は吸収塔13内の圧力より僅かに低い圧力、或いは吸収塔13内の圧力より僅かに高い圧力に維持した分離再生器46に、酸性ガスを吸収した吸収液を冷却器47で冷却した後に供給すると、分離再生器46で酸性ガスが液化され、この液体酸性ガス41と吸収液42の相互不溶解性及び比重差より吸収液42から液体酸性ガス41が分離されて分離再生器46から回収される。また液体酸性ガスが取除かれて再生された吸収液42は循環ポンプ17により吸収塔13の上部に供給されて再利用される。
請求項18に係る発明は、請求項17に係る発明であって、更に図3に示すように、吸収塔13と冷却器47と分離再生器46が一体的に設けられたことを特徴とする。
この請求項18に記載されたガスの精製装置では、吸収塔13と冷却器47と分離再生器46を一体的に設けたので、装置を小型化できる。
The invention according to claim 17 is, as shown in FIG. 2, a dehumidifier 11 for dehumidifying a mixed gas containing acidic gas and non-acidic gas, a compressor 12 for compressing the dehumidified mixed gas, and a lower part. The mixed gas is supplied, and the upper part is supplied with an absorbing liquid 42 mainly composed of an ionic liquid. By bringing the mixed gas into contact with the absorbing liquid 42, the absorbing gas 42 absorbs the acidic gas and the non-acidic gas becomes acidic. Absorption tower 13 that separates and recovers from gas, cooler 47 that cools absorption liquid that has absorbed acid gas, and mutual insolubility and specific gravity of liquid acid gas 41 and absorption liquid 42 that are supplied with cooled absorption liquid 42 Due to the difference, the liquid acid gas 41 is separated and recovered from the absorbing liquid 42, and the separating regenerator 46 that regenerates and reuses the absorbing liquid 42, and the absorbing liquid 42 discharged from the separating regenerator 46 remains at a high pressure in the absorption tower 13. Top of An apparatus for purifying gas and a supply circulation pump 17.
In the gas purifying apparatus according to the seventeenth aspect of the present invention, the absorption liquid 42 mainly composed of an ionic liquid is supplied to the upper part of the absorption tower 13 maintained at a predetermined temperature and a predetermined pressure, respectively. When a mixed gas containing an acidic gas and a non-acidic gas dehumidified by the dehumidifier 11 is compressed by the compressor 12 and supplied, the mixed gas comes into contact with the absorbent 42 and the acidic gas is absorbed by the absorbent 42. Therefore, the non-acid gas is separated from the acid gas and recovered from the absorption tower 13. Acid gas is absorbed in the separation regenerator 46 maintained at the same pressure as the pressure in the absorption tower 13 or slightly lower than the pressure in the absorption tower 13 or slightly higher than the pressure in the absorption tower 13. When the absorbed liquid is supplied after being cooled by the cooler 47, the acidic gas is liquefied by the separation / regenerator 46, and the liquid acidic gas from the absorbent 42 is determined by the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42. 41 is separated and recovered from the separation regenerator 46. Further, the absorption liquid 42 regenerated by removing the liquid acid gas is supplied to the upper portion of the absorption tower 13 by the circulation pump 17 and reused.
The invention according to claim 18 is the invention according to claim 17, wherein the absorption tower 13, the cooler 47 and the separation / regenerator 46 are integrally provided as shown in FIG. 3. .
In the gas purification apparatus described in claim 18, since the absorption tower 13, the cooler 47, and the separation regenerator 46 are integrally provided, the apparatus can be miniaturized.

請求項19に係る発明は、請求項17又は18に係る発明であって、更に図2に示すように、冷却器47と分離再生器46との間に遠心分離器48或いは撹拌機が設けられたことを特徴とする。
この請求項19に記載されたガスの精製装置では、酸性ガスを含む吸収液42を冷却器47にて吸収塔13内の温度より低い温度に冷却することにより、吸収液42内の酸性ガスが液化するけれども、この液体酸性ガス41は吸収液中に分散しているため、分離再生器46に供給する前に遠心分離器48或いは撹拌機により遠心分離或いは撹拌することにより、液体酸性ガス41が含む吸収液42が分離再生器46内で速やかに液体酸性ガス41と吸収液42に分相される。
請求項20に係る発明は、請求項17ないし19いずれか1項に係る発明であって、更に図5に示すように、イオン性液体を主成分とする吸収液42が磁性を有し、分離再生器46の下部に磁石61が設けられたことを特徴とする。
この請求項20に記載されたガスの精製装置では、吸収塔13内の圧力とほぼ同一の圧力、即ち吸収塔13内の圧力と同一の圧力、吸収塔13内の圧力より僅かに高い圧力、或いは吸収塔13内の圧力より僅かに低い圧力に維持し、かつ吸収塔13内の温度より低い温度に維持した分離再生器46に、液体酸性ガス41を含む吸収液42が供給されると、液体酸性ガス41と吸収液42の相互不溶解性及び比重差と、磁性を有する吸収液42の磁石61による吸引力とにより、吸収液42と液体酸性ガス41とに速やかに分離される。
The invention according to claim 19 is the invention according to claim 17 or 18, wherein a centrifuge 48 or a stirrer is provided between the cooler 47 and the separation regenerator 46 as shown in FIG. It is characterized by that.
In the gas purifying apparatus according to the nineteenth aspect, by cooling the absorbing liquid 42 containing the acidic gas to a temperature lower than the temperature in the absorption tower 13 by the cooler 47, the acidic gas in the absorbing liquid 42 is reduced. Although the liquid acid gas 41 is liquefied, the liquid acid gas 41 is dispersed in the absorption liquid. Therefore, the liquid acid gas 41 is separated by being centrifuged or stirred by the centrifuge 48 or the stirrer before being supplied to the separation regenerator 46. The absorbing liquid 42 contained is quickly phase-separated into the liquid acidic gas 41 and the absorbing liquid 42 in the separation / regenerator 46.
The invention according to claim 20 is the invention according to any one of claims 17 to 19, and as shown in FIG. 5, the absorbing liquid 42 mainly composed of an ionic liquid has magnetism and is separated. A magnet 61 is provided below the regenerator 46.
In the gas purifying apparatus described in claim 20, the pressure is substantially the same as the pressure in the absorption tower 13, that is, the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, Alternatively, when the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 maintained at a pressure slightly lower than the pressure in the absorption tower 13 and maintained at a temperature lower than the temperature in the absorption tower 13, Due to the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbing liquid 42 and the attractive force of the magnetic absorbing liquid 42 by the magnet 61, the absorbing liquid 42 and the liquid acidic gas 41 are quickly separated.

請求項21に係る発明は、請求項17ないし20いずれか1項に係る発明であって、更に図6に示すように、水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤71を添加した吸収液42が貯留されこの添加剤含有吸収液75を吸収塔13に供給するための吸収液貯留槽72が設けられたことを特徴とする。
この請求項21に記載されたガスの精製装置では、吸収液貯留槽72内で吸収液42に添加剤71を添加すると、吸収液42の粘性を低下させることができる。これにより添加剤含有吸収液75が吸収塔13に供給されるので、添加剤含有吸収液75が酸性ガスを吸収する能力を殆ど低下させずに吸収塔13で酸性ガスを吸収できるとともに、添加剤含有吸収液75がスムーズに流れ、添加剤含有吸収液75の取扱いが容易になる。
請求項22に係る発明は、請求項17ないし20いずれか1項に係る発明であって、更に図7に示すように、水、アルコール類及びエーテル類からなる群より選ばれた1種又は2種以上の添加剤71が貯留され分離再生器46の上部に接続された添加剤貯留槽81と、分離再生器46に設けられ分離再生器46内の圧力を調節する圧力調節手段82と、分離再生器46の下部に接続され分離再生器46で比重差分離されてその下相に移行した添加剤含有吸収液75を貯留する蒸留分離器83と、蒸留分離器83に設けられ蒸留分離器83内を所定の温度に加熱する加熱手段84とを更に備えたことを特徴とする。
この請求項22に記載されたガスの精製装置では、冷却器47及び圧力調整手段82により分離再生器46内の温度及び圧力を調整した状態で、液体酸性ガス41を含む吸収液42とともに添加剤71を分離再生器46に供給すると、液体酸性ガス41と吸収液42の相互不溶解性及び比重差と、吸収液42に対して相互溶解性を有しかつ液体酸性ガス41に対して相互不溶解性を有する添加剤71の添加による吸収液42中に分散する液体酸性ガス41の添加剤71への置換とにより、分離再生器46の上相の液体酸性ガス41が移行しかつ分離再生器46の下相に添加剤含有吸収液75が移行して、液体酸性ガス41と添加剤含有吸収液75とが速やかに分離される。次に加熱手段84により蒸留分離器83内を所定の温度に加熱した状態で、分離再生器46の下部から排出された添加剤含有吸収液75を蒸留分離器83に供給すると、添加剤含有吸収液75中の添加剤71が吸収液42から蒸留分離される。これにより添加剤71が除去された吸収液42が吸収塔13に供給されるので、吸収液42が酸性ガスを吸収する能力を全く低下させずに吸収塔13で酸性ガスを吸収できる。
The invention according to claim 21 is the invention according to any one of claims 17 to 20, further comprising 1 selected from the group consisting of water, alcohols, ethers and phenols, as shown in FIG. The absorption liquid 42 which added the seed | species or the 2 or more types of additive 71 was stored, and the absorption liquid storage tank 72 for supplying this additive containing absorption liquid 75 to the absorption tower 13 was provided.
In the gas purification apparatus according to the twenty-first aspect, when the additive 71 is added to the absorbent 42 in the absorbent reservoir 72, the viscosity of the absorbent 42 can be lowered. As a result, the additive-containing absorption liquid 75 is supplied to the absorption tower 13, so that the additive-containing absorption liquid 75 can absorb the acidic gas in the absorption tower 13 without substantially reducing the ability of the acidic gas to be absorbed. The contained absorbent 75 flows smoothly, and the additive-containing absorbent 75 can be handled easily.
The invention according to claim 22 is the invention according to any one of claims 17 to 20, further comprising one or two selected from the group consisting of water, alcohols and ethers, as shown in FIG. An additive storage tank 81 in which more than one type of additive 71 is stored and connected to the upper part of the separation regenerator 46, a pressure adjusting means 82 provided in the separation regenerator 46 for adjusting the pressure in the separation regenerator 46, and a separation A distillation separator 83 that stores the additive-containing absorbing liquid 75 that is connected to the lower part of the regenerator 46 and is separated in specific gravity by the separation regenerator 46 and moves to its lower phase, and the distillation separator 83 provided in the distillation separator 83. It further comprises heating means 84 for heating the inside to a predetermined temperature.
In the gas purifying apparatus according to the twenty-second aspect of the present invention, the additive together with the absorbing liquid 42 containing the liquid acidic gas 41 in a state where the temperature and pressure in the separation regenerator 46 are adjusted by the cooler 47 and the pressure adjusting means 82. When 71 is supplied to the separation regenerator 46, the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42, the mutual solubility with respect to the absorbent 42, and the mutual insolubility with respect to the liquid acidic gas 41 are obtained. By replacing the liquid acid gas 41 dispersed in the absorbing liquid 42 by the addition of the additive 71 having solubility with the additive 71, the liquid acid gas 41 in the upper phase of the separation regenerator 46 is transferred, and the separation regenerator The additive-containing absorbing liquid 75 moves to the lower phase of 46, and the liquid acidic gas 41 and the additive-containing absorbing liquid 75 are quickly separated. Next, when the additive-containing absorption liquid 75 discharged from the lower part of the separation regenerator 46 is supplied to the distillation separator 83 in a state where the inside of the distillation separator 83 is heated to a predetermined temperature by the heating means 84, the additive-containing absorption is obtained. The additive 71 in the liquid 75 is distilled and separated from the absorbing liquid 42. As a result, the absorption liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, so that the absorption gas can be absorbed by the absorption tower 13 without reducing the ability of the absorption liquid 42 to absorb the acid gas.

請求項23に係る発明は、請求項17ないし20いずれか1項に係る発明であって、更に凝集剤を貯留する凝集剤槽が分離再生器に接続されたことを特徴とする。
この請求項23に記載されたガスの精製装置では、凝集剤槽に貯留された凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収液中に分散している液体酸性ガス(分散液体)を凝集させることができるので、分離再生器内で凝集剤含有吸収液と液体酸性ガスとの比重差により凝集剤含有吸収液と液体酸性ガスとに速やかに分離される。その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液とに更に分離される。
請求項24に係る発明は、請求項17ないし20いずれか1項に係る発明であって、更に図8に示すように、酸性ガスがCO2ガスであり、分離再生器46内の圧力を4〜25MPaに保つ圧力調整手段82が分離再生器46に設けられ、水が貯留された水貯留槽91が分離再生器46の下部に接続されたことを特徴とする。
この請求項24に記載されたガスの精製装置では、圧力調整手段82により分離再生器46内を4〜25MPaという高圧に保った状態で、水貯留槽91から水を分離再生器46内の液体CO241を含む吸収液42中に供給すると、液体CO241の一部がハイドレート化(雪状又はシャーベット状に固化)するので、分離再生器46内で液体CO241とCO2ハイドレートと吸収液42とに分離する。
The invention according to claim 23 is the invention according to any one of claims 17 to 20, wherein a flocculant tank for storing the flocculant is further connected to the separation regenerator.
In the gas purification apparatus according to claim 23, the flocculant stored in the flocculant tank is dispersed in the absorbent by adding it to the absorbent containing the liquid acidic gas in the separation regenerator. Since liquid acidic gas (dispersed liquid) can be agglomerated, it is quickly separated into a flocculant-containing absorbing liquid and liquid acidic gas due to the difference in specific gravity between the flocculant-containing absorbing liquid and liquid acidic gas in the separation regenerator. . Thereafter, if the flocculant-containing absorbing liquid is separated by distillation, the flocculant and the absorbing liquid are further separated.
The invention according to claim 24 is the invention according to any one of claims 17 to 20, wherein the acidic gas is CO 2 gas and the pressure in the separation regenerator 46 is 4 as shown in FIG. A pressure adjusting means 82 for maintaining at ˜25 MPa is provided in the separation regenerator 46, and a water storage tank 91 in which water is stored is connected to the lower part of the separation regenerator 46.
In the gas purifying apparatus according to the twenty-fourth aspect, the water in the separation / regenerator 46 is separated from the water storage tank 91 in a state where the pressure in the separation / regenerator 46 is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means 82. When fed into the absorbing solution 42 containing CO 2 41, since a part of the liquid CO 2 41 is hydrate of (solidified Yukijo or sherbet), liquid CO 2 41 and CO 2 Hyde in the separator regenerator 46 Separated into rate and absorbent 42.

請求項26に係る発明は、図9に示すように、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項1ないし16いずれか1項に記載されたガスの精製方法を用いて或いは請求項17ないし24いずれか1項に記載されたガスの精製装置を用いてH2及びCO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、分離回収されたCO2を断熱膨張させてドライアイスを製造するシステムである。
この請求項26に記載されたシステムでは、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。
The invention according to claim 26 reforms one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas and natural gas, as shown in FIG. After the CO conversion and CO removal to form a mixed gas of H 2 and CO 2 , this mixed gas is used by the gas purification method described in any one of claims 1 to 16 or in claims 17 to 24. Using the gas purifier described in any one of the above, the gas is separated and collected into H 2 and CO 2, and the separated and collected H 2 is supplied to the hydrogen station and the separated and collected CO 2 is adiabatically expanded. This is a system for producing dry ice.
In the system described in claim 26, CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels.

請求項27に係る発明は、図10に示すように、燃料電池を駆動源とする車上改質型車両に搭載され、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項2、4、5、6、7、10ないし16いずれか1項に記載されたガスの精製方法或いは請求項17ないし24いずれか1項に記載されたガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するとともに、液体CO2を一時的に上記車両に貯留し後でまとめて降ろすシステムである。
この請求項27に記載されたシステムでは、車両に搭載できる程度に小型化でき、種々の燃料から高圧のH2を製造しながら、液体CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
As shown in FIG. 10, the invention according to claim 27 is mounted on an on-vehicle reforming type vehicle having a fuel cell as a drive source, and includes desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. Claims 2, 4 and 4, wherein one or more fuels selected from the group consisting of: reforming, CO conversion and CO removal on a vehicle to form a mixed gas of H 2 and CO 2 ; Separation into H 2 and liquid CO 2 using the gas purification method according to any one of 5, 6, 7, 10 to 16, or the gas purification device according to any one of claims 17 to 24. This is a system for recovering and supplying the separated and recovered H 2 to the fuel cell, and temporarily storing the liquid CO 2 in the vehicle and then dropping it together.
In the system described in claim 27, the size can be reduced to such an extent that it can be mounted on a vehicle, and liquid CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

以上述べたように、本発明によれば、所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させて酸性ガスを吸収液に吸収させ、上記吸収塔内の温度と同一又は高い温度に維持しかつ吸収塔内の圧力より低い圧力に維持した再生塔の上部に、上記酸性ガスを吸収した吸収液を供給したので、吸収塔で非酸性ガスを酸性ガスから分離して吸収塔から回収でき、再生塔で酸性ガスを放散させて吸収液から分離して再生塔から回収できるとともに、吸収液を再生でき、この再生された吸収液を吸収塔の上部に供給することにより、吸収液を再利用できる。即ち、高圧下で酸性ガスに対する溶解度が非常に大きくなり、低圧下で酸性ガスに対する溶解度が非常に小さくなるという特性を利用することにより、混合ガスから非酸性ガスと酸性ガスとを効率良くかつ低コストで分離回収することができるとともに、吸収液の単位体積当りの酸性ガス吸収量を増大でき、更に吸収液の循環量を低減できるとともに、循環エネルギを節約できる。また蒸気圧のない吸収液を用いることにより、再生塔を比較的簡単な構造にすることができ、比較的簡単にかつ低コストで吸収液を再生でき、従来法より低い温度で吸収液を再生でき、吸収液の再生エネルギを低減できる。また蒸気圧のない吸収液を用いることにより、吸収液の蒸発ロスをなくすことができるとともに、分離回収した酸性ガス中に吸収液が残存せず、高純度の酸性ガスを容易に製造でき、酸性ガスがCO2であれば、そのまま食品添加用ガスに用いることができる。 As described above, according to the present invention, an absorption liquid mainly composed of an ionic liquid is supplied to an upper part of an absorption tower maintained at a predetermined temperature and a predetermined pressure, and an acidic liquid is supplied to the lower part of the absorption tower. Supply a mixed gas containing a gas and a non-acidic gas, bring the mixed gas into contact with the absorption liquid to absorb the acidic gas into the absorption liquid, and maintain the temperature within the absorption tower at the same or higher temperature. Since the absorption liquid that has absorbed the acid gas is supplied to the upper part of the regeneration tower maintained at a pressure lower than the pressure of the non-acid gas, the non-acid gas can be separated from the acid gas by the absorption tower and recovered from the absorption tower. The gas can be diffused and separated from the absorption liquid and recovered from the regeneration tower. The absorption liquid can be regenerated, and the regenerated absorption liquid can be reused by supplying it to the upper part of the absorption tower. That is, by utilizing the characteristics that the solubility in acidic gas becomes very high under high pressure and the solubility in acidic gas becomes very low under low pressure, non-acidic gas and acidic gas can be efficiently and lowly reduced from the mixed gas. In addition to being able to be separated and recovered at a cost, the absorption amount of the acidic gas per unit volume of the absorption liquid can be increased, the circulation amount of the absorption liquid can be reduced, and the circulation energy can be saved. In addition, by using an absorption liquid with no vapor pressure, the regeneration tower can be made relatively simple, and the absorption liquid can be regenerated relatively easily and at a low cost. The regeneration energy of the absorbing liquid can be reduced. In addition, by using an absorption liquid with no vapor pressure, the evaporation loss of the absorption liquid can be eliminated, and the absorption liquid does not remain in the separated and collected acidic gas, and a high-purity acidic gas can be easily produced. If the gas is CO 2, it can be used as it is as a food additive gas.

また所定の温度及び所定の圧力にそれぞれ維持した吸収塔の上部に、イオン性液体を主成分とする吸収液を供給し、吸収塔の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させて酸性ガスを吸収液に吸収させ、所定の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生器に、酸性ガスを吸収した吸収液を供給すれば、吸収塔で非酸性ガスを酸性ガスから分離して吸収塔から回収でき、分離再生器で液体酸性ガスと吸収液の相互不溶解性及び比重差により吸収液から液体酸性ガスを分離して分離再生器から回収できるとともに、吸収液を再生でき、この再生された吸収液を高圧のまま吸収塔の上部に供給することにより、吸収液を再利用できる。即ち、加圧下かつ所定の温度範囲で酸性ガスに対する溶解度が非常に大きくなり、加圧下かつ上記所定の温度範囲より低い温度範囲で酸性ガスが液化され、この液体酸性ガスと吸収液の相互不溶解性及び比重差により吸収液から液体酸性ガスが分かれるという特性を利用することにより、酸性ガスをガスとして回収した後に加圧冷却して液体にするのではなく、酸性ガスを直接液体状態で回収するので、混合ガスから非酸性ガスと液体酸性ガスとを効率良くかつ低コストで分離回収することができる。また従来より工程を簡略化でき、全工程中での温度及び圧力の大きな変動がなく、かつ吸収液の再生エネルギや再生した吸収液を吸収塔に戻すときの再圧縮エネルギを不要にすることにより、省エネルギ化を図ることができる。   Also, an absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower maintained at a predetermined temperature and a predetermined pressure, and a mixed gas containing acidic gas and non-acidic gas is supplied to the lower part of the absorption tower. Then, the mixed gas is brought into contact with the absorbing liquid so that the acidic gas is absorbed into the absorbing liquid, and the absorption gas that has absorbed the acidic gas is absorbed in the separation regenerator that is maintained at a predetermined pressure and lower than the temperature in the absorption tower. If the liquid is supplied, the non-acid gas can be separated from the acid gas by the absorption tower and recovered from the absorption tower. Can be recovered from the separator / regenerator, and the absorption liquid can be regenerated. By supplying the regenerated absorption liquid to the upper part of the absorption tower with high pressure, the absorption liquid can be reused. That is, the solubility in acidic gas becomes very large under pressure and in a predetermined temperature range, and the acidic gas is liquefied under pressure and in a temperature range lower than the predetermined temperature range. By utilizing the property that liquid acidic gas is separated from the absorbing liquid due to the difference in properties and specific gravity, the acidic gas is recovered directly in the liquid state rather than being pressurized and cooled to liquid after recovering the acidic gas as a gas. Therefore, the non-acid gas and the liquid acid gas can be efficiently separated and recovered from the mixed gas at a low cost. In addition, the process can be simplified compared to the prior art, there is no large fluctuation in temperature and pressure during the entire process, and the regeneration energy of the absorbent and the recompression energy when returning the regenerated absorbent to the absorption tower are unnecessary. Energy saving can be achieved.

また多孔質膜にイオン性液体を主成分とする吸収液を含浸した液体膜を膜分離器内に張設して膜分離器を第1室と第2室とに区画し、第1室を第2室より高圧に設定して、第1室に酸性ガス及び非酸性ガスを含む混合ガスを導入すれば、非酸性ガスが第1室に残留したまま、酸性ガスが液体膜を透過して低圧の第2室に流入するので、混合ガスを酸性ガス及び非酸性ガスに分離して膜分離器から回収できる。
またイオン性液体を主成分とする吸収液が中性又はアルカリ性であれば、酸性ガスが吸収液に溶け込み易くなり、その溶解度も酸性の吸収液より大きくなる。
また混合ガスを吸収塔に供給する前に、混合ガスを除湿すれば、酸性ガスの吸収液への溶解度を大きくすることができ、混合ガスを膜分離器に導入する前に、混合ガスを除湿すれば、酸性ガスの液体膜への透過率を大きくすることができる。
また吸収塔から排出されかつ吸収塔内の温度より低い温度に冷却された酸性ガスを含む吸収液を、分離再生器に供給する前に、遠心分離或いは撹拌すれば、吸収液中に分散している液体酸性ガスが分離再生器に供給される前に液体酸性ガスと吸収液にほぼ分離されるので、分離再生器内で速やかに液体酸性ガスと吸収液に分相できる。この結果、液体酸性ガスと吸収液との分相時間を短縮でき、効率良く液体酸性ガスを回収できる。
Further, a liquid membrane impregnated with an absorbent containing an ionic liquid as a main component in a porous membrane is stretched in the membrane separator to partition the membrane separator into a first chamber and a second chamber, If the mixed gas containing acidic gas and non-acidic gas is introduced into the first chamber by setting the pressure higher than that of the second chamber, the acidic gas permeates the liquid film while the non-acidic gas remains in the first chamber. Since it flows into the low-pressure second chamber, the mixed gas can be separated into acidic gas and non-acidic gas and recovered from the membrane separator.
Moreover, if the absorption liquid which has an ionic liquid as a main component is neutral or alkaline, acidic gas will become easy to melt | dissolve in an absorption liquid, and the solubility will also become larger than an acidic absorption liquid.
If the mixed gas is dehumidified before the mixed gas is supplied to the absorption tower, the solubility of the acidic gas in the absorbing liquid can be increased, and the mixed gas is dehumidified before being introduced into the membrane separator. If so, the permeability of the acid gas to the liquid film can be increased.
In addition, if the absorption liquid containing acidic gas discharged from the absorption tower and cooled to a temperature lower than the temperature in the absorption tower is centrifuged or stirred before being supplied to the separation / regenerator, it is dispersed in the absorption liquid. Since the liquid acid gas that is present is substantially separated into the liquid acid gas and the absorption liquid before being supplied to the separation regenerator, the liquid acid gas and the absorption liquid can be quickly separated into phases in the separation regenerator. As a result, the phase separation time between the liquid acidic gas and the absorbing liquid can be shortened, and the liquid acidic gas can be efficiently recovered.

またイオン性液体を主成分とする吸収液が磁性を有し、分離再生器の下部に磁石を設ければ、吸収塔内の圧力とほぼ同一の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生器に、液体酸性ガスを含む吸収液を供給すると、液体酸性ガスと吸収液の相互不溶解性及び比重差と、磁性を有する吸収液の磁石による吸引力とにより、吸収液と液体酸性ガスとに速やかに分離される。この結果、液体酸性ガスを分離再生器から速やかに回収できるとともに、吸収液を速やかに再生して再利用できる。
また水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤を吸収液に添加すれば、吸収液の粘性を低下させることができる。この結果、添加剤含有吸収液が吸収塔に供給されるので、添加剤含有吸収液が酸性ガスを吸収する能力を殆ど低下させずに吸収塔で酸性ガスを吸収できるとともに、添加剤含有吸収液がスムーズに流れ、添加剤含有吸収液の取扱いが容易になる。
Moreover, if the absorption liquid mainly composed of an ionic liquid has magnetism and a magnet is provided at the lower part of the separation / regenerator, the pressure in the absorption tower can be maintained at substantially the same pressure and lower than the temperature in the absorption tower. When an absorption liquid containing a liquid acidic gas is supplied to a separation regenerator maintained at a temperature, absorption occurs due to the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorption liquid, and the suction force of the magnetic absorption liquid by a magnet. Quick separation into liquid and liquid acid gas. As a result, the liquid acidic gas can be quickly recovered from the separation regenerator, and the absorbing liquid can be quickly regenerated and reused.
Moreover, if the 1 type (s) or 2 or more types of additive chosen from the group which consists of water, alcohol, ethers, and phenols is added to an absorption liquid, the viscosity of an absorption liquid can be reduced. As a result, since the additive-containing absorption liquid is supplied to the absorption tower, the additive-containing absorption liquid can absorb the acid gas in the absorption tower without substantially reducing the ability to absorb the acid gas, and the additive-containing absorption liquid Flows smoothly and the handling of the additive-containing absorbent is facilitated.

また上記添加剤を分離再生器に供給するとともに、分離再生器内の圧力及び温度を調整することにより、分離再生器内で液体酸性ガスと添加剤含有吸収液とに比重差分離すれば、吸収液に対して相互溶解性を有しかつ液体酸性ガスに対して相互不溶解性を有する添加剤の添加による吸収液中に分散する液体酸性ガスの添加剤への置換により、分離再生器の上相に液体酸性ガスが移行しかつ分離再生器の下相に添加剤含有吸収液が移行して、液体酸性ガスと添加剤含有吸収液とが速やかに分離される。そして蒸留分離器内を所定の温度に加熱した状態で、分離再生器から排出された添加剤含有吸収液を蒸留分離器に供給することにより、添加剤含有吸収液中の添加剤を吸収液から蒸留分離すれば、添加剤と吸収液を分離した状態で回収することができる。この結果、添加剤が除去された吸収液が吸収塔に供給され、吸収液が除去された添加剤が添加剤貯留槽に供給されるので、吸収液及び添加剤をそれぞれ直ぐに再利用できるとともに、吸収液が酸性ガスを吸収する能力を全く低下させずに吸収塔で酸性ガスを吸収できる。
また凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加すれば、吸収液中に分散している液体酸性ガス(分散液体)を凝集させることができる。この結果、分離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離を速やかに進行させることができ、その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液とに更に分離できる。
また酸性ガスがCO2ガスであり、4〜25MPaの圧力に保った分離再生器内の液体CO2を含む吸収液中に水を供給すれば、液体CO2の一部がハイドレート化(雪状又はシャーベット状に固化)するので、分離再生器内で液体CO2とCO2ハイドレートと吸収液とに分離する。この結果、固液分離及び比重差分離の操作により、液体CO2とCO2ハイドレートと吸収液をそれぞれ分離して回収できる。従って、より速やかに液体CO2を吸収液から分離できる。
In addition to supplying the above additives to the separation regenerator and adjusting the pressure and temperature in the separation regenerator, if the specific gravity difference separation between the liquid acid gas and the additive-containing absorbing liquid is performed in the separation regenerator, the absorption is achieved. By replacing the liquid acid gas dispersed in the absorbing liquid with an additive that is mutually soluble in the liquid and mutually insoluble in the liquid acid gas, The liquid acidic gas is transferred to the phase and the additive-containing absorbent is transferred to the lower phase of the separation regenerator, so that the liquid acidic gas and the additive-containing absorbent are rapidly separated. Then, with the inside of the distillation separator heated to a predetermined temperature, the additive-containing absorbent discharged from the separator / regenerator is supplied to the distillation separator to remove the additive in the additive-containing absorbent from the absorbent. If it separates by distillation, it can collect | recover in the state which isolate | separated the additive and the absorption liquid. As a result, the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank, so that the absorption liquid and the additive can be reused immediately, The absorbing gas can be absorbed by the absorption tower without reducing the ability of the absorbing solution to absorb the acid gas at all.
Moreover, if a flocculant is added to the absorption liquid containing the liquid acidic gas in the separation / regenerator, the liquid acidic gas (dispersed liquid) dispersed in the absorption liquid can be aggregated. As a result, the specific gravity difference separation between the liquid acidic gas and the flocculant-containing absorbing liquid can proceed promptly in the separation / regenerator, and then the flocculant-containing absorbing liquid can be separated by distillation. Can be further separated.
The acidic gas is CO 2 gas, if supply water to the absorption solution containing liquid CO 2 in the separator regenerator maintained at a pressure of 4~25MPa, part of the liquid CO 2 is hydrate of (snow Therefore, the liquid is separated into liquid CO 2 , CO 2 hydrate, and absorbent in the separation / regenerator. As a result, the liquid CO 2 , CO 2 hydrate, and absorption liquid can be separated and recovered by operations of solid-liquid separation and specific gravity difference separation. Therefore, liquid CO 2 can be separated from the absorbing liquid more quickly.

また上記混合ガスを除湿器で除湿しかつ圧縮機で圧縮して吸収塔の下部に供給し、かつ吸収塔の上部からイオン性液体を主成分とする吸収液を供給して、吸収液に混合ガスを接触させることにより酸性ガスを吸収液に吸収させ、この酸性ガスを吸収した吸収液を冷却器で冷却して分離再生器に供給すれば、吸収塔で非酸性ガスを酸性ガスから分離して吸収塔から回収でき、分離再生器で酸性ガスを液化した状態で吸収液から分離して分離再生器から回収できるとともに、吸収液を再生して再利用でき、室温以上の温度で酸性ガスを吸収すれば、冷凍機を不要にできる。
また吸収塔と冷却器と分離再生器を一体的に設ければ、装置を小型化できる。
また冷却器と分離再生器との間に遠心分離器或いは撹拌機を設ければ、酸性ガスを含む吸収液を冷却器にて吸収塔内の温度より低い温度に冷却することにより、吸収液中の酸性ガスが液化して吸収液中に分散するので、この液体酸性ガスを含む吸収液を遠心分離器或いは撹拌機により遠心分離或いは撹拌することにより、分離再生器に供給される前に液体酸性ガスと吸収液にほぼ分離される。この結果、分離再生器内で速やかに液体酸性ガスと吸収液に分相できるので、液体酸性ガスと吸収液との分相時間を短縮でき、効率良く液体酸性ガスを回収できる。
The mixed gas is dehumidified with a dehumidifier and compressed with a compressor and supplied to the lower part of the absorption tower, and an absorption liquid mainly composed of an ionic liquid is supplied from the upper part of the absorption tower and mixed with the absorption liquid. When the gas is brought into contact with the acid gas, the absorption liquid absorbs the acid gas, and the absorption liquid that has absorbed the acid gas is cooled by a cooler and supplied to the separation / regenerator. Then, the non-acid gas is separated from the acid gas by the absorption tower. It can be recovered from the absorption tower, separated from the absorption liquid in a state where the acid gas is liquefied by the separation / regenerator and recovered from the separation / regenerator, and the absorption liquid can be regenerated and reused. If absorbed, the refrigerator can be dispensed with.
If the absorption tower, the cooler, and the separation / regenerator are integrally provided, the apparatus can be reduced in size.
In addition, if a centrifuge or a stirrer is provided between the cooler and the separation regenerator, the absorption liquid containing the acidic gas is cooled to a temperature lower than the temperature in the absorption tower by the cooler. Since the acidic gas of the liquid is liquefied and dispersed in the absorbing liquid, the absorbing liquid containing the liquid acidic gas is centrifuged or stirred by a centrifuge or a stirrer, so that the liquid acidic gas is supplied before being supplied to the separation regenerator. It is almost separated into gas and absorbing liquid. As a result, phase separation between the liquid acidic gas and the absorbing liquid can be quickly performed in the separation / regenerator, so that the phase separation time between the liquid acidic gas and the absorbing liquid can be shortened and the liquid acidic gas can be efficiently recovered.

またイオン性液体を主成分とする吸収液が磁性を有し、分離再生器の下部に磁石を設ければ、吸収塔内の圧力とほぼ同一の圧力に維持しかつ吸収塔内の温度より低い温度に維持した分離再生器に、液体酸性ガスを含む吸収液を供給すると、液体酸性ガスと吸収液の相互不溶解性及び比重差と、磁性を有する吸収液の磁石による吸引力とにより、吸収液と液体酸性ガスとに速やかに分離される。この結果、液体酸性ガスを分離再生器から速やかに回収できるとともに、液体酸性ガスが取除かれて再生された吸収液が循環ポンプにより吸収塔の上部に供給されて速やかに再利用できる。
また水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤を添加した吸収液が貯留されこの添加剤含有吸収液を吸収塔に供給するための吸収液槽を設ければ、吸収液槽内で吸収液に添加剤を添加することにより、吸収液の粘性を低下させることができる。この結果、添加剤含有吸収液が酸性ガスを吸収する能力を殆ど低下させずに吸収塔で酸性ガスを吸収できるとともに、添加剤含有吸収液がスムーズに流れ、添加剤含有吸収液の取扱いが容易になる。
Moreover, if the absorption liquid mainly composed of an ionic liquid has magnetism and a magnet is provided at the lower part of the separation / regenerator, the pressure in the absorption tower can be maintained at substantially the same pressure and lower than the temperature in the absorption tower. When an absorption liquid containing a liquid acidic gas is supplied to a separation regenerator maintained at a temperature, absorption occurs due to the mutual insolubility and specific gravity difference between the liquid acidic gas and the absorption liquid, and the suction force of the magnetic absorption liquid by a magnet. Quick separation into liquid and liquid acid gas. As a result, the liquid acid gas can be quickly recovered from the separation regenerator, and the regenerated absorption liquid removed from the liquid acid gas is supplied to the upper part of the absorption tower by the circulation pump and can be quickly reused.
Absorption for storing one or two or more additives selected from the group consisting of water, alcohols, ethers and phenols is stored, and the additive-containing absorption liquid is supplied to the absorption tower. If a liquid tank is provided, the viscosity of the absorbent can be reduced by adding an additive to the absorbent in the absorbent tank. As a result, it is possible to absorb the acid gas in the absorption tower with almost no decrease in the ability of the additive-containing absorbing liquid to absorb the acid gas, and the additive-containing absorbing liquid flows smoothly and the additive-containing absorbing liquid is easy to handle. become.

また上記添加剤が貯留された添加剤貯留槽を分離再生器の上部に接続し、分離再生器内の圧力を調節する圧力調節手段を分離再生器に設け、分離再生器で比重差分離されてその下相に移行した液体を貯留する蒸留分離器を分離再生器の下部に接続し、蒸留分離器内を所定の温度に加熱する加熱手段を蒸留分離器に設ければ、冷却器及び圧力調整手段により分離再生器内の温度及び圧力を調整した状態で、液体酸性ガスを含む吸収液とともに添加剤を分離再生器に供給すると、液体酸性ガスと吸収液の相互不溶解性及び比重差と、吸収液に対して相互溶解性を有しかつ液体酸性ガスに対して相互不溶解性を有する添加剤の添加による吸収液中に分散する液体酸性ガスの添加剤への置換とにより、分離再生器の上相に液体酸性ガスが移行しかつ分離再生器の下相に添加剤含有吸収液が移行して、液体酸性ガスと添加剤含有吸収液とが速やかに分離される。そして加熱手段により蒸留分離器内を所定の温度に加熱した状態で、分離再生器の下部から排出された添加剤含有吸収液を蒸留分離器に供給すると、添加剤含有吸収液中の添加剤が吸収液から蒸留分離される。この結果、添加剤と吸収液を分離した状態で回収することができるので、添加剤が除去された吸収液が吸収塔に供給され、吸収液が除去された添加剤が添加剤貯留槽に供給されて、吸収液及び添加剤をそれぞれ直ぐに再利用できるとともに、吸収液が酸性ガスを吸収する能力を全く低下させずに吸収塔で酸性ガスを吸収できる。   Further, the additive storage tank in which the additive is stored is connected to the upper part of the separation regenerator, and a pressure adjusting means for adjusting the pressure in the separation regenerator is provided in the separation regenerator, and the specific gravity difference is separated by the separation regenerator. If the distillation separator storing the liquid transferred to the lower phase is connected to the lower part of the separation regenerator and the heating means for heating the inside of the distillation separator to a predetermined temperature is provided in the distillation separator, the condenser and the pressure adjustment When the additive is supplied to the separation regenerator together with the absorbing liquid containing the liquid acidic gas with the temperature and pressure in the separation regenerator adjusted by the means, the mutual insolubility and the specific gravity difference between the liquid acidic gas and the absorbing liquid, Separation and regenerator by replacing the liquid acid gas dispersed in the absorption liquid with an additive by adding an additive that is mutually soluble in the absorption liquid and mutually insoluble in the liquid acid gas Liquid acid gas migrates into the upper phase And migration additive-containing absorbing solution in the lower phase of the regenerator, a liquid acid gas and additive-containing absorption liquid is quickly separated. Then, when the additive-containing absorption liquid discharged from the lower part of the separation regenerator is supplied to the distillation separator with the inside of the distillation separator heated to a predetermined temperature by the heating means, the additive in the additive-containing absorption liquid is Distilled from the absorbent. As a result, since the additive and the absorption liquid can be recovered in a separated state, the absorption liquid from which the additive has been removed is supplied to the absorption tower, and the additive from which the absorption liquid has been removed is supplied to the additive storage tank Thus, the absorption liquid and the additive can be reused immediately, and the absorption gas can be absorbed in the absorption tower without reducing the ability of the absorption liquid to absorb the acid gas at all.

また凝集剤を貯留する凝集剤槽を分離再生器に接続すれば、凝集剤槽に貯留された凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収液中に分散している液体酸性ガス(分散液体)を凝集させることができる。この結果、分離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離を速やかに進行させることができ、その後、凝集剤含有吸収液を蒸留分離すれば、凝集剤と吸収液とに更に分離できる。
また酸性ガスがCO2ガスであり、分離再生器内の圧力を4〜25MPaに保つ圧力調整手段を分離再生器に設け、水が貯留された水貯留槽を分離再生器の下部に接続すれば、圧力調整手段により分離再生器内を4〜25MPaという高圧に保った状態で、水貯留槽から水を分離再生器内の液体CO2を含む吸収液中に供給すると、液体CO2の一部がハイドレート化(雪状又はシャーベット状に固化)する。この結果、固液分離及び比重差分離の操作により、液体CO2とCO2ハイドレートと吸収液をそれぞれ分離して回収できる。従って、より速やかに液体CO2を吸収液から分離できる。
If the flocculant tank storing the flocculant is connected to the separation regenerator, the flocculant stored in the flocculant tank is added to the absorption liquid containing the liquid acidic gas in the separation regenerator, thereby Dispersed liquid acidic gas (dispersed liquid) can be aggregated. As a result, the specific gravity difference separation between the liquid acidic gas and the flocculant-containing absorbing liquid can proceed promptly in the separation / regenerator, and then the flocculant-containing absorbing liquid can be separated by distillation. Can be further separated.
If the acidic gas is CO 2 gas, pressure adjusting means for maintaining the pressure in the separation regenerator at 4 to 25 MPa is provided in the separation regenerator, and the water storage tank in which water is stored is connected to the lower part of the separation regenerator. When water is supplied from the water storage tank into the absorption liquid containing liquid CO 2 in the separation regenerator while the pressure in the separation regenerator is maintained at a high pressure of 4 to 25 MPa by the pressure adjusting means, part of the liquid CO 2 Hydrates (solidifies into snow or sherbet). As a result, the liquid CO 2 , CO 2 hydrate, and absorption liquid can be separated and recovered by operations of solid-liquid separation and specific gravity difference separation. Therefore, liquid CO 2 can be separated from the absorbing liquid more quickly.

また燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記ガスの精製方法或いはガスの精製装置を用いてH2及びCO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、分離回収されたCO2を断熱膨張させてドライアイスを製造すれば、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。
更に燃料電池を駆動源とする車上改質型車両に搭載されたシステムであって、燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記ガスの精製方法或いはガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するとともに、液体CO2を一時的に車両に貯留し後でまとめて降ろせば、車両に搭載できる程度に小型化でき、種々の燃料から高圧のH2を製造しながら、CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
The fuel is reformed, CO transformed and removed to form a mixed gas of H 2 and CO 2 , and then this mixed gas is separated and recovered into H 2 and CO 2 using the above gas purification method or gas purification device. If the separated and collected H 2 is supplied to the hydrogen station and the separated and collected CO 2 is adiabatically expanded to produce dry ice, high-pressure H 2 is produced from various fuels, while CO 2 is produced. 2 can be recovered efficiently.
Further, the system is mounted on an on-vehicle reforming type vehicle using a fuel cell as a driving source, and after reforming the fuel on the vehicle, CO conversion and CO removal to form a mixed gas of H 2 and CO 2 , The mixed gas is separated and recovered into H 2 and liquid CO 2 by using the above gas purification method or gas purification apparatus, and the separated and recovered H 2 is supplied to the fuel cell, and the liquid CO 2 is temporarily recovered. If they are stored in the vehicle and then lowered together, they can be made small enough to be mounted on the vehicle, and CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
<第1の実施の形態>
図1に示すように、精製装置は、酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿器11と、除湿された混合ガスを圧縮する圧縮機12と、鉛直方向に延びて設けられ下部に圧縮された混合ガスが供給されかつ上部に吸収液が供給されて吸収液に混合ガスを接触させることにより酸性ガスを吸収液に吸収させて非酸性ガスを酸性ガスから分離し回収する吸収塔13と、酸性ガスを吸収した吸収液を膨張・減圧させる膨張タービン14と、この膨張・減圧された吸収液が供給されこの吸収液から酸性ガスを放散させて吸収液から分離し回収するとともに吸収液を再生する再生塔16と、この再生された吸収液を吸収塔13の上部に供給する循環ポンプ17とを備える。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIG. 1, the refining device includes a dehumidifier 11 that dehumidifies a mixed gas containing acidic gas and non-acidic gas, a compressor 12 that compresses the dehumidified mixed gas, and a vertically extending lower part. An absorption tower that is supplied with a gas mixture compressed into the upper part and is supplied with an absorption liquid at the top so that the mixed gas is brought into contact with the absorption liquid to absorb the acidic gas into the absorption liquid and separate and recover the non-acidic gas from the acidic gas. 13, an expansion turbine 14 that expands and depressurizes the absorbing liquid that has absorbed the acid gas, and the expanded and depressurized absorbing liquid is supplied to dissipate the acidic gas from the absorbing liquid to separate and recover from the absorbing liquid and absorb A regeneration tower 16 for regenerating the liquid and a circulation pump 17 for supplying the regenerated absorption liquid to the upper part of the absorption tower 13 are provided.

混合ガスは、化石燃料のガス化、改質又は部分酸化による合成ガス、天然ガス等の燃料ガスや、火力発電所、セメントプラント、鉄鋼プラント、化学プラント等から排出される排ガスである。酸性ガスはCO2,H2S,COS,SO2,SO3,NO2,CS2,HCN,NH3及びメルカプタンからなる群より選ばれた1種又は2種以上のガスであり、非酸性ガスはH2,CH4,CO,O2,N2及び炭素数2〜10までの炭化水素化合物からなる群より選ばれた1種又は2種以上のガスである。ここで、炭素数2〜10までの炭化水素化合物としては、C24、C26、C36、C38、C48、C410などが挙げられる。また吸収液はイオン性液体を主成分とする組成物であり、イオン性液体はカチオン及びアニオンを有する。カチオンは、[R,R’−N233]+(N,N’-ジアルキルイミダゾリウム)、[NRX4-X]+(アルキルアンモニウム)、[R−NC55]+(N-アルキルピリジニウム)、[R−NC48]+(N-アルキルピロリジニウム)及び[PRX4-X]+(アルキルフォスフォニウム)からなる群より選ばれた1種又は2種以上のカチオンであり(カチオン中のR及びR’は炭素数1〜18のアルキル基又は水素であり、カチオン中のXが1〜3である。)、好ましくは[R,R’−N233]+(アルキル基炭素数1〜10のN,N’-アルキルイミダゾリウム)又は[R−NC55]+(N-アルキルピリジニウム)のいずれか一方又は双方である。またアニオンは、PF6 -、BF4 -、NO3 -、EtSO4 -、AlCl4 -及びAlBr4 -からなる群より選ばれた1種又は2種以上のアニオンであり、好ましくはPF6 -又はBF4 -のいずれか一方又は双方である。 The mixed gas is a fuel gas such as a synthetic gas obtained by gasification, reforming or partial oxidation of fossil fuel, natural gas, or exhaust gas discharged from a thermal power plant, a cement plant, a steel plant, a chemical plant, or the like. The acid gas is one or more gases selected from the group consisting of CO 2 , H 2 S, COS, SO 2 , SO 3 , NO 2 , CS 2 , HCN, NH 3 and mercaptan, and is non-acidic gas is H 2, CH 4, CO, O 2, N 2 and one or more gases selected from the group consisting of hydrocarbon compounds to 10 carbon atoms. Here, examples of the hydrocarbon compound having 2 to 10 carbon atoms include C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , C 4 H 8 , and C 4 H 10 . The absorbing liquid is a composition containing an ionic liquid as a main component, and the ionic liquid has a cation and an anion. The cations are [R, R′-N 2 C 3 H 3 ] + (N, N′-dialkylimidazolium), [NR X H 4-X ] + (alkylammonium), [R-NC 5 H 5 ]. One selected from the group consisting of + (N-alkylpyridinium), [R-NC 4 H 8 ] + (N-alkylpyrrolidinium) and [PR X H 4-X ] + (alkylphosphonium) Or two or more cations (R and R ′ in the cation are alkyl groups having 1 to 18 carbon atoms or hydrogen, and X in the cation is 1 to 3), preferably [R, R ′ —N 2 C 3 H 3 ] + (N, N′-alkylimidazolium having 1 to 10 alkyl groups) or [R—NC 5 H 5 ] + (N-alkylpyridinium) or both is there. The anion is one or more anions selected from the group consisting of PF 6 , BF 4 , NO 3 , EtSO 4 , AlCl 4 and AlBr 4 , preferably PF 6 −. or BF 4 - is either or both of the.

圧縮機12と吸収塔13を連通接続するガス供給管18にはプリ冷却器19が設けられ、上記圧縮機12及びプリ冷却器19により、混合ガスが所定の温度及び所定の圧力にそれぞれ維持された状態で吸収塔13の下部に供給される。具体的には、吸収塔13に供給される混合ガスの温度、即ち吸収塔13内の温度は0〜100℃、好ましくは30〜50℃に設定され、吸収塔13に供給される混合ガスの圧力、即ち吸収塔13内の圧力は1〜25MPa、好ましくは4〜10MPaに設定される。ここで、吸収塔13内の温度を0〜100℃の範囲に限定したのは、0℃未満では冷凍機が必要になり、100℃を越えると昇温に必要なエネルギが増大し酸性ガスの吸収液による吸収量が少なくなるからである。また吸収塔13内の圧力を1〜25MPaの範囲に限定したのは、1MPa未満では酸性ガスの吸収液による吸収量が少なくなり、25MPaを越えると耐圧性の高い吸収塔13が必要になり設備費が増大するからである。吸収塔13は吸収ドラム缶でもよいが、酸性ガスの吸収効率を向上するために、多段の吸収塔13を用いることが望ましく、再生塔16は再生ドラム缶でもよいが、吸収液の再生効率を向上するために、多段の再生塔16を用いることが望ましい。   The gas supply pipe 18 that connects the compressor 12 and the absorption tower 13 in communication is provided with a precooler 19, and the mixed gas is maintained at a predetermined temperature and a predetermined pressure by the compressor 12 and the precooler 19. In this state, it is supplied to the lower part of the absorption tower 13. Specifically, the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to 100 ° C., preferably 30 to 50 ° C., and the mixed gas supplied to the absorption tower 13 The pressure, that is, the pressure in the absorption tower 13 is set to 1 to 25 MPa, preferably 4 to 10 MPa. Here, the temperature in the absorption tower 13 is limited to the range of 0 to 100 ° C. The reason is that a refrigerator is required if the temperature is less than 0 ° C., and if the temperature exceeds 100 ° C., the energy required for temperature increase increases and the acid gas This is because the amount absorbed by the absorbing liquid is reduced. Further, the pressure in the absorption tower 13 is limited to the range of 1 to 25 MPa. If the pressure is less than 1 MPa, the absorption amount of the acidic gas by the absorption liquid decreases, and if it exceeds 25 MPa, the absorption tower 13 having high pressure resistance is required. This is because the cost increases. Although the absorption tower 13 may be an absorption drum, it is desirable to use a multistage absorption tower 13 in order to improve the absorption efficiency of acid gas, and the regeneration tower 16 may be a regeneration drum, but it improves the regeneration efficiency of the absorbing liquid. Therefore, it is desirable to use a multistage regeneration tower 16.

吸収塔13の下端と膨張タービン14とを連通接続する第1連通管21には、吸収塔13側から順に減圧弁23、フラッシュドラム24及び熱交換器26が設けられる。減圧弁23及びフラッシュドラム24により吸収塔13の下端から排出された酸性ガスを含む吸収液が所定の圧力だけ、例えば吸収塔13内の圧力より0.1〜0.5MPaだけ減圧される。これは吸収液に含まれるH2,CH4,CO,O2,N2などの非酸性ガスのみを放散して吸収塔13に戻すためである。フラッシュドラム24の上端と吸収塔13の下部とは第1戻り管31により連通接続され、この第1戻り管31には補助圧縮機27が設けられる。また熱交換器26は、フラッシュドラム24の下端から排出された酸性ガスを含む低温の吸収液に、再生塔16の下端から排出された高温の吸収液が熱を与えるように構成される。即ち、熱交換器26は、上記フラッシュドラム24の下端から排出された酸性ガスを含む吸収液を加熱し、かつ再生塔16の下端から排出された高温の吸収液を冷却するように構成される。 The first communication pipe 21 that connects the lower end of the absorption tower 13 and the expansion turbine 14 is provided with a pressure reducing valve 23, a flash drum 24, and a heat exchanger 26 in order from the absorption tower 13 side. The absorbing liquid containing acidic gas discharged from the lower end of the absorption tower 13 by the pressure reducing valve 23 and the flash drum 24 is depressurized by a predetermined pressure, for example, 0.1 to 0.5 MPa from the pressure in the absorption tower 13. This is because only non-acidic gases such as H 2 , CH 4 , CO, O 2 , and N 2 contained in the absorption liquid are diffused and returned to the absorption tower 13. The upper end of the flash drum 24 and the lower part of the absorption tower 13 are connected in communication by a first return pipe 31, and an auxiliary compressor 27 is provided in the first return pipe 31. The heat exchanger 26 is configured such that the high-temperature absorption liquid discharged from the lower end of the regeneration tower 16 gives heat to the low-temperature absorption liquid containing the acid gas discharged from the lower end of the flash drum 24. That is, the heat exchanger 26 is configured to heat the absorption liquid containing the acid gas discharged from the lower end of the flash drum 24 and to cool the high-temperature absorption liquid discharged from the lower end of the regeneration tower 16. .

膨張タービン14と再生塔16を連通接続する第2連通管22には加熱器28が設けられ、上記膨張タービン14及び加熱器28により、酸性ガスを含む吸収液が吸収塔13内の温度と同一又は吸収塔13内の温度より高い温度に維持されかつ吸収塔13内の圧力より低い圧力に維持された状態で再生塔16の上部に供給される。具体的には、再生塔16に供給される吸収液の温度、即ち再生塔16内の温度は30〜200℃、好ましくは30〜100℃に設定され、再生塔16に供給される吸収液の圧力、即ち再生塔16内の圧力は0.1〜5MPa、好ましくは0.1〜3MPaに設定される。ここで、再生塔16内の温度を30〜200℃の範囲に限定したのは、30℃未満では酸性ガスの放散に不利になり、200℃を越えると昇温エネルギが増大するからである。また再生塔16内の圧力を0.1〜5MPaの範囲に限定したのは、0.1MPa未満では再生塔16内が負圧になり装置が複雑になってコストが増大し、5MPaを越えると酸性ガスの放散に不利なるからである。   The second communication pipe 22 that connects the expansion turbine 14 and the regeneration tower 16 to each other is provided with a heater 28. By the expansion turbine 14 and the heater 28, the absorption liquid containing the acid gas has the same temperature as the absorption tower 13. Alternatively, it is supplied to the upper part of the regeneration tower 16 while being maintained at a temperature higher than the temperature in the absorption tower 13 and maintained at a pressure lower than the pressure in the absorption tower 13. Specifically, the temperature of the absorption liquid supplied to the regeneration tower 16, that is, the temperature in the regeneration tower 16 is set to 30 to 200 ° C., preferably 30 to 100 ° C. The pressure, that is, the pressure in the regeneration tower 16 is set to 0.1 to 5 MPa, preferably 0.1 to 3 MPa. Here, the reason why the temperature in the regeneration tower 16 is limited to the range of 30 to 200 ° C. is that if it is less than 30 ° C., it is disadvantageous for acid gas diffusion, and if it exceeds 200 ° C., the temperature rise energy increases. The reason why the pressure in the regeneration tower 16 is limited to the range of 0.1 to 5 MPa is that if it is less than 0.1 MPa, the pressure in the regeneration tower 16 becomes negative and the apparatus becomes complicated, and the cost increases. This is because it is disadvantageous for acid gas emission.

なお、再生塔16の下端は第2戻り管32により吸収塔13の上部に接続され、上記循環ポンプ17は第2戻り管32に設けられる。循環ポンプ17の吐出口と吸収塔13の上部とを連通接続する第2戻り管32にはアフタ冷却器29が設けられ、このアフタ冷却器29により吸収液の温度が所定の温度になるように調整される。また吸収液は中性又はアルカリ性であることが好ましい。これは、吸収液が酸性であると、単位体積当たりの酸性ガス吸収量、即ち酸性ガスの溶解度が低下してしまうためである。吸収液をアルカリ性にするには、アルカリ性のイオン性液体を用いたり、或いはアルカリを吸収液に添加することにより行われる。   The lower end of the regeneration tower 16 is connected to the upper part of the absorption tower 13 by a second return pipe 32, and the circulation pump 17 is provided in the second return pipe 32. An after cooler 29 is provided in the second return pipe 32 that connects the discharge port of the circulation pump 17 and the upper part of the absorption tower 13 so that the temperature of the absorbing liquid becomes a predetermined temperature. Adjusted. The absorbing solution is preferably neutral or alkaline. This is because if the absorbing liquid is acidic, the amount of acidic gas absorbed per unit volume, that is, the solubility of the acidic gas is reduced. In order to make the absorbent liquid alkaline, an alkaline ionic liquid is used, or an alkali is added to the absorbent liquid.

このように構成された精製装置を用いてガスを精製する方法を説明する。
混合ガスを吸収塔13に供給する前に、予め循環ポンプ17及び補助圧縮機27を作動させ、プリ冷却器19及びアフタ冷却器29に水や空気やアンモニアなどの冷媒を流し、加熱器28のヒータに通電して、吸収液を循環させるとともに、吸収塔13及び再生塔16に供給される吸収液の温度をそれぞれ所定の温度にしておく。先ず混合ガスは除湿器11で除湿される。これにより酸性ガスの吸収液への溶解度を小さくしてしまう水分を混合ガスから予め除去することができ、酸性ガスの吸収液への溶解度を大きくすることができる。この除湿された混合ガスは圧縮機12及びプリ冷却器19により所定の温度に加熱又は冷却されかつ所定の圧力に昇圧された状態で吸収塔13の下部に供給される。これにより吸収液に混合ガスが接触して酸性ガスが吸収液に吸収されるので、非酸性ガスが酸性ガスから分離されて吸収塔13の上端から回収される。この回収された非酸性ガスの圧力がユーザ側に必要な圧力より高い場合、例えば上記非酸性ガス(H2,CH4,CO,O2,N2などの混合ガス)をガスタービンに用いる場合、現状では3MPa程度の低圧であるため、上記非酸性ガスを一旦膨張タービン又は断熱膨張弁を用いて減圧する。このとき減圧後の非酸性ガスの温度は低くなるので、この低温の非酸性ガスをプリ冷却器19又はアフタ冷却器29の冷媒として用いることができる。なお、上記非酸性ガスの減圧に膨張タービンを用いた場合、この膨張タービンで発電できるので、その電力はこの実施の形態の精製装置の設置されている所内の消費に用いることができる。
A method for purifying a gas using the purification apparatus configured as described above will be described.
Before supplying the mixed gas to the absorption tower 13, the circulation pump 17 and the auxiliary compressor 27 are operated in advance, and a coolant such as water, air, or ammonia is supplied to the precooler 19 and the aftercooler 29. The heater is energized to circulate the absorption liquid, and the temperature of the absorption liquid supplied to the absorption tower 13 and the regeneration tower 16 is set to a predetermined temperature. First, the mixed gas is dehumidified by the dehumidifier 11. As a result, moisture that decreases the solubility of the acidic gas in the absorbing liquid can be removed in advance from the mixed gas, and the solubility of the acidic gas in the absorbing liquid can be increased. The dehumidified mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and is supplied to the lower portion of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure. As a result, the mixed gas comes into contact with the absorbing liquid and the acidic gas is absorbed by the absorbing liquid, so that the non-acidic gas is separated from the acidic gas and recovered from the upper end of the absorption tower 13. When the pressure of the recovered non-acid gas is higher than the pressure required on the user side, for example, when the non-acid gas (mixed gas of H 2 , CH 4 , CO, O 2 , N 2, etc.) is used for a gas turbine. At present, since the pressure is about 3 MPa, the non-acidic gas is once decompressed using an expansion turbine or an adiabatic expansion valve. At this time, since the temperature of the non-acidic gas after decompression is lowered, this low-temperature non-acidic gas can be used as a refrigerant for the precooler 19 or the aftercooler 29. In addition, when an expansion turbine is used for decompression of the non-acidic gas, power can be generated by the expansion turbine, so that the electric power can be used for consumption in the place where the purification apparatus of this embodiment is installed.

一方、吸収塔13の下端から排出された多量の酸性ガスと微量の非酸性ガスを含む吸収液は減圧弁23及びフラッシュドラム24で所定の圧力だけ減圧される。これにより吸収液に含まれるH2,CH4,CO,O2,N2などの非酸性ガスのみが放散されて、酸性ガスを含む吸収液と分離される。この放散された非酸性ガスはフラッシュドラム24の上端から排出され更に補助圧縮機27により加圧されて再び吸収塔13に戻される。フラッシュドラム24の下端から排出された酸性ガスを含む吸収液は熱交換器26で再生吸収液により加熱された後に、膨張タービン14で膨張・減圧され、更に加熱器28で所定の温度に加熱されて、再生塔16の上部に供給される。即ち、熱交換器26で加熱された吸収液は膨張タービン14及び加熱器28により吸収塔13内の温度と同一又は吸収塔13内の温度より高い温度に維持しかつ吸収塔13内の圧力より低い圧力に維持した状態で再生塔16の上部に供給される。吸収液をこのような圧力及び温度に設定すると、吸収液に含まれる酸性ガスが第2連通管22内又は再生塔16内で放散するので、酸性ガスが吸収液から分離されて再生塔16の上端から回収される。一方、再生塔16の下端から排出された酸性ガスを含まない再生された吸収液は、循環ポンプ17により搬送され、熱交換器26及びアフタ冷却器29で所定の温度に冷却された後に、吸収塔13の上部に供給されて再利用される。なお、酸性ガスがCO2ガスである場合、回収されたCO2ガスを加圧して液体CO2にした後に、この液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体CO2)を製造できる。 On the other hand, the absorbing liquid containing a large amount of acidic gas and a small amount of non-acidic gas discharged from the lower end of the absorption tower 13 is decompressed by a predetermined pressure by the pressure reducing valve 23 and the flash drum 24. As a result, only non-acidic gases such as H 2 , CH 4 , CO, O 2 , and N 2 contained in the absorbing liquid are diffused and separated from the absorbing liquid containing acidic gas. The dissipated non-acid gas is discharged from the upper end of the flash drum 24, further pressurized by the auxiliary compressor 27, and returned to the absorption tower 13 again. The absorbing liquid containing acid gas discharged from the lower end of the flash drum 24 is heated by the regenerated absorbing liquid in the heat exchanger 26, then expanded and depressurized by the expansion turbine 14, and further heated to a predetermined temperature by the heater 28. And supplied to the upper part of the regeneration tower 16. That is, the absorption liquid heated by the heat exchanger 26 is maintained at a temperature equal to or higher than the temperature in the absorption tower 13 by the expansion turbine 14 and the heater 28 and higher than the pressure in the absorption tower 13. It is supplied to the upper part of the regeneration tower 16 while maintaining a low pressure. When the absorption liquid is set to such a pressure and temperature, the acid gas contained in the absorption liquid is dissipated in the second communication pipe 22 or the regeneration tower 16, so that the acid gas is separated from the absorption liquid and the regeneration tower 16 Recovered from the top. On the other hand, the regenerated absorption liquid that does not contain the acid gas discharged from the lower end of the regeneration tower 16 is conveyed by the circulation pump 17 and cooled to a predetermined temperature by the heat exchanger 26 and the after cooler 29, and then absorbed. It is supplied to the upper part of the tower 13 and reused. When the acidic gas is CO 2 gas, the recovered CO 2 gas is pressurized to liquid CO 2 , and then a part or all of the liquid CO 2 is adiabatically expanded by opening the pressure reducing valve. Dry ice (solid CO 2 ) that can be sold as a product can be manufactured.

<第2の実施の形態>
図2は第2の実施の形態を示す。図2において図1と同一符号は同一部品を示す。
この実施の形態では、第1の実施の形態の再生塔に代えて分離再生器46が設けられ、第1の実施の形態の膨張タービン及び加熱器に代えて冷却器47が設けられる。また第2戻り管32には第1の実施の形態のアフタ冷却器は設けられない。圧縮機12及びプリ冷却器19により、混合ガスが所定の温度に加熱又は冷却されかつ所定の圧力に昇圧された状態で吸収塔13の下部に供給される。具体的には、吸収塔13に供給される混合ガスの温度、即ち吸収塔13内の温度は0〜100℃、好ましくは30〜50℃に設定され、吸収塔13に供給される混合ガスの圧力、即ち吸収塔13内の圧力は4〜25MPa、好ましくは6〜10MPaに設定される。ここで、吸収塔13内の温度を0〜100℃の範囲に限定したのは、0℃未満では冷凍機が必要になり、100℃を越えると昇温に必要なエネルギが増大し酸性ガスの吸収液42による吸収量が少なくなるからである。また吸収塔13内の圧力を4〜25MPaの範囲に限定したのは、4MPa未満では酸性ガスの吸収液42による吸収量が少なく、25MPaを越えると耐圧性の高い吸収塔13が必要になり設備費が増大するからである。
<Second Embodiment>
FIG. 2 shows a second embodiment. 2, the same reference numerals as those in FIG. 1 denote the same components.
In this embodiment, a separation regenerator 46 is provided instead of the regeneration tower of the first embodiment, and a cooler 47 is provided instead of the expansion turbine and the heater of the first embodiment. The second return pipe 32 is not provided with the aftercooler of the first embodiment. The mixed gas is heated or cooled to a predetermined temperature by the compressor 12 and the precooler 19 and is supplied to the lower portion of the absorption tower 13 in a state where the pressure is increased to a predetermined pressure. Specifically, the temperature of the mixed gas supplied to the absorption tower 13, that is, the temperature in the absorption tower 13 is set to 0 to 100 ° C., preferably 30 to 50 ° C., and the mixed gas supplied to the absorption tower 13 The pressure, that is, the pressure in the absorption tower 13 is set to 4 to 25 MPa, preferably 6 to 10 MPa. Here, the temperature in the absorption tower 13 is limited to the range of 0 to 100 ° C. The reason is that if the temperature is lower than 0 ° C., a refrigerator is required. This is because the amount absorbed by the absorbent 42 is reduced. Further, the pressure in the absorption tower 13 is limited to the range of 4 to 25 MPa. If the pressure is less than 4 MPa, the absorption amount of the acidic gas by the absorbing liquid 42 is small. This is because the cost increases.

一方、冷却器47により、酸性ガスを含む吸収液42が吸収塔13内の圧力とほぼ同一に保ちかつ吸収塔13内の温度より低い温度に冷却した状態で分離再生器46に供給される。具体的には、分離再生器46に供給される吸収液42の圧力、即ち分離再生器46内の圧力は吸収塔13内の圧力と同一の圧力、吸収塔13内の圧力より僅かに高い圧力、或いは吸収塔13内の圧力より僅かに低い圧力の4〜25MPa、好ましくは6〜10MPaに設定され、分離再生器46に供給される吸収液42の温度、即ち分離再生器46内の温度は吸収塔13内の温度より低い−30〜30℃、好ましくは0〜20℃に設定される。ここで、分離再生器46内の圧力を吸収塔13内の圧力と同一の圧力、吸収塔13内の圧力より僅かに高い圧力、或いは吸収塔13内の圧力より僅かに低い圧力の4〜25MPaの範囲に限定したのは、酸性ガスを液化するためと吸収液42の循環エネルギの消費を低減するためである。また分離再生器46内の温度を−30〜30℃の範囲に限定したのは、−30℃未満では冷却エネルギが増大し、30℃を越えるとCO2などの酸性ガスが液化し難くなるからである。なお、分離再生器46内の圧力を吸収塔13内の圧力より高くする場合、その圧力差は上記温度低下により酸性ガスを液化できる0.1〜3MPaの範囲内であることが好ましく、分離再生器46内の圧力を吸収塔13内の圧力より低くする場合、その圧力差は上記温度低下により酸性ガスを液化できる0.1〜3MPaの範囲内であることが好ましい。 On the other hand, the cooler 47 supplies the absorption liquid 42 containing the acidic gas to the separation / regenerator 46 in a state where it is kept substantially the same as the pressure in the absorption tower 13 and cooled to a temperature lower than the temperature in the absorption tower 13. Specifically, the pressure of the absorbing liquid 42 supplied to the separation regenerator 46, that is, the pressure in the separation regenerator 46 is the same pressure as the pressure in the absorption tower 13, and a pressure slightly higher than the pressure in the absorption tower 13. Alternatively, the pressure is set to 4 to 25 MPa, preferably 6 to 10 MPa, which is slightly lower than the pressure in the absorption tower 13, and the temperature of the absorbing liquid 42 supplied to the separation regenerator 46, that is, the temperature in the separation regenerator 46 is It is set to −30 to 30 ° C., preferably 0 to 20 ° C., lower than the temperature in the absorption tower 13. Here, the pressure in the separation regenerator 46 is the same pressure as the pressure in the absorption tower 13, a pressure slightly higher than the pressure in the absorption tower 13, or a pressure slightly lower than the pressure in the absorption tower 13. The reason for limiting to this range is to liquefy the acidic gas and to reduce the consumption of circulating energy of the absorbing liquid 42. The reason why the temperature in the separation regenerator 46 is limited to the range of −30 to 30 ° C. is that the cooling energy increases when the temperature is lower than −30 ° C., and the acidic gas such as CO 2 becomes difficult to be liquefied when the temperature exceeds 30 ° C. It is. In addition, when making the pressure in the separation regenerator 46 higher than the pressure in the absorption tower 13, the pressure difference is preferably within a range of 0.1 to 3 MPa where the acidic gas can be liquefied by the temperature decrease. When making the pressure in the vessel 46 lower than the pressure in the absorption tower 13, the pressure difference is preferably within a range of 0.1 to 3 MPa which can liquefy the acidic gas due to the temperature decrease.

このように分離再生器46内の圧力及び温度を調整することにより、分離再生器46内で液体酸性ガス41と吸収液42の相互不溶解性及び比重差により吸収液42から液体酸性ガス41が分離される。具体的には、液体酸性ガスが液体CO2であり、分離再生器46内の圧力が8MPaである場合、液体CO2が吸収液に対して不溶性となるとともに、吸収液の比重が1.2〜1.6であり、液体CO2の比重が0.8であるため、液体CO2及び吸収液の相互不溶解性及び比重差により吸収液が沈み液体CO2が浮いて分離される。また熱交換器26は、フラッシュドラム24の下端から排出された酸性ガスを含む低温の吸収液から、分離再生器46の下端から排出された更に低温の吸収液42が熱を奪うように構成される。即ち、熱交換器26は、上記フラッシュドラム24の下端から排出された酸性ガスを含む吸収液42を更に冷却し、かつ分離再生器46の下端から排出された更に低温の吸収液42を加熱するように構成される。更に冷却器47と分離再生器46との間の第2連通管22には遠心分離器48が設けられる。なお、遠心分離器ではなく、撹拌機を設けてもよい。上記以外は第1の実施の形態と同一に構成される。 By adjusting the pressure and temperature in the separation / regenerator 46 in this way, the liquid acid gas 41 is absorbed from the absorbent 42 by the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the absorbent 42 in the separation / regenerator 46. To be separated. Specifically, when the liquid acidic gas is liquid CO 2 and the pressure in the separation regenerator 46 is 8 MPa, the liquid CO 2 becomes insoluble in the absorbent and the specific gravity of the absorbent is 1.2. Since the specific gravity of liquid CO 2 is 0.8, the absorption liquid sinks due to the mutual insolubility and specific gravity difference between the liquid CO 2 and the absorption liquid, and the liquid CO 2 floats and is separated. In addition, the heat exchanger 26 is configured such that the cooler absorbing liquid 42 discharged from the lower end of the separation regenerator 46 takes heat away from the lower temperature absorbing liquid containing the acidic gas discharged from the lower end of the flash drum 24. The That is, the heat exchanger 26 further cools the absorbing liquid 42 containing the acidic gas discharged from the lower end of the flash drum 24 and heats the lower-temperature absorbing liquid 42 discharged from the lower end of the separation / regenerator 46. Configured as follows. Further, a centrifuge 48 is provided in the second communication pipe 22 between the cooler 47 and the separation regenerator 46. Note that a stirrer may be provided instead of the centrifuge. The configuration other than the above is the same as that of the first embodiment.

このように構成された精製装置を用いてガスを精製する方法を説明する。
吸収塔13内における動作は第1の実施の形態と略同様であるので、繰返しの説明を省略する。フラッシュドラム24の下端から排出された酸性ガスを含む吸収液は熱交換器26で再生吸収液により冷却された後に、冷却器47で更に冷却される。このとき吸収液中の酸性ガスが液化して吸収液42中に分散する。この液体酸性ガス41を含む吸収液42は遠心分離器48で液体酸性ガス41と吸収液42との比重差により液体酸性ガス41と吸収液42にほぼ分離された後に、分離再生器46に供給される。通常、吸収液42より液体酸性ガス41の方が比重が小さいので、液体酸性ガス41が遠心分離器48の回転中心から離れる方向に移動し、吸収液42が遠心分離器48の回転中心に近付く方向に移動する。即ち、吸収液42は、熱交換器26及び冷却器47で吸収塔13内の圧力とほぼ同一に保たれかつ吸収塔13内の温度より低くされることにより吸収液42中のガスが液化され、更に遠心分離器48で液体酸性ガス41と吸収液42にほぼ分離された状態で、分離再生器46に供給される。液体酸性ガス41と吸収液42にほぼ分離された状態で分離再生器46に供給された液体酸性ガス41を含む吸収液42は、液体酸性ガス41と吸収液42との相互不溶解性及び比重差により液体酸性ガス41と吸収液42に速やかに分相される。通常、吸収液42より液体酸性ガス41の方が比重が小さいので、液体酸性ガス41が速やかに浮いて上相に移行し、吸収液42が速やかに沈んで下相に移行する。これにより液体酸性ガス41が吸収液42から分離されて分離再生器46の上部から比較的短時間に効率良く回収される。また分離再生器46の下端から排出された酸性ガスを含まない再生された吸収液42は、循環ポンプ17により搬送され、熱交換器26で所定の温度に加熱された後に、吸収塔13の上部に供給されて再利用される。なお、液体酸性ガス41が液体CO2である場合、回収された液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体CO2)を製造できる。
A method for purifying a gas using the purification apparatus configured as described above will be described.
Since the operation in the absorption tower 13 is substantially the same as that of the first embodiment, repeated description is omitted. The absorption liquid containing the acid gas discharged from the lower end of the flash drum 24 is cooled by the regenerated absorption liquid in the heat exchanger 26 and further cooled by the cooler 47. At this time, the acidic gas in the absorption liquid is liquefied and dispersed in the absorption liquid 42. The absorbing liquid 42 containing the liquid acidic gas 41 is substantially separated into the liquid acidic gas 41 and the absorbing liquid 42 by the centrifugal separator 48 due to the specific gravity difference between the liquid acidic gas 41 and the absorbing liquid 42, and then supplied to the separation regenerator 46. Is done. Normally, the liquid acid gas 41 has a smaller specific gravity than the absorbing liquid 42, so that the liquid acid gas 41 moves away from the rotation center of the centrifuge 48, and the absorbing liquid 42 approaches the rotation center of the centrifuge 48. Move in the direction. That is, the absorption liquid 42 is kept almost the same as the pressure in the absorption tower 13 by the heat exchanger 26 and the cooler 47 and is made lower than the temperature in the absorption tower 13, whereby the gas in the absorption liquid 42 is liquefied. Further, it is supplied to the separation regenerator 46 in a state of being substantially separated into the liquid acidic gas 41 and the absorbing liquid 42 by the centrifugal separator 48. The absorbing liquid 42 containing the liquid acidic gas 41 supplied to the separation regenerator 46 in a state of being substantially separated into the liquid acidic gas 41 and the absorbing liquid 42 is the mutual insolubility and specific gravity of the liquid acidic gas 41 and the absorbing liquid 42. Due to the difference, the liquid acid gas 41 and the absorbing liquid 42 are quickly phase-separated. Usually, since the liquid acid gas 41 has a lower specific gravity than the absorbing liquid 42, the liquid acid gas 41 quickly floats and shifts to the upper phase, and the absorbing liquid 42 quickly sinks and shifts to the lower phase. As a result, the liquid acidic gas 41 is separated from the absorbing liquid 42 and efficiently recovered from the upper part of the separation regenerator 46 in a relatively short time. Further, the regenerated absorption liquid 42 that does not contain the acid gas discharged from the lower end of the separation regenerator 46 is conveyed by the circulation pump 17 and heated to a predetermined temperature by the heat exchanger 26, and then the upper part of the absorption tower 13. To be reused. When the liquid acidic gas 41 is liquid CO 2 , dry ice (solid CO 2 ) that can be sold as a product by adiabatically expanding a part or all of the recovered liquid CO 2 by opening the pressure reducing valve. Can be manufactured.

<第3の実施の形態>
図3は第3の実施の形態を示す。図3において図2と同一符号は同一部品を示す。
この実施の形態では、第2の実施の形態の減圧弁、フラッシュドラム、補助圧縮機及び熱交換器が用いられず、吸収塔13、冷却器47、遠心分離器48及び分離再生器46がこの順に上方から下方に向って鉛直方向に並んだ状態で一体的に設けられる。上記以外は第2の実施の形態と同一に構成される。
このように構成された精製装置では、吸収塔13と冷却器47と遠心分離器48と分離再生器46を一体的に設けたので、装置を小型化できることを除いて、動作は第2の実施の形態と略同様であるので、繰返しの説明を省略する。なお、液体酸性ガス41が液体CO2である場合、回収された液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体CO2)を製造できる。
<Third Embodiment>
FIG. 3 shows a third embodiment. 3, the same reference numerals as those in FIG. 2 denote the same components.
In this embodiment, the pressure reducing valve, the flash drum, the auxiliary compressor, and the heat exchanger of the second embodiment are not used, and the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are not used. They are integrally provided in a state of being arranged in the vertical direction from the top to the bottom in order. The configuration other than the above is the same as that of the second embodiment.
In the purification apparatus configured as described above, the absorption tower 13, the cooler 47, the centrifuge 48, and the separation regenerator 46 are integrally provided. Therefore, the operation is the second implementation except that the apparatus can be reduced in size. Since it is substantially the same as the embodiment of FIG. When the liquid acidic gas 41 is liquid CO 2 , dry ice (solid CO 2 ) that can be sold as a product by adiabatically expanding a part or all of the recovered liquid CO 2 by opening the pressure reducing valve. Can be manufactured.

<第4の実施の形態>
図4は第4の実施の形態を示す。図4において図1と同一符号は同一部品を示す。
この実施の形態では、多孔質膜にイオン性液体を主成分とする吸収液を含浸して液体膜51が形成され、この液体膜51が膜分離器52内に張設されて膜分離器52が第1室52aと第2室52bとに区画され、第1室52aが第2室52bより高圧に設定され、更に第1室52aに酸性ガス及び非酸性ガスを含む混合ガスが導入されるように構成される。またガス供給管18には圧縮機12及びプリ冷却器19が設けられる。
このように構成された精製装置を用いてガスを精製する方法を説明する。
先ず混合ガスは圧縮機12及びプリ冷却器19により所定の圧力に昇圧された状態で膜分離器52の第1室52aに導入される。このとき非酸性ガスは第1室52aに残留し、かつ酸性ガスは液体膜51を透過して第2室52bに流入するので、混合ガスは酸性ガス及び非酸性ガスに分離される。
<Fourth embodiment>
FIG. 4 shows a fourth embodiment. 4, the same reference numerals as those in FIG. 1 denote the same components.
In this embodiment, a porous membrane is impregnated with an absorbing liquid containing an ionic liquid as a main component to form a liquid membrane 51, and the liquid membrane 51 is stretched in the membrane separator 52 to form a membrane separator 52. Is divided into a first chamber 52a and a second chamber 52b, the first chamber 52a is set at a higher pressure than the second chamber 52b, and a mixed gas containing acidic gas and non-acidic gas is further introduced into the first chamber 52a. Configured as follows. The gas supply pipe 18 is provided with a compressor 12 and a precooler 19.
A method for purifying a gas using the purification apparatus configured as described above will be described.
First, the mixed gas is introduced into the first chamber 52 a of the membrane separator 52 in a state where the pressure is increased to a predetermined pressure by the compressor 12 and the precooler 19. At this time, the non-acidic gas remains in the first chamber 52a, and the acidic gas passes through the liquid film 51 and flows into the second chamber 52b, so that the mixed gas is separated into acidic gas and non-acidic gas.

<第5の実施の形態>
図5は第5の実施の形態を示す。図5において図2と同一符号は同一部品を示す。
この実施の形態では、イオン性液体を主成分とする吸収液42が磁性を有し、分離再生器46の下部に磁石61が設けられる。磁性を有する吸収液42としては、アニオン中にFe元素を含む低温溶融塩又は常温溶融塩からなるイオン性液体が挙げられる。また磁石61は分離再生器46の下部内面に設けることが好ましく、分離再生器46は磁石61の影響を受けないように非磁性材料で形成されることが好ましい。上記以外は第2の実施の形態と同一に構成される。
このように構成された精製装置を用いてガスを精製する方法を説明する。
吸収塔13内における動作は第1の実施の形態と略同様であるので、繰返しの説明を省略する。また液体酸性ガス41を含む吸収液42が吸収塔13から分離再生器46に供給されるまでの動作は第2の実施の形態と略同様であるので、繰返しの説明を省略する。吸収塔13内の圧力とほぼ同一の圧力に維持しかつ吸収塔13内の温度より低い温度に維持した分離再生器46に、液体酸性ガス41を含む吸収液42が供給されると、吸収液42より液体酸性ガス41の方が比重が小さいので、液体酸性ガス41と吸収液42の相互不溶解性及び比重差と、磁性を有する吸収液42の磁石61による吸引力とにより、吸収液42と液体酸性ガス41とに速やかに分離される。即ち、液体酸性ガス41が速やかに上相に移行し、吸収液42が速やかに下相に移行する。この結果、液体酸性ガス41を分離再生器46から速やかに回収できるとともに、液体酸性ガス41が取除かれて再生された吸収液42が循環ポンプ17により吸収塔13の上部に供給されて速やかに再利用できる。
<Fifth embodiment>
FIG. 5 shows a fifth embodiment. 5, the same reference numerals as those in FIG. 2 denote the same components.
In this embodiment, the absorbing liquid 42 mainly composed of an ionic liquid has magnetism, and a magnet 61 is provided below the separation / regenerator 46. Examples of the absorbing liquid 42 having magnetism include an ionic liquid composed of a low-temperature molten salt or a normal-temperature molten salt containing an Fe element in an anion. The magnet 61 is preferably provided on the lower inner surface of the separation regenerator 46, and the separation regenerator 46 is preferably formed of a nonmagnetic material so as not to be affected by the magnet 61. The configuration other than the above is the same as that of the second embodiment.
A method for purifying a gas using the purification apparatus configured as described above will be described.
Since the operation in the absorption tower 13 is substantially the same as that of the first embodiment, repeated description is omitted. Further, the operation until the absorbing liquid 42 containing the liquid acidic gas 41 is supplied from the absorption tower 13 to the separation regenerator 46 is substantially the same as that of the second embodiment, and thus the repeated description is omitted. When the absorption liquid 42 containing the liquid acidic gas 41 is supplied to the separation regenerator 46 that is maintained at a pressure that is substantially the same as the pressure in the absorption tower 13 and that is lower than the temperature in the absorption tower 13, the absorption liquid Since the liquid acid gas 41 has a lower specific gravity than the liquid acid gas 42, the absorption liquid 42 is caused by the mutual insolubility and specific gravity difference between the liquid acid gas 41 and the absorption liquid 42 and the attractive force of the magnet 61 of the magnetic absorption liquid 42. And liquid acidic gas 41 are quickly separated. That is, the liquid acidic gas 41 quickly moves to the upper phase, and the absorbing liquid 42 quickly moves to the lower phase. As a result, the liquid acid gas 41 can be quickly recovered from the separation regenerator 46, and the absorption liquid 42 regenerated by removing the liquid acid gas 41 is supplied to the upper portion of the absorption tower 13 by the circulation pump 17 and quickly. Can be reused.

<第6の実施の形態>
図6は第6の実施の形態を示す。図6において図2と同一符号は同一部品を示す。
この実施の形態では、添加剤71を添加した吸収液42が貯留された吸収液貯留槽72が設けられる。添加剤71としては、極性溶剤、即ち、水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤が挙げられる。具体的には、アルコール類としては、メタノール、エタノール等が例示され、エーテル類としては、ジメチルエーテル、エチルエーテル等が例示され、フェノール類としては、フェノール等が例示される。これらの添加剤71は吸収液42の酸性ガスを吸収する能力を殆ど妨げない。また吸収液貯留槽72内の吸収液42には、吸収液100重量%に対して添加剤が1〜50重量%、好ましくは5〜10重量%添加される。ここで添加剤を1〜50重量%の範囲に限定したのは、1重量%未満では吸収液42の粘性を低減する効果があまり得られず、50重量%を越えると吸収液42による酸性ガスの吸収性能に悪影響を及ぼすからである。吸収液貯留槽72には、添加剤71を吸収液42に均一に分散させるために撹拌機73が設けられる。また吸収液貯留槽72の下部は吸収液供給管74により吸収塔13の上部に接続される。更に吸収液供給管74には、吸収液貯留槽72内の添加剤含有吸収液75を吸収塔13の上部に供給する吸収液供給ポンプ76と、吸収液供給管74を開閉する開閉弁77とが設けられる。上記以外は第2の実施の形態と同一に構成される。
<Sixth Embodiment>
FIG. 6 shows a sixth embodiment. 6, the same reference numerals as those in FIG. 2 denote the same components.
In this embodiment, an absorption liquid storage tank 72 in which the absorption liquid 42 to which the additive 71 is added is stored. Examples of the additive 71 include polar solvents, that is, one or more additives selected from the group consisting of water, alcohols, ethers, and phenols. Specifically, examples of alcohols include methanol and ethanol, examples of ethers include dimethyl ether and ethyl ether, and examples of phenols include phenol and the like. These additives 71 hardly interfere with the ability of the absorbing liquid 42 to absorb the acidic gas. Moreover, 1 to 50 weight% of an additive is added to the absorption liquid 42 in the absorption liquid storage tank 72 with respect to 100 weight% of absorption liquid, Preferably 5 to 10 weight% is added. Here, the additive is limited to the range of 1 to 50% by weight. If the amount is less than 1% by weight, the effect of reducing the viscosity of the absorbing liquid 42 cannot be obtained so much. This is because it has an adverse effect on the absorption performance. In the absorption liquid storage tank 72, a stirrer 73 is provided in order to disperse the additive 71 uniformly in the absorption liquid 42. The lower part of the absorption liquid storage tank 72 is connected to the upper part of the absorption tower 13 by an absorption liquid supply pipe 74. Further, the absorption liquid supply pipe 74 includes an absorption liquid supply pump 76 that supplies the additive-containing absorption liquid 75 in the absorption liquid storage tank 72 to the upper part of the absorption tower 13, and an on-off valve 77 that opens and closes the absorption liquid supply pipe 74. Is provided. The configuration other than the above is the same as that of the second embodiment.

このように構成された精製装置を用いてガスを精製する方法を説明する。
先ず吸収液貯留槽72内で吸収液42に添加剤71を添加して攪拌機73により混合すると、吸収液42に添加剤71が分散されて、吸収液42の粘性が低下する。次に開閉弁77を開いて添加剤含有吸収液75を吸収液供給ポンプ76により吸収塔13の上部に所定量だけ供給した後に、開閉弁77を閉じる。更に循環ポンプ17により、第2の実施の形態の吸収液に代えて、添加剤含有吸収液75を吸収塔13と分離再生器46との間を循環させる。この結果、添加剤含有吸収液75が酸性ガスを吸収する能力を殆ど低下させずに吸収塔13で酸性ガスを吸収することができる。また粘度の低い添加剤含有吸収液75が吸収塔13と分離再生器46との間をスムーズに循環するので、吸収液の取扱いが容易になる。なお、添加剤71として水を用いる場合には、吸収塔13に添加剤71としての水が循環されるため、吸収塔13に供給する前に、CO2ガスを含む酸性ガスを除湿器11で除湿しなくてもよい。但し、除湿器11を設けないと、吸収塔13に循環される吸収液42中の水の量が上記添加剤の添加量の範囲を越えて増大する場合には、除湿器11を設けた方がよい。これにより吸収液42によるCO2の吸収能力の著しい低下を防止できる。上記以外の動作は第2の実施の形態の動作と略同様であるので、繰返しの説明を省略する。
A method for purifying a gas using the purification apparatus configured as described above will be described.
First, when the additive 71 is added to the absorbent 42 in the absorbent reservoir 72 and mixed by the stirrer 73, the additive 71 is dispersed in the absorbent 42 and the viscosity of the absorbent 42 decreases. Next, the opening / closing valve 77 is opened, and the additive-containing absorbing liquid 75 is supplied to the upper portion of the absorption tower 13 by the absorbing liquid supply pump 76, and then the opening / closing valve 77 is closed. Further, the additive-containing absorption liquid 75 is circulated between the absorption tower 13 and the separation regenerator 46 by the circulation pump 17 instead of the absorption liquid of the second embodiment. As a result, it is possible to absorb the acidic gas in the absorption tower 13 without substantially reducing the ability of the additive-containing absorbent 75 to absorb the acidic gas. Further, since the additive-containing absorbing liquid 75 having a low viscosity circulates smoothly between the absorption tower 13 and the separation regenerator 46, the handling of the absorbing liquid becomes easy. When water is used as the additive 71, water as the additive 71 is circulated in the absorption tower 13. Therefore, before supplying the absorption tower 13, acidic gas containing CO 2 gas is removed by the dehumidifier 11. It is not necessary to dehumidify. However, if the dehumidifier 11 is not provided, if the amount of water in the absorbent 42 circulated to the absorption tower 13 increases beyond the range of the amount of additive added, the dehumidifier 11 is provided. Is good. Thereby preventing a significant reduction in absorption capacity of the CO 2 by the absorbing liquid 42. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.

<第7の実施の形態>
図7は第7の実施の形態を示す。図7において図6と同一符号は同一部品を示す。
この実施の形態では、極性溶剤、即ち、水、アルコール類及びエーテル類からなる群より選ばれた1種又は2種以上の添加剤71が貯留された添加剤貯留槽81が分離再生器46の上部に接続され、分離再生器46に圧力調整手段82が設けられ、分離再生器82の下部に蒸留分離器83が接続され、蒸留分離器83の下面に加熱手段84が設けられる。また蒸留分離器83の下部は第2戻り管32により循環ポンプ17の吸入口に接続される。圧力調整手段82により分離再生器46内の圧力が4〜25MPa、好ましくは6〜10MPaに調整される。また加熱手段84により蒸留分離器83内の温度が50〜250℃、好ましくは100〜150℃に調整される。ここで、圧力調整手段82により調整される分離再生器46内の圧力を4〜25MPaの範囲に限定したのは、4MPa未満では気相が生成されるおそれがあり、25MPaを越えると設備コストが高くなり液体酸性ガス41の密度が吸収液42の密度に近づいてしまうからである。また加熱手段84により調整される蒸留分離器83内の温度を50〜250℃の範囲に限定したのは、50℃未満では添加剤71の完全分離が難しく、250℃を越えると多くのエネルギが必要となるからである。更に遠心分離器48と分離再生器46との間の第2連通管22には逆止弁86が設けられる。この逆止弁86は、添加剤含有吸収液75の遠心分離器48から分離再生器46への流れを許容し、添加剤含有吸収液75の分離再生器46から遠心分離器48への流れを阻止するように構成される。なお、第6の実施の形態のフェノール類がこの第7の実施の形態の添加剤から除かれているのは、フェノール類の沸点が高く、蒸留操作で分離する場合、かなりの高温(250℃程度)に加熱しないと完全に分離できないからである。上記以外は第6の実施の形態と同一に構成される。
このように構成された精製装置を用いてガスを精製する方法を説明する。
冷却器47により分離再生器46内の温度を0〜30℃の範囲に調整し、圧力力調整手段82により分離再生器46内の圧力を4〜25MPaの範囲に調整した状態で、液体酸性ガス41を含む吸収液42とともに添加剤71を分離再生器46に供給すると、液体酸性ガス41と添加剤含有吸収液75の相互不溶解性及び比重差と、吸収液42に対して相互溶解性を有しかつ液体酸性ガス41に対して相互不溶解性を有する添加剤71の添加による吸収液42中に分散する液体酸性ガス41の添加剤71への置換とにより、分離再生器46の上相に液体酸性ガス41が移行しかつ分離再生器46の下相に添加剤含有吸収液75が移行して、液体酸性ガス41と添加剤含有吸収液75とが速やかに分離される。次に加熱手段84により蒸留分離器83内を50〜250℃、好ましくは100〜150℃の温度に加熱した状態で、分離再生器46の下部から排出された添加剤含有吸収液75を蒸留分離器83に供給すると、添加剤含有吸収液75中の添加剤71が吸収液42から蒸留分離される。この結果、添加剤71と吸収液42を分離した状態で回収できるので、添加剤71の除去された吸収液42が吸収塔13に供給され、吸収液42が除去された添加剤71が添加剤貯留槽81に供給されて、吸収液42及び添加剤71をそれぞれ直ぐに再利用できるとともに、吸収液42が酸性ガスを吸収する能力を全く低下させずに吸収塔13で酸性ガスを吸収することができる。上記以外の動作は第2の実施の形態の動作と略同様であるので、繰返しの説明を省略する。
<Seventh embodiment>
FIG. 7 shows a seventh embodiment. 7, the same reference numerals as those in FIG. 6 denote the same components.
In this embodiment, an additive storage tank 81 in which one or two or more additives 71 selected from the group consisting of polar solvents, that is, water, alcohols and ethers, is stored in the separation regenerator 46. Connected to the upper part, the pressure adjusting means 82 is provided in the separation regenerator 46, the distillation separator 83 is connected to the lower part of the separation regenerator 82, and the heating means 84 is provided on the lower surface of the distillation separator 83. The lower part of the distillation separator 83 is connected to the suction port of the circulation pump 17 by the second return pipe 32. The pressure in the separation regenerator 46 is adjusted to 4 to 25 MPa, preferably 6 to 10 MPa by the pressure adjusting means 82. The temperature in the distillation separator 83 is adjusted to 50 to 250 ° C., preferably 100 to 150 ° C. by the heating means 84. Here, the reason why the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa is that a gas phase may be generated if the pressure is less than 4 MPa. This is because the density of the liquid acidic gas 41 becomes higher and the density of the absorbing liquid 42 approaches. Further, the temperature in the distillation separator 83 adjusted by the heating means 84 is limited to the range of 50 to 250 ° C. The complete separation of the additive 71 is difficult when the temperature is less than 50 ° C., and much energy is obtained when the temperature exceeds 250 ° C. It is necessary. Further, a check valve 86 is provided in the second communication pipe 22 between the centrifuge 48 and the separation regenerator 46. The check valve 86 allows the flow of the additive-containing absorption liquid 75 from the centrifuge 48 to the separation regenerator 46 and allows the flow of the additive-containing absorption liquid 75 from the separation regenerator 46 to the centrifuge 48. Configured to block. The phenols of the sixth embodiment are excluded from the additive of the seventh embodiment because the boiling points of the phenols are high, and when they are separated by distillation operation, they are considerably heated (250 ° C. This is because complete separation cannot be achieved without heating. The configuration other than the above is the same as that of the sixth embodiment.
A method for purifying a gas using the purification apparatus configured as described above will be described.
Liquid acid gas in a state where the temperature in the separation regenerator 46 is adjusted to a range of 0 to 30 ° C. by the cooler 47 and the pressure in the separation regenerator 46 is adjusted to a range of 4 to 25 MPa by the pressure force adjusting means 82. When the additive 71 is supplied to the separator / regenerator 46 together with the absorbent 42 containing 41, the mutual insolubility and specific gravity difference between the liquid acidic gas 41 and the additive-containing absorbent 75 and the mutual solubility with respect to the absorbent 42 are obtained. The upper phase of the separator / regenerator 46 is obtained by replacing the liquid acid gas 41 dispersed in the absorption liquid 42 with the additive 71 by the addition of the additive 71 having the mutual insolubility with the liquid acid gas 41. Thus, the liquid acidic gas 41 moves to the lower phase and the additive-containing absorbing liquid 75 moves to the lower phase of the separation regenerator 46, so that the liquid acidic gas 41 and the additive-containing absorbing liquid 75 are quickly separated. Next, the additive-containing absorbing liquid 75 discharged from the lower part of the separation / regenerator 46 is distilled and separated while the distillation separator 83 is heated to a temperature of 50 to 250 ° C., preferably 100 to 150 ° C. by the heating means 84. When supplied to the vessel 83, the additive 71 in the additive-containing absorbent 75 is distilled and separated from the absorbent 42. As a result, since the additive 71 and the absorbing liquid 42 can be recovered in a separated state, the absorbing liquid 42 from which the additive 71 has been removed is supplied to the absorption tower 13, and the additive 71 from which the absorbing liquid 42 has been removed is the additive. The absorption liquid 42 and the additive 71 can be reused immediately after being supplied to the storage tank 81, and the absorption tower 13 can absorb the acid gas without reducing the ability of the absorption liquid 42 to absorb the acid gas at all. it can. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.

<第8の実施の形態>
図8は第8の実施の形態を示す。図8において図7と同一符号は同一部品を示す。
この実施の形態では、酸性ガスがCO2ガスであり、分離再生器46内の圧力を4〜25MPa、好ましくは6〜10MPaに保つ圧力調整手段82が分離再生器46に設けられ、水が貯留された水貯留槽91が分離再生器46の下部に接続される。また分離再生器46には固液分離器92が接続され、固液分離器92の上部にはサブ分離再生器93が接続される。サブ分離再生器93の下部は第2戻り管32により循環ポンプ17の吸入口に接続される。ここで、圧力調整手段82により調整される分離再生器46内の圧力を4〜25MPaの範囲に限定したのは、4MPa未満ではCO2ハイドレートを生成し難く、25MPaを越えると設備コストが高くなり液体CO241の密度が吸収液42の密度に近づいてしまうからである。また固液分離器92としては、フィルタ、遠心分離器等が挙げられる。上記以外は第7の実施の形態と同一に構成される。
このように構成された精製装置を用いてガスを精製する方法を説明する。
圧力調整手段82により分離再生器46内を4〜25MPaという高圧に保った状態で、水貯留槽91から水を分離再生器46内の液体CO2を含む吸収液中に供給すると、液体CO2の一部がハイドレート化する、即ち雪状又はシャーベット状に固化する。このCO2ハイドレート及び液体CO2を含む吸収液を固液分離器92に供給すると、CO2ハイドレートと液体CO2と吸収液とに分離され、CO2ハイドレートは固液分離器92の下部から排出される。一方、固液分離器92内の液体CO2と吸収液をサブ分離再生器93に供給すると、液体CO241と吸収液42の相互不溶解性及び比重差により、液体CO241と吸収液42とに分離される。このようにCO2ハイドレートを生成させることにより、より速やかに液体CO241を吸収液42から分離することができる。上記以外の動作は第2の実施の形態の動作と略同様であるので、繰返しの説明を省略する。
<Eighth Embodiment>
FIG. 8 shows an eighth embodiment. 8, the same reference numerals as those in FIG. 7 denote the same components.
In this embodiment, the acidic gas is CO 2 gas, and the pressure adjusting means 82 for maintaining the pressure in the separation regenerator 46 at 4 to 25 MPa, preferably 6 to 10 MPa is provided in the separation regenerator 46 to store water. The water storage tank 91 is connected to the lower part of the separation regenerator 46. In addition, a solid-liquid separator 92 is connected to the separation regenerator 46, and a sub-separation regenerator 93 is connected to the upper part of the solid-liquid separator 92. The lower part of the sub separation regenerator 93 is connected to the suction port of the circulation pump 17 by the second return pipe 32. Here, the reason why the pressure in the separation regenerator 46 adjusted by the pressure adjusting means 82 is limited to the range of 4 to 25 MPa is that if it is less than 4 MPa, it is difficult to generate CO 2 hydrate, and if it exceeds 25 MPa, the equipment cost is high. This is because the density of the liquid CO 2 41 approaches the density of the absorbing liquid 42. Examples of the solid-liquid separator 92 include a filter and a centrifuge. The configuration other than the above is the same as that of the seventh embodiment.
A method for purifying a gas using the purification apparatus configured as described above will be described.
The inside of the separation regenerator 46 while maintaining the pressure of 4~25MPa by the pressure regulating means 82, is supplied from the water storage tank 91 the water absorbing solution containing liquid CO 2 in the separator regenerator 46, the liquid CO 2 A part of hydrates, that is, solidifies in the shape of snow or sherbet. When the absorption liquid containing this CO 2 hydrate and liquid CO 2 is supplied to the solid-liquid separator 92, it is separated into CO 2 hydrate, liquid CO 2 and absorption liquid, and the CO 2 hydrate is separated from the solid-liquid separator 92. It is discharged from the bottom. On the other hand, the solid-liquid is supplied and the separator liquid CO 2 in 92 absorption liquid to the sub separation regenerator 93, by mutual insolubility and the difference in specific gravity liquid CO 2 41 and the absorption liquid 42, the liquid CO 2 41 and absorbing solution 42. By generating the CO 2 hydrate in this way, the liquid CO 2 41 can be separated from the absorbing liquid 42 more quickly. Since the operation other than the above is substantially the same as the operation of the second embodiment, repeated description will be omitted.

<第9の実施の形態>
図9は第9の実施の形態を示す。
この実施の形態では、燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記第1〜第8の実施の形態のガスの精製方法又はガスの精製装置のいずれかを用いてH2及びCO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、分離回収されたCO2を断熱膨張させてドライアイス(固体CO2)を製造するように構成される。燃料としては、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料が挙げられる。この燃料の改質はスチーム改質、部分酸化、或いは超臨界水改質であり、上記改質により燃料がH2及びCOに改質される。またCO変成により大部分のCOがCO2に変成され、CO除去により僅かに残ったCOが除去される。そして残ったH2及びCO2の混合ガスは上記第1〜第8の実施の形態のガスの精製方法又はガスの精製装置のいずれかを用いて高圧H2及び気体状態又は液体状態のCO2に分離される。更に高圧H2は水素ステーションに供給され、水素燃料電池自動車の燃料となる。一方、CO2を液体状態で回収する場合、この回収された液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイスを製造できる。またCO2を気体状態で回収する場合、この回収されたCO2ガスを加圧して液体CO2にした後に、この液体CO2の一部或いは全部を減圧弁の開放にて断熱膨張させることにより、製品として販売可能なドライアイス(固体CO2)を製造できる。
<Ninth embodiment>
FIG. 9 shows a ninth embodiment.
In this embodiment, after reforming, converting CO and removing CO to form a mixed gas of H 2 and CO 2 , this mixed gas is used as the gas purification method of the first to eighth embodiments or Using one of the gas purifiers, H 2 and CO 2 are separated and recovered, and the separated and recovered H 2 is supplied to the hydrogen station, and the separated and recovered CO 2 is adiabatically expanded to dry ice ( Configured to produce solid CO 2 ). Examples of the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. The reforming of the fuel is steam reforming, partial oxidation, or supercritical water reforming, and the fuel is reformed into H 2 and CO by the reforming. Also, most of CO is converted to CO 2 by CO conversion, and a little remaining CO is removed by CO removal. The remaining mixed gas of H 2 and CO 2 is high pressure H 2 and CO 2 in a gaseous state or a liquid state using either the gas purification method or the gas purifying apparatus of the first to eighth embodiments. Separated. Further, the high pressure H 2 is supplied to the hydrogen station and becomes a fuel for a hydrogen fuel cell vehicle. On the other hand, when CO 2 is recovered in a liquid state, dry ice that can be sold as a product can be manufactured by adiabatically expanding a part or all of the recovered liquid CO 2 by opening the pressure reducing valve. When CO 2 is recovered in a gaseous state, the recovered CO 2 gas is pressurized to liquid CO 2 , and then a part or all of the liquid CO 2 is adiabatically expanded by opening the pressure reducing valve. Dry ice (solid CO 2 ) that can be sold as a product can be manufactured.

<第10の実施の形態>
図10は第10の実施の形態を示す。
この実施の形態では、燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを上記第2〜第8の実施の形態のガスの精製方法又はガスの精製装置のいずれかを用いてH2及びCO2に分離回収し、更にこの分離回収されたH2を燃料電池に供給するシステムが、燃料電池を駆動源とする車上改質型車両に搭載される。燃料としては、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料が挙げられる。この燃料の改質はスチーム改質であり、このスチーム改質により燃料がH2及びCOに改質される。またCO変成により大部分のCOがCO2に変成され、CO除去により僅かに残ったCOが除去される。そして残ったH2及びCO2の混合ガスは上記第2〜第8の実施の形態のガスの精製方法又はガスの精製装置のいずれかを用いて高圧H2及び液体CO2に分離される。更に高圧H2は燃料電池に供給されるとともに、液体CO2は一時的に車両に貯留され後でまとめて降ろされる。この結果、種々の燃料から高圧のH2を製造しながら、液体CO2を効率良く回収できる。即ち、CO2を液状で回収し、一時的に車上に貯留することにより、CO2ゼロエミッション自動車を実現できる。
<Tenth Embodiment>
FIG. 10 shows a tenth embodiment.
In this embodiment, after the fuel is reformed on the vehicle, CO conversion and CO removal are made into a mixed gas of H 2 and CO 2 , this mixed gas is used as the gas of the second to eighth embodiments. A system that separates and recovers H 2 and CO 2 using either a purification method or a gas purifier and supplies the separated and recovered H 2 to the fuel cell, Installed in quality vehicles. Examples of the fuel include one or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas. The reforming of the fuel is steam reforming, and the fuel is reformed into H 2 and CO by the steam reforming. Also, most of CO is converted to CO 2 by CO conversion, and a little remaining CO is removed by CO removal. And the remaining mixed gas of H 2 and CO 2 is separated into the high pressure H 2 and liquid CO 2 using any of the purification device purifying method or gas in the gas of the embodiment of the second to eighth. Further, the high pressure H 2 is supplied to the fuel cell, and the liquid CO 2 is temporarily stored in the vehicle and later lowered together. As a result, liquid CO 2 can be efficiently recovered while producing high-pressure H 2 from various fuels. That is, a CO 2 zero emission vehicle can be realized by collecting CO 2 in liquid form and temporarily storing it on the vehicle.

なお、水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤を第1の実施の形態に示す精製装置の吸収液に添加してもよい。この場合、吸収液の酸性ガスを吸収する能力を低下させることなく、吸収液がスムーズに流れて吸収液の取扱いが容易になるとともに、添加剤により粘性の低下した吸収液から酸性ガスをスムーズに蒸留分離できる。
また、凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加してもよい。この場合、凝集剤を貯留する凝集剤槽を分離再生器に接続する。凝集剤槽に貯留された凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加することにより、吸収液中に分散している液体酸性ガスの微小液体させることができる。このため、分離再生器の下部を循環ポンプの吸入口に接続し、分離再生器内の圧力を4〜25MPaに設定しかつ温度を0〜30℃に設定すれば、分離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離が速やかに進行するので、液体酸性ガスと凝集剤含有吸収液とに速やかに分離され、凝集剤含有吸収液が蒸留分離器に供給される。一方、分離再生器の下部を加熱手段付きの蒸留分離器に接続し、蒸留分離器の下部を循環ポンプの吸入口に接続し、更に蒸留分離器の上部を凝集剤槽に接続すれば、分離再生器内で液体酸性ガスと凝集剤含有吸収液との比重差分離が速やかに進行するとともに、蒸留分離器内で凝集剤が吸収液から蒸留分離されるので、液体酸性ガスと凝集剤と吸収液とに速やかに分離され、吸収液のみが吸収塔に供給される。
更に、上記第2、3、5〜8の実施の形態の精製方法又は精製装置を、石油精製プラントやアンモニアプラントから排出される高圧ガス源、CO2の高い鉄鋼排ガス(CO2濃度:約27%)や発酵ガス(CO2濃度:約30〜40%)等の低圧ガス源に適用して、即ち、これらのガス源を上記第2、3、5〜8の実施の形態の精製方法又は精製装置の吸収塔に供給して、液体CO2又はドライアイスを製造してもよい。上記第2、3、5〜8の実施の形態の精製方法又は精製装置は、基本的には物理吸収法を用いているため、従来(既存)の液体CO2生産プラントのランニングコストの70〜80%を占めている再生エネルギコスト、再生ガス(CO2)圧縮コスト、再生ガス(CO2)の冷凍コスト及び再生吸収液の再圧縮コスト等をほぼ不要にできる。この結果、減価償却がある程度済んだ液体CO2製造設備に対しては、このまま現有設備を運転し続けるより、上記第2、3、5〜8の実施の形態の精製方法又は精製装置を採用した設備に置き換えた方がコストの上でメリットがある。
One or more additives selected from the group consisting of water, alcohols, ethers and phenols may be added to the absorbent of the purification apparatus shown in the first embodiment. In this case, without reducing the ability of the absorbing liquid to absorb the acidic gas, the absorbing liquid flows smoothly and handling of the absorbing liquid is facilitated, and the acidic gas is smoothly removed from the absorbing liquid whose viscosity has been reduced by the additive. Can be separated by distillation.
Moreover, you may add a flocculant to the absorption liquid containing the liquid acidic gas in a separation regenerator. In this case, a flocculant tank storing the flocculant is connected to the separation regenerator. By adding the flocculant stored in the flocculant tank to the absorbing liquid containing the liquid acidic gas in the separation / regenerator, the liquid acidic gas dispersed in the absorbing liquid can be made into a fine liquid. Therefore, if the lower part of the separation regenerator is connected to the suction port of the circulation pump, the pressure in the separation regenerator is set to 4 to 25 MPa and the temperature is set to 0 to 30 ° C., the liquid acidity in the separation regenerator Since the specific gravity difference separation between the gas and the flocculant-containing absorbing liquid proceeds promptly, the gas is quickly separated into the liquid acidic gas and the flocculant-containing absorbing liquid, and the flocculant-containing absorbing liquid is supplied to the distillation separator. On the other hand, the lower part of the separation regenerator is connected to a distillation separator with a heating means, the lower part of the distillation separator is connected to the inlet of the circulation pump, and the upper part of the distillation separator is connected to the flocculant tank. The specific gravity difference between the liquid acid gas and the flocculant-containing absorbing liquid proceeds quickly in the regenerator, and the flocculant is distilled and separated from the absorbing liquid in the distillation separator. The liquid is quickly separated from the liquid, and only the absorption liquid is supplied to the absorption tower.
Furthermore, the purification method or purification apparatus according to an embodiment of the 2,3,5~8, high-pressure gas source which is discharged from oil refineries and ammonia plants, high CO 2 Steel exhaust gas (CO 2 concentration: about 27 %) And fermentation gas (CO 2 concentration: about 30 to 40%) or the like, that is, these gas sources are used in the purification methods of the second, third, and fifth to eighth embodiments or is supplied to the absorption tower purification device, the liquid CO 2 or dry ice may be produced. Since the purification method or the purification apparatus of the second, third, and fifth to eighth embodiments basically uses the physical absorption method, the running cost of the conventional (existing) liquid CO 2 production plant is 70 to 70. Renewable energy costs accounting for 80%, regenerative gas (CO 2 ) compression costs, regenerative gas (CO 2 ) refrigeration costs, recompression absorbent recompression costs, and the like can be made almost unnecessary. As a result, for the liquid CO 2 production facility that has been depreciated to some extent, the refining method or apparatus of the second, third, and fifth to eighth embodiments is employed rather than continuing to operate the existing facility. There is a merit in terms of cost to replace it with equipment.

次に本発明の実施例を詳しく説明する。
<実施例1>
イオン性液体のみからなる吸収液を用いた。具体的には、イオン性液体として1-n-デシル-3-メチルイミダゾリウム・ヘキサフルオロリン酸塩(1-n-decyl-3-methylimidazolium hexafluorophosphate)[DMIM][PF6]を用いた。この吸収液を1×10-4Paの真空中で70℃に加熱して乾燥・脱気した。脱気後の吸収液中の水分量は0.2重量%以下であった。この吸収液を実施例1とした。
<実施例2>
イオン性液体のみからなる吸収液を用いた。具体的には、イオン性液体として1-n-デシル-3-メチルイミダゾリウム・四フッ化ホウ酸塩((1-n-decyl-3-methylimidazolium tetrafluoroborate)[DMIM][BF4]を用いた。この吸収液を1×10-4Paの真空中で70℃に加熱して乾燥・脱気した。脱気後の吸収液中の水分量は0.2重量%以下であった。この吸収液を実施例2とした。
Next, embodiments of the present invention will be described in detail.
<Example 1>
An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium hexafluorophosphate [DMIM] [PF 6 ] was used as the ionic liquid. The absorbent was heated to 70 ° C. in a vacuum of 1 × 10 −4 Pa, dried and degassed. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbent was designated as Example 1.
<Example 2>
An absorbing solution consisting only of an ionic liquid was used. Specifically, 1-n-decyl-3-methylimidazolium tetrafluoroborate (DMIM) [BF 4 ] was used as the ionic liquid. This absorbing solution was dried and degassed by heating to 70 ° C. in a vacuum of 1 × 10 −4 Pa. The water content in the absorbing solution after degassing was 0.2% by weight or less. The liquid was designated as Example 2.

<実施例3>
イオン性液体のみからなる吸収液を用いた。具体的には、イオン性液体として(1-n-オクチル-3-メチルイミダゾリウム・硝酸塩(1-n-octyl-3-methylimidazolium nitrate)[OMIM][NO3]を用いた。この吸収液を1×10-4Paの真空中で70℃に加熱して乾燥・脱気した。脱気後の吸収液中の水分量は0.2重量%以下であった。この吸収液を実施例3とした。
<実施例4>
イオン性液体のみからなる吸収液を用いた。具体的には、イオン性液体としてN-エチル-ピリジニウム・四フッ化ホウ酸塩(N-ethyl-pyridinium tetrafluoroborate)[N-ETPY][PF6]を用いた。この吸収液を1×10-4Paの真空中で70℃に加熱して乾燥・脱気した。脱気後の吸収液中の水分量は0.2重量%以下であった。この吸収液を実施例4とした。
<Example 3>
An absorbing solution consisting only of an ionic liquid was used. Specifically, (1-n-octyl-3-methylimidazolium nitrate [OMIM] [NO 3 ]) was used as the ionic liquid. This was dried and degassed by heating to 70 ° C. in a vacuum of 1 × 10 −4 Pa. The water content in the absorbent after degassing was 0.2% by weight or less. It was.
<Example 4>
An absorbing solution consisting only of an ionic liquid was used. Specifically, N-ethyl-pyridinium tetrafluoroborate [N-ETPY] [PF6] was used as the ionic liquid. The absorbent was heated to 70 ° C. in a vacuum of 1 × 10 −4 Pa, dried and degassed. The water content in the absorbent after deaeration was 0.2% by weight or less. This absorbing solution was referred to as Example 4.

<試験1及び評価>
実施例1〜4の吸収液に純度99.99体積%の高純度のCO2ガス(酸性ガス)を接触させた。具体的には、高圧気液平衡測定装置を用いて、CO2ガスの吸収液への溶解度を測定した。測定温度は35℃、45℃及び55℃にそれぞれ一定にし、圧力は大気圧〜10MPaに段階的に変化させた。原料ガスであるCO2ガスの総量や吸収されなかったCO2ガスの量から、CO2ガスの吸収液への溶解度をモル分率で算出し、その結果を図11〜図13に示す。
吸収液に溶け込んだCO2を減圧操作によって回収することにより、回収されたCO2ガス中には吸収液は検出されず、純粋なCO2ガスであることを確認できた。また図11〜図13から明らかなように、CO2ガスの吸収液への溶解度は、圧力が上昇するに従って増大することが分かった。
<Test 1 and evaluation>
The absorption liquids of Examples 1 to 4 were brought into contact with high purity CO 2 gas (acid gas) having a purity of 99.99% by volume. Specifically, the solubility of the CO 2 gas in the absorbing solution was measured using a high-pressure gas-liquid equilibrium measuring device. The measurement temperature was kept constant at 35 ° C., 45 ° C. and 55 ° C., and the pressure was changed stepwise from atmospheric pressure to 10 MPa. From the amount of CO 2 gas which has not been total and the absorption of CO 2 gas as a source gas, to calculate the solubility of the absorption liquid CO 2 gas in a molar fraction, and the results are shown in FIGS. 11 to 13.
By recovered by the CO 2 that melted into the absorption liquid depressurization, the CO 2 gas recovered absorbing liquid was not detected, it was confirmed that a pure CO 2 gas. Further, as apparent from FIGS. 11 to 13, it was found that the solubility of the CO 2 gas in the absorbing liquid increases as the pressure increases.

<試験2及び評価>
実施例1の吸収液を用いて、H2ガス,CH4ガス,COガス及びN2ガスの各種ガス(非酸性ガス)との気液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上記H2ガス,CH4ガス,COガス及びN2ガスの純度は、それぞれ99.99体積%、99.97体積%、99.97体積%及び99.999体積%であった。具体的には、高圧気液平衡測定装置を用いて、上記H2ガス,CH4ガス,COガス及びN2ガスの各種ガスの吸収液への溶解度をそれぞれ測定した。測定温度は35℃に一定にし、圧力は大気圧〜10MPaに段階的に変化させた。各種ガスの量や吸収されなかった各種ガスの量から、H2ガス,CH4ガス,COガス及びN2ガスの各種ガスの吸収液への溶解度をモル分率でそれぞれ算出し、その結果を図14に示す。
吸収液に溶け込んだH2ガス,CH4ガス,COガス及びN2ガスの各種ガスを減圧操作によってそれぞれ回収することにより、回収されたH2ガス,CH4ガス,COガス及びN2ガス中には吸収液が検出されず、純粋なH2ガス,CH4ガス,COガス及びN2ガスであることを確認できた。また図14から明らかなように、吸収液にはH2ガス,CH4ガス,COガス及びN2ガスは殆ど吸収されないことが分かった。
<Test 2 and evaluation>
Using the absorption liquid of Example 1, a gas-liquid equilibrium test with various gases (non-acid gases) of H 2 gas, CH 4 gas, CO gas, and N 2 gas was performed separately for each type of gas. It was. The purity of the H 2 gas, CH 4 gas, CO gas and N 2 gas was 99.99% by volume, 99.97% by volume, 99.97% by volume and 99.999% by volume, respectively. Specifically, using a high-pressure gas-liquid equilibrium measuring device, the solubility of the various gases of H 2 gas, CH 4 gas, CO gas, and N 2 gas in the absorbing solution was measured. The measurement temperature was kept constant at 35 ° C., and the pressure was changed stepwise from atmospheric pressure to 10 MPa. From the amount of various gases and the amount of various gases that were not absorbed, the solubility of H 2 gas, CH 4 gas, CO gas, and N 2 gas in the absorbing solution was calculated in mole fractions, and the results were calculated as follows. As shown in FIG.
In the recovered H 2 gas, CH 4 gas, CO gas, and N 2 gas by recovering various gases of H 2 gas, CH 4 gas, CO gas, and N 2 gas dissolved in the absorbing solution by decompression operation, respectively. Thus, no absorption liquid was detected, and it was confirmed that it was pure H 2 gas, CH 4 gas, CO gas, and N 2 gas. Further, as is apparent from FIG. 14, it was found that the absorbing liquid hardly absorbs H 2 gas, CH 4 gas, CO gas and N 2 gas.

<試験3及び評価>
実施例1の吸収液を用いて、CO2ガス、H2Sガス及びCOSガスの各種ガス(酸性ガス)との気液平衡試験を、各種ガスの種類毎にそれぞれ別々に行った。上記CO2ガス、H2Sガス及びCOSガスの純度は全て99.9体積%以上と高純度であった。具体的には、高圧気液平衡測定装置を用いて、上記CO2ガス、H2Sガス及びCOSガスの各種ガスの吸収液への溶解度をそれぞれ測定した。測定温度は35℃に一定にし、圧力は大気圧〜10MPaに段階的に変化させた。各種ガスの量や吸収されなかった各種ガスの量から、CO2ガス、H2Sガス及びCOSガスの各種ガスの吸収液への溶解度を単位体積当たりの溶解度(Nm3/m3)でそれぞれ算出し、その結果を図15に示す。
図15から明らかなように、CO2ガス、H2Sガス及びCOSガスの各種ガスの吸収液への単位体積当たりの溶解度は圧力が上昇するに従って増大し、H2Sガスの溶解度が最も大きく、COSガスの溶解度が次に大きく、CO2ガスの溶解度が最も小さいことが分かった。
<Test 3 and evaluation>
Using the absorption liquid of Example 1, a gas-liquid equilibrium test with various gases (acid gases) of CO 2 gas, H 2 S gas, and COS gas was performed separately for each type of gas. The purity of the CO 2 gas, H 2 S gas, and COS gas was as high as 99.9% by volume or more. Specifically, the solubility of each gas of the CO 2 gas, H 2 S gas, and COS gas in the absorbing solution was measured using a high-pressure gas-liquid equilibrium measuring device. The measurement temperature was kept constant at 35 ° C., and the pressure was changed stepwise from atmospheric pressure to 10 MPa. From the amount of various gases and the amount of various gases that have not been absorbed, the solubility of each gas in the absorbing solution of CO 2 gas, H 2 S gas and COS gas is expressed as solubility per unit volume (Nm 3 / m 3 ). The results are shown in FIG.
As apparent from FIG. 15, the solubility per unit volume of various gases of CO 2 gas, H 2 S gas, and COS gas in the absorption liquid increases as the pressure increases, and the solubility of H 2 S gas is the largest. It was found that the solubility of COS gas was the next highest and the solubility of CO 2 gas was the lowest.

<試験4及び評価>
実施例1の吸収液(イオン性液体)を用いて、液体CO2との相互不溶解性及び比重差による相分離の度合いを確認するために、温度20℃で圧力7MPaに設定した高圧容器(外部から視認可能な透明部材により形成される。)に、上記吸収液と液体CO2をそれぞれ注入した。注入した吸収液(比重1.37)と液体CO2(比重0.81)は相互不溶解性及び比重差により2液相になっていた。次に上記高圧容器内の吸収液と液体CO2を、攪拌機により5分間撹拌し均一相になった後に、攪拌機を停止し、10分間静置した。この静置した後の高圧容器内の吸収液と液体CO2の様子を図16に示す。
図16から明らかなように、撹拌した後に静置することにより、吸収液と液体CO2は再び分相することが分かった。これは、吸収液と液体CO2が、相互に不溶解でありかつ比重差が大きいために、速やかに2液相に分離されたものと考えられる。また撹拌する前の2液相の液面と、撹拌して静置した後の2液相の液面はそれぞれ全く同じレベルであった。
<Test 4 and evaluation>
In order to confirm the degree of phase separation due to the mutual insolubility with liquid CO 2 and the difference in specific gravity using the absorbing liquid (ionic liquid) of Example 1, a high-pressure vessel (set at a pressure of 7 MPa at a temperature of 20 ° C.) The absorption liquid and the liquid CO 2 were respectively injected into the transparent member visible from the outside. The injected absorption liquid (specific gravity 1.37) and liquid CO 2 (specific gravity 0.81) were in two liquid phases due to mutual insolubility and specific gravity difference. Next, the absorbing liquid and liquid CO 2 in the high-pressure vessel were stirred for 5 minutes with a stirrer to become a homogeneous phase, and then the stirrer was stopped and allowed to stand for 10 minutes. FIG. 16 shows the state of the absorbing liquid and the liquid CO 2 in the high-pressure vessel after standing still.
As is clear from FIG. 16, it was found that the absorption liquid and the liquid CO 2 were separated again by allowing to stand after stirring. This is considered that the absorption liquid and the liquid CO 2 were insoluble in each other and the specific gravity difference was large, so that they were quickly separated into two liquid phases. Moreover, the liquid surface of the two liquid phases before stirring and the liquid surface of the two liquid phases after stirring and allowing to stand were at the same level.

本発明第1実施形態のガスの精製方法及びその装置の断面構成図である。It is a section lineblock diagram of a gas refining method and its device of a 1st embodiment of the present invention. 本発明の第2実施形態を示す図1に対応する断面構成図である。It is a section lineblock diagram corresponding to Drawing 1 showing a 2nd embodiment of the present invention. 本発明の第3実施形態を示す図1に対応する断面構成図である。It is a cross-sectional block diagram corresponding to FIG. 1 which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す図1に対応する断面構成図である。It is a section lineblock diagram corresponding to Drawing 1 showing a 4th embodiment of the present invention. 本発明の第5実施形態を示す図1に対応する断面構成図である。It is a section lineblock diagram corresponding to Drawing 1 showing a 5th embodiment of the present invention. 本発明の第6実施形態を示す図1に対応する断面構成図である。It is a cross-sectional block diagram corresponding to FIG. 1 which shows 6th Embodiment of this invention. 本発明の第7実施形態を示す図1に対応する断面構成図である。It is a section lineblock diagram corresponding to Drawing 1 showing a 7th embodiment of the present invention. 本発明の第8実施形態を示す図1に対応する断面構成図である。It is a section lineblock diagram corresponding to Drawing 1 showing an 8th embodiment of the present invention. 本発明の第9実施形態のシステムを示す構成図である。It is a block diagram which shows the system of 9th Embodiment of this invention. 本発明の第10実施形態のシステムを示す構成図である。It is a block diagram which shows the system of 10th Embodiment of this invention. 測定温度35℃における実施例1〜4の吸収液中へのCO2の溶解度の圧力変化に伴う変化を示す図である。It is a diagram showing the changes associated with pressure change in the solubility of CO 2 into the absorbing solution in Examples 1 to 4 at a measurement temperature of 35 ° C.. 測定温度45℃における実施例1〜4の吸収液中へのCO2の溶解度の圧力変化に伴う変化を示す図である。It is a diagram showing the changes associated with pressure change in the solubility of CO 2 into the absorbing solution in Examples 1 to 4 at a measurement temperature of 45 ° C.. 測定温度55℃における実施例1〜4の吸収液中へのCO2の溶解度の圧力変化に伴う変化を示す図である。It is a diagram showing the changes associated with pressure change in the solubility of CO 2 into the absorbing solution in Examples 1 to 4 at a measurement temperature of 55 ° C.. 測定温度35℃における実施例1の吸収液中への非酸性ガスの溶解度の圧力変化に伴う変化を示す図である。It is a figure which shows the change accompanying the pressure change of the solubility of the non-acidic gas in the absorption liquid of Example 1 in the measurement temperature of 35 degreeC. 測定温度35℃における実施例1の吸収液中へのCO2,H2S及びCOSの溶解度の圧力変化に伴う変化を示す図である。It is a diagram showing a CO 2, H 2 S and solubility change caused by pressure changes in the COS to the absorption solution of Example 1 at a measurement temperature of 35 ° C.. 吸収液(イオン性液体)と液体CO2との相分離の様子を示す写真図である。Absorbing liquid is a photographic view showing the state of phase separation (ionic liquid) and the liquid CO 2.

符号の説明Explanation of symbols

11 除湿器
12 圧縮機
13 吸収塔
16 再生塔
17 循環ポンプ
41 液体酸性ガス、液体CO2
42 吸収液
46 分離再生器
47 冷却器
48 遠心分離器
51 液体膜
52 膜分離器
52a 第1室
52b 第2室
61 磁石
71 添加剤
72 吸収液貯留槽
75 添加剤含有吸収液
81 添加剤貯留槽
82 圧力調整手段
83 蒸留分離器
84 加熱手段
91 水貯留槽
11 dehumidifier 12 compressor 13 absorber 16 regenerator 17 circulation pump 41 liquid acid gas, liquid CO 2
42 Absorbing liquid 46 Separator / Regenerator 47 Cooler 48 Centrifugal separator 51 Liquid membrane 52 Membrane separator 52a First chamber 52b Second chamber 61 Magnet 71 Additive 72 Absorbing liquid reservoir 75 Additive-containing absorbing liquid 81 Additive reservoir 82 Pressure adjusting means 83 Distillation separator 84 Heating means 91 Water storage tank

Claims (27)

所定の温度及び所定の圧力にそれぞれ維持した吸収塔(13)の上部に、イオン性液体を主成分とする吸収液を供給し、前記吸収塔(13)の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、前記吸収液に前記混合ガスを接触させることにより、前記酸性ガスを前記吸収液に吸収させて前記非酸性ガスと前記酸性ガスとを分離し前記非酸性ガスを前記吸収塔(13)から回収する工程と、
前記吸収塔(13)内の温度と同一又は高い温度に維持しかつ前記吸収塔(13)内の圧力より低い圧力に維持した再生塔(16)の上部に、前記酸性ガスを吸収した吸収液を供給することにより、前記酸性ガスを放散させて前記吸収液から分離し前記再生塔(16)から回収するとともに前記吸収液を再生する工程と、
前記再生された吸収液を前記吸収塔(13)の上部に供給する工程と
を含むガスの精製方法。
An absorption liquid mainly composed of an ionic liquid is supplied to the upper part of the absorption tower (13) maintained at a predetermined temperature and a predetermined pressure, and an acidic gas and a non-acidic gas are supplied to the lower part of the absorption tower (13). The mixed gas is supplied, and the mixed gas is brought into contact with the absorbing liquid, whereby the acidic gas is absorbed into the absorbing liquid to separate the non-acidic gas and the acidic gas, Recovering from the absorption tower (13);
Absorbing liquid that has absorbed the acidic gas in the upper part of the regeneration tower (16) maintained at a temperature equal to or higher than the temperature in the absorption tower (13) and maintained at a pressure lower than the pressure in the absorption tower (13). To recycle the absorption liquid while dissipating the acidic gas and separating it from the absorption liquid and recovering from the regeneration tower (16),
Supplying the regenerated absorption liquid to the upper part of the absorption tower (13).
所定の温度及び所定の圧力にそれぞれ維持した吸収塔(13)の上部に、イオン性液体を主成分とする吸収液(42)を供給し、前記吸収塔(13)の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、前記吸収液(42)に前記混合ガスを接触させることにより、前記酸性ガスを前記吸収液(42)に吸収させて前記非酸性ガスと前記酸性ガスとを分離し前記非酸性ガスを前記吸収塔(13)から回収する工程と、
所定の圧力に維持しかつ前記吸収塔(13)内の温度より低い温度に維持した分離再生器(46)に、前記酸性ガスを吸収した吸収液を供給することにより、前記酸性ガスを液化しこの液体酸性ガス(41)と前記吸収液(42)の相互不溶解性及び比重差により前記吸収液(42)から前記液体酸性ガス(41)を分離して前記分離再生器(46)から回収するとともに前記吸収液(42)を再生する工程と、
前記再生された吸収液を前記吸収塔(13)の上部に供給する工程と
を含むガスの精製方法。
An absorption liquid (42) mainly composed of an ionic liquid is supplied to the upper part of the absorption tower (13) maintained at a predetermined temperature and a predetermined pressure, respectively, and an acid gas and a lower part of the absorption tower (13) are supplied. By supplying a mixed gas containing a non-acidic gas and bringing the mixed gas into contact with the absorbing liquid (42), the acidic gas is absorbed into the absorbing liquid (42), and the non-acidic gas and the acidic gas are absorbed. And recovering the non-acidic gas from the absorption tower (13);
The acidic gas is liquefied by supplying the absorbing liquid that has absorbed the acidic gas to the separation regenerator (46) maintained at a predetermined pressure and maintained at a temperature lower than the temperature in the absorption tower (13). The liquid acid gas (41) is separated from the absorption liquid (42) by the mutual insolubility and specific gravity difference between the liquid acid gas (41) and the absorption liquid (42) and recovered from the separation regenerator (46). And regenerating the absorbing liquid (42),
Supplying the regenerated absorption liquid to the upper part of the absorption tower (13).
多孔質膜にイオン性液体を主成分とする吸収液を含浸した液体膜(51)を膜分離器(52)内に張設して前記膜分離器(52)を第1室(52a)と第2室(52b)とに区画し、前記第1室(52a)を前記第2室(52b)より高圧に設定して、前記第1室(52a)に酸性ガス及び非酸性ガスを含む混合ガスを導入することにより、前記非酸性ガスを前記第1室(51a)に残留させたまま、前記酸性ガスを前記液体膜(51)に透過させて低圧の前記第2室(52b)へ移動させ、前記第1室(52a)から非酸性ガスを回収するとともに前記第2室(52b)から酸性ガスを回収するガスの精製方法。   A liquid membrane (51) in which a porous membrane is impregnated with an absorption liquid mainly composed of an ionic liquid is stretched in a membrane separator (52), and the membrane separator (52) is connected to the first chamber (52a). A second chamber (52b) is partitioned, the first chamber (52a) is set at a higher pressure than the second chamber (52b), and the first chamber (52a) is mixed with acidic gas and non-acidic gas. By introducing gas, the acidic gas passes through the liquid film (51) while the non-acidic gas remains in the first chamber (51a) and moves to the low pressure second chamber (52b). And refining the non-acid gas from the first chamber (52a) and the acid gas from the second chamber (52b). 酸性ガスがCO2,H2S,COS,SO2,SO3,NO2,CS2,HCN,NH3及びメルカプタンからなる群より選ばれた1種又は2種以上のガスであり、非酸性ガスがH2,CH4,CO,O2,N2及び炭素数2〜10までの炭化水素化合物からなる群より選ばれた1種又は2種以上のガスである請求項1ないし3いずれか1項に記載のガスの精製方法。 The acidic gas is one or more gases selected from the group consisting of CO 2 , H 2 S, COS, SO 2 , SO 3 , NO 2 , CS 2 , HCN, NH 3 and mercaptans, and is non-acidic The gas is one or more gases selected from the group consisting of H 2 , CH 4 , CO, O 2 , N 2 and a hydrocarbon compound having 2 to 10 carbon atoms. 2. A gas purification method according to item 1. イオン性液体がカチオン及びアニオンを有し、
前記カチオンが、[R,R’−N233]+(N,N’-ジアルキルイミダゾリウム)、[NRX4-X]+(アルキルアンモニウム)、[R−NC55]+(N-アルキルピリジニウム)、[R−NC48]+(N-アルキルピロリジニウム)及び[PRX4-X]+(アルキルフォスフォニウム)からなる群より選ばれた1種又は2種以上のカチオンであり、
前記アニオンが、PF6 -、BF4 -、NO3 -、EtSO4 -、AlCl4 -及びAlBr4 -からなる群より選ばれた1種又は2種以上のアニオンであり、
前記カチオン中のR及びR’が炭素数1〜18のアルキル基又は水素であり、
前記カチオン中のXが1〜3である請求項1ないし3いずれか1項に記載のガスの精製方法。
The ionic liquid has a cation and an anion,
The cation is [R, R′—N 2 C 3 H 3 ] + (N, N′-dialkylimidazolium), [NR X H 4−X ] + (alkylammonium), [R—NC 5 H 5. ] + (N-alkylpyridinium), [R-NC 4 H 8 ] + (N-alkylpyrrolidinium) and 1 selected from the group consisting of [PR X H 4-X ] + (alkylphosphonium) A species or two or more cations,
The anion is one or more anions selected from the group consisting of PF 6 , BF 4 , NO 3 , EtSO 4 , AlCl 4 and AlBr 4 ;
R and R ′ in the cation are an alkyl group having 1 to 18 carbon atoms or hydrogen,
The gas purification method according to any one of claims 1 to 3, wherein X in the cation is 1 to 3.
イオン性液体を主成分とする吸収液(42)が中性又はアルカリ性である請求項1ないし3いずれか1項に記載のガスの精製方法。   The gas purification method according to any one of claims 1 to 3, wherein the absorbing liquid (42) containing an ionic liquid as a main component is neutral or alkaline. 混合ガスを吸収塔(13)に供給する前に前記混合ガスを除湿する工程を更に含む請求項1又は2記載のガスの精製方法。   The gas purification method according to claim 1 or 2, further comprising a step of dehumidifying the mixed gas before supplying the mixed gas to the absorption tower (13). 混合ガスを膜分離器(52)に導入する前に前記混合ガスを除湿する工程を更に含む請求項3記載のガスの精製方法。   The gas purification method according to claim 3, further comprising the step of dehumidifying the mixed gas before introducing the mixed gas into the membrane separator (52). 吸収塔(13)内の温度を0〜100℃に維持しかつ圧力を1〜25MPaに維持し、再生塔(16)内の温度を前記吸収塔(13)内の温度と同一又は前記吸収塔(13)内の温度より高い30〜200℃に維持した状態で圧力を前記吸収塔(13)内の圧力より低い0.1〜5MPaに維持する請求項1記載のガスの精製方法。   The temperature in the absorption tower (13) is maintained at 0 to 100 ° C. and the pressure is maintained at 1 to 25 MPa, and the temperature in the regeneration tower (16) is the same as the temperature in the absorption tower (13) or the absorption tower The gas purification method according to claim 1, wherein the pressure is maintained at 0.1 to 5 MPa lower than the pressure in the absorption tower (13) while being maintained at 30 to 200 ° C higher than the temperature in (13). 吸収塔(13)内の圧力を4〜25MPaに維持しかつ温度を0〜100℃に維持し、分離再生器(46)内の圧力を4〜25MPaに維持した状態で温度を前記吸収塔(13)内の温度より低い−30〜30℃に維持する請求項2記載のガスの精製方法。   The pressure in the absorption tower (13) is maintained at 4 to 25 MPa, the temperature is maintained at 0 to 100 ° C., and the pressure in the separation regenerator (46) is maintained at 4 to 25 MPa. The gas purification method according to claim 2, wherein the gas is maintained at -30 to 30 ° C lower than the temperature in 13). 吸収塔(13)から排出されかつ前記吸収塔(13)内の温度より低い温度に冷却された酸性ガスを含む吸収液を、分離再生器(46)に供給する前に、遠心分離或いは撹拌する工程を更に含む請求項2記載のガスの精製方法。   Before supplying to the separation regenerator (46), the absorption liquid containing acid gas discharged from the absorption tower (13) and cooled to a temperature lower than the temperature in the absorption tower (13) is centrifuged or stirred. The gas purification method according to claim 2, further comprising a step. イオン性液体を主成分とする吸収液(42)が磁性を有し、分離再生器(46)の下部に磁石(61)を設けた請求項2記載のガスの精製方法。   The gas purification method according to claim 2, wherein the absorbing liquid (42) containing an ionic liquid as a main component has magnetism, and a magnet (61) is provided at a lower portion of the separation regenerator (46). 水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤(71)を吸収液(42)に添加する請求項1又は2記載のガスの精製方法。   The gas purification method according to claim 1 or 2, wherein one or more additives (71) selected from the group consisting of water, alcohols, ethers and phenols are added to the absorbent (42). 水、アルコール類及びエーテル類からなる群より選ばれた1種又は2種以上の添加剤(71)を分離再生器(46)に供給するとともに、前記分離再生器(46)内の圧力及び温度を調整することにより、前記分離再生器(46)内で液体酸性ガス(41)と添加剤含有吸収液(75)とに比重差分離する工程と、前記分離再生器(46)から排出された添加剤含有吸収液(75)を蒸留分離器(83)に供給するとともに、前記蒸留分離器(83)内を所定の温度に加熱することにより、前記添加剤含有吸収液(75)中の添加剤(71)を吸収液(42)から蒸留分離する工程とを更に含む請求項2記載のガスの精製方法。   One or more additives (71) selected from the group consisting of water, alcohols and ethers are supplied to the separation regenerator (46), and the pressure and temperature in the separation regenerator (46). By adjusting the specific gravity difference between the liquid acid gas (41) and the additive-containing absorbent (75) in the separation regenerator (46), and the separation regenerator (46) discharged from the separation regenerator (46). The additive-containing absorbing liquid (75) is supplied to the distillation separator (83), and the inside of the distillation separator (83) is heated to a predetermined temperature, whereby the additive-containing absorbing liquid (75) is added. The method for purifying a gas according to claim 2, further comprising a step of distilling and separating the agent (71) from the absorbing liquid (42). 凝集剤を分離再生器内の液体酸性ガスを含む吸収液に添加する請求項2記載のガスの精製方法。   The method for purifying a gas according to claim 2, wherein the flocculant is added to the absorbing liquid containing the liquid acidic gas in the separation regenerator. 酸性ガスがCO2ガスであり、4〜25MPaの圧力に保った分離再生器(46)内の液体CO2(41)を含む吸収液(42)中に水を供給する請求項2記載のガスの精製方法。 The gas according to claim 2 , wherein the acid gas is CO 2 gas, and water is supplied into the absorption liquid (42) containing liquid CO 2 (41) in the separation regenerator (46) maintained at a pressure of 4 to 25 MPa. Purification method. 酸性ガス及び非酸性ガスを含む混合ガスを除湿する除湿器(11)と、
前記除湿された混合ガスを圧縮する圧縮機(12)と、
下部に前記圧縮された混合ガスが供給されかつ上部にイオン性液体を主成分とする吸収液(42)が供給されて前記吸収液(42)に前記混合ガスを接触させることにより前記酸性ガスを前記吸収液(42)に吸収させて前記非酸性ガスを前記酸性ガスから分離し回収する吸収塔(13)と、
前記酸性ガスを吸収した吸収液(42)を冷却する冷却器(47)と、
前記冷却された吸収液(42)が供給され液体酸性ガス(41)と前記吸収液(42)の相互不溶解性及び比重差により前記吸収液(42)から前記液体酸性ガス(41)を分離して回収するとともに前記吸収液(42)を再生し再利用する分離再生器(46)と、
前記分離再生器(46)から排出された前記吸収液(42)を高圧のまま前記吸収塔(13)の上部に供給する循環ポンプ(17)と
を備えたガスの精製装置。
A dehumidifier (11) for dehumidifying a mixed gas containing acidic gas and non-acidic gas;
A compressor (12) for compressing the dehumidified mixed gas;
The compressed gas mixture is supplied to the lower part, and the upper part is supplied with an absorbing liquid (42) mainly composed of an ionic liquid, and the mixed gas is brought into contact with the absorbing liquid (42), thereby allowing the acidic gas to flow. An absorption tower (13) that absorbs the absorbing liquid (42) to separate and recover the non-acidic gas from the acidic gas;
A cooler (47) for cooling the absorbing liquid (42) that has absorbed the acid gas;
The cooled absorption liquid (42) is supplied, and the liquid acid gas (41) is separated from the absorption liquid (42) by the mutual insolubility and specific gravity difference between the liquid acid gas (41) and the absorption liquid (42). Separating and regenerator (46) to recover and reuse the absorption liquid (42),
A gas purification apparatus comprising: a circulation pump (17) for supplying the absorption liquid (42) discharged from the separation / regenerator (46) to the upper part of the absorption tower (13) with a high pressure.
吸収塔(13)と冷却器(47)と分離再生器(46)が一体的に設けられた請求項17記載のガスの精製装置。   The gas purifier according to claim 17, wherein the absorption tower (13), the cooler (47), and the separation regenerator (46) are integrally provided. 冷却器(47)と分離再生器(46)との間に遠心分離器(48)或いは撹拌機が設けられた請求項17又は18記載のガスの精製装置。   The gas purifier according to claim 17 or 18, wherein a centrifuge (48) or a stirrer is provided between the cooler (47) and the separation regenerator (46). イオン性液体を主成分とする吸収液(42)が磁性を有し、分離再生器(46)の下部に磁石(61)が設けられた請求項17ないし19いずれか1項に記載のガスの精製装置。   20. The gas according to any one of claims 17 to 19, wherein the absorbing liquid (42) mainly composed of an ionic liquid has magnetism, and a magnet (61) is provided at a lower part of the separation regenerator (46). Purification equipment. 水、アルコール類、エーテル類及びフェノール類からなる群より選ばれた1種又は2種以上の添加剤(71)を添加した吸収液(42)が貯留されこの添加剤含有吸収液(75)を吸収塔(13)に供給するための吸収液貯留槽(72)が設けられた請求項17ないし20いずれか1項に記載のガスの精製装置。   Absorption liquid (42) added with one or more additives (71) selected from the group consisting of water, alcohols, ethers and phenols is stored, and this additive-containing absorption liquid (75) is stored. 21. The gas purifier according to any one of claims 17 to 20, further comprising an absorption liquid storage tank (72) for supplying the absorption tower (13). 水、アルコール類及びエーテル類からなる群より選ばれた1種又は2種以上の添加剤(71)が貯留され分離再生器(46)の上部に接続された添加剤貯留槽(81)と、前記分離再生器(46)に設けられ前記分離再生器(46)内の圧力を調節する圧力調節手段(82)と、前記分離再生器(46)の下部に接続され前記分離再生器(46)で比重差分離されてその下相に移行した添加剤含有吸収液(75)を貯留する蒸留分離器(83)と、前記蒸留分離器(83)に設けられ前記蒸留分離器(83)内を所定の温度に加熱する加熱手段(84)とを更に備えた請求項17ないし20いずれか1項に記載のガスの精製装置。   An additive storage tank (81) in which one or more additives (71) selected from the group consisting of water, alcohols and ethers are stored and connected to the upper part of the separation regenerator (46); Pressure adjusting means (82) for adjusting the pressure in the separation regenerator (46) provided in the separation regenerator (46), and the separation regenerator (46) connected to the lower part of the separation regenerator (46) The distillation separator (83) for storing the additive-containing absorption liquid (75) separated in specific gravity and transferred to the lower phase thereof, and the inside of the distillation separator (83) provided in the distillation separator (83) 21. The gas purifier according to any one of claims 17 to 20, further comprising a heating means (84) for heating to a predetermined temperature. 凝集剤を貯留する凝集剤槽が分離再生器に接続された請求項17ないし20いずれか1項に記載のガスの精製装置。   The gas purifier according to any one of claims 17 to 20, wherein a flocculant tank for storing the flocculant is connected to a separation regenerator. 酸性ガスがCO2ガスであり、分離再生器(46)内の圧力を4〜25MPaに保つ圧力調整手段(82)が前記分離再生器(46)に設けられ、水が貯留された水貯留槽(91)が前記分離再生器(46)の下部に接続された請求項17ないし20いずれか1項に記載のガスの精製装置。 A water storage tank in which the acidic gas is CO 2 gas, pressure adjusting means (82) for maintaining the pressure in the separation regenerator (46) at 4 to 25 MPa is provided in the separation regenerator (46), and water is stored 21. The gas purifier according to any one of claims 17 to 20, wherein (91) is connected to a lower portion of the separation regenerator (46). 請求項1ないし16いずれか1項に記載されたガスの精製方法に用いられ或いは請求項17ないし24いずれか1項に記載されたガスの精製装置に用いられる酸性ガスの吸収液。   25. An acidic gas absorbing solution used in the gas purification method according to any one of claims 1 to 16 or used in the gas purification device according to any one of claims 17 to 24. 脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項1ないし16いずれか1項に記載されたガスの精製方法を用いて或いは請求項17ないし24いずれか1項に記載されたガスの精製装置を用いてH2及びCO2に分離回収し、更にこの分離回収されたH2を水素ステーションに供給するとともに、前記分離回収されたCO2を断熱膨張させてドライアイスを製造するシステム。 One or two or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas and natural gas are reformed, CO converted and CO removed to mix H 2 and CO 2 After the gas is formed, the mixed gas is used by using the gas purification method described in any one of claims 1 to 16 or using the gas purification device described in any one of claims 17 to 24. A system that separates and collects H 2 and CO 2 , supplies the separated and collected H 2 to a hydrogen station, and adiabatically expands the separated and collected CO 2 to produce dry ice. 燃料電池を駆動源とする車上改質型車両に搭載され、脱硫ガソリン、ナフサ、灯油、メタノール、ジメチルエーテル、液化石油ガス及び天然ガスからなる群より選ばれた1種又は2種以上の燃料を車上で改質、CO変成及びCO除去してH2及びCO2の混合ガスとした後に、この混合ガスを請求項2、4、5、6、7、10ないし16いずれか1項に記載されたガスの精製方法を用いて或いは請求項17ないし24いずれか1項に記載されたガスの精製装置を用いてH2及び液体CO2に分離回収し、更にこの分離回収されたH2を前記燃料電池に供給するとともに、前記液体CO2を一時的に前記車両に貯留し後でまとめて降ろすシステム。 One or more fuels selected from the group consisting of desulfurized gasoline, naphtha, kerosene, methanol, dimethyl ether, liquefied petroleum gas, and natural gas are installed in an on-vehicle reforming vehicle that uses a fuel cell as a drive source. The mixed gas according to any one of claims 2, 4, 5, 6, 7, 10 to 16, after reforming, CO conversion and CO removal on a vehicle to form a mixed gas of H 2 and CO 2. 25. Using the purified gas purification method or using the gas purification apparatus according to any one of claims 17 to 24, the gas is separated and recovered into H 2 and liquid CO 2, and the separated and recovered H 2 is further recovered. A system that supplies the fuel cell and temporarily stores the liquid CO 2 in the vehicle and collects it later.
JP2005212054A 2004-07-28 2005-07-22 CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification Expired - Fee Related JP4826156B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005212054A JP4826156B2 (en) 2004-07-28 2005-07-22 CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification
PCT/JP2005/022523 WO2006103812A1 (en) 2005-03-28 2005-12-08 Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004219769 2004-07-28
JP2004219769 2004-07-28
JP2005090837 2005-03-28
JP2005090837 2005-03-28
JP2005212054A JP4826156B2 (en) 2004-07-28 2005-07-22 CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification

Publications (2)

Publication Number Publication Date
JP2006305544A true JP2006305544A (en) 2006-11-09
JP4826156B2 JP4826156B2 (en) 2011-11-30

Family

ID=37473049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212054A Expired - Fee Related JP4826156B2 (en) 2004-07-28 2005-07-22 CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification

Country Status (1)

Country Link
JP (1) JP4826156B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178764A (en) * 2007-01-23 2008-08-07 Mitsubishi Materials Corp Separation and regeneration apparatus of absorbing liquid and liquid carbon dioxide, and gas refining apparatus using the separation and regeneration apparatus
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
CN101933104A (en) * 2007-12-20 2010-12-29 普罗奥尼克离子物质产品有限公司 Magnetic ion liquid is as the purposes of extractant
JP2012020221A (en) * 2010-07-14 2012-02-02 Osaka Gas Co Ltd Carbon dioxide absorption method
JP2012510895A (en) * 2008-12-04 2012-05-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Carbon dioxide removal and ionic liquid compounds useful for this
JP2012170842A (en) * 2011-02-17 2012-09-10 National Institute Of Advanced Industrial Science & Technology Low volatile solution absorbing carbon dioxide and gas separation method
JP2012219018A (en) * 2011-04-04 2012-11-12 Asahi Kasei Corp Phosphorus atom-containing ionic liquid
JP2014133219A (en) * 2013-01-11 2014-07-24 Ngk Insulators Ltd Gas removal device and gas removal method using the same
CN104740975A (en) * 2015-04-03 2015-07-01 中国科学院过程工程研究所 Novel efficient and reversible ion type ammonia gas absorbent
JP2016003182A (en) * 2014-06-13 2016-01-12 トヨタ紡織株式会社 New ionic liquid, and method and apparatus for absorbing gas
JP2016538130A (en) * 2013-10-28 2016-12-08 エナジー リカバリー,インコーポレイティド System and method for utilizing a turbine system in a gas processing system
JP2017507771A (en) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd Acid gas recovery and release system
WO2021172087A1 (en) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 Ionic liquid composition for carbon dioxide separation membrane, carbon dioxide separation membrane holding said composition, and carbon dioxide concentration apparatus provided with said carbon dioxide separation membrane
CN114522524A (en) * 2022-03-25 2022-05-24 广州市粤佳气体有限公司 Device for separating gas by hydration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189444A1 (en) * 2001-03-30 2002-12-19 Brennecke Joan F. Purification of gas with liquid ionic compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189444A1 (en) * 2001-03-30 2002-12-19 Brennecke Joan F. Purification of gas with liquid ionic compounds

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178764A (en) * 2007-01-23 2008-08-07 Mitsubishi Materials Corp Separation and regeneration apparatus of absorbing liquid and liquid carbon dioxide, and gas refining apparatus using the separation and regeneration apparatus
JP4730312B2 (en) * 2007-01-23 2011-07-20 三菱マテリアル株式会社 Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
CN101933104A (en) * 2007-12-20 2010-12-29 普罗奥尼克离子物质产品有限公司 Magnetic ion liquid is as the purposes of extractant
JP2011506088A (en) * 2007-12-20 2011-03-03 プロイオニック プロダクション オブ イオニック サブスタンシス ゲーエムベーハー ウント コムパニー カーゲー Use of magnetic and ionic liquids as extractants
JP2012510895A (en) * 2008-12-04 2012-05-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Carbon dioxide removal and ionic liquid compounds useful for this
JP2012020221A (en) * 2010-07-14 2012-02-02 Osaka Gas Co Ltd Carbon dioxide absorption method
JP2012170842A (en) * 2011-02-17 2012-09-10 National Institute Of Advanced Industrial Science & Technology Low volatile solution absorbing carbon dioxide and gas separation method
JP2012219018A (en) * 2011-04-04 2012-11-12 Asahi Kasei Corp Phosphorus atom-containing ionic liquid
JP2014133219A (en) * 2013-01-11 2014-07-24 Ngk Insulators Ltd Gas removal device and gas removal method using the same
JP2016538130A (en) * 2013-10-28 2016-12-08 エナジー リカバリー,インコーポレイティド System and method for utilizing a turbine system in a gas processing system
JP2017507771A (en) * 2013-12-19 2017-03-23 シー−キャプチャー リミテッドC−Capture Ltd Acid gas recovery and release system
JP2016003182A (en) * 2014-06-13 2016-01-12 トヨタ紡織株式会社 New ionic liquid, and method and apparatus for absorbing gas
CN104740975A (en) * 2015-04-03 2015-07-01 中国科学院过程工程研究所 Novel efficient and reversible ion type ammonia gas absorbent
CN104740975B (en) * 2015-04-03 2016-08-24 中国科学院过程工程研究所 A kind of new and effective reversible ionic type ammonia absorbent
WO2021172087A1 (en) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 Ionic liquid composition for carbon dioxide separation membrane, carbon dioxide separation membrane holding said composition, and carbon dioxide concentration apparatus provided with said carbon dioxide separation membrane
CN114522524A (en) * 2022-03-25 2022-05-24 广州市粤佳气体有限公司 Device for separating gas by hydration method
CN114522524B (en) * 2022-03-25 2022-12-09 广州市粤佳气体有限公司 Device for separating gas by hydration method

Also Published As

Publication number Publication date
JP4826156B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4826156B2 (en) CO2 gas purification method and apparatus, and CO2 gas absorption liquid used for the purification
JP4687184B2 (en) Method and apparatus for purifying mixed gas containing acid gas
WO2006103812A1 (en) Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification
CN101384333B (en) Carbon dioxide recovery from flue gas and the like
CN103403142B (en) Vehicle reclaims and stores the CO from motor vehicle exhausts 2
US7819932B2 (en) Method and system for generating hydrogen-enriched fuel gas for emissions reduction and carbon dioxide for sequestration
US10948224B2 (en) Refrigeration cycles with liquid-liquid phase transitions
US20140335002A1 (en) Separating carbon dioxide and hydrogen sulfide from a natural gas stream using co-current contacting systems
JP2006036950A (en) Gas purification process and absorbent solution used in the same
EA017160B1 (en) Method for purifying a gaseous mixture containing acidic gases
CA2977195A1 (en) System and method for separating carbon dioxide from natural gas
CN102036736A (en) Carbon dioxide purification
WO2016108731A1 (en) Method of complex extraction of valuable impurities from helium-rich hydrocarbon natural gas with high nitrogen content
WO2003089115A1 (en) Configurations and methods for improved acid gas removal
JP2013530363A (en) Sorption system with improved cycle time
CN106102865A (en) Natural gas liquid is removed successively from natural gas flow
CN102389686A (en) Separating method for CO2-containing mixed gas
GB2540468A (en) Method and apparatus for dehydration of a hydrocarbon gas
JP2002243360A (en) Method and facility for producing liquid hydrogen
CN104194852B (en) Low pressure natural gas height yield methods of light hydrocarbon recovery
CN104927904A (en) Hydrotreating sulfur supplementing method
JP4730312B2 (en) Separation and regeneration apparatus for absorbing liquid and liquid carbon dioxide, and gas purification apparatus using the separation and regeneration apparatus
CN101637694B (en) Method for separating and recycling CO2 from mixed gas containing CO2
KR101883878B1 (en) Apparatus and method for removing acidic gas containing natural gas
KR101777119B1 (en) Apparatus for removing moisture from natural gas and the method for removing moisture from natural gas by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees