JP2008296211A - Gas separation, purification and recovery method and apparatus therefor - Google Patents
Gas separation, purification and recovery method and apparatus therefor Download PDFInfo
- Publication number
- JP2008296211A JP2008296211A JP2008119322A JP2008119322A JP2008296211A JP 2008296211 A JP2008296211 A JP 2008296211A JP 2008119322 A JP2008119322 A JP 2008119322A JP 2008119322 A JP2008119322 A JP 2008119322A JP 2008296211 A JP2008296211 A JP 2008296211A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- acidic
- absorbing
- acid gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 83
- 238000000746 purification Methods 0.000 title claims abstract description 61
- 238000011084 recovery Methods 0.000 title abstract description 24
- 239000007789 gas Substances 0.000 claims abstract description 427
- 239000007788 liquid Substances 0.000 claims abstract description 258
- 230000002378 acidificating effect Effects 0.000 claims abstract description 125
- 239000002608 ionic liquid Substances 0.000 claims abstract description 49
- 238000010924 continuous production Methods 0.000 claims abstract description 13
- 238000010521 absorption reaction Methods 0.000 claims description 121
- 239000002253 acid Substances 0.000 claims description 99
- 150000001768 cations Chemical class 0.000 claims description 13
- 150000001450 anions Chemical class 0.000 claims description 10
- 230000001172 regenerating effect Effects 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 125000004185 ester group Chemical group 0.000 claims description 3
- 125000001033 ether group Chemical group 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 3
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 abstract description 33
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 30
- 238000002156 mixing Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 abstract description 9
- 238000002485 combustion reaction Methods 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 124
- 239000001569 carbon dioxide Substances 0.000 description 62
- 229910002092 carbon dioxide Inorganic materials 0.000 description 62
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 8
- 239000002250 absorbent Substances 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- -1 amine compound Chemical class 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- FHDQNOXQSTVAIC-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;chloride Chemical compound [Cl-].CCCCN1C=C[N+](C)=C1 FHDQNOXQSTVAIC-UHFFFAOYSA-M 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- INDFXCHYORWHLQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butyl-3-methylimidazol-3-ium Chemical compound CCCCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F INDFXCHYORWHLQ-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000003869 coulometry Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Gas Separation By Absorption (AREA)
Abstract
Description
本発明は、酸性ガス及び非酸性ガスを含む混合ガスから酸性ガス及び非酸性ガスを分離、精製する方法及びその装置に関するものであり、更に詳しくは、上記混合ガスから、イオン液体を用いて、CO2,SOx,NOxなどの酸性ガスと、N2,H2,O2,CO,低級炭化水素ガスなどの非酸性ガスとを分離して、それぞれを回収するガスの分離精製方法と回収方法及びその装置に関するものである。本発明は、例えば、火力発電所、鉄鋼プラント、化学プラントなどの排ガス中に含まれる酸性ガスを分離回収する方法や、化石燃料や天然ガスなどに含まれる炭化水素系化合物を水蒸気あるいは部分酸化により改質した合成ガス及び天然ガスなどに含まれる酸性ガスを除去して分離精製する方法や、二酸化炭素の回収や水素の精製システムに適用可能なガス分離精製方法及びその装置を提供するものである。 The present invention relates to a method and an apparatus for separating and purifying an acidic gas and a non-acidic gas from a mixed gas containing an acidic gas and a non-acidic gas, and more specifically, using an ionic liquid from the mixed gas, Separation and purification method and recovery method of gas for separating acidic gas such as CO 2 , SOx, NOx and non-acidic gas such as N 2 , H 2 , O 2 , CO, lower hydrocarbon gas and recovering each And an apparatus for the same. The present invention is, for example, a method for separating and recovering acidic gas contained in exhaust gas from a thermal power plant, a steel plant, a chemical plant, etc., or a hydrocarbon compound contained in fossil fuel or natural gas by steam or partial oxidation. The present invention provides a method for separating and purifying by removing acidic gas contained in reformed synthesis gas and natural gas, and a gas separation and purification method and apparatus applicable to carbon dioxide recovery and hydrogen purification systems. .
地球温暖化ガスの中心である二酸化炭素を分離・回収し、貯留する(CCS)技術は、京都議定書の発効に見られるように、産業界のみならず社会的にも重要視されており、その研究開発は、国際的な課題となっている。このCCSプロセスでは、二酸化炭素の分離・回収に掛かるエネルギーは特に大きく、全体の70%近くにのぼると予想され、一層の低エネルギー化、低コスト化が望まれている。現在、アミン基を持つ特定のアミン類化合物を用いた化学吸収法が実用化に向けて試験段階にあるが、この種の方法は、二酸化炭素再生プロセスでのエネルギー消費が著しく、新規な吸収液の開発の必要性が高いとされている。 The technology that separates, collects, and stores carbon dioxide (CCS), which is the center of global warming gas (CCS), is seen not only by the industrial world but also by society, as seen in the enforcement of the Kyoto Protocol. Research and development has become an international issue. In this CCS process, the energy required for separation / recovery of carbon dioxide is particularly large and is expected to reach nearly 70% of the total, and further reduction in energy and cost is desired. At present, a chemical absorption method using a specific amine compound having an amine group is in a test stage for practical use, but this type of method has a significant energy consumption in the carbon dioxide regeneration process, and is a novel absorption liquid. The need for development is said to be high.
一方、物理吸収による方法については、これまで、SELEXSOL法によるケーススタディがあるのみで、ほとんど技術開発が進んでおらず、多くの研究課題が残されている。また、これまでに検討されている技術のほとんどは、二酸化炭素を常圧のガスとして回収するものであり、貯留や隔離を考えた場合には、高圧状態に圧縮する必要があり、そのためのエネルギーやコストも別に必要となる。 On the other hand, as for the method by physical absorption, there has been only a case study by the SELEXSOL method so far, and technological development has hardly progressed, and many research subjects remain. In addition, most of the technologies that have been studied so far recover carbon dioxide as a normal pressure gas, and when storage or sequestration is considered, it is necessary to compress it to a high pressure state. And costs are also required separately.
他方、水素燃料は、次世代のクリーンエネルギー源として注目され、燃料電池や水素燃料、自動車などへの応用研究が行なわれている。それに伴い、水電解や光触媒など種々の方法を用いた水素製造技術の開発研究が盛んに進められている。その中でも、炭化水素系化合物を水蒸気あるいは部分酸化により改質し、引き続き水性ガスシフト反応(CO+H2O→CO2+H2)により水素を製造する方法は広く用いられている。この場合、エネルギー源となる水素の製造に伴い副生される二酸化炭素の分離は必須であり、分離効率の改善は、水素製造コストを大幅に向上するものと期待される。 On the other hand, hydrogen fuel is attracting attention as a next-generation clean energy source, and application research to fuel cells, hydrogen fuel, automobiles, and the like is being conducted. Along with this, development research on hydrogen production technology using various methods such as water electrolysis and photocatalyst has been actively promoted. Among them, a method of reforming a hydrocarbon compound by steam or partial oxidation and subsequently producing hydrogen by a water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) is widely used. In this case, separation of carbon dioxide produced as a by-product in the production of hydrogen as an energy source is essential, and improvement in separation efficiency is expected to greatly increase hydrogen production costs.
これまで、水素精製技術として、圧力スイング吸着、膜分離、深冷分離などの方法が検討されているが、物理吸収法による研究例は挙げられていない。今後、水素の貯蔵や輸送などの観点から、高圧水素の需要が益々増加すると予想される。イオン液体を用いた物理吸収による分離・精製法は、圧縮状態にある高圧ガスの処理に非常に好適であり、クリーンな水素社会の実現に向けた重要技術といえる。 So far, methods such as pressure swing adsorption, membrane separation, and cryogenic separation have been studied as hydrogen purification techniques, but no examples of physical absorption methods have been mentioned. In the future, the demand for high-pressure hydrogen is expected to increase from the viewpoint of hydrogen storage and transportation. Separation / purification by physical absorption using an ionic liquid is very suitable for the treatment of high-pressure gas in a compressed state, and can be said to be an important technology for realizing a clean hydrogen society.
従来、先行技術として、例えば、イオン液体を主成分とした吸収液を用いて酸性ガスと非酸性ガスからなる混合ガスを接触させて、酸性ガスを吸収させて分離精製する吸収液について提案されている(特許文献1)。この文献では、アミン基をもつイオン液体を用いて、化学吸収法により酸性ガスを除去しており、本発明の物理吸収によるガス分離精製法とは異なるものである。 Conventionally, as a prior art, for example, an absorption liquid that is separated and purified by absorbing an acidic gas by contacting a mixed gas composed of an acidic gas and a non-acidic gas using an absorption liquid mainly composed of an ionic liquid has been proposed. (Patent Document 1). In this document, an acidic gas is removed by chemical absorption method using an ionic liquid having an amine group, which is different from the gas separation purification method by physical absorption of the present invention.
また、イオン液体を主成分とした吸収液を用いて酸性ガスと非酸性ガスからなる混合ガスを接触させて、酸性ガスを吸収させて分離精製する吸収液及びその方法と装置について提案されている(特許文献2)。この方法は、イオン液体を用いた物理吸収によるガス分離精製法である。しかし、この方法では、吸収塔と再生塔とを用いて不連続にガスの分離精製を行っており、連続的プロセスとは異なるものである。 In addition, an absorbing liquid and a method and apparatus for separating and purifying an acidic gas by contacting a mixed gas composed of an acidic gas and a non-acidic gas by using an absorbing liquid containing an ionic liquid as a main component are proposed. (Patent Document 2). This method is a gas separation purification method by physical absorption using an ionic liquid. However, in this method, gas separation and purification are performed discontinuously using an absorption tower and a regeneration tower, which is different from a continuous process.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、物理吸収法を用いた連続的プロセスによるガス分離精製技術を開発することを目標として鋭意研究を積み重ねた結果、イオン液体を用いた流通式ガス分離精製方法を開発することに成功し、本発明を完成するに至った。本発明は、流通式ガス分離精製装置を用いて、酸性ガス及び非酸性ガスを含む混合ガスをイオン液体からなる吸収液に接触させることにより、酸性ガス、非酸性ガスを回収するとともに、吸収液を再生することからなる特定のガス分離系によるガスの精製方法及びその装置を提供することを目的とするものである。 Under such circumstances, the present inventors have conducted intensive research with the goal of developing a gas separation and purification technology by a continuous process using a physical absorption method in view of the above-described conventional technology. The present inventors have succeeded in developing a flow-type gas separation and purification method using a liquid, and have completed the present invention. The present invention recovers acidic gas and non-acidic gas by bringing a mixed gas containing acidic gas and non-acidic gas into contact with an absorbing liquid composed of an ionic liquid using a flow-type gas separation and purification apparatus, and also absorbs the absorbing liquid. It is an object of the present invention to provide a gas purification method using a specific gas separation system and an apparatus therefor.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)酸性ガス及び非酸性ガスを含む混合ガスをイオン液体からなる吸収液を用いて、流通式装置による連続的プロセスで分離精製する方法であって、
1)酸性ガス及び非酸性ガスを含む混合ガスと吸収液とを、所定の温度に維持した混合器に所定の圧力で供給し、吸収液に混合ガスを接触させることにより、混合ガスから酸性ガスを吸収させる工程、及び、
2)前記混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程、を含むガスの分離精製方法。
(2)前記1)及び2)の工程と、3)前記気液分離器から酸性ガスを含んだ吸収液を回収する工程、及び、4)回収された酸性ガスを含んだ吸収液を、所定の温度に維持した第2の気液分離器に送り込み、酸性ガスを所定の圧力で回収するとともに、吸収液を再生する工程、を含む、前記(1)に記載のガスの分離精製方法。
(3)前記1)及び2)の工程と、3)前記気液分離器から酸性ガスを含んだ吸収液を回収する工程、4)回収された酸性ガスを含んだ吸収液を、所定の温度に維持した第2の気液分離器に送り込み、酸性ガスを所定の圧力で回収するとともに、吸収液を再生する工程、及び、5)再生された吸収液を吸収液タンクに供給する工程、を含む、前記(1)に記載のガスの分離精製方法。
(4)回収した非酸性ガスを利用し、該非酸性ガスと吸収液とを、所定の温度に維持した混合器に所定の圧力で供給し、吸収液に非酸性ガスを接触させることにより、非酸性ガス中に残存した酸性ガスを吸収させる工程と、
前記混合器から排出された吸収液と残存した酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程とを含む、前記(1)〜(3)のいずれかに記載のガスの分離精製方法。
(5)回収した非酸性ガスを利用し、該非酸性ガスと吸収液とを、所定の温度に維持した混合器に所定の圧力で供給し、吸収液に非酸性ガスを接触させることにより、非酸性ガス中に残存した酸性ガスを吸収する工程と、
前記混合器から排出された吸収液と残存した酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程と、
前記気液分離器から回収された酸性ガスを含んだ吸収液を、所定の温度に維持した第2の気液分離器に送り込み、酸性ガスを所定の圧力で回収するとともに、吸収液を再生する工程とを含む、前記(1)〜(3)のいずれかに記載のガスの分離精製方法。
(6)回収した非酸性ガスと吸収液とを混合器に所定の圧力で供給して接触させることにより酸性ガスの除去を複数回以上行い、回収する非酸性ガスの純度を向上させる、前記(1)〜(3)のいずれかに記載のガスの分離精製方法。
(7)混合器として、マイクロメーターサイズの流路をもつマイクロミキサーを使用する、前記(1)〜(6)のいずれかに記載のガスの分離精製方法。
(8)吸収液が、陽イオン及び陰イオンからなるイオン液体であり、前記陽イオンが、アルキルアンモニウム、アルキルピリジニウム、アルキルピロリジニウム、アルキルホスホニウム、アルキルイミダゾリウム、あるいは、それらアルキル鎖に不飽和アルキル部位、アミノ基、エーテル基、エステル基、カルボニル基、などの官能基がある陽イオンからなる、1種あるいは2種以上の陽イオンであり、また、前記陰イオンが、PF6−,BF4−,CF3SO3−,CF3CF2SO3−,(CF3SO2)2N−,(CF3CF2SO2)2N−,(CF3CO)2N−,(CF3SO2)N(COCF3)−,FSO2NSO2Fからなる1種あるいは2種以上の陰イオンである、前記(1)〜(7)のいずれかに記載のガスの分離精製方法。
(9)前記(8)に記載のイオン液体からなる吸収液を主成分とし、CO2,SO2,SO3,H2S,NO2,CS2の酸性ガスからなる1種あるいは2種以上を化学吸収する添加剤を加えた吸収液を用いる、前記(1)〜(7)のいずれかに記載のガスの分離精製方法。
(10)吸収液を収容する吸収液タンク、該吸収液と、酸性ガス及び非酸性ガスを含む混合ガスとを接触させて吸収液に酸性ガスを吸収させるための混合器、該混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための気液分離器を有することを特徴とするガスの分離精製装置。
(11)吸収液を収容する吸収液タンク、該吸収液と、酸性ガス及び非酸性ガスを含む混合ガスとを接触させて吸収液に酸性ガスを吸収させるための混合器、該混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための第1の気液分離器、前記気液分離器から回収された酸性ガスを含んだ吸収液から酸性ガス及び吸収液を分離するための第2の気液分離器を有することを特徴とするガスの分離精製装置。
(12)酸性ガスを含んだ吸収液から分離し、再生した吸収液を吸収液タンクに供給する吸収液再送管を有する、前記(11)に記載のガスの分離精製装置。
(13)気液分離器で分離された前記酸性ガスが取り除かれた非酸性ガスを利用し、同様の処理を複数回以上行うためのガス分離系として、混合器、第1の気液分離器、第2の気液分離器、及び吸収液再送管からなるガス分離系を更に有する、前記(11)に記載のガスの分離精製装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method of separating and purifying a mixed gas containing an acidic gas and a non-acidic gas using an absorption liquid composed of an ionic liquid in a continuous process using a flow-type apparatus,
1) A mixed gas containing an acidic gas and a non-acidic gas and an absorbing liquid are supplied at a predetermined pressure to a mixer maintained at a predetermined temperature, and the mixed gas is brought into contact with the absorbing liquid, whereby the acidic gas is converted from the mixed gas. Absorbing and, and
2) a step of feeding the absorption liquid discharged from the mixer and the non-acid gas from which the acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure; Method for separating and purifying gas containing
(2) Steps 1) and 2), 3) A step of recovering an absorption liquid containing acid gas from the gas-liquid separator, and 4) An absorption liquid containing the recovered acid gas is predetermined. The method for separating and purifying gas as described in (1) above, further comprising a step of feeding the second gas-liquid separator maintained at a temperature of 2 to recover the acidic gas at a predetermined pressure and regenerating the absorbing liquid.
(3) The steps 1) and 2), 3) the step of recovering the absorbing liquid containing the acid gas from the gas-liquid separator, and 4) the recovered absorbing solution containing the acidic gas at a predetermined temperature. A step of feeding the second gas-liquid separator maintained at a predetermined pressure and recovering the acid gas at a predetermined pressure and regenerating the absorbing solution; and 5) supplying the regenerated absorbing solution to the absorbing solution tank. The method for separating and purifying gas as described in (1) above.
(4) Utilizing the recovered non-acid gas, supplying the non-acid gas and the absorption liquid to the mixer maintained at a predetermined temperature at a predetermined pressure, and bringing the non-acid gas into contact with the absorption liquid, Absorbing the acid gas remaining in the acid gas;
A step of feeding the absorption liquid discharged from the mixer and the non-acid gas from which the remaining acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure; The method for separating and purifying gas according to any one of (1) to (3).
(5) Utilizing the recovered non-acid gas, supplying the non-acid gas and the absorbing liquid at a predetermined pressure to a mixer maintained at a predetermined temperature, and bringing the non-acid gas into contact with the absorbing liquid, Absorbing the acid gas remaining in the acid gas;
Sending the absorption liquid discharged from the mixer and the non-acid gas from which the remaining acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure;
The absorption liquid containing the acid gas recovered from the gas-liquid separator is sent to the second gas-liquid separator maintained at a predetermined temperature, and the acid gas is recovered at a predetermined pressure, and the absorption liquid is regenerated. A method for separating and purifying a gas according to any one of (1) to (3), comprising a step.
(6) The recovered non-acid gas and the absorbing liquid are supplied to the mixer at a predetermined pressure and brought into contact with each other to remove the acid gas more than once, thereby improving the purity of the recovered non-acid gas. The method for separating and purifying gas according to any one of 1) to (3).
(7) The gas separation and purification method according to any one of (1) to (6), wherein a micromixer having a micrometer-sized flow path is used as a mixer.
(8) The absorbing liquid is an ionic liquid composed of a cation and an anion, and the cation is unsaturated in alkylammonium, alkylpyridinium, alkylpyrrolidinium, alkylphosphonium, alkylimidazolium, or their alkyl chain. It is one or more kinds of cations composed of a cation having a functional group such as an alkyl moiety, amino group, ether group, ester group, carbonyl group, etc., and the anion is PF 6- , BF 4 -, CF 3 SO 3 - , CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, (CF 3 CO) 2 N -, (CF 3 SO 2) N (COCF 3 ) -, is one or more kinds of anions consisting of FSO 2 NSO 2 F, wherein (1) to (7) The method for separating and purifying gases according to any misalignment.
(9) One or two or more kinds of acidic liquids of CO 2 , SO 2 , SO 3 , H 2 S, NO 2 , CS 2 , the main component of which is the absorbing liquid made of the ionic liquid described in (8). The method for separating and purifying a gas according to any one of the above (1) to (7), wherein an absorbing solution to which an additive for chemically absorbing is added is used.
(10) Absorption liquid tank for storing an absorption liquid, a mixer for bringing the absorption liquid into contact with a mixed gas containing an acidic gas and a non-acidic gas and allowing the absorption liquid to absorb the acidic gas, and discharging from the mixer And a gas-liquid separator for separating the non-acidic gas from which the acidic gas has been removed from the absorbed liquid.
(11) An absorbing liquid tank for storing the absorbing liquid, a mixer for bringing the absorbing liquid into contact with a mixed gas containing an acidic gas and a non-acidic gas and allowing the absorbing liquid to absorb the acidic gas, and discharging from the mixer A first gas-liquid separator for separating the absorbed liquid from the non-acid gas from which the acidic gas has been removed; the acidic gas and the absorbing liquid from the absorbent containing the acidic gas recovered from the gas-liquid separator A gas separation / purification apparatus comprising a second gas-liquid separator for separating the gas.
(12) The gas separation and purification apparatus according to (11), further including an absorption liquid retransmission pipe that separates the absorption liquid containing acid gas and supplies the regenerated absorption liquid to the absorption liquid tank.
(13) A non-acidic gas from which the acidic gas separated by the gas-liquid separator is removed, and a gas separation system for performing the same treatment more than once, a mixer, a first gas-liquid separator The gas separation / purification apparatus according to (11), further including a gas separation system including a second gas-liquid separator and an absorption liquid retransmission pipe.
次に、本発明について更に詳細に説明する。
本発明は、流通式ガス分離精製装置を用いて連続プロセスで、しかも、イオン液体に二酸化炭素などの酸性ガスを大量に物理吸収させるという新現な手法を利用するものである。イオン液体は、カチオンとアニオンのみから構成され、室温付近以下に融点をもつ溶融塩であり、不揮発性・不燃性の性質をもち、広い温度範囲で液体状態を維持し、化学的にも安定である。そのため、イオン液体は、蒸気圧がほぼ無視でき、各種ガス相や超臨界流体相へは溶出せず、大気中へのエミッションが無く、低環境負荷の化学プロセスを構築することが可能である。
Next, the present invention will be described in more detail.
The present invention utilizes a novel method of physically absorbing a large amount of an acidic gas such as carbon dioxide in an ionic liquid in a continuous process using a flow-type gas separation and purification apparatus. An ionic liquid is a molten salt that consists only of cations and anions, has a melting point below room temperature, has non-volatile and non-flammable properties, maintains a liquid state in a wide temperature range, and is chemically stable. is there. For this reason, the ionic liquid has a substantially negligible vapor pressure, does not elute into various gas phases and supercritical fluid phases, does not emit into the atmosphere, and can construct a chemical process with a low environmental load.
また、イオン液体のガス吸収は、物理的な機構であるため、ガスを加圧、接触することで吸収させることができ、一方、減圧することで吸収したガスを容易に取り出すことができる。これにより、化学吸収法などで必要となるガス回収のための熱エネルギーを大幅に節約することができ、減圧により吸収したガスを回収した後で、吸収液の再利用が容易である。更に、物理吸収の利点は、吸収量がガスの分圧に比例することで、特に高圧ガスの分離・精製プロセスに好適である。 Moreover, since the gas absorption of the ionic liquid is a physical mechanism, it can be absorbed by pressurizing and contacting the gas, while the absorbed gas can be easily taken out by reducing the pressure. Thereby, the thermal energy for gas recovery required in the chemical absorption method or the like can be saved significantly, and the recovered liquid can be easily reused after the gas absorbed by the reduced pressure is recovered. Furthermore, the advantage of physical absorption is that the absorption amount is proportional to the partial pressure of the gas, which is particularly suitable for the separation and purification process of high-pressure gas.
本発明では、この性質を利用し、かつ流通式ガス分離精製装置を用いて連続プロセスを採用することで、選択的にガスを吸収する分子ゲート機能をもった分離膜やマイクロリアクターを用いた接触吸収法によるガス分離・精製が可能となる。また、イオン液体は、カチオンとアニオンの分子構造を自在に化学修飾できるデザイン溶媒と言われていることから、イオン液体の分子構造をガス分離・精製の吸収液として好適な構造とすることで、一層のプロセスの高効率化が可能となる。また、本発明の方法は、SOxやNOx成分により被毒を受ける触媒などの脱酸性ガス前処理プロセスとしての利用も期待される。 In the present invention, a contact process using a separation membrane or a microreactor having a molecular gate function that selectively absorbs gas by utilizing this property and adopting a continuous process using a flow-type gas separation and purification apparatus. Gas separation and purification by absorption method is possible. In addition, since the ionic liquid is said to be a design solvent that can freely chemically modify the molecular structure of the cation and anion, by making the molecular structure of the ionic liquid suitable as an absorbing liquid for gas separation and purification, It becomes possible to further increase the efficiency of the process. Further, the method of the present invention is also expected to be used as a deoxidizing gas pretreatment process for a catalyst that is poisoned by SOx and NOx components.
近年、イミダゾリウムなどを陽イオンとし、PF6−、BF4−、(CF3SO2)2N−などを陰イオンとしたイオン液体は、単位体積当たりのCO2などの酸性ガスの吸収量が極めて高く、一方で、H2やN2などの非酸性ガスはほとんど吸収しないことが明らかとされた。したがって、これらのイオン液体を吸収液として用い、混合ガスと接触させることでガスの分離・精製が可能となると考えられるが、イオン液体は、粘性率が高く、ガス吸収速度が著しく小さいため、従来の方法では、イオン液体を吸収液として用いることは実用上困難であった。 In recent years, an ionic liquid having imidazolium or the like as a cation and PF 6 −, BF 4 − or (CF 3 SO 2 ) 2 N— or the like as an anion absorbs an acid gas such as CO 2 per unit volume. On the other hand, it was revealed that non-acidic gases such as H 2 and N 2 are hardly absorbed. Therefore, it is considered that separation and purification of gas can be achieved by using these ionic liquids as an absorbing liquid and bringing them into contact with a mixed gas. However, ionic liquids have a high viscosity and a significantly low gas absorption rate. In this method, it was practically difficult to use the ionic liquid as the absorbing liquid.
ここで、本発明の方法について説明すると、本発明では、図1に示すように、吸収液タンク2から酸性ガス吸収能力及び選択性に優れた吸収液であるイオン液体を、高圧ポンプ3により不活性ガス圧による所定の圧力で所定の温度に維持した混合器5に供給する。一方、酸性ガス及び非酸性ガスを含む混合ガスをガスブースター4により所定の圧力で所定の温度に維持した混合器5に供給し、吸収液と混合ガスとを接触させる。これにより、酸性ガスのみを高速かつ効率よく混合ガスから選択的に吸収し、非酸性ガスと分離する。 Here, the method of the present invention will be described. In the present invention, as shown in FIG. 1, an ionic liquid, which is an absorption liquid excellent in acid gas absorption capacity and selectivity, is not discharged from the absorption liquid tank 2 by a high-pressure pump 3. The mixture is supplied to the mixer 5 maintained at a predetermined temperature at a predetermined pressure based on the active gas pressure. On the other hand, a mixed gas containing an acidic gas and a non-acidic gas is supplied to a mixer 5 maintained at a predetermined temperature at a predetermined pressure by a gas booster 4, and the absorbing liquid and the mixed gas are brought into contact with each other. As a result, only the acidic gas is selectively absorbed from the mixed gas at high speed and efficiently and separated from the non-acidic gas.
更に、所定の圧力で混合器5から排出された非酸性ガスを主成分とする気体と酸性ガスを含んだ吸収液とを、そのまま連続的に所定の温度に維持した気液分離器6に送り込み、気液分離器6に設置された圧力制御弁7を通して、酸性ガスが取り除かれた非酸性ガスを所定の圧力で回収する。これらの工程は、吸収液と混合ガスを連続的に送り込むことができる流通式システムを用いることで実施可能であり、長期間にわたり連続的プロセスで大量のガスの分離精製を行うことが可能となる。 Further, the gas mainly composed of the non-acidic gas discharged from the mixer 5 at a predetermined pressure and the absorbing liquid containing the acidic gas are fed into the gas-liquid separator 6 continuously maintained at a predetermined temperature. The non-acidic gas from which the acidic gas has been removed is recovered at a predetermined pressure through the pressure control valve 7 installed in the gas-liquid separator 6. These steps can be performed by using a flow system that can continuously feed the absorbing liquid and the mixed gas, and a large amount of gas can be separated and purified in a continuous process over a long period of time. .
また、本発明の他の態様では、図2に示すように、吸収液タンク2から酸性ガス吸収能力及び選択性に優れた吸収液であるイオン液体を、高圧ポンプ3により不活性ガス圧による所定の圧力で所定の温度に維持した混合器5に供給する。一方、酸性ガス及び非酸性ガスを含む混合ガスをガスブースター4により所定の圧力で所定の温度に維持した混合器5に供給し、吸収液と混合ガスとを接触させる。これにより、酸性ガスのみを高速かつ効率よく混合ガスから選択的に吸収し、非酸性ガスと分離する。 Further, in another aspect of the present invention, as shown in FIG. 2, an ionic liquid, which is an absorption liquid excellent in acid gas absorption capacity and selectivity, is supplied from the absorption liquid tank 2 by a high-pressure pump 3 according to an inert gas pressure. To the mixer 5 maintained at a predetermined temperature with the pressure of On the other hand, a mixed gas containing an acidic gas and a non-acidic gas is supplied to a mixer 5 maintained at a predetermined temperature at a predetermined pressure by a gas booster 4, and the absorbing liquid and the mixed gas are brought into contact with each other. As a result, only the acidic gas is selectively absorbed from the mixed gas at high speed and efficiently and separated from the non-acidic gas.
更に、所定の圧力で混合器から排出された非酸性ガスを主成分とする気体と酸性ガスを含んだ吸収液とを、そのまま連続的に所定の温度に維持した気液分離器6に送り込み、気液分離器6に設置された圧力制御弁7を通して、酸性ガスが取り除かれた非酸性ガスを所定の圧力で回収する。一方、酸性ガスを含んだ吸収液を取り出して、再び所定の温度に維持した気液分離器8に送り込み、該気液分離器8に設置された圧力制御弁9を通して、酸性ガスを所定の圧力で回収する。 Furthermore, the gas mainly composed of non-acidic gas discharged from the mixer at a predetermined pressure and the absorbing liquid containing the acidic gas are sent to the gas-liquid separator 6 continuously maintained at a predetermined temperature as it is, Through the pressure control valve 7 installed in the gas-liquid separator 6, the non-acidic gas from which the acidic gas has been removed is recovered at a predetermined pressure. On the other hand, the absorption liquid containing acid gas is taken out and sent again to the gas-liquid separator 8 maintained at a predetermined temperature, and the acid gas is supplied to the predetermined pressure through a pressure control valve 9 installed in the gas-liquid separator 8. Collect with.
また、本発明の他の態様では、図3に示すように、吸収液タンク2から酸性ガス吸収能力及び選択性に優れた吸収液であるイオン液体を高圧ポンプ3により不活性ガス圧による所定の圧力で所定の温度に維持した混合器5に供給する。一方、酸性ガス及び非酸性ガスを含む混合ガスをガスブースター4により所定の圧力で所定の温度に維持した混合器5に供給し、吸収液と混合ガスとを接触させる。これにより、酸性ガスのみを高速かつ効率よく混合ガスから選択的に吸収し、非酸性ガスと分離する。 Further, in another aspect of the present invention, as shown in FIG. 3, an ionic liquid, which is an absorption liquid excellent in acid gas absorption capacity and selectivity, is absorbed from the absorption liquid tank 2 by a high-pressure pump 3 according to an inert gas pressure. The mixture is supplied to the mixer 5 maintained at a predetermined temperature with pressure. On the other hand, a mixed gas containing an acidic gas and a non-acidic gas is supplied to a mixer 5 maintained at a predetermined temperature at a predetermined pressure by a gas booster 4, and the absorbing liquid and the mixed gas are brought into contact with each other. As a result, only the acidic gas is selectively absorbed from the mixed gas at high speed and efficiently and separated from the non-acidic gas.
更に、所定の圧力で混合器から排出された非酸性ガスを主成分とする気体と酸性ガスを含んだ吸収液とを、そのまま連続的に所定の温度に維持した気液分離器6に送り込み、気液分離器6に設置された圧力制御弁7を通して、酸性ガスが取り除かれた非酸性ガスを所定の圧力で回収する。一方、酸性ガスを含んだ吸収液を取り出して、再び所定の温度に維持した気液分離器8に送り込み、該気液分離器8に設置された圧力制御弁9を通して、酸性ガスを所定の圧力で回収し、他方、酸性ガスを回収して再生された吸収液は、吸収液タンク2に戻され、再利用される。 Furthermore, the gas mainly composed of non-acidic gas discharged from the mixer at a predetermined pressure and the absorbing liquid containing the acidic gas are sent to the gas-liquid separator 6 continuously maintained at a predetermined temperature as it is, Through the pressure control valve 7 installed in the gas-liquid separator 6, the non-acidic gas from which the acidic gas has been removed is recovered at a predetermined pressure. On the other hand, the absorption liquid containing acid gas is taken out and sent again to the gas-liquid separator 8 maintained at a predetermined temperature, and the acid gas is supplied to the predetermined pressure through a pressure control valve 9 installed in the gas-liquid separator 8. On the other hand, the absorption liquid recovered by recovering the acidic gas is returned to the absorption liquid tank 2 and reused.
本発明では、吸収液タンク2から酸性ガス吸収能力及び選択性に優れた吸収液であるイオン液体を、高圧ポンプ3により所定の圧力で所定の温度に維持した混合器5に供給し、酸性ガス及び非酸性ガスを含む混合ガスをガスブースター4により所定の圧力で所定の温度に維持した混合器5に供給し、吸収液と混合ガスとを接触させる。これにより、酸性ガスのみを高速かつ効率よく混合ガスから選択的に吸収し、非酸性ガスと分離する。 In the present invention, an ionic liquid, which is an absorbing liquid excellent in acid gas absorption capacity and selectivity, is supplied from the absorbing liquid tank 2 to the mixer 5 maintained at a predetermined temperature at a predetermined pressure by the high-pressure pump 3. And the mixed gas containing non-acidic gas is supplied to the mixer 5 maintained at a predetermined temperature at a predetermined pressure by the gas booster 4, and the absorbing liquid and the mixed gas are brought into contact with each other. As a result, only the acidic gas is selectively absorbed from the mixed gas at high speed and efficiently and separated from the non-acidic gas.
所定の圧力で混合器から排出された非酸性ガスを主成分とする気体と酸性ガスを含んだ吸収液とを、そのまま連続的に所定の温度に維持した気液分離器6に送り込み、気液分離器6に設置された圧力制御弁7を通して、酸性ガスが取り除かれた非酸性ガスを所定の圧力で回収する。更に、回収された非酸性ガスを再び吸収液と接触させ、これにより残存した酸性ガスを取り除き、非酸性ガスの純度の向上を可能とする。 A gas mainly composed of non-acidic gas discharged from the mixer at a predetermined pressure and an absorbing liquid containing an acidic gas are fed as they are into a gas-liquid separator 6 that is continuously maintained at a predetermined temperature. Through the pressure control valve 7 installed in the separator 6, the non-acidic gas from which the acidic gas has been removed is recovered at a predetermined pressure. Further, the recovered non-acid gas is brought into contact with the absorbing liquid again, thereby removing the remaining acid gas, and the purity of the non-acid gas can be improved.
本発明では、図4に示すように、吸収液タンク2から酸性ガス吸収能力及び選択性に優れた吸収液であるイオン液体を、高圧ポンプ3により所定の圧力で所定の温度に維持した混合器5に供給し、酸性ガス及び非酸性ガスを含む混合ガスをガスブースター4により所定の圧力で所定の温度に維持した混合器5に供給し、吸収液と混合ガスとを接触させる。これにより、酸性ガスのみを高速かつ効率よく混合ガスから選択的に吸収し、非酸性ガスと分離する。 In the present invention, as shown in FIG. 4, a mixer in which an ionic liquid, which is an absorption liquid excellent in acid gas absorption capacity and selectivity, is maintained at a predetermined temperature and at a predetermined pressure by a high-pressure pump 3. The mixed gas containing acidic gas and non-acidic gas is supplied to the mixer 5 maintained at a predetermined pressure at a predetermined pressure by the gas booster 4, and the absorbing liquid and the mixed gas are brought into contact with each other. As a result, only the acidic gas is selectively absorbed from the mixed gas at high speed and efficiently and separated from the non-acidic gas.
所定の圧力で混合器から排出された非酸性ガスを主成分とする気体と酸性ガスを含んだ吸収液とを、そのまま連続的に所定の温度に維持した気液分離器6に送り込み、該気液分離器6に設置された圧力制御弁7を通して、酸性ガスが取り除かれた非酸性ガスを所定の圧力で回収する。更に、回収された非酸性ガスを再び吸収液と接触させ、これにより残存した酸性ガスを取り除き、非酸性ガスの純度の向上を可能とする。 A gas mainly composed of non-acidic gas discharged from the mixer at a predetermined pressure and an absorbing liquid containing acidic gas are fed as they are into the gas-liquid separator 6 which is continuously maintained at a predetermined temperature. Through the pressure control valve 7 installed in the liquid separator 6, the non-acid gas from which the acid gas has been removed is recovered at a predetermined pressure. Further, the recovered non-acid gas is brought into contact with the absorbing liquid again, thereby removing the remaining acid gas, and the purity of the non-acid gas can be improved.
高純度化を図るために使用した酸性ガスを含んだ吸収液は、所定の温度に維持した気液分離器8に送り込み、該気液分離器8に設置された圧力制御弁9を通して、酸性ガスを所定の圧力で回収する。酸性ガスを回収して再生された吸収液は、吸収液タンク2に戻され、再利用される。 The absorption liquid containing the acid gas used for achieving high purity is sent to the gas-liquid separator 8 maintained at a predetermined temperature, and the acid gas passes through the pressure control valve 9 installed in the gas-liquid separator 8. Is recovered at a predetermined pressure. The absorption liquid recovered by collecting the acid gas is returned to the absorption liquid tank 2 and reused.
本発明では、混合ガスから回収した非酸性ガスと吸収液とを混合器に所定の圧力で供給して接触させることにより、酸性ガスの除去を複数回以上行うことで、回収する非酸性ガスの純度を向上させることが好適である。また、本発明では、混合器の流路が数マイクロメーターから数百マイクロメーターからなるマイクロミキサーを使用することで、高速混合を可能として、ガス分離精製効率を向上させることが好適である。 In the present invention, the non-acidic gas recovered from the mixed gas and the absorbing liquid are supplied to the mixer at a predetermined pressure and brought into contact with each other, so that the acidic gas is removed more than once, whereby the recovered non-acidic gas is recovered. It is preferable to improve the purity. In the present invention, it is preferable to improve gas separation and purification efficiency by using a micromixer having a mixer having a flow path of several micrometers to several hundred micrometers to enable high-speed mixing.
また、本発明では、吸収液に1種あるいは2種以上からなるイオン液体が用いられるが、その場合、陽イオンとして、アルキルアンモニウム、アルキルピリジニウム、アルキルピロリジニウム、アルキルホスホニウム、アルキルイミダゾリウム、あるいは、それらアルキル鎖に不飽和アルキル部位、アミノ基、エーテル基、エステル基、カルボニル基、などの官能基がある陽イオンなどを用いること、また、陰イオンとして、PF6−,BF4−,CF3SO3−,CF3CF2SO3−,(CF3SO2)2N−,(CF3CF2SO2)2N−,(CF3CO)2N−,(CF3SO2)N(COCF3)−,FSO2NSO2Fなどを用いることが好ましい。 In the present invention, one or more ionic liquids are used as the absorbing liquid. In this case, as the cation, alkyl ammonium, alkyl pyridinium, alkyl pyrrolidinium, alkyl phosphonium, alkyl imidazolium, or unsaturated alkyl moiety in their alkyl chain, an amino group, an ether group, an ester group, a carbonyl group, the like cations with a functional group such as, also, as the anion, PF 6 -, BF 4 - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, (CF 3 CO) 2 N -, (CF 3 SO 2) N (COCF 3 )-, FSO 2 NSO 2 F, or the like is preferably used.
更に、本発明では、上述のイオン液体からなる吸収液を主成分とし、CO2,SO2,SO3,H2S,NO2,CS2などの酸性ガスからなる1種あるいは2種以上を化学吸収する添加剤を加えた吸収液を用いることで、回収した複数成分からなる酸性ガスから化学吸収されていない酸性ガス成分を取り出した後、化学吸収された酸性ガスを分離することが可能である。 Furthermore, in the present invention, one or two or more kinds of acidic gas such as CO 2 , SO 2 , SO 3 , H 2 S, NO 2 , CS 2 , which are mainly composed of the above-described absorbing liquid made of ionic liquid, are used. It is possible to separate the chemically absorbed acid gas after taking out the non-chemically absorbed acid gas component from the collected multiple component acid gas by using the absorbing liquid with chemical absorbing additive. is there.
次に、本発明の装置について説明すると、本発明のガスの分離精製装置は、吸収液を収容する吸収液タンク、該吸収液と、酸性ガス及び非酸性ガスを含む混合ガスとを接触させて吸収液に酸性ガスを吸収させるための混合器、該混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための気液分離器、を有することを特徴としている。また、本発明のガスの分離精製装置は、吸収液を収容する吸収液タンク、該吸収液と、酸性ガス及び非酸性ガスを含む混合ガスとを接触させて吸収液に酸性ガスを吸収させるための混合器、該混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための第1の気液分離器、前記気液分離器から回収された酸性ガスを含んだ吸収液から酸性ガス及び吸収液を分離するための第2の気液分離器、を有することを特徴としている。 Next, the apparatus of the present invention will be described. The gas separation and purification apparatus of the present invention comprises an absorbing liquid tank containing an absorbing liquid, the absorbing liquid, and a mixed gas containing an acidic gas and a non-acidic gas in contact with each other. It has a mixer for absorbing the acid gas in the absorption liquid, and a gas-liquid separator for separating the absorption liquid discharged from the mixer and the non-acid gas from which the acid gas has been removed. . In addition, the gas separation and purification apparatus of the present invention makes the absorption liquid absorb the acidic gas by contacting the absorption liquid tank containing the absorption liquid, the absorption liquid, and the mixed gas containing acidic gas and non-acidic gas. A first gas-liquid separator for separating the absorption liquid discharged from the mixer from the non-acid gas from which the acid gas has been removed, and the acid gas recovered from the gas-liquid separator It has the 2nd gas-liquid separator for isolate | separating acidic gas and absorption liquid from the absorption liquid.
本発明では、酸性ガスを含んだ吸収液から分離し、再生した吸収液を吸収液タンクに供給する吸収液再送管を有すること、気液分離器で分離された前記酸性ガスが取り除かれた非酸性ガスを利用し、同様の処理を複数回以上行うためのガス分離系として、混合器、第1の気液分離器、第2の気液分離器、及び吸収液再送管からなるガス分離系を更に有すること、を好ましい実施の態様としている。 In the present invention, it has an absorption liquid retransmission pipe that separates the absorption liquid containing acid gas and supplies the regenerated absorption liquid to the absorption liquid tank, and the non-acid gas separated by the gas-liquid separator is removed. A gas separation system comprising a mixer, a first gas-liquid separator, a second gas-liquid separator, and an absorption liquid re-transmission pipe as a gas separation system for performing the same treatment more than once using acid gas It is a preferable embodiment to further include
二酸化炭素の分離・回収技術については、化学吸収法、吸着法、膜分離法など様々な方法により研究開発が進められており、エネルギーやコストの低減が図られている。火力発電所などの大規模固定発生源から二酸化炭素を分離・回収するプロセスでは、アルカノールアミン類やアミノ酸類を二酸化炭素吸収液として用いる化学吸収法が、現時点における実用化技術として注目され、既に商用プラントとして一部稼働している状況にある。 Research and development of carbon dioxide separation / recovery technology has been promoted by various methods such as chemical absorption, adsorption, and membrane separation, and energy and cost have been reduced. In the process of separating and recovering carbon dioxide from large-scale fixed sources such as thermal power plants, the chemical absorption method using alkanolamines and amino acids as carbon dioxide absorbing liquid has attracted attention as a practical technology at present, and has already been commercialized. A part of the plant is in operation.
しかしながら、化学吸収法は、吸収液再生コストが分離・回収コストの50%を占め、エネルギー消費が著しいという問題がある。したがって、コスト削減のため、100℃〜室温程度の廃熱源で駆動可能な低エネルギー再生型吸収液の開発が望まれている。また、これまで検討されてきた方法の多くは、二酸化炭素を常圧のガスとして回収するものである。しかし、回収した二酸化炭素を貯留・隔離する際には、得られたガスを液体あるいは超臨界状態にある高圧二酸化炭素に変換する必要があり、この過程のエネルギー消費も甚だしい、とされている。 However, the chemical absorption method has a problem that the absorption liquid regeneration cost accounts for 50% of the separation / recovery cost and the energy consumption is significant. Therefore, in order to reduce costs, development of a low energy regenerative absorbent that can be driven by a waste heat source at about 100 ° C. to room temperature is desired. Many of the methods that have been studied so far are to recover carbon dioxide as a gas under normal pressure. However, when collecting and sequestering the recovered carbon dioxide, it is necessary to convert the obtained gas into liquid or high-pressure carbon dioxide in a supercritical state, and it is said that the energy consumption in this process is significant.
本発明で提案するイオン液体によるガス分離精製法は、物理吸収を原理とし、かつ流通式ガス分離精製装置を用いて連続的プロセスで室温近辺での圧力操作のみで駆動できるため、従来の吸収液再生エネルギーコストなどを大幅に低減することが可能である。更に、イオン液体法では、回収条件を制御することで、二酸化炭素を高圧状態で回収することができ、貯留・隔離の際の圧縮エネルギーを軽減することができる。本発明者らの試算では、化学吸収法からイオン液体を用いた物理吸収法へ技術転換することにより、分離・回収におけるエネルギー消費量が50%以下に削減でき、分離・回収プロセスが占める割合は従来技術で約70%とされていることから、分離・回収から貯留・隔離までの技術全体としても約40%の低減が期待できる。 The gas separation purification method using an ionic liquid proposed in the present invention is based on the principle of physical absorption and can be driven by only a pressure operation near room temperature in a continuous process using a flow-type gas separation purification device. Renewable energy costs can be significantly reduced. Furthermore, in the ionic liquid method, by controlling the recovery conditions, carbon dioxide can be recovered in a high pressure state, and the compression energy during storage and isolation can be reduced. According to the estimation by the present inventors, by changing the technology from the chemical absorption method to the physical absorption method using ionic liquid, the energy consumption in the separation / recovery can be reduced to 50% or less, and the ratio occupied by the separation / recovery process is Since it is about 70% in the prior art, a reduction of about 40% can be expected for the entire technology from separation / recovery to storage / isolation.
水素精製技術としては、これまで、圧力スイング吸着、膜分離、深冷分離などの方法が検討されているが、高圧条件における水素精製については、ほとんど実施の事例が無い。一方、水素の貯蔵や輸送を考えた場合には、高圧水素の需要は今後益々増加すると予想される。高圧水素精製では、対象とする混合ガス中の水素分圧を低下させること無く、分離・精製を行うことが重要である。 As hydrogen purification techniques, methods such as pressure swing adsorption, membrane separation, and cryogenic separation have been studied so far, but there are almost no examples of hydrogen purification under high pressure conditions. On the other hand, when considering storage and transportation of hydrogen, the demand for high-pressure hydrogen is expected to increase in the future. In high-pressure hydrogen purification, it is important to perform separation and purification without lowering the hydrogen partial pressure in the target mixed gas.
また、圧力スイング吸着法は、現在最も実用化が進んでいるが、吸脱着において圧力操作が不連続となるため、高圧条件での水素精製に適しているとは言いがたい。また、パラジウムなどの水素透過膜を利用した分離精製法は、一般に、分離膜の前後において圧力差が生じ、供給側より精製後の水素分圧は低くなってしまう。このため、精製した水素の再圧縮が必要となり、エネルギー的に不利となる。 The pressure swing adsorption method is currently most practically used, but it is difficult to say that the pressure swing adsorption method is suitable for hydrogen purification under high pressure conditions because the pressure operation becomes discontinuous in adsorption / desorption. Further, in the separation and purification method using a hydrogen permeable membrane such as palladium, a pressure difference is generally generated before and after the separation membrane, and the hydrogen partial pressure after purification is lower than that on the supply side. This necessitates recompression of the purified hydrogen, which is disadvantageous in terms of energy.
一方、本発明で提案するイオン液体法は、これまでほとんど利用されていなかった物理吸収を原理とした分離精製法であり、イオン液体を流通式ガス分離精製装置を用いて連続プロセスで水素を含んだ混合ガスと接触させることにより、水素を吸収することなく、二酸化炭素などの酸性ガスだけを選択的に吸収して取り除くことができる。このため、水素透過膜とは異なり、水素分圧を低下させること無く、高圧水素を精製することが可能である。更に、興味深いことに、イオン液体の酸性ガスの吸収能力は、分圧で〜10MPa程度までほぼ直線的に増加し、高圧条件では水素精製効率の向上が期待される。このことは、水素精製と圧縮を同時に行えることを示唆するものであり、オンサイト型の水素ステーションを想定した場合には、装置をコンパクト化することができ、非常に有利となる。 On the other hand, the ionic liquid method proposed in the present invention is a separation / purification method based on the principle of physical absorption, which has been rarely used until now, and the ionic liquid contains hydrogen in a continuous process using a flow-type gas separation / purification device. By contacting with the mixed gas, only an acidic gas such as carbon dioxide can be selectively absorbed and removed without absorbing hydrogen. For this reason, unlike the hydrogen permeable membrane, it is possible to purify high-pressure hydrogen without reducing the hydrogen partial pressure. Furthermore, interestingly, the absorption capacity of the acidic gas of the ionic liquid increases almost linearly to about 10 MPa in partial pressure, and an improvement in hydrogen purification efficiency is expected under high pressure conditions. This suggests that hydrogen purification and compression can be performed simultaneously. When an on-site type hydrogen station is assumed, the apparatus can be made compact, which is very advantageous.
本発明により、次のような効果が奏される。
(1)流通式ガス分離精製装置を用いて連続プロセスでイオン液体による物理吸収を原理とするガス分離精製方法を提供することができる。
(2)二酸化炭素を高圧状態で回収することができ、貯留、隔離の際の圧縮エネルギーを軽減することができる。
(3)化学吸収法と比べて、分離・回収におけるエネルギー消費量を50%以下に削減することができる。
(4)水素を含んだ混合ガスの精製プロセスでは、水素分圧を低下させること無く、二酸化炭素などの酸性ガスだけを選択的に吸収して取り除くことが可能である。
(5)高圧条件では、水素精製と圧縮を同時に行うことが可能である。
(6)本発明の流通式ガス分離手段を用いることにより、粘性率が高く、ガス吸収速度が著しく小さいために、従来法では利用することが困難であったイオン液体によるガスの分離精製技術を構築し、提供することが実現できる。
The present invention has the following effects.
(1) A gas separation and purification method based on the principle of physical absorption by an ionic liquid in a continuous process using a flow-type gas separation and purification apparatus can be provided.
(2) Carbon dioxide can be recovered in a high-pressure state, and compression energy during storage and isolation can be reduced.
(3) Compared with the chemical absorption method, the energy consumption in separation / recovery can be reduced to 50% or less.
(4) In the process of purifying a mixed gas containing hydrogen, it is possible to selectively absorb and remove only an acidic gas such as carbon dioxide without reducing the hydrogen partial pressure.
(5) Under high pressure conditions, hydrogen purification and compression can be performed simultaneously.
(6) By using the flow-type gas separation means of the present invention, a gas separation / purification technique using an ionic liquid, which has been difficult to use in the conventional method because of its high viscosity and remarkably low gas absorption rate. Build and deliver.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドを吸収液として、75%の窒素と25%の二酸化炭素とからなる混合ガスから、二酸化炭素を分離吸収して窒素の回収を行った。図1に示したガス分離精製装置を用いて、上記混合ガスと吸収液とを接触させた後、気液分離器を通して、そこから回収された主成分が窒素のガスを分取して、ガスクロマトグラフィーにより組成分析を行った。 Using 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide as an absorption liquid, carbon dioxide is separated and absorbed from a mixed gas consisting of 75% nitrogen and 25% carbon dioxide to recover nitrogen. went. The gas separation / purification apparatus shown in FIG. 1 is used to bring the mixed gas into contact with the absorption liquid, and then, through the gas-liquid separator, the main component recovered from there is fractionated into nitrogen gas. The composition was analyzed by chromatography.
その結果、混合ガス中の窒素ガスの組成は75%であったが、回収された窒素ガスの組成は85%以上の純度に精製されることが分かった。一定圧力条件下で、混合器の制御温度を室温近辺で変化させても回収された窒素ガスの純度に大きな影響は観察されなかったが、気液分離器の制御温度を低くすると、窒素ガスの純度は僅かながら向上することが明らかとなった。一方、混合ガスと吸収液の圧力を増加して、ガス分離精製実験を行うことで、回収される窒素ガスの純度を低下させることなく、単位時間当たりの窒素回収量を増加することが可能なことが明らかとなった。 As a result, the composition of nitrogen gas in the mixed gas was 75%, but it was found that the composition of the recovered nitrogen gas was purified to a purity of 85% or more. Even if the control temperature of the mixer was changed near room temperature under a constant pressure condition, no significant effect was observed on the purity of the recovered nitrogen gas. However, if the control temperature of the gas-liquid separator was lowered, It became clear that purity improved slightly. On the other hand, it is possible to increase the amount of nitrogen recovered per unit time without reducing the purity of the recovered nitrogen gas by increasing the pressure of the mixed gas and the absorbing liquid and conducting the gas separation purification experiment. It became clear.
1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドを吸収液として、75%の窒素と25%の二酸化炭素とからなる混合ガスから、二酸化炭素を分離吸収したイオン液体を取り出し、吸収されたガスの回収を行った。図2に示したガス分離精製装置を用いて、上記混合ガスと吸収液とを接触し、ガスを吸収させた後、気液分離器を通して、窒素を主成分としたガスを分離し、ガスを吸収したイオン液体を取り出し、更に、気液分離器に通して減圧することで、二酸化炭素を主成分としたガスを回収した。 Using 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide as an absorbing liquid, an ionic liquid that separates and absorbs carbon dioxide is extracted from a mixed gas composed of 75% nitrogen and 25% carbon dioxide, The absorbed gas was recovered. Using the gas separation and purification apparatus shown in FIG. 2, the mixed gas and the absorbing liquid are brought into contact with each other to absorb the gas, and then the gas mainly containing nitrogen is separated through the gas-liquid separator, The absorbed ionic liquid was taken out and further passed through a gas-liquid separator to reduce the pressure, thereby recovering a gas mainly composed of carbon dioxide.
回収したガスを分取して、ガスクロマトグラフィーにより組成分析を行った。また、回収されたガスの量をフローメーターで測定した。その結果、回収されたガスの90%近くが二酸化炭素であった。一定圧力条件下で、混合器の制御温度を室温近辺で変化させても、回収された窒素ガスの純度に大きな影響は観察されなかったが、気液分離器の制御温度を低くすると、二酸化炭素の回収量は増加することが明らかとなった。一方、混合ガスと吸収液の圧力を増加して、ガス分離精製実験を行ったところ、二酸化炭素の回収量は、顕著に増加することが明らかとなった。 The collected gas was collected and subjected to composition analysis by gas chromatography. Further, the amount of the recovered gas was measured with a flow meter. As a result, nearly 90% of the recovered gas was carbon dioxide. Even if the control temperature of the mixer was changed near room temperature under a constant pressure condition, no significant effect was observed on the purity of the recovered nitrogen gas, but if the control temperature of the gas-liquid separator was lowered, carbon dioxide It has been clarified that the amount of collected increases. On the other hand, when the pressure of the mixed gas and the absorbing liquid was increased and a gas separation purification experiment was performed, it was found that the amount of carbon dioxide recovered significantly increased.
ガス分離実験装置を用いたイオン液体による二酸化炭素の分離回収実証試験を行った。 本実施例で使用した[BMIM][Tf2N]は、図5に示した通り、2段階で合成し、精製後、十分に乾燥した。図5に示した合成方法において、1段目の合成では、市販の1−メチルイミダゾール(Aldrich,特級)と1−クロロブタン(東京化成,特級)を343Kのオイルバス中で72時間加熱還流して、高粘度の黄色い液体[BMIM]Clを得た。[BMIM]Clから原料成分及び副生成物を除去するために、酢酸エチルで4,5回洗浄した後、ロータリーエバポレーターで、酢酸エチル(キシダ化学,特級)を除去した。更に、引き続き、残存した酢酸エチルと水を、真空ポンプを用いて、343Kで12時間以上乾燥し、前駆体の[BMIM]Clを調製した。 An experiment to separate and recover carbon dioxide with ionic liquid using a gas separation experimental apparatus was conducted. [BMIM] [Tf 2 N] used in this example was synthesized in two stages as shown in FIG. 5, and was sufficiently dried after purification. In the synthesis method shown in FIG. 5, in the first stage synthesis, commercially available 1-methylimidazole (Aldrich, special grade) and 1-chlorobutane (Tokyo Kasei, special grade) are heated and refluxed for 72 hours in a 343K oil bath. A highly viscous yellow liquid [BMIM] Cl was obtained. In order to remove the raw material components and by-products from [BMIM] Cl, after washing 4 or 5 times with ethyl acetate, ethyl acetate (Kishida Kagaku, special grade) was removed with a rotary evaporator. Further, the remaining ethyl acetate and water were dried at 343 K for 12 hours or more using a vacuum pump to prepare a precursor [BMIM] Cl.
2段目の合成では、市販のLiTf2N(関東化学,素材研究用)を、超純水に溶解し、合成したほぼ等量の[BMIM]Clに、氷浴下でゆっくりと滴下して、十分に撹拌した。上層の水溶液をデカントし、下層のイオン液体を分取した。合成した[BMIM][Tf2N]中に残存したLiClを取り除くために、超純水での洗浄を7,8回繰り返した。その際、洗浄液に、AgNO3を滴下して、AgCl由来の白色沈殿が生成しないこと、ならびに、洗浄液が中性であることを確認した。使用前に、精製した[BMIM][Tf2N]を、真空ポンプを用いて、343Kで30時間以上乾燥して、十分に脱水を行なった。 In the second-stage synthesis, commercially available LiTf 2 N (Kanto Chemical, for materials research) is dissolved in ultrapure water and slowly added dropwise to an approximately equal amount of [BMIM] Cl synthesized in an ice bath. Stir well. The upper aqueous solution was decanted and the lower ionic liquid was fractionated. In order to remove LiCl remaining in the synthesized [BMIM] [Tf 2 N], washing with ultrapure water was repeated 7 or 8 times. At that time, AgNO 3 was dropped into the cleaning liquid to confirm that no white precipitate derived from AgCl was generated and that the cleaning liquid was neutral. Prior to use, the purified [BMIM] [Tf 2 N] was dried at 343 K for 30 hours or more using a vacuum pump to be sufficiently dehydrated.
精製した[BMIM][Tf2N]の1H及び13C NMRのスペクトルを、図6及び図7に示す。1H及び13C NMRどちらの場合も、スペクトルに観察されるピークは、[BMIM][Tf2N]に帰属され、顕著な不純物などは検出されなかった。また、二酸化炭素分離回収実験の使用前に、[BMIM][Tf2N]中に含まれる水分量を、電量型カール・フィッシャー水分滴定計(京都電子,MKC−510)で測定した。その結果、どのサンプルにおいても、水分量は、質量分率で〜30ppm以下であることが確認された。 The 1 H and 13 C NMR spectra of the purified [BMIM] [Tf 2 N] are shown in FIGS. In both cases of 1 H and 13 C NMR, the peak observed in the spectrum was attributed to [BMIM] [Tf 2 N], and no significant impurities were detected. In addition, before using the carbon dioxide separation and recovery experiment, the amount of water contained in [BMIM] [Tf 2 N] was measured with a coulometric Karl Fischer moisture titrator (Kyoto Electronics, MKC-510). As a result, it was confirmed that the moisture content in each sample was ˜30 ppm or less in terms of mass fraction.
一方、上記イオン液体[BMIM][Tf2N]と比較するために、ポリエチレングリコール400,PEG400(キシダ化学、1級、分子量380〜420)を用いて、同様に、二酸化炭素の分離回収実験を行った。PEG400は、モレキュラーシーブス4A(Aldrich)で乾燥後、フィルターを通したものを使用した。イオン液体と同様に、電量型カール・フィッシャー水分滴定計で、水分量を測定し、〜300ppm以下であることを確認した。 On the other hand, in order to compare with the ionic liquid [BMIM] [Tf 2 N], the separation and recovery experiment of carbon dioxide was similarly conducted using polyethylene glycol 400 and PEG 400 (Kishida Chemical Co., Ltd., first grade, molecular weight 380 to 420). went. PEG400 used what dried the molecular sieves 4A (Aldrich), and let the filter pass. Similar to the ionic liquid, the water content was measured with a coulometric Karl Fischer moisture titrator and confirmed to be ˜300 ppm.
本実施例のガス分離回収実験で使用した実験装置の概略を、図8に示す。ガス分離実験装置は、以下の1〜4の4つの主要部分からなる。
1.送液部
2台のシリンジポンプ(Isco, Model 206D)から構成され、標準ガス(図中、ポンプB)と吸収液(図中、ポンプA)とを、定量的な流量で送液する。圧縮などによる温度揺らぎに起因して流量が変化しないように、25℃に一定になるよう制御した。
2.気液混合ならびに分離部
本実施例では、1)チューブ型気液分離器と、2)大容量型気液混合分離器、の2種類の容器を用いた。
An outline of the experimental apparatus used in the gas separation and recovery experiment of this example is shown in FIG. The gas separation experimental apparatus is composed of the following four main parts 1 to 4.
1. Liquid feeding part It is composed of two syringe pumps (Isco, Model 206D), and feeds standard gas (pump B in the figure) and absorption liquid (pump A in the figure) at a quantitative flow rate. The flow rate was controlled to be constant at 25 ° C. so that the flow rate did not change due to temperature fluctuation due to compression or the like.
2. Gas-Liquid Mixing and Separation Unit In this example, two types of containers were used: 1) a tube-type gas-liquid separator and 2) a large-capacity gas-liquid mixture separator.
1)チューブ型気液分離器
混合器にT字型の構造を有する三方継手を用い、一方からは標準ガスを、他方からは吸収液を任意の流量で送液することで、2つの流体を混合した。T字部で混合された二つの流体は、気液の不均一相を形成したまま、配管(GLサイエンス、SUS 316チューブ、外径1/16インチ、内径約1mmφ、長さ約2m)内を通過することで、気液平衡状態へと近づき、やがて分離器に運び込まれる。図9に、チューブ型気液分離器の概略を示す。
1) Tube-type gas-liquid separator A three-way joint having a T-shaped structure is used for the mixer, and the standard gas is sent from one side and the absorbing liquid is sent from the other side at an arbitrary flow rate. Mixed. The two fluids mixed at the T-shaped part are in a pipe (GL Science, SUS 316 tube, outer diameter 1/16 inch, inner diameter about 1 mmφ, length about 2 m) while forming a heterogeneous gas-liquid phase. By passing, it approaches a vapor-liquid equilibrium state and is eventually carried into the separator. FIG. 9 shows an outline of a tube type gas-liquid separator.
本体は、外径12.7mmφ、内径8.8mmφ、内容積約3.6cm3のサファイアチューブからなり、分離器内部を観察可能となっている。混合器から分離器上部を通じて送液された標準ガスと吸収液は、分離器内部で所定時間保持される。その後、二酸化炭素を含んだ吸収液は、分離器下部の出口から、二酸化炭素が取り除かれたガスは、分離器上部の出口から排出される。なお、混合部に至るラインには、予熱部が設けられ、混合器ならびに混合器から気液分離器までの配管は、恒温槽内に設置され、所定の温度に制御されている。更に、気液分離器は、温調ジャケットで包まれ、独立して温度制御できる構造となっている。 The main body is composed of a sapphire tube having an outer diameter of 12.7 mmφ, an inner diameter of 8.8 mmφ, and an internal volume of about 3.6 cm 3 , and the inside of the separator can be observed. The standard gas and the absorption liquid sent from the mixer through the upper part of the separator are held for a predetermined time in the separator. Thereafter, the absorption liquid containing carbon dioxide is discharged from the outlet at the lower part of the separator, and the gas from which carbon dioxide has been removed is discharged from the outlet at the upper part of the separator. The line leading to the mixing section is provided with a preheating section, and the mixer and the piping from the mixer to the gas-liquid separator are installed in a thermostatic bath and controlled to a predetermined temperature. Furthermore, the gas-liquid separator is wrapped with a temperature control jacket and has a structure capable of controlling the temperature independently.
2)大容量型気液混合分離器
一方、上述した実験装置では、吸収液の流量が大きい時に、再現性のある実験結果を得ることが困難であったため、容積が約30cm3と比較的大きなサファイア窓付の高圧セルを、気液混合ならびに分離のための一体型容器として利用した。図10に、大容量型気液混合分離器の概要を示す。この場合、予熱部で所定の温度に制御された標準ガス及び吸収液は、配管を通して高圧セル内の下部ならびに上部にそれぞれ運び込まれる。マグネチックスターラーを用いて所定の時間混合して、気液の平衡状態を達成した後、チューブ型気液分離器の場合と同様に、二酸化炭素を取り除いたガスと、二酸化炭素を含んだ吸収液とを、それぞれ上部ならびに下部から別々に分取する。
2) Large-capacity gas-liquid mixing separator On the other hand, in the above-described experimental apparatus, it was difficult to obtain a reproducible experimental result when the flow rate of the absorbing liquid was large, so the volume was relatively large at about 30 cm 3. A high pressure cell with a sapphire window was used as an integrated container for gas-liquid mixing and separation. FIG. 10 shows an outline of a large-capacity gas-liquid mixing separator. In this case, the standard gas and the absorbing liquid that are controlled to a predetermined temperature by the preheating unit are respectively carried to the lower part and the upper part in the high-pressure cell through the piping. After mixing for a predetermined time using a magnetic stirrer and achieving a gas-liquid equilibrium state, a gas from which carbon dioxide has been removed and an absorbing liquid containing carbon dioxide, as in the case of a tube-type gas-liquid separator Are separated separately from the top and bottom respectively.
なお、図8に示した通り、一段目の気液分離器で分取した吸収液(二酸化炭素を溶解したもの)は、再度気液分離器へと送り込まれる。この二段目の気液分離器も高圧条件に耐え得る構造のセルとしたが、実際の実験では、常圧において、吸収液から二酸化炭素の回収を行なった。 In addition, as shown in FIG. 8, the absorption liquid (the thing which melt | dissolved the carbon dioxide) fractionated with the 1st step | paragraph gas-liquid separator is sent again to a gas-liquid separator. This second-stage gas-liquid separator is also a cell that can withstand high-pressure conditions, but in actual experiments, carbon dioxide was recovered from the absorbent at normal pressure.
3.圧力制御部
一段目の気液分離器の上部から取り出される精製ガスのラインは、配管(GLサイエンス、SUS 316チューブ、外径1/16インチ、内径約1mmφ)を通じて背圧弁(JASCO、880−81)に接続した。また、一段目の気液分離器の下部から取り出される二酸化炭素を溶解した吸収液のラインは、減圧弁(TESCOM、44−1164−24−093)を通して二段目の気液分離器に接続した。二段目の気液分離器の下流側には一段目と同様に背圧弁(JASCO、880−81)を設置した。
3. Pressure control unit A purified gas line taken out from the upper part of the first stage gas-liquid separator is connected to a back pressure valve (JASCO, 880-81) through a pipe (GL Science, SUS 316 tube, outer diameter 1/16 inch, inner diameter about 1 mmφ). ). The absorption liquid line in which carbon dioxide is taken out from the lower part of the first stage gas-liquid separator is connected to the second stage gas-liquid separator through a pressure reducing valve (TESCOM, 44-1164-24-093). . A back pressure valve (JASCO, 880-81) was installed on the downstream side of the second stage gas-liquid separator in the same manner as the first stage.
4.ガス分析部
背圧弁を通過したガスを常圧に戻した後、液体トラップを介して、ガスクロマトグラフ分析装置(Shimadzu,GC−8A)に接続した。分析条件は、以下の通りである。なお、3種類の標準ガス(GLサイエンス、窒素ベース二酸化炭素標準ガス、5.07%、13.20%、24.45%)を用いて、分析装置から得られる二酸化炭素のピーク面積と二酸化炭素濃度との関係について、あらかじめ校正曲線を求め、精製ガス中の二酸化炭素濃度を決定した(図11)。また、ガスクロマトグラフィーの分析結果の一例を図12に示す。
4). Gas analyzer The gas that passed through the back pressure valve was returned to normal pressure, and then connected to a gas chromatograph analyzer (Shimadzu, GC-8A) via a liquid trap. The analysis conditions are as follows. The peak area and carbon dioxide of carbon dioxide obtained from the analyzer using three types of standard gases (GL Science, nitrogen-based carbon dioxide standard gas, 5.07%, 13.20%, 24.45%) Regarding the relationship with the concentration, a calibration curve was obtained in advance, and the carbon dioxide concentration in the purified gas was determined (FIG. 11). An example of the analysis result of gas chromatography is shown in FIG.
ガスクロマトグラフィーの分析条件は、以下の通りとした。
キャリアガス:He(東京高圧、99.995%)
キャリアガス流量:90mL/min
注入口温度:373K
カラム温度:353K
カラム:Shamadzu Shincarbon ST
The analysis conditions for gas chromatography were as follows.
Carrier gas: He (Tokyo High Pressure, 99.995%)
Carrier gas flow rate: 90mL / min
Inlet temperature: 373K
Column temperature: 353K
Column: Shimadzu Shincarbon ST
ガス分離回収実験は、以下の操作及び実験手順で行った。
十分に乾燥した[BMIM][Tf2N]あるいはポリエチレングリコール400をグローブボックス中で密閉容器に移し替え、アルゴンガスを通気した後、シリンジポンプAに充填した。同様に、何度かパージ操作を行なった後、標準ガス(東京高圧、24.45%CO2+75.55%N2)をシリンジポンプBに所定の圧力で充填した。その後、ガス側のラインのバルブ3及び4を順次開け、系内を所定の圧力に保った。シリンジポンプBを所定の流量で稼動し、背圧弁の調整を行なった。
The gas separation / recovery experiment was performed by the following operation and experimental procedure.
Fully dried [BMIM] [Tf 2 N] or polyethylene glycol 400 was transferred to a sealed container in a glove box, and argon gas was passed through, and then syringe pump A was filled. Similarly, after purging several times, a standard gas (Tokyo high pressure, 24.45% CO 2 + 75.55% N 2 ) was filled into syringe pump B at a predetermined pressure. Thereafter, the valves 3 and 4 on the gas side line were sequentially opened to maintain a predetermined pressure in the system. The syringe pump B was operated at a predetermined flow rate, and the back pressure valve was adjusted.
ガスの流通が安定するのを待った後、ほぼ同程度の圧力にしておいた吸収液側のラインのバルブ7及び8を開け、シリンジポンプAを所定の流量で稼動した。気液分離器に十分な量(半分以上)の吸収液が送り込まれた後、気泡が排出されるのを確認して、減圧弁9を調整して、二酸化炭素を溶解した吸収液を連続的に排出した。 After waiting for the gas flow to stabilize, the valves 7 and 8 of the line on the absorbent side, which had been set to approximately the same pressure, were opened, and the syringe pump A was operated at a predetermined flow rate. After a sufficient amount (more than half) of the absorption liquid has been sent to the gas-liquid separator, it is confirmed that bubbles are discharged, and the pressure reducing valve 9 is adjusted to continuously absorb the carbon dioxide-dissolved absorption liquid. Discharged.
大容量型の気液混合分離器を用いた場合には、マグネチックスターラーにより強制撹拌を行なった。標準ガスならびに吸収液を一定流量で送液し続け、精製されたガスの二酸化炭素濃度をガスクロマトグラフィーで逐次分析して、一定値を示すことを確認し、系内が平衡状態に達したものとみなした。 When a large-capacity gas-liquid mixing separator was used, forced stirring was performed with a magnetic stirrer. The standard gas and absorption liquid are continuously sent at a constant flow rate, and the carbon dioxide concentration of the purified gas is sequentially analyzed by gas chromatography to confirm that it shows a constant value, and the system has reached an equilibrium state. Considered.
ガス分離回収実験は、混合器、気液分離器ともに25±0.2℃に固定して、主に2MPaの高圧条件において、標準ガスと吸収液の流量を0.05〜1mL/minと変化させて行なった。ガス分離回収試験の実験条件を、表1に、一覧表として示す。 In the gas separation and recovery experiment, both the mixer and the gas-liquid separator were fixed at 25 ± 0.2 ° C, and the flow rates of the standard gas and the absorbing liquid were changed from 0.05 to 1 mL / min, mainly under high pressure conditions of 2 MPa. I did it. The experimental conditions for the gas separation recovery test are shown in Table 1 as a list.
25℃、2MPaにおいて、PEG400を吸収液として流量を変化させて行なったガス分離回収実験の結果を表2に示し、[BMIM][Tf2N]を吸収液として用いた実験結果を表3に示す。また、25℃において、PEG400を吸収液として用い、流量比(吸収液/ガス)を0.5と固定して、圧力を変化させたガス分離回収実験の結果を表4に示した。 Table 2 shows the results of gas separation and recovery experiments conducted by changing the flow rate using PEG400 as an absorbing liquid at 25 ° C. and 2 MPa, and Table 3 shows the experimental results using [BMIM] [Tf 2 N] as an absorbing liquid. Show. Table 4 shows the results of a gas separation and recovery experiment in which PEG400 was used as the absorbing liquid at 25 ° C., the flow rate ratio (absorbing liquid / gas) was fixed at 0.5, and the pressure was changed.
PEG400及び[BMIM][Tf2N]どちらの場合も、ガスの流量に対して吸収液の流量を増加していくと、二酸化炭素の濃度が減少していくことが観察された。これは、ガス流量が大きい場合には、吸収液の溶解量に比べて、標準ガス中に含まれる二酸化炭素量が多く、全ての二酸化炭素を吸収するのが困難であるためと考えられる。精製したガス中に含まれる二酸化炭素濃度を流量比(吸収液/ガス)に対して、図9及び10にプロットして示した。 In both cases of PEG400 and [BMIM] [Tf 2 N], it was observed that the concentration of carbon dioxide decreased as the flow rate of the absorbing solution was increased relative to the flow rate of the gas. This is presumably because when the gas flow rate is large, the amount of carbon dioxide contained in the standard gas is larger than the dissolved amount of the absorbing solution, and it is difficult to absorb all the carbon dioxide. The concentration of carbon dioxide contained in the purified gas is plotted in FIGS. 9 and 10 with respect to the flow rate ratio (absorbent / gas).
図から明らかなように、流量比が〜0.5近くなるまで、二酸化炭素濃度は急激に減少する。その後、二酸化炭素濃度の減少は緩やかに推移する。25℃、2MPaの標準ガス(24.45%CO2+75.55%N2)中に含まれる二酸化炭素の体積モル濃度は、〜0.2moldm−3程度であり、二酸化炭素分圧〜0.5MPaにおける吸収液の二酸化炭素の溶解量([BMIM][Tf2N]では、〜0.5moldm−3程度)から考えて、この結果は、非常に妥当であると考えられる。 As is apparent from the figure, the carbon dioxide concentration decreases sharply until the flow rate ratio approaches -0.5. After that, the decrease in carbon dioxide concentration has been moderate. The volume molar concentration of carbon dioxide contained in the standard gas (24.45% CO 2 + 75.55% N 2 ) at 25 ° C. and 2 MPa is about 0.2 moldm −3 , and the partial pressure of carbon dioxide is about 0.00. Considering from the amount of carbon dioxide dissolved in the absorbing solution at 5 MPa (in the case of [BMIM] [Tf 2 N], about 0.5 moldm −3 ), this result is considered to be very reasonable.
興味深いことは、PEG400に比べて、[BMIM][Tf2N]では、流量比〜0.5以下の領域での二酸化炭素濃度の減少の傾きが大きいこと、また、流量比を大きくした時に達する二酸化炭素の濃度が非常に小さいこと、である。PEG400を吸収液として用いた場合には、元々24.45%あった二酸化炭素が、〜9%まで取り除かれ、〜15%(全体の約60%)の二酸化炭素を分離回収することができた。 Interestingly, compared to PEG400, [BMIM] [Tf 2 N] has a larger slope of decrease in carbon dioxide concentration in the region where the flow rate ratio is 0.5 or less, and is reached when the flow rate ratio is increased. The concentration of carbon dioxide is very small. When PEG400 was used as an absorbing solution, carbon dioxide originally 24.45% was removed to -9%, and -15% (about 60% of the total) of carbon dioxide could be separated and recovered. .
一方、[BMIM][Tf2N]を吸収液として用いた場合には、二酸化炭素を、〜4.5%まで減らすことができ、全体の80%を超える二酸化炭素を容易に分離回収することが可能であった。すなわち、[BMIM][Tf2N]を用いると、同条件において、PEG400よりも、二酸化炭素を30%以上効率良く分離回収することができた。 On the other hand, when [BMIM] [Tf 2 N] is used as the absorbing liquid, carbon dioxide can be reduced to ˜4.5%, and more than 80% of the total carbon dioxide can be easily separated and recovered. Was possible. That is, when [BMIM] [Tf 2 N] was used, carbon dioxide could be separated and recovered more efficiently by 30% or more than PEG400 under the same conditions.
この結果は、イオン液体の単位体積当りの二酸化炭素吸収能力が非常に優れているために他ならない。また、表4に示した通り、PEG400を用いた予備的な実験において、1MPaで二酸化炭素を分離回収することが可能であることが示され、圧縮エネルギーがより低い条件でも、イオン液体を用いた物理吸収法は有効であることが示唆されている。 This result is none other than the excellent carbon dioxide absorption capacity per unit volume of the ionic liquid. In addition, as shown in Table 4, in a preliminary experiment using PEG 400, it was shown that carbon dioxide can be separated and recovered at 1 MPa, and an ionic liquid was used even under a lower compression energy. The physical absorption method has been suggested to be effective.
以上詳述したように、本発明は、ガス分離精製ならびに回収方法及びその装置に係るものであり、本発明により、イオン液体による物理吸収を原理とする流通式ガス分離装置を用いた連続プロセスによるガス分離精製方法を提供することができる。本発明により、二酸化炭素を高圧状態で回収することができ、貯留、隔離の際の圧縮エネルギーを軽減することができる。本発明は、化学吸収法と比べて、分離・回収におけるエネルギー消費量を50%以下に削減することができる。本発明は、酸性ガスとH2などの非酸性ガスを分離して、それぞれを回収することを可能とする連続プロセスによるガスの分離精製方法と回収方法及びその装置を提供するものとして有用である。 As described above in detail, the present invention relates to a gas separation purification and recovery method and apparatus, and according to the present invention, by a continuous process using a flow-type gas separation apparatus based on the principle of physical absorption by an ionic liquid. A gas separation and purification method can be provided. According to the present invention, carbon dioxide can be recovered in a high pressure state, and the compression energy during storage and isolation can be reduced. The present invention can reduce the energy consumption in separation / recovery to 50% or less as compared with the chemical absorption method. INDUSTRIAL APPLICABILITY The present invention is useful as a gas separation / purification method and recovery method by a continuous process that makes it possible to separate an acid gas and a non-acid gas such as H 2 and recover each of them. .
Claims (13)
(1)酸性ガス及び非酸性ガスを含む混合ガスと吸収液とを、所定の温度に維持した混合器に所定の圧力で供給し、吸収液に混合ガスを接触させることにより、混合ガスから酸性ガスを吸収させる工程、及び、
(2)前記混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程、を含むガスの分離精製方法。 A method of separating and purifying a mixed gas containing an acidic gas and a non-acidic gas using an absorption liquid composed of an ionic liquid in a continuous process using a flow-type apparatus,
(1) A mixed gas containing an acidic gas and a non-acidic gas and an absorbing liquid are supplied to a mixer maintained at a predetermined temperature at a predetermined pressure, and the mixed gas is brought into contact with the absorbing liquid, whereby the mixed gas is acidic. Absorbing gas, and
(2) A step of feeding the absorption liquid discharged from the mixer and the non-acid gas from which the acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure. , A method for separating and purifying gas.
前記混合器から排出された吸収液と残存した酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程とを含む、請求項1〜3のいずれかに記載のガスの分離精製方法。 By utilizing the recovered non-acid gas, supplying the non-acid gas and the absorbing liquid to the mixer maintained at a predetermined temperature at a predetermined pressure, and bringing the non-acid gas into contact with the absorbing liquid, Absorbing the remaining acidic gas in the
A step of feeding the absorption liquid discharged from the mixer and the non-acid gas from which the remaining acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure; The gas separation and purification method according to any one of claims 1 to 3, further comprising:
前記混合器から排出された吸収液と残存した酸性ガスが取り除かれた非酸性ガスとを、所定の温度に維持した気液分離器に送り込み、非酸性ガスを所定の圧力で回収する工程と、
前記気液分離器から回収された酸性ガスを含んだ吸収液を、所定の温度に維持した第2の気液分離器に送り込み、酸性ガスを所定の圧力で回収するとともに、吸収液を再生する工程とを含む、請求項1〜3のいずれかに記載のガスの分離精製方法。 By utilizing the recovered non-acid gas, supplying the non-acid gas and the absorbing liquid to the mixer maintained at a predetermined temperature at a predetermined pressure, and bringing the non-acid gas into contact with the absorbing liquid, Absorbing the acid gas remaining in the
Sending the absorption liquid discharged from the mixer and the non-acid gas from which the remaining acid gas has been removed to a gas-liquid separator maintained at a predetermined temperature, and recovering the non-acid gas at a predetermined pressure;
The absorption liquid containing the acid gas recovered from the gas-liquid separator is sent to the second gas-liquid separator maintained at a predetermined temperature, and the acid gas is recovered at a predetermined pressure, and the absorption liquid is regenerated. The method for separating and purifying gas according to any one of claims 1 to 3, comprising a step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008119322A JP5311543B2 (en) | 2007-05-02 | 2008-04-30 | Gas separation purification and recovery method and apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007121980 | 2007-05-02 | ||
JP2007121980 | 2007-05-02 | ||
JP2008119322A JP5311543B2 (en) | 2007-05-02 | 2008-04-30 | Gas separation purification and recovery method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008296211A true JP2008296211A (en) | 2008-12-11 |
JP5311543B2 JP5311543B2 (en) | 2013-10-09 |
Family
ID=40170236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008119322A Expired - Fee Related JP5311543B2 (en) | 2007-05-02 | 2008-04-30 | Gas separation purification and recovery method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5311543B2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010162516A (en) * | 2009-01-19 | 2010-07-29 | Koei Chem Co Ltd | Method for producing ionic liquid having low water content |
JP2010248052A (en) * | 2009-04-20 | 2010-11-04 | National Institute Of Advanced Industrial Science & Technology | Method for separating and recovering carbon dioxide by physical absorption method using ionic liquid |
DE102011004796A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Emission control device for absorbing particular component or components in exhaust gas of internal combustion engine, comprises exhaust gas contact producer, which is provided at exhaust tube of internal combustion engine |
DE102011004792A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Nitrogen oxide elimination system for absorbing and eliminating nitrogen oxide in exhaust gas of internal combustion engine, comprises nitrogen oxide elimination unit, which holds nitrogen oxide absorption fluid for absorbing nitrogen oxide |
DE102011004795A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Abnormality diagnosis device for use in emission control device of combustion engine in car, has determining units for determining whether abnormality is present in cleaning function of control devices based on acquisition value of sensors |
JP2011251240A (en) * | 2010-06-01 | 2011-12-15 | Jfe Steel Corp | Method for separating gas by physical absorption method |
JP2012020221A (en) * | 2010-07-14 | 2012-02-02 | Osaka Gas Co Ltd | Carbon dioxide absorption method |
JP2012055785A (en) * | 2010-09-03 | 2012-03-22 | National Institute Of Advanced Industrial Science & Technology | Environment cleaning method using ionic liquid, and apparatus thereof |
CN102441312A (en) * | 2010-10-13 | 2012-05-09 | 北京化工大学 | Recyclable ionic liquid type carbon dioxide absorbent and preparation method thereof |
JP2012170842A (en) * | 2011-02-17 | 2012-09-10 | National Institute Of Advanced Industrial Science & Technology | Low volatile solution absorbing carbon dioxide and gas separation method |
JP2012219018A (en) * | 2011-04-04 | 2012-11-12 | Asahi Kasei Corp | Phosphorus atom-containing ionic liquid |
JP2012241717A (en) * | 2011-05-13 | 2012-12-10 | Linde Ag | Method and apparatus for compressing gaseous medium |
JP2013542056A (en) * | 2010-09-03 | 2013-11-21 | リサーチ・トライアングル・インスティチュート | Renewable ionic liquid solvent for acid-gas separation |
US8603422B2 (en) | 2011-04-08 | 2013-12-10 | Denso Corporation | Gas separation and recovery apparatus and gas separation and recovery method |
WO2014178991A1 (en) * | 2013-04-30 | 2014-11-06 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
WO2015002054A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社神戸製鋼所 | Separation method and separation device |
WO2015001989A1 (en) * | 2013-07-04 | 2015-01-08 | 株式会社神戸製鋼所 | Absorption method and absorption device |
JP2015167920A (en) * | 2014-03-07 | 2015-09-28 | 株式会社デンソー | Gas separator and battery system with gas separator |
JP2016013551A (en) * | 2009-06-25 | 2016-01-28 | ファオテーウー ホールディング ゲーエムベーハーVTU Holding GmbH | Method of and device for use of ionic liquid for sorption of gas |
CN105289185A (en) * | 2015-11-25 | 2016-02-03 | 潘小军 | Multi-flow field absorption reaction apparatus |
JP2016032779A (en) * | 2014-07-31 | 2016-03-10 | 株式会社神戸製鋼所 | Component movement treatment method and component movement treatment device |
US9321005B2 (en) | 2013-04-30 | 2016-04-26 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
US9321004B2 (en) | 2013-04-30 | 2016-04-26 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
JP2016526477A (en) * | 2013-06-14 | 2016-09-05 | イオナダ インコーポレイテッド | Membrane-based exhaust gas cleaning method and system |
CN115389210A (en) * | 2022-10-27 | 2022-11-25 | 四川新川航空仪器有限责任公司 | Oil-gas simulation mechanism for oil-gas separation performance evaluation test |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02144115A (en) * | 1984-05-25 | 1990-06-01 | Mobil Oil Corp | Method for selectively removing hydrogen sulfide from high pressure gas stream |
JPH09155140A (en) * | 1995-12-05 | 1997-06-17 | Showa Denko Kk | Separation method of hydrogen chloride and pentafluoroethane |
JP2006305544A (en) * | 2004-07-28 | 2006-11-09 | Mitsubishi Materials Corp | Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification |
JP2007105668A (en) * | 2005-10-14 | 2007-04-26 | Mitsubishi Chemicals Corp | Gas-liquid reaction method and apparatus therefor |
-
2008
- 2008-04-30 JP JP2008119322A patent/JP5311543B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02144115A (en) * | 1984-05-25 | 1990-06-01 | Mobil Oil Corp | Method for selectively removing hydrogen sulfide from high pressure gas stream |
JPH09155140A (en) * | 1995-12-05 | 1997-06-17 | Showa Denko Kk | Separation method of hydrogen chloride and pentafluoroethane |
JP2006305544A (en) * | 2004-07-28 | 2006-11-09 | Mitsubishi Materials Corp | Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification |
JP2007105668A (en) * | 2005-10-14 | 2007-04-26 | Mitsubishi Chemicals Corp | Gas-liquid reaction method and apparatus therefor |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010162516A (en) * | 2009-01-19 | 2010-07-29 | Koei Chem Co Ltd | Method for producing ionic liquid having low water content |
JP2010248052A (en) * | 2009-04-20 | 2010-11-04 | National Institute Of Advanced Industrial Science & Technology | Method for separating and recovering carbon dioxide by physical absorption method using ionic liquid |
JP2016013551A (en) * | 2009-06-25 | 2016-01-28 | ファオテーウー ホールディング ゲーエムベーハーVTU Holding GmbH | Method of and device for use of ionic liquid for sorption of gas |
DE102011004796A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Emission control device for absorbing particular component or components in exhaust gas of internal combustion engine, comprises exhaust gas contact producer, which is provided at exhaust tube of internal combustion engine |
DE102011004792A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Nitrogen oxide elimination system for absorbing and eliminating nitrogen oxide in exhaust gas of internal combustion engine, comprises nitrogen oxide elimination unit, which holds nitrogen oxide absorption fluid for absorbing nitrogen oxide |
DE102011004795A1 (en) | 2010-02-26 | 2011-09-01 | Denso Corporation | Abnormality diagnosis device for use in emission control device of combustion engine in car, has determining units for determining whether abnormality is present in cleaning function of control devices based on acquisition value of sensors |
DE102011004795B4 (en) * | 2010-02-26 | 2017-07-13 | Denso Corporation | Anomaly diagnosis device for an exhaust gas purification device |
JP2011251240A (en) * | 2010-06-01 | 2011-12-15 | Jfe Steel Corp | Method for separating gas by physical absorption method |
JP2012020221A (en) * | 2010-07-14 | 2012-02-02 | Osaka Gas Co Ltd | Carbon dioxide absorption method |
JP2013542056A (en) * | 2010-09-03 | 2013-11-21 | リサーチ・トライアングル・インスティチュート | Renewable ionic liquid solvent for acid-gas separation |
US9707510B2 (en) | 2010-09-03 | 2017-07-18 | Research Triangle Institute | Regenerable solvent mixtures for acid-gas separation |
US10549233B2 (en) | 2010-09-03 | 2020-02-04 | Research Triangle Institute | Regenerable solvent mixtures for acid-gas separation |
US9839875B2 (en) | 2010-09-03 | 2017-12-12 | Research Triangle Institute | Regenerable solvent mixtures for acid-gas separation |
JP2012055785A (en) * | 2010-09-03 | 2012-03-22 | National Institute Of Advanced Industrial Science & Technology | Environment cleaning method using ionic liquid, and apparatus thereof |
CN102441312A (en) * | 2010-10-13 | 2012-05-09 | 北京化工大学 | Recyclable ionic liquid type carbon dioxide absorbent and preparation method thereof |
JP2012170842A (en) * | 2011-02-17 | 2012-09-10 | National Institute Of Advanced Industrial Science & Technology | Low volatile solution absorbing carbon dioxide and gas separation method |
JP2012219018A (en) * | 2011-04-04 | 2012-11-12 | Asahi Kasei Corp | Phosphorus atom-containing ionic liquid |
US8603422B2 (en) | 2011-04-08 | 2013-12-10 | Denso Corporation | Gas separation and recovery apparatus and gas separation and recovery method |
JP2012241717A (en) * | 2011-05-13 | 2012-12-10 | Linde Ag | Method and apparatus for compressing gaseous medium |
WO2014178991A1 (en) * | 2013-04-30 | 2014-11-06 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
US9321005B2 (en) | 2013-04-30 | 2016-04-26 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
US9321004B2 (en) | 2013-04-30 | 2016-04-26 | Uop Llc | Mixtures of physical absorption solvents and ionic liquids for gas separation |
JP2016526477A (en) * | 2013-06-14 | 2016-09-05 | イオナダ インコーポレイテッド | Membrane-based exhaust gas cleaning method and system |
KR101900140B1 (en) * | 2013-07-04 | 2018-09-18 | 가부시키가이샤 고베 세이코쇼 | Absorption method and absorption device |
US9914089B2 (en) | 2013-07-04 | 2018-03-13 | Kobe Steel, Ltd. | Absorption method and absorption device |
CN105339072A (en) * | 2013-07-04 | 2016-02-17 | 株式会社神户制钢所 | Absorption method and absorption device |
JP2015013247A (en) * | 2013-07-04 | 2015-01-22 | 株式会社神戸製鋼所 | Absorption method and absorption apparatus using minute flow passage |
CN105339072B (en) * | 2013-07-04 | 2017-08-15 | 株式会社神户制钢所 | Absorption process and absorption plant |
WO2015001989A1 (en) * | 2013-07-04 | 2015-01-08 | 株式会社神戸製鋼所 | Absorption method and absorption device |
JP2015013261A (en) * | 2013-07-05 | 2015-01-22 | 株式会社神戸製鋼所 | Separation method and separation device |
US10413861B2 (en) | 2013-07-05 | 2019-09-17 | Kobe Steel, Ltd. | Separation method and separation device |
WO2015002054A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社神戸製鋼所 | Separation method and separation device |
JP2015167920A (en) * | 2014-03-07 | 2015-09-28 | 株式会社デンソー | Gas separator and battery system with gas separator |
KR20170021866A (en) * | 2014-07-31 | 2017-02-28 | 가부시키가이샤 고베 세이코쇼 | Component transfer processing method and component transfer processing device |
JP2016032779A (en) * | 2014-07-31 | 2016-03-10 | 株式会社神戸製鋼所 | Component movement treatment method and component movement treatment device |
KR101950614B1 (en) * | 2014-07-31 | 2019-02-20 | 가부시키가이샤 고베 세이코쇼 | Component transfer processing method and component transfer processing device |
US10525405B2 (en) | 2014-07-31 | 2020-01-07 | Kobe Steel, Ltd. | Component transfer processing method and component transfer processing device |
CN105289185A (en) * | 2015-11-25 | 2016-02-03 | 潘小军 | Multi-flow field absorption reaction apparatus |
CN115389210A (en) * | 2022-10-27 | 2022-11-25 | 四川新川航空仪器有限责任公司 | Oil-gas simulation mechanism for oil-gas separation performance evaluation test |
Also Published As
Publication number | Publication date |
---|---|
JP5311543B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5311543B2 (en) | Gas separation purification and recovery method and apparatus | |
Lu et al. | Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column | |
RU2592522C2 (en) | Method and device for separation of gas mixture | |
CN105408003B (en) | The separation carried out using ion liquid solvent | |
US10130897B2 (en) | Contacting a gas stream with a liquid stream | |
US10155193B2 (en) | Separating impurities from a gas stream using a vertically oriented co-current contacting system | |
Lv et al. | CO2 capture by a highly-efficient aqueous blend of monoethanolamine and a hydrophilic amino acid ionic liquid [C2OHmim][Gly] | |
Lu et al. | Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions | |
US20140335002A1 (en) | Separating carbon dioxide and hydrogen sulfide from a natural gas stream using co-current contacting systems | |
MX2010011850A (en) | Methanol carbonylation system having absorber with multiple solvent options. | |
JP5467394B2 (en) | Carbon dioxide separation and recovery method by physical absorption method using ionic liquid | |
US6998098B2 (en) | Removal of gases from a feed | |
Xu et al. | Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas | |
Ramli et al. | Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA) | |
WO2013037128A1 (en) | Separation of gases | |
CN109529555B (en) | Eutectic solvent based on aprotic organic matter and method for efficiently absorbing sulfur dioxide by using eutectic solvent | |
EP2720780B1 (en) | Process for separating co2 from a gaseous stream | |
JP2011230056A (en) | Hybrid absorption liquid, gas separation and refining method, and apparatus for the same | |
CN103055676B (en) | Method for purifying natural gas | |
EP3678756B1 (en) | Absorbent and process for selectively removing hydrogen sulfide | |
US10457622B2 (en) | Method for producing acetic acid | |
CA3182886A1 (en) | Method for binding, transport, reaction activation, conversion, storage and release of water-soluble gases | |
JPH0218896B2 (en) | ||
CN112705031B (en) | Removing H by proton type ionic liquid2S and method for preparing mercapto acid ionic liquid or mercapto acid | |
CN219290992U (en) | Gas purification device and glove box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130628 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5311543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |