JP2011230056A - Hybrid absorption liquid, gas separation and refining method, and apparatus for the same - Google Patents
Hybrid absorption liquid, gas separation and refining method, and apparatus for the same Download PDFInfo
- Publication number
- JP2011230056A JP2011230056A JP2010102746A JP2010102746A JP2011230056A JP 2011230056 A JP2011230056 A JP 2011230056A JP 2010102746 A JP2010102746 A JP 2010102746A JP 2010102746 A JP2010102746 A JP 2010102746A JP 2011230056 A JP2011230056 A JP 2011230056A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- absorption liquid
- absorbent
- liquid
- hybrid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 158
- 239000007788 liquid Substances 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000000926 separation method Methods 0.000 title claims abstract description 46
- 238000007670 refining Methods 0.000 title abstract 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 88
- 239000000126 substance Substances 0.000 claims abstract description 57
- 230000002378 acidificating effect Effects 0.000 claims abstract description 56
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 44
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 42
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 6
- 230000002745 absorbent Effects 0.000 claims description 67
- 239000002250 absorbent Substances 0.000 claims description 67
- 238000000746 purification Methods 0.000 claims description 18
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 10
- 239000002608 ionic liquid Substances 0.000 claims description 9
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- BSKSXTBYXTZWFI-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;acetate Chemical group CC([O-])=O.CCCC[N+]=1C=CN(C)C=1 BSKSXTBYXTZWFI-UHFFFAOYSA-M 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- INDFXCHYORWHLQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butyl-3-methylimidazol-3-ium Chemical compound CCCCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F INDFXCHYORWHLQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 238000009834 vaporization Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 139
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000005265 energy consumption Methods 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- -1 etc. Chemical compound 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001612 separation test Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Gas Separation By Absorption (AREA)
Abstract
Description
本発明は、物理吸収および化学吸収の双方の機構を有したハイブリッド吸収液ならびに該ハイブリッド吸収液を用いたガス分離精製方法およびその装置に関するものであり、更に詳しくは、物理吸収液と化学吸収液とを含むハイブリッド吸収液ならびに該ハイブリッド吸収液を用いて各種の混合ガス中に含まれるCO2,SOx,NOxなどの酸性ガスと、N2,H2,O2,CO,低級炭化水素ガスなどの非酸性ガスとを分離して、それぞれを回収するガスの分離精製方法と回収方法およびその装置に関するものである。 The present invention relates to a hybrid absorption liquid having both physical absorption and chemical absorption mechanisms, a gas separation purification method using the hybrid absorption liquid, and an apparatus therefor. More specifically, the present invention relates to a physical absorption liquid and a chemical absorption liquid. And a hybrid absorbent containing the above, an acidic gas such as CO 2 , SOx, NOx contained in various mixed gases using the hybrid absorbent, N 2 , H 2 , O 2 , CO, lower hydrocarbon gas, etc. The present invention relates to a gas separation and purification method, a recovery method, and an apparatus for separating each non-acidic gas from each other and recovering each gas.
本発明は、火力発電所、鉄鋼プラント、化学プラントなどの排ガス中に含まれる酸性ガスを分離回収する方法や、化石燃料や天然ガスなどに含まれる炭化水素系化合物を水蒸気あるいは部分酸化により改質した合成ガス、天然ガスなどに含まれる酸性ガスを除去して分離精製する方法や、二酸化炭素の回収や水素の精製システムに関する新技術・新製品を提供するものである。 The present invention is a method for separating and recovering acidic gas contained in exhaust gas from thermal power plants, steel plants, chemical plants, etc., and reforming hydrocarbon compounds contained in fossil fuels and natural gas by steam or partial oxidation. New technology and new products related to the separation and purification of acid gas contained in synthesized gas and natural gas, etc., as well as carbon dioxide recovery and hydrogen purification systems.
地球温暖化ガスの中心である二酸化炭素を分離・回収し、貯留する(CCS)技術は、京都議定書の発効に見られるように、産業界のみならず社会的にも重要であり、国際的な課題である。CCSプロセスでは、二酸化炭素の分離・回収に掛かるエネルギーは、特に大きく、全体の70%近くにのぼると予想され、一層の低エネルギー化、低コスト化が望まれている。 The technology that separates, collects and stores carbon dioxide (CCS), which is the center of global warming gas, is important not only for the industrial world but also for society as seen in the enforcement of the Kyoto Protocol. It is a problem. In the CCS process, the energy required for the separation and recovery of carbon dioxide is particularly large and is expected to reach nearly 70% of the total, and further reduction in energy and cost is desired.
現在、アミン類化合物を用いた化学吸収法が実用化に向けて試験段階にあるが、二酸化炭素再生プロセスでのエネルギー消費が著しく、新規な吸収液開発の必要性が高いとされている。一方、物理吸収については、これまで、RECTISOLやSELEXSOL法などの方法が提案されている。 At present, a chemical absorption method using an amine compound is in a test stage for practical use, but the energy consumption in the carbon dioxide regeneration process is remarkably high, and it is said that the necessity of developing a new absorbent is high. On the other hand, methods such as RECTISOL and SELEXSOL have been proposed for physical absorption.
一方、水素燃料は、次世代のクリーンエネルギー源として注目され、燃料電池や水素燃料自動車などへの応用研究が行なわれている。それに伴い、水電解や光触媒など種々の方法を用いた水素製造技術の開発研究が盛んに進められている。 On the other hand, hydrogen fuel is attracting attention as a next-generation clean energy source, and applied research to fuel cells, hydrogen fuel vehicles, and the like is being conducted. Along with this, development research on hydrogen production technology using various methods such as water electrolysis and photocatalyst has been actively promoted.
その中でも、炭化水素系化合物を水蒸気あるいは部分酸化により改質し、引き続き水性ガスシフト反応(CO+H2O→CO2+H2)により水素を製造する方法は広く用いられている。この場合、エネルギー源となる水素の製造に伴い副生される二酸化炭素の分離は必須であり、分離効率の改善は、水素製造コストを大幅に向上するものと期待される。これまで、水素精製技術として、圧力スイング吸着、膜分離、深冷分離などの方法が検討されている。 Among them, a method of reforming a hydrocarbon compound by steam or partial oxidation and subsequently producing hydrogen by a water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) is widely used. In this case, separation of carbon dioxide produced as a by-product in the production of hydrogen as an energy source is essential, and improvement in separation efficiency is expected to greatly increase hydrogen production costs. Until now, methods such as pressure swing adsorption, membrane separation, and cryogenic separation have been studied as hydrogen purification techniques.
本発明者らは、これまで、イオン液体や揮発性が低いグライム類などの非水系の物理吸収液を用いて、二酸化炭素などの酸性ガスを除去するガス分離精製法の開発を進めてきた(特許文献1〜3、非特許文献1)。特許文献1ないし特許文献3に記載のある物理吸収液およびその方法は、酸性ガスを含んだ混合ガスを吸収液に高圧条件で作用させることで容易に酸性ガス成分を除去する方法を与えるものである。 The present inventors have so far developed a gas separation and purification method for removing an acidic gas such as carbon dioxide using a non-aqueous physical absorption liquid such as an ionic liquid or a low-volatility glyme ( Patent Documents 1 to 3, Non-Patent Document 1). The physical absorption liquid and its method described in Patent Document 1 to Patent Document 3 provide a method for easily removing an acidic gas component by allowing a mixed gas containing an acidic gas to act on the absorption liquid under high pressure conditions. is there.
しかしながら、それらの物理吸収液を用いた方法は、処理すべき混合ガスを高圧条件に圧縮する必要があり、たとえ圧力解放によりエネルギー回収を行ったとしても、混合ガスが常圧である場合は、全体として必要なエネルギーが割高となってしまうことが課題であった。 However, the method using these physical absorption liquids needs to compress the mixed gas to be processed to a high pressure condition, and even if energy recovery is performed by releasing the pressure, if the mixed gas is at normal pressure, The problem was that the required energy as a whole would be expensive.
また、物理吸収液の処理量は、圧力に比例して増加するため、常圧近傍の排気ガスを対象とした場合には、処理量が低下してしまい、多量の物理吸収液を使用せざるを得ないことも課題であった。それらの理由から、高圧ガスを対象とした場合には、物理吸収法は有効であるものの、常圧近傍の排気ガスなどに適用することは困難であった。 In addition, since the processing amount of the physical absorption liquid increases in proportion to the pressure, when the exhaust gas near normal pressure is targeted, the processing amount is reduced and a large amount of the physical absorption liquid must be used. It was also a problem not to get. For these reasons, when a high-pressure gas is targeted, the physical absorption method is effective, but it is difficult to apply it to exhaust gas in the vicinity of normal pressure.
一方、二酸化炭素など酸性ガスの分圧が低い混合ガスを対象とする場合には、これまで、アミン類化合物を水に溶解した吸収液を用いた化学吸収法が一般に用いられてきた。しかしながら、化学吸収法は、二酸化炭素を回収するために、〜120℃程度の高温に加熱しなければならず、そのための熱エネルギーが必要である。それによって、化学吸収法は、排熱などが利用できる工場からの排ガスの処理を除いては、二酸化炭素の回収時に新たな熱エネルギーが必要となり、消費エネルギーの低減を図る上で大きな課題となっていた。更に、二酸化炭素回収時に溶媒である水が揮発してしまい、過剰の潜熱を要することも問題であった。以上のような事情から、当技術分野においては、これらの問題を解決することを可能とする新しいガス分離技術の開発が強く要請されていた。 On the other hand, in the case where a mixed gas having a low partial pressure of acidic gas such as carbon dioxide is targeted, a chemical absorption method using an absorbing solution in which an amine compound is dissolved in water has been generally used. However, in order to recover carbon dioxide, the chemical absorption method must be heated to a high temperature of about ˜120 ° C., and heat energy for that is required. As a result, the chemical absorption method is a major issue in reducing energy consumption, as it requires new thermal energy when recovering carbon dioxide, except for the treatment of exhaust gas from factories where exhaust heat can be used. It was. Furthermore, the problem is that water, which is a solvent, volatilizes during carbon dioxide recovery, requiring excessive latent heat. In view of the above circumstances, there has been a strong demand in the art for the development of a new gas separation technique that can solve these problems.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、常圧近傍の混合ガスに物理吸収法を適用した場合に発生する課題、ならびに、化学吸収法で必要となる二酸化炭素回収時の熱エネルギーの問題を解決することを目標として鋭意研究を積み重ねた結果、それらの長所を巧みに利用して、物理吸収および化学吸収の双方の機構を具備したハイブリッド吸収液を開発することに成功し、本発明を完成するに至った。 Under such circumstances, the present inventors, in view of the above prior art, have problems that occur when the physical absorption method is applied to a mixed gas in the vicinity of normal pressure, as well as the dioxide that is required in the chemical absorption method. As a result of intensive research aimed at solving the problem of thermal energy at the time of carbon recovery, the hybrid absorption liquid equipped with both physical absorption and chemical absorption mechanisms was developed by skillfully utilizing these advantages. In particular, the present invention has been completed.
本発明は、物理吸収および化学吸収の双方の機構を具備したハイブリッド吸収液、および、該ハイブリッド吸収液を用いて、常圧近傍の排気ガスを対象とする場合においても、ガスの処理量を低下させることなく、必要な吸収液の液量を低減させ、吸収液の送液に掛ける消費エネルギーを削減することを可能とする新しいガス分離精製方法およびその装置を提供することを目的とするものである。 The present invention reduces the gas throughput even when the hybrid absorbent having both physical absorption and chemical absorption mechanisms and the exhaust gas near normal pressure is used for the hybrid absorbent. It is an object of the present invention to provide a new gas separation and purification method and apparatus capable of reducing the amount of absorption liquid required and reducing the energy consumption applied to the absorption liquid. is there.
また、本発明は、物理吸収法において、常圧近傍の混合ガスから酸性ガスを分離回収するのに必要とされていた多量の物理吸収液を使用する必要がなく、また、化学吸収法で必要とされていた高温加熱の必要がなく、物理吸収液の処理量の低減と、化学吸収液の高温加熱処理の省略を実現可能とする物理吸収法と化学吸収法を組み合わせた新しいハイブリッド吸収液と、該吸収液を用いたガス分離精製方法およびその装置を提供することを目的とするものである。 In addition, the present invention does not require the use of a large amount of physical absorption liquid that is required for separating and recovering acidic gas from a mixed gas near normal pressure in the physical absorption method, and is also necessary for the chemical absorption method. A new hybrid absorbent that combines the physical absorption method and the chemical absorption method, which eliminates the need for high-temperature heating, reduces the amount of treatment of the physical absorption liquid, and eliminates the high-temperature heat treatment of the chemical absorption liquid. An object of the present invention is to provide a gas separation purification method and apparatus using the absorption liquid.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)物理吸収液と化学吸収液を含有するガス分離用ハイブリッド吸収液であって、二酸化炭素の酸性ガスを含む混合ガスから、該酸性ガス成分を所定の圧力下において物理吸収により取り除く作用を有する物理吸収液と、該物理吸収液中で酸性ガス成分を吸収して被処理混合ガスに対して吸収液の量を減らすことを可能とする化学吸収液とから構成されることを特徴とするガス分離用ハイブリッド吸収液。
(2)前記(1)に記載のハイブリッド吸収液を用いて、混合ガスから酸性ガスを分離する方法において、前記ハイブリッド吸収液の物理吸収液を揮発させない温度範囲でガス分離操作を行うことにより、蒸発潜熱によるエネルギーロスを抑える工程、を含むことを特徴とするガス分離方法。
(3)前記吸収液において、物理吸収によるガス分離作用を利用することで、ガスの処理量の低下を招くことなく、添加する化学吸収液の量を減らすことを可能とした、前記(1)に記載のハイブリッド吸収液。
(4)前記吸収液を利用することで、化学吸収液の酸性ガス成分の吸収分による酸性ガスの処理量を減らし、熱回収するために必要な熱エネルギーの低減を可能とする、前記(1)に記載のハイブリッド吸収液。
(5)前記の物理吸収液が、イオン液体、有機溶剤、あるいは水酸基を有する化合物からなる非水系の吸収液である、前記(1)に記載のハイブリッド吸収液。
(6)前記の化学吸収液が、イオン液体からなる吸収液、あるいは水酸基を有する化合物からなる吸収液中で反応して酸性ガスを化学吸収するアミン類吸収剤からなる吸収液である、前記(1)に記載のハイブリッド吸収液。
(7)物理吸収液が、1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)アミド([BMIM][Tf2N]、1−ヘキサノール、CH3CN、又はH2Oである、前記(1)に記載のハイブリッド吸収液。
(8)化学吸収液が、1−ブチル−3−メチルイミダゾリウム アセテート([BMIM][CH3COO])、又は1,8−ジアゾビシクロ−[5,4,0]−ウンデク−7−エン[DBU]である、前記(1)に記載のハイブリッド吸収液。
(9)前記(1)に記載のハイブリッド吸収液を用いて、二酸化炭素の酸性ガスを含む混合ガスから、該酸性ガス成分を所定の圧力下で分離する装置であって、物理吸収液を収容する物理吸収液タンク、化学吸収液を収容する化学吸収液タンク、これらの吸収液を混合して調製したハイブリッド吸収液を充填する循環ポンプ、酸性ガスおよび非酸性ガスを含む混合ガスを充填する循環ポンプ、前記ハイブリッド吸収液と、前記混合ガスとを接触させてハイブリッド吸収液に酸性ガスを吸収させるための気液混合器、該気液混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための気液分離器を具備することを特徴とするガス分離精製装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A hybrid absorption liquid for gas separation containing a physical absorption liquid and a chemical absorption liquid, wherein the acidic gas component is removed from a mixed gas containing an acidic gas of carbon dioxide by physical absorption under a predetermined pressure. And a chemical absorption liquid capable of absorbing an acidic gas component in the physical absorption liquid and reducing the amount of the absorption liquid with respect to the mixed gas to be treated. Hybrid absorbent for gas separation.
(2) In the method of separating an acidic gas from a mixed gas using the hybrid absorbent described in (1) above, by performing a gas separation operation in a temperature range that does not volatilize the physical absorbent of the hybrid absorbent, A step of suppressing energy loss due to latent heat of vaporization.
(3) In the absorption liquid, the amount of the chemical absorption liquid to be added can be reduced without reducing the gas throughput by using the gas separation action by physical absorption. The hybrid absorbent solution according to 1.
(4) By using the absorption liquid, the amount of acidic gas treated by the absorption of the acidic gas component of the chemical absorption liquid is reduced, and the thermal energy required for heat recovery can be reduced. ) Hybrid absorbent.
(5) The hybrid absorbent according to (1), wherein the physical absorbent is a non-aqueous absorbent composed of an ionic liquid, an organic solvent, or a compound having a hydroxyl group.
(6) The chemical absorption liquid is an absorption liquid composed of an ionic liquid or an amine liquid absorbent that reacts in an absorption liquid composed of a compound having a hydroxyl group to chemically absorb an acidic gas. The hybrid absorbent according to 1).
(7) The physical absorption liquid is 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([BMIM] [Tf 2 N], 1-hexanol, CH 3 CN, or H 2 O. The hybrid absorbent according to (1) above.
(8) The chemical absorption liquid is 1-butyl-3-methylimidazolium acetate ([BMIM] [CH 3 COO]) or 1,8-diazobicyclo- [5,4,0] -undec-7-ene. The hybrid absorbent according to (1), which is [DBU].
(9) An apparatus for separating the acidic gas component from a mixed gas containing an acidic gas of carbon dioxide under a predetermined pressure using the hybrid absorbent described in (1) above, and containing the physical absorbent Physical absorption liquid tank, chemical absorption liquid tank containing chemical absorption liquid, circulation pump filled with hybrid absorption liquid prepared by mixing these absorption liquids, circulation filled with mixed gas containing acidic gas and non-acidic gas A pump, a gas-liquid mixer for bringing the hybrid absorbent and the mixed gas into contact with each other to cause the hybrid absorbent to absorb the acidic gas, and the absorbent and the acidic gas discharged from the gas-liquid mixer are removed. A gas separation and purification apparatus comprising a gas-liquid separator for separating non-acidic gas.
次に、本発明について更に詳細に説明する。
本発明は、常圧近傍の混合ガスを対象とした場合において、二酸化炭素など酸性ガスを取り除くことができる物理吸収液を用いて、常圧近傍の所定圧力においても、混合ガス中の二酸化炭素を、前記物理吸収液に物理吸収させ、その圧力よりも低い圧力に減圧することで、二酸化炭素を回収することを可能とするものである。
Next, the present invention will be described in more detail.
When the present invention is intended for a mixed gas near normal pressure, the physical absorption liquid capable of removing acidic gas such as carbon dioxide is used to reduce carbon dioxide in the mixed gas even at a predetermined pressure near normal pressure. The carbon dioxide can be recovered by causing the physical absorption liquid to physically absorb and reducing the pressure to a pressure lower than that.
本発明は、常圧近傍の混合ガスにも適用可能であるため、圧縮に要するエネルギーはそれほど大きくない。また、排ガスとして得られる圧力で作動すれば、新たな圧縮エネルギーは不要となり、消費エネルギーの低減を図ることが可能である。 Since the present invention can be applied to a mixed gas in the vicinity of normal pressure, the energy required for compression is not so large. Moreover, if it operates with the pressure obtained as exhaust gas, new compression energy becomes unnecessary and it is possible to reduce energy consumption.
本発明で用いる物理吸収液としては、常圧近傍においても、高い二酸化炭素吸収量を保持でき、揮発性が低く、沸点の高い、イオン液体や有機溶剤が望ましい。一方、化学吸収法で一般的に用いられる水は、二酸化炭素の吸収量に乏しく、ハイブリッド吸収液の物理吸収液としては、あまり適切ではない。 As the physical absorption liquid used in the present invention, an ionic liquid or an organic solvent that can maintain a high carbon dioxide absorption amount, has low volatility, and has a high boiling point even in the vicinity of normal pressure is desirable. On the other hand, water generally used in the chemical absorption method is poor in carbon dioxide absorption and is not very suitable as a physical absorption liquid for a hybrid absorption liquid.
本発明では、上記の物理吸収液に、該物理吸収液中で良好に作動する化学吸収液を所定量加えることで、化学吸収機能を付与することが重要である。これにより、処理する混合ガスに対して、大量の吸収液を用いなくても、化学吸収により、効率的に二酸化炭素を除去することが可能となる。本発明は、このような上記の物理吸収液に、該物理吸収液中で良好に作動する化学吸収液を所定量加えることで、化学吸収機能を付与したハイブリッド吸収液と、その利用技術を提供するものである。 In the present invention, it is important to provide a chemical absorption function by adding a predetermined amount of a chemical absorption liquid that works well in the physical absorption liquid to the physical absorption liquid. Thus, carbon dioxide can be efficiently removed by chemical absorption without using a large amount of absorbing liquid for the mixed gas to be processed. The present invention provides a hybrid absorption liquid imparted with a chemical absorption function by adding a predetermined amount of a chemical absorption liquid that operates well in the physical absorption liquid to the above physical absorption liquid, and a technique for using the same. To do.
すなわち、本発明は、物理吸収液と化学吸収液を含有するガス分離用ハイブリッド吸収液であって、常圧近傍において、二酸化炭素の酸性ガスを含む混合ガスから、該酸性ガス成分を常圧近傍の所定の圧力下において、物理吸収により取り除く作用を有する物理吸収液と、該物理吸収液中で酸性ガス成分を吸収して被処理混合ガスに対して必要とされる吸収液の量を減らすことを可能とする化学吸収液とを含有することを特徴とするものである。 That is, the present invention is a hybrid absorption liquid for gas separation containing a physical absorption liquid and a chemical absorption liquid, and in the vicinity of normal pressure, from the mixed gas containing an acidic gas of carbon dioxide, the acidic gas component is near normal pressure. Reducing the amount of absorption liquid required for the gas mixture to be treated by absorbing the acidic gas component in the physical absorption liquid and the physical absorption liquid having the action of removing by physical absorption And a chemical absorbing solution that enables the above.
本発明において、常圧近傍とは、いわゆる常圧およびその前後の圧力範囲、具体的には、大気圧〜1.0MPa程度の範囲の圧力を意味するものとして定義される。 In the present invention, the vicinity of normal pressure is defined as meaning a so-called normal pressure and a pressure range before and after that, specifically a pressure in a range of about atmospheric pressure to 1.0 MPa.
本発明は、前記吸収液において、物理吸収によるガス分離作用を利用することで、ガスの処理量の低下を招くことなく、添加する化学吸収液の量を減らすことを可能としたこと、前記吸収液を利用することで、化学吸収液の酸性ガス成分の吸収分による酸性ガスの処理量を減らし、熱回収するために必要な熱エネルギーの低減を可能とすること、を好ましい実施態様としている。更に、上述した大気圧〜1.0MPa程度の常圧近傍においてガス処理を行うことで、高圧条件が必要とされる装置的な負荷を軽減し、初期の設備費ならびに定常的な維持管理費の低減が可能となる。 The present invention makes it possible to reduce the amount of the chemical absorbing liquid to be added without causing a reduction in the amount of gas processing by utilizing the gas separation action by physical absorption in the absorbing liquid. By using the liquid, it is a preferred embodiment that the amount of acidic gas treated by the absorption of the acidic gas component of the chemical absorption liquid is reduced and the thermal energy required for heat recovery can be reduced. Furthermore, by performing the gas treatment in the vicinity of atmospheric pressure to about 1.0 MPa as described above, the equipment load that requires high pressure conditions is reduced, and the initial equipment cost and the steady maintenance cost are reduced. Reduction is possible.
本発明では、前記の物理吸収液が、イオン液体、有機溶剤、あるいは水酸基を有する化合物からなる非水系の吸収液であること、前記の化学吸収液が、イオン液体からなる吸収液、あるいは水酸基を有する化合物からなる吸収液中で反応して酸性ガスを化学吸収するアミン類吸収剤からなる吸収液であること、を好ましい実施態様としている。 In the present invention, the physical absorption liquid is an ionic liquid, an organic solvent, or a non-aqueous absorption liquid composed of a compound having a hydroxyl group, and the chemical absorption liquid is an absorption liquid composed of an ionic liquid or a hydroxyl group. It is a preferred embodiment that the absorbent is composed of an amine absorbent that chemically absorbs an acidic gas by reacting in an absorbent composed of a compound having the same.
本発明で用いられる物理吸収液としては、1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)アミド([BMIM][Tf2N]、1−ヘキサノール、CH3CN、又はH2Oが例示される。また、本発明で用いられる化学吸収液としては、1−ブチル−3−メチルイミダゾリウム アセテート([BMIM][CH3COO])、又は1,8−ジアゾビシクロ−[5,4,0]−ウンデク−7−エン[DBU]例示される。 The physical absorption liquid used in the present invention includes 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([BMIM] [Tf 2 N], 1-hexanol, CH 3 CN, or H 2 O. In addition, as the chemical absorbing solution used in the present invention, 1-butyl-3-methylimidazolium acetate ([BMIM] [CH 3 COO]), or 1,8-diazobicyclo- [5, 4,0] -Undec-7-ene [DBU].
更に、本発明は、上記ハイブリッド吸収液を用いて、混合ガスから酸性ガスを分離する方法であって、前記ハイブリッド吸収液中の物理吸収液を揮発させない温度範囲でガス分離操作を行うことにより、物理吸収液の蒸発潜熱によるエネルギーロスを抑える工程、を含むことを特徴とするものである。 Furthermore, the present invention is a method of separating an acidic gas from a mixed gas using the hybrid absorbent, and performing a gas separation operation in a temperature range in which the physical absorbent in the hybrid absorbent is not volatilized. A step of suppressing energy loss due to latent heat of vaporization of the physical absorption liquid.
本発明は、燃焼排ガスなどの混合ガスから二酸化炭素などの酸性ガス成分を効率よく分離回収し、それに必要なエネルギーおよびコストの低減化を図り、また、水素など非酸性ガス成分を含んだ混合ガスから酸性ガス成分を分離し、高純度の水素ガスに精製して効率的に供給することを可能とする新しいハイブリッド吸収液を提供するものである。 The present invention efficiently separates and recovers an acidic gas component such as carbon dioxide from a mixed gas such as combustion exhaust gas, reduces energy and cost required for it, and also includes a non-acidic gas component such as hydrogen. The present invention provides a new hybrid absorbent that can separate acidic gas components from the gas, purify it into high-purity hydrogen gas, and efficiently supply it.
また、本発明は、前記のハイブリッド吸収液を用いて、混合ガスから酸性ガスを分離する方法において、前記ハイブリッド吸収液の物理吸収液を揮発させない温度範囲でガス分離操作を行うことにより、蒸発潜熱によるエネルギーロスを抑える工程、を含むことを特徴とするガス分離方法を提供するものである。 Further, the present invention provides a method for separating an acidic gas from a mixed gas using the hybrid absorbent, by performing a gas separation operation in a temperature range in which the physical absorbent of the hybrid absorbent is not volatilized, thereby evaporating latent heat. A gas separation method characterized by including a step of suppressing energy loss due to.
更に、本発明は、図1、2に示される流通式ガス分離装置であって、物理吸収液を収容する物理吸収液タンク、化学吸収液を収容する化学吸収液タンク、これらの吸収液を混合して調製したハイブリッド吸収液を充填する循環ポンプ、酸性ガスおよび非酸性ガスを含む混合ガスを充填する循環ポンプ、前記ハイブリッド吸収液と、前記混合ガスとを接触させてハイブリッド吸収液に酸性ガスを吸収させるための気液混合器、該気液混合器から排出された吸収液と前記酸性ガスが取り除かれた非酸性ガスを分離するための気液分離器を具備することを特徴とするガス分離精製装置を提供するものである。 Further, the present invention is a flow-type gas separation apparatus shown in FIGS. 1 and 2, which is a physical absorption liquid tank for storing a physical absorption liquid, a chemical absorption liquid tank for storing a chemical absorption liquid, and a mixture of these absorption liquids. The circulating pump for filling the hybrid absorbent prepared in this way, the circulating pump for filling the mixed gas containing acidic gas and non-acidic gas, the hybrid absorbent and the mixed gas are brought into contact with each other, and the hybrid absorbent is brought into contact with the acidic gas. Gas separation comprising: a gas-liquid mixer for absorption; and a gas-liquid separator for separating the absorption liquid discharged from the gas-liquid mixer from the non-acid gas from which the acid gas has been removed A purification apparatus is provided.
本発明により、次のような効果が奏される。
(1)本発明のハイブリッド吸収液を用いることで、常圧近傍の排気ガスを対象としても、ガスの処理量を低下させることなく、効率的に物理吸収法を適用することが可能となり、これにより、所定の排気ガスを処理するために必要な吸収液の液量を低減させ、吸収液の送液に掛る消費エネルギーを削減することができる。
(2)物理吸収によって二酸化炭素が所定量取り除かれるため、化学吸収液の添加量を抑えることができ、それによって、二酸化炭素の回収に必要となる熱エネルギーを低減することができ、消費エネルギーを削減することが可能となる。
(3)化学吸収液による二酸化炭素の熱回収を、物理吸収液の揮発が起こらない温度条件で行うことで、これまでのアミン水溶液で蒸発潜熱として奪われていた熱エネルギーの損失を防ぐことが可能となる。
(4)本発明のハイブリッド吸収液を用いることで、二酸化炭素など酸性ガスを選択的に吸収分離するプロセス全体に渡る消費エネルギーを著しく低減することが可能となる。
(5)本発明のハイブリッド吸収液を用いて大気圧〜1.0MPa程度の常圧近傍においてガス処理を行うことで、高圧条件に必要とされる装置的な負荷を軽減し、初期の設備費ならびに定常的な維持管理費の低減が可能となる。
The present invention has the following effects.
(1) By using the hybrid absorbent of the present invention, it is possible to efficiently apply the physical absorption method without reducing the gas throughput even for exhaust gas near normal pressure. Thus, it is possible to reduce the amount of the absorption liquid necessary for processing the predetermined exhaust gas, and to reduce the energy consumed for feeding the absorption liquid.
(2) Since a predetermined amount of carbon dioxide is removed by physical absorption, it is possible to suppress the amount of chemical absorption liquid added, thereby reducing the thermal energy required for the recovery of carbon dioxide, and reducing energy consumption. It becomes possible to reduce.
(3) By performing the heat recovery of carbon dioxide by the chemical absorption liquid under the temperature condition in which the physical absorption liquid does not volatilize, it is possible to prevent the loss of heat energy that has been taken away as latent heat of vaporization in the aqueous amine solution so far. It becomes possible.
(4) By using the hybrid absorbent of the present invention, it is possible to significantly reduce energy consumption over the entire process of selectively absorbing and separating acidic gas such as carbon dioxide.
(5) By performing gas treatment in the vicinity of atmospheric pressure to about 1.0 MPa using the hybrid absorbent of the present invention, the equipment load required for high pressure conditions is reduced, and initial equipment costs are reduced. In addition, steady maintenance costs can be reduced.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
本実施例では、図1に概略を示し、図2に外観を示した流通式ガス分離精製装置を用いて、ガス分離実験を行った。以下に、図面に基づいてその手順を具体的に説明する。
1.循環ポンプ、恒温水槽、循環式冷却器を作動させ、シリンジポンプおよび気液混合・分離器などを所定の温度に保持した。
In this example, gas separation experiments were conducted using a flow-type gas separation and purification apparatus schematically shown in FIG. 1 and shown in appearance in FIG. The procedure will be specifically described below with reference to the drawings.
1. The circulation pump, the constant temperature water tank, and the circulation type cooler were operated, and the syringe pump and the gas-liquid mixer / separator were maintained at a predetermined temperature.
2.ポンプ−B(ガス側)とポンプ−A(液体側)に、それぞれ標準ガスと吸収液を充填した。
3.ガスクロマトグラフィーを起動した。
4.背圧弁を全開にして、圧力計のゼロ点補正を行った。また、この時点で、大気圧の値を記録し、以下、絶対圧として制御した。
2. Pump-B (gas side) and pump-A (liquid side) were filled with standard gas and absorption liquid, respectively.
3. Gas chromatography was activated.
4). The back pressure valve was fully opened and the zero point of the pressure gauge was corrected. At this time, the value of the atmospheric pressure was recorded, and was controlled as an absolute pressure hereinafter.
5.ガス側ポンプの出口側バルブを徐々に開き、標準ガスをラインへと流した。流量を所定の値とし、ポンプ−Bを作動させた。気液混合器内のスターラを回し、圧力計の表示が目的の圧力に達した時点で背圧弁をゆっくりと開け、ガスクロマトグラフィー側トラップの排気管を液面下に下げて、気泡を見ながら調整した。ガスの流れが安定するまで、背圧弁を微調整しながら30分くらい保持した。 5. The outlet side valve of the gas side pump was gradually opened, and the standard gas was allowed to flow into the line. The flow rate was set to a predetermined value, and pump-B was operated. Turn the stirrer in the gas-liquid mixer, and when the pressure gauge display reaches the target pressure, slowly open the back pressure valve, lower the exhaust pipe of the gas chromatography trap below the liquid level, and watch the bubbles It was adjusted. The back pressure valve was held for about 30 minutes with fine adjustment until the gas flow stabilized.
6.吸収液側ポンプのバルブを閉じたままポンプ−Aを作動させた。圧力が目標値より少し高くなってから、出口側バルブを開けた。
7.反応器内部を観察し、ガスの気泡と吸収液の滴下を確認した。
6). Pump-A was operated with the valve of the absorption liquid side pump closed. The outlet valve was opened after the pressure was slightly higher than the target value.
7). The inside of the reactor was observed, and gas bubbles and dripping of the absorbing solution were confirmed.
8.減圧弁および背圧弁を調節して、目標の圧力と気液分離器内の液量を適切に保持し、定常状態を保つようにした。
9.処理ガスをサンプリングして、ガスクロマトグラフィーで分析した。
10.ガス分離実験装置を定常状態に保ち、処理ガスを複数回サンプリングし、分析値が一定するのを確認し、平衡状態の値とした。
8). By adjusting the pressure reducing valve and the back pressure valve, the target pressure and the amount of liquid in the gas-liquid separator were appropriately maintained to maintain a steady state.
9. The process gas was sampled and analyzed by gas chromatography.
10. The gas separation experimental apparatus was kept in a steady state, the processing gas was sampled a plurality of times, and it was confirmed that the analysis value was constant, and the value was in an equilibrium state.
1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)アミド([BMIM][Tf2N]と略記)、アセトニトリル、水の3種類の物理吸収液を用いて、25℃において、上記の手順に従って、ガス分離精製実験を行った。なお、標準ガスとして、24.51%あるいは24.08%の二酸化炭素を含む窒素ベースの混合ガスを用いた。 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide (abbreviated as [BMIM] [Tf 2 N]), acetonitrile, and water using three physical absorption liquids at 25 ° C. According to the procedure, gas separation and purification experiments were conducted. As the standard gas, a nitrogen-based mixed gas containing 24.51% or 24.08% carbon dioxide was used.
また、上記の物理吸収液に、化学吸収剤として、1−ブチル−3−メチルイミダゾリウム アセテート([BMIM][CH3COO]と略記)を所定量加えたハイブリッド吸収液を用いて、同様に、ガス分離精製実験を行った。それらの結果を、表1、2および図3に示す。なお、混合ガスならびに吸収液の流量比は所定圧力条件のものをそのまま用い、標準状態換算していない値として示した。 In addition, similarly to the above physical absorption liquid, using a hybrid absorption liquid in which a predetermined amount of 1-butyl-3-methylimidazolium acetate (abbreviated as [BMIM] [CH 3 COO]) is added as a chemical absorbent. Gas separation and purification experiments were conducted. The results are shown in Tables 1 and 2 and FIG. In addition, the flow rate ratio of the mixed gas and the absorbing solution is the same as that under the predetermined pressure condition, and is shown as a value not converted into the standard state.
いずれの物理吸収液の場合も、化学吸収剤の添加により、処理ガス中の二酸化炭素濃度は著しく低下することが分かった。その傾向は、混合ガスに対するハイブリッド吸収液の流量比が小さいほど顕著であった。これは、流量比が低い条件において、物理吸収液のみでは、二酸化炭素を取り除くことが容易ではないが、ハイブリッド化した吸収液を用いることで、効率良く二酸化炭素を吸収分離することができることを示している。 In any of the physical absorption liquids, it was found that the concentration of carbon dioxide in the processing gas was significantly reduced by the addition of the chemical absorbent. The tendency was more remarkable as the flow rate ratio of the hybrid absorbent to the mixed gas is smaller. This indicates that carbon dioxide can not be easily removed with only a physical absorption liquid under conditions with a low flow rate ratio, but carbon dioxide can be efficiently absorbed and separated by using a hybrid absorption liquid. ing.
本実施例では、実施例1と同様の手順で、標準ガス(24.45%二酸化炭素を含む窒素ベースの混合ガス)からの二酸化炭素の吸収分離実験を行った。物理吸収液としては、1−ヘキサノールを用い、化学吸収剤としては、1,8−diazabicyclo−[5,4,0]−undec−7−ene(以下、DBUと略記)を用いた。実験は、温度25℃、圧力0.4および2MPaの条件において、流量比を変更して行った。それらの結果を、表3および図4に示す。 In this example, an absorption separation experiment of carbon dioxide from a standard gas (a nitrogen-based mixed gas containing 24.45% carbon dioxide) was performed in the same procedure as in Example 1. 1-Hexanol was used as the physical absorption liquid, and 1,8-diazabiccyclo- [5,4,0] -undec-7-ene (hereinafter abbreviated as DBU) was used as the chemical absorbent. The experiment was performed under the conditions of a temperature of 25 ° C., a pressure of 0.4 and 2 MPa, changing the flow rate ratio. The results are shown in Table 3 and FIG.
実施例1と同様に、化学吸収剤であるDBUの添加により、処理ガス中の二酸化炭素濃度は著しく低下することが分かる。流量比が0.5の場合には、1mol−%(約1.5wt−%に相当)の微量のDBUの添加でも、二酸化炭素濃度を2%以下に減らすことができた。更に、5mol−%(約7.8wt−%に相当)のDBUを添加した場合には、流量比を0.2に下げても、二酸化炭素濃度は、0.2%未満、流量比を0.1に下げても、2%未満の優れた結果が得られた。 Similar to Example 1, it can be seen that the addition of DBU, which is a chemical absorbent, significantly reduces the carbon dioxide concentration in the process gas. When the flow rate ratio was 0.5, the carbon dioxide concentration could be reduced to 2% or less even by adding a trace amount of DBU of 1 mol-% (corresponding to about 1.5 wt-%). Further, when 5 mol-% (corresponding to about 7.8 wt-%) of DBU is added, even if the flow rate ratio is lowered to 0.2, the carbon dioxide concentration is less than 0.2% and the flow rate ratio is 0. An excellent result of less than 2% was obtained even when lowered to .1.
以上詳述したように、本発明は、ハイブリッド吸収液ならびにガス分離精製方法およびその装置に係るものであり、本発明により、上記のハイブリッド吸収液を用いることで、常圧近傍の排気ガスを対象としても、ガスの処理量を低下させることなく、効率的に物理吸収法を適用することが可能となり、これにより、所定の排気ガスを処理するために必要な吸収液の液量を低減させ、吸収液の送液に掛る消費エネルギーを削減することができる。本発明では、物理吸収によって二酸化炭素が所定量取り除かれるため、化学吸収液の添加量を抑えることができ、それによって、二酸化炭素の回収に必要となる熱エネルギーを低減でき、消費エネルギーを削減することが可能となり、また、化学吸収液による二酸化炭素の熱回収を、物理吸収液の揮発が起こらない温度条件で行うことで、これまでのアミン水溶液で蒸発潜熱として奪われていた熱エネルギーの損失を防ぐことが可能となる。以上に示した通り、本発明により、ハイブリッド吸収液を用いることで、二酸化炭素など酸性ガスを選択的に吸収分離するプロセス全体に渡る消費エネルギーを著しく低減することが可能となる。本発明は、火力発電所、鉄鋼プラント、化学プラントなどの排ガス中に含まれる酸性ガスを分離回収する方法や、化石燃料や天然ガスなどに含まれる炭化水素系化合物を水蒸気あるいは部分酸化により改質した合成ガス、天然ガスなどに含まれる酸性ガスを除去して分離精製する方法や、二酸化炭素の回収や水素の精製システムについての新技術・新製品を提供するものとして有用である。 As described above in detail, the present invention relates to a hybrid absorbent, a gas separation and purification method, and an apparatus therefor. According to the present invention, exhaust gas in the vicinity of normal pressure is targeted by using the above hybrid absorbent. Even without reducing the gas throughput, it becomes possible to efficiently apply the physical absorption method, thereby reducing the amount of absorption liquid required to treat the predetermined exhaust gas, It is possible to reduce energy consumption required for feeding the absorbing liquid. In the present invention, since a predetermined amount of carbon dioxide is removed by physical absorption, it is possible to suppress the amount of chemical absorption liquid added, thereby reducing the thermal energy required for carbon dioxide recovery and reducing energy consumption. In addition, the heat recovery of carbon dioxide by the chemical absorption liquid is performed under a temperature condition that does not cause the volatilization of the physical absorption liquid. Can be prevented. As described above, according to the present invention, it is possible to remarkably reduce energy consumption over the entire process of selectively absorbing and separating acidic gas such as carbon dioxide by using the hybrid absorbent. The present invention is a method for separating and recovering acidic gas contained in exhaust gas from thermal power plants, steel plants, chemical plants, etc., and reforming hydrocarbon compounds contained in fossil fuels and natural gas by steam or partial oxidation. It is useful as a method for separating and purifying by removing acidic gas contained in synthesized gas, natural gas, etc., and for providing new technologies and products for carbon dioxide recovery and hydrogen purification systems.
1 ポンプB
2 バルブ
3 バルブ
4 予熱部
5 ポンプA
6 バルブ
7 バルブ
8 循環式冷却器
9 恒温水槽
10 温度センサー
11 背圧弁
12 圧力計
13 減圧弁
14 ガスクロマトグラフ装置
15 記録計
1 Pump B
2 Valve 3 Valve 4 Preheating part 5 Pump A
6 Valve 7 Valve 8 Circulating cooler 9 Constant temperature water tank 10 Temperature sensor 11 Back pressure valve 12 Pressure gauge 13 Pressure reducing valve 14 Gas chromatograph device 15 Recorder
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010102746A JP5900869B2 (en) | 2010-04-27 | 2010-04-27 | Absorption liquid for acid gas separation, gas separation purification method and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010102746A JP5900869B2 (en) | 2010-04-27 | 2010-04-27 | Absorption liquid for acid gas separation, gas separation purification method and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011230056A true JP2011230056A (en) | 2011-11-17 |
JP5900869B2 JP5900869B2 (en) | 2016-04-06 |
Family
ID=45319959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010102746A Active JP5900869B2 (en) | 2010-04-27 | 2010-04-27 | Absorption liquid for acid gas separation, gas separation purification method and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5900869B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102895845A (en) * | 2012-10-18 | 2013-01-30 | 昆明理工大学 | Ionic liquid absorbent and preparation method and application thereof |
JP2014088524A (en) * | 2012-10-31 | 2014-05-15 | Tokyo Gas Co Ltd | Method for producing high purity methane, and production device therefor |
WO2021119058A1 (en) * | 2019-12-11 | 2021-06-17 | Research Triangle Institute | Non-aqueous solvent for removing acidic gas from a process gas stream for high pressure applications |
CN114950079A (en) * | 2022-06-16 | 2022-08-30 | 中国科学院过程工程研究所 | Physical-chemical coupling selective absorption of CO 2 Functional ionic solvent of (2) |
JP2023508217A (en) * | 2020-11-10 | 2023-03-01 | エルジー エナジー ソリューション リミテッド | Secondary battery containing gas collecting member |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263420A (en) * | 1993-03-11 | 1994-09-20 | Seitai Kinou Kenkyusho:Kk | Method for trapping minute amount of gaseous carbon dioxide in inert gas |
JPH10314537A (en) * | 1997-05-16 | 1998-12-02 | Babcock Hitachi Kk | Method for treating gas component in gas to be treated |
JP2009106909A (en) * | 2007-10-31 | 2009-05-21 | National Institute Of Advanced Industrial & Technology | Adsorbent for selectively separating-refining carbon dioxide |
WO2009143376A2 (en) * | 2008-05-21 | 2009-11-26 | The Regents Of The University Of Colorado | Ionic liquids and methods for using the same |
-
2010
- 2010-04-27 JP JP2010102746A patent/JP5900869B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263420A (en) * | 1993-03-11 | 1994-09-20 | Seitai Kinou Kenkyusho:Kk | Method for trapping minute amount of gaseous carbon dioxide in inert gas |
JPH10314537A (en) * | 1997-05-16 | 1998-12-02 | Babcock Hitachi Kk | Method for treating gas component in gas to be treated |
JP2009106909A (en) * | 2007-10-31 | 2009-05-21 | National Institute Of Advanced Industrial & Technology | Adsorbent for selectively separating-refining carbon dioxide |
WO2009143376A2 (en) * | 2008-05-21 | 2009-11-26 | The Regents Of The University Of Colorado | Ionic liquids and methods for using the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102895845A (en) * | 2012-10-18 | 2013-01-30 | 昆明理工大学 | Ionic liquid absorbent and preparation method and application thereof |
JP2014088524A (en) * | 2012-10-31 | 2014-05-15 | Tokyo Gas Co Ltd | Method for producing high purity methane, and production device therefor |
WO2021119058A1 (en) * | 2019-12-11 | 2021-06-17 | Research Triangle Institute | Non-aqueous solvent for removing acidic gas from a process gas stream for high pressure applications |
JP2023508217A (en) * | 2020-11-10 | 2023-03-01 | エルジー エナジー ソリューション リミテッド | Secondary battery containing gas collecting member |
JP7418901B2 (en) | 2020-11-10 | 2024-01-22 | エルジー エナジー ソリューション リミテッド | Secondary battery including gas collection member |
CN114950079A (en) * | 2022-06-16 | 2022-08-30 | 中国科学院过程工程研究所 | Physical-chemical coupling selective absorption of CO 2 Functional ionic solvent of (2) |
CN114950079B (en) * | 2022-06-16 | 2024-01-30 | 中国科学院过程工程研究所 | Physical-chemical coupling selective absorption CO 2 Functional ionic solvents of (2) |
Also Published As
Publication number | Publication date |
---|---|
JP5900869B2 (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process | |
JP5311543B2 (en) | Gas separation purification and recovery method and apparatus | |
US7128777B2 (en) | Methods and systems for selectively separating CO2 from a multicomponent gaseous stream to produce a high pressure CO2 product | |
RU2637336C2 (en) | Amine promotion for co2 capture | |
US9365423B2 (en) | Method and device for separating hydrogen sulfide and hydrogen production system using the same | |
Cheng et al. | Thermal regeneration of alkanolamine solutions in a rotating packed bed | |
JP2003528721A (en) | Method for selectively separating CO2 from a multi-component gas stream using a CO2 hydration promoter | |
JP2008136989A (en) | Mixed absorbent for carbon dioxide separation | |
CN111372671B (en) | Gas processing method and gas processing apparatus | |
JP5900869B2 (en) | Absorption liquid for acid gas separation, gas separation purification method and apparatus therefor | |
CN104902982A (en) | CO2 capture via amine-CO2 product phase separation | |
Zhang et al. | Intensification of dimethyaminoethoxyethanol on CO2 absorption in ionic liquid of amino acid | |
JP2011194388A (en) | Aqueous solution which effectively absorbs and recovers carbon dioxide contained in gas | |
JP2011153245A (en) | Treatment method and treatment system for gas mainly composed of methane | |
Park et al. | Selection of suitable aqueous potassium amino acid salts: CH4 recovery in coal bed methane via CO2 removal | |
JP2006036950A (en) | Gas purification process and absorbent solution used in the same | |
JP5467394B2 (en) | Carbon dioxide separation and recovery method by physical absorption method using ionic liquid | |
JP6297006B2 (en) | Carbon dioxide production facility and carbon dioxide production method | |
JP2009213974A (en) | Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas | |
Zhu et al. | CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas | |
JP5812847B2 (en) | Carbon dioxide recovery apparatus and method | |
JP2015536237A (en) | Improving the rate of CO2 absorption in aqueous potassium carbonate with ammonia-based catalysts | |
Bhosale et al. | CO2 capture using aqueous ethylaminoethanol: Study of oxidative degradation | |
KR20110001741A (en) | Absorbent for acidic gas separation | |
KR20190057586A (en) | Acid gas sorbent and acid gas separation method based on ionic liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130918 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141003 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141028 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5900869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |