JP2012170842A - Low volatile solution absorbing carbon dioxide and gas separation method - Google Patents

Low volatile solution absorbing carbon dioxide and gas separation method Download PDF

Info

Publication number
JP2012170842A
JP2012170842A JP2011032675A JP2011032675A JP2012170842A JP 2012170842 A JP2012170842 A JP 2012170842A JP 2011032675 A JP2011032675 A JP 2011032675A JP 2011032675 A JP2011032675 A JP 2011032675A JP 2012170842 A JP2012170842 A JP 2012170842A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
acid gas
absorption
glyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011032675A
Other languages
Japanese (ja)
Other versions
JP5678260B2 (en
Inventor
Mitsuhisa Kanakubo
光央 金久保
Takashi Makino
貴至 牧野
Tatsuya Umeki
辰也 梅木
Daisuke Kodama
大輔 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon University
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon University
Priority to JP2011032675A priority Critical patent/JP5678260B2/en
Publication of JP2012170842A publication Critical patent/JP2012170842A/en
Application granted granted Critical
Publication of JP5678260B2 publication Critical patent/JP5678260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new low volatile absorbing solution which shows a high absorption of an acid gas component and low volatility, in a physical absorption process in which an acid gas such as carbon dioxide is selectively separated and recovered from a mixed gas under high pressure conditions such as natural gas and IGCC, as well as a gas separation method.SOLUTION: The volatility of the absorbing solution can be effectively reduced without decreasing the absorption of the acid gas such as carbon dioxide, by applying the absorbing solution obtained by adding salts such as lithium bis(trifluoromethanesulfonyl) amide to a low cost solvent of glymes. Consequently, it is possible to significantly cut consumption energy which used to be required for separation and recovery of the acid gas such as carbon dioxide. Thus the high efficiency of the overall process can be achieved. The new absorbing solution can separate and recover the acid gas highly efficiently, and attains the cutting of consumption energy of the separation and recovery process to a low level.

Description

本発明は、ガス成分の分離回収、特に、高圧条件の混合ガスから二酸化炭素などの酸性ガスを物理吸収法により効率的に分離回収するための吸収液に関するものであり、さらに詳しくは、グライム類の溶剤に、塩類を添加した酸性ガス吸収液であって、当該吸収液の揮発性を低減させ、かつ、酸性ガスの吸収量を向上させることを可能とした新規吸収液、および当該吸収液を用いた物理吸収法によるガス分離方法に関するものである。本発明は、分子性の吸収液に、塩類を添加することで、当該吸収液の揮発性を低下し、かつ、溶解度を増加、あるいは、保持することで、ガス分離回収効率を向上させることを可能とする酸性ガス吸収技術に関する新技術・新製品を提供するものである。   The present invention relates to an absorption liquid for separating and recovering gas components, in particular, for efficiently separating and recovering an acidic gas such as carbon dioxide from a mixed gas under high pressure conditions by a physical absorption method. An acid gas absorption liquid obtained by adding salts to the solvent of the above, a novel absorption liquid capable of reducing the volatility of the absorption liquid and improving the absorption amount of the acidic gas, and the absorption liquid. The present invention relates to a gas separation method using a physical absorption method. The present invention improves the gas separation and recovery efficiency by adding salts to the molecular absorption liquid, thereby reducing the volatility of the absorption liquid and increasing or maintaining the solubility. It provides new technologies and new products related to the acid gas absorption technology that is possible.

地球温暖化ガスの主要な成分である二酸化炭素を分離・回収し、貯蔵する(CCS)技術は、京都議定書の発効に見られるように、産業界のみならず社会的にも重要視されており、その研究開発は、国際的な課題となっている。上記CCSのプロセスでは、二酸化炭素の分離・回収に要するエネルギーが特に大きく、全体の70%近くにのぼると予想され、実用化のためには、一層の低エネルギー化、低コスト化が望まれている。   The technology that separates, collects and stores carbon dioxide, the main component of global warming gas (CCS), is seen as important not only by industry but also by society, as seen in the enforcement of the Kyoto Protocol. The research and development has become an international issue. In the above CCS process, the energy required for the separation and recovery of carbon dioxide is particularly large, and it is expected to reach nearly 70% of the total. For practical application, further reduction in energy and cost is desired. Yes.

そのような背景から、各種混合ガス中から二酸化炭素を分離する技術について、これまで、様々な提案がなされている。それらの分離技術は、化学吸収法と物理吸収法とに大別される。化学吸収法は、二酸化炭素を選択的に溶解できるアルカリ性溶液を吸収液として利用し、二酸化炭素を化学反応によって吸収させ、その吸収液を加熱することにより、二酸化炭素を放出させて回収するものである。   Against this background, various proposals have been made so far for techniques for separating carbon dioxide from various mixed gases. These separation techniques are roughly classified into chemical absorption methods and physical absorption methods. The chemical absorption method uses an alkaline solution that can selectively dissolve carbon dioxide as an absorbing solution, absorbs carbon dioxide by a chemical reaction, and heats the absorbing solution to release and recover carbon dioxide. is there.

この化学吸収法は、混合ガス中の二酸化炭素の分離方法として、比較的低濃度の二酸化炭素ガスを含め、広く使用されている方法であり、1リットル当たり80〜100gの二酸化炭素を吸収できることが示されている。しかし、吸収液から二酸化炭素を取り出すためには、一般的に、高温が必要であり、加熱に要するエネルギーが著しく大きく、これらのことが、消費エネルギーの低減を図る上で、大きな課題となっていた。   This chemical absorption method is a widely used method for separating carbon dioxide in a mixed gas, including a relatively low concentration of carbon dioxide gas, and can absorb 80 to 100 g of carbon dioxide per liter. It is shown. However, in order to extract carbon dioxide from the absorbing liquid, generally, a high temperature is required, and the energy required for heating is extremely large, and these are major issues in reducing energy consumption. It was.

一方、物理吸収法は、吸収塔において高圧条件でガスを吸収し、再生塔で減圧して、これを回収するものである。物理吸収法の吸収量は、混合ガス中の分圧にほぼ比例するため、処理対象となる混合ガスが、高圧あるいは高濃度である場合にとりわけ有利である。そのため、物理吸収法は、例えば、ガス田から自噴する天然ガスや、石炭ガス化複合発電(IGCC)における燃焼前排ガスなどに含まれる二酸化炭素の分離に適用されている。   On the other hand, in the physical absorption method, gas is absorbed under high-pressure conditions in an absorption tower, and the pressure is reduced in a regeneration tower, and this is recovered. Since the absorption amount of the physical absorption method is substantially proportional to the partial pressure in the mixed gas, it is particularly advantageous when the mixed gas to be treated has a high pressure or high concentration. Therefore, the physical absorption method is applied to, for example, separation of carbon dioxide contained in natural gas self-injecting from a gas field, exhaust gas before combustion in coal gasification combined power generation (IGCC), or the like.

これまで、物理吸収法の吸収液としては、Rectisol法のメタノール、あるいはSelexol法のポリエチレングリコール誘導体などが用いられている。これらの分子性溶剤を用いた物理吸収プロセスでは、吸収液を0℃近くに冷却して、ガスを吸収させて分離する。吸収液を冷却して低温にすることで、ガスの吸収量を増加し、かつ、溶剤の揮発を防ぐことが可能となるが、その一方で、余分に、冷却エネルギーが必要となる。   Until now, as the absorbing solution of the physical absorption method, methanol of the Rectisol method or a polyethylene glycol derivative of the Selexol method has been used. In the physical absorption process using these molecular solvents, the absorbing solution is cooled to near 0 ° C. to absorb and separate the gas. By cooling the absorption liquid to a low temperature, it is possible to increase the gas absorption amount and prevent the solvent from volatilizing, but on the other hand, extra cooling energy is required.

また、物理吸収法は、高温のガスやスチームを対象としたガス処理に用いることが困難である、などの課題があった。先行技術文献(特許文献1および2)には、物理吸収液に不揮発性のイオン液体を用いることで、吸収液の蒸発を抑え、高温のガスやスチームを対象とできることが記載されている。しかしながら、イオン液体の製造コストは、未だ著しく高く、商業化に対しては、大きな障壁がある。   Further, the physical absorption method has a problem that it is difficult to use it for gas treatment of high-temperature gas or steam. Prior art documents (Patent Documents 1 and 2) describe that by using a non-volatile ionic liquid as a physical absorption liquid, evaporation of the absorption liquid can be suppressed and high-temperature gas or steam can be targeted. However, the production costs of ionic liquids are still very high and there are significant barriers to commercialization.

一方、他の先行技術文献(非特許文献1)には、Selexol吸収液と類似の化学構造をもつ、グライム類化合物(CH−O−(CHCH−O)−CH、n=2〜4)の二酸化炭素吸収量が示されている。この文献には、グライム類化合物の基本骨格の繰返し数を小さくすると、単位体積当たりの二酸化炭素吸収量を増加できることが見出されたことが記載されている。 On the other hand, other prior art documents (Non-patent Document 1) include glyme compounds (CH 3 —O— (CH 2 CH 2 —O) n —CH 3 , n, which have a chemical structure similar to that of Selexol absorption liquid. = 2-4) carbon dioxide absorption is shown. This document describes that it has been found that the carbon dioxide absorption per unit volume can be increased by reducing the number of repetitions of the basic skeleton of the glyme compound.

グライム類化合物は、コスト的に比較的安価で、分子性溶剤のSelexol吸収液と比べて、二酸化炭素の吸収量にも優れている。しかし、グライム類化合物の基本骨格の繰返し数を下げると、分子量が小さくなり、沸点は低下し、揮発性は大きくなることが課題として挙げられている。すなわち、当技術分野においては、従来の物理吸収液と比較して、製造コストがほぼ同等で、低揮発性で、かつ、高性能の物理吸収液の必要性が高まっているのが実情である。   The glyme compounds are relatively inexpensive in terms of cost, and are excellent in the amount of carbon dioxide absorbed as compared with the molecular solvent Selexol absorbent. However, when the number of repetitions of the basic skeleton of the glyme compound is decreased, the molecular weight decreases, the boiling point decreases, and the volatility increases. That is, in this technical field, the actual situation is that there is an increasing need for a physical absorption liquid that is almost the same in manufacturing cost, low volatility, and high performance as compared with a conventional physical absorption liquid. .

特開2008−296211号公報JP 2008-296211 A 特開2010−248052号公報JP 2010-248052 A

D.Kodama,M.Kanakubo,M.Kokubo,S.Hashimoto,H.Nanjo,and M.Kato,Fluid Phase Equilibria,in pressD. Kodama, M .; Kanakubo, M .; Kokubo, S .; Hashimoto, H .; Nanjo, and M.M. Kato, Fluid Phase Equilibria, in press

このような状況の中で、本発明者らは、上記従来技術に鑑みて、従来の分子性吸収液と比べて、二酸化炭素の吸収量が同等あるいはそれ以上で、揮発性が低く、かつ、コスト的に安価なガス吸収液を提供することを可能とすることにより、天然ガスやIGCCなどの高圧条件の混合ガスから二酸化炭素などの酸性ガスを高効率で分離回収し、それらのプロセスの消費エネルギーを低減することを可能とする新しい吸収液を開発することを目標として鋭意研究を積み重ねた結果、コスト的に比較的安価なグライム類の溶剤に、塩類を添加することで、二酸化炭素の吸収量を減少させることなく、吸収液の揮発性を低減できることを見出し、本発明を完成するに至った。   In such a situation, in view of the prior art, the present inventors have the same or more absorption amount of carbon dioxide as compared with the conventional molecular absorption liquid, low volatility, and By making it possible to provide gas absorption liquids that are low in cost, acid gases such as carbon dioxide are separated and recovered from high-pressure gas mixtures such as natural gas and IGCC with high efficiency and consumption of those processes. As a result of intensive research aimed at developing new absorbents that can reduce energy consumption, carbon dioxide can be absorbed by adding salts to relatively inexpensive grime solvents. It has been found that the volatility of the absorbing solution can be reduced without reducing the amount, and the present invention has been completed.

本発明は、安価なグライム類の溶剤に、塩類を添加することで、二酸化炭素の吸収量を減少することなく、吸収液の揮発性を低減できる新規ガス吸収液を提供することを目的とするものである。また、本発明は、上記ガス吸収液を利用した酸性ガス分離方法を提供することを目的とするものである。   An object of the present invention is to provide a novel gas absorbent that can reduce the volatility of an absorbent without reducing the amount of carbon dioxide absorbed by adding salts to an inexpensive glyme solvent. Is. Moreover, an object of this invention is to provide the acidic gas separation method using the said gas absorption liquid.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高圧条件の混合ガスから酸性ガスを選択的に分離回収するための物理的吸収液であって、
グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した吸収液であり、塩類を添加することで当該吸収液の揮発性を低減させ、かつ、酸性ガスの吸収量を向上させたことを特徴とする酸性ガス吸収液。
(2)添加する塩類が、ビス(トリフルオロメタンスルホニル)アミド([(CFSON])、又はその誘導体([(RSO)(RSO)N])(但し、RおよびRはF、CF、C、C、C、C11、およびそれらの部分水素化物のいずれかを表す。)の陰イオンから構成される、前記(1)に記載の吸収液。
(3)グライム類の溶剤が、ジグライム(CH−O−(CHCH−O)−CH)、トリグライム(CH−O−(CHCH−O)−CH)、又は、テトラグライム(CH−O−(CHCH−O)−CH)からなる、前記(1)又は(2)に記載の吸収液。
(4)添加する塩類の陽イオンが、アルカリ金属、アルカリ土類金属、又は1〜3の価数の金属イオンである、前記(1)から(3)のいずれかに記載の吸収液。
(5)酸性ガスが、二酸化炭素である、前記(1)から(4)のいずれかに記載の吸収液。
(6)前記(1)から(5)のいずれかに記載の酸性ガス吸収液を用いた物理吸収法により、高圧条件の混合ガスから酸性ガスを選択的に分離回収するための酸性ガス分離方法であって、
グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した酸性ガス吸収液を、酸性ガスを含む高圧条件の混合ガスに接触させて当該吸収液に酸性ガスを吸収させ、分離、回収することを特徴とする酸性ガス分離方法。
(7)添加する塩類が、ビス(トリフルオロメタンスルホニル)アミド([(CFSON])、又はその誘導体([(RSO)(RSO)N])(但し、RおよびRはF、CF、C、C、C、C11、およびそれらの部分水素化物のいずれかを表す。)の陰イオンから構成される、前記(6)に記載の酸性ガス分離方法。
(8)グライム類の溶剤が、ジグライム(CH−O−(CHCH−O)−CH)、トリグライム(CH−O−(CHCH−O)−CH)、又は、テトラグライム(CH−O−(CHCH−O)−CH)からなる、前記(6)又は(7)に記載の酸性ガス分離方法。
(9)添加する塩類の陽イオンが、アルカリ金属、アルカリ土類金属、又は1〜3の価数の金属イオンである、前記(6)から(8)のいずれかに記載の酸性ガス分離方法。
(10)上記吸収液に酸性ガスの二酸化炭素を吸収させ、分離、回収する、前記(6)から(9)のいずれかに記載の酸性ガス分離方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A physical absorption liquid for selectively separating and recovering acidic gas from a mixed gas under high pressure conditions,
Glyme (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) (where R 1 and R 2 are CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 5 H 11 and any one of those fluorine derivatives, n represents 1 to 5.) An absorption liquid obtained by adding salts to a solvent of a glyme having a skeleton, and volatilization of the absorption liquid by adding the salts. Acid gas absorbing liquid characterized in that the property is reduced and the amount of acid gas absorbed is improved.
(2) The salt to be added is bis (trifluoromethanesulfonyl) amide ([(CF 3 SO 2 ) 2 N] ) or a derivative thereof ([(R 1 SO 2 ) (R 2 SO 2 ) N] ) Wherein R 1 and R 2 are any of F, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and partial hydrides thereof. The absorbent according to (1), comprising:
(3) Glyme solvent is diglyme (CH 3 —O— (CH 2 CH 2 —O) 2 —CH 3 ), triglyme (CH 3 —O— (CH 2 CH 2 —O) 3 —CH 3 ) or consists of tetraglyme (CH 3 -O- (CH 2 CH 2 -O) 4 -CH 3), the absorbing solution according to (1) or (2).
(4) The absorbent according to any one of (1) to (3), wherein the cation of the salt to be added is an alkali metal, an alkaline earth metal, or a metal ion having a valence of 1 to 3.
(5) The absorbent according to any one of (1) to (4), wherein the acidic gas is carbon dioxide.
(6) An acid gas separation method for selectively separating and recovering an acid gas from a mixed gas under a high pressure condition by a physical absorption method using the acid gas absorbing liquid according to any one of (1) to (5) Because
Glyme (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) (where R 1 and R 2 are CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 5 H 11 and any one of those fluorine derivatives, n represents 1 to 5.) An acidic gas absorbing solution obtained by adding salts to a glyme solvent having a skeleton is mixed into a mixed gas containing an acidic gas under high pressure conditions. An acidic gas separation method comprising contacting, absorbing, and separating and collecting the acidic gas in the absorbing liquid.
(7) The salt to be added is bis (trifluoromethanesulfonyl) amide ([(CF 3 SO 2 ) 2 N] ) or a derivative thereof ([(R 1 SO 2 ) (R 2 SO 2 ) N] ) Wherein R 1 and R 2 are any of F, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and partial hydrides thereof. The acidic gas separation method according to (6), comprising:
(8) The glyme solvent is diglyme (CH 3 —O— (CH 2 CH 2 —O) 2 —CH 3 ), triglyme (CH 3 —O— (CH 2 CH 2 —O) 3 —CH 3 ). Or the acid gas separation method according to (6) or (7), comprising tetraglyme (CH 3 —O— (CH 2 CH 2 —O) 4 —CH 3 ).
(9) The acid gas separation method according to any one of (6) to (8), wherein the cation of the salt to be added is an alkali metal, an alkaline earth metal, or a metal ion having a valence of 1 to 3. .
(10) The acidic gas separation method according to any one of (6) to (9), wherein the absorbing liquid absorbs carbon dioxide of the acidic gas, and is separated and recovered.

次に、本発明についてさらに詳細に説明する。
本発明は、天然ガスやICCCなどの高圧条件の混合ガスから二酸化炭素などの酸性ガスを選択的に分離回収するための物理的吸収液であって、グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した吸収液であり、塩類を添加することで当該吸収液の揮発性を低減させ、かつ、酸性ガスの吸収量を向上させたことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a physical absorption liquid for selectively separating and recovering an acidic gas such as carbon dioxide from a mixed gas under a high pressure condition such as natural gas or ICCC, and is a glyme (R 1 —O— (CH 2 CH 2 -O) n -R 2) (where, R 1 and R 2 are either CH 3, C 2 H 5, C 3 H 7, C 4 H 9, C 5 H 11, and their fluorine derivatives , N represents 1 to 5.) An absorption liquid obtained by adding salts to a glyme solvent having a skeleton, and by adding the salts, the volatility of the absorption liquid is reduced and absorption of acid gas The quantity is improved.

また、本発明は、上記酸性ガス吸収液を用いた物理吸収法により、天然ガスやICCCなどの高圧条件の混合ガスから二酸化炭素などの酸性ガスを選択的に分離回収するための酸性ガス分離方法であって、グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した酸性ガス吸収液を、酸性ガスを含む高圧条件の混合ガスに接触させて当該吸収液に酸性ガスを吸収させ、分離、回収することを特徴とするものである。 The present invention also provides an acidic gas separation method for selectively separating and recovering an acidic gas such as carbon dioxide from a mixed gas under a high pressure condition such as natural gas or ICCC by a physical absorption method using the acidic gas absorbent. And glyme (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) (where R 1 and R 2 are CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9. , C 5 H 11 , and fluorine derivatives thereof, n represents 1 to 5.) An acidic gas absorbing solution obtained by adding salts to a glyme solvent having a skeleton, and a high-pressure condition including an acidic gas It is characterized in that it is brought into contact with the mixed gas and the acidic gas is absorbed into the absorption liquid, and separated and recovered.

本発明において、グライム類骨格を有するグライム類溶剤とは、分子中にグライム骨格(R−O−(CHCH−O)−R)を有する溶剤のことであり、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を意味する。具体的には、例えば、ジグライム(CH−O−(CHCH−O)−CH)、トリグライム(CH−O−(CHCH−O)−CH)、あるいは、テトラグライム(CH−O−(CHCH−O)−CH)からなる溶剤が挙げられる。 In the present invention, the glyme solvent having a glyme skeleton is a solvent having a glyme skeleton (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) in the molecule, and R 1 and R 2 is any of CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 5 H 11 , and fluorine derivatives thereof, and n means 1 to 5. Specifically, for example, diglyme (CH 3 —O— (CH 2 CH 2 —O) 2 —CH 3 ), triglyme (CH 3 —O— (CH 2 CH 2 —O) 3 —CH 3 ), or And a solvent composed of tetraglyme (CH 3 —O— (CH 2 CH 2 —O) 4 —CH 3 ).

本発明の吸収液は、上述のグライム類溶剤に、塩類を添加して、当該吸収液の揮発性を低減させ、かつ、二酸化炭素などの酸性ガスの吸収量を向上させたことを特徴とするものである。グライム類溶剤に添加する塩類としては、ビス(トリフルオロメタンスルホニル)アミド([(CCFSON])、その誘導体[(RSO)(RSO)N](但し、RおよびRはF、CF、C、C、C、C11、およびそれらの部分水素化物のいずれかを表す。)の陰イオン、が使用される。これらの塩類の陽イオンとしては、アルカリ金属、アルカリ土類金属、あるいは1〜3価の金属イオンであることが好適である。 The absorption liquid of the present invention is characterized in that salts are added to the above-mentioned glyme solvent to reduce the volatility of the absorption liquid and to improve the absorption amount of acidic gas such as carbon dioxide. Is. Salts added to the glyme solvent include bis (trifluoromethanesulfonyl) amide ([(CCF 3 SO 2 ) 2 N] ) and derivatives thereof [(R 1 SO 2 ) (R 2 SO 2 ) N] ( Wherein R 1 and R 2 represent any one of F, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and partial hydrides thereof). Is used. The cation of these salts is preferably an alkali metal, an alkaline earth metal, or a 1-3 valent metal ion.

本発明では、グライム類の溶剤に、例えば、リチウム ビス(トリフルオロメタンスルホニル)アミドなどの塩類を添加することで、二酸化炭素などの吸収量の低下を招くことなく、吸収液の揮発性を低減することができ、これにより、二酸化炭素などの酸性ガスの吸収、分離回収プロセスにおける、吸収液の冷却エネルギーを低減し、吸収液の揮発による損失を防ぐことが可能となる。   In the present invention, for example, by adding a salt such as lithium bis (trifluoromethanesulfonyl) amide to a glyme solvent, the volatility of the absorbent is reduced without causing a decrease in the amount of carbon dioxide or the like. Accordingly, it is possible to reduce the cooling energy of the absorbing solution in the absorption and separation / recovery process of the acidic gas such as carbon dioxide, and to prevent loss due to volatilization of the absorbing solution.

本発明のガス分離方法では、上記吸収液を使用することにより、初期の設備費の低減やランニングコストの低下が可能となり、従来の二酸化炭素の分離回収に必要とされていた消費エネルギーを大幅に低減し、二酸化炭素などの酸性ガスの分離回収プロセスの全般の高効率化を達成することが可能となる。   In the gas separation method of the present invention, it is possible to reduce the initial equipment cost and the running cost by using the above-mentioned absorption liquid, and greatly reduce the energy consumption required for the conventional separation and recovery of carbon dioxide. It becomes possible to achieve reduction in the overall efficiency of the separation and recovery process of acidic gas such as carbon dioxide.

後記する実施例で示されたように、本発明では、二酸化炭素などの酸性ガスの吸収量は、塩類の添加により減少する傾向を示すが、一方、吸収液に添加する塩類の濃度を高くするにしたがって、例えば、純粋なジグライム類の溶剤と比べて、吸収液の揮発による損失が半分近くに低下すること、すなわち、グライム類の溶剤に、塩類を添加することで、吸収液の揮発性を半分近くに低減できることが分かった。   As shown in the examples described later, in the present invention, the absorption amount of acidic gas such as carbon dioxide tends to decrease with the addition of salts, while the concentration of salts added to the absorbing solution is increased. Therefore, for example, the loss due to volatilization of the absorbing solution is reduced by almost half compared to the solvent of pure diglyme, i.e., by adding salts to the solvent of glyme, the volatility of the absorbing solution It was found that it can be reduced to almost half.

したがって、本発明では、吸収液に添加する塩類の濃度は、吸収液の揮発による損失と、吸収液による酸性ガスの吸収量とをバランスすると共に、吸収液の冷却条件を適宜調節して、二酸化炭素などの酸性ガスの分離回収に必要とされる消費エネルギーの低減と、分離回収効率化を図ることが重要となる。   Therefore, in the present invention, the concentration of the salt added to the absorption liquid balances the loss due to volatilization of the absorption liquid and the amount of acid gas absorbed by the absorption liquid, and appropriately adjusts the cooling conditions of the absorption liquid to reduce the dioxide concentration. It is important to reduce the energy consumption required for the separation and recovery of acidic gases such as carbon and to increase the efficiency of separation and recovery.

本発明により、次のような効果が奏される。
1)グライム類の溶剤に、リチウム ビス(トリフルオロメタンスルホニル)アミドなどの塩類を添加することで、二酸化炭素の吸収量の低下を招くことなく、吸収液の揮発性を低減させることができる。
2)それにより、吸収液の冷却エネルギーを低減し、吸収液の損失を防ぎ、初期の設備費の軽減やランニングコストを低減することが可能となる。
3)これらの効果により、従来、高圧条件の混合ガスから二酸化炭素などの酸性ガスの分離回収に必要とされていた消費エネルギーを大幅に削減し、プロセスの全般に渡り高効率化を達成することが可能となる。
The present invention has the following effects.
1) By adding a salt such as lithium bis (trifluoromethanesulfonyl) amide to a glyme solvent, the volatility of the absorbing solution can be reduced without causing a decrease in the amount of carbon dioxide absorbed.
2) Thereby, the cooling energy of the absorbing liquid can be reduced, the loss of the absorbing liquid can be prevented, the initial equipment cost can be reduced, and the running cost can be reduced.
3) With these effects, the energy consumption required for the separation and recovery of acidic gases such as carbon dioxide from gas mixtures under high-pressure conditions can be greatly reduced, and high efficiency can be achieved throughout the entire process. Is possible.

容積可変型高圧相平衡測定装置の概略図を示す。1 is a schematic view of a variable volume type high pressure phase equilibrium measuring apparatus. ジグライム、トリグライム、テトラグライム、および、それらのグライム類に、塩類として、リチウム ビス(トリフルオロメタンスルホニル)アミドを添加した吸収液の単位体積当たりのCO吸収量の圧力依存性を示す。The pressure dependence of the amount of CO 2 absorbed per unit volume of an absorbing solution obtained by adding lithium bis (trifluoromethanesulfonyl) amide as a salt to diglyme, triglyme, tetraglyme, and their glymes is shown. ジグライム、トリグライム、テトラグライム、および、それらのグライム類に1wt%(3mol%)塩化リチウムを添加した吸収液のCO溶解度(x1)および飽和密度の圧力依存性を示す。Diglyme, shown triglyme, tetraglyme, and their 1 wt% to glymes (3mol%) CO 2 Solubility of the absorbent with added lithium chloride (x1) and pressure dependence of the saturation density. ジグライムに、塩類として、リチウム ビス(トリフルオロメタンスルホニル)アミドを所定量添加した吸収液の50℃における質量減少の時間変化を示す。The time change of the mass decrease at 50 ° C. of an absorbing solution obtained by adding a predetermined amount of lithium bis (trifluoromethanesulfonyl) amide as a salt to diglyme is shown.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、ジグライム類に、塩類を添加した吸収液を用いて、二酸化炭素吸収量、液相の密度を測定した。図1に、本実施例で使用した容積可変型高圧相平衡測定装置の概略図を示した。この図に示した容積可変型高圧相平衡測定装置を用いて、ジグライム(DEGDME)、トリグライム(TEGDME)、テトラグライム(TTEGDME)、および、それらのグライム類に、塩類として、リチウム ビス(トリフルオロメタンスルホニル)アミド(LiTfN)を所定量添加した吸収液の二酸化炭素の吸収量ならびに液相の密度を以下の手順で測定した。 In this example, the absorption of carbon dioxide and the density of the liquid phase were measured using an absorbent obtained by adding salts to diglymes. FIG. 1 shows a schematic diagram of a variable volume high-pressure phase equilibrium measuring apparatus used in this example. Using the variable volume type high pressure phase equilibrium measuring apparatus shown in this figure, diglyme (DEGDME), triglyme (TEGDME), tetraglyme (TTEGDME), and their glymes, lithium bis (trifluoromethanesulfonyl) as a salt ) The absorption amount of carbon dioxide and the density of the liquid phase of the absorption liquid to which a predetermined amount of amide (LiTf 2 N) was added were measured by the following procedure.

[測定方法]
あらかじめ装置内を真空にした後、二酸化炭素と液体成分を高圧セル内に仕込み、循環ポンプでセル内を循環させ、平衡状態に到達した後、圧力、密度、温度を測定した。同一仕込み組成において、セル容積を順次変化させ、数点測定を行った。
[Measuring method]
After the inside of the apparatus was evacuated in advance, carbon dioxide and a liquid component were charged into the high-pressure cell, circulated through the cell with a circulation pump, and after reaching an equilibrium state, pressure, density, and temperature were measured. With the same charge composition, the cell volume was sequentially changed, and several points were measured.

以上の結果を、以下の表1〜3に示す。また、ジグライム、トリグライム、テトラグライム、および、それらのグライム類に、塩類として、リチウム ビス(トリフルオロメタンスルホニル)アミドを添加した吸収液の単位体積当たりのCO吸収量の圧力依存性を図2に示した。どの吸収液を用いた場合も、二酸化炭素の吸収量は圧力増加に伴い大きくなることが分かる。また、ジグライム、トリグライム、テトラグライムと分子量が大きくなると、一定圧力では、沸点は上昇し、揮発性も低下するが、二酸化炭素の吸収量も減少することが分かる。一方、リチウム ビス(トリフルオロメタンスルホニル)アミドを加えたグライム類吸収液は、塩を加えるとやや二酸化炭素の吸収量が減少するが、その程度はそれほど顕著ではないことが明らかになった。 The above results are shown in Tables 1 to 3 below. Fig. 2 shows the pressure dependence of the amount of CO 2 absorbed per unit volume of an absorbent obtained by adding lithium bis (trifluoromethanesulfonyl) amide as a salt to diglyme, triglyme, tetraglyme, and their glymes. Indicated. It can be seen that the absorption amount of carbon dioxide increases as the pressure increases, regardless of which absorption liquid is used. It can also be seen that when the molecular weight increases with diglyme, triglyme, and tetraglyme, the boiling point increases and the volatility decreases at a constant pressure, but the carbon dioxide absorption also decreases. On the other hand, it was found that the glyme-absorbing solution to which lithium bis (trifluoromethanesulfonyl) amide was added slightly decreased the amount of carbon dioxide absorbed when the salt was added, but the extent was not so remarkable.

実施例1に記載した測定方法と同様にして、ジグライムに、1wt%(3mol%)塩化リチウムを添加した吸収液の二酸化炭素の吸収量を測定した。図2に示した通り、塩化リチウムを添加した吸収液では二酸化炭素の吸収量が著しく低下することが分かる。リチウム ビス(トリフルオロメタンスルホニル)アミドの添加量が30wt%に対して、塩化リチウムの添加量は1wt%であることを考慮すると、塩化リチウムでは塩添加による二酸化炭素吸収量の減少が大きく、リチウム ビス(トリフルオロメタンスルホニル)アミドでは極めて小さいことが明らかになった。この結果は、吸収液の単位体積当たりの二酸化炭素吸収量を示したものである。一方、図3に示した通り、モル分率表記の二酸化炭素溶解度では、上記の効果はさらに顕著に観察されることが分かる。   In the same manner as in the measurement method described in Example 1, the amount of carbon dioxide absorbed in the absorbent obtained by adding 1 wt% (3 mol%) lithium chloride to diglyme was measured. As shown in FIG. 2, it can be seen that the absorption amount of carbon dioxide is remarkably reduced in the absorption liquid to which lithium chloride is added. Considering that the addition amount of lithium bis (trifluoromethanesulfonyl) amide is 30 wt% and the addition amount of lithium chloride is 1 wt%, lithium chloride has a large decrease in carbon dioxide absorption due to the addition of salt. (Trifluoromethanesulfonyl) amide was found to be very small. This result shows the amount of carbon dioxide absorbed per unit volume of the absorbing solution. On the other hand, as shown in FIG. 3, it can be seen that the above-described effect is more remarkably observed with the solubility of carbon dioxide expressed in mole fraction.

ジグライムに、塩類として、リチウム ビス(トリフルオロメタンスルホニル)アミドを5、10、15、20、25、30wt%添加したグライム溶液を調製した。それらを、試験管に約10g測り取り、50℃の湯浴に設置して、震とうした。所定時間経過後、吸収液の蒸発に伴う質量減少を天秤で測った。その結果を図4に示した。ただし、各吸収液の質量減少は、変化率(=100×(変化した質量)/(初期に図り取った質量))として表記した。   A glyme solution was prepared by adding lithium bis (trifluoromethanesulfonyl) amide as a salt to diglyme at 5, 10, 15, 20, 25, 30 wt%. About 10 g of them were weighed into a test tube, placed in a 50 ° C. hot water bath, and shaken. After elapse of a predetermined time, the mass reduction accompanying the evaporation of the absorbing solution was measured with a balance. The results are shown in FIG. However, the decrease in mass of each absorbing solution was expressed as the rate of change (= 100 × (changed mass) / (mass taken initially)).

図から、リチウム ビス(トリフルオロメタンスルホニル)アミドをジグライムに添加することで、吸収液の質量減少が抑えられることが分かる。その効果は、塩の濃度を高くするにしたがって顕著であり、リチウム ビス(トリフルオロメタンスルホニル)アミドを30wt%加えた吸収液では、純粋なジグライムと比べて、質量減少を半分近くに抑えられることが確認された。この結果は、グライム類の溶剤に、リチウム ビス(トリフルオロメタンスルホニル)アミドを添加することで、吸収液の揮発性を効果的に低減できることを示している。   From the figure, it can be seen that by adding lithium bis (trifluoromethanesulfonyl) amide to diglyme, mass reduction of the absorbing solution can be suppressed. The effect becomes more prominent as the salt concentration is increased, and the absorption liquid to which 30 wt% lithium bis (trifluoromethanesulfonyl) amide is added can suppress the mass loss by almost half compared to pure diglyme. confirmed. This result indicates that the volatility of the absorbing solution can be effectively reduced by adding lithium bis (trifluoromethanesulfonyl) amide to the glyme solvent.

以上詳述したように、本発明は、低揮発性二酸化炭素吸収液に係るものであり、本発明により、グライム類の溶剤に、塩類を添加することで、二酸化炭素の吸収量の低下を招くことなく、吸収液の揮発性を低減することが可能となり、これにより、二酸化炭素の吸収特性に優れた、低揮発性の物理吸収液を提供することが実現可能となる。本発明の吸収液を利用することにより、従来の分子性吸収液で必要とされた冷却エネルギーを低減し、吸収液の損失を防ぐことができ、二酸化炭素の分離回収に必要とされていた消費エネルギーを大幅に削減し、プロセスの全般に渡り高効率化を達成することが可能となる。本発明の吸収液は、ガス田から自噴する天然ガスや石炭ガス化複合発電(IGCC)における燃焼前排ガスなどの、高圧条件の混合ガスから二酸化炭素などの酸性ガスを選択的に高効率で分離回収するのに効適に使用できるものとして有用である。   As described above in detail, the present invention relates to a low volatility carbon dioxide absorbing liquid, and the present invention causes a decrease in the amount of carbon dioxide absorbed by adding salts to a glyme solvent. Therefore, it is possible to reduce the volatility of the absorption liquid, and thus it is possible to provide a low-volatility physical absorption liquid excellent in carbon dioxide absorption characteristics. By utilizing the absorption liquid of the present invention, the cooling energy required in the conventional molecular absorption liquid can be reduced, the loss of the absorption liquid can be prevented, and the consumption required for the separation and recovery of carbon dioxide Energy can be greatly reduced, and high efficiency can be achieved throughout the process. The absorption liquid of the present invention selectively separates acidic gas such as carbon dioxide from high-pressure mixed gas such as natural gas self-injected from a gas field or exhaust gas before combustion in coal gasification combined power generation (IGCC) with high efficiency. It is useful as one that can be used effectively for recovery.

Claims (10)

高圧条件の混合ガスから酸性ガスを選択的に分離回収するための物理的吸収液であって、
グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した吸収液であり、塩類を添加することで当該吸収液の揮発性を低減させ、かつ、酸性ガスの吸収量を向上させたことを特徴とする酸性ガス吸収液。
A physical absorption liquid for selectively separating and recovering acidic gas from a mixed gas under high pressure conditions,
Glyme (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) (where R 1 and R 2 are CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 5 H 11 and any one of those fluorine derivatives, n represents 1 to 5.) An absorption liquid obtained by adding salts to a solvent of a glyme having a skeleton, and volatilization of the absorption liquid by adding the salts. Acid gas absorbing liquid characterized in that the property is reduced and the amount of acid gas absorbed is improved.
添加する塩類が、ビス(トリフルオロメタンスルホニル)アミド([(CFSON])、又はその誘導体([(RSO)(RSO)N])(但し、RおよびRはF、CF、C、C、C、C11、およびそれらの部分水素化物のいずれかを表す。)の陰イオンから構成される、請求項1に記載の吸収液。 The salt to be added is bis (trifluoromethanesulfonyl) amide ([(CF 3 SO 2 ) 2 N] ), or a derivative thereof ([(R 1 SO 2 ) (R 2 SO 2 ) N] ) (provided that R 1 and R 2 are each composed of an anion of F, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and partial hydrides thereof. The absorbent according to claim 1. グライム類の溶剤が、ジグライム(CH−O−(CHCH−O)−CH)、トリグライム(CH−O−(CHCH−O)−CH)、又は、テトラグライム(CH−O−(CHCH−O)−CH)からなる、請求項1又は2に記載の吸収液。 Glyme solvents are diglyme (CH 3 —O— (CH 2 CH 2 —O) 2 —CH 3 ), triglyme (CH 3 —O— (CH 2 CH 2 —O) 3 —CH 3 ), or consisting tetraglyme (CH 3 -O- (CH 2 CH 2 -O) 4 -CH 3), the absorption liquid according to claim 1 or 2. 添加する塩類の陽イオンが、アルカリ金属、アルカリ土類金属、又は1〜3の価数の金属イオンである、請求項1から3のいずれかに記載の吸収液。   The absorbing liquid according to any one of claims 1 to 3, wherein the cation of the salt to be added is an alkali metal, an alkaline earth metal, or a metal ion having a valence of 1 to 3. 酸性ガスが、二酸化炭素である、請求項1から4のいずれかに記載の吸収液。   The absorbing liquid according to any one of claims 1 to 4, wherein the acid gas is carbon dioxide. 請求項1から5のいずれかに記載の酸性ガス吸収液を用いた物理吸収法により、高圧条件の混合ガスから酸性ガスを選択的に分離回収するための酸性ガス分離方法であって、
グライム(R−O−(CHCH−O)−R)(但し、RおよびRはCH、C、C、C、C11、およびそれらのフッ素誘導体のいずれかで、nは1〜5を表す。)骨格を有するグライム類の溶剤に、塩類を添加した酸性ガス吸収液を、酸性ガスを含む高圧条件の混合ガスに接触させて当該吸収液に酸性ガスを吸収させ、分離、回収することを特徴とする酸性ガス分離方法。
An acidic gas separation method for selectively separating and recovering an acidic gas from a mixed gas under a high pressure condition by a physical absorption method using the acidic gas absorbing liquid according to any one of claims 1 to 5,
Glyme (R 1 —O— (CH 2 CH 2 —O) n —R 2 ) (where R 1 and R 2 are CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 5 H 11 and any one of those fluorine derivatives, n represents 1 to 5.) An acidic gas absorbing solution obtained by adding salts to a glyme solvent having a skeleton is mixed into a mixed gas containing an acidic gas under high pressure conditions. An acidic gas separation method comprising contacting, absorbing, and separating and collecting the acidic gas in the absorbing liquid.
添加する塩類が、ビス(トリフルオロメタンスルホニル)アミド([(CFSON])、又はその誘導体([(RSO)(RSO)N])(但し、RおよびRはF、CF、C、C、C、C11、およびそれらの部分水素化物のいずれかを表す。)の陰イオンから構成される、請求項6に記載の酸性ガス分離方法。 The salt to be added is bis (trifluoromethanesulfonyl) amide ([(CF 3 SO 2 ) 2 N] ), or a derivative thereof ([(R 1 SO 2 ) (R 2 SO 2 ) N] ) (provided that R 1 and R 2 are each composed of an anion of F, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and partial hydrides thereof. The acid gas separation method according to claim 6. グライム類の溶剤が、ジグライム(CH−O−(CHCH−O)−CH)、トリグライム(CH−O−(CHCH−O)−CH)、又は、テトラグライム(CH−O−(CHCH−O)−CH)からなる、請求項6又は7に記載の酸性ガス分離方法。 Glyme solvents are diglyme (CH 3 —O— (CH 2 CH 2 —O) 2 —CH 3 ), triglyme (CH 3 —O— (CH 2 CH 2 —O) 3 —CH 3 ), or consisting tetraglyme (CH 3 -O- (CH 2 CH 2 -O) 4 -CH 3), acid gas separation method according to claim 6 or 7. 添加する塩類の陽イオンが、アルカリ金属、アルカリ土類金属、又は1〜3の価数の金属イオンである、請求項6から8のいずれかに記載の酸性ガス分離方法。   The acid gas separation method according to any one of claims 6 to 8, wherein the cation of the salt to be added is an alkali metal, an alkaline earth metal, or a metal ion having a valence of 1 to 3. 上記吸収液に酸性ガスの二酸化炭素を吸収させ、分離、回収する、請求項6から9のいずれかに記載の酸性ガス分離方法。   The acid gas separation method according to any one of claims 6 to 9, wherein the absorption liquid absorbs carbon dioxide of the acid gas, and is separated and recovered.
JP2011032675A 2011-02-17 2011-02-17 Low volatile carbon dioxide absorbing liquid and gas separation method Active JP5678260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032675A JP5678260B2 (en) 2011-02-17 2011-02-17 Low volatile carbon dioxide absorbing liquid and gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032675A JP5678260B2 (en) 2011-02-17 2011-02-17 Low volatile carbon dioxide absorbing liquid and gas separation method

Publications (2)

Publication Number Publication Date
JP2012170842A true JP2012170842A (en) 2012-09-10
JP5678260B2 JP5678260B2 (en) 2015-02-25

Family

ID=46974262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032675A Active JP5678260B2 (en) 2011-02-17 2011-02-17 Low volatile carbon dioxide absorbing liquid and gas separation method

Country Status (1)

Country Link
JP (1) JP5678260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193219A (en) * 2021-04-08 2022-10-18 中国科学院物理研究所 For absorbing CO 2 Solution of gas and CO 2 Absorption and release method of

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243790A (en) * 1975-10-03 1977-04-06 Chiyoda Chem Eng & Constr Co Ltd Method of removing nox
JPS5689820A (en) * 1979-12-21 1981-07-21 Tokyo Gas Co Ltd Removing method of hydrogen sulfide
JPS63116722A (en) * 1986-05-07 1988-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Separation method for acid gas absorbent and acid gas
JPS63151330A (en) * 1986-12-02 1988-06-23 ノートン カンパニー Gas treatment method for recovering carbon dioxide
JPS63162016A (en) * 1986-12-26 1988-07-05 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbent for acidic gas
JP2004536207A (en) * 2001-07-27 2004-12-02 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A method for removing gas components from industrial gases using ethylene glycol dimethyl ether at low temperatures
JP2005230808A (en) * 2003-12-23 2005-09-02 Inst Fr Petrole Collection method for carbon dioxide contained in fumes
JP2006138470A (en) * 2004-10-15 2006-06-01 Air Products & Chemicals Inc Liquid media containing lewis basic reactive compounds for storage and delivery of lewis acidic gases
WO2006103812A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Materials Corporation Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
JP2009529420A (en) * 2006-03-10 2009-08-20 イエフペ Method of deoxidizing gas with absorbing solution, accompanied by fractional regeneration by heating
JP2010248052A (en) * 2009-04-20 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for separating and recovering carbon dioxide by physical absorption method using ionic liquid
JP2012510894A (en) * 2008-12-08 2012-05-17 ハンツマン ペトロケミカル エルエルシー Reduced degradation of amine-derived contaminants and / or amine solvent solutions present in amine solvent solutions
JP2012525253A (en) * 2009-04-28 2012-10-22 フー、リャン Absorbent that self-concentrates to separate acidic gases

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243790A (en) * 1975-10-03 1977-04-06 Chiyoda Chem Eng & Constr Co Ltd Method of removing nox
JPS5689820A (en) * 1979-12-21 1981-07-21 Tokyo Gas Co Ltd Removing method of hydrogen sulfide
JPS63116722A (en) * 1986-05-07 1988-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Separation method for acid gas absorbent and acid gas
JPS63151330A (en) * 1986-12-02 1988-06-23 ノートン カンパニー Gas treatment method for recovering carbon dioxide
JPS63162016A (en) * 1986-12-26 1988-07-05 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbent for acidic gas
JP2004536207A (en) * 2001-07-27 2004-12-02 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A method for removing gas components from industrial gases using ethylene glycol dimethyl ether at low temperatures
JP2005230808A (en) * 2003-12-23 2005-09-02 Inst Fr Petrole Collection method for carbon dioxide contained in fumes
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification
JP2006138470A (en) * 2004-10-15 2006-06-01 Air Products & Chemicals Inc Liquid media containing lewis basic reactive compounds for storage and delivery of lewis acidic gases
WO2006103812A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Materials Corporation Method of purifying gas, apparatus therefor, and acid-gas-absorbing liquid for use in the purification
JP2009529420A (en) * 2006-03-10 2009-08-20 イエフペ Method of deoxidizing gas with absorbing solution, accompanied by fractional regeneration by heating
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
JP2012510894A (en) * 2008-12-08 2012-05-17 ハンツマン ペトロケミカル エルエルシー Reduced degradation of amine-derived contaminants and / or amine solvent solutions present in amine solvent solutions
JP2010248052A (en) * 2009-04-20 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for separating and recovering carbon dioxide by physical absorption method using ionic liquid
JP2012525253A (en) * 2009-04-28 2012-10-22 フー、リャン Absorbent that self-concentrates to separate acidic gases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193219A (en) * 2021-04-08 2022-10-18 中国科学院物理研究所 For absorbing CO 2 Solution of gas and CO 2 Absorption and release method of
CN115193219B (en) * 2021-04-08 2024-04-05 中国科学院物理研究所 For the absorption of CO 2 Solution of gas and CO 2 Is absorbed and released by the method

Also Published As

Publication number Publication date
JP5678260B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5688455B2 (en) Carbon dioxide absorbent and method for separating and recovering carbon dioxide using the absorbent
Ali et al. Analysis of operating conditions for CO2 capturing process using deep eutectic solvents
Zhang et al. Carbon capture with ionic liquids: overview and progress
Anthony et al. Feasibility of using ionic liquids for carbon dioxide capture
Feng et al. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA
Lin et al. Carbon dioxide capture and regeneration with amine/alcohol/water blends
Gao et al. Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids
JP4933103B2 (en) Method for decarboxylation of combustion exhaust gas including extraction of solvent contained in purified exhaust gas
AU2014260379B2 (en) Mixtures of physical absorption solvents and ionic liquids for gas separation
Zhou et al. Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics
Zhang et al. Intensification of dimethyaminoethoxyethanol on CO2 absorption in ionic liquid of amino acid
JP2008136989A (en) Mixed absorbent for carbon dioxide separation
Singh et al. Energy efficient solvents for CO2 absorption from flue gas: Vapor liquid equilibrium and pilot plant study
CN111372671B (en) Gas processing method and gas processing apparatus
Cui et al. Highly efficient CO removal by active cuprous-based ternary deep eutectic solvents [HDEEA][Cl]+ CuCl+ EG
JP2014036933A (en) Liquid absorbent and separation-recovery method for separating-recovering carbon dioxide from gas flow containing high pressure carbon dioxide
JP2016010760A (en) Acid gas chemical absorption liquid and acid gas separation recovery method
JP2006036950A (en) Gas purification process and absorbent solution used in the same
JP5467394B2 (en) Carbon dioxide separation and recovery method by physical absorption method using ionic liquid
JP5900869B2 (en) Absorption liquid for acid gas separation, gas separation purification method and apparatus therefor
JP2017113672A (en) Absorbent, production method of the same and separation and recovery method of acidic compound
JP4763009B2 (en) CO2 absorbent and CO2 recovery method
JP5678260B2 (en) Low volatile carbon dioxide absorbing liquid and gas separation method
KR101193087B1 (en) Non-aqueous carbon dioxide absorbent comprising sterically hindered secondary alkanolamine and diol
JP6808192B2 (en) Method for producing dry water electrolytic gas and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5678260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250